
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Sondre Olsen

Safe reinforcement learning for
control-affine systems with
probabilistic safety constraints

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Jan Tommy Gravdahl
Co-supervisor: Dr. Esten Ingar Grøtli

June 2021

M
as

te
r’s

 th
es

is





Sondre Olsen

Safe reinforcement learning for
control-affine systems with
probabilistic safety constraints

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Jan Tommy Gravdahl
Co-supervisor: Dr. Esten Ingar Grøtli
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Preface

This thesis is submitted in partial ful�llment of the requirements for the degree of Master
of Science in Cybernetics and Robotics, and it is the culmination of the work that will
conclude my time at the Norwegian University of Science and Technology (NTNU). The
work presented in this thesis was carried out during the spring semester of 2021 under the
supervision of Jan Tommy Gravdahl and Esten Ingar Grøtli, who have o�ered valuable
advice. Akhil S. Anand has provided feedback and has helped read through a draft of the
thesis.

The thesis is inspired by recent advances in learning-based control for safety-critical
systems. It is assumed the reader has prior knowledge of linear algebra and control theory,
as well as some knowledge of optimization theory. Familiarity with machine learning, and
in particular reinforcement learning, will be bene�cial, but not necessary as this topic will
be introduced.

This thesis is the continuation of a specialization project conducted during the fall semester
of 2020. Some important background theory from the specialization project report will be
paraphrased or restated in updated form throughout the thesis. Following is a complete
list of the material included from the specialization project report:

• Section 2.1.1

• Section 2.4 - Section 2.4.1

• Section 2.5

• Section 2.7 - Section 2.7.3

• Section 2.8

One of the contributions in this thesis, a method for safe exploration, makes use of a matrix
variate Gaussian process model based on the work by Dhiman et al. [1]. This model was
implemented in the Python programming language and model regression was performed
using the GPyTorch library [2]. The neural networks used in the deep reinforcement
learning algorithm were implemented and trained using the PyTorch library [3].
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Abstract

Reinforcement learning holds promise to enable autonomous systems to acquire novel
skills without human intervention, and recent years have seen signi�cant advances in
ways of learning optimal control policies in unknown environments. While many of
these algorithms achieve impressive performance, they are typically not concerned with
guaranteeing safe operation during learning, which may cause unsafe or harmful behavior
in real-world scenarios. Motivated by the importance of safety-critical control in learning-
based systems, this thesis introduces a framework for safe learning based on control barrier
functions to ensure system safety with high probability.

Many learning-based algorithms for safety-critical control rely on prior knowledge from the
environment they are deployed in, or introduce restrictive assumptions on potential control
policies. Currently, there is an initiative to unify the �exibility o�ered by reinforcement
learning with the rigorousness of classical control methods, in order to ensure system
safety and stability. Methods have been developed that learn subject to safety constraints,
and which obtain stochastic model estimates of unknown system dynamics. However,
few methods for obtaining less restrictive guarantees of safety for reinforcement learning
frameworks exist.

In this thesis, a framework for safety-constrained, model-based reinforcement learning is
proposed and evaluated. An exploration scheme for safely learning a Gaussian process
model from actively sampled data is introduced. Control barrier functions are utilized to
provide probabilistic guarantees of safety while exploring. Further, a method for safety-
constrained policy optimization is developed. The stochastic dynamics model found by
safe exploration is utilized to produce an episodic framework for learning. From the
theoretical framework, a practical version is implemented and its performance is evaluated
in simulation.
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Sammendrag

Forsterkende læring holder løfte om å gjøre det mulig for autonome systemer å tilegne
seg nye ferdigheter uten menneskelig innblanding, og i senere år er det gjort betydelige
fremskritt innen måter å lære optimale reguleringsregler i ukjente omgivelser. Selv om
mange av disse algoritmene oppnår imponerende ytelse, er de typisk ikke opptatt av å
garantere sikker drift under læring, noe som kan forårsake skadelig oppførsel i scenarier i
den virkelige verden. Denne oppgaven er motivert av viktigheten av sikkerhetskritisk reg-
ulering hos læringsbaserte systemer, og introduserer et rammeverk for sikker læring basert
på kontrollbarrierefunksjoner for å sørge for systemsikkerhet med høy sannsynlighet.

Mange læringsbaserte algoritmer for sikkerhetskritisk regulering er avhengige av forhånd-
skunnskap om omgivelsene de er utplassert i, eller introduserer restriktive antagelser om
potensielle reguleringsregler. For tiden �nnes det initiativ for å forene �eksibiliteten gitt av
forsterkende læring med strengheten til tradisjonell reguleringsteknikk, med den hensikt å
sørge for sikkerheten og stabiliteten til systemer. Det har blitt utviklet metoder for læring
som er underlagt sikkerhetsbegrensninger, og som innhenter stokastiske modellestimater
av en ukjent dynamisk systemmodell. Det �nnes derimot få metoder for å oppnå mindre
restriktive sikkerhetsgarantier for forsterkningslæringsrammeverk.

I denne oppgaven utformes og evalueres et rammeverk for sikkerhetsbegrenset modell-
basert forsterkende læring. En metode for utforskning for å lære en Gaussisk prosess
fra aktivt innhentet data blir introdusert. Kontrolbarrierefunksjoner blir benyttet for å
gi probabilisitiske sikkerhetsgarantier under utforskning. Videre utvikles en metode for
sikkerhetsbegrenset optimalisering av en reguleringsregel. Den stokastiske dynamiske
modellen funnet gjennom sikker utforskning utnyttes for å lage et episodisk læringsram-
meverk. En praktisk versjon av det teoretiske rammeverket implementeres og evalueres i
simulering.
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1 | Introduction

1.1 Background and motivation

Reinforcement Learning (RL) is an e�ective paradigm for learning to control dynamical
systems [4]. When a model of the environment is not perfectly known a priori, learning-
based control methods can provide successful policies for complex tasks and objectives in
ways which classical control methods might not be able to. Intelligent agents are, for ex-
ample, able to learn driving behavior from pure visual input [5, 6], and deep reinforcement
learning techniques are utilized to outperform human players in complex, many-state
games such as chess and go [7, 8]. Moreover, autonomous systems that learn to observe
and interact with their environments have also demonstrated formidable abilities in re-
cent years, especially within areas such as motion planning [9], obstacle avoidance [10],
autonomous navigation [11, 12] and robotic locomotion and manipulation [13, 14].

Autonomous systems intended to operate in physical environments must ensure their
own safety as well as that of their surroundings. Many strategies for control traditionally
rely on �xed rules for behavior, provide pre-computed action sequences or utilize known
dynamics for specifying online policy updates. While such strategies often work well in
supervised scenarios or in cases where the operational conditions rarely change, systems
that fail to consider uncertainty, unforeseen changes or unknown dynamics can cause
inadvertent harm during real-world deployment. This expectation of autonomous systems
to safely operate in unstructured environments has, in part, elicited an in�ux in research
on safety-critical, learning-based control methods [15].

Consider, for example, a medical robot performing an ultrasound scan on a patient. This
task requires compliant manipulation in an unknown environment, and an autonomous
system must safely scan the patient. It is clearly unacceptable for the robot to harm the
patient during the procedure or crash into other medical equipment. One safety constraint
can, for instance, be de�ned as a maximum amount of contact force that should be applied

1



Chapter 1. Introduction

to the skin. The system should avoid applying more force in order to remain safe. As the
environment dynamics are a priori unknown and only an initial model of the soft-body
physics is available, the contact forces will be highly uncertain. Therefore, it is not possible
for a control algorithm to reason about which actions are safe prior to their execution.
In order to guarantee safe control, the algorithm must learn a dynamics model while
interacting with the environment through a process of safe exploration: data samples
should be collected in such a way that the safety-critical constraints are satis�ed. As the
system adapts its behavior and improves its model of the environment episodically, under
the assumption of a safe control scheme, a control policy that is both optimal and does not
violate the imposed safety constraints could be synthesized.

Despite their impressive enterprises, most learning-based methods do not take safety
guarantees into consideration during learning [15, 16]. They allow the control of dynamical
systems in unknown environments, however the exploration vs. exploitation trade-o�
intrinsic to reinforcement learning necessitates the need to try out random actions in order
to �nd optimal ones [4]. A reinforcement learning agent generally depends on randomly
exploring its environment in order to improve model accuracy, while simultaneously
taking advantage of what it already knows by exploiting actions that maximize cumulative
reward over time. In contrast to the example of safe exploration laid out above, many
algorithms therefore end up evaluating all possible actions in search of an optimal solution,
and in doing so they fail to consider the potential harmful e�ects of intermediate policies.
Random actions cannot necessarily be fed as control inputs to real-world systems on any
account, since they may be considered dangerous or cause unsafe behavior. Consequently,
most learning-based methods cannot reliably be deployed in safety-critical scenarios.

Several methods have been suggested to guarantee the safety of dynamical systems. Since
the notion of safety was �rst introduced in the form of program correctness [17] and
later formalized for safety-critical systems [18], many di�erent approaches to safe rein-
forcement learning have been de�ned [19], including risk-averse reward speci�cation,
transformation of optimization criteria and robust- and constrained Markov Decision
Processes (MDPs) [19–22]. Commonly, many of these methods require upfront knowledge
of an accurate model of the system dynamics.

Gaussian Processs (GPs) are a type of stochastic process that can be used to learn an
approximate model of a system in cases where the true system dynamics are unknown
or an accurate model is unavailable [23]. GPs have been utilized by many for modeling
uncertain environments [24, 25], including e�orts to capture uncertainty in constraints
related to system properties [26]. Polymenakos et al. [27] propose a method for safe
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1.2. Problem formulation

policy search under uncertainty, while others use GPs for safe optimization in model-based
reinforcement learning settings to provide better model estimates [28].

Recent years have seen an initiative in research on analyzing and verifying the stability
and safety of learning-based methods. Perkins et al. [29] switch between a priori safe
policies, while Uchibe et al. [30] utilize a policy gradient search algorithm that enforces
active constraints. The method in [30] does not guarantee the safety of a policy at all times,
so further e�orts have been made to develop higher-dimensional policy search algorithms
for constrained MDPs that provide guarantees about policy behavior throughout the entire
training period [31, 32].

Lyapunov stability analysis can be used to ensure safe system behavior during learning,
in terms of stability guarantees. Several methods apply Lyapunov function theory to
verify the stability of known dynamics and to safely approximate a region of attraction
for unknown dynamics [24, 33], while others utilize Control Lyapunov Functions (CLFs)
to enforce asymptotic system stability [34]. Berkenkamp et al. [28] propose a framework
for model-based reinforcement learning that iteratively veri�es the safety of a second-
order dynamical system using Lyapunov’s method, which yields provable high-probability,
closed-loop stability certi�cates.

Guarantees of safety in terms of constraint satisfaction have also received signi�cant
attention lately. Control Barrier Functions (CBFs) have been utilized to de�ne a more
permissive notion of safety based on barrier certi�cates, which enforce the safety of a
closed-loop system through the invariance of a safe set of system states. Many have used
CBFs to de�ne safety constraints during learning [35–37], while Khojasteh et al. [38]
propose a Bayesian framework for learning unknown dynamics and imposing probabilistic
safety constraints when optimizing system behavior. A recent publication by Dhiman
et al. [1] builds upon the safe learning framework from [38], and the authors utilize a
Gaussian process distribution of the unknown system dynamics to formulate probabilistic
constraints in order to enforce safety under uncertainty.

1.2 Problem formulation

The aim of this thesis is to investigate the use of control barrier functions as a tool for
ensuring the safety of an online, model-based reinforcement learning framework. Dhiman
et al. [1] learn a posterior estimate of unknown system dynamics by Gaussian process
regression, but limit their set of potential control policies to those that are synthesized

3
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from solving a safety-constrained quadratic program. Berkenkamp et al. [28], on the other
hand, perform online, model-based reinforcement learning and solely evaluate actions
guaranteed to be safe with regards to an uncertain model of the system dynamics during
the exploration phase. However, they utilize control Lyapunov functions and analyze the
stability of their closed-loop system, which in turn means their method is based on a more
restrictive notion of safety than the one a�orded by control barrier functions.

Based on these considerations, a question related to the safety of learning-based control
methods is posed, which the work presented in the following sections attempt to answer:

Can control barrier functions be used to provide high-probability safety guarantees for a
model-based reinforcement learning algorithm in an unknown environment?

1.3 Contributions

The following contributions are made in an attempt to �nd a solution to the above problem:

1. A method for safe exploration is developed, which aims to only sample regions of the
state space that are guaranteed to be safe with high probability in order to improve
a model of a priori unknown system dynamics.

2. An algorithm for model-based reinforcement learning is proposed, which uses safe
exploration to inform a model of unknown dynamics, and which utilizes control
barrier functions in order to synthesize a control policy that is optimized subject to
probabilistic safety constraints.

