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Abstract

This thesis concerns the track level approach to the fusion of Automatic Identi-
fication System (AIS) messages and radar measurements. A complete track level
approach to AlS-radar fusion is developed, consisting of solutions to the track-to-
track association and the track-to-track fusion problems.

Track-to-track association is typically solved by a hypothesis test, which re-
quires information from the covariances of the estimates. Unfortunately, covari-
ance information is not always available from the individual tracking systems.
An alternative approach that can be used in such cases is a counting technique,
where the number of good matches is used as a test statistic. This thesis compares
the counting technique with a conventional hypothesis test by simulations using
a complete multi-target tracking system. Furthermore, since the data association
of the radar tracking system inevitably makes it nontrivial to decide on a ground
truth, we also propose a ground truth assessment scheme using a sliding window
approach. The results indicate that the counting technique performs at par with
the hypothesis test under certain tracking conditions.

Further, the complete AlS-radar track level multi-target tracking system is
compared to a measurement level tracking system. The results suggest that the
track level approach is a bit less consistent but perform better in terms of posi-
tional error.

iii






Sammendrag

Denne oppgaven omhandler "track level"-metoden (spornivatilneermingen) for
sammenslaing av "Automatic Identification System (AIS)"-meldinger og radarmélinger.
En fullstendig tilneerming pa spornivé til AlS-radarfusjon har blitt utviklet, be-
stdende av lgsninger pa spor-til-spor-tilknytning og spor-til-spor-sammensldingsproblemer.
Spor-til-spor-tilknytning lgses vanligvis ved en hypotesetest som krever ko-
variansinformasjon fra estimatene. Dessverre er kovariansinformasjon ikke alltid
tilgjengelig fra de enkelte sporingssystemene. En alternativ tilnezerming som kan
brukes i slike tilfeller er en telleteknikk hvor antall gode treff brukes som en tests-
tatistikk. Denne oppgaven sammenligner telleteknikken med en konvensjonell hy-
potesetest ved simuleringer av et fullstendig fler-maéls sporingssytem system. Da
datatilknytningen til radarsporingssystemet gjor det vanskelig & bestemme seg for
en "ground truth", foreslas ogsd en ny méte a evaluere "ground truth" ved hjelp av
en glidende vindu-tilnzerming. Resultatene indikerer at telleteknikken presterer
like godt som hypotesetesten under visse sporingsforhold.
Videre sammenlignes AlS-radar spornivatilnermingen med en malesnivastil-
narming. Resultatene antyder at spornivatilnaermingen er litt mindre konsistent,
men fungerer bedre nar det gjelder posisjonsfeil.
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Chapter 1

Introduction

1.1 Motivation

Autonomous surface vessels (ASVs) need to observe their surroundings to operate
at sea safely. Therefore, knowing the whereabouts of ships in proximity and pre-
dicting their positions in the future is essential for collision avoidance (COLAV).
And to do so, a robust multi-target tracking (MTT) system must be developed.

MTT for ASVs has typically been solved using radars in combination with cam-
eras and lidars. Another source of information that can provide valuable informa-
tion is the automatic identification system (AIS). At sea, larger vessels are required
to transmit their own positions using the AIS. Fusing the information from a radar
with the information from the AIS can enhance the estimates.

There exist different architectures for the fusion of information from multiple
sources. A fundamental divide goes between measurement level fusion and track
level fusion. In the former approach, all measurements are fed to a centralized
tracking algorithm. In the latter approach, state estimates from local tracking al-
gorithms are fused.

The track level approach has a modular structure that allows for simply adding
or upgrading individual trackers without substantial change to the tracking al-
gorithms. This permits the usage of robustly tested radar trackers to be combined
with AIS trackers straightforwardly and is the main motivation for pursuing the
track level approach to AIS-Radar fusion.

1.2 Problem Formulation

This thesis concerns the fusion of AIS and radar for multi-target tracking using
the track level approach. The main question of this thesis is whether a track level
approach to the fusion of AIS and radar is viable. To answer this, we need to
develop a track level multi-target tracking system.

The track level approach can be split into associating tracks that originate
from the same target, called the track-to-track association (T2TA) problem, and
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the problem of fusion of tracks that originate from the same target, called the
track-to-track fusion (T2TF) problem. To develop a complete track level approach
to the fusion of AIS and radar, both the problem of T2TF and T2TA needs to be
solved.

T2TF was the topic of the author’s pre-project thesis. Main results from the
pre-project thesis will be presented in this thesis, as its results are relevant for the
selection of T2TF approaches in the complete tracking system.

Conventional solutions to the T2TA problem consists of a hypothesis test,
which requires covariance information of the estimates. Unfortunately, it is not
always available. When using track estimates from marine radars, covariance or
any other information related to the probabilistic nature of the state estimates is
typically not available. As this thesis wishes to develop a tracking system where
the individual trackers can be swapped or upgraded easily, the question of whether
there is a non-probabilistic approach to T2TA must be answered.

Such a method should be compared to the commonly used hypothesis test. The
output of multi-target trackers should be used when evaluating the approaches to
make the analysis relevant to the fusion of AIS and radar.

Potential loss of accuracy compared to the measurement-level approach will
also have to be considered. It is known that the measurement-level approach is
theoretically superior, and it should be examined whether this holds in the prac-
tical setting of fusion of Radar and AIS.

To summarize, the objectives of this thesis are

1. Develop a non-probabilistic approach to T2TA.

2. Compare said non-probabilistic approach to the conventional probabilistic
approach.

3. Develop a complete track level multi-target tracking system fusing AIS mes-
sages and radar measurements.

4. Compare said tracking system to a measurement level tracking system.

1.3 Background and Related Work

This thesis concerns the track-to-track approach to the fusion of AIS and Radar.
The work spans several topics, such as fusion of AIS and radar, track-to-track as-
sociation (T2TA) and evaluation of T2TA, and track-to-track fusion (T2TF). The
topics intertwine, but the author finds it easiest to present relevant work within
the individual topics and note specifically work that covers several topics.

1.3.1 Track-to-Track Fusion

Traditionally, the motivation for T2TF was the reduced communication bandwidth
required to fuse information from various sensors. In a distributed surveillance
system, where "sensing" is done at different locations, communicating all meas-
urements to a central fusion centre could be problematic due to communication
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constraints. Communicating updated estimates at desired intervals would reduce
the information sent from local sensors to the fusion centre. Later advances in
autonomous technology have led to an increased interest in T2TE In [1] the au-
thors argue that T2TF is preferable for use in highly automated driver assistance
functions for cars due to its modularity and flexibility. Other applications are the
fusion of surveillance radar with radio transponders in airport geofencing [2].

T2TF have been extensively studied. Chong describes an optimal fusion for-
mula when the systems are deterministic, i.e. the process model is perfect and
given, and sensors are assumed synchronised and i.i.d noises [3]. The process
noise is not negligible and the formulas presented is approximates of the optimal
fusion. In [4] they assume that the estimation error of the two tracks are inde-
pendent, which Bar-Shalom show is not the case [5]. Bar-Shalom showed that
two tracks originating from the same target are dependent due to their common
process noise. He also derived the cross-covariance of two tracks originating from
the same target. Later, the fusion of two estimates accounting for the depend-
ence due to the common process noise was derived [6]. In [7], they show that
[6] makes an assumption that is not met and that the results are optimal only in
the maximum likelihood sense. Another way of performing T2TF is the inform-
ation matrix fusion (IMF), which is a special case of T2TF with memory. It was
first proposed in [4], and has the advantage of not requiring the calculation of
the cross-covariance, which simplifies the implementation. Moreover, IMF is op-
timal when the fusion is performed for each new measurement [8]. In [9], Tian
and Bar-Shalom generalize the optimal synchronous T2TF algorithm for the asyn-
chronous T2TF problem. They also present an IMF for the fusion of asynchronous
tracks with time delays.

1.3.2 Track-to-Track Association and Evaluation of Track-to-Track As-
sociation

T2TA is typically solved by means of a hypothesis test. The single-scan T2TA
test accounting for the dependence due to the common process noise was de-
rived in [5]. The test was later generalized to multiple frames by Tian and Bar-
Shalom [10]. Tian and Bar-Shalom also showed that, counter intuitively, the op-
timal sliding-window hypothesis test has not necessarily more power. In practice,
the cross-covariance can be difficult to calculate and is as a result often ignored.
Several papers have been published on the effect of including and ignoring the
cross-covariance. For similar sensors [11], for dissimilar sensors [12] and the case
when the state space of the trackers are dissimilar [13].

A frequent challenge in practical applications is the lack of covariances or any
other information that describe the probabilistic nature of the state estimates bey-
ond the state estimates themselves. Consequently, there is a need for reliable asso-
ciation schemes that only use state estimates. The simplest possible approach that
seems feasible for this is a counting technique that associates tracks that have a
sufficient number of close matches in some non-probabilistic sense. This is similar
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to the well-known M-of-N track initiation scheme [11], and the Recursive Random
Sample and Consensus (RRANSAC) method for data association in multi-target
tracking [14]. Such a technique is called the counting technique and is available
in the Stone Soup Library [15]. Independently of this, it was used in the track-to-
track fusion system of [2].

Current work on T2TA evaluation does not deal with the output of multi-target
tracking systems, which have integral challenges due to false alarms, wrong as-
sociations, misdetections and delayed track initialization. Further, the scenarios
examined typically concerns single-target tracking, or two-target tracking, often
moving in parallel lines [16, 17]. Other relevant work concerns the evaluation of
T2TA of tracks from more than two sensors [18, 19].

1.3.3 Fusion of AIS and Radar

Tracking systems based on radar measurements and AIS messages have been pro-
posed in various forms. Gaglione et al. uses radar and AIS data and formulates a
detection-estimation problem that they solve using a Belief Propagation message
scheme [20]. Liland uses a logic-based initialisation scheme and a Track Oriented
Multi Hypothesis Tracker utilising both radar measurements and AIS messages
[21]. Habtemariam et al. proposes a Joint Probabilistic Data Association tracking
algorithm which fuses radar and AIS data, and solves the problem of AIS measure-
ments arriving unpredictably by a probabilistic AIS-to-track assignment technique
[22]. Several papers have been published on fusion of Radar and AIS for purpose
of maritime surveillance, e.g. [23], [24] and [25]. However, typical land based
coastal radars are used, in addition to e.g. synthetic aperture radar and over-the-
horizon radar [26]. Most recently, the VIMMJIPDA of [27] was further developed
to include AIS messages [28].

No work is known to the author on T2TF of Radar and AIS for use in ASVs.
Work has been published on T2TF of radar and AIS for Electronic Chart Display
and Information System [29]. They apply two fusion methods, first, assuming a
deterministic system, as in e.g. [4], and secondly, by inclusion of an approxima-
tion of the cross-covariance, as suggested in [11] and [30]. Their analysis of the
two methods is limited to comparing the course estimation when different meas-
urement noise levels are used, and no analysis of consistency is presented.

1.4 Main Contributions

One of the main contributions of this thesis is to compare the counting technique
with the conventional hypothesis test for the application of radar-AlIS fusion. This
work was recently submitted to the Fusion 2021 conference [31]. The evaluation
is done by means of simulations, using a complete multi-target tracking system
based on Joint Integrated Data Association (JIPDA), whose detailed description
can be found in [27, 28].
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The evaluation of T2TA using a complete multi-target tracking system leads
to a second contribution, which concerns how ground truth is assessed in such a
simulation approach. When track-to-track fusion is simulated for a single track,
ground truth assessment is trivial. One can simply compare the simulated tra-
jectory with its estimates. But when the tracks come from a multi-target tracking
algorithm with data association, things are not so simple. The tracking output may
suffer from late initialization and track swaps and track-loss, which may be both
of a temporary or of a permanent nature. To assess the ground truth of a track, we
propose a sliding window approach where the origin of the measurements used
to update the track the n last timesteps vote for the ground truth.

Another contribution of this thesis is to compare a complete AlIS-radar track
level multi-target tracking system with the measurement level approach, exem-
plified by the VIMMJIPDA AIS-Radar described in [28].

1.5 Outline of the Thesis

This thesis consists of four parts. The first, Part I, presents some background the-
ory on commonly used tracking methods, in addition to an introduction to radar
and AIS. Part II consists of 5 chapters related to T2TA. Chapter 4 presents two ap-
proaches to T2TA, one probabilistic and one non-probabilistic. Chapter 5 discusses
potential approaches to determining ground truth of tracks from MTTs. A sliding
window approach to the problem is suggested. In Chapter 6 and Chapter 7, the ex-
perimental setup and results comparing the two T2TA approaches are presented.
Part ITI contains mathematical formulations and a comparison of three approaches
to T2TE Most of the work on T2TF is from the author’s pre-thesis. Part IV compares
the developed tracker with a measurement level tracker. Chapter 16 concludes the
thesis and gives recommendations for further work.






Part 1

Background Theory






Chapter 2

Target Tracking

Tracking is the process of estimating the state of objects that we detect with
sensors. At its core is filtering techniques, such as the Kalman filter, which allows
us to predict the state in the future and update the prediction when new meas-
urements arrive. One of the main challenges is data association, e.g. associating
measurements with tracks or associating tracks with tracks. There are several com-
plicating factors of target tracking, such as track initialisation, misdetections and
false alarms.

2.1 Filtering

2.1.1 The Kalman Filter

The Kalman filter can be derived in several ways. One approach is to derive it from
a Bayesian perspective, which is shown in [32]. Another approach is by minimiz-
ing the trace of the covariance matrix as done in ch. 4 of [33]. In this section, the
general formulas for the linear Kalman filter will be shown.

Kalman filtering consists of two steps, a prediction step and an update step.
The prediction step is based on a kinematic model (often called a Markov model,
transition model or plant model), describing how the state changes with time. The
update step is based on a measurement model, which relates the measurements
to the state.

We assume a kinematic model, measurement model and initial estimate as

X = Fxp_q + vy v ~N(0,Q)
Z, — HXk + Wi Wy ~ N(O, R) (21)
Xg ~ N (%o, Pp).

The matrix F is the transition matrix, and the matrix H is the measurement matrix.
Q and R are symmetric positive definite and describes the statistical properties of
the process noise v, and the measurement noise wy, respectively. The kinematic
model will be further elaborated on in the next section, and the measurement
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model will be discussed in relation to the sensors used in Section 2.4. All noises
are assumed mutually independent.
The Kalman filter is

)A(klk—l =FX_ The predicted state estimate
Pyji—1 = FPk_lFT +Q The predicted covariance
Zij—1 = HXp The predicted measurement
Vi = Zg — Zgje—1 The innovation 2.2)
Sk = HPypp H' +R The innovation covariance '
W, = pklk_ll.l"'s;1 The Kalman gain
Kie = Ry + Wievg The posterior state estimate
P, = (I—W,H)Py_, The posterior covariance.

Note that the output density of an estimate of track i at timestep k would be
represented by its expectation )“(}( and its covariance P}'(. Thus, when later deriv-
ing track-to-track fusion formulas and track-to-track association formulas, we will
work with the expectations and covariances of the tracks.

2.1.2 Kinematic Models

The kinematic model is used to describe how the state changes with time. The two
most used models are the constant velocity (CV) and the coordinated turn (CT)
models.

A kinematic model can be written in the form of

Xpelk—1 = f(Xp—1) + Vi Vi ~N(0,Q), (2.3)

where f is a function describing the change of x;_;, and vy, is zero-mean Gaussian
white noise.

Constant Velocity

The CV model is used to model targets that move in an almost constant straight-
line. The motion model is typically described in a continuous fashion and then
discretized for the use in the discrete Kalman filter. Assuming that the state space
position x-direction
position y-direction
velocity x-direction
velocity y-direction

isx= , the f and Q of the discretized CV model is

f(xp—1) = X1 2.4)

S O O
o O~ o
O = O XN
= O H O
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where ¢, is the acceleration process noise intensity. The value of g, determines
how much the target accelerates. For modeling targets moving with small changes
in velocity and direction, g, should be low. In chap. 4 of [32], it is shown that for a
slow passenger ferry, g, = 0.05 appears adequate, while for a high speed passen-
ger ferry, g, = 0.5 seems more adequate. In extreme scenarios, the acceleration
can reach 3m/s2, where q, = 3 can be used.

Coordinated Turn

The coordinated turn can be used to model turning targets. The assumption of the
model is that it moves with an almost constant turn rate . Assuming the state
position x-direction
position y-direction

space is x = | velocity x-direction |, the f and Q of the CT model is
velocity y-direction
turn rate
sin T wy_q —1+cos T wy_1
(1) fl) l—cczskf}uk_l sinszJ)}(_l 8
fxi-1)=1] 0 0 cos Tk;;k_l —sin Euk_l 0 | Xk-1> (2.6)
0 0 sinTwi_; cosTwi_; O
00 0 0 1
and
[ 52 0 g2 0 0
0 L2 o Lg o
Q=|Z¢g2 0 T¢2 0 0 2.7)
0 T o T o
| O 0 0 0 Tg¢? |

f(x;_,) is non-linear as w;._; is both in the previous estimate x;_; and in the trans-
ition. The extended Kalman filter (EKF) must be used, and we need the Jacobian
of the mapping from x;_; to x;. The Jacobian is

1 0 isinTow
1
0 1 5(1—cosTw)
F=]10 0 cosTw
0 0 sin T w
00 0

—%(1 —cosTw) Fys
1

P Sin Tw F2)5

—sinTw F35 |, (2.8)
cosTw Fus
O F5,5
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where
f%(y —(Twy +x)sinTw+ (Twx —y)cosTw)
(x4 (wTx—y)sinTw+ (wTy + x)cos Tw)
Fs= —T(xsinTw+ ycosTw) . (2.9)
T(xcosTw—ysinTw)
1

2.2 Single- and Multi-Target Tracking

One of the main challenges of target tracking is data association, i.e. associating
measurements with tracks. Data association is complicated due to several factors,
such as several measurements originating from the same target, measurements
that do not originate from targets, and that targets are not always detected so-
called misdetections. The main divide between single- and multi-target tracking
is that the former assumes a single target, and the latter includes the possibility of
several targets. Single-target tracking can also be used to track multiple targets,
but the data association algorithms will not take into account the possibility of
multiple targets.

