Finn Julius Stephansen-Smith

Using Neural Networks for loT Power
Management

Master’s thesis in Communication Technology and Digital Security
Supervisor: Frank Alexander Kraemer

June 2020

2
2
=
2

o o
o o
C C
< c
3 3
= =
©
C
T
(V]
o)
[
R
(9]
wmy
G
o
2
(2]
—
[
=
[
)
C
.5
oo
:
o
z

o
c
-
]
]
£
)
c
i

T &0 C
Sco
T E S
33
QL c=
v 22
o
C
c £

o
B U
o ©
o c
Em
S 2

—
23
S o
g n
s
E S
o ®©
s E
= 5
Y

[t
© =
S, £
2 4
5 O
3 g
T o
(&)
a

@ NTNU

Norwegian University of
Science and Technology

@ NTNU

Innovation and Creativity

Using Neural Networks for IoT Power
Management

Finn Julius Stephansen-Smith

Submission date: June 2020
Responsible professor: Frank Alexander Kraemer
Supervisor: Frank Alexander Kraemer

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Using neural networks for IoT power management
Student: Finn Julius Stephansen-Smith

Problem description:

This project investigates whether neural networks can be used to realize intelligent
power management in [oT devices. It takes externally provided trained models and
attempts to implement them on resource-constrained IoT devices. Knowledge about
real-world limitations discovered in this process, as well as steps for how to overcome
them, are the desired results of the project.

Responsible professor: Frank Alexander Kraemer, 11K
Supervisors: Frank Alexander Kraemer, 11K,
Abdulmajid Murad

I11

Abstract

Most devices in the Internet of Things (IoT) operate with limited battery life. To still
provide a reliable service, they need to make optimal use of their total available energy.
This project investigates whether neural networks can be used to implement intelligent
power management in IoT devices, specifically those using energy harvesting techniques
such as solar panels. Given input such as previous weather data and predicted weather

forecast, the neural network helps save energy by adjusting the frequency of devices
operations based on available energy.

We investigate a wide range of such neural networks, looking at how network
structure affects both memory footprint and power consumption. Our first finding is
the limit at which neural networks become too large to fit in the memory of a typical
[oT device. We found that these limits were well beyond the size of existing neural
networks designed for IoT power management. We next examine how much energy can
be saved using these neural networks. Of course, running an inference from a neural
network is itself an operation that costs energy. By comparing the energy spent to the
energy saved, we get an idea of when a neural network is worth including. We ran
experiments on our neural networks to find when, and why, they were able to break even
on energy. Applying this insight to our specific power management neural network, we
again found that the network fell well within our estimated bounds. We thus conclude
that neural networks indeed seem applicable to the IoT power management domain.

Sammendrag

De fleste enheter i Tingenes Internett (IoT) har begrenset batterilevetid. For & likevel
kunne veere palitelige er de ngdt til & utnytte batteriet pa en sa optimal mate som mulig.
Dette prosjektet ser pa hvorvidt nevrale nettverk kan brukes for a oppna intelligent
strgmforbruk i IoT-enheter, spesifikt de som hgster energi via solcellepaneler. Gitt data
om tidligere veerforhold, samt batteritilstand og potensielt andre parametere, reduserer
det nevrale nettverket totalt stremforbruk ved a justere hvor ofte enheten kjgrer sin
funksjon basert pa hvor mye energi som er tilgjengelig.

Vi ser pa en lang rekke nevrale nettverk, med fokus pa hvordan nettverksstgrrelse
pavirker bade minne- og energiforbruk. Vart forste resultat er grensen for hvor stort
et nevralt nettverk kan bli for det ikke lenger passer i minnet til en IoT-enhet. Disse
grensene ble observert som langt stgrre enn stgrrelsen til et eksisterende nevralt nettverk
trent for smart stremforbruk. Vi ser deretter pa hvor mye energi som kan spares ved
bruk av disse nevrale nettverkene. Naturligvis representerer bruken av et slikt nevralt
nettverk ogsa et energiforbruk. Ved a sammenligne energi spart med energi brukt kan
vi fa en idé om nar et nevralt nettverk er verdt & inkludere. Vi kjgrte eksperimenter
pa vare nevrale nettverk for & finne nar, og hvorfor, de klarte & ga i null energimessig.
Ved a bruke denne innsikten pa vart spesifikke strgmforbruks-nettverk fant vi igjen at
nettverket falt godt innenfor de estimerte grensene. Vi konkluderer dermed at nevrale
nettverk virker passende for bruk i IoT-strgmplanlegging.

VII

Preface
Thank you, Frank Alexander Kraemer, for frequent and excellent guidance through-
out the project.
Thank you, Abdulmajid Murad, for your technical input.

A special thank you to Amund Askeland, without whom several core technical
challenges of the project would still stand unresolved.

Contents

List of Tables XII
List of Figures XV
List of Equations XIX
Symbols XXI
Acronyms XXIII
1 Introduction 1
1.1 Background and Motivation oo 1
1.2 Problem Scope 4
1.3 Results o 7
1.4 Outline o 9

2 Background 11
2.1 Power Management in IoT 11
2.1.1 Static Algorithms 11

2.2 Reinforcement Learning 13
2.2.1 Key Concepts and Terminology 13

2.2.2 Q-learning 14

2.2.3 Reinforcement Learning Algorithms 15

2.2.4 Reinforcement Learning in IoT 16

2.3 Feed-forward Neural Networks 17
2.3.1 Neurons and Layers 18

2.3.2 FFNN in Reinforcement Learning 19

2.3.3 TensorFlow 20

2.4 Hardware Constraints 21
2.4.1 Memory Consumption Estimation 21

2.4.2 FEnergy Consumption Estimation 23

2.4.3 Applicability of Neural Networks in the IoT Domain 24

3 Methodology 27
3.1 Research Question and Context 27
3.1.1 Choice of Hardware 28

3.1.2 Choice of Parameters 29

3.2 Research Methodo 29
3.2.1 Iterative Designo 30

3.3 Experiment Setup 33
3.3.1 Sense Cycle 34

3.3.2 Neural Network on a Microcontroller 35

IX

X CONTENTS

3.3.3 Power Management .

4 Experiments
4.1 Sense Cycle Implementation
4.1.1 Memory Consumption
4.1.2 Energy Consumption

4.2 Resource Consumption of Neural Networks

4.2.1 Procedure

4.2.2 Memory Consumption of a Single Network

4.2.3 Memory Consumption
4.2.4 Compile-Time Memory

Boundaries

4.3 Power Management Implementation

4.3.1 Total Memory
4.3.2 Total Energy Consump

5 Discussion
5.1 Fitting Neural Networks into
5.1.1 Memory Required by a

tion

Device Memory
Sense Cycle

5.1.2 Fitting a Neural Network in the Remaining Memory
5.2 Power Management Performance

5.2.1 Enmergy Budget of an IoT Device

5.2.2 Energy Saved by the N
5.3 Case Study

eural Network

5.3.1 Evaluation of Externally Provided Neural Network

5.4 Research Question Revisited

6 Concluding Remarks

39
39
40
42
45
46
47
90
52
58
58
62

67
67
68
68
70
70
72
76
76
79

83

List of Tables

1.1 The width limits of a neural network given different depths, assuming
they are required to fit onto a 1024 KB Flash memory. 7

2.1 Memory static size in Bytes for architectures of depth 2 < L < 5. Taken
from [Berg, 2019]. 22

3.1 Comparison of the most important specifications of various state-of-the-
art IoT microcontrollers. Taken from [Semiconductor, 2019], [Berg, 2019],

and [Ard, 2020b]. 28
3.2 Chosen parameters for our project. 30
4.1 Memory consumption of our sense cycle application in isolation. 41

4.2 Runtime of the different parts of our developed sense cycle, measured
over o iterations. Lo oL 42
4.3 Runtime of the different parts of our developed sense cycle, this time

when integrated into the larger project. 44
4.4 Final estimations of CPU runtime of the various parts of a sense cycle

PrOZIalll. . .« o v v v v vt e e e e e e 45
4.5 The parameters used in the neural network. 47
4.6 Memory consumption of our initial neural network in isolation. 48

4.7 Memory consumption of our initial neural network in isolation, measured
during runtime embedded on an Arduino Nano 33 BLE microcontroller. 50
4.8 The selected limits of neural network size throughout our experiments. . 51
4.9 Memory consumption of some important network configurations. 52
4.10 Memory consumption of some important network configurations. Cells
without entries denote network configurations for which compilation or

transfer was impossible. o000 52
4.11 The width limits of a neural network given different depths, assuming

they are required to fit onto a 1024 KB Flash memory. 55
4.12 The unavoidable memory overhead of an Arduino sketch when compiled

for the Arduino Nano 33 BLE. 59
4.13 Memory consumption of the various parts of our experimental program. 60
4.14 Measured invocation runtime of neural networks of various sizes. 63
5.1 The definitions of our various parameters. 73

5.2 The value of ¢ given different invocation ratios p and energy consumption
ratios @. 75

LIST OF TABLES XIII

5.3 The amount of energy a neural network power management system needs
to save in order to break even 1), given observed ¢ and selected p. 78

List of Figures

1.1
1.2

1.3
1.4

1.5
1.6

2.1

2.2

2.3

24

2.5

2.6
2.7

2.8

2.9

3.1
3.2

3.3

The number of devices connected to the internet. Taken from [Lasse Lueth, 2018].

An example of solar panels being used to provide sustainable energy for

a deployed IoT device. Taken from [OnL, 2017]. 3
The cost of computer memory over time. Taken from [hbl, 2017]. 5
Arduino Nano 33 BLE, the physical IoT device we plan to use. 6
An overview of how our report is structured. 6

1, the percentage of energy that a neural network has to save in order to
break even with its consumption. ¢ is the proportion of energy input going
to the neural network, and p is the frequency of invocation. Calculated
using formula 1.1.o 8

One year of solar power availability at a particular geographical location.
Taken from [Buchli, 2014]. oo oL 12
The basic structure of Reinforcement Learning. Taken from [Ope, 2018¢|. 13
Comparison of root mean square deviation from energy neutrality of
each month of spring (x-axis) for three competing methods. Taken from

[Hsu et al.,, 2015]. o o 17
[llustration of a feed-forward neural network, in which connections never
go backward. Taken from [Res, 2020]. 18
A taxonomy of some of the most popular algorithms used in modern RL.
Taken from [Ope, 2018d] L 19
The flow of operation using TensorFlow Lite. Taken from [Ten, 2020a. . 20
An abstract model of the energy consumption of different phases in an
IoT sensing node’s life cycle. Taken from [Tamkittikhun, 2019]. 23

The intended agent/environment setup of [Murad et al., 2019a]. The
upper parts represent training and invocation from a neural network, while
the lower is the updating of the policy of an actual IoT device. This lower
part was only simulated in their work. Taken from [Murad et al., 2019a]. 25
Graphs showing simulated solar power and corresponding duty cycle
chosen by agents trained using neural networks. The final graph shows
the variance of each agent, resulting from the factor ¢ indicating how
much an agent is punished for variance. Taken from [Murad et al., 2019a], 26

Arduino Nano 33 BLE, the physical [oT device we plan to use. 29
The iterative process we will follow for the design and validation of the

neural network. 31
The iterative nature of design science. Taken from [Des, 2019]. 32

XV

2

XVI LIST OF FIGURES

4.1 The memory consumption of our static program. 41
4.2 The runtime of a sense cycle program in isolation over 30 iterations. . . . 43
4.3 The runtime of a sense cycle program in isolation over 30 iterations, this

time when integrated into the larger project. 44
4.4 Box and Whisker chart displaying the mean and outliers of the runtime

of sensor scans. 45
4.5 The memory consumption of the neural network. 48

4.6 The behavior of our initially received neural network. The network takes
eight values as input, but for the sake of visualization we sample two and
then repeat those. 49
4.7 The file size of neural networks of various configurations when stored as
compressed TensorFlow Lite files. 53
4.8 The tflite file size (blue) and final flash memory requirements (green) of
neural networks with depth = 3 and various widths. 54
4.9 The Flash memory requirement of neural networks as a function of network
width given five different network depths. The black line indicates the
Flash memory limit imposed by our chosen microcontroller, 1024 Kilobytes.
The point at which each network configuration exceeds this limits is
indicated. L 56
4.10 The Flash memory requirement of neural networks as a function of network
width given depth = 1. The black line indicates the Flash memory limit
imposed by our chosen microcontroller, 1024 Kilobytes. Note that the
x-axis needs to extend significantly further than in figure 4.9 to reach the

point where the lines meet. L. o7
4.11 Total memory consumption at runtime. 60
4.12 The distribution of flash memory at compile time. 61
4.13 The distribution of RAM at compile time. 61

4.14 The console output produced by compiling the final combined power
management application. 0000 62

4.15 The runtime of the invocation of neural networks of various configurations.
Each data point represents the mean of a sample size of 30 runs for that
width / depth combination. The corresponding variance, expressed as
standard deviation, is indicated through grey vertical lines. 64

5.1 An abstract model of the energy consumption of different phases in an
IoT sensing node’s life cycle. Taken from [Tamkittikhun, 2019]. 71
5.2 A further abstracted model of the energy consumption of different phases
in an IoT sensing node’s life cycle. Power and time consumption are
merely indicative. Based on [Tamkittikhun, 2019].. 71
5.3 1, the percentage of energy that a neural network has to save in order to
break even with its consumption. ¢ is the proportion of energy input going
to the neural network, and p is the frequency of invocation. Calculated
using formula 5.2.o Lo 75
5.4 Power Consumption of various nodes. Taken from [Ferry et al., 2011]. . . 78

LIST OF FIGURES XVII

5.5 The percentage of energy the neural network needs to help save in order
to break even with its consumption, v. Plotted for all p and the two
observed values of ¢, 0.02 and 1.86. 80

List of Equations

2.1
2.2
2.3
24
2.5
2.6
4.1
4.2
4.4
4.5
2.0
5.1
2.2

Q function 14
Getting optimal action from a Q-function 15
Energy neutrality oo 16
Berg’s runtime memory estimation 22
Total energy consumption 23
Simple energy consumption 24
Calculated formula for TensorFlow Lite memory size 52
Formula for final Flash Memory Requirement of a neural network. 55
Unionof sets 59
Neural network runtime 64
Neural network power consumption 74
Total power consumption 74
Energy percentageo 74

XIX

O C o =

mWs
uWs
Esense
Enn
Etot

)

p
(4

Symbols

Statistical population mean

Standard deviation

Union of sets

Intersection of sets

TensorFlow Lite file size

Compiled neural network file size
Runtime of the invocation of a neural network
Ampere

Microampere

Watt

Milliwatt

Milliwattsecond

Microwattsecond

Energy Consumption of a Sense Cycle
Energy Consumption of a Neural Network
Energy Consumption of a loop iteration
Ratio of NN and Sense Cycle Energy
Rate of Neural Network Invocation

Energy Consumption Percentage of Neural Network

XXI

IoT
NN
FFNN
PM
DS
RAM
BLE
0OS
RL
ENN

Internet of Things

Neural Network
Feed-Forward Neural Network
Power Management

Design Science

Random Access Memory
Bluetooth Low Energy
Operating System
Reinforcement Learning

Externally Provided Neural Network

XXIII

Acronyms

Introduction

Chapter 1 gives a brief introduction to our work. Section 1.1 introduces the motivation
for why studying power management in the Internet of Things (IoT) is interesting.
Section 1.2 then briefly explains how neural networks can be applied to help achieve
efficient power management in the IoT domain, specifying the scope of our project.
Section 1.3 gives a summary of the results we found. Finally, section 1.4 gives a brief
summary of the chapters constituting the rest of the report.

1.1 Background and Motivation

The Internet of Things is perhaps the most rapidly expanding technology today. The
number of devices connected to the internet is projected to reach 34 billion by 2025.
It might be intuitive to assume most of these are regular user devices such as laptops or
smartphones, which are obviously and visibly popular. However, even when completely
disregarding all such everyday tools, the number of IoT devices in the world is 21
billion — more than half of the total number. In fact, the number of IoT devices is
expected to surpass the number of regular devices by 2022 [Lasse Lueth, 2018]. This
surprising fact is illustrated in figure 1.1.

Given this explosive expansion, there is a growing need for technology able to cope
with this new paradigm. IoT devices are largely heterogeneous in both hardware and
software, and they present a range of novel challenges. It is one of these new frontiers
we focus on in this report: IoT power management.

Power management means the strategy used to choose a balance between producing
output and conserving energy for a device. Poor power management could mean
utilizing too much energy too quickly, leading to rapid system failures due to battery
depletion. It could also mean erring too strongly on the side of caution, producing less
output than the available power allows for. Good power management strikes a balance
between the two, maximizing output while minimizing energy consumption.

In the traditional era of computers, power management was largely irrelevant. Being
connected to a power grid meant a practically unlimited supply of energy. With the

2 CHAPTER 1. INTRODUCTION

o%g; IOT ANALYTICS Insights that empower you to understand loT markets

Total number of active device connections worldwide

Number of global active Connections (installed base) in Bn
354

30+

254

20+

154

-
w
©

1
1
-

10

p 1
o
ft

r_-; Non-loT

M o7

O -
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Note: Non-loT includes all mobile phones, tablets, PCs, laptops, and fixed line phones. loT includes all consumer and B2B devices connected — see loT break-down for further details
Source: loT Analytics Research 2018

Figure 1.1: The number of devices connected to the internet. Taken from [Lasse Lueth, 2018].

transition into laptops and smartphones, this changed. Optimizing both hardware
and software to maximize battery life became essential. Power management became
paramount, and the Internet of Things takes this one step further. Most IoT devices are
not connected directly to power, nor do they have the option of temporarily charging
that smartphones and laptops utilize. Some examples of such IoT devices include
temperature sensors, wildlife monitoring, or even urban applications such as traffic
sensors or parking weights. Unlike laptops or smartphones, it is not practical to plug
these devices into the grid for charging at regular intervals. Instead, one of two main
alternatives must be chosen. One is for manufacturers to simply supply the device with
a large enough battery that it does not run out of power for its expected lifetime. This
lifetime can typically be on the scale of a couple of years, at which point many devices
need maintenance or replacement anyway. This is a workable solution for many use
cases.

Instead of relying on a large battery however, a more long-term, sustainable approach
exists. Devices can be supplied with power from other sources than a power grid.
Through energy harvesting methods such as solar panels, [oT devices can become fully
autonomous even when deployed in difficult conditions. In addition, the sustainable
power source means that the device might be able to afford more costly operations,
leading to a higher quality of service. An example of this can be seen in figure 1.2.

Energy harvesting techniques come with challenges of their own, however. There is
a need to consider the variable nature of such techniques. With solar panels, weather

1.1. BACKGROUND AND MOTIVATION 3

Figure 1.2: An example of solar panels being used to provide sustainable energy for a deployed IoT
device. Taken from [OnL, 2017].

starts playing a major role in how the IoT device should perform its functions. The
IoT device might have to start hoarding energy during the summer if it is to make it
through the winter, for instance. On a smaller scale, the day-to-day throughput might
be tuned up or down based on weather reports, if parsed intelligently. These sorts of
decisions provide a range of tuning knobs that can affect both the life time and the
performance of an IoT device drastically.

Before delving into the details of how to tune a given power management, however,
one must first consider whether the approach is correctly dimensioned. Deploying
solar panels to a region where the sun does not appear for months, for instance, will
inevitably lead to disaster. On the other hand, if deployed in a desert with constant,
powerful sun, there might not be much need for the parsing of weather reports or
intelligent use of energy. The interesting case is the one where there is a balance between
energy coming in through the solar panels and energy being spent. Without this being
the case, the IoT device consumes too much or too little power for any software or
hardware decisions we make to matter. When there is such a balance present, however,
things change. If we let the device perform its function at 100 % capacity at all times,
it would consume more energy than provided with and fail. We also shouldn’t turn the
throughput down too much either, though, as we want as much output from the device
as possible given the available power.

To tune the imaginary knobs in an intelligent, various approaches have been sug-
gested. They are mostly based on the idea of selecting appropriate duty cycles, meaning
what level of intensity the IoT device should perform its function at. The obvious
approach to power management is then to write a regular algorithm that produces
such a duty cycle. It can for example generate some prediction of how future power

4 CHAPTER 1. INTRODUCTION

input is going to look for a year, then produce a static duty cycle that leads to a net
sum of zero power surplus throughout that year. That is, choose a constant level of
operation so that surplus energy gathered in the summer is just enough to bring the
device through the winter. This approach has several demerits. For one, it assumes a
battery capable of storing enough energy to last the device for a long period. If no
such battery is available, the approach doesn’t work. Second, it is unable to adapt to
changing circumstances such as a particularly dark or sunny year.