1.4 Thesis outline

The thesis is organized into six main parts, and is comprised of the following sections:

Chapter 2 presents relevant background on theoretical concepts, including central the-
ory related to nonlinear systems, the notions of system stability and safety and control
Lyapunov- and barrier functions, Gaussian process regression, reinforcement learning,
and deep learning.

In Chapter 3, the method for safe learning with CBFs is explained, and the high-probability
guarantees of the safety of the system during exploration is showed. The proposed
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1.4. Thesis outline

algorithm is inspired by the model-based learning framework from Berkenkamp et al., and
utilizes probabilistic control barrier conditions derived in Dhiman et al.

Further, in Chapter 4, simulation experiments on two second-order system are conducted,
to test a practical implementation of the safe learning algorithm.

Then, in Chapter 5, both the practical and theoretical results are discussed and evalu-
ated, and the feasibility and limitations of the theoretical algorithm is discussed. Finally,
Chapter 6 concludes the thesis.
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2 | Background theory

In this chapter, necessary background theory is presented. First, an introduction to some
relevant aspects of dynamical systems modeling and control are given. Next, control
Lyapunov and control barrier functions are presented, and their relation to system safety
is explained. Further, key aspects of reinforcement learning are covered, with a focus on
model-based, policy gradient methods. Lastly, a few notable concepts from deep learning
are brie�y presented.

Material in Section 2.1.1, Section 2.4 - Section 2.4.1, Section 2.5, Section 2.7 - Section 2.7.3
and Section 2.8 was included in the specialization project report [39], and is restated here
in updated form.

2.1 Dynamical systems

A dynamical system describes the behavior of a system over time. Consider a time-varying
nonlinear system for which the system state and input are represented by a state variable
x ∈ X ⊂ R= and a control action variable u ∈ U ⊂ R< , respectively. A model of the
system dynamics that describes the time evolution of the system state, 5 : R= → R= , can
then be expressed as

¤x = 5 (x,u). (2.1)

Control-a�ne systems are a special class of nonlinear dynamical systems, characterized
by being a�ne with regards to the system control actions. Considering a drift term
5 : R= → R= and an input gain 6 : R= → R= × < , a model describing the time evolution of
the system state of a control-a�ne system can then be expressed as

¤x = 5 (x) + 6(x)u = [5 (x) 6(x)]
[
1
u

]
:= � (x)u. (2.2)

Throughout the thesis, the dynamical systems to be controlled are assumed to be control-
a�ne. Furthermore, 5 and 6 are assumed to be locally Lipschitz, which is a standard

7



Chapter 2. Background theory

assumption in reinforcement learning [34, 40]. Also, an initial state x0 is assumed to be
known in advance of the initialization of the control scheme.

In general, systems are controlled by applying actions at every time step. The sequence of
actions that are applied to the system can be denoted by a control policy,

u = c (x), (2.3)

such that for a given state xC at time step C , the policy c selects which action uC to apply.
The resulting closed-loop system can be written on shorthand form as 5c (x) = 5 (x, c (x)).
In cases where the policy is parameterized by a vector of parameters θ ∈ Θ ⊂ R3 , such as
in Section 2.8.1, this can be explicitly expressed by denoting the policy as cθ (x).

2.1.1 Nonlinear control

The control problem can be de�ned as applying control actions that lead a dynamical system
to exhibit desirable behavior or perform a desired task. This is done by �nding a suitable
control policy. Some well-known examples of control tasks are system stabilization, refer-
ence tracking and disturbance rejection. Nonlinear systems, which exhibit more complex
behavior than linear systems due to their inherently richer dynamics, are thereby more
relevant for non-trivial control tasks and more interesting for qualitative and quantitative
analysis [41].

System stabilization is a control task that motivates safety for dynamical systems. By
�nding a policy that drives a system to some stable state, an equilibrium point of the
system is stabilized. An equilibrium point x is stable if all solutions that start near x
remain nearby forever. A formal de�nition of stability is provided in De�nition 1, where
x is considered an equilibrium point of (2.1), such that 5 (x) = 0 and 5 is assumed to be
locally Lipschitz.

De�nition 1 (De�nition 4.1 from Khalil [41]).
The equilibrium point x = 0 of (2.1) is

• stable if, for each n > 0, there is X = X (n) > 0 such that

‖x(0)‖ < X =⇒ ‖x(C)‖ < n, ∀ C ≥ 0 (2.4)

• unstable if it is not stable.
• asymptotically stable if it is stable and X can be chosen such that

‖x(0)‖ < X =⇒ lim
C→∞
‖x(C)‖ = 0 (2.5)

8



2.1. Dynamical systems

The equilibrium point is de�ned at the origin without loss of generality [41], as any
equilibrium point can be shifted to the origin by a change in variables. The function 5

in De�nition 1 is assumed to satisfy the Lipschitz condition, which for all points x,y ∈ R=

states that,
‖ 5 (x) − 5 (y)‖ ≤ !‖x − y‖ (2.6)

for a positive constant !, called the Lipschitz constant [41].

Verifying the stability of a system can prove challenging to do in general. Directly using
the condition (2.5) in De�nition 1 to show the asymptotic stability of a nonlinear system
requires reasoning about all trajectories around the equilibrium point in�nitely long into the
future. Under some additional conditions however, Lyapunov’s stability theorem provides
a convenient way to determine the stability of Lipschitz systems without needing to study
all trajectories. Utilizing a Lyapunov function + , then by Theorem 1, the asymptotic
stability of an equilibrium point of a continuous nonlinear system can be veri�ed.

Theorem 1 (Theorem 4.2 from Khalil [41]).
Let x = 0 be an equilibrium point for (2.1). Let + : R= → R be a continuously di�erentiable
function such that

+ (0) = 0 and + (x) > 0 ∀ x ≠ 0 (2.7)

‖x‖ → ∞ =⇒ + (x) → ∞ (2.8)

¤+ (x) < 0, ∀ x ≠ 0 (2.9)

Then, x = 0 is globally asymptotically stable.

In a nonlinear context, Theorem 1 can be interpreted equivalently to �nding a control
policy, or more speci�cally a feedback control law, c (x) that drives a positive de�nite
function + to zero [34]. In the case of control-a�ne systems on the form of (2.2), + is a
Lyapunov function candidate if there exists a control policy u = c (x) that provides system
inputs in a way which makes the time derivative of the Lyapunov function negative, such
that ∇+ (x) · (5 (x) + 6(x)c (x)) < 0. That is, for some class K function U [34],

¤+ (x, c (x)) ≤ −U+ (x). (2.10)

In (2.10), the time derivative of the Lyapunov function can be expressed using the Lie
derivatives of + along 5 and 6,

¤+ (x, c (x)) = L5+ (x) + L6+ (x)c (x). (2.11)

9



Chapter 2. Background theory

As can be seen from Theorem 1 and (2.10), the process of �nding a Lyapunov function
serves as a convenient way to verify the stability of a closed-loop system for a given control
policy. However, in the cases where such a policy has not been selected in advance, this
method of Lyapunov function stability veri�cation will not su�ce. This has motivated the
development of control Lyapunov functions [34], partly through an observation that only
the existence of a control policy which results in the equality (2.10) is needed in order to
verify system stability [41, 42].

2.2 Control Lyapunov functions

Control Lyapunov functions extend the theory behind Lyapunov’s method for stability
veri�cation to systems where no explicit control policy has already been constructed.
Similarly to the de�nition of the function in (2.10), the function + is a CLF for the system
in (2.2) if it is a Lyapunov function candidate for which there exists a possible choice of
control actions u that renders its time derivative negative. In other terms, there must exist
a control policy providing inputs such that ∇+ (x) · (5 (x) + 6(x)u) < 0 [1, 34]. A formal
de�nition of control Lyapunov functions is provided in De�nition 2.

De�nition 2 (De�nition 1 from Dhiman et al. [1], paraphrased).
A function + : X ∈ R= → R is a CLF for the system in (2.2) if

+ (x) > 0 ∀ x ∈ X \ {0}, and + (0) = 0, (2.12)

and if it satis�es

inf
D∈U
[L5+ (x) + L6+ (x)u + U+ (x)] ≤ 0 ∀ x ∈ X (2.13)

for some class K function U .

The left-hand side of (2.13), which by De�nition 2 serves as a stability condition, can be
de�ned as a Control Lyapunov Condition (CLC) [1], such that

�!� (x,u) := L5+ (x) + L6+ (x)u + U+ (x). (2.14)

The utilization of the control Lyapunov condition in (2.14) leads to a central result for a
way which control Lyapunov functions provide a su�cient condition for stability [34].

Theorem 2 (Theorem 1 from Ames et al. [34], paraphrased).
If there exists a control Lyapunov function + for the system in (2.2), then any Lipschitz
continuous control policy

c (x) ∈ {u ∈ U | �!� (x,u) ≤ 0} (2.15)

10
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asymptotically stabilizes the system.

Control Lyapunov functions are utilized to �nd control policies that satisfy the condition
in Theorem 2. Such controllers, which can be found through synthesis or otherwise, can
enforce stability on the closed-loop system dynamics they are applied to.

2.3 Control barrier functions

Control barrier functions enforce safety. They build upon the foundation of the de�nitions
pertaining control Lyapunov functions, and the safety enforced by CBFs can be considered
a "dual" to the stability enforced by CLFs [34]. In contrast to Lyapunov stability theory,
where closed-loop stability is ensured by driving a system to an asymptotically stable state,
barrier certi�cates are utilized in the context of safety-critical control to encode safety
through set invariance [43].

More speci�cally, safety can be enforced by ensuring invariance of a safe set. Consider the
set

C = {x ∈ X | ℎ(x) ≥ 0} (2.16)

to be a superlevel set of the continuously di�erentiable function ℎ : R= → R, containing
all safe system states. The system in (2.2) is de�ned as being safe with respect to C, if C is
rendered forward invariant by the existence of ℎ [34].

Analogous to the condition for control Lyapunov functions in De�nition 2, ℎ is considered
a control barrier function if there exists a possible choice of control actions which renders
the time derivative of ℎ positive. The formal de�nition is provided in De�nition 3.

De�nition 3 (De�nition 2 from Dhiman et al. [1], paraphrased).
A function ℎ : X ∈ R= → R is a CBF for the system in (2.2) if

sup
D∈U
[L5ℎ(x) + L6ℎ(x)u + Uℎ(x)] ≥ 0 ∀ x ∈ X (2.17)

for some class K∞ function U .

The left-hand side of (2.17), which by De�nition 3 serves as a safety condition, can then be
de�ned as a Control Barrier Condition (CBC) [1], such that

��� (x,u) := L5ℎ(x) + L6ℎ(x)u + Uℎ(x). (2.18)
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The implication that the set C is forward invariant means that for an initial state inside the
safe set, all states propagated through the system forward in time stay inside the safe set.
E�ectively, if x(C0) = x0 ∈ C then forward invariance implies that x(C) = x ∈ C ∀ C ≥ C0.

Equivalent to the safe states, any state in the unsafe region complimentary to the safe
region de�ned by the CBF is considered unsafe. In practical utilization of control barrier
functions, ℎ is sometimes de�ned as the complement function to the set of unsafe states.

As shown in Ames et al. [34] and reformulated in [1], a su�cient condition for safety can
then be expressed based on De�nition 3.

Theorem 3 (Proposition 2 from Dhiman et al. [1], paraphrased).
If ℎ is a control barrier function and ∇ℎ(x) ≠ 0 ∀ x when ℎ(x) = 0, then any Lipschitz
continuous control policy

c (x) ∈ {u ∈ U | ��� (x,u) ≥ 0} (2.19)

renders the system in (2.2) safe with respect to the set C in (2.16).

2.3.1 Exponential control barrier functions

Exponential Control Barrier Functions (ECBFs) extend the de�nition of control barrier
functions in De�nition 3, and enables control barrier conditions for systems of an arbitrary
relative degree to be considered. This opens up the possibility of using control barrier
functions to enforce safety-critical constraints on a wider range of nonlinear control
systems. De�nition 3 relies on the assumption that the function ℎ is of relative degree
A = 1, which means that the �rst-degree time derivative of ℎ depends on the system control
input. If ℎ as given in De�nition 3 has A > 1, then L6ℎ(x) = 0 and the set of admissible
control inputs trivially equals eitherU or ∅ [44]. This can sometimes be restrictive, for
example in many robotic applications where the input does not necessarily appear directly
in the �rst derivative of the system state but rather as a function of some con�guration
variable [34, 44].