Another complicating factor of target tracking is track management, e.g. ini-
tializing tracks with the right covariance and deleting tracks when they are no
longer visible or unlikely to follow a target.

In this section, we will look at some of the most used approaches to target
tracking.

2.2.1 Nearest Neighbour Filter

The nearest neighbour filter (NNF) is a filter where a track is associated with the
closest measurement to the predicted measurement. After associating a track and
a measurement, the Bayes filter is applied to update the estimate of the track [34].
An extension to the NNF is the global nearest neighbour filter (GNNF), which
searches for a joint association of the measurements based on optimising a cost
function, e.g. maximising the likelihood or minimising the total distance. The
GNNF is attractive due to its simplicity, but it is vulnerable to clutter and dense
target scenarios. The GNFF is a non-probabilistic model, as it does not assume
probabilistic models for clutter, false alarm rates or miss-detections [34].

2.2.2 Probabilistic Data Association Filter and its Relatives

Probabilistic Data Association Filter

The probabilistic data association filter (PDAF) was introduced by Bar-Shalom
and Li in [35]. The PDAF is a probabilistic approach to determining the source of
measurements. The approach calculates the probabilities for measurements ori-
ginating from the target and the probability of a misdetection. The filter uses an
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average of the considered measurements weighted according to their association
probabilities.

Integrated Probabilistic Data Association Filter

An extension of the PDAF is the integrated probabilistic data association filter (IP-
DAF), which uses an existence based approach to handle track management [36].
A discrete-valued existence state is added, which estimates whether the target
exists or not.

Joint Probabilistic Data Association Filter

The joint probabilistic data association filter (JPDA) is an extension of the PDAE
which allows for the data association to jointly process measurements for several
tracks. It was first proposed in [37].

The JPDA calculates the association hypothesis for every track for every meas-
urement, which is a combination of all possible associations between tracks and
measurements. The probability of misdetections is also considered. In the case of
two tracks, (t;,t5) and two measurements (m;,m,), a single association hypo-
thesis would be P(t; <« my) = P(t; « my Nty <« my) + P(t; <« my Nty < B).
Next, the association hypothesis P(t; « m,) and P(t; < @) would be calculated.
Similarly to the PDAE the association hypothesis will be weighted to determine
the final association. Further, similar to the PDAE, the resulting distribution would
be a multivariate Gaussian, which can be merged to produce an approximated
single Gaussian.

Several approximations are used to avoid computational inefficiency. Firstly,
only the m best association hypothesis is calculated, typically solved by using
the Murty method [38]. Further, only measurements within a distance from the
tracks are considered, a process known as gating. Another approximation used
is to cluster tracks, such that only tracks and measurements within a cluster are
jointly considered in the data association [34].

Joint Integrated Probabilistic Data Association Filter

A combination of the JPDAF and the IPDAF combines the track management of
the IPDAF and the multi-target handling of the JPDAF and is known as the JIPDA
[39].

2.2.3 Interacting Multiple Models

The process noise used to model a target differs widely for large, slowly moving
ships compared to small, fast leisure vessels. An approach typically used is to have
a bank of filters and use a weighted average when predicting, where the filter’s
performance determines the weight. Such an approach is known as the interacting
multiple models (IMM) and was first introduced by Blom and Bar-Shalom in [40].
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The IMM allows for using a set of filters, e.g. a low process noise CV, a high
process noise CV, and a CT model, in combination. As maneuvering is arguably
best modelled as an on-off phenomenon, such an approach seems intuitive.

2.3 Multi-Sensor Tracking

Multi-sensor tracking is the problem of estimating the state of objects when meas-
urements from several sensors are available. There are two main approaches to
multi-sensor tracking, the measurement-level approach and the track-level ap-
proach.

2.3.1 Homogeneous and Heterogeneous Sensors

In a multi-sensor setting, the sensors are either similar, homogeneous, or dissim-
ilar, heterogeneous. When the sensors are homogeneous, all the methods in the
previous chapter can be used without further complications. If they are heterogen-
eous, the methods might need some approximations to be applicable, depending
on how the heterogeneous sensors are processed. The main approaches to hetero-
geneous sensors are

1. If possible: convert the measurements to the same measurement space.

2. Keep measurements in their original measurement space but use them to
update the same state space.

3. Keep measurements in their original measurement space and use them to
update different state spaces.

The three options can all be solved using the track level approach, while only the
two first can be solved using the measurement level approach.

For fusion of AIS (Cartesian measurements) and radar (range-bearing meas-
urements), all three options are possible. In this thesis, we will use the first ap-
proach, converting the range-bearing measurements to Cartesian. This will be
further discussed in Section 2.4.

2.3.2 Measurement Level Approach

In the measurement-level approach, all the measurements from the sensors are
sent to the same processor. There, the measurements are associated with tracks
and used to update the estimates.

The methods described in Section 2.2 are all compatible with the measurement-
level approach, which is an advantage, as one can quite easily use well-examined
methods. In addition, other state-of-the-art methods, such as the Poisson multi-
Bernoulli mixture, are also compatible with multiple sensors.

Another advantage of the measurement level approach is that one can cross-
validate the measurements as they arrive.
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Compared to the track-level approach, the measurement-level approach might
have higher computation demands. For example, assume that we want to use a
camera and a radar in a measurement-level approach. If one were to run a neural
network on every camera image to find detections, it might require more com-
puter power than running a single tracker on the camera images and fusing the
estimates using a track-level approach. Further, transmitting the camera images
to the central processor can be difficult due to communication constraints.

2.3.3 Track-Level Approach

In the track-level approach, each sensor is used in an individual tracker, and the
estimates from each tracker are used to produce a fused estimate.

The track-level approach can be operated with a lower communication band-
width compared to the measurement-level approach. As estimates from each sensor
do not have to be communicated to the fusion processor for each updated estimate
but rather be sent when the fusion processor demands it, the total communication
bandwidth can be reduced. This is important for distributed surveillance systems,
where the sensors are located at a distance from the fusion processor.

The track-level approach has a modularized architecture. This could simplify
removing or upgrading sensors, as it does not require substantial change to the
tracking algorithm.

One of the challenges with the track-level approach is that there is a cor-
relation between the estimates due to the common process noise. These cross-
covariances can be challenging to compute when asynchronous and time-delayed
sensors are used. The cross-covariances is a returning theme of this thesis and is
therefore discussed more in-depth in Section 3.2. Later, in Chapter 9, we will also
see the effect of ignoring the cross-covariances when fusing.

2.4 Sensors

The following subsections on AIS and radar will introduce the reader to the sensors
functionality, their robustness and define the parameters space. The subsections
are mainly based on [41].

2.4.1 Radar
Radio detection and ranging (Radar) is a detection system that determines the

range and bearing to objects.

Functionality

Radars function by transmitting radio waves and sensing the echo of the waves.
By determining the time between transmission and echo, one can determine the
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range of the object. The transmitter is a device that generates the radiated electro-
magnetic energy. The transmitter is located close to the antenna, often connected
to it by a rotating joint, allowing the energy to travel between the typically static
transmitter and the rotating antenna. The antenna is a device that radiates the
energy produced by the transmitter and collects the returning echoes. The an-
tenna is rotating, so that objects can be detected in all directions. When the radio
waves travelling through air meets another material, especially for highly electric-
ally conductive materials such as metal, it will reflect or scatter the waves. The
reflection of the wave is also dependent on the geometry of the material. For ex-
ample, corners with angles less than 90° will reflect the wave back to the sender,
while tile flat areas will reflect less and, thus, be less visible.

Simplified, the bearing is determined by the direction the antenna is facing.
Other factors, such as beamforming, are also used to determine the bearing but
will not be further pursued in this thesis.

Parameter Space

There are several complicating factors when determining the parameter space of
radars. First, there are fundamental considerations when configuring a radar for
tracking of ASVs. E.g. the rotation speed of the antenna, the frequency of the radio
wave, pulse length and pulse repetition frequency. Further, the post-processing of
the radar blobs will play an important role in the accuracy and, thus, the size of the
object detected. To keep the results of this thesis as general as possible, standard
deviations between 1 meter and 200 meters will be examined. Finally, to detect
maritime targets, radars can be set to rotation speeds of a couple of seconds and
less.

Radar Model

Based on the functionality of the radar, we note that the radar measurements are
range-bearing measurements. Range-bearing measurements have error in range
and bearing, complicating the filtering process when the tracking coordinates are
Cartesian. There are two main approaches to this. Either converting the measure-
ments to the tracking coordinates or keeping the measurements in polar coordin-
ates and using a non-linear measurement model. In the first case, a linear Kalman
filter can be used, and in the latter, an extended Kalman filter must be used. In
this thesis, the measurements will be transformed to Cartesian coordinates. The
transformation used is given by

rsin6

Z = [rcos@}’ (2.10)

which is known as the conventional polar to Cartesian conversion. The estimate
of the converted measurement error covariance R,,,, is found by linearization as

Reony = JRpJT; (2.11D)
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2

0
whereR, = [%’” o ?)] and J is the Jacobian of the mapping from polar to Cartesian

coordinates, given as

J= gh_l(zk) = |:

- cosf —rst]. (2.12)

sin@ rcos6

An analysis of the expected value of the conventional conversion can be found in
[42]. The analysis shows that the conversion has a bias in the mean of the conver-
ted measurement and that the conversion is also not consistent. This is because
an ellipse in polar coordinates becomes banana-shaped in Cartesian coordinates,
which our linear approximation cannot successfully represent. Several approaches
exist for bias compensation [43], but we will in this thesis assume that it is not
necessary as the sensor resolution is assumed sufficiently fine.

In addition to the range-bearing noise, noises due to inaccurate time-stamping
and clustering can be represented by a Cartesian element. The radar measurement
model used in this thesis is therefore

Zk = Hka + Wiy W ~ N(O, RR)) (213)
1 000 . . o
where Hy = 010 0 and Ry, is the radar measurement noise matrix given

by
R, =R.+JR,J, (2.14)

where R, is the cartesian element and R, is the polar component.

2.4.2 Automatic Identification System (AIS)

With the introduction of radar and automatic radar plotting aid (ARPA), the po-
sition of visible vessels was easily presented to users of such systems. However,
identification of the visible vessels was not provided through these systems, which
led to difficulty in establishing a dialogue with nearby vessels [41]. Also, vessels
not in the line of sight were not shown on these systems, as the Radar could not
spot them. The very-high-frequency (VHF) communication systems and the de-
velopment of transponders enabled the establishment of AIS transceivers.

Functionality

AIS transmit information on two VHF frequencies, 161.975MHz and 162.025MHz.
The range of AIS messages is determined by the range of VHF signals, which is
typically 30-40 nautical miles (55-74 km) for antennas mounted on top of a large
vessel, and 20 nautical miles (37 km) for a small craft [41].

To avoid situations where nearby vessels transmit simultaneously, the trans-
mission systems limit the transponders to transmit for very short and precisely
controlled time periods. The system used is time division multiple access (TDMA).
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It functions by dividing the time into slots where only one message can be sent
at a time. The GPS clocks determine the time. One second, called a frame, is di-
vided into 2250 equal length slots. I.e., there are 4500 slots per second combined
on the two frequencies. In each slot, approximately 256 bits can be sent, or 42
characters, if a 6-bit conversion system is used. The time slots are allocated to the
transponder depending on the current AIS transmission mode.

Autonomous and continuous mode is the default mode, also known as self-
organizing time division multiple access (SOTDMA). In this mode, the transpon-
ders decide which slots they will transmit information in. As the amount of in-
formation changes, depending on which information fields are included in the
message, the number of slots required for a message will differ. The transpon-
ders will change the time slot if it detects that there are others transmitting in the
same time slot. However, it will not always be successful in doing so, as situations,
where the two conflicting transponders transmit to the same receivers but are too
far away to transmit to each other, can occur. To avoid staying in such a situation,
the transponders also periodically change the time slots they transmit in.

Assigned mode is a mode where a shore station will assign slots to individual
transponders. In this way, one can minimize the number of transponders using
the same time slots. However, this depends on everybody following the rules and
only transmitting in their own time slots.

Polling mode allows transponders to "ask" for information from other transpon-
ders. This way, one can get information about a low update rate vessel, e.g. a
moored vessel, which will typically send out a new message every three minutes.

AIS information

The information included in an AIS message differ. Firstly, static data and voyage
related data is updated every 6 minutes, while dynamic data is updated depending
on the vessel state. Secondly, some specific fields, such as a safety-related message,
are optional. The fields are presented in Table 2.1. The update rates of dynamic
data depending on the vessel state are shown in Table 2.2.

Parameter space

Now that we know how AIS is functioning and know what information one can ex-
pect to receive, we can take a closer look at the uncertainties behind these figures.
Examining Table 2.1, we note that it is only relevant to look at the uncertainties be-
hind the dynamic data. Firstly, we note that the ship position will come along with
an accuracy indication, which can be used to approximate the covariance of the
ship’s position. It is not clear from what the author has read whether the position
obtained by GPS is sent unprocessed or whether is it filtered by using, e.g. iner-
tial measurement unit (IMU) measurements. [41] notes that it is the navigator’s
GNSS aerial position that should be included in the static message. This suggests
that the GNSS position of the navigator’s GNSS is sent with the message and not
the GNSS internal to the AIS transponder. This further suggests that it depends
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on whether the navigator's GNSS does some filtering based on dead-reckoning
techniques or not, which will vary depending on the vessels GNSS system.

Assuming that an accuracy indication will always accompany the ship’s pos-
ition, we could use this to set the measurement noise of each new AIS message.
The problem of such an approach would be the possible misreporting of accur-
acy, where, e.g., a vessel reports a smaller accuracy than the actual. This would
lead to inconsistency, and specifically in the mentioned case, overconfidence. In
the same sense, one can argue that using the same measurement noise for all
AIS messages would also lead to inconsistency. A pragmatic approach could be
to set a minimum measurement noise so that vessels that report better accuracy
than the minimum would instead be treated as a measurement with the minimum
measurement noise.

To determine the value of such a minimum measurement noise, we would
have to take a look at the expected accuracy of GNSS measurements. GNSS meas-
urements can typically be modelled as a measurement with a slowly varying bias.
The biases are due to signal propagation errors, such as ionospheric delay and tro-
pospheric delay. Other types of errors are due to clock related errors, both at the
receiver and at the satellite. To further examine the error of GNSS measurements,
one should examine the effect of these errors, which is outside of the scope of this
thesis. We will assume that the GNSS measurements can be adequately approx-
imated by a measurement with a standard deviation between 3 and 20 meters.

AIS Model

The ASI measurement model is simpler than the radar measurement model, as we
can model the AIS measurement noise with a simple Cartesian component. The
AIS measurement model is

Zj = HypsXp + Wy wy ~ N(0,Ryrs), (2.15)

1 0 0O

whereHAlszHRz[O 10 0

] and Ry is the Cartesian component.
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Type information Description
MMSI identification number
Static IMO number
Callsign Used when establishing contact on VHF
Lenght and beam
Type of ship
Location of position
fixing antenna
Dynamic | Ship position along with accuracy indication
Time in UTC
Course over ground
Speed over ground
Heading
Navigational status
Rate of turn When available
Angle of heel Optional and when available
Pitch and roll Optional and when available
Voyage .,
related Ship’s draught
Hazardous cargo if any
Destination and ETA
Route-plan Waypoints, optional
Other | Safety message Short safety message, when required

Table 2.1: The table shows the information fields that could be sent in an AIS
message. Information from [41].
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Vessel state Update rate

At anchor 3 minutes
Moving 0-14 knots 12 seconds
Moving 0-14 knots
and changing course
Moving 14-23 knots 6 seconds
Moving 14-23 knots
and changing course
Moving >23 knots 3 seconds
Moving >23 knots
and changing course

4 seconds

2 seconds

2 seconds

Table 2.2: The table shows the update rate of dynamic information depending
on the vessel state. Information from [41].






Chapter 3

Track-to-Track Fusion Survey

In this chapter, a brief overview of the existing methods for fusion of tracks will
be presented. First, in Section 3.1, we will introduce the different fusion archi-
tectures. Then, in Section 3.2, we will discuss the effect of the common process
noise, as it is central to the optimal fusion approaches.

3.1 Track-to-Track Fusion Architectures

There are several different architectures, or configurations, when processing in-
formation in a multi-sensor environment. Figure 3.1 presents some potential con-
figurations. A similar figure is shown in [44]. Type Il is the configuration that will
be explored in this section. The figure shows possible fusion options, i.e. track-
to-track fusion without memory (T2TFwoM), track-to-track fusion with memory
(T2TFwM), and information matrix fusion (IMF). T2TFwoM is fusion when the
fusion algorithm only uses the current estimates. T2TFwM uses information from
previous fused results. Information matrix fusion (IMF) does not require calculat-
ing the cross-covariances of the errors of the tracks, which simplifies the imple-
mentation. Note that IMF fuses with memory; i.e. it uses track estimates from the
previous fusion.

3.1.1 Feedback

Depending on how or whether information from the fusion is returned to the in-
dividual trackers, we divide it into three categories; no feedback, partial feedback
and full feedback. Figure 3.2a, Figure 3.2b and Figure 3.2c shows the information
flow of no feedback, partial feedback and full feedback for T2TFwoM, respectively.
A similar figure is presented in [45]. Information on the fused estimate would be
available for both the local trackers in the full feedback configuration. Only one
of the local trackers would receive information on the fused estimate in the par-
tial feedback configuration. Neither local tracker would receive information of the
fused estimate in the no-feedback configuration.