To improve upon the inherent static, unadaptive nature of such algorithms, ma-
chine learning has been proposed as an alternative approach to power management.
Specifically, the reinforcement learning technique has proven applicable to this domain
[Hsu et al., 2009b]. The idea is to train a machine learning policy to accept input
such as weather data, then provide an appropriate duty cycle as output. This can be
repeated in shorter regular intervals, providing adaptability without interference from
developers. The result is a more adaptive and efficient power management.

This is where neural networks come in. Using neural networks as the driving force
behind reinforcement learning, we aim to enable more intelligent utilization of available
power. This is different from previous reinforcement learning approaches, where neural
networks were not utilized. Neural networks allow us to store the trained policy in a
more sophisticated manner than the tables or similar data structures previously used
in reinforcement learning. This project investigates whether this change leads to more
efficient power management in the Internet of Things.

1.2 Problem Scope

The memory— and runtime requirements of neural networks have made them unsuitable
for the IoT domain for a long time. Only recent advances in the hardware being
deployed at the edge has made this interaction possible. This progress is illustrated in
figure 1.3.

However, literature on the subject published so far has focused on the more concep-
tual aspects of the integration. When work has done showing practical results, it has
all been done through simulations. To the best of our knowledge, no work has been
done showing an actual implementation of trained neural networks on IoT devices to
achieve power management. This is the deficit our project aims to remedy. We pose
the following Research Question (RQ):

Are we able to utilize neural networks on today’s IoT devices in such a
way that they help save more energy than they consume?

By utilize, we mean transferring a neural network model to a device, then successfully
performing inference from said model to make some decision. By today’s IoT devices,
we mean modern state-of-the-art devices widely applied in the IoT domain today.

1.2. PROBLEM SCOPE 5

Historical Cost of Computer Memory and Storage

1e+09 Frrrrrrr T T T T P T e T T T T T ET T T T g

=3 o T Flip-Flops

g an o

le+08 | . gm o3 Core]]
E s = ICs on board E

F 35 5 SIMM v
1ex07 " 829 DIMM x 3

: [] e g Bigdrive o
le+06 E - g< u Floppy disk 3 4
: m o) Small drive +]
100000 L @ Flash stick / card]
0 SO
10000 X]
5 O o + $ok 1
2 1000 L o ¥]
= E == 3
0O s qr o +]
w E .
@ 100
@ : *a "93‘]
k=] i +]
BN 10 3 +4 3
E H -]
LE & 3
| % %
01 E L2 2. o 4
F ﬁin,* x]
001 £ %]
0001 [‘*\&F \ .
00001 L ‘\l]
leos Lol vl i e e e e e e e]

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Figure 1.3: The cost of computer memory over time. Taken from [hbl, 2017].

We chose the Arduino Nano 33 BLE as a representative device for our experiments
[Ard, 2020b]. The microcontroller has 1 MB of Flash memory and 250 KB of RAM,
and it is shown in figure 1.4

The process leading to an answer to our research question poses a couple of main
challenges. In the interest of clarifying exactly which part of the RQ we are attempting
to answer at any given point in our report, we pose these implied challenges as their own
secondary research questions. Secondary research question 1 deals with the memory
limitations of IoT devices.

Do neural networks representing power management policies fit on the
restricted hardware of IoT microcontrollers?

In this context, fit means two things. First, the static memory size of the neural network
should not exceed the flash memory size of a representative loT device. Second, the
runtime memory consumption must not exceed the device’s RAM.

Being able to use the neural network is crucial, but it is not enough to answer our
main research question. It also asks whether our approach can save energy. The reason

6 CHAPTER 1. INTRODUCTION

Figure 1.4: Arduino Nano 33 BLE, the physical IoT device we plan to use.

Memory is an issue

Do Neural N
‘_-."_-\\ Networks fit on °
Microcontrollers? Yes
' . Memory Data
MEMORY . Forwhat N B
' “E0T NN sizes? Y
ARE NEURAL
NETWORKS CONCLUSION
APPROPRIATE FOR 10T Perfomance Data_
POWER MANAGEMENT? * How much energy B
PERFORMANCE = — L’J does a neural network

consume’
Some

x
How much energy For what parameters

(does a neural network > @ does the neural

@ help save? network break even?

None

Performance is an issue
Figure 1.5: An overview of how our report is structured.

we need to ask this question is that the transfer and inference from the neural network
itself requires power. If our power management is to be efficient, the increased power
utilization compared to other approaches must be greater than this consumption. We
encapsulate this detail in secondary research question 2.

In what circumstances is the neural network-based power management
able to help save more energy than it consumes?

This secondary research question helps specify how we intend to go about answering
the main research question. If the neural network approach to IoT power management
is usable at all, there will still be limits to the runtime configuration for which the
system is able to save power. By circumstances, we mean these limits. With these three
research questions in place, the problem scope of our project is thus clearly defined.

An overview of how we go about our research is presented in figure 1.5.

1.3. RESULTS 7

1.3 Results

The result of our project is insight into when the neural network approach to IoT
power management makes sense. The goal of such power management is to achieve the
following behavior.

1. Utilize as much of the incoming power as possible.

2. Minimize the amount of resources consumed by the power management system
such as memory, CPU, and power.

3. Avoid battery depletion.

The way we determine how well our approach performs in these categories is through
experimentation. Utilizing the Design Science framework [Wieringa, 2014], we perform
a scientific analysis of the development of an experimental setup. Through measuring
the effect of our approach on real hardware, we gain indicative data about how our
approach performs in each of the categories above. This data can then be used to
discuss our research questions.

Our results indicate that neural networks indeed are applicable to IoT power man-
agement. The initial hurdle we needed to pass was to fit a program utilizing neural
networks onto the limited memory capacities of our microcontroller. This challenge
led to the need for compression of the neural network, and we developed the steps
required to end up with a neural network runnable on IoT microcontrollers. With
this method in place, we generated neural networks for a wide range of widths and
depths, attempting to establish when the neural networks grew too large for the IoT
device’s memory. The result is presented in table 1.1. We thus concluded that all
neural networks within these size limits indeed fit in an IoT device’s memory.

Network Depth Width Limit

1 23 752
2 482
3 342
4 280
) 242

Table 1.1: The width limits of a neural network given different depths, assuming they are required to
fit onto a 1024 KB Flash memory.

With the neural network in place, the next step was to measure its performance.
When measuring the neural network’s energy consumption, we assumed a direct
dependency on CPU runtime. We again found a link between network size and this
runtime, eventually producing a mathematical formula that predicted runtime given
network size. We then used these results to discuss which range of parameters the
neural network approach is appropriate for in the IoT field. These parameters mainly

8§ CHAPTER 1. INTRODUCTION

- 0.6

1 0.5

- 04

Figure 1.6: ¢, the percentage of energy that a neural network has to save in order to break even
with its consumption. ¢ is the proportion of energy input going to the neural network, and p is the
frequency of invocation. Calculated using formula 1.1.

include two variables: one, how much energy the neural network consumes compared
to the rest of the device’s functions. The neural network helps reduce energy spent
by adjusting how often these surrounding functions are run, meaning the amount of
energy saved is directly dependent on this energy relationship. We call this ¢. The
second crucial parameter how often the neural network is invoked. The network could
be asked to update the device’s policy every iteration of its loop, but if circumstances
haven’t changed much from iteration to iteration, there might not be much benefit.
Invoking it less frequently reduces the amount of energy spent on power management,
and the loss of performance might be minimal. We call this invocation rate p. These
were combined in the following derived formula:

b= (1)

Sl

The result of this formula, ¢, is the percentage of energy a neural network needs to
help reduce in order to break even with its consumption. Lower values for either
parameter lead to the neural network needing to help save less energy to be worth

1.4. OUTLINE 9

including. If both are high, the neural network would have to help save an unrealistic
amount of energy to break even with its consumption, meaning it would likely be
poorly suited for the IoT. We can use the formula to validate whether a given neural
network-based power management is appropriate for the IoT field, thus answering our
research question. This is one of the main results of our work, and it is illustrated in
figure 1.6 for all p and ¢ from 0 to 2.

We conclude by applying these methods to a neural network developed specifically
for IoT power management [Murad et al., 2019a]. We do not consider the design or
construction of this neural network to be within the scope of our work. However,
through testing it with our developed methods on real hardware, we were able to
provide novel insight into it. First, we found that the network consumed approximately
25 % of both the Arduino’s RAM and Flash memory. Memory constraints were thus
not violated. We then looked at the neural network’s performance when coupled with
a representative IoT application. We tested with two different such applications: one
consuming significantly more energy than the neural network per iteration, and one
where the neural network was the heavier consumer. If the neural network was invoked
every iteration, we observed that it would need to help save approximately 2 % or 86
% energy to break even, respectively. If it is invoked less often, we can use formula 1.1
to calculate this break-even point. Asking the neural network for a new policy every
tenth iteration, for instance, we get a p of 0.1. The formula then yields that the neural
network would have to help save 0.2 % or 15.7 % energy to break even, respectively.
These results show how our developed methods can be applied to provide insight into
neural networks used for IoT power management.

1.4 OQOutline

Chapter 2 is the result of a literature analysis. It provides the theoretical background
necessary for our work, explaining key concepts and terminologies. It then looks at
previous works in the field, mapping what has already been done and where our work
fits in.

Chapter 3 describes how we propose to evaluate our research question. It goes into
detail on the environment we wish to create as a testing ground, and it describes how
this environment is envisioned to enable the examination of our research question.

Chapter 4 presents the experiments performed and their resulting data. It shows
the concrete steps taken in order to set up and perform these experiments, first for
the static application, then for the neural network, and finally combined as a power
management system. The generated data is presented through a series of tables, figures,
and formulas.

Chapter 5 discusses the implications of the data produced in chapter 4. It follows
the research methodology outlined in chapter 3, discussing each of our posed research

10 CHAPTER 1. INTRODUCTION

questions in turn. Their level of validation is considered, and where the data allows for
it, answers to our research questions are presented.

Chapter 6 summarizes the project’s problem and the main findings, as well as
providing an outline for which topics are interesting to pursue as further work.

Background

Chapter 2 provides background material for the rest of the report, explaining key
concepts and terminology. It also analyzes what has already been achieved in the field
through related works. Section 2.1 outlines the history of IoT power management,
setting the stage for our contribution of neural networks as a new approach in this
field. Section 2.2 begins the road to this contribution by explaining the concept of
reinforcement learning, the machine learning technique we use. Section 2.3 gives a
brief introduction to feed-forward neural networks, explaining what they are and how
they can be integrated with reinforcement learning. Finally, section 2.4 gives some
background the main challenge we expect to face in our implementation: hardware
constraints.

2.1 Power Management in IoT

A large variety of approaches have suggested to achieve efficient power management
in the Internet of Things. One common approach is to always "go". Ignoring energy
efficiency altogether, this approach simply performs the device’s function as often as
possible. Obviously, this always-go approach does not account for whether performing
a scan is actually a good idea. Often, this means energy is wasted — virtually the same
amount of data could have been produced with fewer scans if chosen tactically. To
achieve this sort of improvement, several strategies have been suggested.

2.1.1 Static Algorithms

When energy is scarce, more sophisticated methods than always-go are necessary. An
obvious approach is to write a regular algorithm that takes parameters such as weather
history and forecast as input, and produce a so-called duty cycle as an output. A
duty cycle represents the idea of operating at different levels of intensity, where lower
levels would be chosen to preserve energy. As an example, consider an IoT node whose
purpose is to perform some scan of its environment. The duty cycle can then be
represented as the time between scans, the power level at which to run each scan, or

11

12 CHAPTER 2. BACKGROUND

other similar definitions. In the case of IoT devices, the choice of whether to perform
its action is often a binary one, meaning that we cannot choose to go at, say, 70 %.
In these cases, time between actions is typically chosen as the way to implement duty
cycles.

There are several approaches available for calculating the appropriate duty cycle
of an IoT node. An intuitive one might write a regular algorithm. Take in historical
data, assume the future is going to be similar to the past, and choose a duty cycle
that ensures the IoT node does not consume more energy than it receives given this

assumption.
35
I | 1', | | | — Ein(d} —— Eom{d] —_— Ereal(d}
3 A I
ol LA
g 25 | P\I”‘| .'l | | illl l_'r-.'.‘_._ | || 'l L‘ r]ll M |"| " |‘ J -
£ ezl il
sl et a1
W HLAT]
| i'.l v “ !_-[.
osf I il
0 dl:l | L dz'
90 180 270 90

Calendar Day

Figure 2.1: One year of solar power availability at a particular geographical location. Taken from
[Buchli, 2014].

[Buchli, 2014] is one example of such an algorithm. They produce a mathematical
algorithm with inputs as described above, outputting the desired duty cycle. The
parameters they observed in one particular experiment is illustrated in figure 2.1. The
blue line E;,(d) is their expected solar input, extrapolated from historical data. Their
algorithm used this to produce the dotted line F,,;(d), meaning their loT device ran at
a rate corresponding to a constant consumption of around 1.3 W /h. This is designed
by the algorithm to build a buffer (green) during summer months that bring the device
safely through the power deficit (red) of winter.

Of course, this approach has its demerits. The duty cycle is chosen as a constant
value to be used throughout the entire period, meaning it cannot adapt to changing
circumstances. It might be more interesting to operate at a high duty cycle during
summer than winter for example, depending on what phenomenon the IoT device is
actually trying to observe or affect. If the device is a temperature sensor, there might
not be any value in performing frequent scans during the night, for instance. In addition,
weather patterns might vary significantly from year to year, meaning historical data
cannot be trusted. A static algorithm like this is poorly adjusted to dealing with these
sorts of challenges. The desire for a more dynamic, adaptive power management is
what inspired the exploration of reinforcement learning as an alternate approach.
We momentarily diverge from the topic of loT power management to look closer at
this topic next.

2.2. REINFORCEMENT LEARNING 13

2.2 Reinforcement Learning

Reinforcement learning is one approach to machine learning. It is based on the simple
idea that when training a machine learning agent, rewarding it for good behavior should
lead to a good model. Obviously, this depends on an appropriate definition of what
good means in the context of a particular machine learning scenario, and this is one
of the main challenges faced in the field. A range of proposals for how to determine
this have been proposed, but all depend on a common set of definitions. We introduce

these next.
Agent
State, Reward Action
St Tt ag

Environment J

Figure 2.2: The basic structure of Reinforcement Learning. Taken from [Ope, 2018c].

2.2.1 Key Concepts and Terminology

The world around the agent is given as state S. This state represents the environment in
which the agent is supposed to perform. For example, if you wanted to use reinforcement
learning to train an agent to play chess, the state S would represent — intuitively —
the chessboard. In addition, however, it would include the position of all pieces on the
board, as well as which pieces have been taken, etc. In this sense, S can be thought
of as containing all information about the world in which the agent exists. In some
cases, the agent only sees a limited part of the state. We call this an observation of the
world, or the agent’s observation space.

To affect the world around it, the agent can perform actions. We denote this by
saying that it performs an action a on state S. In response to an action, the agent
receives an indication of how good the new world becomes. An action leading to a
better world means the agent becomes more likely to perform that action in the future.
By letting the agent choose a myriad of actions and adapting its strategy according
to perceived goodness, we are letting it train. The result is an agent able to perform
excellently in its given, simulated world. Hopefully, this behavior also works well
when the agent is put to test in the real world. Only if it is have we successfully
used reinforcement learning to achieve a desirable real-world effect. It is thus we see

14 CHAPTER 2. BACKGROUND

the importance of what defines goodness in the simulated training world: it needs
to match what’s desired in the real world. The element calculating this goodness
is called the reward function, and choosing or designing a suitable reward functions
is both immensely challenging and fundamentally essential in reinforcement learning
[Ope, 2018c¢].

The strategy used by the agent to choose which action to try next is called a policy.
There are two main categories of policies, deterministic and stochastic. We focus on
deterministic policies, as these are typically more suitable when working with neural
networks [Ope, 2018¢c|. As the policy can be thought of as the brain of the agent, the
terms are sometimes used interchangeably. "Training an agent" and "training a policy"
typically mean the same thing in the context of reinforcement learning. As the agent
trains, its policy is adjusted, and the way it chooses actions adapts.

With these basic definitions in place, we now turn to some of the main challenges
faced by a RL agent. If the reward of a given action is good, how fervently should the
agent follow the parameters that led to that reward? At the beginning of training, how
should the agent test different configurations in search of a good reward? How should
it handle convergence? These are some of the questions addressed by the concepts we
introduce next.

2.2.2 Q-learning

Q-learning is a category of reinforcement learning approaches that focuses on optimizing
the so-called Q-function [Ope, 2018c¢]:

Q" (s,a) = E.wx[R(T) |S0 = 5,00 = a (2.1)

The exact meaning of the terms in formula2.1 are not important, but we explain them
briefly for completeness. s represents the state of the world, and a is an action to be
taken. R is the reward function, calculated with the given state and action. E, gives
the expected return of the term, given that after s the agent chooses actions according
to the chosen policy .

The purpose of the Q-function is to evaluate a given action « by calculating the
cumulative reward of the world over time, given that the actor takes the given action
now. The Q-learning technique then updates its policy to reflect how successful the
action was. This approach is distinct because it uses an indirect evaluation of actions,
looking at how they affect the big picture. This is different from the naive approach,
where it simply compares the state directly before and after each action.

The cumulative reward — the result of the Q-function — is calculated as follows. The

2.2. REINFORCEMENT LEARNING 15

agent starts in state sy, and it takes action a. It is this action we wish to evaluate.
After the action is executed, the world transitions to state s;. This state is some degree
of better or worse than sg, as defined by the reward function. After this initial action,
the agent chooses all subsequent actions based on generic policy 7w until convergence.
The taken action is then evaluated according to this cumulative reward, and the policy
is updated. This is repeated for a user-defined number of steps, after which the agent
has hopefully managed to produce a policy that is stable and well equipped to tackle
real-world scenarios similar to that used in training.

There are many parameters that need to be specified and adjusted within the
Q-learning framework. In particular, the policy used for selecting actions is of critical
importance. Other parameters include reward function, number of steps, noise, and
more. A large number of suggestions for how to specify many of these parameters exist.
These sets of suggestions also often include more radical changes, such as using several
Q-learning agents in parallel and comparing them to each other for improved training.
It is for this reason we call Q-learning a category of reinforcement learning. We have a
closer look at some such specific approaches next.

2.2.3 Reinforcement Learning Algorithms

A strategy for how to apply the various Reinforcement Learning aspects and how to
specify variables to achieve actual learning is called an algorithm. An algorithm is no
more than a series of steps to take to achieve a goal. In the context of reinforcement
learning, the term also sometimes encapsulates specifications of the parameters such as
the reward function.

We look at one algorithm in detail to better explore the concept. Twin Delayed
DDPG, or TD3, is an example. It is a successor to the so-called Deep Deterministic
Policy Gradient algorithm, or DDPG [Ope, 2018¢]. Both algorithms are based on the
idea of training both a Q-function and the policy directly. When using Q-functions,
algorithms normally determine the final policy by using the optimal action in each
step. This is given by equation 2.2:

a*(s) = arg max Q*(s,a). (2.2)

Here a* is the optimal action to be taken in a given state s. It is calculated by
checking every possible action on state s and choosing the one that results in the
largest Q-value. All Q-learning algorithms deal with this optimization in some sense,
but many do not do so directly. For instance, in many real-world scenarios it takes an
unfeasible amount of time to test every possible action in every single step of training.
If the state is continuous, for example, it is per definition impossible. To combat this,

16 ~CHAPTER 2. BACKGROUND

some algorithms approximate a* by techniques such as gradient ascent [Ope, 2018b].

DDPG is one such algorithm tailored for continuous action spaces. It diverges from
the pattern of optimizing the agent’s behavior indirectly. Instead, it optimizes both for
the Q-value and for the action directly, in parallel. In fact, it uses one to train the
other. Without going into detail, the result is an algorithm that has been shown to
outperform several competing Q-learning algorithms [Ope, 2018a].