The assumption that the relative degree of the system is known in advance can also be
argued to be limiting in practice, but since the CBF is likely designed with a speci�c
application in mind, it natural to assume knowledge of the order of the system. In many
robotic applications, for instance, the functionality of the system may induce the order
of the relative degree, while the parameters and any interactions or movements remain
unknown.
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For higher-order relative degree systems with A ≥ 2, it is now assumed that ℎ is an A -times
di�erentiable function, such that

ℎ(A ) (x,u) = L (A )
5
ℎ(x) + L6L (A−1)5

ℎ(x)u (2.20)

is the A -th time derivative of ℎ. Then ℎ can be described as the output of a time-invariant
linear system

¤η(x,u) = Fη(x) +Gu , ℎ(x) = c)η(x) (2.21)

where c := [1, 0, ..., 0]) ∈ RA and by de�ning

η(x) :=


ℎ(x)
L5ℎ(x)

...

L (A−1)
5

ℎ(x)


, F :=


0 1 ... 0
...

...
...

0 0 ... 1
0 0 ... 0


, G :=


0
...

0
1


. (2.22)

Based on (2.21), an exponential control barrier function is formally de�ned in De�ni-
tion 4 [34, 45].

De�nition 4 (De�nition 4 from Dhiman et al. [1], paraphrased).
An r-times, continuously di�erentiable function ℎ : X ∈ R= → R is an ECBF for the system
in (2.2) if there exists a vector kU ∈ RA such that the A -th order control barrier condition
��� (A ) (x,u) := L (A )

5
ℎ(x) + L6L (A−1)5

ℎ(x)u + kU[ (x) satis�es

sup
D∈U
[��� (A ) (x,u)] ≥ 0 ∀ x ∈ X, (2.23)

and
ℎ(x(C)) ≥ c)[ (x0)4 (F−GkU )C ≥ 0 whenever ℎ(x0) ≥ 0. (2.24)

A similar condition for safety as in Theorem 3 exists, so that for a kU that satis�es the
properties outlined in De�nition 4, any control policy which yields control outputs that
ensure ��� (A ) (x,u) ≥ 0 will also ensure the safety of a system with regards to the safe
set C in (2.16) [45].

2.4 Stochastic processes

A stochastic process describes the evolution of state values over time, in general much
like the dynamical systems introduced in (2.1). The way each state depends on previous
states and applied actions however, are through a conditional probability distribution [46].
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Stochastic processes are considered collections of random variables, and are often in-
terpreted as a time series of random events indexed by a discrete or continuous time
variable [47]. A dynamical system can be interpreted as a stochastic process if the transi-
tion from one state to the next is not deterministic, but instead probabilistic and guided by
statistical noise.

A version of the dynamical system in (2.1) can be made stochastic by representing the
uncertainty in the transition from the current state to the next as independent, identically
distributed zero-mean input noise to the system through the stochastic variable ν , so that

¤x = 5 (x,u, ν) . (2.25)

2.4.1 Markov chains

Markov chains are simple stochastic processes made up of a transition probability distribu-
tion which is conditional only on the system states. For a current system state xC at time C
and a given set of previous state values, {x0,x1,x2, ...,xC−1}, a Markov chain then de�nes
the transition probability of moving to the next state by the equation

% (xC+1 | x0,x1,x2, ...,xC−1,xC ) = % (xC+1 | xC ). (2.26)

As can be interpreted from (2.26), the conditional distribution of the next state is dependent
only on the current state and independent on previous states up until that point in time [47].
This property is called the Markov property, and all systems for which the property hold
are labeled Markovian. In essence, the future states of any such Markovian system are
characterized solely by the present state of the system, since all information about the past
e�ectively is contained in it.

2.4.2 Chebyshev’s inequality

Chebyshev’s inequality is an inequality used in probability theory to impose a bound on the
tail probability of a random variable [48]. It can be utilized as a bound of the concentration
of measure to analyze the behavior of a probabilistic algorithm or stochastic system [49].
Chebyshev’s inequality is derived from the more general Markov’s inequality. Given a
random variable - and a non-decreasing function 6 : R+ → R+, then Markov’s inequality
states that

% (- ≥ Z ) ≤ �{6(- )}
6(Z ) ∀ Z > 0. (2.27)

The expression in (2.27) gives an upper bound on the probability of the random variable - ,
and imposes a limit on how far - can deviate from its expectation [49]. Using (2.27) and
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given the mean, �{- }, and variance, +0A {- }, of - , it can be shown as in Alsmeyer [48],
that

% (- − �{- } ≥ Z ) ≤ +0A {- }
+0A {- } + Z 2 ∀ Z > 0. (2.28)

The inequality in (2.28) is a one-sided Chebyshev’s inequality, and also sometimes known
as Cantelli’s inequality.

2.5 Gaussian processes

Gaussian processes (GPs) are a type of stochastic process, where the collection of random
variables which make up the process are jointly Gaussian distributed [23]. Similarly to other
stochastic processes, Gaussian processes are often de�ned over time. It is a non-parametric
method which can be used to statistically model a dynamical system. When using GPs
to make predictions about system states or optimal values of some model, inferring a
distribution is done over the entire function describing the system, since prior distributions
are de�ned over the space of continuous functions [46]. Conversely, parametric methods
like the maximum likelyhood estimator in Section 2.8.1 infers a distribution over the
parameters of a function and not the function itself.

The dynamics of a Gaussian process are completely speci�ed by its �rst- and second-order
moments, and de�ning mean and covariance functions for a GP will thereby fully describe
it [50]. The prior mean and covariance functions of a Gaussian process 6 can be expressed
as the expected mean ` and covariance : functions,

` (x) = E{6(x)}
: (x,x′) = E{(6(x) − ` (x)) (6(x′) − ` (x′))},

(2.29)

where : denotes a kernel function that de�nes the covariance between two function
inputs x and x′. The kernel function encodes information about the distribution over the
unknown function, and can take on various forms. Common kernels are linear kernels,
squared exponential function kernels and the stationary class of Mátern kernels [51]. After
having established the parameterization in (2.29), the Gaussian process can be expressed
as a joint normal distribution

6(x) ∼ N (` (x),  (x,x)), (2.30)

where  is the covariance matrix corresponding to the element-wise covariance functions
: for a number of points, such that [ (x,x)]8, 9 = : (x8,x 9 ). Given some input points x∗,
then a realization of the prior distribution over functions (2.30) can be found. An example
of two such prior function samples can be seen in Figure 2.1a.
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(a) Gaussian process prior. (b) Gaussian process posterior.

Figure 2.1: Gaussian process regression. In both �gures the shaded blue area denotes a 96
% con�dence interval region around the mean.

In most cases, for simplicity, the prior mean function is set to be zero by letting ` (x) = 0,
so that (2.30) turns into

6(x) ∼ N (0,  (x,x)) . (2.31)

This is rarely limiting in practice, since the mean function of the posterior de�ned by (2.32)
is not necessarily zero [23].

The Gaussian process prior can be conditioned on observations of data sampled from the
process being modeled in order to generate a Gaussian process posterior. Assuming noisy
observations with a zero-mean Gaussian distribution y ∼ N(0, If2), then, as shown in
Rasmussen et al. [23], the posterior mean and covariance functions of the Gaussian process
6 in (2.31), can be expressed as

`: (x) = k(x,y) ( + If2)−1y
:: (x,x′) = : (x,x′) − k(x,y) ( + If2)−1k) (x′,y),

(2.32)

where k(x,y) is a vector containing the covariances between the input and all observed
data points y [23]. Figure 2.1 shows an example of both a Gaussian process prior and
posterior using a squared exponential function kernel. Figure 2.1a shows an uninformed
prior mean. Figure 2.1b shows how the posterior mean is informed by four data points
sampled from the underlying process, and illustrates how the con�dence intervals are
signi�cantly reduced closer to the observations.

16



2.6. Matrix variate Gaussian processes

2.6 Matrix variate Gaussian processes

Matrix variate Gaussian process regression is a method for inferring the posterior distribu-
tion over the drift and gain terms from the control-a�ne dynamics in (2.2).

The matrix variate Gaussian distribution can be de�ned as a 3-parameter distribution
describing a random matrix variableX ∈ R=×< ,

? (X ;M ,A,B) :=
exp(−1

2tr[B
−1(X −M ))A(X −M )])

(2c) =<2 det(A)<2 det(B) =2
, (2.33)

where M is the mean, and where A and B describe the covariance matrices of the the
rows and columns ofX .

The random matrix variable can then, generally, be expressed as the matrix variate normal
distribution

X ∼ MN(M ,A,B). (2.34)

A state-control dataset, (X1:: ,U1:: , ¤X1::), of : samples can be used as training data for the
GP regression, whereX1:: := [xC , ...,xC: ], U1:: := [uC , ...,uC: ] and ¤X1:: := [ ¤xC , ..., ¤xC: ]. It
is assumed only ¤X1:: is corrupted by zero-mean Gaussian noise. Dhiman et al. [1] then
propose a vectorized decomposition of the Gaussian process prior for the control-a�ne
system,

vec(� (x)) ∼ GP(vec(M0(x),B0(x,x′) ⊗A), (2.35)

where vec(� (x)) is obtained by stacking the columns of � in (2.2). Furthermore, based
on (2.35) and for a given control action, it can be shown that the posterior distribution
over � conditioned on : samples is expressed as

�: (x)u ∼ GP(M: (x)u,u)B: (x,x′)u ⊗A). (2.36)

The posterior mean and covariance matrix functions are de�ned as

M: (x) :=M0(x) + ( ¤X1:: −M1::U1::) (U1::B1:: (x))
†

B: (x,x′) := B0(x,x′) + B1:: (x)U1:: (U1::B1:: (x
′))†,

(2.37)

where M1:: = [M0(x1), ..,M0(x:)], B1:: (x) = [B0(x,x1), ...,B0(x,x:)] and U1:: =

�806{u1, ...,u:}. Lastly, using Schur’s complement and de�ning
[
B1::
1::

]
8, 9

:= B0(x8,x 9 ),
then [1]

(U1::B1:: (x))
† := (U)

1::B
1::
1::U1:: + I:f

2)−1U)
1::B

)
1:: (x) , f > 0. (2.38)
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Figure 2.2: Agent-environment interaction in reinforcement learning.

2.7 Reinforcement learning

Reinforcement learning is a machine learning framework concerned with how a decision-
making agent interacts with its environment in order to learn an optimal control policy.
The agent performs actions and learns, from experience, how to act in order to improve its
performance on a certain task. Performance is de�ned based on reward, and the aim of the
agent is to receive maximum amount of reward over time.

A reinforcement learning system consists of four main elements: a control policy, an
external reward signal, a value function, which estimates the cumulative future reward an
agent can expect following a certain policy, and optionally a model of the environment the
agent operates in [4]. The agent-environment interaction loop describing an RL problem
can be seen in Figure 2.2. At time step C an agent, represented by its policy c , selects an
action uC to interact with an environment, represented by a dynamical system model 5 ,
based on the current state xC . The environment, which to the agent itself in general is
unknown, responds dynamically to the applied action uC by feeding back to the agent the
subsequent state xC+1 at the next time step C + 1, as well as a scalar reward AC+1.

The reinforcement learning problem can be viewed as an iterative process, where the agent
learns to act optimally by interacting with its environment over time. As the reward signal
A e�ectively indicates how good an action is with respect to a reward function '(x,u),
the agent therefore aims to adapt its behavior to increase performance with regards to '.
Formally, the problem can be framed as a Markov decision process.
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2.7.1 Markov decision processes

A Markov Decision Process (MDP) is a sequential, discrete time, fully observable stochastic
process with a Markovian transition probability model [46]. It can be seen as an extension
of the simple Markov chain in Section 2.4.1, which in addition to states and transition
probabilities also contains actions and rewards. A MDP can formally be denoted by the
four-tuple 〈X,U,) , '〉, where X is the state space,U is the action space, ) : X ×U → X
is the transition function given by the transition probability % (xC+1, AC+1 |xC ,uC ), and ' :
X ×U → R is the reward function [19]. The transition to the next state of a MDP is given
by the current state and the action performed in this state. The transition also leads to a
reward for the action taken. The reward function, either dependent only on the system
state or on both the state and action, returns a reward which can be processed by the RL
agent and used to select the next action. A MDP can also be used to model deterministic
systems with unknown model errors.