23
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T2TFwoMnF
Type I configuration won
no feedback

Single sensor T2TFwoM T2TFwoMpF
without memory partial feedback
T2TFwoMI{F
full feedback
Type II configuration
T2TFwoMnF
Single-target tracking
followed by T2TA and no feedback
T2TF
T2TFwM T2TFwoMpF
with memory partial feedback
T2TFwoMfF

full feedback

Type III configuration

Centralized association,

tracking and fusion IMF
{measurement-level) Information matrix
fusion

Figure 3.1: Configurations when processing information in a multi-sensor envir-
onment.

For T2TFwM, information about the fused estimates would be available at
the next fusion iteration. A figure showing no feedback, partial feedback and full
feedback for T2TFwM would be similar to that of Figure 3.2, but also include
arrows indicating information flow between the fusion centres.

Surprisingly, information feedback has a negative impact on the accuracy of
T2TFwoM [45]. It does, however, have a positive impact on the accuracy of T2TFwM.
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Tracker 1 New Estimate New Estimate New Estimate

Fusion Fusion Fusion

Tracker 2 MNew Estimate New Estimate New Estimate

(a) T2TFwoM no feedback

Tracker 1 (New Estimate New Estimate New Estimate

Fusion Fusion Fusion

Tracker 2 New Estimate New Estimate New Estimate

(b) T2TFwoM partial feedback

Tracker 1 (New Estimate New Estimate New Estimate

Fusion Fusion Fusion

Tracker 2 New Estimate New Estimate New Estimate

(c) T2TFwoM full feedback

Figure 3.2: The figure shows the information flow of T2TFwoM

3.2 The Effect of the Common Process Noise

If the two tracks originate from the same target, the tracks possess a common
process noise. This can either be ignored (see Section 9.2) or handled (see Sec-
tion 9.3). The effect of the common process noise depends on the ratio between
the process and measurement noise. This is shown in [6], where Bar-Shalom uses
the manoeuvring index to show the decrease of state covariance matrix elements
after fusion. The manoeuvring index is given in [46] as

o,T?

A= 3.1)

O-W

where o, is the process noise standard deviation, o, is the measurement noise
standard deviation, and T is the sample interval. For manoeuvring indexes ranging
from 0.1 to +/5, Bar-Shalom shows that the covariance of the fused estimates fused
using the fusion equation with cross-covariance (Equation (9.22)) decreases when
the manoeuvring index increases. I.e. the effect of the common process noise is
lower with a higher manoeuvring index. Bar-Shalom also states that the fused
estimate is about 70 percent of the single-sensor uncertainty area over a wide
range of process noise variances when the common process noise is accounted
for. However, when it is not accounted for, the fused estimate uncertainty area is
50 percent of the single-sensor uncertainty area.
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For maritime targets, we would expect o, to be somewhere between 0.05 and
0.5. In extreme scenarios, the acceleration can reach 3m/s2. As an example, as-
sume o, = 0.3g, a measurement noise standard deviation o, = 200m, and a
sample interval T = 10s. This yields A = 15 (using g = 10), a substantially higher
manoeuvring index than what Bar-Shalom considered. In this case, the conclusion
of Bar-Shalom, that the fused estimate is about 70% of the single-sensor uncer-
tainty area, might not apply. The effect of the common process noise would be
smaller, and the fusion under the independence assumption might produce an
equally good result as the fusion with cross-covariance. However, this example
assumes that both trackers have a sample interval of 10s, which would not be the
case with radar and AIS. Exact values depend on the choice of sensor. Typical val-
ues for radar is in the range [0.5 — 5] seconds and in the range [2—120] seconds
for AIS. See Section 2.4 for more discussion on sensors. Also, when considering
sensors with different sampling rates, the manoeuvring index can not be directly
calculated using Equation (3.1). Based on this example, it is unclear whether fu-
sion of independent tracks is usable or not when fusing radar and AIS data and
that this should be explored.



Part 11

Track-to-Track Association
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Chapter 4

Two Methods for Track-to-Track
Association

The track fusion problem can be split into fusion of state variables and associ-
ation of tracks. The association of tracks, also known as track-to-track association
(T2TA), is significant, as the fusing of state variables of different targets can yield a
worse estimate than the estimates of the local trackers. T2TA is typically solved by
formulating a hypothesis test, which can either be single-scan [5], or multi-scan
[10]. Another divide goes between ignoring or including the cross-covariance due
to the common process noise (see Section 3.2).

In particular practical settings, the covariance information used in the hypo-
thesis tests is not available. Therefore, there is a need for solving the T2TA prob-
lem with only the mean state estimates in such cases. In [2], a method was used
based on principles similar to those found in the M-of-N track initiation scheme
[11], and the Recursive Random Sample and Consensus (RRANSAC) method for
data association in multi-target tracking [14]. A variation of what used in [2] will
be presented in this chapter and is by the author called the counting technique.
This technique is also available in the Stone Soup library [15].

This chapter will first present and derive the theoretical formulas for associ-
ating two tracks, both for the probabilistic approach and the counting technique.
Further, some implementation details will be discussed, such as generalizing the
formulas to multiple targets.

4.1 Probabilistic Approaches

The probabilistic approaches typically try to formulate hypothesis tests for whether
the origins of two tracks are similar or tries to calculate the probability that two
tracks originate from the same target.

The first approach, specifying hypothesis tests, will be described and derived
in the following subsection. The hypothesis tests can be done as a single-scan
test, i.e., using only information from a single time step, or as a multi-scan test,
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where information from several time steps is used. One might expect the multi-
scan approach to yield superior results, but Tian and Bar-Shalom show that it
is not always the case [45]. To see why the multi-scan test might yield inferior
results to the single-scan test, one can examine the properties of the distribution
of the multi-scan test. The multi-scan test is a non-central y? test. The power
of the test is decided by both the non-centrality parameter A and the number of
degrees of freedom k. The increase of the number of degrees of freedom k due
to the inclusion of additional time frames has a negative effect on the power of
the test, while using additional information has a positive effect on the power
of the test, manifested through the non-centrality parameter A. When the frames
selected have a high correlation, the total effect can be negative. According to Tian
and Bar-Shalom, this could be avoided by increasing the time difference between
the selected time frames.

The second approach is similar to that in the Probabilistic Data Association
Filter (PDAF). In the PDAE one calculates the probability that each measurement
originate from a certain track and use this in a weighted average of all relevant
measurements (see Section 2.2.2). Such an approach is described in [47].

4.1.1 Single-Scan Hypothesis Test
Assumptions

When deriving the single-scan hypothesis test, the following is assumed.

e The tracker i estimates the position of a target at timestep k as a Gaussian
distribution with expectation ‘& and covariance ‘P, and tracker j estimates
the position of a target, the same or a different target, at timestep k as a
Gaussian distribution with expectation '%,and covariance /P,

o The true states of the targets are given by "x;, m € [i,j].

o The state estimation errors

"Ry ="xp — "Ry m € [1,j], 4.1)
are independent. This assumption is referred to as the Error Independence
Assumption and will only be used when deriving the hypothesis test of in-
dependent tracks.

A note should be made about Error Independence Assumption, as it is also used
when deriving the fusion of independent tracks. As it is defined above, the state es-
timation errors are independent when the target tracked is the same, i.e. 'x; = /x;,
and when they are different, i.e. 'x; # /x;. One could argue that the independ-
ence assumption should only include the case when the target tracked is the same,
as it is trivial that the state estimation errors are independent when the targets
tracked are different. However, this will clutter the derivations, as we do not know
whether the two targets have the same true state or not when deriving the hypo-
thesis test. When the assumption is used in deriving the fusion equations, we have
already assumed that the estimates fused have the same target. In that case, we
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only use that the state estimation errors of two estimates from the same target are
independent.

Derivation of the Hypothesis Test of Independent and Dependent Tracks

To derive the single-scan hypothesis tests for associating two tracks, the hypo-
thesis test of independent tracks and the hypothesis test of dependent tracks, we
need to define two hypotheses, the same target hypothesis and the different tar-
get hypothesis. The same target hypothesis is that the difference of the true states
of the two tracks is zero. The different target hypothesis is that the difference
between the two tracks’ true states is not zero. We denote the difference of the
two estimates as

TA=1g-J3, (4.2)
and the difference of the true states as
JIA =Tx—x. (4.3)
The same target hypothesis then becomes
Hy:/'A =0, (4.4)
while the difference target hypothesis becomes
H, :'A #£0. (4.5)
The covariance of the error in the difference between the state estimates becomes
=E[('a-"A)('a-"A)]
=E[(x—/x— & +/R)(x—Ix— & +/%)7] (4.6)
=E[(‘x—'%)(%—'%)"]
=p-lUp—_Jip+Jp
For independent tracks, using Assumption 1, we get that the cross-covariance
of the two tracks are zero, i.e. /'P = YP = 0, as the estimation errors are inde-
pendent. For the hypothesis of independent tracks, the covariance of the error
in difference between the state estimates becomes YT = 'P + /P, while for the
hypothesis test of dependent tracks, it is as in Equation (4.6).
The cross-covariance assuming tracks from Kalman Filters is derived in Sec-
tion 9.3.1.

Let D denote the normalised distance squared between the estimates, given
as

D =" AT[UT] VA, 4.7)



32 Jonas A. Sagild: Track-to-track fusion

Assuming the estimation errors are Gaussian, we know D to be y2 distributed with
the number of states estimated, n, as degrees of freedom. The test for association
is then to check whether this is true, i.e.

Accept Hy if: D <D,, (4.8)

where
D, = X,%(l —a), 4.9

where e.g. a = 0.05.

Difference Between the Hypothesis Test of Independent Tracks and Depend-
ent Tracks

The only difference between the hypothesis test of independent tracks and the
hypothesis test of dependent tracks is the equation for calculating the covariance
of the error in difference between the state estimates, ijT, Equation (4.6). We
note that YT decreases when we include the cross-covariances, as /P = J'PT > 0
are positive definite. When UT decreases, it’s inverse, [V T]™!, increases. By Equa-
tion (4.7), the normalised distance squared between the estimates, D, increases.
In other words, Dyependent > Dindependent- BY Equation (4.8) we then conclude
that the hypothesis test of dependent tracks would require a smaller difference
between the estimates to associated two tracks, than the hypothesis test of inde-
pendent tracks.

In[17], La Scala and Farina examine the performance of the hypothesis test of
independent and dependent tracks. They compare the expected true-positive rate
(TPR) (rate of correctly associating two tracks originating from the same target)
with the TPR found in experiments with one and two targets. They found that
neither methods were superior in terms of matching theoretic TPR and experi-
enced TPR.

Another approach to comparing the two methods could be to examine the
TPR and the false-positive rate (FPR) using the Receiver operating characteristic
(ROC). The ROC is a curve tracing out the TPR and FPR for a varying discrimin-
ation threshold.

Another important distinction between the hypothesis test of independent
tracks and the hypothesis test of dependent tracks is that we need to calculate
the cross-covariance for the latter. Calculating the cross-covariance can be tedious
in most cases and impossible in other cases. When all information from the track-
ers are available, such as the previously used Kalman gain, process noises and
measurement noises, one can recursively calculate the cross-covariance. If some
information is missing, which may be the case when one uses a built-in tracking
system of a radar, the cross-covariance can not be calculated.

If the covariances from the individual trackers are available, it is possible to
estimate the cross-covariance. As discussed in Section 3.2, Bar-Shalom and Campo
found that there seems to be an almost constant ratio between the covariances of
fused estimates using the fusion of dependent tracks and the fused estimates using
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the fusion of independent tracks [6]. Using that, Bar-Shalom shows in [11] that

. . (i inin L
the cross-covariance can be approximated to VP = p(*P’P)2, where p ~ 0.4 when
two states are estimated.

Effect of the a Parameter

The number a is the probability of type 1 error, i.e. when a true null hypothesis
is rejected. In our case, it is the probability that we do not associate two tracks
when they, in fact, were from the same target. When running multiple monte-carlo
simulations with two Kalman filters tracking a single target, the author found that
when the linear-Gaussian assumptions hold, the miss percentages will be equal
to the a for the hypothesis test of dependent tracks, and smaller than a for the
hypothesis test of independent tracks. As noted in Section 4.1.1, the hypothesis
test of dependent tracks will require a smaller difference between the estimates
to associate two tracks, compared to the hypothesis test of independent tracks.
Therefore, the hypothesis test of independent tracks will associate more tracks
than the hypothesis test of dependent tracks.

It is difficult to say what reasonable values of a is. As the method uses the cov-
ariance matrices of the estimates, the consistency of the trackers will greatly affect
the results. It is unlikely that a will directly reflect the probability of a type 1 er-
ror in real-world scenarios, as trackers are often inconsistent. Therefore, different
a values must be tested, and in a multi-target scenario, there will be a trade-off
between miss associations and false associations. In Chapter 7, we shall see that
in practice, the optimal a is larger than what the optimal theoretic a is.

4.2 Counting technique

The counting technique is a simple non-probabilistic method that only uses the
mean position of estimates to determine whether to associate two tracks or not.
It belongs to the category of multi-scan approaches, as it uses information from
several timesteps.

The counting technique determines whether two tracks are associated by count-
ing how many times in a row they are within a threshold away from each other.
When two tracks are within threshold away from each other for v steps in a row,
the tracks are considered associated. The tracks will remain associated until they
are further away than threshold from each other for 7 steps in a row.

In Figure 4.1 an example of the counting technique is presented. The paramet-
ers used are ¢ = 3 and T = 2. Whether two estimates were within the threshold,
considered a hit, or outside, considered a miss, is shown in the figure. A solid blue
line between the two estimates signifies that the estimates were within threshold
from each other, while a solid red line signifies that they were more than threshold
from each other. The top row contains information on whether the tracks are asso-
ciated at that time step or not. The information from a timestep is located directly
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above the estimates at that time step, so it’s easy to see at what estimates the
association changes from true to false and from false to true.

In the example, we see that the association is true on the third timestep as
the three first estimates are less than Oextitthreshold from each other. On the last
time step, the association turns to false, as it then has been two time steps in a
row where the estimates were further than the threshold from each other. Note
that the tracks are associated on time step 4 and 6 even though the estimates are
further than the threshold from each other.

Timestep 1 2 3 4 5 6 7

Associated? | False False True True True True False

Figure 4.1: Caption

Effect of the Parameters

Threshold: The threshold determines whether two estimates are close enough
to be considered a hit, or the opposite, far enough away from each other to be
considered a miss. The optimal threshold will vary with the estimation errors. We
wish to select a threshold such that tracks with the same target will most of the
time be within the threshold from each other while at the same time avoiding
having tracks with other targets being within threshold. As the estimation error
is tightly linked with the measurement and process noise, it is natural to assume
that the optimal threshold will also be tightly linked with the measurement and
process noise.

¢ and 7: 1) determines how many hits in a row is necessary to change the
association of two tracks from false to true, while T determines how many misses
in a row is necessary to change the association from true to false. With a low 4,

4.3 T2TA Strategy and Implementation

The association techniques described needs a couple of adjustments to fit our scen-
ario of associating AIS and radar tracks. First off, the techniques presented check
whether two tracks originate from the same target. As we look at multi-target
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tracking, we need to generalize the techniques to multiple targets. Further, we
need to figure out when to calculate new associations. The counting technique
uses temporal information, so the time between each association needs to be con-
stant.

4.3.1 Association Algorithm

To generalize the techniques to multiple targets, we use the following algorithm.

Algorithm 1: Associating multiple targets

associations « [][];
for radar_track i in radar_tracks do
for AIS track j in AIS_tracks do
associations[i][j] «
check_association(radar_track,AIS track) ;
end
end
reward_m « calculate_reward_matrix(associations);
associations « auction_method(reward_m);

A couple of things should be noted about the algorithm. First, the method is
naive and not optimized. Instead of checking all combinations of AIS and radar
tracks, one could first check whether two tracks’ distance is below a certain threshold,
similar to gating [47]. If the distance is below the threshold, one can calculate the
association. The author did not find this necessary, as the number of associations
to check never exceeded what the computer could handle in real-time. As the
number of sensors used increases, the complexity would increase exponentially,
and a gating approach must be used [18].

Note that it is the auction algorithm that determines the final associations. As
we check all possible combinations of associations, it is possible that, e.g. several
AIS tracks are associated with a single radar track. The reward matrix is populated
such that the auction method maximizes the number of associations. If there are
several combinations, it minimizes the total Euclidean distance between all asso-
ciated pairs. The auction algorithm is described in [32].

The implementation of check_association(...) depends on the association tech-
nique used. This will be further elaborated on.

4.3.2 Timing

The counting technique uses temporal information in contrast to the hypothesis
test. When temporal information is used, we need to ensure that the associations
are checked at constant time intervals.

When it comes to determining the constant time interval, two aspects should
be considered. First, the update rate of the sensors, and second, the desired in-
formation refresh rate of the tracking system. Refresh rate is in this setting referred
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to as the refresh rate of estimates, which, e.g., the collision avoidance system de-
termines. In this thesis, a radar update rate of 2 is assumed. The update rate of
the AIS tracker is unknown and varies depending on the size and speed of the
vessels transmitting the AIS message. Assuming that the collision avoidance sys-
tem is fine with receiving updated estimates every 2 seconds, setting the constant
time interval to 2 seconds would make sense. If the collision avoidance system re-
quires updates every second, the option is to decrease the constant time interval
to 1 second or predict the fused estimate every second.