To understand some of the parameters a RL algorithm might tune, we look at why
TD3 was proposed as a replacement for DDPG. TD3 is a direct successor of DDPG,
and improves upon it in three ways. First, it uses so-called clipped double Q)-Learning,
which means that the way the two trained networks are used against each other is
adjusted. Further, it uses a delayed policy update. This means that instead of updating
its policy immediately after learning the result of an action, it stores the outcome
in a buffer. After seeing the effect of a couple of actions, it uses the world view
painted by the cumulative set of action results to finally adjusts its policy. Finally,
TD3 implements target policy smoothing, which is another effort towards the same
goal. The goal of all these "tricks" is to solve a single issue: overlearning. While
DDPG has generally good results, it has shown a tendency to easily fall into the trap
of overlearning. This means that if a certain action gives extremely good results, likely
due to some error, the algorithm quickly discards all other options and single-mindedly
chases the configuration that led to this erroneously good result. By lessening the
importance of a single action’s results and instead look at outcomes over time, TD3
improves upon this behavior.

In summary, we see how a reinforcement learning algorithm can be specified not just
as a selection of training parameters, but also as adjustments of fundamental aspects
of the process.

2.2.4 Reinforcement Learning in IoT

Returning to the realm of IoT power management, we look at how reinforcement
learning can be used to aid this domain. There are existing works exploring the
approach in this field already. These have largely focused on Q-learning algorithms.
As a prominent example, Hsu et.al have published a series of works on the topic since
2009 [Hsu et al., 2009b]. Their work is based on the introduction of the term energy
neutrality, defined as follows:

Edistanceifromineutrality - Eharvest - Econsume (23)

That is, the difference from energy neutrality is 0 when the device consumes exactly
as much energy as it receives. We say that it is energy neutral. Achieving this means

2.3. FEED-FORWARD NEURAL NETWORKS 17

ideal power management. In reality you might want some buffer to ensure the battery
doesn’t die, but Hsu et.al. among others work with the slightly idealized situation that
a perfectly energy neutral device is the perfect, unobtainable goal of power management.
With this assumption, they are able to use the definition of energy neutrality to derive
mathematical formulas. By attempting to minimize equation 2.3, they can pose the
power management challenge as an optimization problem. Specifically, they formulate
the reward function of their reinforcement learning algorithm so that a lower energy
neutrality leads to a higher reward. With this pretext, they train an agent using basic
reinforcement algorithms, iteratively improving their approach in various ways to try to
further reduce the distance from energy neutrality [Hsu et al., 2009a] [Hsu et al., 2014]
[Hsu et al., 2015].

8.0 O
[O
7.0 F----mm-mmmmmmm Ao mmm e m oo
< 6.0 -:"“A_ _________________________ e=gu Fuzzy-RL
@50 T e T o RL
> A
o &= ADC
2.0 . .

1 2 3

Figure 2.3: Comparison of root mean square deviation from energy neutrality of each month of spring
(x-axis) for three competing methods. Taken from [Hsu et al., 2015].

With each iteration, they show that their results improve compared to previous
approaches. This is shown in figure 2.3, where RL and Fuzzy RL refers to two particular
reinforcement learning algorithms they used and ADC (Adaptive Duty Cycle) is a
static algorithm. We hope to continue and improve upon their work, outmatching
them using neural networks as the tool for training the agent.

2.3 Feed-forward Neural Networks

A feed-forward neural network (FFNN) is a neural network in which all information
flows in one direction [Schmidhuber, 2015]. This unidirectional nature is illustrated in
figure 2.4. Section 2.3.1 introduces the necessary details of FFNNs, while section 2.3.2
describes how this can be used in conjugation with Reinforcement Learning.

18 CHAPTER 2. BACKGROUND

Hidden
layer

Input
layer

Output
layer

Inputs
Outputs

Figure 2.4: Illustration of a feed-forward neural network, in which connections never go backward.
Taken from [Res, 2020].

2.3.1 Neurons and Layers

As can be seen in figure 2.4, a FFNN consists of an input layer, some amount of hidden
layers where the training happens, and an output layer. The number of hidden layers
can be zero. Each layer consists of a number of neurons, which act as the processing
units of this architecture. The number of layers apart from the input layer is typically
denoted depth, which would be 2 in the case of figure 2.4. Correspondingly, the largest
amount of neurons in a single layer denotes the width of the network, in our case 4.

Intuitively, the input layer is where user-submitted parameters are accepted. These
are fed forward to the neurons in hidden layers or the output layer. The arrows between
nodes represent so-called connections, and each connection has an associated weight. In
each hidden layer during training, several steps are taken to adjust these weights. The
weighs of connections between neurons are what define how the NN makes decisions,
and adjusting the strength of these in a manner that results in desired behavior is the
purpose of training.

When training a neural network, it is necessary to provide a so-called activation
function. These are one of the steps taken when adjusting weights. They are typically
chosen as non-linear mathematical functions, a common example being tanh(x). Their
purpose is to provide non-linearity to the network, which is needed due to the fact
that a machine learning model trained linearly has been shown to be no better than a
regular linear model [NG:, 2020]. Choosing different activation functions also affects
the actual training of the model, meaning it results in different weights. This makes
choosing an appropriate activation function yet another important decision to be made
by developers of neural networks.

2.3. FEED-FORWARD NEURAL NETWORKS 19

2.3.2 FFNN in Reinforcement Learning

Feed-forward neural networks can be used in conjugation with reinforcement learning.
When used in this setting, FFNNs are used as the tool for training the agent. The
output of training becomes weights of neuron connections, as opposed to something
like a simple table of data. These weights can then be used as a function that takes
input parameters, runs them through the network with the given weights, and provides
the final result of the network inference as output.

There are advantages and disadvantages to this approach. Training neural networks
can be a heavier process computation-wise than other approaches, to name one. There
is also a larger dependency on knowledge on the side of the developer; the math behind
neural networks and the skill required to design an appropriate reward function is far
from trivial. However, there are advantages when compared to traditional approaches
as well. By defining the output of training as a set of weights for a neural network, we
are effectively able to handle a continuous spectrum of input. This can be a crucial
advantage over discrete outputs, providing increased accuracy and enabling a whole
new field of real-world scenarios. This continuous nature also allows a whole range
of mathematical tricks and optimizations to improve the training process. These are
encapsulated in the practical specifications of reinforcement learning: algorithms.

RL Algorithms

!

{)
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <—) — DQN —> World Models L’ AlphaZero
‘ : —> DDPG | ' : - -
A2C [A3C <— f " > C51 > 12A
- > TD3 € - - -
PPO <« - i —> QR-DOQN L MBMF
’ > SAC o a— - :)
TRPO - E— HER —> MBVE

Figure 2.5: A taxonomy of some of the most popular algorithms used in modern RL. Taken from
[Ope, 2018d]

A wide variety of algorithms in reinforcement learning have been proposed, and
more are being developed every year. Figure 2.5 provides an overview of some of the
most common ones used today. We'll look closer at the TD3 algorithm, introduced in
section 2.2.3. TD3 has several policy strategies available. One, based on convolutional

20 CHAPTER 2. BACKGROUND

networks ("CnnPolicy"), is mainly used for image processing and recognition. The
other major option is called Multilayer Perceptron policy, or MlpPolicy. Multilayer
Perceptron is a class of feed-forward neural networks. It simply means that there at
least a single hidden layer. If there are more than a single hidden layer, we say we’re
dealing with deep learning.

It is through the choice of this particular approach that our project becomes focused
on neural networks. It is here we diverge from existing works such as [Hsu et al., 2009b],
who have attempted to achieve our particular goal with reinforcement learning, but
without neural networks. To the best of our knowledge, no existing works have used a
neural network-based policy to achieve power management in practice. Theory and
simulations exist, but actual implementation and resulting real-world measurements
do not. We wish to remedy this, and we introduce the main tool used to achieve this
practical result next.

2.3.3 TensorFlow

It is necessary with a framework for actually setting up the training and usage of neural
networks. One of the most commonly used today is TensorFlow [Ten, 2019]. It derives
its name from tensors, the generalized version of vectors and matrices, because these
are what’s typically used as input and output to deep learning agents. TensorFlow
includes built-in code for setting up environments for an agent to training, specifying
parameters such as number of training steps, width and depth of the neural network,
and more. With their pre-made code, developers can easily convert neural network
designs into live agents. In particular, their API for the Python programming language
is widely used and well documented.

Pick a model Convert Deploy Optimize

Figure 2.6: The flow of operation using TensorFlow Lite. Taken from [Ten, 2020a].

Even TensorFlow is not a sufficiently specific framework for our purposes, however.
Seeing as the goal of our project is to achieve power management in IoT microcon-
trollers, we need ways to fit our trained TensorFlow agents onto the limited hardware
capacities of microcontrollers. TensorFlow provides a sub-package for this purpose.
TensorFlow Lite is a framework specifically made for using machine learning on mobile

2.4. HARDWARE CONSTRAINTS 21

and IoT devices [Ten, 2020a]. It compresses existing TensorFlow models, reducing
both their Flash and Dynamic memory footprints. It then applies a technique called
quantization to further reduce size. Figure 2.6 shows the general series of operations.
These processes come at the expense of some model accuracy, but the granularity is
chosen carefully so as to minimize the noticeable effect. The result is a machine learning
agent with very nearly unchanged behavior, but requiring vastly reduced hardware
specifications.

We have mentioned the limited nature of IoT microcontrollers on various occasions,
but we have not yet gone into detail on the limitations we must work with when
considering the internet of things. We attempt to remedy this with section 2.4.

2.4 Hardware Constraints

Devices used in the IoT are generally limited in terms of hardware capabilities. Memory
storage, both static and dynamic, is often in the range of kilobytes. This is a stark
difference when compared to modern computers, servers, or other common deployment
targets. It is common for developers to be cautious about algorithm complexities, but
these restrictive circumstances mean that normally negligible factors start mattering.
Examples include which types are used for variables (i.e. float vs double), whether
variables are unnecessarily copied due to inefficient function calls, etc. As a result,
particular care needs to be taken when developing code for such platforms.

Unfortunately, neural networks are infamous for demanding a large amount of
computational resources. This infamy comes largely from the training of neural
networks, which can take days on even the most powerful of supercomputers. Performing
any sort of neural network training on IoT devices is completely infeasible with the sort
of hardware specifications on State-of-the-art microcontrollers today. Luckily, however,
invoking responses from these networks after training consumes resources on a scale
many orders of magnitude below. This is why it’s potentially feasible to utilize neural
networks on IoT devices with memory capabilities as small as most microcontrollers.

2.4.1 Memory Consumption Estimation

Given the restricted nature of microcontroller memories, it would be useful to have
a framework for estimating whether our neural network fits. This is the pretense for
[Berg, 2019]. In it, Berg provides a model for predicting applicability of neural networks
in resource-constrained microcontrollers. Applied properly, this can be used in our
work to get an idea of whether our neural networks fit on selected hardware prior to
testing. After experimentation and measuring, it can provide insight into expected
versus observed memory consumption. This can help identify outliers in our data and
provide context for our results.

22 CHAPTER 2. BACKGROUND

Specifically, Berg developed ways to predict three different hardware constraints:
static memory, runtime memory, and CPU load. We are not overly concerned with
CPU load, or runtime as Berg denotes it, as the sensing applications we consider are
not particularly time-critical. The runtime matters where battery consumption is
concerned, but estimation is largely irrelevant here as measurements of runtimes are
simple to make. The same largely applies to static memory estimation: it definitely
matter whether we are able to fit a neural network into the static memory of a device,
but whether we can or not is easily measured when compiling the program. If we
cannot, we know that reducing network depth is the way to reduce the static memory
size. We can use Berg’s results as an indication of how many Bytes each layer of
neurons can save; table 2.1 contains one such reference. The hardware and architecture
used in his experiments don’t necessarily transfer to our work, which means that there
might not be a lot of value in the absolute numbers of bytes presented. However, the
difference induced by addition or removal of layers can be a good reference for ballpark

estimation.
Depth | Static size [B]
2 417 752
3 424 168
4 427 800
5 434 088

Table 2.1: Memory static size in Bytes for architectures of depth 2 < L < 5. Taken from [Berg, 2019].

Out of the three aspects of Berg’s work, it is thus mainly the runtime memory
estimation that is directly relevant to our work. It can be challenging to measure
dynamic memory consumption during runtime [Ard, 2020a]. This is especially true for
microcontrollers, where the OS is often simple enough that there is no explicit indication
of a memory overflow. Other architectures might trigger errors such as stack overflow
or segmentation fault, but many microcontrollers simply start producing incoherent
output — or none at all [Ard, 2020a]. Thus, it is a useful approach to estimate runtime
memory consumption before-hand instead of through measurements. This is where
Berg’s work comes in. Through experimentation, he finds that the runtime memory
consumption of a neural network with a single hidden layer is given by the formula

Y = 5z + 55548 (2.4)

Y here represents the total memory consumption as output, with input x being the
width of the widest hidden layer. With Berg’s particular setup, he found that his total
available RAM was ~216 KB. Inserting this into the formula and solving for x, he
concluded that the maximum number of hidden layers possible was x = 42183. We
don’t intend to push the limits of layer size, but this gives us a solid foundation from

2.4. HARDWARE CONSTRAINTS 23

N Power
send
sense sense
compute
pre-sleep
|
sleep | Z ?§ sleep
N NNt
I I I I
post-sleep wait pre-send post-send

Figure 2.7: An abstract model of the energy consumption of different phases in an IoT sensing node’s
life cycle. Taken from [Tamkittikhun, 2019].

which to investigate runtime memory limits on real hardware.

2.4.2 Energy Consumption Estimation

In addition to estimating memory footprints, we need to look at the battery consump-
tion imposed by the invocation of a neural network. A 2017 paper with the title
"Energy Consumption Estimation for Energy-Aware, Adaptive Sensing Applications'
[Tamkittikhun, 2019] is of particular interest given our goal of IoT power management.
One conclusion we can draw from their work is the following. Given an action for the
CPU to perform, the energy consumed by the action depends almost solely on the
amount of time spent on it by the CPU. In other words, given the time an action takes,
we can usually calculate the amount of power the action drains. The accuracy of this
calculation depends heavily on whether network transmissions are part of the picture.
Such transmissions are often energy-heavy processes. As such, the assumption that
power consumption is dependant only on time might not hold if they are a prevalent
part of the IoT node’s life cycle. The paper looks at this scenario, developing a formula
for energy consumption given different power consumption rates for different operations.
When these differences are accounted for, energy consumption prediction accuracy can
reach levels as high as 97 % [Tamkittikhun, 2019]. The formula they pose is as follows:

I

i=1

Here ¢ represents a phase of an IoT node’s life cycle. For example, a phase can
consist of making some observation through a sensor, or it might be the transmission

24 CHAPTER 2. BACKGROUND

of a message. P; denotes the power consumption rate if a given phase. Visually, this
rate is indicated by the height of each column in figure 2.7. ¢; is simply the amount of
time spent in each phase. As a result, the term P;At; is the total power consumption
of phase ¢. This can be thought of as the area of each column in figure 2.7. F, then,
gives us the total energy consumption of the node’s entire life cycle by summing the
consumption of each phase.

It is worth noting that in the case of near-uniform power consumption per phase, P;
can be considered a constant. In this case, equation 2.5 simplifies to

E = PAt (2.6)

where P is the energy consumption rate shared by all phases, and At is the total
amount of time elapsed by the cycle. This is the conclusion we drew earlier about
a direct relationship between time spent and energy consumed. P can typically be
observed as the steady power consumption of a device during regular operation, and
we determine it prior to experiments. Consequently, we gain the tools necessary to
determine the estimated energy consumption of a process using nothing more than the
time taken by the process.

These formulas are directly useful for our work. When implementing our neural
network with the goal of achieving power management, it will be of crucial importance
to know the extra energy consumed by inclusion of the network. This factor will act
as a sort of reality check — our neural network solution obviously needs to save more
energy than it consumes. For the purpose of learning this consumption value accurately,
it will be useful to have methods for predicting and modeling analytically. Measuring
energy consumption of a single part of a system directly is challenging, and these
formulas allow us to substitute measurements with estimations of high confidence.

2.4.3 Applicability of Neural Networks in the IoT Domain

From the background provided so far, we have two main conclusions. First, we've
seen that reinforcement learning has been used for IoT power management previously
with good results. Second, we are reasonably sure that neural networks can fit on
resource-constrained microcontrollers. If they aren’t, we have to tools to find out why
and to work towards a fit. The inspiration for our work is the combination of these
two conclusions. Our goal is to use neural networks as the force driving reinforcement
learning on an IoT device, hopefully leading to better results than previous approaches
have achieved.

However, we are not the first to consider this approach. [Murad et al., 2019a] is a
work in which a reinforcement learning agent is trained using neural networks, then

2.4. HARDWARE CONSTRAINTS 25

(Device Management)
St
Sensor Gym
™ |
: | R J7o
- |
3 A
A I
| |
| ‘hﬂ- Node :
|
Data | E; | Deployment
Collection -) (Policy Update)

Figure 2.8: The intended agent/environment setup of [Murad et al., 2019a]. The upper parts represent
training and invocation from a neural network, while the lower is the updating of the policy of an
actual IoT device. This lower part was only simulated in their work. Taken from [Murad et al., 2019a].

deployed in a simulated IoT scenario. Their setup is shown in figure 2.8. Specifically,
they consider sensing IoT nodes attempting to minimize their distance from energy
neutrality. As opposed to using a real device with a solar panel and incoming power,
they simulate a power buffer and use historical weather data to provide varying input
to the buffer. One example of this is shown in figure 2.9. This way, they are able to
analyze how well their network performs in an ideal scenario. Through experiments,
they found that the NN approach indeed outperformed competing algorithms in the
given scenario. With this, they concluded that neural networks are appropriate for the
IoT domain, but that further work was necessary in the field [Murad et al., 2019a].

We intend to be part of that further work. Their simulation-based approach has
some inherent shortcomings, not least of which is the absence of any actual hardware.
By simulating every part of the NN implementation, their works leave out crucial
aspects we have discussed such as memory constraints. What’s more, despite the
goal being IoT power management, their approach is unable to account for the energy
consumed by actually invoking from the neural network. Thus, we can take their work
as a reassuring sign that neural networks are indeed applicable to the IoT domain,
while leaving plenty of holes for us to fill in our work.

26 CHAPTER 2. BACKGROUND

~ 40
EfS

235
=
@
Trw

0

Agent trained with Agent trained with Agent trained with Agent trained with
Ra(se) of (¢=0.1) Ra(se) of (¢=0.05) Ra(se) of (¢=0.01) """ Ralsy) of (=0.001)
100

Duty Cycle (%)
N w ~
o o w

(=]

& D
(=} o

Variance
N
o

(Moving Average)

(=]

2011-02-01 2011-02-02 2011-02-03 2011-02-04 2011-02-05

2011-02-06 2011-02-07 2011-02-08
Time (Days)

Figure 2.9: Graphs showing simulated solar power and corresponding duty cycle chosen by agents
trained using neural networks. The final graph shows the variance of each agent, resulting from the
factor ¢ indicating how much an agent is punished for variance. Taken from [Murad et al., 2019a],

Methodology

Chapter 3 provides an outline of how we wish to achieve our goals. Section 3.1 introduces
our research question, and provides the reasoning for our selection of parameters. Section
3.2 goes on to present how we ensure our work is scientific, focusing on reproducibility
and verification rather than just the implementation. Finally, section 3.3 provides a
framework for how we intend to conduct our research in a manner that enables us to
answer our research question.

3.1 Research Question and Context

The goal of our project is to investigate the interaction of neural networks and the
[oT. Specifically, we want to look at whether existing neural networks can be deployed
on State-of-the-art hardware to achieve efficient power management. We pose the
following Research Question (RQ):

Are we able to utilize neural networks on today’s IoT devices in such a
way that they help save more energy than they consume?

By implement, we mean two things. First, the neural network has to be transferred
to a microcontroller without exceeding the device’s static memory capacity. Second,
the neural network must be possible to run inference from at runtime without exceeding
the device’s runtime memory (RAM). The process of investigating this memory-based
part of the research question is quite distinct from measuring its performance, and it is
useful to clearly distinguish whenever we are concerned with this particular aspect of
our work. We thus encapsulate it in a secondary research question, secondary research
question 1 (SRQ1):

Do neural networks representing power management policies fit on the
restricted hardware of IoT microcontrollers?