2.7.2 Bellman optimality

The goal of a decision-making agent is de�ned by an optimality criterion. For reinforcement
learning agents, the goal is to maximize the expected future reward over time. This can be
expressed through a value function E , which can be de�ned as the cumulative reward an
agent receives by taking actions uC over time. At a certain state x0 starting at time C0, the
value can be expressed as

E (x0) =
∞∑
C=0

'(xC ,uC ). (2.39)

This performance goal described by the value function can be linked to policy selection,
by selecting the action which gives the largest reward and highest value. Given expected
discounted future reward over an in�nite horizon with discount factor W , the value function
E then represents how rewarding it is for an agent to be in a state [4]. Under a policy c ,
for which the agent starts in x and then selects actions that follow the policy, u = c (x),
the value is

Ec (x) = �c

{ ∞∑
C=0

W C'(xC ,uC )
}
. (2.40)

It can be shown, as in Sutton et al. [4], that value functions satisfy a recursive relation-
ship [4]. (2.40) can be rewritten as a sum of the immediate reward from state x and values
of possible next states x′, weighted by the transition probability, so that

Ec (x) =
∑
x′∈X

% (x|x′, c (x)) ('(x, c (x)) + W CEc (x′)) . (2.41)
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Bellman’s principle of optimality states that if starting in a state and following a policy
does not result in optimal values for subsequent states, then selecting other actions from
an alternative policy would yield higher value [4]. This means that for an optimal value
function E∗ generated by selecting the actions that yield the highest value at every time
step, an optimal policy can be found according to

c∗(x) = argmax
u∈U

∑
x′∈X

% (x|x′, c (x)) ('(x, c (x)) + W CE∗(x′)) . (2.42)

Exploration vs. exploitation
Selecting the best action at every single time step results in a greedy policy. Care must
be taken when solving reinforcement learning problems not to exclusively exploit, as
an agent could miss out on actions which may ultimately yield more reward and higher
value further along in time. This is known as the exploration vs. exploitation trade-o� in
reinforcement learning. The greedy action maximizes the expected reward for one time
step ahead, but by exploring other potential action selections, the agent might receive
higher total reward [4].

2.7.3 Model-based reinforcement learning

The class of reinforcement learning problems where a model of the transition dynamics of
the environment is known and used during learning, or can be estimated, is called model-
based reinforcement learning. These types of problems can be solved with dynamical
programming, which works by iteratively solving for an optimal policy, and utilizing the
recursive Bellman equation in (2.41).

Generalized policy iteration is a set of model-based algorithms for �nding optimal control
policies for �nite MDPs [4]. It is possible to obtain a monotonically improving sequence
of control policies by alternating between policy evaluation, e.g. estimating the value
function for current policy, and policy improvement, e.g. recalculating a locally optimal
policy for a new estimate of the optimal value function [4]. If the policy is improved after
this step, it means it is not stable and therefore not optimal as evaluation is being done in
a greedy manner. Together, these two steps yield strict policy improvement and guarantee
convergence in �nite problem settings in discrete state- and action spaces. Policy iteration
can be illustrated by the sequence of optimization steps

c0(x) → Ec0 (x) → c1(x) → Ec0 (x) → ...→ c∗(x) → Ec∗ (x) . (2.43)

Approximate dynamic programming techniques can be used to estimate a value function
for large scale problems, and bypasses the curse of dimensionality [52]. In problems with
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continuous state- and action spaces, then for a given parameterized policy, it is possible
to perform approximate policy iteration and update the policy parameters by solving a
nonlinear optimization problem [52]. One such class of techniques are policy gradient
methods.

2.7.4 Policy gradient methods

Policy gradient methods are a class of reinforcement learning methods that aim to �nd
an estimate of the optimal system behavior by optimizing a parameterized policy cθ

with respect to a performance measure related to the expected return [4]. In contrast to
reinforcement learning methods that learn an estimate of the values of di�erent actions,
and then select actions through a policy c based on the maximization of state values as
in (2.42), policy gradient methods select actions based on the parameterized policy. The
policy is in many cases considered stochastic, so that cθ (u | x) represents a probability
distribution. Even though a value function may be used to �nd an optimal set of policy
parameters θ, it is not used directly in order to learn an optimal policy. Continuous state-
and action spaces are common in many practical applications of reinforcement learning,
for instance in robotics. This necessitates the need for policies and value functions to be
expressed as function approximators, as the state value and policy entry for each state in
the state space cannot be stored separately in a table format [53].

In order to �nd an optimal policy, some performance measure � (·) should be maximized
with regards to the parameters of the policy. Similarly to the �nite problem setting,
a common objective function is the expected discounted cumulative reward under the
stochastic policy u ∼ cθ (x), given by

� (θ) = �cθ

{ ∞∑
C=0

W C'(xC ,uC )
}
. (2.44)

Generally, the parameters of the policy can be augmented according to the gradient ascent
update rule

θ = θ + [∇� (θ). (2.45)

where [ denotes the learning rate. The gradient of the objective function can then be found
either by direct calculation, �nite di�erence methods, or sampling a batch of trajectories
to approximate it [4].

Actor-critic methods
Actor-critic methods are a type of policy gradient methods where both the policy and the
value function are approximated. An actor interacts with the environment, and attempts to
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Figure 2.3: Actor-critic architecture in reinforcement learning.

learn an approximation of the optimal policy cθ (x), which is often stochastic. A critic is a
separate function approximator Ew (x) parameterized byw, which learns an approximation
of the value function. The critic uses the approximation of the value function to evaluate
the current policy, and provides feedback to the actor through a temporal di�erence error
which denotes the error between the true value function and the approximation [53]. The
actor then improves its approximation of the optimal policy based on the feedback from
the critic. The actor-critic architecture is illustrated in Figure 2.3.

The temporal di�erence error, which denotes the di�erence between the right and left side
of the Bellman equation in (2.41), can be expressed as [4]

X = '(x,u) + WE (x′) − E (x) . (2.46)

The temporal di�erence error in (2.46) is then used to update the parameters of the critic.
Using, for instance, a squared loss function on the form � (w) = 1

2X
2 and a learning rate

[w, then the following standard update rule can be used [53]:

w← w + [wX∇wEw (x). (2.47)

Using the policy gradient theorem, derived in [4] as

∇θcθ (x) = cθ (x)∇θ logcθ (x), (2.48)

then it can be shown using di�erential calculus, as in Sutton et al. [4], that the parameters
of the actor can be updated according to the update rule

θ ← θ + [θX∇θ logcθ (x). (2.49)
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Algorithm 1: One-step actor-critic method
Inputs : Randomly initialized policy cθ ,

Randomly initialized state-value function Ew,
Learning rates [θ, [w

1 for = = 1, 2, ... do
2 Initialize state x = x0

3 while x is not terminal do
4 u ∼ cθ (x)
5 Take action u, observe next state x′ and reward A
6 X ← A + WEw (x′) − Ew (x)
7 w← w + [wX∇wEw (x)
8 θ ← θ + [θX∇θ logcθ (x)
9 x← x′

10 end
11 end

Combining the update rules in (2.47) and (2.49) for the critic approximating the value
function and the actor approximating the policy, a method for �nding an optimal policy
using policy gradients can be found, by exploring the environment and running the
optimization episodically. The resulting algorithm that describes a one-step episodic
actor-critic method is shown in Algorithm 1.

2.8 Deep learning

Deep learning is a sub-�eld of machine learning, where models are used to �nd relationships
and patterns by learning representations of data. The methods used in deep learning
compose several layers of nonlinear functions, which transforms the data representations at
each layer and enables learning at increasing levels of abstraction. In this way, deep learning
models are able to learn complex function representations [54]. Neural networks are a
class of deep learning models which have proven e�ective in many applications involving
regression, classi�cation and detection. They have been central in the development of a
range of machine learning algorithms, such as deep reinforcement learning, and form the
basis for many commercial and practical applications of statistical learning methods [55].
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2.8.1 Feed-forward neural networks

Arti�cial Feed Forward Neural Networks (FFNNs) are a class of function approximators
that learn to approximate some mathematical function 5 ∗. A neural network de�nes a
functional mapping y = 5 (x;θ) between an input x and an output y, parameterized by
θ. The goal of training a neural network is to learn the value of the parameters θ that
correspond to the most accurate approximation of 5 ∗ based on training data x.

Neural networks are represented as acyclical graphs, and can be seen as a composition of
layers of nonlinear mappings, where each layer contains a linear mapping wrapped by
a nonlinear activation function [55]. For example, a neural network with three layers is
composed as

5 (x) = 5 3(5 2(5 1(x))), (2.50)

where 5 3 is the output layer, 5 2 a hidden layer and 5 1 the input layer. Figure 2.4 shows a
graphical representation of a feed forward neural network with three layers and = nodes
in each layer. The output of a each layer is given by a weight matrix W , bias vector b and
an activation function 5 . Given an input vector x to the layer, then

y = 5 (Wx + b) (2.51)

describes the output y of the layer. Typical activation functions are Sigmoid functions,
Recti�ed Linear Units (ReLUs) or Tanh functions [55]. The activation of the output layer is
often chosen to be a simple linear function, equivalent to an identity mapping, in order to
let the output of the network take on any value. All weights and biases of a network can
be collected in the parameter vector θ.

The output of a neural network can also be expressed on stochastic form. In this case,
the output layer is made up of two separate nodes representing the mean and variance of
a probability distribution, for instance a Gaussian distribution. The mean and variance
which is returned from the network each forward pass is then used as the parameters for
an instance of a probability distribution, which can then be sampled in order to produce
stochastic outputs from the neural network. This method can for example be used to
train stochastic control policies used in reinforcement learning. In order to �nd the set
of parameters in a neural network which best �ts 5 to the true target function 5 ∗, the
parameter vector must be adjusted. Commonly, this is done by minimizing a cost function
� (θ) with respect to the parameters. The cost function captures an optimality criterion, and
can be described generally as the cross-entropy between training data and the probability
distribution of the true model [55]. As such, neural networks can be trained using the
principle of maximum likelihood.
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. . .

. . .
Figure 2.4: Network layer structure of feed forward neural network.

Gradient descent
The gradient descent algorithm can be used to train a neural network by minimizing the
cost function through parameter optimization. Analogous to the gradient ascent update
rule used for deep reinforcement learning, but with an opposite sign, the parameters are
augmented in a direction opposite of the gradient � (θ) of the cost function. This update
rule can be written as

θ = θ − [∇� (θ) (2.52)

where [ denotes the learning rate. A version of gradient descent called Stochastic Gradient
Descent (SGD) randomly samples one data points from the training data to perform the
optimization each iteration. Essentially, only one data point is used to calculate an estimate
of the gradient of � , so the variance in resulting update steps can become higher than
when using all available training data to estimate the gradient.

Adaptive moment estimation, Adam, is a method for reducing the variance of the gradient
calculations and thereby speed up training and improve the convergence rate [55]. The
Adam method uses a moving average of the �rst- and second-order moments of the
gradient of the objective function in order to update the weights of the neural network in
the direction of the moving averages.
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3 | Safe learningwith control
barrier functions

In this chapter, the main results of the thesis are presented. First, probabilistic safety
constraints based on control barrier functions are expressed on a form which lets them be
used for policy optimization and safety veri�cation. Next, a method for performing safety-
constrained policy optimization by employing probabilistic control barrier conditions is
presented. Then, a method for safe exploration in a way which guarantees safety with high
probability during data collection is developed. Finally, a theoretical framework combining
safety-constrained policy optimization and safe exploration is presented, and two di�erent
versions of a SafeLearningCBF algorithm are shown.

3.1 Background and assumptions

The aim of the safe reinforcement learning framework can be divided into two parts.
One part is optimizing a parameterized policy subject to safety constraints, in order to
encourage safe closed-loop system behavior in addition to the optimality criteria typically
used to measure performance in reinforcement learning. The second part is safe explo-
ration, in order to gather data for learning about the unknown system dynamics without
encountering unsafe regions of the state space.

When synthesizing a policy using a model-based reinforcement learning algorithm under
the assumption of a priori unknown system dynamics, it is essential to actively gather
information about the environment to improve the model used for policy optimization.
During online learning of the unknown dynamics, meaning data is sampled online to
update the model, only actions that belong to state-action pairs that are veri�ed as safe and
which do not violate the safety constraints should be applied to the real system. To this
end, the most central part of a safe exploration scheme for data collection is attempting to
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ensure that the policy used during exploration does not drive the closed-loop system to
any unsafe states.

The safety constraints in Section 2.3 de�ned by control barrier functions are dependent
on a statistical model in the cases where the true dynamics are a priori unknown. This
model can be formulated as a Gaussian process, which produces uncertain predictions of
the dynamics. The expression for a control barrier condition, as de�ned in (2.18), will then
contain the Lie derivatives of a control barrier function along components of the Gaussian
process. The expression for the safety constraints therefore contains a model that produces
uncertain predictions of the true dynamics. Thus, the control barrier conditions will
produce posterior estimates for the safety constraints that are also uncertain. Probabilistic
safety constraints must therefore be used to account for this uncertainty and, consequently,
safe learning can be achieved in a way such that safety generally can be guaranteed with
high probability.

For clarity, the control-a�ne model of the system dynamics is restated as

¤x = 5 (x) + 6(x)u = [5 (x) 6(x)]
[
1
u

]
:= � (x)u, (3.1)

and the matrix variate Gaussian process posterior distribution over (3.1) conditioned on :
samples is restated as

�: (x)u ∼ GP(M: (x)u,u)B: (x,x′)u ⊗A). (3.2)

Throughout the development of the safe learning framework, some typical assumptions
on the continuity of the dynamics model and control policies are made.