In this thesis, we set the constant time interval to 1 second. The association
techniques will then check for new associations every second. This means that
associations will be checked with predicted values every second seconds when no
updated estimates are available. One could argue that using predicted values to
determine associations is a bit peculiar, as one uses the same information twice.
However, the author did not see any clear caveats and found that predicting the
fused estimates is not straightforward to do.

4.3.3 The Counting Technique

There are several possible approaches to implementing the counting technique.
Exactly how it is implemented will affect the results. Therefore, some specific
notes on the functionality of the implementation are discussed below.

As all combinations of tracks are checked for association, a single track may
be associated to several tracks. This is, as described in the association algorithm,
dealt with by the auction algorithm. As described in Section 4.2, when two tracks
are associated, they are associated until they have had 7 misses in a row. The
output of the auction algorithm does not change the associated variable, it is only
used to decide which associations are fed to the fuser. This small distinction is best
explained with an example.

Assume a single AIS track is close to two radar tracks. Both radar tracks are
close enough to be considered a hit for several steps. After some timesteps, both
radar tracks are associated with the single AIS track according to the counting
technique. When this is fed through the auction algorithm, the auction algorithm
will decide that only one of the associations will be part of the final associations.
The final associations will be fed to the fused, which will use the information
to combine tracks. Even though only one of the tracks were associated with the
AIS track in the final associations, the counting technique will view both tracks as
associated to the AIS tracks. Such that next timestep, they are both still associated,
and will remain associated until they are further than threshold for T timesteps in
a row.

This implementation detail is important, as it allows for a rapid change of
associations if a track swap were to happen.
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4.3.4 The Single-Scan Hypothesis Test

In this thesis, we will evaluate the performance of the hypothesis test of independ-
ent tracks, as described in Section 4.1.1. Based on the discussion in Section 4.1.1,
it is not obvious that there would be any gain in using the hypothesis test of de-
pendent tracks. In [13], a comparison between including the cross-covariance and
not including the cross-covariance is examined. They use a bearing only sensor
and a radar sensor. Their results suggest that there was no large gain in including
the cross-covariance.

Therefore, considering the difficulty of calculating the cross-covariance, the
hypothesis test of dependent tracks will not be examined.

The check_association(...) in the association algorithm is for the hypothesis test
of independent tracks a check of Equation (4.8).






Chapter 5

Determining Ground Truth in
Multi-Target Tracking

In multi-target tracking, determining the origin of tracks is challenging due to
complications from wrong data association. Some of the easiest methods are single-
scan, meaning that they determine the ground truth of a track by the information
of a track at a single timestep. These methods all fall short due to either track
loss or track swap. This chapter discusses why determining the ground truth in
multi-target tracking is challenging, presents possible approaches and their short-
comings, and proposes a multi-scan approach to the problem.

5.1 Challenges of Determining Ground Truth

The challenges of determining ground truth in a multi-target scenario are largely
due to wrong data association. A central component in any multi-target tracking
system is the data association of measurements to tracks. The measurements as-
sociated with a single track can either be 1) from the target the track is tracking,
2) from another target, and 3) clutter, i.e., false alarms, such as measurements
originating from birds and wakes or measurements appearing due to low sensor
quality.

When measurements from another target are wrongly associated, it leads to
a potential track swap. An example of a track swap is shown in Figure 5.2. An-
other potential problem with associating measurements from other targets is track
coalescence, which is shown in Figure 5.3. Track coalescence can happen in track-
ers using soft association schemes, i.e. using a combination of measurements to
update the estimates. The probabilistic data association filter (PDAF) use a soft
association scheme, as described in Section 2.2.2. A multi-target version of the
PDAF is the parallelized single-target PDAE, which is known to have this issue
[32].

When clutter is wrongly associated, it leads to potential track loss, i.e. track
divergence. Track loss is shown in Figure 5.1.

39
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These three situations, track loss, track swap, and track coalescence, can either
be temporary or permanent. When all measurements used in the update of a track
originate from a single target, the question of ground truth is trivial. However,
when two measurements in a row are clutter, and the track starts to diverge, what
is the track’s origin? And what if the track diverges and then, by chance, returns
to its original target? What was the ground truth of the track during divergence?
And what if two tracks swap targets? At what point are they no longer tracking
their original target? The lack of answers to these questions makes determining
the ground truth in multi-target tracking difficult.

Track loss can be somewhat handled in combination with the method of de-
termining ground truth. Track loss can be defined as being far away from the
ground truth, so we note that track loss can be consistently defined when we
have the ground truth.

7e ®
@ [

Figure 5.1: The figure shows an example of a track loss. The red dots represents
measurements originating from the target, which moves along the red line. The
blue dots are clutter. The point of which track loss happen is marked "TL.
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Figure 5.2: The figure shows an example of a track swap. The red dots represents
measurements originating from the target with the red ground truth (the red
solid line), and the blue dots represents measurements originating from the blue
target. The two black dotted lines represents the two tracks. The point at which
track swap happen is marked 'TS’.

Figure 5.3: The figure shows an example of track coalescence. The red dots rep-
resents measurements originating from the target with the red ground truth (the
red solid line), and the blue dots represents measurements originating from the
blue target. The two black dotted lines represents the two tracks. The point at
which track coalescence starts is marked "TC’.
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5.2 Handling Track Loss

Track loss handling can be used in combination with the method of determining
ground truth. Assuming that the given ground truth is correct, we can calculate
the deviation from ground truth and use this to determine whether the track is
lost.

Different definitions of track loss have been used in the literature. In [48], a
two-stage process is used. The method defines track loss as being further away
than a constant ¢; from the target. If the estimate is further than c, from the
target, it is considered indefinitely lost, but if it stays within ¢, and ¢; and then
returns within ¢y, it is considered recovered.

In this thesis, we will use a simple track loss definition. We define track loss
as being further than c¢; from the ground truth. The track is no longer considered
lost if the track is further than c; from the ground truth and then returns within
¢;. The author views this approach as equally satisfying as the two-stage process
and also simplifies implementation.

5.3 Discarded Methods of Determining Ground Truth

Several approaches to determining ground truth exist. In this section, we look at
some of them and discuss how they would handle track loss and track swap. Track
coalescence will be mostly ignored, as it is a problem most trackers can avoid with
simple track management handling and will not be a problem for the trackers later
used to evaluate the performance of T2TA approaches.

5.3.1 Method 1: Letting the first measurements determine the origin
of the track

Method 1 lets the origin of a track be the origin of the first measurement origin-
ating from a target. When the initial measurement is clutter, it selects the origin
of the first measurement originating from a target.

This method will produce sensible results, as long as the track does not un-
dergo track swap, track loss or track coalescence. However, in highly target dense
areas, track swap is inevitable. Especially at the start of a tracks life, where the
position estimates are more uncertain than after some update steps.

In Figure 5.4a and Figure 5.4b, we see an example of method 1 not work-
ing as intended. In the first figure, we have plotted the estimates of the radar
tracker and the AIS tracker along with colours signifying whether an association
was made and it was correct (coloured green), whether an association was made
and it was false (coloured black), or whether no association was made, but it
should have been (coloured orange). By comparing the two figures, we can verify
that the method does not produce sensible results. Quite a lot of the associations
are considered as false associations, even though the associations looks correct
according to Figure 5.4b. This is due to a track swap during the initial steps. By
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further examining, one can see that the track swap occurs in pairs of two. These
results suggest that method 1 is not usable in scenarios with a high target density.

Using this method in combination with the proposed track loss handling, one
might expect to get decent results. The idea being that if a track swap happens, the
track loss handling will view it as track loss. However, in the case of two targets
moving close to each other, the track loss handling might not view it as a track loss,
as they are too close to each other. Then the method will view the associations as
false, and the results would be invalid.

5.3.2 Method 2: Letting the most recent measurement determine the
origin of the track

Method 2 uses the origin of the measurement used in the most recent update
as ground truth. If a measurement originates from clutter, the last measurement
originating from a target determines the ground truth.

This method will work fine as long as no measurements from nearby tracks
are associated to the track. In a multi-target setting, measurements from nearby
targets will at some point be falsely associated to the track. Then this method will
change the ground truth of the track.

If we had defined track swap as using a single measurement from another
target in an update cycle, this method would be correct. However, as a filtering
process is multi-scan by nature, this definition of track swap is not natural. The
previous estimates affect the current estimates, and this should be reflected when
determining the ground truth. As opposed to method 1, this method will change
the ground truth when the track swaps but will, in the author’s opinion, change
ground truth also in situations where it should not.

5.3.3 Method 3: Letting the nearest target be the origin of a track

Method 3 lets the nearest target be the origin of a track. When two targets move
close to each other, this method will match the targets and tracks by minimizing
the total distance between each pair.

This method will go wrong when the tracks estimate is closer to a target than
the target it is actually following. In cases such as two targets crossing each others
path, this could happen.

This approach seems viable when we do not have information about the origin
of the measurements, which we do when we use simulated scenarios.

Similar to method 2, an argument against such a method is that a single-scan
method is not fair to the multi-scan nature of a filtering process. A multi-scan
version of method 3 is surprisingly similar to the counting technique. Possible ap-
proaches of a multi-scan version could be 1) minimize the total distance between
the track and target the last n timesteps, or 2) necessitate that the ground truth
of a track must have been less than a threshold the last x timesteps, similar to the
counting technique.
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5.4 Proposed Method of Determining Ground Truth

Our proposed method of determining ground truth is a sliding window approach,
which uses the origins of the n last measurements used in the update of a track to
determine its ground truth. The author has not seen this or any similar approaches
in the literature.

5.4.1 Sliding Window Approach

Our method uses a sliding window approach to determine the origin of a track.
The method works as follows; the measurement with the most probability mass
used in the update of a state is saved to a list. When the ground truth of a track at
a specific timestamp is calculated, each measurement in a window of n measure-
ments votes for its origin as the ground truth of the track. Each measurement is
equally important, so the origin which had the highest number of measurement
originating from it is considered the ground truth of the track.

As opposed to method 1, method 2 can somewhat handle track swaps. The
method will update the origin of the tracks when sufficiently of the last x meas-
urements originates from the new track origin, although subjected to a delay, de-
pending on the chosen size of x.

Determining the window size x When deciding on the sliding window size, x,
one needs to examine the main challenges of determining the ground truth and
how the window size affects these. The four main challenges, according to the
author, are 1) track swap while the target is being initiated, 2) track swap at a later
stage of the tracks life, 3) falsely associating a measurement from another target
and clutter, and 4) track loss, listed in an arbitrary order. Some of these challenges
are highly correlated, but the author finds it easiest to split them in this manner,
as the window size affects them differently. Firstly, as seen in Figure 5.4, the tracks
are highly susceptible to track swap while the track is being initiated. The tracks
have a large uncertainty when first initiated, which leads to a large gate and track
swaps likely in highly dense tracking scenarios. Luckily, the calculated ground
truth will quickly reflect the track swap when using the sliding window approach,
almost independent of the sliding window size. Track swap at a later stage is less
likely to happen but also more difficult to adjust for. Assuming the window size
is N, one can expect that it takes N/2 timesteps before the ground truth correctly
reflects the track swap in a simplified scenario. The lower the window size, the
quicker it will adjust to a track swap. However, a too low window size will yield the
method less robust to false associations, either associating the track with clutter or
with measurements origination from other targets. The last problem, track loss, is
handled in other ways and will not be considered when determining the window
size.

Now, disregarding track loss and track swap while the target is being initi-
ated, we note that the final decision of the window size comes down to a trade-off
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between robustness to false associations and clutter and quickly reflecting track
swaps. The likelihood of track-swaps is highly dependent on the difficulty of the
tracking scenario and is not quantifiable. Further, the number of false associations
(but not track swaps) will also increase as the difficulty of the scenario increases. A
difficult scenario is thought of as e.g. a high density of targets and low-resolution
sensors, but not excluding other relevant factors. In this thesis, the main applic-
ation of the ground truth is to evaluate the association techniques. To do so, we
need to examine the results of the associations in different scenarios, ranging
from easy scenarios, e.g. few targets and high sensor resolution, to challenging
scenarios, e.g. high target density and low sensor resolution. With this in mind,
we note that it is important that the ground truth is just to the whole range of
difficulties, such that we reduce any potential bias in the results. For the most
challenging scenarios, we expect track swaps to happen, but not frequently. The
author would argue that a window size in the area of 7 to 15 timesteps would
be applicable, as it would be somewhat robust to false associations (need at least
4 in the last 7 updates to change the GT) and would still be reasonably quick to
adapt to track swaps (maximum 8 timesteps before the ground truth reflects the
change).

In Figure 5.5, we see a similar figure as previously shown for method 1. In the
top figure, the output of the ground truth evaluation is presented, where green
dots signify correct associations, orange signifies miss associations, and black sig-
nifies false associations. For both figures, the estimates of the AIS tracker is shown
as a solid red line, while the estimates of the radar tracker are shown as a solid
blue line. The most interesting part of the figure is zoomed in. By examining the
colours of the estimates, we see which are associated together, e.g., the light green
estimates are associated to the same AIS track, while the cyan-coloured are asso-
ciated to another AIS track. By inspection, one can conclude that all associations
are correct, except one single association at the start. Further, we note that the
radar tracker jumps between the two targets at the start, best visualized by look-
ing at Figure 5.5b, before it stays on the top target. The method produces a couple
of wrong associations but is relatively quick to handle early track swaps.
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Chapter 6

Experimental Setup

6.1 Simulation Setup

To simulate the multi-target scenarios, the simulator developed in A. G. Hem’s
thesis is used. The simulator is thoroughly described in his thesis, chapter 6 of
[28]. In this section, we will describe the main characteristics along with the mod-
els used to simulate the targets and the measurements. The reader is referred to
Hem’s thesis for a more detailed description.

6.1.1 Target Generation

Targets are born at the edge of a circular surveillance area with a radius equal
to the set maximum sensor range. A Poisson process is used to determine the
birth of targets, and all targets are born within the first max birth time seconds.
The targets initial velocity magnitude is randomly set within a preset maximum
initial velocity parameter. The direction of the velocity is randomly set but with
a maximum degree of 45 degrees between a line from the birth position to the
origin.

The targets move according to the constant-velocity model described in Sec-
tion 2.1.2. The targets evolve according to

Xy—1 = FXp_p + Vi v ~N(0,Q), 6.1
where F and Q are shown in Section 2.1.2, respectively.
The targets die when they move out of the surveillance area or when the scen-
ario end time is reached, defined by the scenario max time parameter.
6.1.2 Sensor Simulation Models

Radar Measurements

The radar measurements are generated every two seconds in this thesis. The meas-
urements are generated according to the radar measurement model, as described
in Section 2.4.1. The model is
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Zk = HRXk + Wi W ~ ./\/(0, RR) (62)

The matrices Hy and Ry are shown in Section 2.4.1. Each target has a probability
P, of being detected, i.e., probability Pj, of generating a measurement.

In addition to the measurements generated by the targets, additional clutter
measurements are generated according to a Poisson process with measurements
uniformly distributed on the surveillance area.

AIS Measurements

The AIS measurements are generated according to the velocity magnitude and
the turn rate of the target, according to Table 2.2. The measurements are gener-
ated according to the AIS measurement model, as described in Section 2.4.2. The
model is

Zk = HAISXk + wy W ~ N(O, RAIS) (63)

The matrices Hy g and Ry;g are shown in Section 2.4.2. The probability of detec-
tion Pp for the AIS measurements is assumed to be 1, as we assume that all AIS
messages are transmitted unaltered.

6.2 Radar and AIS Tracker

This part of the thesis concerns the association of tracks outputted from multi-
target trackers. The two trackers will be shortly described in this section.

6.2.1 Radar Tracker

The radar tracker is a variation of the JIPDA (see Section 2.2.2) with IMM (see
Section 2.2.3 and a visibility state, which we refer to as the VIMMJIPDA [27]. The
visibility state is a discrete value that determines whether the target is observable
or not. It uses three models: A low-noise constant velocity model, a high-noise
constant velocity model and a coordinated turn model. The first two are handled
by Kalman filters, while the third model is handled by an extended Kalman filter
(EKF).

6.2.2 AIS Tracker

The AIS tracker is a Kalman filter-based tracker. The tracker assumes no clutter
and that all MMSI numbers are unique. The track management is simple and
exploits the assumptions.

Filtering: The tracker uses a Kalman filter and updates estimates as new AIS
messages arrive. The process model is a CV model, as described in Section 2.1.2.
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Track initiation: A new track is initiated for each MMSI number not among
the active tracks.

Track termination: A track is terminated when it has received no new AIS
messages in the last 20 seconds.

6.3 Performance Measures and Evaluation Methodology

There are several different approaches to evaluating T2TA techniques. A split goes
between whether to assume the trackers are perfect or include aspects typically
seen in multi-target tracking, such as false alarms, miss detections and slow ini-
tialization time. Almost all work seen by the author examines scenarios where the
trackers whose tracks we wish to associate are perfectly consistent, e.g. [49, 50].
Some work includes assessing the effect of limited sensor resolution [17, 18]. Fur-
ther, the scenarios examined concerns single-target tracking or two-target track-
ing, often moving in a parallel line, which seems to be a common theme for work
on the fusion of radar and electronic support measures (ESM) [16], often referred
to as the standard test scenario.

This thesis evaluates the T2TA techniques while including the challenges ex-
perienced in typical multi-target tracking, such as false alarms, false associations,
miss detections, and delayed track initialization. Due to the fundamental differ-
ence in assumptions, the evaluation in this thesis cannot be benchmarked to any
other work known to the author. However, this does not imply that other work is
not relevant to this thesis.