The remaining part of the Research Question is concerned with the performance of
the neural network-based power management. For the approach to make sense, we

27

28 CHAPTER 3. METHODOLOGY

need to make sure that the energy consumed by inference from the neural network
does not outweigh the benefit it grants. To distinguish this process of measurements
and comparisons from SRQ1, we introduce secondary research question 2 (SRQ2).

In what circumstances is the neural network-based power management
able to help save more energy than it consumes?

With that, the Research Question has been almost entirely dissected for analysis. There
is a detail so far gone unmentioned, though: what is meant by today’s loT devices. We
discuss this next.

3.1.1 Choice of Hardware

We define today’s IoT devices as State-of-the-art microcontrollers deemed applicable for
the IoT domain. Table 3.1 shows a comparison of a couple of common, highly relevant
[oT microcontrollers. It is clear from the list that the technical specifications of these
devices are quite similar, indicating that any could be used as a relatively representative
device. We wish to avoid hardware-specific conclusions in our report, and we take
care to note whenever we do something that would not be directly applicable to other
State-of-the-art devices. In the pursuit of this goal, we performed initial testing of the
setup of neural networks on each of these microcontrollers. It quickly became evident
that ARM’s mbed-os [ARM, 2019] was the prevalent operating system on modern
[oT microcontrollers. As a result, we made mbed-os compatibility a requirement for
qualification for being a State-of-the-art microcontroller.

Device name CPU Flash RAM mbed-os
nRF52840 (Berg) 64 MHz 1MB | 256 KB Yes
nRF9160 (NB-IoT) 64 MHz 1 MB 256 KB No
nRF52-DK (BLE) 64 MHz | 512 KB 64 KB Yes
Arduino Nano 33 BLE | 64 MHz 1MB | 256 KB Yes

Table 3.1: Comparison of the most important specifications of various state-of-the-art IoT microcon-
trollers. Taken from [Semiconductor, 2019], [Berg, 2019], and [Ard, 2020b].

With mbed-os and approximate RAM and Flash storage capabilities established
as requirements, we narrowed down our choice of hardware. The similar work done
in [Berg, 2019] relied on the nRF52840 microcontroller, and we considered this at
first. However, the configuration of this device did not work smoothly out of the
box, and although we eventually made it work, the modifications necessary were quite
hardware-specific. In addition, the device is physically large, making it inapplicable for
many real-world use cases. As a result, we looked for a smaller device of similar specs
whose setup was known to be relatively hassle-free. The result of the search was the
Arduino Nano 33 BLE, shown in figure 3.1.

3.2. RESEARCH METHOD 29

Figure 3.1: Arduino Nano 33 BLE, the physical IoT device we plan to use.

Arduino microcontrollers are known to be designed for ease of use programmatically.
Few design decisions should need to be hardware-specific. In addition, the Arduino
Nano 33 BLE specifically is equipped with a range of sensors, making it well suited to
be an IoT sensing node. These sensors are fit onto the smallest form factor available:
45x18mm [Ard, 2020b]. Last but not least, it has the memory capabilities and mbed-os
compatibility established as requirements for being a state-of-the-art microcontrollers.
We have thus chosen the Arduino Nano 33 BLE as the hardware for our research.

3.1.2 Choice of Parameters

The choice of Arduino as our hardware platform comes with several advantages. First,
the Arduino IDE provides tools for easily compiling C++ code into a runnable bundle
complete with the underlying mbed-os included [Ard, 2020b]. This makes the path
from a high-level program to code runnable on a microcontroller short, and it helps
alleviate hardware dependency. As such, we explicitly specify the Arduino framework
as one chosen parameter for our project.

The Arduino framework does not include tools related to neural networks, however.
In order for a neural network to become small enough to be usable on a microcontroller,
we need to perform whatever optimizations we can. The Tensorflow Lite framework
is made for exactly this purpose [Ten, 2020a]. Tensorflow is one of the most common
frameworks for training and usage of neural networks, and it allows us to load the
trained networks provided by

Table 3.2 summarizes our choice of parameters.

3.2 Research Method

Before continuing to the specifics of our work, it is worth taking a moment to discuss
the method we intend to apply to make sure our project produces scientific knowledge.

30 CHAPTER 3. METHODOLOGY

IoT microcontroller Arduino Nano 33 BLE

Development framework Arduino

OS mbed-os

Embedding technology Tensorflow Lite

RL algorithm TD3

RL policy Feed-forward neural networks

Table 3.2: Chosen parameters for our project.

As we will see, our work is poorly suited to the hypothesis-testing model of the natural
sciences. The alternative we use instead is based on producing something, and in that
kind of work it is easy to lose track of what new knowledge is actually being produced.
One might instead fall into the trap of spending an unjustified amount of time making
sure the product is as polished as it can be, while the underlying interesting questions
being answered are sidelined. Those questions might turn out to already have been
answered by previous works, or there might not have been an interesting question there
to begin with. In the following, we formulate a plan to avoid this trap.

3.2.1 Iterative Design

Our work is based on practical experiments, trying to produce something of value. This
is different from natural sciences, in which the goal is to observe the world and figure
out how it works — without changing it. Our work is also heavily iterative, reviewing
our approach and parameters whenever we hit roadblocks such as a memory shortage.
Figure 3.2 reflects this nature. We wish to be constantly iterating so as to provide
our external designers time to perform re-training, and we wish for the goal to be a
functioning system providing value if possible. If we are to talk about our research
method in a generic sense, we need a framework that encapsulates these differences
from natural sciences. We also need it to reflect the iterative nature of our work.

Design science is one such framework [Wieringa, 2014]. In it, they define the
production of something by humans as design. This term is meant as a clear distinction
from the passive, non-interfering nature of the natural sciences. Design science, then,
is a formal framework how we can approach this kind of design in a scientific manner.

Figure 3.3 shows the main principles of design science. As is obvious from the
figure, the design science cycle consists of four main phases. First, one must identify
the goal of the project. What lack of knowledge exists that we can fill? Who does
this knowledge create value for, and why? This phase is where the aforementioned
"interesting questions' are investigated. Although it is one of the shorter phases, it
might be the most important one. Continuing to the next step of the cycle without
having properly investigated the problem at hand is a recipe for disaster.

We wish to perform a proper problem investigation. In our work, we identify the

3.2. RESEARCH METHOD 31

Design static code for
power management.
Decide what questions to
ask a neural network

Integrate with neural network
capable of answering the
static code’s questions

Implement the resulting
program on an loT device

Send results to designers Measure memory and CPU

of neural network; get Perform validation based

re-trained network in on measurements
return

power consumption of NN,
duty cycle and more.

Figure 3.2: The iterative process we will follow for the design and validation of the neural network.

stakeholders as owners of loT devices. Specifically, those with a need to deploy their IoT
in a setting that does not allow for regular electrical charging, but instead using energy
harvesting methods such as solar panels. Their goal, the one we wish to help achieve,
is to provide their IoT devices with efficient power management. This means making
sure the devices perform as strongly as possible given available harvested power while
avoiding frequent battery depletion. This task has been considered by previous works,
and incremental improvements have been made. The new scientific knowledge we wish
to provide is whether using neural networks can be applied in this field, potentially
leading to a new step forward in IoT power management. With this, our goal is clearly
established, and the initial problem investigation is complete. We stay mindful of the
possibility that the defined goal will need adjustment as new aspects of the work are
explored.

The next step is treatment design. A treatment is defined in design science as
a proposed solution to the identified problem. The cyclic nature of design science
comes largely from this definition. Each treatment is thoroughly investigated, first
analytically, and then in practice to whatever extent is realistic. Shortcomings are
typically identified. This creates a need for a new proposal — a new treatment. This
process repeats, seldom reaching perfection but instead moving closer to a good solution
with each iteration.

As for treatment design in our project, we identified the requirements and existing

32 CHAPTER 3. METHODOLOGY

Problem Investigation Treatment Design

Who are the stakeholder? Specify the requirements.

What are their goals? . . Are there available solutions?

Design a new artifact.

The Design Cycle

O . Treatment Validation
What are the effects of the artifact?
What are the tradeoffs?
Do the effects satisfy the requirements?

Figure 3.3: The iterative nature of design science. Taken from [Des, 2019].

solutions described in figure 3.3 during problem investigation. Namely, treatments need
to be usable on State-of-the-art microcontrollers, and they must be able to save more
energy than they consume. These are likely to stay constant throughout our work.
Designing a new artifact is how the design science framework phrases development
of the individual parts that make up a treatment. An artifact might in our case be
the program that enables inference from a neural network on a microcontroller, for
example. Going back to figure 3.3, steps 1 through 3 encapsulate our main artifacts.
The design of these artifacts, as well as investigation of how they interact with their
environment and form a treatment, is the main practical contribution of our work. We
go into detail on this in chapter 4.

Finally, there is treatment wvalidation. This is the step that makes sure we avoid the
trap of polishing our product at the expense of scientific knowledge. It is defined as the
prediction of how treatments would likely perform if deployed in a real-world scenario.
This definition is meant to highlight the difference from what’s done in step 4 in the
cycle, evaluation. According to the framework, proper evaluation requires stakeholders
to make use of the treatment in real scenarios, at scale. That is, the treatment needs to
move from a development phase to a production phase. As this is unfeasible in many
scientific works, validation is introduced as a method of still reflecting on the process
and measuring treatments’ applicability. You emulate the real-world scenario as best
you can, typically through software simulations, and you measure what performance
parameters you can. What you cannot measure, you provide insight into or you provide
steps for exploring it in future works. This is how a large number of scientific works
are built up.

We adapt these definitions slightly. The neural networks we intend to work with
have already been validated in a general sense. That is, they have been shown to
perform as intended in simulated scenarios [Murad et al., 2019a] [Murad et al., 2019b].

3.3. EXPERIMENT SETUP 33

If we were to work with other neural networks as inputs, our predefined parameters
would still imply pre-validation as a requirement. We wish to take those networks
one step closer to evaluation with our work. Although we will not be able to scale
up to the level implied by the design science framework’s definition of evaluation, we
introduce a large amount of new factors by the inclusion of hardware. We go from a
simulated test environment to a practical experiment using real hardware, measuring
performance using equipment similar to that used in the market. This allows us to
gain confidence about whether this approach to [oT power management is a reasonable
one. We perform detailed measurements, making sure to be observant of whenever
real-world performance differs from simulated results. With this we are able to observe
the effects of taking the neural network solution one step further, identifying trade-offs
that become necessary as new constraints are introduced. This is in line with what’s
outlined in the validation step in figure 3.3. Finally, with a result in hand, we reflect
on the initial requirements. In the case that they are not fully satisfied, we might
embark on another cycle of the design process. In the end, design science thus lets us
not only end up with a product well matched with the initial requirements, but also a
detailed trail of the process used to get there. Used together, these form the basis for
our report.

3.3 Experiment Setup

The foundation for our experiments presented so far are summarized as follows. We
wish to investigate whether neural networks can be applied to the IoT domain to achieve
efficient power management. We imagine a use case in which a stakeholder owns one or
more [oT devices, and the devices are in need of a system to let them make intelligent
decisions about power output. Importantly, we assume that the user already has a
trained neural network applicable for this task. Whether this network can fit on a mi-
crocontroller is the question we wish to enlighten. We define our context as the following:

— The predefined parameters defined in table 3.2.

— An externally provided neural network, assumed to have shown efficient power
management behavior in simulations.

— Data used as input to the neural network.
We phrase our imagined scenario as a user story:
«As a user, I would like to know whether my neural network trained for power

management can actually achieve the desired behavior on real IoT hardware, using real
data.»

We work with the assumption that our chosen predefined parameters yield representa-

34 CHAPTER 3. METHODOLOGY

tive behavior of IoT hardware in general. That is, the Arduino board and mbed-os
chosen give us behavior that reflects what we would see on most other possible choices.
Given this, we wish to perform experiments and measurements that yield whether the
inclusion of a neural network for power management purposes actually reduces the
distance from energy neutrality overall. Inspired by our Secondary Research Questions,
we formulate these wishes as so-called feasibility criterion.

(i) Feasibility criterion 1: Verify that a given neural networks can be transferred
to, and ran inference from, a given microcontroller.

(ii) Feasibility criterion 2: Verify that the neural network-based power manage-
ment helps save more energy than it consumes.

If we reach the conclusion that any of these feasibility criterion are not satisfied, we
wish to provide detailed descriptions of both why and of what must change to reach
the desired result. We formulate this wish as the following proposition criterion.

(iii) Proposition criterion 1: If the neural network does not fit on the given micro-
controller, identify what specific constraint is being violated. Provide explanations
for what would have to change, either on the end of the hardware or of the neural
network, for transfer and inference to work.

(iv) Proposition criterion 2: If the resulting behavior does not yield sufficiently low
distance from energy neutrality, identify why. In particular, differentiate between
weaknesses in three distinct aspects: the neural network itself, hardware effects,
and our own testing framework. Identify which of these is the culprit, and provide
steps for improving it.

In order to provide a comprehensive look at whether each of these criteria is satisfied,
and alternatively why not, we need to break them down. Specifically, we apply them
to each individual aspect of our work. For each aspect, such as the basic transfer and
inference from a neural network, we introduce sub-criterion that indicates the status of
that particular part of the system. The feasibility criteria are satisfied if, and only if,
each part of the system’s sub-criteria are satisfied. In the case that they are not, this
partitioning helps us give insight into what particular part of the process failed and
why. This lets us provide answers to the proposition criterion. We discuss each part of
our system in its own following subsection.

3.3.1 Sense Cycle

In order to facilitate the invocation of a neural network on an IoT microcontroller, we set
up a surrounding ecosystem. We need this system to perform some action representative
of an IoT device’s task, and it needs to use our neural network in some way for power

3.3. EXPERIMENT SETUP 35

management. We implement this as follows. We create a program surrounding our
neural network called a sense cycle. The name is intended to encapsulate the specific
kind of IoT device we’ve chosen for our project, a sensing loT node. That is, a
device whose purpose it is to make some observation about the world such as current
temperature. This typically needs to be performed regularly, hence the cycle part of
the name.

We implement the interaction between the sense cycle application and the neural
network as a selection of duty cycle, described in chapter 2. The application chooses
to perform its sensor scan with some selected frequency, realizing different levels of
power management based on how long it sleeps between each sense cycle. The length
of this delay is our chosen implementation of a duty cycle. In some less frequent
interval, the sense cycle can then ask the neural network for a new duty cycle, which is
subsequently used for one interval. In this way, power management is implemented
through the invocation of a neural network.

In order to scientifically analyze the contribution of our sense cycle to the overall
project, we formulate the following sub-criterion.

(i) Feasibility criterion 1.1: Verify that the static code constituting a sense cycle
can be transferred and run on an IoT microcontroller without significant resource
consumption.

(ii) Proposition criterion 1.1: If it cannot, reduce the scope of the program so as
to less accurately reflect a real IoT node’s function, but taking less space and
computation time.

By significant resource consumption, we mean memory and runtime requirements
that make it infeasible to use a neural network alongside it. As this depends on
the requirements of the neural network, we let this definition stand without further
specification for now. If feasibility criterion 1.1 is fulfilled, we consider the sense cycle
part of our experimental setup complete. We explain in section 4.1 the specific steps
we take to reach this goal. Before that, though, we have a closer look at the part of
the experiment our sense cycles is meant to enable: the neural network.

3.3.2 Neural Network on a Microcontroller

The goal of the sense cycle is to facilitate the use of a neural network. To formalize this
goal, and also to fully encapsulate the overarching Feasibility criterion 1, we formulate
the following;:

(i) Feasibility criterion 1.2: Verify that neural networks of appropriate size fit on
an [oT’s device flash memory. Further, verify that invocation does not require
more memory than available in the device’s RAM.

36 CHAPTER 3. METHODOLOGY

(ii) Proposition criterion 1.2: If either memory constraint is violated, specify
either how much the hardware would need to improve or the network size to be
reduced for a fit.

By appropriate size, we here mean a network depth and width that is in relatively close
proximity to those shown to have produced efficient power management behavior. We
show the steps taken to verify this feasibility criterion in section 4.2. These criteria
ensure we validate the use of the neural network itself properly, but it does not put it
into context and validate its usefulness. We remedy this in section 3.3.3.

3.3.3 Power Management

The final aspect we need to cover is the total behavior we wish to end up producing
— power management. Feasibility criteria 1.1 and 1.2 are sub-criteria of Feasibility
criterion 1, asking whether "a given neural network can be transferred to, and ran
inference from, a given microcontroller". Thus, with sub-criterion 1.1 and 1.2 fulfilled,
we can consider the corresponding main criterion fulfilled. Power management deserves
the same treatment. We split Feasibility criterion 2 into two sub-criterion:

(i) Feasibility criterion 2.1: Verify that there are possible configurations in which
a neural network is able to help save more energy than it consumes.

(ii) Feasibility criterion 2.2: Verify whether the externally provided neural network
saves more energy than it consumes.

Feasibility criterion 2.1 is a reality check. We do not have any guarantee that the
provided neural network acts in a productive way when deployed onto real hardware.
Factors such as memory limits or additional energy consumption by the neural network
might alter the sum effect drastically. If the resulting behavior does not actually save
energy for the device, we have not achieved any sort of power management, let alone an
efficient or intelligent one. The sub-criterion makes sure we are cognizant of this fact.

Feasibility criterion 2.2 is similar to the original encompassing criterion, but more
specific. It specifies a single particular neural network the we wish to test. The neural
network in question is one provided by the research of the encompassing larger project
that sparked our project. This externally provided neural network was shown to exhibit
promising power management behavior in simulations [Murad et al., 2019a]. If we are
able to utilize this neural network on real hardware, observing the same behaviour
shown in simulations, we will have helped the larger project take a major step forward
in verifying the applicability of the approach.

To ensure we have considered the potential for our feasibility criterion to be unful-
filled, we propose the following proposition criterion:

3.3. EXPERIMENT SETUP 37

(i) Proposition criterion 2.1: If invocation consumes more energy than it is able
to save, identify why. If it is because the neural network does not behave properly,
obtain a more fittingly trained network. If the neural network consumes too
much energy, reduce its parameters. If it because of hardware aspects, identify
which. Either experiment with other hardware, or conclude the approach ill-suited.

(ii) Proposition criterion 2.2: If the externally provided neural network does not
save more energy than it saves, identify whether it is because of some property
of the microcontroller or if the neural network itself simply consumes too much
power. The feedback will yield useful information to the designers of the neural
network.

Notice that for the first time, we have included the option of concluding the approach
as ill-suited a valid conclusion to make. From the outset of this project, we have
wanted to validate whether the approach of using neural networks in IoT devices makes
any sense at all. It is possible that spending the considerable amount of time and
effort it takes to train and utilize a neural network, all for the purpose of saving some
energy on sensing devices, is like using a sledgehammer to crack a nut. The energy
consumed by transferring and inferring from the network might be greater than what
we're able to save with the increased intelligence. It is also possible that they simply
will not fit on current state-of-the-art hardware, and that we need to wait another
5 or 10 years before the approach becomes applicable. These kinds of overarching
reality-check questions are intended to be encapsulated in these proposition criteria.
If we are able to successfully transfer and infer from a neural network, then observe
that the resulting behavior is efficient power management, we can conclude that the
approach makes some sense. If it also out-competes other approaches, as it has in
simulations [Murad et al., 2019a], we have a promising new direction in the field. We
continue to the experiments that provide real data and test these hypotheses in chapter

4.

Experiments

Chapter 4 describes the concrete steps we take to produce and implement the various
parts of our IoT Power Management system. Section 4.1 deals with the static application
surrounding our neural network, the sense cycle. It presents the memory footprints of
this application, then looks at estimated energy consumption for various configurations.
Section 4.2 follows this pattern, describing the setup and execution of our neural
network in isolation. The memory requirements and energy consumption of various
network sizes are presented. Section 4.3 finally brings this all together, presenting the
memory and energy data produced by combining a sense cycle with a neural network
to realize power management on an IoT device.