Assumption 1 (Continuity of dynamics and policy).
The drift- and gain terms of the dynamics in (3.1), 5 and 6, are !5 - and !6 locally Lipschitz
with respect to the 1-norm. The control policies being used are restricted to a set Π! of functions
that are !c Lipschitz with respect to the 1-norm.

The assumptions of locally Lipschitz dynamics and policies being made in Assumption 1 are
considered standard in many control theory applications [34]. Furthermore, the functions
de�ned by the set Π! of potential control policies include a class of Lipschitz continuous
neural networks, which enables the use of approximate dynamic programming techniques
for policy optimization.

In addition to assumptions on the continuity of the system, the local Lipschitz continuity
of the posterior distribution of the unknown system dynamics is assumed with high
probability, in order to enable the construction of probabilistic safety constraints.
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3.2. Probabilistic safety constraints

Assumption 2 (Assumption 1 from Dhiman et al. [1]).
Let %: be the probability measure induced by the distribution of � (x)u at time C: . Assume
that for any !: > 0, uC: , and g: , there exists a constant 1: > 0 such that:

%: ( sup
B∈[0,g: )

‖� (x(C: + B))uC: − � (x(C:))uC: ‖ ≤ ‖x(C: + B) − x(C:)‖) ≥ @: := 1 − 4−1:!: .

Assumption 2 holds for many classes of Gaussian processes, including those with stationary
kernels that are four times di�erentiable, such as squared exponential kernels and a class of
some Matérn kernels [38, 56]. Essentially, the assumption contributes to ensuring su�cient
conditions of smoothness on the statistical model of the unknown dynamics.

3.2 Probabilistic safety constraints

The safety conditions outlined in Theorem 3 e�ectively de�ne constraints for which
control actions generated from a policy, u = c (x), can be applied to the real system
dynamics. Only those actions u that render the system safe with respect to the safe set
C in (2.16), which implies that the conditions on the control barrier condition ��� (·)
hold, are admissible. When the unknown dynamics are modeled using a statistical model
however, the safety constraints given by the su�cient conditions for safety,��� (x,u) ≥ 0,
are not necessarily satis�ed. The posterior distribution of � (x)u, which is given on matrix
variate form in (3.2), is a probabilistic estimate of the dynamics and not deterministic.

Dhiman et al. [1] de�ne a probabilistic version of the safety constraints in De�nition 3,
induced by the posterior distribution of � (x)u. For a given state-action pair, (x,u),
and given a probability threshold ? , then a probabilistic control barrier condition can be
expressed as

% (��� (x,u) ≥ 0) ≥ ?. (3.3)

The probabilistic formulation in (3.3) can be extended to systems of higher-order relative
degrees. It can be further speci�ed by enforcing a tighter, positive constraint on ��� (A ) (·).
When the probability measure % is induced at a sampling time C: , a tighter bound can be
imposed on the control barrier condition so that is holds between the sampling times as
well, during inter-triggering times, through the use of a variable Z [1, 38]. For a given
state-action pair, (x,u), and given the threshold ? , probabilistic safety constraints induced
by the matrix variate posterior distribution of � (x)u can then be expressed for A -th order
relative degree systems as

% (��� (A ) (x,u) > Z | x,u) ≥ ?. (3.4)
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Assuming that the true dynamics in (3.1) are Lipschitz continuous with high probability, as
in Assumption 2, and that the Gaussian process of the dynamics has a Lipschitz continuous
kernel, then by selecting a small enough sampling time, the safety constraints de�ned
by (3.4) can be considered also at inter-sampling times [1].

Based on the su�cient conditions for safety outlined in Theorem 3, and following the
assumptions on the matrix variate Gaussian process model, a probabilistic condition for
safety can then be formulated.

Lemma 1 (Probabilistic condition for safety).
Consider ℎ to be an A -th order exponential control barrier function for the control-a�ne
system in (3.1), and ∇ℎ(x) ≠ 0 ∀ x when ℎ(x) = 0. Furthermore, let % be a probability
measure induced by the posterior distribution of � (x)u and let the posterior distribution of
� (x)u be modeled by the matrix variate Gaussian process in (3.2). Then, for Z > 0, any
Lipschitz continuous control policy

c (x) = {u ∈ U | % (��� (A ) (x,u) > Z | x,u) ≥ ?} (3.5)

will render the system in (3.1) safe with probability ? with respect to the safe set

{x ∈ X | ℎ(x) ≥ 0}.

Proof. Using Theorem 3, and following Assumption 2 and the de�nition of probabilistic
safety constraints in (3.4), then from Propostition 6 in [1], by choosing a small enough
trigger interval g: , it holds that (3.5) de�nes a safety constraint with probability ? . �

The probability distribution for an A -th order probabilistic exponential control barrier
condition cannot necessarily be explicitly determined [1, 34]. While this means that it can
be di�cult to utilize the probabilistic safety constraints for veri�cation of safe state-action
pairs, as the posterior distribution in (3.4) will most likely have to be estimated through
for instance Monte Carlo sampling [38], Dhiman et al. [1] utilizes Cantelli’s inequality to
produce a bound of the concentration of measure on the probabilistic safety constraint
in (3.4). E�ectively, the constraint is rewritten using its �rst- and second order moments.
Following the proof of Proposition 8 in [1], the implication

�{��� (A ) (x,u)} − Z >

√
?

1 − ?+0A
1
2 {��� (A ) (x,u)}

=⇒
% (��� (A ) (x,u) > Z | x,u) ≥ ?

(3.6)
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enables the safety constraints for systems of higher-order relative degrees to be calculated
using the sample mean and variance functions of��� (A ) (·). It can be shown, as in Dhiman
et al. [1], that the sample mean and variance of��� (2) (·) for a system with relative degree
A = 2 can be calculated analytically. The bound imposed on the safety constraint in (3.6) can
be rewritten as a safety condition on the form of a zero-inequality, so that (3.4) e�ectively
is expressed by the mean and variance of the posterior of ��� (A ) (·) on standard form.
Hence, for a state-action pair, (x,u), the following condition must be satis�ed in order for
an action generated by a policy, u = c (x), to be safe with probability ?:

2 (A ) (x,u) :=
√

?

1 − ?+0A
1
2 {��� (A ) (x,u)} + Z − �{��� (A ) (x,u)} < 0. (3.7)

The probabilistic condition for safety, 2 (x,u) < 0, in (3.7) is expressed on standard form.
Thereby, it can be used directly as a safety constraint in optimization problems. Whereas
a regular optimization problem is expressed on Lagrangian form with state- or input
inequality constraints, using (3.7) to constrain an optimization yields a chance-constrained
optimization problem as ��� (A ) (·) is a probabilistic estimate.

The condition in (3.7) is utilized both in the policy optimization stage as well as for safety
veri�cation when safely exploring the true system to collect data for Gaussian process
regression.

Safety constraints vs. stability constraints
The constraints enforced by control barrier functions and the conditions in (2.18) encode a
more permissive notion of safety than what is de�ned by the asymptotic stability properties
enforced by control Lyapunov functions and the conditions in (2.14). This is because
the conditions must hold only on the boundary of the safe set C, and invariance is not
required over an entire level set [34]. A policy constrained by Lyapunov methods based
on CLFs would require all subsets of C to be invariant to guarantee asymptotic stability.
Nevertheless, as observed in [34], the property of C under the su�cient conditions of
safety yields an asymptotic e�ect, and drives the system not to the origin or another
asymptotically stable point, but rather keeps it inside the safe set.

3.3 Safe policy optimization

A learned policy in a safety-critical setting should satisfy the conditions for safety in Lemma 1,
and the policy should be optimized subject to the safety constraints. These conditions are
encoded in the safety requirements de�ned by the control barrier function, ℎ(x), related to
the control task at hand. The safety constraints in (3.4) for a certain task are de�ned based
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on the control barrier function, and evaluated probabilistically based on an instance of
the control barrier condition, ��� (A ) (x,u). As observed from the su�cient conditions for
safety in Theorem 3 and Lemma 1, the control barrier condition is evaluated for state-action
pairs generated by a closed-loop system. Naturally, it follows that the policy that is used
to produce the actions a�ects whether the state-action pairs are evaluated as safe or not.
This means that for a system to be rendered safe with high probability, it should be driven
by a control policy for which the conditions in (3.5) hold.

Following the conditions in (3.5) of Lemma 1, the set of all state-action pairs that ful�ll the
probabilistic condition for safety can be de�ned as

S = {(x,u) ∈ X ×U | % (��� (A ) (x,u) > Z | x,u) ≥ ?}. (3.8)

As can be observed from (3.8), the set S is restricted to state-action pairs that uphold the
probabilistic safety constraints in (3.4).

A requirement posed on a safe policy that follows from the de�nition of the safe state-action
set S, is that each action returned by the policy must result in (x, c (x)) being contained
in S. Depending on the set of potential policies in Π! and the nature of the control task
at hand, this requirement may hold for several policies that each yield a di�erent type
of safe closed-loop behavior. These policies, which are characterized as safe and which
can be used to apply actions to a real safety-critical system, can be de�ned by a subset
of allowable policies for which the safety constraints are satis�ed, Γ ⊂ Π! . The set Γ is
illustrated in Figure 3.1, and the allowable policies are constrained by the safe state-action
set

c ∈ Π!, s.t. ∀ x ∈ X : (x, c (x)) ∈ S. (3.9)

The policies contained in the allowable set of policies Γ only consider safety. In most
learning-based control methods however, there is an inherent aim to solve the control
task in the most optimal way if possible. Therefore, as a way to compare several safe,
allowable policies, it is assumed that the policy is optimized according to some performance
measure � (·), such as the standard measure of maximum cumulative discounted reward in
reinforcement learning from Section 2.7. An optimal safe policy can then be found as the
result of the constrained optimization problem

c∗ = argmax
c∈Π!

� (·), s.t. ∀ x ∈ X : (x, c (x)) ∈ S. (3.10)

Evidently, the optimization problem in (3.10) will be intractable in practice. The set S
cannot be evaluated for every state-action pair as long as the states and actions are de�ned
based on the continuous spaces X andU. A grid-based discretization of the safe set might
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�R

�

Figure 3.1: Safe set of allowable policies.

be possible by de�ning a discrete version of the state spaceXg ⊂ X, for instance using some
adaptive discretization scheme [57]. However, the optimization would still be rendered
intractable as the policy function is still optimized over continuous values.

The optimization in (3.10) can be expressed slightly di�erently, in order to enable tractable
policy updates that consider both performance measures and provides probabilistic guar-
antees for safety. Given a policy cθ parameterized by θ, then (3.10) can be viewed from a
Lagrangian perspective. The problem can be posed as a safety-constrained Lagrangian
optimization problem, where the Lagrangian penalty term is de�ned by safety constraints
rather than terms based on speci�c performance requirements, regularizers that serve to
augment the objective or typical maximum bounds on the states and inputs. Utilizing the
probabilistic safety constraint on standard form in (3.7), then

c∗θ = argmax
c∈Π!

∫
x∈X

�θ (x) − _2 (A ) (x,u), (3.11)

is an equation for policy updates formulated as a safety-constrained optimization prob-
lem. Since the constraints are probabilistic, the optimization problem is termed chance-
constrained. In (3.11), _ ≥ 0 is the Lagrange multiplier for the safety constraint.

In a reinforcement learning setting, the aim is to maximize expected cumulative reward,
or equivalently, minimize the negative of the return. By using reward as a performance
measure and specifying the objective in (3.11) using the maximized return from (2.42), then
inserting the de�nition of 2 (A ) (·) yields

c∗θ = argmax
c∈Π!

∫
x∈X
('(x, c (x)) + WE (x))

− _
(√

?

1 − ?+0A
1
2 {��� (A ) (x,u)} + Z − �{��� (A ) (x,u)}

)
.

(3.12)
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The objective in (3.12) can be viewed as a surrogate objective function. This surrogate
objective can then be used in a reinforcement learning algorithm in order to perform
policy updates to learn a policy that is both optimal and safe with high probability. Such
surrogates have been utilized in [27], in order to encode risk-based safety requirements
in addition to performance requirements during policy evaluation and optimization, as
well as during safety veri�cation in exploration on the real system dynamics. By replacing
the integral in (3.11) with a �nite sum, approximate dynamic programming can be used to
perform approximate policy updates by

c∗θ = argmax
c∈Π!

)∑
C=0
('(xC , c (xC )) + WE (xC ))

− _
(√

?

1 − ?+0A
1
2 {��� (A ) (xC ,uC )} + Z − �{��� (A ) (xC ,uC )}

)
.

(3.13)

A theoretical safety-constrained policy update scheme for a parameterized policy is sum-
marized in Algorithm 2. In practice, stochastic gradient descent can be used to episodically
re�ne the estimate of the optimal policy in (3.12).