The work of La Scala and Farina is especially relevant [17]. Their work ana-
lyses five different aspects of T2TA, of which four are relevant to us. They suggest
evaluating the probability of associating tracks that originate from the same target,
i.e. the true positive rate (TPR), the probability of associating tracks that origin-
ate from different targets, i.e. the false positive rate (FPR), the effect of limited
sensor resolution, the method used to determine the threshold for the association
test, and the effect of ignoring the cross-covariance. The last aspect will not be
pursued, as we will only evaluate the hypothesis test of independent tracks and
the counting technique.

In this section, we describe our proposed method of evaluating T2TA tech-
niques used in multi-target tracking. Our proposed method differs from approaches
in the literature. One of our contributions is introducing a new metric that, seem-
ingly, has not been used before.

6.3.1 Metrics

To define our metrics, we first categorize the associations.

In this thesis, an association refers to an association between two tracks. An
association can be characterized by whether the association was a correct associ-
ation, wrong association, or a missed association.
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True Positive is also referred to as a correct association. It is an association
between two tracks that originate from the same target.

True Negative is not associating two tracks that do not originate from the
same target. It is the correct lack of an association.

False Positive is also referred to as a wrong association. It is associating two
tracks that do not originate from the same target.

False Negative is also referred to as a missed association. It is not associating
two tracks that originate from the same target.

P.p is the percentage of associations of tracks that originate from the same
target that is associated. It can also be thought of as the probability of associating
two tracks that originate from the same target. It is referred to as true-positive

: _ #True Positive
rate (TPR)' It is calculated as PTP ~ #True Positive+#False Negative *

Ppp is the percentage of associations of tracks that do not originate from the
same target that is associated. Or the probability of associating two tracks that did
not originate from the same target. Referred to as false-positive rate (FPR). It is

_ #False Positive
calculated as Ppp = #False Positive+#True Negative *

Initialization time is the amount of time it takes a method to associate two
tracks, starting from when the tracks were viewed as originating from the same
target. One can also view it as counting the missed associations (false negatives)
until the first correct association of two tracks. These initially missed associations
are not counted when calculating the FPR.

The initialization time of a T2TA technique is a novel metric to evaluate the
performance of a T2TA technique. The counting technique needs a couple of
timesteps, depending on the 1) parameter, to initialize the first association. There-
fore, this should be examined to evaluate the performance of the method. It is im-
portant to note that the initialization time is only calculated the first time a new
target appears. lLe., after the first correct association, all missed associations will
be counted in the FPR.

6.3.2 Proposed Method to Evaluate Association Techniques

Our proposed method to evaluate the T2TA techniques is to evaluate the FPR, TPR
and initialization time for different tracking conditions. The conditions examined
are chosen such that the analysis covers the conditions an ASV could experience.

The main tool for assessing the performance is the Receiver Operating Char-
acteristic (ROC) curve. Hard association of tracks in track-to-track fusion is fun-
damentally a detection problem, i.e. a binary decision problem, and can therefore
be assessed by detection theoretic concepts. The performance of a detector is typ-
ically assessed by the ROC. The ROC is a monotonous curve that traces out the
true-positive rate (TPR) as a function of the false-positive rate (FPR). Typically,
the ROC curve is plotted for varying discrimination thresholds [51].

Surprisingly, it does not seem like the ROC curve have been used in the literat-
ure on T2TA evaluation. Typically, TPR and FPR are shown for each scan number,
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which is reasonable to examine when the scenario evaluated becomes more diffi-
cult for a higher scan number as the targets move away from the sensors.

As suggested in [17], the T2TA methods must be assessed in various condi-
tions. One method might perform better in normal conditions, while another more
robust method might perform better in more difficult conditions. In this thesis, we
will examine the methods in four different conditions.

The conditions will be present along with the results in Chapter 7.






Chapter 7

Track-to-Track Association
Results

In this chapter, we compare the performance of the hypothesis test (HT) and the
counting technique (CT) according to the method described in Section 6.3. The
simulated data are generated according to the simulation scheme described in
Section 6.1. As described in Chapter 5, it is challenging to determine the ground
truth of tracks from multi-target tracking system with false alarms, wrong associ-
ations and delayed initialization time. For all results presented, we use our pro-
posed sliding window approach, Section 5.4, along with the proposed track loss
handling, Section 5.2.

The main result of this chapter is the comparison of the CT and the HT in terms
of false-positive rate (FPR), true-positive rate (TPR), and initialization time. The
metrics are described in Section 6.3.1. The parameters of the T2TA techniques are
examined in Section 7.2 before the performance is evaluated in varying conditions
in Section 7.3. First, the conditions examined are presented.

7.1 Scenario Descriptions

To test the association techniques in varying conditions, four different sets of sim-
ulation parameters were chosen. For all sets of parameters, the same tracking
parameters and association technique parameters were used. The four conditions
are labelled 1) easy, 2) normal, 3) difficult and 4) very difficult. In combination
with the condition parameters, the targets were generated according to the sim-
ulation parameters in Table 14.2, and the ais and radar tracker used the tracker
parameters in Table 14.1. The sliding window length n was set to 10, while the
track loss constant was ¢; = 100 meters.

Easy Conditions The easy conditions parameters are shown in Table 7.3. A total
of 5 targets will spawn at random between timestep 0 and 200. A low process noise
intensity q, and high detection probabilities lead to both the radar tracker and the
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Parameter Symbol/Units Value
Radar sample interval T [s] 2
CV 1 process noise dan [m/s?] 0.1
CV 2 process noise da2 [m/s?] 1.5
Turn rate process noise q, [1/5%] 0.02
Cartesian range std. radar o, [m] 6.6
Cartesian range std. AIS o, [m] 3
Polar range std. o, [m] 5
Polar bearing std. oy [deg] 1
Detection probability Py [-] 0.92
Survival probability Ps [-] 0.99
Visibility transition probabilities w[-] [ 0.9 0.1 ]

0.52 0.48
Gate size g [-] 3
Track fusion hypothesis significance level [-] 0.01
Clutter intensity A[1/m?] 2x 1077
Initial new target intensity b[1/s%] 1x1078
Initial velocity std. Oinit [m/s] 15
Initial mode probabilities ul [-] [0.8,0.1,0.1]7
Mode transition probabilities 5 [-] [0.99,0.99,0.99]
Existence confirmation threshold -] 0.999

Table 7.1: Tracker parameters.

Parameter Symbol/Units Value
Radar sample interval T [s] 2
Cartesian range std. radar o, [m] 6.6
Cartesian range std. AIS o, [m] 3
Polar range std. o, [m] 3
Polar bearing std. g [deg] 1
Clutter intensity A[1/m?] 2x1077
Max initial velocity Vinie [m/s] 10

Table 7.2: Simulated data parameters.
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sensor range ~ #targets max birth time ¢q, Pjode"  pAIS

1000 5 200 0.1 092 0.999

Table 7.3: The parameters used to generate the scenarios labeled easy.

sensor range #targets max birth time ¢, Pgad‘" PSIS

1000 10 5 03 092 0.999

Table 7.4: The parameters used to generate the scenarios labeled normal.

AIS tracker performing well, and the low target density yields a low likelihood of
targets interfering with each other. The conditions are similar to what one could
expect at the open sea.

Normal Conditions The normal conditions parameters are shown in Table 7.4.
A total of 10 targets will spawn at random between timestep 0 and 5. Both the
radar tracker and the AIS tracker have reasonable performance, and the false
track ratio is quite small. The short period of time where track spawns yields a
higher chance of targets tracks interfering with each other compared to the easy
conditions. The conditions are similar to what one could expect to experience in
heavily trafficked waters.

Difficult Conditions The difficult conditions parameters are shown in Table 7.5.
A total of 10 targets will spawn at random between timestep 0 and 5. The tracks
spawn area is substantially smaller than for the easy and normal conditions due
to the sensor range being 600 meters compared to 1000 meters. The trackers start
to struggle, and track swaps and track loss is likely to be seen once or twice per
monte-carlo simulation. A very high chance of targets tracks interfering with each
other. Such conditions could be experienced when the shore obstruct the sensors
view in a heavily trafficked area.

Very Difficult Conditions The very difficult conditions are shown in Table 7.6.
The only difference between the very difficult conditions and the difficult con-
ditions is the radars detection probability. A substantially smaller radar detection
probability further reduces the capability of the radar to track targets. Radar track
loss and track swap are more likely than in the difficult conditions. The conditions
can be experienced in close-to-shore heavily trafficked areas with degraded radar
measurements.
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sensor range ~ #targets max birth time ¢q, Pjode"  pAIS

600 10 5 0.3 092 0.999

Table 7.5: The parameters used to generate the scenarios labeled difficult.

sensor range ~ #targets max birth time ¢q, Pjode"  pAIS

600 10 5 0.3 0.6  0.999

Table 7.6: The parameters used to generate the scenarios labeled very difficult.

7.2 Parameter Examination

7.2.1 Counting Technique

In Figure 7.2a, the TPR and the FPR are plotted for varying association paramet-
ers. In Figure 7.2b, the initialization time and the FPR are plotted for varying
association parameters. The results are from the normal conditions, as described
in Section 7.1.

Both the hypothesis test (HT) and the counting technique (CT) are shown in
the figures. For the CT, the letter v refers to the number of hits in a row that
is needed to associate two tracks, and 7 refers to how many misses in a row is
needed to end an association as described in Section 4.2. The distance_threshold
is not included in the figure to avoid clutter. The distance_threshold’s used are
similar for all combinations of T and 1 and is 10-20-30-40 meters. The top-left
point of each 7-1 combination in Figure 7.2b is 10 meter, the next is 20 meters,
the third 30 meters and the bottom right is 40 meters. Note that the FPR axis is
similar in both figures.

An increase of 7 and ) leads to a higher TPR and a lower FPR, when the
distance_threshold is constant. An increase of 7 and 1) also leads to a higher ini-
tialization time. As a larger 1) would require more hits in a row, the initialization
time would also increase. A smaller distance_threshold makes it harder for two
estimates to be considered a hit. We see that a smaller distance_threshold cause a
lower TPR and a higher initialization time, while decreasing the FPR.

7.2.2 Hypothesis Test

Examining the same figures as in the previous section, Figure 7.2.

The a values considered are [0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99]. In Figure 7.2a,
the bottom left point is 0.01, the next is 0.1, etc. In theory, a is the probability of
not associating two tracks originating from the same target. The definition of miss
percentages (Section 6.3.1) coincides with that definition. However, this does not
hold when we examine multiple targets.

A higher a leads to a higher initialization time, and a lower FPR, while in-
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creasing the TPR. The results are as expected, as a higher a makes it harder for
two estimates to be associated.

7.3 Performance Evaluation

For all four conditions, the same association technique parameters are used. For
the hypothesis test (HT), the alphas used are [0.99, 0.9, 0.7, 0.5, 0.3, 0.1, 0.01].
For the counting technique (CT), the distance_thresholds used are [40 m, 30 m,
20 m, 10 m]. The v and 7 used are listed in the figures.

The results consist of figures showing the initialization time, the true-positive
rate (TPR), and the false-positive rate (FPR) for the association parameters dis-
cussed. The performance characteristics of the CT and the HT simulated using
the easy conditions parameters can be seen in Figure 7.1. The results using the
normal conditions, difficult conditions and very difficult conditions can be found
in Figure 7.2, Figure 7.3, and Figure 7.4, respectively.

Examining the results of the easy conditions, Figure 7.1, note that the CT have
0 FPR for all values examined. The HT is close to zero, with about 0.00009 FPR
for most parameters. Further, we note that both methods have parameter choices
that yield perfect TPR equal to 1. The HT has zero initialization time, meaning it
associates two tracks the first time two tracks are considered originating from the
same target for several parameter choices. The CT has some initialization time,
depending on the choice of parameters.

In Figure 7.2, we see the results of the normal conditions. Compared to the
easy conditions, the normal conditions yield a shape more commonly seen in ROC
curves. A higher ¢-7 combination leads to a better performance in terms of TPR
and FPR, but at the cost of a higher initialization time. For -7 equal 5 and 4, we
note that the shortest initialization time is 10, which in most applications would
be considered quite high. The CT performs better in terms of FPR, while the HT
performs better in terms of initialization time.

The results of the difficult conditions, in Figure 7.3, seems at first very similar
to the results of the normal conditions. The relative performance of the CT and
HT seems similar. Both methods are slightly shifted down in terms of TPR and up
in terms of FPR. The HT performs slightly worse in terms of the initialization time.

In the very difficult conditions, Figure 7.4, the situation is quite different from
the previous plots. With the other conditions in mind, the HT performs better in
terms of FPR and TPR compared to the CT. There is also a greater difference in
initialization time between the HT and the CT relative to the other conditions.
Both methods are shifted to a considerable higher FPR, while the TPR is slightly
smaller for all parameter choices.

In all conditions, the HT is considerably quicker to initialize the first associ-
ation. This comes as no surprise, as the HT is a single-scan approach, and the CT
is a multi-scan approach.

The initialization time of the CT is higher than what the author would have
expected. Considering the easy conditions in Figure 7.1, the author would have
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expected the initialization time to be slightly higher than 1. In most cases, v sets
a lower limit of the initialization time, as the minimum amount of timesteps to
associate two tracks would be 1p. However, it is also possible that the initialization
time is lower than . The CT can consider two tracks a hit, two tracks being
within distance_threshold of each other, even when the ground truth says they
are of different targets. In the case of a track swap, this might happen, which is
especially likely to happen when two targets enter sensors view approximately in
the same area. One might expect that there is a non-linear relationship between
1 and the initialization time. As 1 increases, the chance of two tracks not being
associated due to a single miss, two tracks being too far away from each other to
be considered a hit, increases. The relationship is not evident from the results but
can help explain why the initialization time of 1) = 2 is about 2 seconds, while
1) = 6 is about 10 seconds. By this explanation, one would expect scenarios with
more difficult conditions to yield even higher initialization times as the rate of
misses increases, but this is not seen in the results. Another approach to the same
line of thought is that a lower TPR would yield a higher deviation from ). The
reasoning is similar to previously. A lower TPR must mean that there is a higher
rate of misses. A higher rate of misses means an increase of misses stopping two
tracks from being considered associated, which increases the initialization time.
By this approach, one would not view whether the conditions are more or less
difficult, but rather how the TPR changes.

The very difficult conditions differ from the other conditions in that the radar
tracker is severely reduced due to its low detection probability. The performance
of the HT seems to be better relative to the CT in those conditions. It might be due
to the fundamental difference in the two methods, in that the HT considers the
covariance when determining whether to associate two tracks. It is possible that
the information from the covariances becomes more important when the estimates
are degraded.
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Figure 7.4: Performance characteristic for very difficult conditions.



Chapter 8

Track-to-Track Association
Discussion

8.1 Ground Truth Evaluation

The ground truth of each track was evaluated using the proposed sliding window
approach. Our approach differs from other known approaches in that it is a sliding-
window approach. We avoid short-term changes of ground truth by using temporal
information due to false alarms or falsely associating measurements from nearby
tracks. However, this can also have a negative effect, as the method, depending
on the chosen window size n, can be slow at reflecting a track swap.

The window size n was set to 10 in this thesis. The reasoning behind this
number was discussed in Chapter 5. In short, the number was deemed to yield a
method robust to associations from nearby clutter and measurements from other
targets while still being able to reflect a track swap quickly. Another option could
be to calculate the rate of track swaps, would then need to be able to calculate
when a track swap happens, along with the rate of false associations in the radar
tracker, would also need a method to calculate that, which could be used to de-
termine whether track swaps or clutter and false associations is the main concern.
There is a very big but to this approach, as it would require a clearer definition of
track swaps to distinguish the two situations.

The sliding window approach has some similarities to the counting technique.
This might yield a small bias in favour of the counting technique. However, as
the sliding-window approach seems to be a reasonable approach to determining
ground truth, it might also argue that the counting technique seems to be a reas-
onable approach to T2TA.

With the proposed approach, several tracks may be associated to the same
target. This is not necessarily wrong but could, in certain situations, lead to un-
natural results. The T2TA implementation of the CT and the HT makes sure that
only two tracks can be associated together. This makes it impossible for the T2TA
to be correct when three tracks are deemed to originate from the same target.

It is possible to use the auction algorithm to deal with situations where too

63



64 Jonas A. Sagild: Track-to-track fusion

many tracks have the same ground truth. This was not further examined by the
author and is left as further work.

8.2 Performance of the Counting Technique and the Hy-
pothesis Test

There are two fundamental differences between the CT and the HT. Firstly, the CT
does not use information about the covariance of the estimates when associating
tracks. Having more information when making a decision is arguably better, as
long as the information is correct. If the information is wrong, it might lead to a
wrong decision. The effect of trackers with severely degraded consistency was not
examined in this thesis. This is interesting to analyze, as the performance of the CT
and HT may differ more than when associating tracks from consistent trackers.
The second fundamental difference between the CT and the HT is that the CT
use temporal information. The additional information from previous timesteps
should, arguably, make the method more robust to temporary track swaps.

The CT performed well in terms of FPR and TPR compared to the HT. How-
ever, in terms of initialization time, it was substantially worse. Ideally, the CT
would perform as robust as it does with an initialization time comparable with
the hypothesis test. There may exist a combination of two methods that allow for
a quicker initialization time. A possibility is to combine two CT’s, where the first
has a large 1, 7 and threshold, and the other has a lower v, 7, and threshold. It
is unclear how one would determine when the two-combined CT associates two
tracks. Still, a possibility is always to associate two tracks if one of the methods
associates the tracks. This would initially lead to a higher FPR, but this could be
reduced by tuning.