4.1 Sense Cycle Implementation

We wish to create a program that represents loT applications in general. Although
we mainly wish to test the neural networks used to achieve power management, we
need some such regular program as a reference point. The reason for this can best
be illustrated by an example. If we find that the neural network consumes 5 KB of
flash memory, for instance, that has little value without also providing the context
of how much more than normal this number is. If we consider some arbitrary [oT
device, the pre-existing [oT application will naturally have some memory and battery
consumption. If this memory consumption is, say, 500 KB, then the 5 KB we found
earlier is a trivially tiny amount. We could thus conclude that the power management
system does not put significant strain on the device’s memory. If, on the other hand,
the IoT application only consumes 5 KB, then inclusion of the neural network suddenly
leads to a memory consumption increase of 100 %. This is why it’s crucial to first
develop a general IoT application for our experiments. We focus on the domain of
cyclic energy-harvesting applications [Murad et al., 2019a], and we call our application
a sense cycle.

The first step of our experiments was thus to develop a sense cycle application. The
program consists of two parts: a setup phase, and a loop phase. During setup, global
variables are initialized, runtime parameters are established, and logging is started.

39

40 CHAPTER 4. EXPERIMENTS

Then, without delay, the first iteration of an infinite loop is started. In each iteration,
the device performs a set series of tasks. First, it scans its environment. As an example,
we have chosen scanning for temperature and humidity. This scan is typically the
most important part of an IoT device’s programming; it is only this scan that actually
provides data and enables the node to generate value. The rest of the program is
in place mainly to facilitate this scan, and possibly to transfer or store the results.
Because of this, it is also the least generalizable aspect of our program. Depending
on what the device intends to scan, it might need to spend several minutes preparing
its sensors. Alternatively, it might not be making traditional scans, instead relying
on network calls or other heterogeneous functions. Due to these factors, the amount
of energy spent on the scanning part of the process varies greatly. We make sure to
account for this when modeling the total energy consumption in section 4.3. For now,
though, we stick with a temperature and humidity scan as a compromise to end up
with somewhat representative sense cycle behavior.

[oT devices that perform scans need to somehow handle the resulting data in a way
that makes it useful to the system at large. This mainly consists of either storing it
locally, or more commonly, transmitting it to a central server that takes care of storage
and processing. This latter approach is the one we implement in our experiment.
The Arduino Nano 33 BLE is, as the name suggests, equipped with Bluetooth Low
Energy (BLE) equipment. While not as tailored for the IoT domain as protocols like
NB-IoT, BLE is a relatively common way to communicate in the internet of things
[Haukland, 2019]. Thus, we go with this as the representative handling of data in our
program. This concludes the bulk of the sense cycle. The only thing remaining before
going to sleep until the next cycle is deciding whether to ask the neural network for
updated configuration. How often to ask the network, and for what, is discussed in
section 4.2. Before that, though, we look at the data produced by implementing our
sense cycle.

For a neural network to work on an IoT board, it needs to fit in the board’s
memory. Further, for it to provide actual power management, it needs to fit alongside
an application containing the actual logic for whatever the node is supposed to do.
For us that is the sense cycle, and that is why we need to consider the sense cycle’s
memory consumption. In other words, even though the main thing we want to measure
is the neural network’s memory consumption, we start by identifying how much
room it has to work with by finding the memory consumed by a typical surrounding
application.

4.1.1 Memory Consumption

Table 4.1 shows the measured memory consumption of our developed sense cycle
application.

The data presented in table 4.1 is only useful in the context of our chosen hardware.

4.1. SENSE CYCLE IMPLEMENTATION 41

Memory type | Total Taken Free
Flash 983 KB | 292 KB (29 %) | 691 KB (71 %)
RAM 262 KB | 67 KB (25 %) 194 KB (75 %)

Table 4.1: Memory consumption of our sense cycle application in isolation.

The Arduino Board we’ve chosen has a program storage space of 983040 Bytes, or
approximately 1MB. Further, it has a RAM of 262 KB. We found that our application
takes approximately 29 % of the Flash memory. This is trivially found by the compiler
at compile time. The compiler also identifies the RAM requirements of so-called global
variables, giving us that 25 % of the RAM is pre-occupied. As long as we avoid
mistakenly writing our application in a manner that requires a lot of memory allocation
at runtime, this should be the sum RAM consumption of the sense cycle. We thus
have a starting point to work with when starting measurements for our neural network.
The portion of available memory consumed is illustrated in figure 4.1.

Cyclic sensor memory footprint

10004

kB 5004

250+

Program Dynamic Memory type
M used = free

Figure 4.1: The memory consumption of our static program.

It is useful to ask ourselves at this point whether it is reasonable for 25 to 29 percent
of the memory to be allocated to a static application. The implication would be that
with around 30 % of the memory going to the application, the remaining 70 % would
be allocated to the neural network and power management. However, it is important to
realize that these numbers do not represent limits for how much memory the sense cycle
can consume. They are more of a ballpark estimate of how big we can roughly expect
a surrounding [oT application to be. Further, it should be noted that the hardware we
have chosen is on the upper end of IoT device specifications. This could imply that

42 CHAPTER 4. EXPERIMENTS

most IoT applications would fit on smaller hardware, and that one might acquire such
a large device specifically for the purpose of including secondary functionality such
as power management. Thus, we make a preliminary statement that the presented
memory consumption is within realistic, reasonable bounds.

4.1.2 Energy Consumption

To accurately measure the performance of our neural network as a power management
tool, we need to know how much energy it consumes. For that to be possible, we must
first get an idea of how much the surrounding system consumes when there is no neural
network present. It is for this reason we wish to look at the energy consumed by our
sense cycle.

As presented in section 2.4.2, the energy consumption is strongly dependant on the
runtime of a given process. In fact, we go forward with the assumption that the two
are linearly correlated. With this assumption, the task of finding out how much energy
the various parts of our sense cycle reduces to measuring their runtime on the CPU.
We do this trivially by comparing timestamps before and after each process during
runtime. The results for five cycles of such measurements are presented in table 4.2.

Task | Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Average
Scan | 4ms 4ms 4ms 4ms 4ms 4ms
BLE | 1ms Oms Oms Oms 1ms 0.4ms
Total | 6ms 6ms 6ms 6ms 6ms 6ms

Table 4.2: Runtime of the different parts of our developed sense cycle, measured over 5 iterations.

It is important at this point to make a comment about the level of accuracy used in
these experiments. Several of the observed values vary strongly — the BLE scan goes
from 0 ms to 1 ms instead of from, say, 0.83 ms to 0.78 ms. One possible explanation
is that our measurements are too rough — the variance of each scan is on the scale of
nanoseconds, and our accuracy level of milliseconds causes each to be rounded to the
same value. To combat this, the intuitive choice would be to measure the function
time on some more precise scale. However, the Arduino Nano 33 BLE has a clock
rate of 64 MHz. This means that each clock cycle takes 16 nanoseconds. It is thus
impossible to get an accuracy of individual nanoseconds, and millis() is the highest
accuracy time-measurement function available on the platform [Ard, 2020c]. As a
point of further study, counting individual clock cycles to achieve a time accuracy of
multiples of 16 nanoseconds could be of interest. For now, though, the given accuracy
is sufficient as an indication for how long the sense cycle will take in comparison with
a neural network invocation.

The main tasks of the sense cycle are Environment Scans and BLE communication.
The device first creates the data point, in our case a temperature and humidity sensor
scan. It then sends this result for processing. We achieved this by connecting to the

4.1. SENSE CYCLE IMPLEMENTATION 43

Sense Cycle Runtime

Runtime (ms)
8_

6_

0 [\ A

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Iteration
o ble scan total

Figure 4.2: The runtime of a sense cycle program in isolation over 30 iterations.

device with the NRF Connect app on a smartphone [NRF, 2020]. These processes are
denoted Scan and BLE in the table, respectively. The runtime of an entire iteration of
the loop is denoted Total.

We see from the results in table 4.2 that the average runtime of our entire sense cycle
in isolation is 6ms. This number is slightly higher than the sum of its parts as presented
— there is some time being spent on things that do not fall under either Environment
Scan or BLE Communication. These tasks include moving variables to registers,
printing values to a terminal for logging, etc. We conducted the experiment 25 more
times to reach the typical number of statistical significance, 30. The results of these
experiments can be seen in figure 4.2. We observe that only the BLE communication
had variance; the other processes took the same amount of time in every single iteration.

We wish to end up with a set range of milliseconds we can expect the sense cycle
to take. Such a data point is required if we are to calculate the energy consumption
of our neural network — we need to make sure we aren’t accidentally including the
runtime of the static code in our invocation measurements. Intuitive values for these
estimations would be the averages presented in table 4.2. However, before concluding
them final, we integrate the sense cycle with the neural network and measure the time
taken by the cycle in that context. Intuitively we don’t expect the values to change
much, but there are some changes imposed by the integration. For example, we moved
all code related to the sense cycle into a separate file then imported it for the sake of
clarity in the code. Although the code is the same, such changes can impose slight

44 CHAPTER 4. EXPERIMENTS

runtime overhead due to extra memory registers needed to be allocated for the import,
among other things. As such, we perform entirely new, independent measurements of
the sense cycle when integrated into the larger project. The results of five iterations
are shown in table 4.3. We again attempt to reach statistical significance by doing at
least 30 scans, and these are shown in figure 4.3.

Task | Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Average
Scan | Tms 6ms 6ms 6ms Tms 6.5ms
BLE | 1ms 1ms 1ms 1ms 1ms 1ms
Total | 8ms 7ms 7ms Tms 8ms 7.5ms

Table 4.3: Runtime of the different parts of our developed sense cycle, this time when integrated into
the larger project.

Sense Cycle Runtime (Integrated)

Runtime (ms)
8_

6,

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 |teration
-o- ble scan total

Figure 4.3: The runtime of a sense cycle program in isolation over 30 iterations, this time when
integrated into the larger project.

The averages in table 4.3 are calculated using the full 30 iterations, not just the five
presented in the table. We note that indeed, some extra time was required to perform
the sense cycle when integrated with the larger project. The interaction between sense
cycle and neural network is studied further in section 4.3. With these values, though,
we now have good estimates of how long we can expect the sense cycle to take on
the CPU. For the sake of getting an idea of how certain we are of these numbers, we
calculate the statistical mean p and standard deviation o of each data type. For these
calculations we need to assume some statistical distribution. To test if we can assume

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 45

the normal distribution, we perform a normality test for the sensor scan readings. We
do so by using a box and whisker-diagram [Sta, 2020], shown in figure 4.4.

5.8 6.0 6.2 6.4 6.6 6.8 7 7.2

Figure 4.4: Box and Whisker chart displaying the mean and outliers of the runtime of sensor scans.

Using the diagram, we can see that the mean falls right in the middle of the distribution.
Additionally, there are "few to no outliers" — none, in our case — which is another good
sign of normality. Thus, we consider it reasonable to assume the dataset of sensor scan
readings normally distributed.

As for the other two datasets, we first look at the BLE communication data. Perhaps
unfortunately, we only observe uniform values of 1.0 ms here. Zero variance is unlikely
given the physical nature of the system. We explained earlier that the culprit here
might be an insufficient level of accuracy in our scans, and re-doing the experiment
with an increased level of accuracy might yield more detailed results. For now, though,
we consider the observed runtime of 1 ms to be a sufficient indicator. For the sake of
statistical analysis, we consider it a constant. The total time elapsed then becomes a
normal distribution plus a constant, which is also a normal distribution. We can thus
calculate the mean and standard deviation for each relevant dataset. The results are
presented in table 4.4.

Scan type I3 o
Sensor scan 6.5 ms 0.5 ms
Send data 1.0 ms -

Total Sense cycle 7.5 ms 0.5 ms

Table 4.4: Final estimations of CPU runtime of the various parts of a sense cycle program.

4.2 Resource Consumption of Neural Networks

We now move on to the core of this project: implementing neural networks on an IoT
device. We do not yet consider the application of a neural network to achieve power
management, instead looking at neural networks in isolation to test the boundaries of
possible configurations.

46 ~CHAPTER 4. EXPERIMENTS

4.2.1 Procedure

In order to fit a neural network onto the limited space available on microcontrollers, we
need to perform compression. The networks are trained using TensorFlow [Ten, 2019],
and we compress them using the tool TensorFlow Lite Micro [Ten, 2020b]. These are
described in more detail in section 2.3.3. Using these tools, we perform the following
steps to go from a provided neural network to one runnable on a microcontroller:

1. Receive a trained model. This is typically in the form of a frozen agent’s
current neural network weights. It is provided as a zip-file, and TensorFlow’s
Python framework can read these to load the model into memory.

2. Convert the loaded model into the .tflite (TensorFlow Lite) format.
This requires some knowledge about the model: which tensor is input and which
is output; what algorithm is used, and some others. At this step, it is possible to
add optimizations that reduce the size, runtime, or other parameters at the cost
of accuracy. Testing indicated that the loss of accuracy was too severe to seriously
consider using these, but especially the memory size optimization should be kept
in mind as a backup in case a network becomes too large.

3. Convert the .tflite file into a C array. The format produced by TensorFlow
Lite conversion is not directly compilable into native C, but we can manually
compile it using terminal commands and represent it as binary values in an array.
This step also includes modifying the resulting C file slightly, to make sure it is in
a format compatible with microcontrollers. Specifically, because the network is
stored as a single huge array, special care needs to be taken when allocating the
memory address for this array. The exact steps can be found on the TensorFlow
Lite Micro documentation page [Ten, 2020b].

4. Import the C array into a main program. Depending on underlying hard-
ware and architecture chosen, this involves creating header files (.h) where the
array is declared and made available. The main program designates the code
intended to run on the microcontroller, containing the logic for performing the
device’s main task. In our scenario, this means importing the neural network as
a C array into the main file of an Arduino program. When integrated into the
larger project, it means integrated with the program that runs our sense cycle.

5. Load the neural network. TensorFlow Lite Micro provides library functionality
for loading the neural network an imported C array. Some steps have to be taken
before invocation can be performed, including allocating memory registers for
loading the neuron layers and weights necessary for invocation. The exact steps
vary slightly depending on the architecture, described in the project’s documenta-
tion [Ten, 2020Db].

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 47

6. Invoke the neural network. This is the final step; what we wished to achieve.
Before the invocation, inputs need to be set. How these are chosen are highly
dependant on the nature of the network. Once these have been set. a simple
function call initiates invocation. If successful, the output is then made available
as variables.

With these steps, we have a list of actions that take us from a trained neural network
to a successful invocation on a microcontroller. We apply these steps to perform
experiments with a single given neural network next.

4.2.2 Memory Consumption of a Single Network

We mainly aim to implement specific neural networks that lead to a certain desired
effect. Meaning, the main goal of the project is not to explore the limits of neural
network sizes on microcontrollers in general. Works such as [Berg, 2019] have already
performed such an analysis. Thus, we first look at the memory consumption of a given
power management neural network as the initial data point. This should give us a
ballpark estimate for the flash memory and RAM requirements of a representative
neural network.

In the interest of maximizing the performance of the power management provided by
our neural network though, it is still useful to explore more general cases. Specifically,
it would be useful feedback to the designers of the neural network to explore the size
limits of neural networks with the specific purpose of power management, given our
specific set of parameters. As such, we want to eventually look at how far the depth or
width of a neural network in our specific setting can be pushed before exceeding the
given hardware parameters. We look at a single given neural network first, then return
to this boundary exploration in section 4.2.3.

For our initial test of a power management neural network, we use an externally
provided and trained network. The network’s parameters are shown in table 4.5.

Width 3
Height 128
Input Size 8

Table 4.5: The parameters used in the neural network.

This network had previously been used to achieve power management in IoT simulations.
Its exact performance is unimportant; we are for the moment only concerned with its
deployability onto our chosen IoT microcontroller.

We conduct our initial experiment by running this network through the steps de-
scribed in section 4.2.1. With some effort, the network was successfully compiled
and transferred to the Arduino Nano 33 BLE. With a neural network successfully

48 CHAPTER 4. EXPERIMENTS

Neural Network memory consumption

1000+
750+
kB 500+

250

Progllram Dynl’amic Memory type
used free

Figure 4.5: The memory consumption of the neural network.

compressed and transferred to a microcontroller, we have reached a major milestone
in the project. With this, we can start making observations and measurements. To
start, the amount of flash and RAM consumed by the neural network was found by the
Arduino IDE at compile time. It is shown in table 4.6, and illustrated in figure 4.5.

Memory type Total Taken Free
Flash 983 KB | 236 KB (24 %) | 747 KB (71 %)
RAM 262 KB | 67 KB (25 %) | 194 KB (75 %)

Table 4.6: Memory consumption of our initial neural network in isolation.

We wish to verify that the network produces correct results when deployed on a
microcontroller in this manner. The received neural network takes eight floats between
-1.0 and 1.0 as inputs. The output is a single floating point value, also in the range
[-1.0, 1.0]. These values are meant as normalizations of real input and output. The
first four inputs might combined represent detailed weather data, for example, and
an output of 1.0 might mean a duty cycle of 100 % is selected. We are not overly
concerned with the actual meaning of the values at this stage, just how they work so
that we might verify our microcontroller implementation.

To verify that the behavior remains correct on a microcontroller, we plot the ex-
pected behavior and compare it with the observed values. Figure 4.6 shows the correct
behavior of the neural network given arbitrarily selected input values. It was observed

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 49

0.78

0.76

0.74

0.72

0.70

Input 1

0.68

0.66

0.64

0.62

-1 0 1
Input 2

Figure 4.6: The behavior of our initially received neural network. The network takes eight values as
input, but for the sake of visualization we sample two and then repeat those.

by loading the model into a Python program on a regular computer running OSX. It was
then inferred from without any compression or conversion performed. Two input values,
denoted Input 1 and Input 2 in the figure, were incrementally generated. Initially both
were set to -1.0, then subsequently increased to produce every combination up to both
being 1.0. The granularity was selected as steps of 0.01. For each combination of these
two inputs, they were then repeated to the desired input length of eight to achieve
enough inputs to make an invocation from the network. Thus, one full input might be:

Input 1: -1.0
Input 2: 04
Resulting Total Input: [-1.0, 0.4, -1.0, 0.4, -1.0, 0.4, -1.0, 0.4]

Following this example and varying inputs 1 and 2, figure 4.6 was generated. This sort
of test does not provide any insight into how the network operates with realistic input,
but it does provide behavior that is possible to visualize in a graph like this.

50 CHAPTER 4. EXPERIMENTS

Given this "correct" behavior, we can make sample invocations of the neural network
on the microcontroller for comparison. We again follow the arbitrary input pattern
used to generate the input. We here choose a granularity of 0.5. Referring to figure
4.6, this should allow us to sample neural network outputs along each axis, as well
as in the middle of the graph. We expect an input of [-1, -1] to lead to an output
of around 0.60. On the other end, [1, 1] should produce approximately 0.75. Cross-
referencing values like this should let us ascertain whether the neural network kept its
intended behavior through the compression and transfer process. The result of invo-
cation from our given neural network on the Arduino Nano 33 BLE is shown in table 4.7.

Input 1 Input 2 | Output
-1.0 0.61

-1.0 0.0 0.68

1.0 0.70

-1.0 0.76

0.0 0.0 0.75

1.0 0.75

-1.0 0.78

1.0 0.0 0.75

1.0 0.75

Table 4.7: Memory consumption of our initial neural network in isolation, measured during runtime
embedded on an Arduino Nano 33 BLE microcontroller.

We check the values most easily cross-referenced with figure 4.6 from the table. As
hoped, an input of [-1, -1] leads to an output of 0.61, spot on with what was expected.
-1, 0] is the halfway point on the x-axis in figure 4.6, which has a dark cyan color.
Matching the color bar perfectly, we observe an output of 0.68 when these values are
fed into the neural network running on our microcontroller. Continuing this cross-
referencing, we can verify that [1, -1], the top of the y-axis, has the maximum observed
value of 0.78. Finally, the top right corner corresponding to [1, 1] and the middle of [0,
0] are both part of the wide green area of value 0.75. We thus conclude that indeed,
the neural network is producing the same output on our microcontroller as it did on a
full-fledged computer. Transfer and invocation of a neural network on an IoT device is
a success.

4.2.3 Memory Consumption Boundaries

With the successful result of experiments with a single given neural network, the main
remaining part of our experiments is to integrate it with a sense cycle to see whether it
can be utilized for power management effectively. We do this in section 4.3. Before that,
though, it is worth studying neural networks running on microcontrollers in isolation a
little further.