Algorithm 2: Safety-constrained policy update
Inputs : Control-a�ne dynamics model terms 5 and 6,

control barrier function ℎ,
probability threshold ? ,
horizon ) ,
randomly initialized policy cθ,0
initial state x0

1 for = = 1, 2, ... do
2 for C = 1 to ) do
3 uC ∼ cθ,=−1(xC−1)
4 xC ∼ 5 (xC−1) + 6(xC−1)uC
5 ��� (A ) (xC ,uC ) ← L (A )5 ℎ(xC ) + L6L

(A−1)
5

ℎ(xC )uC + kU[ (xC )

6 2 (A ) (xC ,uC ) ←
√

?

1−?+0A
1
2 {��� (A ) (xC ,uC )} + Z − �{��� (A ) (xC ,uC )}

7 end
8 cθ,= ← argmaxc∈Π!

∑)
C=0 '(xC , c (xC )) + WE (xC ) − _2 (A ) (xC ,uC )

9 end

When optimizing a policy using a reinforcement learning algorithm, in order not to drive
the system to possibly unsafe states outside the safe set, actions should only be applied
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to the true system dynamics if they are veri�ed as safe. In model-based reinforcement
learning, actions are applied to a model estimate de�ned for instance by a Gaussian process
model, so in this case no guarantees of safety are needed during policy optimization.
While model-based learning algorithms do not need safety checks for every sampling step
taken on the model, every state-action pair to be evaluated on the real system dynamics
should still be veri�ed as safe. In order to maintain the guarantees of safety of the learning
framework however, exploration of the environment, which implies applying actions to
the true system dynamics, during data collection for model improvement must then be
safety-constrained.

3.4 Safe exploration

A safety-constrained policy optimization scheme is aimed at learning a policy that satis�es
both performance requirements and safety constraints. Similarly, a safe exploration scheme
should be aimed at safely learning about the unknown system dynamics in order to improve
the policy by only sampling regions of the state space that are guaranteed to be safe with
high probability. In particular, any exploration scheme that samples data from the real
system to inform a stochastic process posterior estimate should verify the safety of a
state-action pair (x,u) prior to applying an action to the real system and observing the
subsequent state. As established in Section 3.2, the probabilistic safety constraint in (3.5)
serves as an e�ective condition for this purpose.

One alternative for safe exploration is to explicitly verify the safety of every potential
state-action pair generated by a particular allowable policy. However, this essentially
amounts to evaluating the safe state-action set S at every iteration, which is intractable in
practice as the set is continuous. As a consequence, S cannot be practically utilized during
exploration.

Alternatively, the concentration bound formulation on the probabilistic safety constraint
in (3.7), expressed as a function of the posterior mean and variance of the CBC, can be
utilized in order to verify the safety of each candidate state-action pair selected to be
sampled on the real system. This means that a safe exploration scheme can be developed,
by choosing a candidate state to be sampled on the real system, selecting a candidate action
from some exploration policy, and then verifying the safety of the state-action pair. If the
safety constraint in (3.7) is less than zero, the pair is deemed safe with high probability,
and thus the action can safely be applied to the real system in order to collect data for
regression.
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The posterior of the model of the system dynamics in (2.32) is uncertain. As established
above, and which can also be observed in De�nition 3, this means that predictions of
the safety constraint value ��� (·) for a given state-action pair will also be uncertain.
Because of this, it is necessary to investigate the bounds on this uncertainty, which can be
accomplished by constructing high-probability con�dence intervals on ��� (·).

In order to construct con�dence intervals based on the �rst- and second order moments of
a statistical model, some additional assumptions are needed. From [58], a well-callibrated
statistical model is de�ned as reliable through an inequality using the mean and covariance
functions of the posterior of the model. The matrix variate Gaussian process posterior
distribution in (3.2) is control-a�ne, and thereby a speci�cation of a general nonlinear
model, so a well-callibrated model is assumed as follows:

Assumption 3 (Well-callibrated control-a�ne Gaussian process model).
Let `: (x,u) := M: (x)u and Σ(x,u) := u)B: (x,x′)u ⊗ A be the posterior mean and
covariance functions of the statistical model of the dynamics in (3.1), conditioned on : noisy
measurements.

With f: (x,u) = tr(Σ
1
2
:
(x,u)), there exists a V: > 0 such that with probability at least (1−X)

for some X > 0 it holds for all : ≥ 0, x ∈ X and u ∈ U that

‖� (x)u − `: (x,u)‖1 ≤ V:f (x,u).

Safety must be ensured during the exploration step. By utilizing Assumption 3 for the
mean ` and variance f of the GP, as well as selecting a coe�cient V , then con�dence
intervals on ��� (·) can be constructed as follows:

&: (x,u) = [��� (x,u) ± !V: ‖f: (x, u)‖2],

where ! is a Lipschitz constant of the CBC and ‖·‖2 denotes the two-norm.

A safe exploration state-action set E = S ∩<0G&: (x,u), augmented from the safety
constraints and the upper con�dence interval on the control barrier condition, can then be
constructed as the intersection-set

E = {(x,u) | % (��� (A ) (x,u) > Z | x,u) ≥ ? ∩ ��� (x,u) ≤ <0G&: (x,u)}, (3.14)

where<0G&: (x, u) is the upper con�dence interval of &: .

From Assumption 2, it follows that the control barrier condition is Lipschitz continuous.
Together with Assumption 3, and choosing X = (1−?), these two assumptions then ensure
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that ��� (x,u) is contained in the con�dence interval &: with probability ? . This means
that state-action pairs that are in E are also in S. Hence, in practice, each state-action
pairs only needs to satisfy the conditions in (3.4) used to de�ne the constrained safe set S.

3.4.1 Action selection strategies

The control actions that are going to be applied to the true system dynamics, if they are
veri�ed as safe, have to be produced by an exploration policy. These actions are used for
sampling data in order to learn the unknown dynamics. Depending on what policy, or
other potential means of selecting candidate actions, is used during the safe exploration
scheme, di�erent action selection strategies can be used. Which actions are selected for
exploration a�ects what data is sampled from the true system, which in turn can a�ects the
Gaussian process regression. There are di�erent ways to select actions during exploration
to learn unknown dynamics.

Random selection
Random action selection is a relatively simple action selection strategy, where actions are
sampled from a random policy, followed by the veri�cation of the candidate state-action
pairs. When a control barrier function is prede�ned, the condition in (3.7) can be checked
for each pair in such a way that so a random sampling scheme can be implemented to search
for states that yield safe control actions according to the probabilistic safety constraints.

Random action selection for exploration may result in a less e�cient exploration scheme,
as unsafe actions may be encountered often. However, it may be easier to implement
in practice than other exploration policies or action selection strategies. In addition, the
selection process itself is very e�cient since a policy is sampled directly and no optimization
is required.

Bayesian optimization
Alternatively, an optimization problem can be formulated in order to �nd the best candidate
action according to some measure, which can then be veri�ed as safe. Note that this is
not an optimization loop to �nd an optimal control policy, but a separate optimization for
the safe exploration scheme used to apply actions on the true dynamics in order to gather
data for regression.

The candidate actions can be selected according to the solution of a Bayesian optimization
problem. More speci�cally, acquisition functions can be utilized in Bayesian optimization
to select an optimal sample observation in order to learn about unknown dynamics and
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update the stochastic model function prior in an e�ective manner. Some options for various
acquisition functions are entropy search or upper con�dence bound maximization [59]. By
maximizing the acquisition function, they can be used in relation with the safe exploration
scheme to �nd a suitable state-action pair for exploring the environment and learning
more about the model dynamics.

Recently, Upper Con�dence Bound (UCB) has been proposed as an acquisition function
with provable regret bounds [59]. The UCB is a function that is optimistic in the face of
uncertainty, and is often used as a strategy to trade o� exploration with exploitation [60].
Additionally, by optimizing the UCB, the candidate action returned will maximize the
information gain for the Gaussian process model, and a state will be sampled, if the actions
are deemed safe, where the model is the most uncertain. Letting ` and f be the mean
and variance of the GP model, then for a V > 0, the upper con�dence bound acquisition
function can be expressed as [59]

�(x) = ` (x) + Vf (x), (3.15)

and an action is then selected to verify as safe by the action selection rule

u(x) = argmax
u∈U

�(x). (3.16)

If the action selected by (3.16) yields a safe state-action pair, then it can be applied to the
true dynamics.

3.4.2 Global optimization

An alternative way to ensure safety during exploration is to formulate a global optimization
problem that optimizes the exploration policy. The policy cexp, used to generate candidate
actions for which to apply to the true dynamics for data collection, may generate unsafe
actions. Through a minimally invasive optimization step, the exploration policy can be
modi�ed to ensure safe action selection during exploration. A controller can be synthesized
by solving a safety-constrained Quadratic Program (QP), in which the safety constraints
are de�ned by (3.7) such that the optimization can be constrained in a similar fashion as
in Section 3.3. This safety-constrained quadratic program is termed CBF-QP, and can be
expressed as

u(x) = argmin
u∈U

1
2
‖u − cexp(x)‖2 , s.t. 2 (A ) (x,u) < 0. (3.17)

The idea behind utilizing a probabilistic CBF-QP is to apply the optimization in (3.17) in
cases where a state-action pair is rejected by the safety veri�cation procedure. Independent
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of the type of exploration policy or other action selection strategy chosen, the QP will act as
a safety �lter during exploration. The bene�t of a safety �lter is that it can provide actions
that are known to be safe with high probability for the data collection step. However, a
global optimization problem can also be computationally ine�cient.

3.4.3 Backup policies

A backup policy can be used if the safety veri�cation process during exploration rejects
too many state-action pairs as unsafe. In this case, a di�erent control policy can be used
in order to perform o�-policy action selection to sample data safely for Gaussian process
regression. This leads to sacri�ces in performance during the exploration phase, but at
the same time can lead to a more straight-forward way of sampling safely and providing
enough variety in the data to condition the posterior model estimate.

However, using a backup policy can be quite restrictive, as �nding a safe backup policy
is not easy in practice for every type of environment with unknown dynamics. When
utilizing a notion of safety de�ned with regards to stability, a traditional locally stabilizable
policy can easily be used. In the case of safety de�ned with regards to control barrier
functions, on the other hand, a locally safe policy might not easily be synthesized or
calculated. Using an action selection strategy directly may therefore is acceptable, since
the overarching goal is safety during exploration, where unsafe state-action pairs should
be rejected. Alternatively, a safety �lter can be utilized.

3.5 Safe learning with CBFs

The methods for safe policy optimization and safe exploration can be combined to develop a
theoretical framework for safe reinforcement learning. As a starting point for safe learning,
a prior control-a�ne Gaussian process model is provided to the algorithm, as well as a
user-speci�ed probability threshold ? . The inter-triggering threshold variable Z must also
be �xed, and randomly initialized parameterized policies must be provided.

The SafeLearningCBF algorithm includes two steps: policy optimization and Gaussian
process regression. Each episode, the current optimal policy estimate is used to generate
actions to sample the Gaussian process model. The resulting state-action pairs are then
used to calculate values for probabilistic safety constraints, and the safety-constrained
policy optimization problem from (3.11) is solved. Next, during the safe exploration stage,
actions are generated by an exploration policy and the resulting candidate state-action
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pairs are veri�ed as safe, before they are applied to the true system dynamics. Finally, the
posterior estimate of the Gaussian process model is updated with the safe state-action
pairs.

A version of the safe learning algorithm using a random controller in order to suggest
candidate actions for the safe exploration scheme, and without a global safety �lter, is
shown in Algorithm 3. Another version of the algorithm using a exploration policy as
well as a global safety �lter for safe candidate action selection is shown in Algorithm 4.

Practical considerations
Notice that in both Algorithm 3 and Algorithm 4, the time variable C indicates a speci�c
time step, as the algorithm is run iteratively with one-step predictions of the model and
one-step simulations of true dynamics. As such, the notation xC indicates the state at time
C , while xC+1 indicates the next state at time C + 1. This means the term xC+1 = � (xC )uC
indicates that the dynamics � are sampled and the subsequent state is returned.

For matrix variate Gaussian process regression, a state-control dataset can be constructed
from the collection of safe observations, where the derivative matrix ¤X1:: can be found by
�nite di�erence methods. In a practical implementation of the safe learning framework,
simpleK∞ functions are de�ned in order to construct kU . The GP model should be de�ned
with a smooth kernel when it is initialized. A typical choice is a squared exponential kernel,
which is what was chosen for the implementation in Chapter 4.
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Algorithm 3: SafeLearningCBF with random exploration
Inputs : True dynamics � (x)u,

Prior GP dynamics model,
control barrier function ℎ,
probability threshold ? ,
time horizon ) ,
randomly initialized exploration policy cexp,
randomly initialized policy c0,
initial state x0,
Empty dataset �true for data sampled from true dynamics,
Empty dataset �model for data sampled from model

1 for = = 1, 2, ... do
/* Policy optimization */

2 Sample ) steps from GP model using cθ,(=−1)
3 Store {xC ,uC ,xC+1, AC+1} in �model for all steps C ≤ )
4 Compute 2 (A ) (x,u) for state-action pairs �model using (3.7)
5 Update policy cθ,= using (3.13)

/* Safe exploration */

6 Initialize state xC = x0

7 for C = 1 to ) do
8 uC ∼ cexp(xC )
9 ��� (A ) (xC ,uC ) ← L (A )5 ℎ(xC ) + L6L

(A−1)
5

ℎ(xC )uC + kU[ (xC )

10 2 (A ) (xC ,uC ) ←
√

?