When it comes to tuning, the HT arguably has an advantage over the CT, as it
only requires one parameter to set. However, based on the results in this thesis, it
seems like the ¢ and T must be set depending on the requirements of the initializ-
ation time. It is also possible that the threshold could be set based on the process
noise or expected RMSE, but this was not investigated. Further, the choice of al-
pha might depend on the consistency of the local trackers, which is not necessarily
known in advance. The effect of the inconsistency of local trackers on the choice
of a@ was not examined in this thesis. La Scala and Farina examined the methods of
determining the a but did not examine inconsistency issues possible to experience
in multi-target tracking systems [17].

8.2.1 Applicability

Based on the results, it seems like the CT is superior to the HT in terms of FPR
and TPR for most conditions while being inferior in terms of initialization time.
This leads to the question of whether the two methods should be used in different
situations.
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The choice of whether to opt for the CT or the HT comes down to the use case.
If the lower initialization time is not deemed a big issue, the CT is arguably a good
choice. For example, this might be the case at open sea, where long-distance radars
track large and slowly moving vessels. On the other hand, in close to shore tracking
with short-range radars and faster vessels, the HT might be a better option. The
AIS measurement rate should also be considered, as a slow AIS measurement rate
will likely make the initialization time higher.

In any case, the results show that the CT is a viable choice when no covariance
information is available. However, when using the CT, the slow initialization time
should be kept in mind.






Part 111

Track-to-Track Fusion

67






Chapter 9

Three Methods for Track-to-Track
Fusion

In the following sections, we will derive two methods for synchronous track-
to-track fusion and present the formulas for asynchronous track-to-track fusion.
Both the derived methods belong to the T2TF without memory and no feedback
(T2TFwoMnF) category, as presented in Chapter 3. First, assumptions for the syn-
chronous methods are presented in Section 9.1. The first method, presented in
Section 9.2, assumes that the error of the state estimates is independent. The
second method, presented in Section 9.3, accounts for the common process noise,
which was previously discussed in Section 3.2. This method is known as the op-
timal T2TFwoMnE In Section 9.4, we will present an asynchronous track-to-track
fusion method. Lastly, in Section 9.5, we will discuss the usage of the Kalman
Filter to fuse measurements from two sensors.

Most of the work on T2TF is from the author’s pre-thesis [52]. It is included
for its completeness and because later discussion is based on the results.

The following is based on chapter eight of the book Multitarget-multisensor
tracking: principles and techniques [11].

9.1 Assumptions

The following is assumed when deriving the fusion formulas.

e The two trackers, i and j, estimates the position of target 1 at timestep k as a
Gaussian distribution with expectation m)“(}{ and covariance mP}(, me[i,j].
The trackers are Kalman filters, and use the formulas in Section 2.1.1.

e The two trackers, i and j, are synchronised, i.e. their estimates at timestep
k are updated with measurements obtained simultaneously.

e The measurement model and process model used in tracker i and j are
identical, i.e. the transition matrix F and measurement matrix H are identical
for the two trackers. Further, the matrices Q and R, which governs the stat-
istical properties of the process noise and the measurement noise, are as-
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sumed identical for both trackers.

e The true state of target 1 is given by xi.

e The associations are assumed perfect and given, i.e. we assume that the
estimate from tracker i and tracker j originate from the same target.

Further, the error independence assumption is used when deriving the fusion
of independent tracks.

Assumption 1 Error independence assumption
The state estimation errors

MK ="x— "R, me i, j] (9.1
where 'x, =X, = x,. is the true state, are independent.

At timestep k, we are given the estimates from tracker i and j of track 1 as
if(}{ and ’ 5‘(11{ along with the respective covariances iPll{ and / Pi. As association is
assumed perfect and we are only looking at the single-target scenario here, we
will disregard the track number notation. Further, the timestep notation will only
be used when deriving the cross-covariance in Section 9.3.1. Unless specified oth-
erwise, all information used is from timestep k. We are then left with ‘% and '%
along with the respective covariances ‘P and /P.

9.2 Track-to-Track Fusion of Independent Tracks

In this section, we derive the fusion of two tracks under the error independence
assumption, Assumption 1.

Let the information from tracker i and j be denoted as !D and /D, respectively.
The goal of the fusion is to find p(x|'D, /D). Using the linear estimation equation
we can fuse prior information X with a measurement z according to

Xx=%+P, P (z—2) 9.2)
Note that we can write "X as
Mg=x—""%,me[i,j], 9.3)

where ™% is the error of the estimate ™%, which is zero-mean and has covariance
™P. We specify the terms in Equation (9.2) as

% — E[x|'D,’D] 9.9
% — % =E[x|'D] (9.5)
z—% (9.6)

z — E['%/'D] = k. (9.7)
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By these terms, the covariances in Equation (9.2) becomes
P, =E[(x—X)(z—2)"]
=E[(x—"%)(%—%)"]
=E[(‘%(x—'%)— ((x—"'%))"]

=E['%('%—'%)"] ©8
— B['%%" ]
=1p,
where the last step is by the error independence assumption, and
P, =E[(z—2)(z—2)"]
= E[(%— (% —'0"]
=E[(x—7%) — (x =) ((x —7%) — (x—"%))"] (9.9
= B[(%—R)(%—'%)"]
=P +7p.
With these covariances, the fused X becomes
% =%+ P(P+/P) 1 (x—1%), (9.10)
or, rewritten to symmetric form
£=7P('P+/P) ik +P('P+/P) V1. (9.11)

To find the covariance of the fused estimate, we use the covariance update
equation

Pxxlz = Pxx - szpz_zlpzx’ (9.12)
which becomes . o ‘ '
P='P—'P(‘'P+/P)"lp, (9.13)
or, in symmetric form o _ _
P='P('P+/P)"VP. (9.14)

Note that when the two trackers have equal covariance matrices (P! = PJ), the
covariance of the fused estimate becomes P = %Pm, m C [i,j]. Also, note that we
could have swapped the terms in Equation (9.4), i.e. which estimate is considered
prior and which is considered a measurement, and we would have arrived at the
same fusion formulas.

9.3 Track-to-Track Fusion of Dependent Tracks

As discussed in Section 3.2, if the tracks originate from the same target, the es-
timates are dependent due to the common process noise. In this section, we will
derive the fusion when the dependence is accounted for. To do so, we first need
to find an expression for the cross-covariance of the estimation errors.
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9.3.1 The cross-covariance of the estimation errors

To account for the dependence due to the common process noise, we need to
calculate the cross-covariance of the estimation errors. I.e., we need an expression
for
ip, 2 B[% /%] . (9.15)
We first find the estimation error of the estimate from tracker m at timestep k,
™%y, expressed by the estimation error of the estimate from tracker m at timestep
k—1, ™%;_;, using the Kalman filter equations described in Section 2.1.1.

"Ry = "R — "Ry
=F"x + Vior — (F" g + "Wi [z — " 21 1)
=F"x + Vior —F" % — "W [H(F"xp 1 + Vi)
+ ka — HFm)’\(k_l]
= Fmik_l — kaHFmik_l + Vi1 — kaHVk—l — kamwk
= [I-"WH]F"%_; + [I- "W H]v,_; — "W, "W,

(9.16)

where MW, is the Kalman gain for tracker m, v; is the process noise, identical for
both trackers, and ™w, is the measurements noise for tracker m. By inserting m = i
and multiplying it with the transposed of m = j, and calculating the expectation
of that, we get the cross-covariance recursion

iy T

l]Pk = E[le]Xk ]

‘ g . 1
=[I—'WH][FYP,_;F" + QJ[1—'wW,H]". ©-17)

Note that P = JiPT =JiP, Also note that P # 0 for all timesteps but the first.
Using Equation (9.17) one can for each timestep calculate the cross-covariance
given the previous timesteps cross-covariance. The initial error is assumed to be
uncorrelated,
ip, =0, (9.18)

which, assuming that the initial estimate is only based on the initial measure-
ments, is a reasonable assumption.

9.3.2 Fusion of Dependent Tracks

Asunder the independence assumption, the linear equation Equation (9.2) is used
to fuse the results. We specify the terms of Equation (9.2) as in Equation (9.4).
The covariances become

sz = E[(X—)_()(Z - Z)T]
=E[(x—"9(%—"0)"]
=E[(‘%(x—'%)— ((x—'%))"] (9.19)
= E['%(%—'%)"]

— iP_ ijP,
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and

sz = E[(Z - 2)(2 - Z)T]
= E[(R— (%~ "3)"]
= E[(x—7%) — (x—"0))((x —7%) — (x—'%))"] (9.20)
=E[(‘%—'%)('%—'%)"]

=p-Up—_Jip+Jp.

Inserting the covariances in Equation (9.2), the fusion of dependent tracks be-
comes

=%+ [P-UP][/P+/P—-UP—IP] I [/8—}]. (9.21)

Using the covariance update equation Equation (9.12), the associated covariance
becomes

P=P—['P-UP]['P+/P-UP—JiP]7 [P-/iP]. (9.22)

9.3.3 Notes on the Assumptions

Some of the assumptions described in Section 9.1 needs to be relaxed to be com-
patible with the fusion of radar and AIS measurements.

First, we note that the fusion formulas assume i.i.d. measurement noises. lL.e.,
the matrix R, that govern the statistical properties of the measurement noise, is
assumed to be equal for both the sensors. Based on the discussion in Section 2.4,
we note that this will not be the case for real radar and AIS data. However, the
effect of ignoring this assumption is not evident based on the formulas, and this
will be further examined with Monte-Carlo simulations in Section 11.2.

A crucial assumption for the formulas derived is that the sensors are synchron-
ous. A potential pragmatic approach to fusion with asynchronous sensors is to
fuse predicted estimates when there are no new measurements. When consider-
ing fusion of independent tracks, the implementation would be straightforward.
However, it is not straightforward that the results produced would be any good,
as the assumption of independent tracks would still not hold. When applying this
pragmatic approach to fusion of dependent tracks, the problem of calculating the
cross-covariance becomes apparent. Therefore, the formulas derived cannot be
directly used for asynchronous sensors. However, with some small adjustments,
they become the optimal approach of the type asynchronous T2TFwoMpE This
will be elaborated on in the next section.

9.4 Asynchronous Track-to-Track Fusion

In this section, we will present the asynchronous T2TFwoMpF (AT2TFwoMpF)
formulas. AT2TFwoMDpF is a special version of T2TFwoMpF. According to Tian and
Bar-Shalom, AT2TFwoMPpF can be achieved by fusing the updated estimate and
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the predicted estimate, along with an appropriate cross-covariance [9]. Therefore,
to describe AT2TFwoMpE we first need to present the formulas for T2TFwoMpE

According to Tian and Bar-Shalom, the optimal T2TFwoMpF will be equal to
the formulas derived for T2TFwoMnF in Section 9.3, but with an additional step
[53]. When the fusion is performed, the fused result is returned to one of the
trackers. L.e., one of the trackers will be equal the fused result. This configuration
is presented in Section 3.1. Assume that we have fused the estimates from tracker i
and j at timestep k (‘&, /&, Py, and /P;) according to the formulas in Section 9.3.
We then update the estimate of tracker i according to

l)l\(k == )A(k

. (9.23)
lPk = Pk’

where %X; and P is the fused estimate. This feedback to tracker i adds a correlation
of the two estimates, so the cross-covariance has to be updated according to

Uy = [1— YK, ]VP; + VK Py, (9.24)

where
UKy = [P — P I[Py + P — VP, — P T L. (9.25)
To use these formulas for asynchronous sensors, we can, according to [9], fuse
each time a new measurement arrives, and use the predicted estimate when no
updated estimate is available. For the predicted estimate, the Kalman gain will be
set to zero. The fusion scheme of the AT2TFwoMpF is shown in Section 10.2.

9.5 Kalman Filter Fusion

Fusion using the Kalman Filter can be used as a base for the comparison of fusion
algorithms. We know that when the assumptions of the Kalman Filter hold (linear
Gaussian measurement model, linear Gaussian process model, and the Markov-
assumptions), fusion using the Kalman Filter will produce consistent results. Note
that this is not track-level fusion, which is the main topic of this thesis, but meas-
urement level fusion, i.e. we fuse measurements and not tracks. As per previous
assumptions, we assume that the association is perfect and given, in this case, the
measurement to track association.

The formulas of the Kalman filter can be found in Section 2.1.1. In the case of
multiple sensors, synchronous or asynchronous, the Kalman Filter still produces
consistent results. When the measurements arrive with different timestamps, a
normal predict and update cycle will be performed for each measurement. When
the measurements are received at the same timestep, an extra update step is per-
formed. Assuming that the estimate after updating with measurement 'z is 'X
along with the updated covariance ‘P. Then the posterior mean after updating
with measurement /z becomes

% =%+ W({z—H%), (9.26)
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and the posterior covariance becomes
P = (I—/WH)'P. (9.27)

We see that the second update step is equal to the first update step, using the
updated posterior instead of the predicted posterior.






Chapter 10

Track-to-Track Fusion Method

To test and analyze the fusion algorithms, a framework written in Python was
created. The code can be found on Github [52]. The framework is using modules
from Stone Soup [15] for basic filtering and generating scenarios.

In Section 10.2, the fusion scheme for tracking using synchronous and asyn-
chronous sensors will be related to the equations derived and presented in Chapter 9.

10.1 Experimental Setup

10.1.1 Target Generation

The single target is born around the origin at the start of the scenario. The kin-
ematic model used in the experiments is the constant-velocity model. The model
is described in Section 2.1.2 and is given by

Xgk—1 = FXp1 + Vg v ~N(0,Q). (10.1)

10.1.2 Measurement Models

In this part of the thesis, the measurement model of the two local trackers is sim-
ilar. As discussed in Section 2.4, the measurement model of the AIS and radar
sensors should be dissimilar due to their functionality. For simplicity of the ex-
periments and to analyze the performance of the methods when the assumptions
hold, a Cartesian measurement model with white Gaussian noise is used. The
model is similar to that of Section 2.4.2, and is given by

Zk = I‘IX]< +Wk Wi ~ ./\/(0, R), (102)

The measurement noise matrix R can be different for the two trackers and will
be specified in the different scenarios. The validity of using such a measurement
model to simulate a radar is discussed in Chapter 12.

In the previous part, where we examined T2TA, and in the next part, where
we will examine the complete tracker, the measurement models suggested in Sec-
tion 2.4 is used.
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10.1.3 Scenarios

To test the fusion algorithms, a set of scenarios were simulated. All associations
are perfect and given. The implementation can be found on Github [52].

Scenario 1: Synchronous Sensors

In scenario 1, the AIS and radar measurements are simulated with the same
sampling rate. The fusion under the error independence assumption, Section 9.2,
and the fusion accounting for the common process noise, Section 9.3, assumes
that the sensors have the same sampling rate and that the measurement noises
are identical. Further, no clutter or misdetection was included in the scenario.
Different sets of noises were used when generating the scenario, and these are
specified along with the results. An example of the generated scenario with noise
parameters 045 = 10, O 1q4qr = 5, and Oppocess = 1 can be seen in Figure 10.1a.

Scenario 2: Asynchronous Sensors

In scenario 2, the sampling rates of the sensors are different. Typical sampling
rates, such as [1, 5] for the radar and [10, 120] for the AIS receiver, are examined.
The noise parameters used are presented along with the results. An example of the
generated scenario with noise parameters 0455 = 10, Orqdqr =5, and 0 ppcess = 1
is shown in Figure 10.1b. The AIS measurement rate is 5 and the radar measure-
ment rate is 1.
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Scenario 1 with g5 =10, Oragar =5 and Oprocess = 1.
Fusion is performed accounting for the common process noise.

--- Ground truth
Posterior AIS
Posterior Radar

20

° [ Posterior Fused
154 ® Measurements Radar
® Measurements AlIS
° L4

10

0 10 20 30 40 50 60
X

(a) Example of scenario 1. The fused posterior is produced by fusion of dependent tracks.

Scenario 2 with g5 =10, Oragar =5, and Oprocess = 1.

Fusion is performed accounting for the common process noise
and with partial feedback.

--- Ground truth
Posterior AIS
Posterior Radar

[ Posterior Fused

204 ® Measurements Radar

® Measurements AIS

30 1

~104

X

(b) Example of scenario 2. The AIS measurement rate is 5, and the radar measurement rate is 1.
The fused posterior is produced by asynchronous T2TFwoMpE Le., the radar trackers estimate is
the same as the fused estimate.

Figure 10.1: Example of scenario 1 and scenario 2. The dotted blue lines are the
ground truth. The small solid circles represents measurements, and the larger
circles represents the estimates and their uncertainties. Note that the measure-
ment standard deviation is not represented, and that the size of the solid circles
is arbitrary.
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10.2 Fusion Scheme

Two Kalman filters are used to produce estimates which are fused. If one of the
Kalman filters does not have an updated estimate, as will be the case of asyn-
chronous sensors, the Kalman filter will output a predicted estimate. The fusion
algorithms will produce a new estimate at each timestep. A simulated timestep is
representing a second, so a new estimate is produced each second.

10.2.1 Synchronous Sensors

For the synchronous sensors tracking scenario, the T2TFwoMnF fusion scheme is
used, as presented in Section 3.1. In Figure 10.2, the fusion scheme for synchron-
ous sensors is showed. Note that no information is returned from the fuser to the
Radar and AIS trackers.

AIS
measurements

AIS AIS AIS AIS
Tracker Tracker Tracker Tracker
| Fuser | | Fuser | [ Fuser | | Fuser ]
Radar Radar Radar Radar
Tracker Tracker Tracker Tracker
Radar & # ‘ ‘

measurements

Figure 10.2: The figure shows the fusion scheme of synchronous AIS and Radar
measurements. The filled circles represents a new measurement. The black ar-
rows indicate information flow.

Fusion of independent tracks

For each updated estimate received from the individual trackers, a fused mean
and covariance is calculated using Equation (9.11) and Equation (9.14), which
are implemented in the Data fuser module. The fused result is returned, and no
information is saved in the tracker.