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 51

The memory requirements of a neural network are strongly dependant on the
structure of the network. The flash memory, used to store a program’s code statically,
is what’s used to store the neurons and their connections. The RAM, used for runtime
variables, is needed to load each layer and perform the actual invocation during runtime.
As presented in section 2.3.1, the flash memory footprint of a neural network is mostly
bound by the depth of the network. Correspondingly, the width of the network is mostly
limited by RAM. We select some Reinforcement Learning algorithm that uses neural
networks. For our project, we used the PPO2 algorithm [Schulman et al., 2017], mainly
because it had been used with promising results in external [oT power management
projects [Murad et al., 2019a]. Other options such as the TD3 algorithm introduces in
section 2.2.3 could also have been used. Initial tests with TD3 showed no significant
differences in resulting memory footprints, so we assume the PPO2 algorithm sufficiently
general.

In order to explore the boundaries of neural network sizes, we apply the brute force
method of checking every single combination within reasonable limits. These chosen
limits are presented in table 4.8.

Max Depth 5
Max Width 1024
Max Input Size 128

Table 4.8: The selected limits of neural network size throughout our experiments.

The depth was incremented in natural steps of 1, but the width and input size in
powers of 2. That is, we tested network widths of 1, 2, 4, 8, 16, and so on for every
selection of the other two variables. This means that the smallest possible neural
network configuration is depth 1, width 1, and input size 1. On the other hand, the
biggest is depth 5, width 1024, and input size 128. Note that the provided network
discussed in section 4.2.2 had values quite near the center of this range.

For each configuration, we compute various memory requirement indications. First
is the size of the network when stored in a compressed TensorFlow Lite (.tflite) file.
This is a quick way to get a rough sense of how the size of the networks compare to
each other. Some of the most important peripheral values are shown in table 4.9. The
entire generated data set is illustrated in figure 4.7. Note that we use a logarithmic
scale in this figure, reflecting the exponential nature of our chosen network widths.

Looking at figure 4.7, there seems to be a relatively direct correlation between network
parameters and .tflite file size. It would be useful to produce a way to predict the file
size given network architecture, and we use polynomial regression [Agr, 2020] to look
for a trend. The result is a multi-variable second-degree polynomial function with a
root mean squared error of less than a hundred bytes. We denote the parameters
as:

52 ~CHAPTER 4. EXPERIMENTS

Depth | Width | Input size | .tflite size
1 1 1 1 KB
2 64 16 20 KB
3 128 64 128 KB
4 512 64 3.2 MB
5 1024 128 16.8 MB

Table 4.9: Memory consumption of some important network configurations.

z = network width > 0
y = network depth -1 >0
II; := Resulting file size

The extrapolated formula is as follows:

I, = 42y + 402 + 300y + 1000 (4.1)

We thus have an idea oh how the TensorFlow Lite file size increased as neural network
size increases. We study this result further in the upcoming section.

4.2.4 Compile-Time Memory

The TensorFlow Lite file sizes discussed in section 4.2.3 are a good indication of how we
can expect network size parameters to translate into bytes required to store the network.
What’s important for us in the end, though, is how much Flash and RAM the networks
consume when compiled onto a microcontroller. Thus, we first convert every test-
network into C arrays as described in section 4.2.1. We then compile complete Arduino
sketches using these ready-to-use neural networks, logging the resulting Flash and
RAM requirements. These are the final memory requirements our loT microcontroller
actually deals with. The results for some distinct values are shown in table 4.10.

Depth | Width | Input size | Flash memory RAM
1 1 1 98 KB | 107 KB
2 64 16 117 KB | 107 KB
3 128 64 235 KB | 107 KB
4 256 128 895 KB | 107 KB
5 1024 128 — —

Table 4.10: Memory consumption of some important network configurations. Cells without entries
denote network configurations for which compilation or transfer was impossible.

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 53

3 10%

- 103

102

Kilobytes

1 4 16 64 256 1024
Width

10!

10°

Figure 4.7: The file size of neural networks of various configurations when stored as compressed
TensorFlow Lite files.

There are several interesting points to note about table 4.10. First, notice that the
RAM requirements are constant for every entry in the table. Upon inspection of this
phenomenon, we found that TensorFlow Lite Micro works by allocating a set amount
of RAM to the neural network at compile time [?]. This amount is configurable. It
just so happens that the default amount used corresponds to a RAM footprint of
107 KB, which is around 40 % of the Arduino Nano 33 BLE’s RAM. Every neural
network we compiled compile was able to function properly given the default amount
of allocated RAM. The implication of this is that the neural networks likely could have
functioned with a lower amount of allocated RAM. This is a useful observation to note
for developers of neural networks on microcontrollers, in case RAM should ever become
the bottleneck for a given application. For our purposes though, we mainly note that
the Flash memory is at approximately 900 KB for the largest compiled network, not
far from the limit of 1 MB. For this same network, 40 % of the RAM was enough for
invocation. Thus, it is reasonable to conclude that for our selected boundaries given in
table 4.8, RAM is not an obstacle for the transfer and invocation of a neural network.
This is an important result.

The second interesting point to note about table 4.10 is that there are cells with no
entries. The reason for this is that the computer used for generating these samples could

54 ~ CHAPTER 4. EXPERIMENTS

Flash Memory (KB)
800+

600+

400+

200+

1 2 4 8 16 32 64 128 256
Network width

Figure 4.8: The tflite file size (blue) and final flash memory requirements (green) of neural networks
with depth = 3 and various widths.

not handle computing networks of this size. Specifically, the process required more than
the 16 GB of RAM available. Acquiring better hardware to perform tests of neural
networks this large might be an interesting point of further study. However, there is
another interesting observation we can make from the table that might render this
unnecessary. When plotting the previously acquired .tflite file size against the resulting
flash memory requirement, we see an interesting result. Figure 4.8 clearly illustrates
that there is a direct relationship between TensorFlow Lite file size and compiled Flash
memory requirements. Computing the difference between them at a wide range of
neural network configurations, we find that there is a difference of exactly 97488 bytes
each time. That is, the Flash memory consumption is always approximately
100 KB lower than the TensorFlow Lite file size. With this result, we can adapt
formula 4.1 into one that gives us the final Flash memory requirement of a neural
network:

z = network width > 0
y = network depth -1 >0
Iy := Flash Memory Requirement

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 55

I, = 422y + 40z + 300y + 98488 (4.2)

The constant 96488 is found by adding the constant 1000 in equation 4.1 to the observed
difference 97488. It is worth noting that this value could likely change depending on a
range of factors, including which hardware platform is used. We keep the specific value
for our use in our project, but those who would adapt it should calculate their own
constant k& = 1000 + Ay frite, flash-

Thanks to this direct relationship, we can use our observed TensorFlow Lite file sizes
to calculate Flash memory requirements of the networks we were unable to compile. It
can see from the TensorFlow Lite file sizes in table 4.9 that the networks at the top end
of our test range vastly outgrow the boundaries for deployment onto our microcontroller.
The largest network has a .tflite file size of 16.8 MB, meaning the corresponding Flash
memory requirement is roughly 16.8 - 0.1 = 16.7 MB — more than 15 times larger
than what Arduino microcontroller can handle. It is thus of little consequence that we
were unable to compile the larger networks for testing.

We would like to find the point at which the network dimensions grow too large.
Formula 4.2 has two variables, so we fix the depth at different configurations and
see how the width affects the resulting Flash memory size. Figure 4.9 displays the
mathematical curves produces by applying this formula for depth > 1. For the special
case of depth = 1, where we are not dealing with deep learning, figure 4.10 illustrates
that the curve grows linearly. We can thus note the interesting fact that it is the
inclusion of more than a single hidden layer in a neural network that causes the growth
of the file size to become polynomial in nature. We can see this reflected in equations
4.1 and 4.2 — the term y becomes 0, canceling the only term with an exponent greater
than one.

We observe from figure 4.9 that the larger the network depth, the lower amount
of neurons we'’re able to fit per layer. This matches what we might expect intuitively
— more layers means fewer neurons per layer. To find the exact limits for our given
experimental setup, we fix y and solve equation 4.2 = 1024 for x. The results are
shown in table 4.11.

Network Depth Width Limit

1 23 752
2 482
3 342
4 280
5 242

Table 4.11: The width limits of a neural network given different depths, assuming they are required to
fit onto a 1024 KB Flash memory.

We quickly mention the obvious oddity of table 4.11: the first entry. A depth of 1 gives

56 ~CHAPTER 4. EXPERIMENTS

17500 —— Arduino Memory Limit
Depth =1
—— Depth=2
15000 Depth =3
— Depth=4
Depth =5
12500
. 10000
ia)
=
)
N
® 7500
5000
2500
0
0 200 400 600 800 1000
Width

Figure 4.9: The Flash memory requirement of neural networks as a function of network width given
five different network depths. The black line indicates the Flash memory limit imposed by our chosen
microcontroller, 1024 Kilobytes. The point at which each network configuration exceeds this limits is
indicated.

a width limit of more than 23 000, significantly larger than all other entries. This is
due to the difference between linear and polynomial growth, as described. To confirm
whether this was a mistake in our math, though, we perform tests using networks near
these boundary values. Some overly hardware-specific details caused the numbers to
be slightly off — for example, the Arduino Nano 33 BLE’s actual available memory
after allocation reserved for the OS and other overhead was around 950 KB. This is a
bit lower than the 1024 KB described in the microcontroller’s manual. This caused
the limit to drop slightly. That being said, a neural network of depth 1 and width
22000 was successfully transferred to the microcontroller. Accurate invocation was
then performed. A similar test with width 23000 yielded the following error: region
‘FLASH’ overflowed by 126288 bytes. This matches our expectations.

We then repeated the test with depth = 2, ascertaining whether the transition to
deep learning indeed caused the file size growth to become polynomial. The networks
we trained had widths in powers of 2, so we tried compiling networks just above
and below the indicated threshold of 482 (table 4.11). As hoped, the network with

4.2. RESOURCE CONSUMPTION OF NEURAL NETWORKS 57

1000 .

800
o)
< 600
3]
N
n

400

200

—— Arduino Memory Limit
Depth =1
0 5000 10000 15000 20000 25000

Width

Figure 4.10: The Flash memory requirement of neural networks as a function of network width given
depth = 1. The black line indicates the Flash memory limit imposed by our chosen microcontroller,
1024 Kilobytes. Note that the x-axis needs to extend significantly further than in figure 4.9 to reach
the point where the lines meet.

depth 2 and width 256 compiled, while the one with width 512 exceeded the device’s
Flash capabilities. These data points indicate that both our deduced formula and the
subsequently calculated limits reflect the microcontroller’s actual limits.

It is worth noting at this point that we were able to invoke from these networks
without extending the RAM allocated to the network beyond its default value. This
supports our assertion that RAM is never the bottleneck for neural network size, as the
flash memory requirement always becomes a barrier first. Of course, this only holds
within our chosen boundaries.

The network size limits presented in this section are useful in the short term for
development on the project that sparked this thesis. More importantly though, the
trends shown in this section’s figures and tables are applicable to a wider range of use
cases. Different hardware and configurations will yield different exact limits, meaning
the cutoff points for network size will wary. However, regardless of hardware, the
provided formula and methodologies can act as general guidelines for how complex
neural networks a developer can expect to fit on his on her device.

In this section we have provided data on how neural network size affects Flash and
RAM when compiled into a form usable on microcontrollers. At this point it might
be natural to move on to a discussion of the energy consumption of these same
neural networks. This is highly relevant, and we will discuss it. However, the difference

58 CHAPTER 4. EXPERIMENTS

between the energy consumption of neural networks in isolation versus that of an
integrated power management system is nothing more than the static contribution of
a sense cycle. Moreover, looking at neural network runtime in the context of power
management context lets us compare the runtime of a single program both with and
without invocation. This should let us identify the time taken by just the neural
network, instead of mistakenly including the runtime of other unrelated processes. For
these reasons, we save discussion of neural network energy consumption to the end of
section 4.3.

4.3 Power Management Implementation

Now that we have looked at the hardware requirements of both a sensing cycle
application and invocation of a neural network in isolation, it is time to bring them
together. Our goal in this section is to present the result of integrating a sense cycle
with a neural network to provide a realistic IoT application that achieves intelligent
power management on real hardware.

To end up with such a power management program, we simply combine the code from
the previous two sections. The only added functionality is using the actual invocation
of the neural network to determine time to sleep between each loop of the sense cycle.
This is our implementation of a duty cycle. The result of the code integration was a
successful IoT application utilizing a neural network for power management. This is
what we wanted to achieve, although we have yet to ascertain whether the performance
is efficient or intelligent. We look at the memory and energy consumption of the
program to provide a starting point for this evaluation next.

4.3.1 Total Memory

We want to evaluate how much memory the finished program consumes at runtime. In
this section, we focus on the externally provided neural network that has been shown to
produce intelligent power management behavior in simulations [Murad et al., 2019a].
We have already looked at how memory footprints can vary for both the sense cycle
and the neural network, and the methodology for combining them is what we analyze
here. Combining this methodology with the generalized approaches to memory size
will allow us to discuss the interplay and trade-off between the two artifacts, which we
do in chapter 5. For now, though, we only concern ourselves with a single sense cycle
and a single neural network.

In order to deduce the memory consumption of a combined power management
application, it is insufficient to naively add the memory requirements of its two parts
to each other. The reason for this is that there is some common overhead when
transferring any kind of runnable code. To analyze this overhead, we compile and
transfer an entirely empty program with no dependencies:

4.3. POWER MANAGEMENT IMPLEMENTATION 59

// Empty program used to evaluate memory overhead
void setup() { }

void loop() { }

This empty program still has a memory footprint, presented in table 4.12:

Memory Type Overhead
Flash 76 KB (7 %)
Ram 42 KB (16 %)

Table 4.12: The unavoidable memory overhead of an Arduino sketch when compiled for the Arduino
Nano 33 BLE.

We consider this the common, unavoidable memory overhead for our specific setup.
Denoting each memory set as M; and taking the union of this base case and the two
previous sizes, we get the following compile-time memory consumption:

Mtot - Msense U Mnn (43)
= sense T Mnn - Msense N Mnn

As an initial data point, we use the example sense cycle program along with a neural
network of width 3, depth 128, and input size 64. This network has shown power
management behavior in simulations, and analyzing the memory footprint of this
combination should give us an indication of how realistic our approach is. Inserting
our collected data about flash memory into formula 4.4 gives us:

M1asn = 292K B + 236 KB — 716K B
=452 KB

Likewise, the collected data for the RAM gives us:

60 CHAPTER 4. EXPERIMENTS

M, om = 67TKB +108KB — 42K B
=133 KB

These findings are summarized in table 4.13.

Memory | Overhead Sense cycle | Neural network Total
Flash 76 KB | 292 - 76 = 216 KB | 236 - 76 = 160 KB | 452 KB (45 %)
RAM 42 KB 67 - 42 = 25 KB 108 - 42 = 66 KB | 133 KB (50 %)

Table 4.13: Memory consumption of the various parts of our experimental program.

This percentage of total memory used is shown in figure 4.11. As we can see, around
half of the flash memory is consumed, while a bit more than half of the RAM is
allocated. To be precise, 54 % of the flash memory and 60 % of the RAM is spent on
our IoT application. Further, the distribution of the memory allocation is shown in pie
charts 4.12 and 4.13. Figure 4.12 shows the flash memory allocation, and figure 4.13
shows the dynamic RAM.

Total memory usage at compile time

1000

750

kB 500+

250

.

Program Dynamic Memory type
m used i free

Figure 4.11: Total memory consumption at runtime.

To test the accuracy of this approach, we compile the actual combined power
management application and log its memory footprints. The result is the console
output shown in figure 4.14. The values match exactly what we computed earlier. We
did so by first finding the common overhead through an empty program, assuming it

4.3. POWER MANAGEMENT IMPLEMENTATION

Flash memory distribution

Cyclic

Neural network

Overhead

Free

Figure 4.12: The distribution of flash memory at compile time.

RAM distribution

Cyclic

Neural network

Overhead

Free

Figure 4.13: The distribution of RAM at compile time.

61

62 CHAPTER 4. EXPERIMENTS

Sketch uses 451520 bytes (45%) of program storage space. Maximum is 983040 bytes.

Global variables use 133096 bytes (50%) of dynamic memory, leaving 129048 bytes for local variables.

Figure 4.14: The console output produced by compiling the final combined power management
application.

to be the intersection of two sets corresponding to a sense cycle and a neural network,
then calculating the union of these two sets. The fact that this calculation matched
observed experimental value means that our assumption was correct. The common
overheads presented in table 4.12 are correct.

4.3.2 Total Energy Consumption

The final section of this chapter deals with perhaps the most important result of
our experiments: how much energy the neural network power management system
consumes. Measuring this will tell us the energy cost of implementing the intelligent
power management, which is crucial if we are to make any statement about the
usefulness of the approach. No matter how much energy the neural network manages
to save, doing so is pointless if it consumes as much or more energy in the process. We
still work with the assumption that the energy consumption per time is roughly equal
for different processes, meaning energy consumption is directly correlated with CPU
runtime. This runtime is what we actually measure.

The IoT application is naturally divided into distinct phases, and we measured the
time spent by each phase distinctly. The main phases are the sense cycle and the
power management using our neural network. The total time spent on either of these
phases was measured in each iteration. In addition, however, we look at the most
important sub-processes constituting those two phases. In particular, we log the time
taken by Bluetooth communication of the sense cycle, and by the invocation of the
neural network. First, Bluetooth communication is interesting because it’s based on
using a separate piece of hardware, and it is the most likely candidate for violating our
assumption of constant energy consumption. This value should not change based on
neural network size, however, and we consider its discussion in section 4.1 sufficient.

Next, we say that we measure the invocation of the neural network as a sub-phase of
the overall power management. The goal of this is to ensure that we get a measurement
that includes as little else than the actual invocation as possible. In contrast to this,
the overall power management phase also includes interpreting the invocation’s output,
selecting a new duty cycle, and more. While the time taken by this entire phase is
interesting, as it is the actual time a developer will have to account for if they want
power management, it is more prone to variation based on the code we wrote. It is to
a larger degree specific to our experimental parameters. The invocation of the neural
network itself, however, is a more pure data point that can let us make more general
conclusions. It is for this reason we measure both.

4.3. POWER MANAGEMENT IMPLEMENTATION 63

The time spent by these phases on the CPU were logged for a wide variety of
neural networks. Knowing whether network size affects runtime, and thus, energy
consumption, is an important result. We followed the same patterns as before, using
the limits in table 4.8. Depth was increased in increments of 1, and width in powers of
2. One difference from earlier configurations is that the input size was found to not
affect the runtime, so it is omitted from our input parameters. Each configuration was
allowed to run 30 times before termination. From each of these data sets, we calculated
means g and standard deviations 0. We denote the power management as pm, using
the subscript 1, to denote its calculated mean and o, as its standard deviation. The
same subscript is used for the invocation, denoted i. Using these configurations, we
performs a total of 5 width configurations * 11 width configurations * 30 iterations =
1650 straight-forward tests of runtime. The results of some select configurations are
shown in table 4.14.

Depth Width Lbi o; Hpm Opm
1 0 ms 0 ms 3.0ms 0.0 ms

1 256 1 ms 0 ms 4.0 ms 0 ms
1024 2 ms 0 ms 5.3 ms 0.5 ms

1 0 ms 0 ms 3.0ms 0.0 ms

2 256 | 12.5ms 0.5 ms 15.5 ms 0.5 ms
512 — - - -

1 0 ms 0 ms 3ms 0.3 ms

3 256 | 242 ms 04 ms 27.3 ms 0.5 ms
512 - - - -

1 0.2 ms 0 ms 3.0 ms 0 ms

4 256 9.3 ms 0.5 ms 125 ms 0.5 ms
512 — - - -

1 0 ms 0 ms 3ms 0.0 ms

5 128 | 12.8 ms 0.4 ms 15.6 ms 0.5 ms
512 - - - -

Table 4.14: Measured invocation runtime of neural networks of various sizes.

One obvious result that can be observed from table 4.14 is that, as before, there are
blank entries in the table. As could be expected, we are unable to compile networks
exceeding the limits presented in table 4.11. For the values we could compute, though,
we observe an interesting trend: the runtime of invocation does indeed seem to increase
with network complexity. This might have been intuitive, but it is an important result
to show experimentally. Further, comparing fi,, to i, we see that p,,, follows the
same development as p;, plus 3. Thus, we arbitrarily choose to focus on one of them,
landing on the overall power management pm. These are the values shown in the final
two columns in table 4.14. The development of these run times given every tested
neural network configuration is illustrated in figure 4.15.