1−?+0A
1
2 {��� (A ) (xC ,uC )} + Z − �{��� (A ) (xC ,uC )}

11 if 2 (A ) (xC ,uC ) < 0 then
/* Sample true dynamics */

12 xC+1 = � (xC )uC
13 Store {xC ,uC ,xC+1} in �true

14 end
15 end
16 Update GP model with safe observations from �true

17 end
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Algorithm 4: SafeLearningCBF with global optimization
Inputs : True dynamics � (x)u,

prior GP dynamics model,
control barrier function ℎ,
probability threshold ? ,
time horizon ) ,
randomly initialized exploration policy cexp,
randomly initialized policy c0,
initial state x0,
empty dataset �true for data sampled from true dynamics,
empty dataset �model for data sampled from model

1 for = = 1, 2, ... do
/* Policy optimization */

2 Sample ) steps from GP using cθ,(=−1)
3 Store {xC ,uC ,xC+1, AC+1} in �model for all steps C ≤ )
4 Compute 2 (A ) (x,u) for state-action pairs in �model using (3.7)
5 Update policy cθ,= using (3.13)

/* Safe exploration */

6 initialize state xC = x0

7 for C = 1 to ) do
8 uC ∼ cexp(xC )
9 ��� (A ) (xC ,uC ) ← L (A )5 ℎ(xC ) + L6L

(A−1)
5

ℎ(xC )uC + kU[ (xC )

10 2 (A ) (xC ,uC ) ←
√

?

1−?+0A
1
2 {��� (A ) (xC ,uC )} + Z − �{��� (A ) (xC ,uC )}

11 if 2 (A ) (xC ,uC ) ≥ 0 then
/* Apply safety filter */

12 Solve QP in (3.17) to �nd safe candidate uC
13 end

/* Sample true dynamics */

14 xC+1 = � (xC )uC
15 Store {xC ,uC ,xC+1} in �true

16 end
17 Update GP model with safe observations from �true

18 end
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In this chapter, aspects of the safe learning framework is tested in simulation by running
experiments on a practical implementation of Algorithm 3. First, the experimental setup
of the simulation of two second-order systems is explained. Then, results of experiments
on using probabilistic safety constraints for safe exploration, model-free and model-based
safety-constrained reinforcement learning are presented.

4.1 Mountain Car system

In order to test the safe learning framework, it is necessary to evaluate it on some environ-
ment consisting of simulated system dynamics, as well as a reward function to gauge the
performance of a control policy. A Mountain Car environment, which is a second-order
dynamical system that simulates the behavior of a car driving up a mountainside, is one
of the environments used to test the framework. The Mountain Car environment is a
version of the MountainCar-Continuous environment from OpenAI Gym [61], which is
a continuous control task often used to test reinforcement learning algorithms.

The Mountain Car system simulates the dynamics of a car driving up a mountainside. The
goal of the control task is for the car to reach a desired goal state on the top of one side of
the mountain. The amount of force that can be applied to the car by a control policy is
restricted by design, in order to disallow a trivial solution of a control policy which simply
applies enough force for the car to drive straight up. Instead, a policy must be found that
learns to "swing" the car back and forth in order to gain enough momentum to reach the
goal state at the top.

The Mountain Car environment is illustrated in Figure 4.1. Force can be applied to the
car so that it "swings" back and forth from one side of the mountain to the other. The
goal state, which de�nes the desired goal of the control task and the successful end of an
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Figure 4.1: Mountain Car environment.

episode, is de�ned by a value along the G1-axis and is illustrated by a �ag at the point Ggoal
1

in Figure 4.1.

The Mountain Car system is a second-order dynamical system, and can be expressed on
control-a�ne form as

¤x =

[
¤G1
¤G2

]
= 5 (x) + 6(x)D =

[
G2

−V cos (3G1)

]
+

[
0
U

]
D, U, V > 0, (4.1)

where G1 is the position, G2 the velocity, and D is the one-dimensional control action input.
D represents the force applied to the car, and in the implementation it is limited to a range
[−Dmax, Dmax] in order to disallow the car to simply drive up the right side of the mountain
to reach the goal. The coe�cients were chosen as U = 3.0 and V = 0.0025, while the
maximum force was chosen as Dmax = 1.0.

A sample trajectory of the Mountain Car dynamical system in (4.1) using action samples
from a random policy over 1000 time steps is shown in Figure 4.2.

Control barrier function
A safe set for the Mountain Car system can be chosen as the compliment to an unsafe
linear region of the position state space. An unsafe region can then be de�ned as every
point along the position-axis the Mountain Car must avoid to the left of some reference
G1,unsafe, as illustrated by the red shaded area in Figure 4.1. This unsafe region can be
expressed as the range [−∞, G1,unsafe], and as can be seen it is independent of the velocity
of the Mountain Car system at any point. A control barrier function can be de�ned based
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Figure 4.2: Sample simulation from the Mountain Car environment.

on the unsafe region, and expressed as

ℎ(x) = G1 − GA4 51 , C = {x ∈ X | ℎ(x) ≥ 0} (4.2)

The control barrier function in (4.2) is of relative degree A = 2, since the control action
input D appears in the second derivative, as can be observed from (4.1). The unsafe region
was de�ned by choosing G1,unsafe = −0.8.

Reward function
The control problem for the Mountain Car environment can be de�ned as reaching the
reference goal state at the right side of the mountain. As such, the reward function used
for reinforcement learning should be related to the goal state. The reward function chosen,
which is on the same form as the one used in [61], is given by

'(x) = −nD2, n > 0 ∀ G1 < G
goal
1

'(x) = 100 ∀ G1 ≥ Ggoal
1 , G2 ≥ Ggoal

2 = 0.
(4.3)

The reward function in (4.3) is designed so that the environment returns a negative reward
whenever the car has not made it up the mountainside to the goal. As can be observed
from (4.3), the reward function is proportional to the negative of the squared action for
any position state to the left of the goal, with a form such that a larger action input gives a
more negative reward. Furthermore, only in the case where the goal position is reached,
and when the velocity of the car is zero, will the agent receive a positive reward of 100.
The coe�cient for the reward function was chosen as n = 0.1.
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4.2 Inverted pendulum system

The other environment used to test the safe learning framework is an inverted pendulum
environment. The inverted pendulum is a second-order continuous dynamical system
system, which simulates a pendulum swinging around a �xed point. An optimal policy
will in this case learn to stabilize the pendulum at a reference point, for instance at the top
of its trajectory.

The inverted pendulum environment is illustrated in Figure 4.3, where a torque can be
applied by a control policy to swing the pendulum, and where the angle \ denotes the
angular deviation from the vertical resting position of \ = 0.

The pendulum system can be expressed on control-a�ne form as

¤x =

[
¤\
¤l

]
= 5 (x) + 6(x)D =

[
l

−6
;
sin\

]
+

[
0
1
<;2

]
D, (4.4)

where \ is the pendulum angle and l is the angular velocity, and where 6,< and ; is the
mass and length of the pendulum and gravity constant, respectively. D denotes the one-
dimensional control action input, and it is limited to a range [−Dmax, Dmax]. The coe�cient
were chosen as 6 = 10.0,< = 1.0 and ; = 1.0, while the maximum torque was chosen as
Dmax = 7.5.

Control barrier function
A safe set for the inverted pendulum environment can be chosen as the compliment to
an unsafe radial region of the angle state space, as illustrated by the shaded red area
in Figure 4.3. The unsafe region can then be de�ned as every point along the angle-axis
that the pendulum system must avoid on either side of a reference \unsafe, independent
of the angular velocity at this point. This unsafe region can be expressed as the range
[\unsafe − Δ\, \unsafe + Δ\ ]. A control barrier function can then be de�ned based on the
radial unsafe region, and expressed as

ℎ(x) = cos(Δ\ ) − cos(\ − \unsafe). (4.5)

As in Section 4.1, since the inverted pendulum system is of second-order, the control
barrier function is of relative degree A = 2. The unsafe region was de�ned by choosing
\unsafe = 45◦ and Δ\ = 22.5◦.

Reward function
For a reference tracking problem such as the one de�ned for the inverted pendulum
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Figure 4.3: Inverted pendulum environment.

environment, there are many potential reward functions that can be used in order to
incentivize the system to learn a desired behavior. The reward function should be designed
such that a position close to a static reference yields high reward, while a position far away
from the reference gives little or no reward. Alternatively, a reward function similar to the
one de�ned for the Mountain Car environment can be de�ned, where every reward apart
from the goal state yields a negative value.

One choice in the case of the pendulum system is a negative squared exponential, given by

'(x) = n14−n2 (\−\A4 5 )
2

, n1, n2 > 0. (4.6)

In (4.6), the angle from the state vector is utilized to denote the reference error, and the
squaring of the exponential ensures that the reward remains positive in cases where
\ − \A4 5 < 0. The coe�cients for the reward function were chosen as n1 = 5.0 and n2 = 1.0.

4.3 Learning control policies

The policy optimization scheme was implemented as an actor-critic method, and an aug-
mented, practical version of Algorithm 1 was implemented to solve the safety-constrained
policy update in (3.13). The neural networks used to parameterize the policy and state-
value function were implemented using PyTorch [3]. The architecture of the networks are
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Figure 4.4: Control system architecture for safe learning framework.

summarized in Table 4.1 and Table 4.2. The structure of the reinforcement learning loop is
shown in Figure 4.4.

Layer type Input shape Output shape Activation function
Mean layer 400 1 Linear(·)
Variance layer 400 1 Softplus(·) + 1 × 10−5

Table 4.1: Actor neural network architecture.

Layer type Input shape Output shape Activation function
Linear layer 400 1 Linear(·)

Table 4.2: Critic neural network architecture.

Both neural networks were trained using Adam optimizers. The learning rate for the actor
was set as 4 × 10−5 and the learning rate for the critic set as 1 × 10−5.

The inputs to the neural networks were featurized and scaled for both the policy and
the state-value function. 1000 samples were randomly collected from the environment.
A scaling function was then �tted based on this data, such that when input data to the
network is passed through this scaling function it is transformed to a feature vector whose
mean and standard deviation is 0.0 and 1.0, respectively. Additionally, the input vector,
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which originally is of dimension 2, was featurized. The featurization process involves
sampling squared exponential kernels �tted on the scaled sample data, and creating a
feature union containing 400 input features. Featurizing the inputs to the neural network
can be bene�cial, since the number of features used for training is increased. In turn, this
will result in a larger and more �exible neural network that may yield more stable training.

Episode termination criteria were de�ned in order to impose requirements on when an
episode is considered �nished and training should be terminated. In case of the Mountain
Car environment, training terminates when the car reaches the goal state and the velocity
is near zero. In case of the inverted pendulum, the termination criteria were de�ned as
the angle being outside a range de�ned by a cone about the reference value, or when the
pendulum system entered the unsafe region.

4.4 Verifying probabilistic safety constraints

The probabilistic formulation of the safety constraints are used to verify if a state-action
pair is safe, such that actions can be applied to the true system dynamics in order to actively
gather data to improve a statistical model of the dynamics.

In order to quantify the success of the safe exploration scheme in rejecting unsafe actions
and thereby prevent unsafe exploration on the true system dynamics, the rate at which the
safety veri�cation procedure makes erroneous predictions of the safety of a state-action
pair can be recorded. There are two di�erent types of errors that can be made during the
safety veri�cation process during exploration: Safe actions can be wrongfully rejected, and
unsafe actions can be wrongfully admitted. These error types can be considered analogous
to false positives and false negatives often used in the testing of statistical hypotheses, and
are related to the accuracy of the probabilistic safety constraint and its e�ectiveness in
stopping unsafe actions and letting through safe actions.

Figure 4.5 illustrates the safety constraint error types, as well as the success types. The
expression ℎ(x) ≥ 0 denotes that the resulting next state produced by applying an action u
on the true dynamics is safe, thereby indicating the action is safe. Similarly, the expression
ℎ(x) < 0 indicates it is unsafe. Likewise, the expression 2 (A ) (x,u) < 0 denotes that the
state-action pair is admitted by the safe exploration scheme, and thereby deemed safe by
the probabilistic safety constraint veri�cation. Similarly, the expression 2 (A ) (x,u) ≥ 0
indicates the pair is rejected and thereby deemed unsafe.
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The percentage of unsafe actions that are wrongfully admitted by the safe exploration
scheme is termed the damage percentage. The damage percentage is of particular interest,
as it is typically a more severe error measure than the percentage of safe actions that are
wrongfully rejected. This is because unsafe actions applied to true dynamical systems in
safety-critical scenarios can cause harmful consequences, while stopping safe actions from
being applied may make the model regression less e�ective but does not cause harm to
the system.