Fusion of dependent tracks

For the fusion of dependent tracks, we need to keep an updated cross-covariance
of the estimation errors. For the first timestep, the cross-covariance is assumed
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zero, which is reasonable assuming that the initial mean and covariance is based
on the measurements. When updated estimates are available, the cross-covariance
of the estimates are calculated. This requires the previous cross-covariance, which
is stored in the tracker. The update of the cross-covariance is given by Equa-
tion (9.17), and is implemented in the Data fuser module. Then, the estimates are
fused according to Equation (9.21) and Equation (9.22), and the cross-covariance
is stored for the next timestep.

Kalman filter fusion

The Kalman filter fusion implementation is identical for synchronous and asyn-
chronous sensors. The measurements are simply used to update the estimate using
Equation (9.26) and Equation (9.27).

10.2.2 Asynchronous Sensors

For asynchronous sensors, the AT2TFwoMpF scheme presented in Section 3.1 is
used. In Figure 10.3, the fusion scheme for synchronous sensors is showed. Note
that the fused estimate is returned to the Radar tracker. The Radar tracker then
uses the fused estimate as its estimate.

By inspecting Figure 10.3, we note that we have three situations; 1) we receive
two updated estimates, 2) we receive one updated estimate and one predicted
estimate, 3) we receive 2 predicted estimates. These three situations are handled
differently and will be addressed independently below.

1) Two updated estimates: For two updated estimates, we will first update
the cross-covariance according to Equation (9.17). Then we will produce a fused
estimate as for fusion of dependent tracks, i.e., using Equation (9.21) and Equa-
tion (9.22). As the fused result will be returned to the Radar tracker, this will
change the cross-covariance of the individual trackers estimate errors, so the cross-
covariance has to be updated according to Equation (9.23). Then the fused estim-
ate is returned to the Radar tracker, and the cross-covariance is stored for the next
timestep.

2) One updated estimate and one predicted estimate: In this situation, we
update the cross-covariance according to Equation (9.17), and use a zero Kalman
gain for the updated estimate. The rest is performed as described for situation 1).

3) Two predicted estimates: For two predicted estimates, the fused estimate
will be the estimate of the Radar tracker. Notice that the predicted estimate of the
Radar tracker is simply the prediction of the previous timesteps fusion. Therefore,
the cross-covariance is left as is and is not updated in this situation.
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AIS
measurements

AIS AIS AIS AIS
Tracker Tracker Tracker Tracker
I i | !
| Fuser | [ Fuser | | Fuser | | Fuser |
I ; I I
Radar Radar Radar Radar
Tracker Tracker Tracker Tracker
Radar * ‘ ‘

measurements

Figure 10.3: The figure shows the fusion scheme of synchronous AIS and Radar
measurements. The filled circles represents a new measurement. The black ar-
rows indicate information flow. The dashed black arrow indicates that a predicted
estimate is sent.



Chapter 11

Track-to-Track Fusion Results

To test and analyze the results of the fusion algorithms, different scenarios were
simulated. In this chapter, we will present some results on the fusion algorithms
described in Chapter 9 and Chapter 10. First, in Section 11.1, we will show that
the algorithms produce consistent results when the assumptions (see Section 9.1
and Section 9.3.3) holds. We wish to examine whether the track level approach
performs worse than the optimal measurement level approach and see how in-
consistent the fusion of independent tracks is. This will be presented for both
synchronous and asynchronous sensors. In Section 11.2, noise parameters and
sampling rates are chosen according to what we found out about radar and AIS
data in Section 2.4.

11.1 Fusion of Tracks with Identical Measurement Noise
Matrix

In this section, we evaluate and compare the T2TF of dependent tracks, T2TF
of independent tracks and the optimal measurement-level approach, exemplified
by a simple Kalman filter, when the assumptions in Section 9.1 hold. We analyze
whether an increase of the AIS measurement rate increases the consistency of
the T2TF of independent track, and validate the implementations of the fusion
schemes. The results are used as a baseline for later analysis of T2TF when the
measurement models use dissimilar noise matrices.

11.1.1 Synchronous sensors

The average normalised estimation error squared (ANEES) after performing 100
Monte-Carlo (MC) simulations to scenario 1 with 200 timesteps by fusion of inde-
pendent tracks, fusion of dependent tracks and Kalman filter fusion can be seen in
Table 11.2, Table 11.3 and Table 11.4, respectively. The root-mean-squared-error
(RMSE) is given in Table 11.5, Table 11.6, and Table 11.7, respectively. The meas-
urement noise standard deviation is identical for both sensors. Note that ANEES
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is averaged over all timesteps and all simulations.
In Figure 11.1, we can see the development of the ANEES. The figure shows
how the ANEES changes for each additional Monte-Carlo Simulation.

Gmeas = 1 O-TTICCIS = 5 Umeas = 20
O process = 0.05 | 0.05 0.01 0.0025
O process =0.5 | 0.5 0.1 0.025
O process = 3 3 0.6 0.15

Table 11.1: The manoeuvring index for the parameter settings used.

Omeas = 1 Omeas = 5 Umeas = 20
O process = 0.05 | 5.82 5.88 5.91
O process = 0.5 | 5.73 5.79 5.85
O process = 3 5.68 5.73 5.78

Table 11.2: The ANEES of fusion of independent tracks after performing 100
Monte-Carlo simulations. The 95% confidence interval is 3.95 and 4.05.

Omeas = 1 Omeas = 5 Umeas = 20
O process = 0.05 | 3.97 3.98 3.98
O process = 05| 3.97 3.97 3.98
Oprocess =3 | 3.98 3.97 3.97

Table 11.3: The ANEES of fusion of dependent tracks after performing 100
Monte-Carlo simulations. The 95% confidence interval is 3.95 and 4.05.

Omeas = 1 Omeas = 5 Gmeas = 20
O process = 0.05 | 3.96 3.96 3.96
O process = 05| 3.98 3.97 3.96
O process = 3 3.99 3.98 3.97

Table 11.4: The ANEES of fusion using the Kalman filter after performing 100
Monte-Carlo simulations. The 95% confidence interval is 3.95 and 4.05.

Oradar = 1 Oradar = S Oradar = 20
O process = 0.05 | 0.88 1.57 2.65
O process = 05| 1.36 2.22 3.57
Oprocess =3 | 2.15 3.17 4.77

Table 11.5: The RMSE of fusion of independent tracks after performing 100
Monte-Carlo simulations.



Chapter 11: Track-to-Track Fusion Results

ANEES

i ?

Oradar = 1 Oradar = S Oradar = 20
O process = 0.05 | 0.88 1.57 2.65
O process =0.5 | 1.36 2.22 3.57
O process = 3 2.15 3.17 4.77

85

Table 11.6: The RMSE of fusion of dependent tracks after performing 100 Monte-
Carlo simulations.

Oradar = 1 Oradar = S Oradar = 20
O process = 0.05 | 0.86 1.53 2.58
O process = 0.5 | 1.33 2.17 3.48
O process = 3 2.11 3.11 4.66

Table 11.7: The RMSE of fusion using the Kalman filter after performing 100
Monte-Carlo simulations.
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Figure 11.1: The figure shows the evolvement of the ANEES of each fusion al-
gorithm plotted for each new Monte-Carlo simulation.

By inspecting Figure 11.1, we note that the ANEES is barely changing after the
addition of new Monte-Carlo simulations. Therefore, we assume, for the simula-

tion presented in the figure, that the calculated ANEES and RMSE are approxim-

ately equal to what they would be after infinitely many Monte-Carlo simulations.
A similar evolvement of the ANEES was found for the other noise settings as well.
By examining the RMSE in Table 11.5 and Table 11.6 we note that the RMSE
of fusion of independent tracks and fusion of dependent tracks is identical. This
seems a bit strange at first, considering that the fusion formulas are different
(see Equation (9.21) and Equation (9.11)). Still, considering that the sensors are
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identical, it would be stranger if the results were different. If the RMSE was differ-
ent, it would suggest that dependent fusion added some information about one of
the estimates, which led it to trust it more. This is, however, not the case. Further,
we note that the RMSE of Kalman filter fusion (see Table 11.7), is lower than the
T2TF techniques. As noted previously, T2TF is known to be theoretically inferior
to Kalman filter fusion [54]. As Chang et al. noticed, the derivation of T2TF makes
an assumption that is not met, which leads to the results being optimal in the max-
imum likelihood (ML) sense and not in the mean squared error (MSE) sense [7].
The Kalman Filter is, however, optimal both in the ML sense and the MSE sense
[33]. This might be why the RMSE of Kalman filter fusion is superior to T2TF for
all noise settings.

There seems to be a constant offset between fusion of dependent tracks and
Kalman filter fusion in Figure 11.1. One might ask oneself whether there is a small
error, and they are, in fact, supposed to be equal. However, as noted, the fusion of
dependent tracks is optimal in maximum likelihood (ML) sense and not in mean
squared error (MSE) sense, while the Kalman filter is optimal in both the ML
and MSE sense. From that, one can induce that they are not equal. The similar
changes in ANEES can be seen as a correlation of what Monte-Carlo simulations
the algorithms find difficult and easy.

By examining the ANEES of fusion of dependent tracks and Kalman filter fu-
sion in Table 11.2 and Table 11.3, we note that all values are within their confid-
ence intervals. I.e., they produce consistent results for the values examined.

By inspecting the ANEES of fusion of independent tracks in Table 11.2, we
note that all the values are above the 95% confidence interval [3.935,4.065].
This means that the filter is overconfident, i.e. that the covariance matrix under-
represents the error of the estimate. This is as expected, as fusion of independent
tracks assumes no common process noise.

When comparing the ANEES with the manoeuvring indexes shown in Table 11.1,
we see that a higher manoeuvring index leads to lower ANEES values, i.e., more
consistent results. This is similar to the conclusion of Bar-Shalom in [6], where he
concludes that a higher manoeuvring index reduces the effect of the common pro-
cess noise. Bar-Shalom shows this relationship for manoeuvring indexes between
0.1 and +/5. Our results show that this relationship also holds for manoeuvring
indexes between 0.0025 and 3.

In conclusion, fusion of dependent tracks and Kalman filter fusion produced
consistent results for all noise levels examined. Kalman filter fusion produced su-
perior results in terms of RMSE. This could be due to the T2TF techniques being
optimal in ML sense and not in MSE sense, while the Kalman filter is optimal in
both ML sense and MSE sense.

11.1.2 Asynchronous sensors

In Figure 11.2 we can see the ANEES of the three methods plotted for varying AIS
measurement rate. The process and measurement noises are constant, and set to
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process = 0-5 ars = Opgdar = 5. The number of AIS messages per MC simulation
is 40. For an AIS measurement rate of 15, the number of radar measurements
is 40 % 15 = 600. Therefore, the number of NEES values included in calculating
ANEES increases with a higher AIS measurement rate, and the confidence interval
becomes smaller. 40 MC simulations were performed at each AIS measurement
rate.

ANEES with changing AlIS measurement rate
parameters Oprocess = 0.5, Oais =5, Oradar =5
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Figure 11.2: The figure shows the ANEES for changing AIS measurement rate.

By inspecting Figure 11.2, we note that fusion of dependent tracks and Kalman
filter fusion produce consistent results for the AIS measurement rates examined.

The ANEES of independent fusion seems to attenuate for higher AIS meas-
urement rates. Considering that a higher measurement rate would yield a larger
manoeuvring index (see Equation (3.1)), and per the conclusion of Bar-Shalom -
that higher manoeuvring index reduces the effect of the common process noise -
this is reasonable [6]. However, for the values examined here, fusion of independ-
ent tracks is not consistent, as expected.

11.2 Fusion of Tracks with Dissimilar Measurement Noise
Matrices

This section examines the results of AT2TFwoMpE, fusion of independent tracks,
and Kalman filter fusion for noise levels typical when tracking vessels at sea using
radar and AIS. Based on the discussion in Section 2.4, we examine the following
noise standard deviations and measurement rates; 0,444, € [5,200], 045 € [10],
O process € [0-05,3], AIS measurement rate € [2,12] seconds, and radar measure-
ment rate € [1] seconds. To reduce the complexity, we have assumed that the AIS
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measurement noise standard deviation can be approximated to 10. We have also
assumed that the radar measurement rate can be set to 1.

The ANEES and RMSE after performing 150 MC simulations to scenario 2
with AIS measurement rate equal 6 seconds with 300 timesteps by T2TF of de-
pendent tracks, T2TF of independent tracks, and Kalman filter fusion can be found
in Table 11.9, Table 11.10, Table 11.8, Table 11.12, Table 11.13, and Table 11.11.
The ANEES for T2TF of dependent tracks, T2TF of independent tracks, and Kal-
man filter fusion with 0444, = 15, a5 = 10, Oprocess = 0.3 for varying AIS
measurement rate from 2 to 11 can be seen in Figure 11.3.

Oradar =9 | Oradar = 30 Oradar = 200
O process = 005 | 4.01 4.01 4.01
O process = 05| 4.01 4.01 4.01
Oprocess =3 | 401 4.01 4.01

Table 11.8: The ANEES of fusion using the Kalman filter after performing 150
Monte-Carlo simulations with AIS measurement rate equal to 6, and o, = 10.
The 95% confidence interval is 3.99 and 4.01.

Oradar = S Oradar = 30 Oradar = 200
O process = 0.05 | 4.01 4.0 4.01
O process = 0.5 | 4.01 4.01 4.02
O process = 3 4.01 4.01 4.02

Table 11.9: The ANEES of fusion of dependent tracks after performing 150
Monte-Carlo simulations with AIS measurement rate equal to 6, and ;¢ = 10.
The 95% confidence interval is 3.99 and 4.01.

Oradar = S Oradar = 30 Oradar = 200
O process = 005 | 5.66 5.96 5.95
O process = 0.5 | 5.61 5.93 5.99
O process = 3 5.4 5.41 5.17

Table 11.10: The ANEES of fusion of independent tracks after performing 150
Monte-Carlo simulations with AIS measurement rate equal to 6, and o,;5 = 10.
The 95% confidence interval is 3.99 and 4.01.

Examining the ANEES for fusion of dependent tracks, fusion of independent
tracks, and Kalman filter fusion in Table 11.9, Table 11.10, and Table 11.8, we note
that the fusion of dependent tracks and the Kalman filter fusion produces almost
consistent results for AIS measurement rate equal to 6. However, the fusion of
dependent tracks is slightly above the confidence intervals for certain parameters.
The slight overconfident results might be due to the difference in the measurement
standard deviations. Consistent results were shown in the previous section for
AT2TF with identical measurement noise standard deviation.
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Oradar = 5 O radar = 30 Oradar = 200
O process = 0.05 | 1.94 3.44 4.94
O process = 0.5 2.69 4.68 7.2
O process = 3 3.73 6.21 10.31

Table 11.11: The RMSE of fusion using the Kalman filter after performing 150
Monte-Carlo simulations. o ;5 = 10 and AIS measurement rate equal to 6.

Oradar =9 | Oradar =30 | Oradar = 200
O process = 0.05 | 1.96 3.49 5.04
O process = 05| 2.69 4.72 7.29
Oprocess =3 | 3.73 6.24 10.37

Table 11.12: The RMSE of fusion of dependent tracks after performing 150
Monte-Carlo simulations. 043 = 10 and AIS measurement rate equal to 6.

O radar = S Oradar = 30 Oradar = 200
O process = 0.05 | 1.99 3.52 5.06
O process = 0.5 | 2.76 4.8 7.38
O process = 3 3.88 6.43 10.69

Table 11.13: The RMSE of fusion of independent tracks after performing 150
Monte-Carlo simulations. o;5 = 10 and AIS measurement rate equal to 6.

ANEES with changing AIS measurement rate
parameters Oprocess = 0.3, Oais =10, Oragar = 15
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For all parameter, the RMSE of the Kalman filter fusion is lower than the fu-
sion of dependent tracks. Further, for all parameters, the RMSE of the fusion of
dependent tracks is lower than the fusion of independent tracks. Different from
the previous section, the RMSE of fusion of dependent tracks is no longer sim-
ilar to the RMSE of the fusion of independent tracks. This is due to the partial
feedback, which we see have a positive effect on the RMSE.

In Figure 11.3, we see that the Kalman filter fusion produce consistent results
for the examined parameters. The fusion of dependent tracks produces consistent
results for all AIS measurements rates except 11, where the approach is a bit over-
confident. The fusion of independent is over-confident, in a degree similar to what
was seen with identical measurement matrices. The inconsistency of the fusion of
independent tracks decreases with an increased AIS rate, confirming Bar-Shalom’s
note that the inconsistency decreases with increasing manoeuvrability index.



Chapter 12

Track-to-Track Fusion Discussion

12.1 Validity of Using a Cartesian Measurement Model
for Simulating Radar Measurements

An important detail to keep in mind when discussing the results of the fusion
of tracks with AIS and radar noises is the radar measurement model. Different
from the radar measurement model used in Part II and Part IV, the simulations in
this chapter use a radar measurement model with cartesian measurement noise.
As described in Section 2.4, the measurement model of a radar should represent
the noises one would expect to see in the sensor, which for a radar is noise in
range and noise in bearing in addition to Cartesian noise due to clustering and
time-stamping inaccuracies. Using such a measurement model would yield results
that would contain more information about the usage of the T2TF approaches for
AlS-radar fusion. Based on the discussion in Section 2.4, one could hypothesize
whether the change of model would lead to an inconsistency of the fused estim-
ates, as we know the conventional conversion from polar to cartesian to under-
estimate the covariance of the measurements. This is because an ellipse in polar
coordinates becoming banana-shaped in cartesian coordinates, which we cannot
fully represent with a Gaussian distribution in Cartesian coordinates. However,
the author would argue that even though there is room for improvement, as there
always is, the results can still be used to evaluate whether the fusion of independ-
ent tracks can be used or whether an approximation should be used when the
cross-covariance is unknown.