We notice from figure 4.15 that the development of runtime as a function of depth and

64 CHAPTER 4. EXPERIMENTS

30

—— Depth =1

25

20

15

Runtime (ms)

10

1 2 4 8 16 32 64 128 256 512 1024
Width

Figure 4.15: The runtime of the invocation of neural networks of various configurations. Each data
point represents the mean of a sample size of 30 runs for that width / depth combination. The
corresponding variance, expressed as standard deviation, is indicated through grey vertical lines.

width seems polynomial. The intuition is the same as when we made this observation
for compiled flash memory consumption: we use polynomial regression to see if we can
produce a mathematical formula predicting this behavior [Agr, 2020]. The result is
equation 4.5.

:= network width > 0
:= network depth > 1
Runtime on Arduino CPU

I < 8

II. :

22y + 152y — 252y + 502 + 30000
10000

11, = (4.5)

Note that this formula only holds true for depth > 1. We can see from figure 4.15
that depth = 1 follows a fundamentally different curve than the others, reflecting the

4.3. POWER MANAGEMENT IMPLEMENTATION 65

stark difference in regular and deep reinforcement learning. We could have presented
a formula that accounts for this and allows calculation of runtime for networks of
depth = 1, but unlike equation 4.2, the result would not be nearly as neat as the more
restricted equation 4.5. As we are mostly concerned with deep learning in any case,
we stick with this representation. Note that the constant 30000 could be omitted to
achieve a formula that predicts the runtime of neural network invocation in isolation,
although somewhat less accurately.

In this chapter, we have shown the process used to conduct our experiments. Each
step of each process has been outlined, and detail has been provided where it has been
crucial for reproduction. The results have been presented as a series of tables showing
select raw data, figures giving visual representations of the entire produced data sets,
and mathematical formulas extrapolated from the data that represent the behavior
in a generalized manner. These results form the foundation for a discussion of our
initially proposed research question, along with the feasibility criterion and design
science treatments described in chapter 3. This discussion is presented in chapter 5.

Discussion

Chapter 5 provides a discussion of what conclusions we can make from the data provided
in chapter 4. We do this in the order specified by the feasibility criterion presented in
chapter 3. Section 5.1 first handles the question of whether it is possible to implement
neural networks on [oT devices. Section 5.2 then looks at the performance of these
neural networks, establishing methods for determining which settings and parameters
are needed for the approach to be a good fit. Section 5.3 presents a case study utilizing
these methods. Section 5.4 concludes by revisiting our proposed research question,
using accumulated data and discussion to evaluate to which extent we are able to
answer the question.

Throughout this chapter, we use the principles and terms of Design Science to guide
our discussion. We consider the following to be our main artifacts: the neural network;
its runtime parameters; and our chosen hardware. We consider the different ways these
can be combined to produce intelligent power management systems as our treatments
to be revised and iterated upon. Using the experimental data provided in chapter 4,
we wish to validate our treatments by looking at how much energy they are able to
save. We use the feasibility criterion defined in chapter 3 to discuss the merit of each
of these artifacts and treatments. Finally, we wish to look at our work in the context
of the larger project we are a part of. That project also uses an engineering cycle, and
our work constitutes validation of provided treatments in this larger scope.

5.1 Fitting Neural Networks into Device Memory

We first answer whether neural networks fit in the memory of IoT devices at all.
To determine how much memory these neural networks had to work with, we first
implemented a static application on our IoT device. Experimental data for this sense
cycle was generated in section 4.1. We now look at what conclusions this data can lead
to.

67

68 CHAPTER 5. DISCUSSION

5.1.1 Memory Required by a Sense Cycle

Going back to the phrasing of sub-criterion 1.1, we recall that it read:

Verify that the static code constituting a sense cycle can be transferred
and run on an IoT microcontroller without significant resource
consumption.

Whether this criterion is fulfilled depends on what exactly is meant by the static code
constituting a sense cycle. If we assume the specific sense cycle we actually developed in
section 4.1, we already have the answer. The application was shown in that section to
be runnable on the given hardware. Its memory and runtime footprints were presented,
neither of which constituted a large percentage of the hardware’s capabilities. We thus
directly conclude the criterion fulfilled in the case of our specific experimental sense
cycle, which is intended to be representative of IoT applications.

In the more general case, we explored the memory limits of a sense cycle in section 4.3.
There, we showed the remaining available memory given a specific power management
neural network — around 30 %. Thus, assuming this neural network is representative of
the size we can expect power management to consume, the stakeholder would have
70 % available for their regular application. This upper limit for sense cycle size is
of course directly dependant on the size of the network. As described in section 4.2,
we can increase the size of the neural network until it fills 100 % of both the flash
memory and the RAM if we want to. The trade-off then becomes the added benefit of
increasing network size versus the space required for a working sense cycle application.

Our experiments indicate that the sense cycle application size is unlikely to reach a
size where it severely impacts the possible configurations of a neural network. If this
were to change, we would combat it using the strategy posed in proposition criterion
1.2: reduce the scope of the program so as to less accurately reflect a real IoT node’s
function. This is a clear guide to follow for the case that the sense application becomes
too large. We thus consider the discussion of the memory required by a sense cycle
complete.

5.1.2 Fitting a Neural Network in the Remaining Memory

We defined another sub-criterion relating to transferal to a microcontroller. It focuses
on the neural network, rather than the sense cycle, and it reads as follows:

Verify that neural networks of appropriate size fits on an IoT’s device
flash memory. Further, verify that invocation does not require more
memory than available in the device’s RAM.

5.1. FITTING NEURAL NETWORKS INTO DEVICE MEMORY 69

This is a two-part question. We need to look at both the Flash and RAM boundaries
in order to ascertain whether the criterion is fulfilled. We consider RAM first, as it is
more straight-forward. We asserted multiple times throughout chapter 4 that given the
neural network boundaries we chose (table 4.8), RAM never became the bottleneck.
The Flash memory limit of 1 MB was always exceeded before the 256 KB RAM limit
showed signs of becoming an issue. We thus conclude that for our selected hardware
and network size boundaries, the RAM aspect of sub-criterion 1.2 is fulfilled.

In the general case, several parameters could change to make RAM problematic. For
one, different hardware might have a different ratio of Flash and RAM. A microcontroller
with 1 MB Flash and 16 KB RAM, for instance, would likely experience RAM as the
bottleneck. Moreover, changing what boundaries we consider realistic and relevant
could affect the result. We found in section 4.2.4 that the network width was bound
by the Flash memory size, growing too large at around width = 23000. The work
on microcontrollers in Berg’s work indicates that this limit is approximately 40 000
given similar hardware boundaries as used in our project [Berg, 2019]. Thus, given
only somewhat different boundaries, our conclusion that sub-criterion 1.2 is verified
might change. In such a scenario, we would again turn to the appropriate proposition
criterion for guidance on how to remedy the situation. Proposition criterion 1.2 gives
us a straight-forward solution: If either memory constraint is violated, specify either
how much the hardware would need to improve or the network size to be reduced for a

fit.

The second part of sub-criterion 1.2 is whether the neural networks fit onto the
microcontroller’s flash memory. Unlike with RAM, we found that there are some
configurations within our boundaries for which the neural network does not fit. These
limits are an important result, and they are presented in table 4.11. For neural networks
exceeding these limits, we can not say sub-criterion 1.2 is verified. However, we knew
from the outset that there would have to point at which a neural network gets too large
to use in an IoT context. The important question is whether neural networks that will
actually be used for power management fit — called neural networks of appropriate
stze in the sub-criterion. We take our externally provided neural network a reference
point. We recall that it had a width of 3 and a depth of 128 — meaning it is well within
the computed limits. We studied its exact memory consumption further in section 4.2,
and we found that it only consumed approximately 16 % of available flash memory.
We use this result to conclude sub-criterion 1.2 verified, keeping in mind that it only
holds for neural networks within the limits of table 4.11.

With this, we have looked at every part of every sub-criterion constituting feasibility
criterion 1. For our selected experimental parameters, we found that they were all
verified. We can thus conclude that the overarching main criterion is verified as well:
we are able to both transfer and infer from neural networks on a microcontroller. This
was a major milestone along the path to verifying the neural network as a treatment in
the context of the larger project. The network had been shown to produce promising
results in simulations, but the developers had no idea whether the system could actually

70 CHAPTER 5. DISCUSSION

be used on [oT devices. For each aspect of the transferral process that might go wrong,
we have also established which steps would need to be taken in order to improve
the situation. We thus move on to the discussion of the performance of our neural
network power management system with the knowledge that within our boundaries,
the transferral aspect of our project is thoroughly examined and unproblematic.

5.2 Power Management Performance

We now move to discuss the performance of our neural network-based power manage-
ment. This topic is introduced by sub-criterion 2.1:

Verify that there are possible configurations in which a neural network is
able to help save more energy than it consumes.

When determining whether the neural network helps save more energy than it consumes,
we need to look at how much energy the various parts of an IoT device’s life cycle
consumes.

5.2.1 Energy Budget of an IoT Device

We want to examine the effect of a neural network as part of the energy budget of an
[oT device. On one hand, the intention of the neural network is to help the device save
energy. It does so by adjusting the duty cycle or by not sending data of low value, for
instance. On the other hand, the invocation of the neural network consumes energy, as
it requires the IoT device to conduct computations. Obviously, for power management
via neural networks to be beneficial, the invocation of the neural network must not
consume more energy than it helps save. In other words, the power management
policy executed by the network must have a certain minimum performance compared
to a non-neural-network solution to break even. To discuss this for a wide variety of
platforms and independent of the performance of a specific policy, we will discuss first
the minimum required performance of a policy compared to the energy consumption of
a sense cycle. In later sections, we will then study how these methods apply to specific
use cases.

To facilitate the discussion of an IoT device’s energy budget and the neural network’s
role in it, we first need to clearly define what processes are part of this budget. This
will let us distinguish between the neural network and everything else running on the
device, which is necessary if we are to discuss both the neural network’s benefit and its
drain on the system at large. These values will let us determine whether the neural
network is beneficial enough to be worth including as a power management system.

Figure 5.1 illustrates a starting point for defining what constitutes a full IoT life
cycle. It shows the different phases of the loop of a typical IoT device, including a sensor

5.2. POWER MANAGEMENT PERFORMANCE 71

e

\ Power

send

sense
pre-sleep
|

sleep

sleep &

I I I I
post-sleep wait pre-send post-send

\/

Figure 5.1: An abstract model of the energy consumption of different phases in an IoT sensing node’s
life cycle. Taken from [Tamkittikhun, 2019].

scan, network communication, and sleeping. In our case, we are mainly interested in
the invocation of a neural network. This will correspond to a single such phase, and
it is the only distinction that is important for our discussion. We thus abstract the
rest of the life cycle into a single phase, which is what we call the sense cycle. We
assume the sleeping phase consumes negligible energy, and thus do not include it in
this definition. The resulting abstraction is reflected in figure 5.2.

A Power

Sense Cycle

Neural Network Invocation

L

Figure 5.2: A further abstracted model of the energy consumption of different phases in an IoT sensing
node’s life cycle. Power and time consumption are merely indicative. Based on [Tamkittikhun, 2019].

With this definition of a sense cycle, we have removed any distinction between
processes such as sensor scans and network communication. While these might have
vastly different energy requirements in reality, it does not make a difference for our
discussion. We simply find the average power consumption this sense cycle, and we
calculate the amount of energy saved by the neural network based on this amount.

72 CHAPTER 5. DISCUSSION

We have thus established a clear idea of how to approach the discussion of a neural
network’s performance as it relates to the surrounding loT application while focusing
only on the relevant details.

5.2.2 Energy Saved by the Neural Network

We now wish to find the parameters for which using neural networks for IoT power
management makes sense — that is, which parameters lead to a reduction in overall
energy consumption. These parameters include the sense cycle and neural network sizes
explored so far, and we have already looked at how these affect both memory footprint
and runtime in detail. In this section, we look at two important parameters that have
so far gone ignored: first, how often the application should ask the neural network for
updated runtime configuration. Second, given this frequency, how much energy the
power management needs to save in order to net gain energy. These parameters will
help us define when neural network power management is appropriate for the IoT field,
as well as when it is not. The rest of this section focuses on these parameters.

The power management systems considered in this project are implemented through
duty cycles — how often the loop of a cyclic application should run. If this frequency is
set to a static value for say, a year, we cannot say we are using an intelligent power
management. This approach is what the static algorithms described in section 2.1.1 did,
and they lead to an unadaptive system. Instead, we wish to invoke a neural network
to get an updated, optimized duty cycle given the current weather, battery level, and
other inputs available to the neural network.

This leads to a crucial question: how often should the neural network be
invoked? It could for example be asked to update the duty cycle every minute, every
hour, every day, or even less frequently. We call this invocation frequency p, defined as
the ratio of loops with and without neural network invocation. Let us first consider the
extreme options for p. On one end, the maximum value p can take is 1, meaning the
neural network is asked every single loop of the sensing application. In this scenario,
the neural network would decide the time to sleep between every iteration of the loop.
This would allow the power management system to make as finely granulated decisions
as possible. In theory, this approach should allow the most efficient power management
possible. However, there is a trade-off. The invocation of neural networks costs some
amount of energy. If it consumes more than it saves, we are not accomplishing anything
of value and sub-criterion 2.1 is not fulfilled. Invoking the neural network less often
can thus be interesting, leading to less power consumed for potentially similar amounts
of energy saved. As an extreme example, p = 0.001 would mean we only invoke the
neural network every thousandth iteration. In this case, the power management system
would need to save very little power to be worth including.

We wish to determine how much energy a neural network needs to help the IoT device
save in order to break even. To do so, we need to determine the energy consumption

5.2. POWER MANAGEMENT PERFORMANCE 73

of both the sense cycle and of the neural network itself. We ask how much energy each
phase consumes in an average iteration of an IoT application’s loop. The answer is
the phase’s energy consumption rate times its runtime, and the result is measured in
milliwatt-seconds (mWs) or microwatt-seconds (uWs). We denote this total energy
consumption per loop Fl.,s. for our sense cycle, and FE,,, for our neural network phase.
Building on this, Ej, is the total energy consumption of an iteration. We only incur
the energy cost of the neural network whenever we actually invoke it, and we must
reflect this in the formula for E;,;. We defined this ratio as p, meaning its average
contribution to energy consumption is pE,,. We thus get Ei; = Fyense + pEnn-

Rather than finding absolute values for F,.,s and F,,, we are more interested in
the ratio between the two. Whether the sense cycle consumes a couple of microwatt or
several gigawatt, it is the relationship with the power management consumption that
will tell us whether the neural network saves energy. We introduce a new variable ¢ to
represent this relationship. We choose to define ¢ as E,;,/Egense. That is, ¢ represents
how much energy the invocation of a neural network consumes compared to the static
sense cycle. If this ratio is 1, the sense cycle and the neural network thus consume
equal amounts of energy whenever they are run. If p is also 1, this would mean the
neural network doubles the total energy consumption. The power management system
would thus need to enable the [oT device to gather the same amount of data in half as
many scans in order to break even. A lower ¢ would mean a smaller increase in overall
power consumption, meaning the system would have to save less energy to break even.

We look at some extreme values to get a sense of what ¢ means. If ¢ is close to 0,
that would mean the power management system consumes a trivial amount of energy
compared to what the device is already doing. This would be a good sign, and would
likely let us invoke the neural network every single iteration of the loop for optimal
power management. On the other hand, if ¢ is large, the power management system
consumes a lot of power compared to the sense cycle. This would mean that the
configuration would have to be updated quite infrequently, meaning a lot of the benefit
of using an intelligent power management would be lost. The value of ¢ can thus be
used as a quick indicator of whether using a neural network-based power management
system is appropriate — the lower, the better.

The definition of the variables introduced so far are summarized in table 5.1.

Fsense Power Consumption of a Sense Cycle in a single loop
Eon Power Consumption of the Invocation of a NN

FEiot Total Energy Consumption per Loop

P How often the Neural Network is Asked

¢ Enn / Esense

Table 5.1: The definitions of our various parameters.

We now wish to use these definitions to discuss the net amount of power the neural
network can save. Moving the terms of the definition of ¢, we get

74 CHAPTER 5. DISCUSSION

Enn
¢ B Esense
1
Esense *Enn
¢

We can use this result to find another expression for F.:

Etot = Esense + pEnn

=+ (5.1)

To find how much energy the system saves, we must first express the portion of total
energy that is consumed by the invocation of the neural network. We introduce the
term 1 to represent this idea — that is, ¢ is the percentage of all energy input that goes
to the neural network. The formulaic expansion of ¥ becomes the ratio of a neural
network’s energy consumption per loop, pE,,, and the total energy consumption per
loop. Using equation 5.1 for this latter term, this yields:

_PEw _ pEwn _ p
V=T I
oo (TP Em 5+p

(5.2)

¥ tells us how much energy the neural network needs to save in order to
break even. To see why, remember that we defined 1 as the percentage of total
energy consumption that the neural network is responsible for. If we save more than
this percentage, the system will have saved energy overall. This result is illustrated in
figure 5.3, with p from 0 to 1 and ¢ from 0 to 2. Notice that when both invocation
frequency p and energy consumption ratio ¢ is low, the amount of energy the neural
network needs to save in order to break even approaches zero. The neural network has
to save trivial amounts of energy to be worth including. On the other hand, at the
maximum values of p = 1 and ¢ = 2, we are invoking the neural network every time
and the invocation costs twice as much energy as the sense cycle. The figure shows
that the power management then needs to reduce overall energy consumption by as
much as 70 % to break even. To analyze some more concrete examples, we plot their
exact values in table 5.2.

There are no entries in table 5.2 where either ¢ or p is 0. This comes from the realization

5.2. POWER MANAGEMENT PERFORMANCE 75

Figure 5.3: ¢, the percentage of energy that a neural network has to save in order to break even
with its consumption. ¢ is the proportion of energy input going to the neural network, and p is the
frequency of invocation. Calculated using formula 5.2.

that p = 0 means a situation where we never invoke our neural network, meaning the
rest of the discussion makes no sense. In the case of ¢, equation 5.2 has a term where ¢
is the denominator, meaning the equation is not defined for ¢ = 0. Thinking about the
real world scenario this would represent, we realize that this value would imply that
the sense cycle consumes infinitely more energy than the power management system.

p ¢ (U
0.01 0.0
0.01 0.5 | 0.005
1| 0.01

0.01 | 0.005
05 05| 02
1| 033

0.01 | 0.01

1 05| 033
1 0.5

Table 5.2: The value of 9 given different invocation ratios p and energy consumption ratios ¢.

76 CHAPTER 5. DISCUSSION

This is another scenario where discussion is nonsensical. We thus conclude that both p
and ¢ must be greater than 0.

The value combinations in table 5.2 can give us an understanding of what configu-
rations our system makes sense for. First, consider the final entry in the table: ¢ =1,
p =1, and ¥ = 0.5. These values correspond to the example we described earlier: if
you ask the neural network every time, it ends up doubling energy consumption. You
then need to halve the total energy consumption in order to break even — 1) = 0.5. As
another example, consider p = 0.5, keeping ¢ = 1. This would mean that the neural
network still doubles energy consumption on the loops it is used on, but you only ask
every other loop. After two loops, then, the device has consumed E,.,, in the first
loop and Fge,se + Eny in the second, meaning the neural network consumes a third
of all power. We would expect it to need a total power reduction of 33 % in order to
break even. Consulting the table, we see that given p = 0.5 and ¢ = 1, we indeed get
1 = 0.33. This is a good indication that our formula reflects reality. As long as it does,
we have successfully developed a method of determining which parameters lead to the
neural network breaking even energy-wise.

5.3 Case Study

The final sub-criterion we defined, and thus the final question we need to answer to
have addressed our research question in full, read as follows:

Verify whether the externally provided neural network saves more energy
than it consumes.

This criterion calls for a closer examination of one particular neural network. We
wish to perform a case study of this network for two reasons: First, because doing so
will provide insight into the methods developed so far by putting them into practice.
And second, to provide insight into the externally provided neural network to the larger
project our work is a part of.

5.3.1 Evaluation of Externally Provided Neural Network

We wish to evaluate our externally provided neural network (ENN), and we do so by
applying formula 5.2. The formula produces a concrete value for how much energy
the neural network needs to save in order to break even, providing insight into which
parameters are required for the neural network approach to make sense. We recall that
the ENN, shown to produce power management behavior in [Murad et al., 2019a], had
depth = 3 and width = 128. We thus begin establishing the various input required by
formula 5.2.

5.3. CASE STUDY 77

With the goal of using formula 5.2 to evaluate the ENN, we first want to determine
a value for ¢. To do this, we need to determine FE,, and F,.,s. We begin with E,,,,
the energy consumption of the invocation of the neural network per loop. To find this
value, we first need the power consumption of the neural network invocation. Luckily,
the neural network uses no sensors or other external hardware, but simply runs on the
CPU. This means that finding the energy consumption rate of the CPU also gives us
the rate of neural network invocation. We find this value by looking at the datasheet of
the Arduino Nano 33 BLE’s microcontroller, and we see that it has a reported power
throughput of 52 A when using its CPU [Ard, 2020b]. Given the Arduino’s operating
voltage of 3.3V, this means a power consumption rate of 0.17 mW for any process
running on its CPU. We find F,,,, by multiplying this energy consumption rate with
the runtime of invocation. The runtime can be found using table 4.14 or figure 4.15,
and is approximately 9.3 ms for our ENN. That means F,, for this network is 0.17
mW * 9.3 ms = 1.581 uWs.

The next step in the evaluation of our ENN is determining Fl.,s.. This requires first
determining the energy consumption rate of a sense cycle. We do this in two ways: first,
assuming the sense cycle is simply regular code. This means it runs directly on the CPU,
and the energy consumption rate is the same as the CPU’s: 0.17 mW. The second way
is to also include some sensor scan or network transmission, producing a consumption
rate that likely reflects real use cases more closely. Finding the energy consumption
rate of our Arduino microcontroller’s BLE sensor can serve as a good starting point for
this second approach. We observe directly from the Arduino’s datasheet that when the
sensor is active, it has a power consumption of 15.5 mW. This is more than 90 times
larger than the standard CPU rate.

We now combine the established sense cycle consumption rates with their observed
runtimes to produce the sense cycle’s energy consumption per loop. We observed in
section 4.3 that a representative sense cycle took approximately 5 ms. Assuming the
use of our experimentally developed sense cycle without any sensors, we know that
we have a power consumption rate of 0.17 mW. This yields an Eyepse 1 of 5 ms * 0.17
mW = 0.85 yWs. If we also wished to include a sensor scan, we observed in section
4.1 that the Arduino Nano 33 BLE’s Bluetooth sensor scan consistently took 1 ms.
Given the sensor’s established power consumption of 15.5 mW, we get an additional
77.5 uWs. This would mean Fgepse 2 becoming 78.35 Ws.

To make sure our conclusions for the sense cycle are not too hardware-specific, we also
look at the power consumption rate of other commonly used sensors. [Ferry et al., 2011]
is a work in which the power consumption of various hardware, including sensors, was
experimentally observed. Figure 5.4 shows their result. We see that all but the lowest
couple of nodes have power consumption rates significantly higher than our nRF CPU.
Although not an extensive study, we take this as an indication that IoT sensors typically
consume energy at a rate significantly higher than that of regular CPU operations. A
deeper look at commonly used [oT sensors’ power consumption could be an interesting
point of further study.

78 CHAPTER 5. DISCUSSION

Min Max Avg.
Components Type (mW) (mW) (mW) %
Concertina Sensor 1 355.66 393.38 368.84 51.54
Miwi 1 Radio 1 115.5 181.5 115.92 16.2
OLTC 50 Gas sensor 1 0 1074.6 72.458 10.13
OLTC 80 Gas sensor 2 0 884.51 58.216 8.135
MT48T35AV RAM 0 150 26.326 3.679
LM3100 DCDC 25.84 55.03 25.928 3.623
Mygale Sensor 2 0 583.49 19.268 2.693
MAX618 DCDC 0 93.446 10.822 1.512
PIC24F CPU 0 52.8 9.2664 1.295
LM3100 DCDC 0 84.023 6.0276 0.8423
LM3100 DCDC 0 12.627 2.2161 0.3097
pCAM Video 0 305 0.21 0.029
Miwi 2 Radio 2 0 181.5 0.0834 0.0116
Total Sensors 519 72.58
Total Radios 116 16.23
Total DCDC 45 6.3
Total RAM 26 3.63
Total CPU 9 1.26

Figure 5.4: Power Consumption of various nodes. Taken from [Ferry et al., 2011].

Having established both FE.,s. and FE,,, we can now calculate ¢. If we assume the
sense cycle to be simple code running on the CPU, we get ¢; = %58 — 1.86. If we

0.85
include the BLE scan, we get ¢ = 35 = 0.02. Recall that we stated that large values

0.85
for ¢ indicated a poor fit, while small ones indicated the scenario was appropriate for
neural network power management. We make the observation that when the sense

cycle includes a BLE scan, the neural network appears to be a significantly better fit.

The only variable left to determine at this point is the rate at which the neural net-
work should be invoked, p. This depends on the application. Some sensing applications
may need to adjust their duty cycle, for instance, once every hour, while others may
only need to do that once a day. Depending on the frequency of the sensing cycle, p
can hence take a large range of values. For now, we look at what ¢ evaluates to for a
couple of different arbitrary values:

¢ p (U
0.01 0.0

0.02 0.1 | 0.002
1| 002

0.01 | 0.018

1.86 0.1 | 0.157
1| 065

Table 5.3: The amount of energy a neural network power management system needs to save in order
to break even 1, given observed ¢ and selected p.

5.4. RESEARCH QUESTION REVISITED 79

In table 5.3, we have calculated the value for ¢ given the two different ¢ values observed
earlier and a couple of selected p. We interpret the result as follows. Taking the final
entry as an example, with ¢ = 1.86 and p = 1, we are here assuming that the neural
network is asked for updated configuration every iteration of the loop and that the
sense cycle does not use any sensors. Given this, the ENN would have to reduce power
consumption by 65 % to break even. If we observe a reduction in scan frequency (duty
cycle) of 65 % without the quality of the data dropping, the system will have gone
energy neutral. This is a quite large percentage. If we instead assume that the sense
cycle does use a BLE scan, meaning ¢ is 0.02,) drops to a mere 0.02. The system
would then only have to save 2 % energy to break even. This reflects the nature of ¢
as an indicator of fitness.

The values for p in table 5.3 were arbitrarily selected, but its value has a significant
impact on the result. Often, realistic values for p can be deduced using two factors.
First, the neural network’s inputs. For our ENN, for instance, weather forecast is
the major component the neural network uses to update its policy. As these are only
updated three or four times a day, invoking the neural network more often than this
yields no benefit. Second, consider the nature of the IoT device’s purpose. This can
often indicate what actual scan frequencies are realistic. If an IoT node is monitoring
the temperature of its environment, for example, we know that the time between each
scan should probably be on the scale of minutes or hours. Thus, on one end of the

spectrum, we might want temperature updates roughly every five minutes but a policy
1

300

= 0.0033. On the other end of the spectrum, we might want policy updates four times

update only once a day. This means we invoke once per 300 regular loops, or a p of

a day, and only perform temperature scans every other hour. This yields a p of 0.33.
Testing a series of values for p in the range [0.0033, 0.33] might then be appropriate.
Using this sort of deduction lets us likely values to test for p.

We are interested in how much energy the ENN needs to save in order to break
even, ¢, given these various p. We do so by plotting ¢ given the two observed ¢ and
all possible p. Figure 5.5 shows the result. By analyzing the figure, we can quickly
get an idea of whether the ENN is appropriate for IoT power management for a given
set of parameters. If ¢ is as low as 0.02, for instance, we immediately observe that
the ENN would almost certainly be able to break even. If ¢ is instead closer to the
observed 1.86, we would need to determine one remaining parameter in order to make
any conclusion. If the neural network was determined to need a p of at least 0.5 to
be effective, for example, the figure would tell us that the ENN would need to reduce
power consumption by around 45 % in order to break even. Figure 5.5 thus serves as a
conclusion of our case study.

5.4 Research Question Revisited

Revisiting our research question, we recall that it was phrased as such:

80 CHAPTER 5. DISCUSSION

— $=0.02

=1.86
0.6 ¢

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.5: The percentage of energy the neural network needs to help save in order to break even
with its consumption, 1. Plotted for all p and the two observed values of ¢, 0.02 and 1.86.

Are we able to utilize neural networks on today’s IoT devices in such a
way that they help save more energy than they consume?

With the data provided in chapter 4 and the discussion in this chapter, we now have a
better grasp on whether each part of this question is fulfilled. The first part is whether
we are able to utilize a neural network on IoT devices at all. Going all the way back
to the introduction of the project, we posed this problem as a Secondary Research
Question: Do neural networks representing power management policies fit
on the restricted hardware of IoT microcontrollers? With the data provided
in sections 4.1 and 4.2, along with their thorough discussion in section 5.1, we can now
make a conclusion: yes, they do. There are limits to the size of the neural networks for
them to fit, and we found these limits for our experimental set-up in section 4.2, but
neural networks of realistic power management sizes did indeed fit.

The second part of the Research Question regards how the neural network performs.
Again remembering back to chapter 1, we posed this problem as Secondary Research
Question 2: In what circumstances is the neural network-based power man-
agement able to help save more energy than it consumes?. We spent a
significant part of our discussion developing a method for answering this question. The

5.4. RESEARCH QUESTION REVISITED 81
result is summarized as the following procedure.
1. Train or choose a neural network for IoT power management.

2. Compile and transfer the neural network to a microcontroller using the steps
described in section 4.2.1.

3. Measure the runtime of the application both with and without invocation of the
neural network.

4. Find the energy consumption rates of the CPU and of any sensors being used.
5. Combine the runtime and consumption rates to calculate (Fsense) and (E,;,).

6. Calculate ¢ = F,;/Fsense-

7. Choose some invocation frequency p.

oo

. Calculate ¢ = ﬁ.

The result of the presented procedure is 1, the percentage of energy the neural
network needs to save to break even. If the neural network is able to help reduce
energy consumption by this much, it will have broken even energy-wise. Combined
with the data on when neural networks fit in a microcontroller’s memory, this results
in an answer to our research question.

Concluding Remarks

The motivation for this work was to help verify the applicability of the neural network
approach to IoT power management. We have taken extensive steps to test whether this
approach is appropriate. First, we verified that the neural networks fit and are runnable
on representative IoT hardware. As a part of this process, we found the boundaries a
neural network has to respect if it is to fit on an IoT microcontroller. We then looked
at the energy consumption of these neural networks. We established that for networks
within our chosen size limits, the energy consumption is on an order of magnitude that
reassures us that any power it saves it not outweighed by its consumption. Together,
these observations led to a concrete range of parameters for which a neural network is
able to help save power. We then made the observation that for a particular neural
network designed for IoT power management, all parameters were well within the
established bounds. Within these parameters, we can thus make the conclusion that
indeed, neural networks are appropriate for use in IoT power management.

Besides the theoretical results that should generalize over a wide range of cases,
our results are also practically achievable. We present the developed step-by-step
procedures as guides for users to adapt our methods and results into their own work.
Using the procedure outlined in section 4.2.1, they have a detailed description of
how to go from a trained Tensorflow model to code runnable on a resource-restricted
microcontroller. Equation 4.2 can be used to calculate whether the network will fit
in the device’s memory, given the neural network’s size. Equation 4.5 can be used
to calculate the CPU runtime of invoking the neural network. Finally, the procedure
presented at the end of chapter 5 can be used to obtain a concrete value for how much
energy the neural network saves. Combined, these methods provide insight into the
details of power management using neural networks of any size, at any invocation
frequency or efficiency, within the given limits. In this way, this work not only helped
the advancement and validation of the larger project we are a part of, but it also
provides general principles and guidelines for analysis of neural networks in the IoT
power management field.

Throughout the project, we observed several tasks that might be interesting to
explore further as future work. One is to test our externally provided neural network
with real input over an extended period of time. This would let us determine some

83

84 CHAPTER 6. CONCLUDING REMARKS

of the unknown variables of the project, facilitating a deeper analysis of the neural
network’s performance. Another parameter we might wish to expand upon is the size
limits we set for our neural networks. A depth of 5 is already considered rather deep,
but widths exceeding 1024 are not too uncommon [Ope, 2018c]. Other works in the
field have suggested that the RAM of a microcontroller starts becoming an issue at
a width of around 40 000. To study the ramifications of RAM restrictions, either
expanding our boundaries in this direction or reducing the available hardware RAM
might be interesting. A final topic that might deserve further exploration is what we
called the sense cycle — the static application running on an IoT device. A deeper look
at what such applications typically look like among deployed IoT devices would provide
greater insight into the relationship between the neural network and its environment.

Bibliography

[hbl, 2017] (2017). Historical cost of computer memory and storage.
https://hblok.net/blog/posts/2017/12/17/historical-cost-of-computer-memory-and-

storage-4/.

[OnL, 2017] (2017). Onlogic. https://www.onlogic.com/company/io-hub/extrovert-iot-
contest-winner-lensec-remote-surveillance/.

[Ope, 2018a] (2018a). Deep deterministic policy gradient (ddpg).
https://spinningup.openai.com/en/latest/algorithms/ddpg. htmlbackground.

[Ope, 2018b] (2018b). Openai spinning up: Intro to policy optimization.
https://spinningup. openai.com/en/latest/spinningup/rlntro3.html.

[Ope, 2018c] (2018c¢). Openai spinning up: Key concepts in rl.
https://spinningup.openai.com/en/latest/spinningup /rlntro.html.

[Ope, 2018d] (2018d). Openai spinning up: Kinds of rl algorithms.
https://spinningup.openai.com/en/latest/spinningup /rlintro2.html.

[Ope, 2018¢| (2018e). Twin delayed ddpg (td3).
https://spinningup.openai.com/en/latest/algorithms/td3. html.

[ARM, 2019] (2019). Arm mbed. https://www.mbed.com/en/.

[Des, 2019] (2019). Design science seminar.
https://falkr.github.io /designscience /preparation. html.

[Ten, 2019] (2019). Tensorflow. https://github.com/tensorflow/tensorflow.
[Ard, 2020a] (2020a). Arduino memory. https://www.arduino.cc/en/tutorial/memory.

[Ard, 2020b] (2020b). Arduino nano 33 ble.
https://store.arduino.cc/arduino-nano-33-ble.

[Sta, 2020] (2020). Assumption of normality.
https://www.statisticshowto.com/assumption-of-normality-test/.

[Res, 2020] (2020). Feed-forward neural network overview.
https://www.researchgate.net/figure/Feedforward-neural-networkigl329586439.

[Ard, 2020c] (2020c). Millis.
hitps://www.arduino.cc/reference/en/language/functions/time/millis/.

85

86 BIBLIOGRAPHY

[NG:, 2020] (2020). Neural networks and deep learning.
https://www. coursera.org/learn /neural-networks-deep-learning.

[NRF, 2020] (2020). Nrf connect. https://www.nordicsemi.com/Software-and-
tools/Development-Tools/nRF-Connect-for-mobile.

[Agr, 2020] (2020). Polynomial regression.
https://agrimetsoft.com /regressions/PolynomialtoolSection.

[Ten, 2020a] (2020a). Tensorflow lite. https://www.tensorflow.org/lite.

[Ten, 2020b] (2020b). Tensorflow lite micro.
hitps:/ /www.tensorflow.org/lite /microcontrollers.

[Berg, 2019] Berg, A. V. (2019). Implementing artificial neural networks in
resource-constrained devices. Master thesis, NTNU.

[Buchli, 2014] Buchli, B. (2014). Dynamic power management for long-term energy
neutral operation of solar energy harvesting systems. SenSys’14.

[Ferry et al., 2011] Ferry, N., Ducloyer, S., Julien, N., and Jutel, D. (2011). Energy
estimator for weather forecasts dynamic power management of wireless sensor
networks. J.L. Ayala et al. (Eds.): PATMOS 2011, LNCS 6951, pp. 122-132, 2011.

[Haukland, 2019] Haukland, J. (2019). Modelling the energy consumption ofnb-iot
transmissions. Master’s thesis, NTNU.

[Hsu et al., 2009a] Hsu, R. C., Lin, T.-H., Chen, S.-M., and Liu, C.-T. (2009a).
Qos-aware power management for energy harvesting wireless sensor network
utilizing reinforcement learning. IEEE Transactions on Emerging Topics in
Computing, pages 537-H42.

[Hsu et al., 2015] Hsu, R. C., Lin, T.-H., Chen, S.-M., and Liu, C.-T. (2015).
Dynamic energy management of energy harvesting wireless sensor nodes using fuzzy
inference system with reinforcement learning. IEEE Transactions on Emerging
Topics in Computing.

[Hsu et al., 2009b] Hsu, R. C., Liu, C.-T., and Lee, W.-M. (2009b). Reinforcement
learning-based dynamic power management for energy harvesting wireless sensor
network. IEEFE Transactions on Emerging Topics in Computing, pages 399-408.

[Hsu et al., 2014] Hsu, R. C., Liu, C.-T., and Wang, H.-L. (2014). A reinforcement
learning-based tod provisioning dynamic power management for sustainable
operation of energy harvesting wireless sensor node. IEFE Transactions on
Emerging Topics in Computing, 2(2):181-194.

[Lasse Lueth, 2018] Lasse Lueth, K. (2018). State of the iot 2018: Number of iot
devices now at 7b — market accelerating. https://iot-analytics.com/state-of-the-iot-
update-q1-q2-2018-number-of-iot-devices-now-7b/.

BIBLIOGRAPHY 87

[Murad et al., 2019a] Murad, A., Kraemer, F. A., Bach, K., and Taylor, G. (2019a).
Autonomous management of energy-harvestingiot nodes using deep reinforcement
learningabdulmajid. 2019 IEEE 15th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO).

[Murad et al., 2019b] Murad, A., Kraemer, F. A.; Bach, K., and Taylor, G. (2019b).
Iot sensor gym: Trainingautonomous iot devices with deepreinforcement learning.
Proceedings of International Conference on Internet of Things (IoT2019).

[Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural Networks, 61:85-117.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algorithms.

[Semiconductor, 2019] Semiconductor, N. (2019). nrf9160 dk product brief. Taken
from https://www.nordicsemi.com/-/media/Software-and-other-
downloads/Product-Briefs/nRF9160-DK-product-
brief.pdf ?la=enhash=C37ASEFD5ESCB6DCS2F 79F81EC22E1473E644TET.

[Tamkittikhun, 2019] Tamkittikhun, S. (2019). Energy consumption estimationfor
energy-aware, adaptive sensingapplications. S. Bouzefrane et al. (Eds.): MSPN
2017, LNCS 10566.

[Wieringa, 2014] Wieringa, R. J. (2014). Design science methodology for information
systems and software engineering.

@ NTNU

Norwegian University of
Science and Technology

JuswaSeue|\ JaM0od [0] J0) SHJOMISN [ednaN Suisn

	List of Tables
	List of Figures
	List of Equations
	Symbols
	Acronyms
	Introduction
	Background and Motivation
	Problem Scope
	Results
	Outline

	Background
	Power Management in IoT
	Static Algorithms

	Reinforcement Learning
	Key Concepts and Terminology
	Q-learning
	Reinforcement Learning Algorithms
	Reinforcement Learning in IoT

	Feed-forward Neural Networks
	Neurons and Layers
	FFNN in Reinforcement Learning
	TensorFlow

	Hardware Constraints
	Memory Consumption Estimation
	Energy Consumption Estimation
	Applicability of Neural Networks in the IoT Domain

	Methodology
	Research Question and Context
	Choice of Hardware
	Choice of Parameters

	Research Method
	Iterative Design

	Experiment Setup
	Sense Cycle
	Neural Network on a Microcontroller
	Power Management

	Experiments
	Sense Cycle Implementation
	Memory Consumption
	Energy Consumption

	Resource Consumption of Neural Networks
	Procedure
	Memory Consumption of a Single Network
	Memory Consumption Boundaries
	Compile-Time Memory

	Power Management Implementation
	Total Memory
	Total Energy Consumption

	Discussion
	Fitting Neural Networks into Device Memory
	Memory Required by a Sense Cycle
	Fitting a Neural Network in the Remaining Memory

	Power Management Performance
	Energy Budget of an IoT Device
	Energy Saved by the Neural Network

	Case Study
	Evaluation of Externally Provided Neural Network

	Research Question Revisited

	Concluding Remarks