12.2 Target Generation

In the simulations shown, a Constant-Velocity (CV) model is used to generate the
targets. A wide range of process noises is used, to examine the fusion of slower
vessels, such as container ships and ferries and fast vessels, such as leisure vessels
and water scooters. A Coordinated-Turn (CT) model, as described in Section 2.1.2,
could have been used for simulating turning targets. As targets with high process
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noises were simulated, one could argue that it should also cover targets with high
turn rates. However, implementing a CT model as the process model would require
using the extended Kalman filter (EKF). The inclusion of the CT models leads to
linearizations that do not necessarily produce consistent results. As discussed in
[55], the CT EKF ANEES is up to twice as large as it should be for the values they
examined. The CV model was even more inconsistent. These results suggest that
it would be interesting to look at the consistency of T2TF when the targets move
according to a CT model. The derivations of the cross-covariance assume a linear
process model, and as the CT model is non-linear, the derived cross-covariance
would only be an approximation.

12.3 Feedback versus No Feedback

There is a fundamental difference between feedback of fused estimates and no
feedback. In our AlS-radar scenario, it is most relevant to discuss feedback to the
radar tracker, as it has a higher measurement frequency. Feedback to the radar
tracker can either have a positive effect or a negative effect. If the track-to-track
association (T2TA) was correct and the AIS tracker had a consistent estimate, the
feedback would increase the accuracy of the radar trackers estimate. If the T2TA
was wrong, or the AIS tracker was overconfident, the feedback would lead to
either a worse estimate or at least a less consistent estimate. In most cases, the
feedback would be positive. If not, there would be no reason to use the AIS tracker
in the first place. Regardless of the quality of the individual trackers, the point is
that feedback of fused estimates might have a negative effect and might make
the radar tracker more likely to diverge. With no feedback, one does not risk a
negative-feedback loop, where the result of a couple of false radar measurements
leads to a wrong T2T association which further leads to a worsen estimate.

Implementing the T2TFwoMpF in practice can be challenging in the best case
or near undoable in the worst case. First, the cross-covariance must be calculated.
In our simple Kalman filter simulations, the cross-covariance was calculated us-
ing the linear formulas of the Kalman filter. When multiple models are used, such
as for the Interacting Multiple Models (IMM) [56], the calculation of the cross-
covariance becomes complex. Furthermore, when data association is not solved by
hard association as assumed in our calculations, the calculations become further
cluttered. In practice, one can hope for a decent estimate or opt for an approxim-
ation as in e.g. [57]. Further, partial feedback must be implemented in the radar
tracker. Depending on the selected radar tracker, this might be easy or impossible
if an off the shelf radar tracker is used, where source code is not available.



Part IV

Track-to-Track Association and
Fusion
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Chapter 13

Track-to-Track Association and
Fusion Method

We have examined track-to-track association (T2TA) and track-to-track fusion
(T2TF) independently of each other in the previous two parts. For T2TE we as-
sumed perfect associations, and for T2TA, we only analyzed the associations. This
chapter discusses why we opt for the T2TF of independent tracks in combination
with the hypothesis test (HT) for our final tracking system. We also describe our
experimental setup for analyzing the complete tracker.

13.1 Choosing a T2TA and T2TF Method

In the previous parts, we have evaluated several approaches to T2TA and T2TE
Within T2TA, we have looked at the counting technique (CT) and the hypothesis
test of independent tracks (HT). Within T2TE we have looked at the fusion of
independent tracks and track-to-track fusion without memory partial feedback
(T2TFwoMpF). All combinations of T2TF and T2TA is possible.

The combination of the counting technique and the T2TFwoMpF is interest-
ing. One can assume the AIS tracks will not swap targets, as it could only happen if
two vessels with the same MMSI number is in the same area or if a vessel actively
changed the MMSI number to a nearby vessels MMSI number. Either case is im-
probable. By assuming that the AIS tracks will not swap tracks, the feedback of the
fused estimates can aid the radar tracker in not swapping tracks. When we use the
counting technique, the tracks will remain associated until they have been further
away than threshold from each other for T timesteps in a row. If the radar tracker
starts to diverge or swap tracks, being associated with the AIS tracker might guide
it back on track.

A problem of the T2TFwoMpF is the need to calculate the cross-covariance.
The author would argue that calculating the exact cross-covariance of the output
of the VIMMJIPDA radar tracks and the AIS tracks would be too cumbersome,
so an approximation to the cross-covariance must be taken. The T2TFwoMpF is
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not further examined, as the author found that the inconsistency of the fusion
of independent tracks is not too severe. Further, the partial feedback ruins the
modularity that this thesis seeks to obtain.

The author found that both the CT and the HT would be a viable approach
to the T2TA problem. However, the author chose to use the HT as it had a lower
initialization time while still performing well in terms of false-positive rate and
true-positive rate.

The complete tracker is combined such that when there are no fused estimates
available, the estimates from the radar tracker is used.

13.2 Experimental Setup

The experimental setup is identical to that used in Section 6.1.

In addition to the Average Normalized Estimation Error Squared (ANEES) and
root-mean-squared-error (RMSE), an OSPA-like metrics for tracks will be used.
The metric is called OSPA? and was presented in [58].



Chapter 14

Track-to-Track Association and
Fusion Results

In this chapter, the whole tracking system will be evaluated. First, we will ex-
amine the average normalized estimation error squared (ANEES) along with the
root-mean-squared-error (RMSE) in a consistency analysis. The results will be
compared to the measurement-to-track (M2T) approach, in this thesis exempli-
fied with the AIS-radar VIMMJIPDA described in Hem’s Thesis [28]. Our track-to-
track approach (T2T) will also be compared with M2T using the 0SPA®) metric
to examine which feature of the trackers are superior to the other.

The results presented are from 100 monte-carlo simulations using the tracker
parameters in Table 14.1 and scenario parameters in Table 14.2.
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Parameter Symbol/Units Value
Radar sample interval T [s] 2
CV 1 process noise dan [m/s?] 0.1
CV 2 process noise da2 [m/s?] 1.5
Turn rate process noise q, [1/5%] 0.02
Cartesian range std. radar o, [m] 6.6
Cartesian range std. AIS o, [m] 3
Polar range std. o, [m] 5
Polar bearing std. oy [deg] 1
Detection probability Py [-] 0.92
Survival probability Ps [-] 0.99
Visibility transition probabilities w[-] [ 0.9 0.1 ]

0.52 0.48
Gate size g [-] 3
Track fusion hypothesis significance level [-] 0.01
Clutter intensity A[1/m?] 2x 1077
Initial new target intensity b[1/s%] 1x1078
Initial velocity std. Oinit [m/s] 15
Initial mode probabilities ul [-] [0.8,0.1,0.1]7
Mode transition probabilities 5 [-] [0.99,0.99,0.99]
Existence confirmation threshold -] 0.999

Table 14.1: Tracker parameters.

Parameter Symbol/Units Value
Radar sample interval T [s] 2
CV process noise q, [m/s?] 0.3
Cartesian range std. radar o, [m] 6.6
Cartesian range std. AIS o, [m] 3
Polar range std. o, [m] 3
Polar bearing std. o [deg] 1
Clutter intensity A [1/m?] 2x 1077
Detection probability radar Plgad“r 0.92
Detection probability AIS PSI $ 1
Max initial velocity Vinie [m/s] 10
Birth time max [s] 50
Scenario length [s] 400
Number of target 5

Table 14.2: Simulated data parameters.
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14.1 Consistency Analysis

In Table 14.3, the ANEES and RMSE for the two approaches are shown. The 95%
confidence interval is 3.95 and 4.05.

The ANEES of the M2T approach is within the confidence interval, while the
ANEES of the T2T approach is below the confidence interval. This shows that the
T2T approach is under-confident. It suggests that, on average, the covariances of
the estimates of the T2T approach is too large. However, the under-confidence is
small and is not necessarily a reason for concern. As we do not feedback the fused
estimates, the under-confidence of the fused estimates do not have a negative
effect on the local trackers. Therefore, the author would argue that the RMSE is
of more concern.

Examining the RMSE, we note that the T2T approach has a smaller RMSE
than the M2T approach. There is almost a 20% decrease in RMSE using the T2T
approach. This large decrease in RMSE is surprising, as the M2T is theoretically
superior to the T2T approach.

ANEES T2T ANEES M2T RMSE T2T RMSE M2T
3.50 3.95 4.71 5.65

Table 14.3: The RMSE and ANEES of the T2T and M2T approach.
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14.2 Comparison of the M2T and the T2T Approach

To compare the M2T and T2T approaches, OSPA® for varying parameters are
examined. By varying the window size n, the cutoff threshold ¢ and the norm
order p, we can evaluate the trackers’ properties and compare their positional
errors, their cardinality errors and the magnitude of outliers. A similar analysis
between the radar VIMMIJPDA and the AlIS-radar VIMMJIPDA is shown in [28].

OSPA® for varying window size n with ¢ = 100 and p = 2 are shown in
Figure 14.1. The T2T approach produces lower OSPA®) values for all n. With
n = 1, the OSPA® metric will not penalize any track swap, while with n = 20,
track swaps will be penalized over 20 timesteps. The difference in OSPA®) values
increases with an increasing n. The slight increase in difference might suggest an
increase of track swaps in the M2T approach. It might also be due to the slightly
lower positional errors of the T2T approach, as shown by the RMSE in Table 14.3.
The author finds the positional error explanation to be more plausible, but more
examination is needed to conclude on the cause.

In Figure 14.2, OSPA® for varying cutoff threshold, p = 2, and n = 10 is
shown. A low cutoff threshold will penalize cardinality errors less than what a
high cutoff threshold will. With the cutoff threshold set to 100, any tracks more
than 100 meters from their ground truth will be considered a cardinality error.
The OSPA® values are almost identical for the T2T and the M2T approach, with
the M2T approach slightly beating the T2T approach when the cutoff threshold is
above 240.

Figure 14.3 shows the OSPA® for varying norm order p, n = 10, and ¢ =
100. A higher norm will penalize outliers more than a lower norm. We see that
the difference between T2T and M2T is similar to that when varying the cutoff
threshold c. The results might show that the T2T approach has greater outliers
than the M2T approach. With p = 2, we get the euclidean norm. The results
show that the positional errors are smaller for the T2T approach but have a larger
variation, i.e., larger outliers. The difference is small and might change with other
scenario parameters.
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Figure 14.1: OSPA® for varying window size n with ¢ = 100 and p = 2.
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Figure 14.2: OSPA® for varying cutoff threshold ¢ with n = 10 and p = 2.
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Figure 14.3: OSPA® for varying norm order p with ¢ = 100 and n = 10.







Chapter 15

Track-to-Track Association and
Fusion Discussion

15.1 Track-to-Track versus Measurement-to-Track

The results showed that the track-to-track (T2T) approach was superior to the
measurement-to-track (M2T) approach in terms of root-mean-squared-error (RMSE)
and also scored a lower OSPA® for most parameter choices. In terms of average
normalized estimation error squared (ANEES), the M2T approach was consistent,
while the T2T approach was slightly under-confident.

Using the sub-optimal track-to-track fusion of independent track, one would,
in a single-target tracking scenario with perfect associations, get an over-confident
estimate. This is discussed in Section 3.2, and shown in the results in Chapter 9.
The results of the complete system show that the T2T approach was under-confident.
The author thinks that this can be explained by considering how the hypothesis
test works. As shown in Section 4.1, the hypothesis test determines whether two
tracks originate from the same target by comparing their state estimates along
with their covariances. Assuming two tracks with fixed positional estimates. Then,
it is more likely that the two tracks are associated if the covariances are large than
if they were small. The larger the covariances, the larger the positional difference
between the tracks can be and still be associated. Further, if the two tracks are
under-confident, they would have a large covariance and are more likely to be
associated. If the two tracks are over-confident, they would have smaller covari-
ances and, thus, would be less likely to be associated. This leads the author to
think that under-confident estimates from the local trackers are more likely to
be associated than over-confident estimates. This could explain why the complete
tracker is under-confident, even though it uses an over-confident fusion approach.

This could be examined in future work by checking whether the associated
tracks are more often under-confident than over-confident, given that the tracker
is, on average is consistent.

Surprisingly, the T2T approach yielded better results than the M2T approach,
as it is using a sub-optimal fusion and association approach. Further, even if the
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cross-covariance had been included, the T2T approach is known to be theoretic-
ally inferior to the M2T approach [54]. The analysis of the OSPA®® values showed
no clear superiority in terms of cardinality errors or smaller outliers, and the gain
seems to be mostly in terms of smaller positional error. Exactly why the T2T ap-
proach yielded superior results is beyond the scope of this thesis, but the author
would propose two hypotheses that could be further examined;

1) The AIS-Radar VIMMJIPDA has some undesirable behaviour. Due to its con-
sistency, the author does not think that there is a fault in the filtering, but rather
that there might be a sub-optimal track management scheme. A first step could
be to check whether there is a sub-optimal initialization scheme. This could be
done by only calculating OSPA® values after all tracks have been alive for some
timesteps. Then, by comparing the results to OSPA® values when the initializa-
tion steps are included, one could see whether there was a clear difference.

2) The T2T approach is superior to the M2T approach for fusion of AIS and
radar. In theory, the T2T approach is inferior to the M2T approach [54]. As all the
theory’s assumptions are not always met, a theoretically sub-optimal method may
end up being better in practice. Coraluppi et al. note that in certain conditions,
T2T approaches outperform M2T approaches [59].

Regardless of why the T2T approach yielded better results than the M2T ap-
proach, the results suggest that the tracking system developed is a viable solution
to fusion of AIS messages and radar measurements.



Chapter 16

Conclusion

16.1 Conclusion

This thesis has developed a complete multi-target tracking (MTT) system which
fuses radar measurements and AIS messages. The radar tracker used is the VIMMJIPDA
tracker of [27]. The MTT solves the problem of track-to-track association (T2TA)
and track-to-track fusion (T2TF) using the hypothesis test of independent tracks
and the fusion of independent tracks.

To decide on a solution to the T2TA problem, two methods were compared
by means of simulations using a complete MTT system. The simulations included
MTT challenges not found in the literature on the evaluation of T2TA, such as
late track initialization, track loss, and track swap. These challenges lead to a
non-trivial problem of determining the ground truth of the tracks, which is solved
by a proposed sliding window approach. The results showed that the counting
technique was superior to the hypothesis test in terms of false-positive rate and
true-positive rate while being inferior in terms of initialization time. The results
suggest that the counting technique is a viable approach to T2TA when the cov-
ariance information is not available and can also be a better choice if the higher
initialization time is of less concern.

The developed MTT system was compared to the measurement level AIS-radar
VIMMUJIPDA of [28]. The results showed that the T2T approach was superior in
terms of positional error and OSPA? while being slightly under-confident. Thus,
the results suggest that the T2T approach to the fusion of AIS and radar is viable.

16.2 Recommendation for Further Work

This work has covered a range of topics, including T2TA, evaluation of T2TA, T2TE
and comparing the track level approach and the measurement level approach. To
cover all the topics, one has to, at some point, decide that it is time to move on.
However, there are several things that the author would have liked to have further
examined if there had been more time. Some of them are discussed below.
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This work has presented a full T2T approach that performs better than a sim-
ilar M2T approach. The M2T approach is known to be theoretically superior to
the T2T approach, so further work can try to understand why the T2T approach
yielded better results in the fusion of Radar and AIS. The author suggested two
hypotheses in the discussion of Chapter 12 which could be further investigated.
The first hypothesis is that there is some undesirable behaviour of the implemen-
ted AIS-Radar VIMMJIPDA, e.g. the initialization scheme. The second hypothesis
is that the T2T approach is superior for fusion of AIS and radar in practice. Cora-
luppi et al. note that in some conditions, the T2T approach performs better [59].

One of the main contributions of this work was to compare the counting tech-
nique (CT) and the hypothesis test of independent tracks (HT). Further perform-
ance evaluation can include using the coordinated turn model and examining
specific cases that can be challenging in a T2T approach.

Comparing the CT and the HT when the local trackers produce inconsistent
results is interesting. As the HT use covariance information, one would think that
the results are quite affected by inconsistent local trackers. Challenging conditions
were examined in this thesis. However, no consistency of the local trackers was
presented, and we cannot directly assume that the local trackers became more
inconsistent with increased difficulty. Therefore, no analysis on the effect of in-
consistency on the T2TA approaches was presented. Previous work on the effect
of inconsistent trackers on the HT does not include typical MTT problems such as
misdetection, missed detections, false alarms and delayed initialization [17].

The prospect that most excites the author is the possibility of combining two
counting techniques. Such a combination was proposed in Chapter 8. The goal of
such a combination would be to reduce the initialization time while keeping the
high TPR and low FPR. A possible solution would be to use two CTs in combina-
tion, where two tracks are considered associated if either of the two CTs associated
them. The author would have started by examining the performance of using a
CT with a small threshold and e.g. parameters ¢ = 2 and T = 1 in combination
with a CT with a large threshold and e.g. parameters 1) =4 and 7 = 3.

In Chapter 10, a combination of the T2TFwoMpF and the CT was proposed.
The author finds the combination especially interesting, as it might aid the radar
tracker in reducing the likelihood of losing track or swapping tracks. The premise
is that one can assume that the AIS tracker is immune to track swaps and track
loss. Then, as the CT keeps associating tracks that are further than threshold from
each other for 7 timesteps, it is possible that the feedback of the fused estimate
to the radar tracker helps the radar tracker avoid track swap and track loss.
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