Figure 4.5: Safety constraint error types.

4.5 Experiment 1: Safe exploration

In this experiment, the safe exploration scheme was tested using the Mountain Car system.
During safe exploration, safety veri�cation is utilized to attempt to safely learn a Gaussian
process. Unsafe state-action pairs that are encountered should ideally be rejected while
actively gathering data on the real system for use in the Gaussian process regression. In
order to validate the safe exploration scheme, a �xed set of state-action pairs were used as
a dataset.

500 state-action pairs were sampled on the true Mountain Car system dynamics using a
randomized control policy with a �xed seed, and saved for use in the validation of the safe
exploration scheme to ensure consistency in the state-action pairs evaluated each episode.
A region of the state space was sampled such that the system crossed into the unsafe
region. A successful safe exploration scheme should in this case reject unsafe actions.

The performance of the safe exploration scheme with probabilistic safety constraints
for di�erent values of the inter-triggering threshold variable Z was tested by �xing the
probability threshold at ? = 0.95 and doing one pass of Gaussian process regression to
inform the prior model. The amount of admitted safe, admitted unsafe, rejected safe
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and rejected unsafe actions were then counted, and recorded as a percentage of safety
constraint errors over the dataset of 500 state-action pairs. The result is shown in Table 4.3.

Similarly, the performance of the safety exploration scheme with probabilistic safety
constraints was tested for di�erent values of the probability threshold ? , while �xing the
inter-triggering threshold variable at Z = 0.1. The amount of admitted safe, admitted
unsafe, rejected safe and rejected unsafe actions were then counted, and recorded as a
percentage of safety constraint errors over the dataset of 500 state-action pairs. The result
is shown in Table 4.4.

Z Reject safe Reject unsafe Admit unsafe Admit safe
0.01 0.0% 9.8% 47.2% 43.0%
0.1 10.0% 57.0% 0.0% 33.0%
1.0 43.0% 57.0% 0.0% 0.0%
10.0 43.0% 57.0% 0.0% 0.0%

Table 4.3: Safety constraint error percentages for di�erent threshold values of Z .

? Reject safe Reject unsafe Admit unsafe Admit safe
0.99 10.0% 57.0% 0.0% 33.0%
0.95 10.0% 57.0% 0.0% 33.0%
0.80 10.0% 57.0% 0.0% 33.0%

Table 4.4: Safety constraint error percentages for di�erent threshold values of ? .

The safety constraint error rates were then tested by episodically gathering data safely
and improving the Gaussian process model. Safety veri�cation was performed on the �xed
dataset each episode, and the error percentages recorded. The result is shown in Figure 4.6.

Note that in this instance, the safety constraint errors are denoted as ratios of the total
number of safe and unsafe actions. This means that "Reject safe" denotes the percentage
of safe actions that are rejected out of the total number of safe actions, and "Reject unsafe"
denotes the percentage of safe actions that are rejected out of the total number of unsafe
actions. Likewise, "Admit safe" denotes the percentage of safe actions that are admitted
out of the total number of safe actions, and "Admit unsafe" denotes the percentage of safe
actions that are admitted out of the total number of unsafe actions.

51



Chapter 4. Simulations and results

0 1 2 3 4 5 6 7
Episodes

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Reject safe
Reject unsafe
Admit unsafe
Admit safe

Figure 4.6: Safety constraint errors as ratios of total number of safe and unsafe state-action
pairs.

4.6 Experiment 2: Model-free policy optimization

In this experiment, a model-free version of Algorithm 3 was tested using the Mountain
Car system. A Gaussian process model was trained in parallel each episode using the safe
exploration scheme, and the model was used for safety veri�cation, but not to predict next
states during reinforcement learning.

The safe learning framework was run for 8 episodes until the episodic returns converged.
Figure 4.7 shows the returns when optimizing an unconstrained policy and using the
true dynamics for optimization. Figure 4.8 shows the trajectory of the position G1 when
applying the learned, unconstrained policy to the true Mountain Car dynamics.

Figure 4.9 shows the returns when optimizing a safety-constrained policy and using the
true dynamics for optimization, with ? = 0.95, Z = 0.1 and a Lagrangian multiplier
_ = 0.05. Figure 4.10 shows the trajectory of the position G1 when applying the learned,
safety-constrained policy to the true Mountain Car dynamics.
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Figure 4.7: Episodic returns for unconstrained model-free learning on Mountain Car
system.

4.7 Experiment 3: Model-based policy optimization

In this experiment, the model-based version of Algorithm 3 was tested using both the
Mountain Car system and inverted pendulum system. A Gaussian process model was
trained in parallel each episode using the safe exploration scheme, and the model was used
for both safety veri�cation and to augment the returns for the policy optimization.

For the Mountain Car system, the safe learning framework was run for 8 episodes until
the until the episodic returns converged. Figure 4.11 shows the episodic returns when
optimizing an unconstrained policy and using the GP model, with ? = 0.95, Z = 0.1 and a
Lagrangian multiplier _ = 0.05. Figure 4.12 shows the position values G1 when applying
the learned, unconstrained policy on the true Mountain Car dynamics.

Further, Figure 4.13 shows the episodic returns when optimizing a safety-constrained policy
and using the GP model, and Figure 4.14 shows the position values G1 when applying the
learned, safety-constrained policy on the true Mountain Car dynamics.

For the inverted pendulum system, the safe learning framework was run for 100 episodes
until the episodic returns converged. Figure 4.15 shows the episodic returns when opti-
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Figure 4.8: G1 values for learned model-free unconstrained policy on Mountain Car system.

mizing a safety-constrained policy and using the GP model, with ? = 0.95, Z = 0.1 and
a Lagrangian multiplier _ = 0.1. Figure 4.16 shows the trajectory of the angle \ when
applying the learned, safety-constrained policy to the true pendulum dynamics.
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4.7. Experiment 3: Model-based policy optimization
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Figure 4.9: Episodic returns for safety-constrained model-free learning on Mountain Car
system.
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Figure 4.10: G1 values for learned model-free constrained policy on Mountain Car system.
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Figure 4.11: Episodic returns for unconstrained model-based learning on Mountain Car
system.
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Figure 4.12: G1 values for learned model-based unconstrained policy on Mountain Car
system.
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Figure 4.13: Episodic returns for safety-constrained model-based learning on Mountain
Car system.
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Figure 4.14: G1 values for learned model-based constrained policy on Mountain Car
system.
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Figure 4.15: Episodic returns for model-based safety-constrained learning on inverted
pendulum system.
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Figure 4.16: \ values for learned model-based policy on inverted pendulum system.
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5 | Discussion

In this chapter, the experimental and theoretical results will be discussed. The results of the
experiments on the second-order systems are discussed, and the validity and limitations of
the theoretical algorithm are considered. The chapter is concluded with suggestions for
further work.

5.1 Experimental results

The results from experiment 1 con�rm that the method for safe exploration is able to
successfully reject most unsafe actions. It can be observed from Figure 4.6 that the damage
percentage, indicated by the percentage of admitted unsafe actions, is zero throughout the
safe exploration period. Out of the total number of unsafe actions, none were admitted.
When considering all state-action pairs in the validation dataset, this means no unsafe
actions were wrongfully passed o� as safe by the probabilistic safety constraints de�ned
in (3.7) during safety veri�cation.

Experiment 1 also reveals that the safe exploration scheme erroneously rejects some safe
actions. As the posterior estimate of the Gaussian process model is updated episodically,
the damage percentage remains at zero, while the percentage of wrongfully rejected safe
actions �uctuate. As can be observed from Figure 4.6, around 30% of the total number of
safe actions are rejected by the probabilistic safety constraints during exploration from
episode 3 throughout episode 7. This shows a tendency of the safe exploration scheme to
act in a somewhat overly passive way with regards to action admittance. This tendency
to reject too many actions may indicate that the thresholds selected for the probabilistic
constraint formulation yield a safety condition whose probabilistic bounds are too loose,
in the sense that the boundary point at which the safety constraint 2 (A ) (·) in (3.7) switches
sign does not occur at the point where a state trajectory crosses into the unsafe region of
the state space. The resulting non-zero false rejection rate may alternatively be an e�ect of
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insu�cient accuracy of the Gaussian process model estimate, which a�ects the predictions
produced by the control barrier condition ��� (A ) (·). Nevertheless, the safe exploration
scheme does not categorically reject all actions.

The damage percentage can be considered the most important measurement when evaluat-
ing the practical feasibility of the safe exploration method, since it describes an error type
which generally is more critical to prevent in order to ensure system safety. Analogous
to false negative predictions, falsely predicting that a large amount of unsafe actions are
safe is likely unacceptable in safety-critical scenarios. Conversely, false positive analogues
are less likely to cause major issues with regards to system safety. Depending on the
exploration policy used, a high percentage of safe action rejections may make the safe ex-
ploration scheme less e�cient, since unsafe actions can be encountered more often. It can
also cause the data collected for model improvement, indicated by �model in Algorithm 3,
to become sparse, which can result in poor posterior model updates. In experiment 1, no
unsafe actions were admitted, and less than 50% of the total number of safe actions were
regularly rejected, which suggests that using probabilistic safety constraints to verify the
safety of state-action pairs during exploration may be feasible.

The results in Table 4.4 show that the e�ect of the probability threshold ? on the values of
the probabilistic safety constraints is limited. For various values of ? , the error percentages
stay identical. On the one hand this result is expected, since the probabilistic safety
constraint formulation in (3.7) holds when the kernel of the Gaussian process used is
su�ciently smooth, and thereby the probability threshold can be selected as any value.
On the other hand, as can be observed from the expression for the probabilistic safety
constraint on standard form in (3.7), the coe�cient

√
?

1−? will not a�ect the value of 2 (A ) (·)
considerably if the variance of the control barrier condition ��� (A ) (·) is low.

Table 4.3 illustrates that the inter-triggering time step variable Z may have a more substan-
tial e�ect than ? on the values of the safety constraints used for safety veri�cation. As can
be observed from the recorded safety constraint error percentages in Table 4.3, a small
value of Z leads to almost all actions being admitted. Furthermore, it can be observed that
a larger value for the probability threshold Z results in less admittance of both safe and
unsafe actions, to the point where all actions are rejected. The results also suggest that if
the sampling time interval is su�ciently short, meaning the inter-triggering time between
safety constraint value calculation steps is small, a low Z value will perhaps provide more
accurate safety veri�cation. From Table 4.3, it can also be seen that a lower value for Z will
result in more admittance of actions overall. However, a value of Z = 0.01 results in more
admitted unsafe action and a signi�cant damage percentage. Thus, tuning the threshold Z
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for safety veri�cation in relation to the sampling time can perhaps result in fewer safety
constraint errors.

The results of experiment 2 show that safety-constrained policy optimization is possible in
a model-free setting, as can be observed from the converging episodic returns in both Fig-
ure 4.7 and Figure 4.9. Furthermore, it can be observed from Figure 4.10 that the framework
is able to learn a policy that reaches the Mountain Car environment goal state without
entering the unsafe region of the state space, which is denoted by a shaded red region.
However, Figure 4.8 reveals that the learned policy does not always drive the system to
the goal state, even without safety constraints that augment the objective function. This
e�ect may be due to the stochastic nature of the parameterized policy and the resulting
complexity of training deep reinforcement learning agents. Furthermore, the impact of
the safety constraints on the optimization objective may be dependent on the scale of the
term _2 (A ) (·) in relation to the cumulative reward expression used in the objective.

Experiment 3 shows that safety-constrained policy optimization also may be possible in
a model-based setting, however the learned policies do not always perform well. As can
be seen from Figure 4.11 and Figure 4.9 for the Mountain Car system, as well as from
Figure 4.15 for the inverted pendulum system, the episodic returns tend to converge over
time. The learned model-based policies for the Mountain Car system manage to avoid the
unsafe region. This is the case both for the unconstrained and safety-constrained policies,
as can be seen from Figure 4.12 and Figure 4.10. These trajectories do reveal, however, that
the policies are not su�ciently optimal and as a consequence are not able to reach the goal
state.

Furthermore, experiment 3 reveals that the learned model-based policy for the inverted
pendulum system is not able to avoid the unsafe region of the state space. Although
the returns in Figure 4.15 increase over time, as can be observed from Figure 4.16, the
pendulum enters the unsafe region denoted in the �gure by a shaded red region.

A challenge related to the practical implementation of the model-based safe learning frame-
work is to learn an equally good estimate of the unknown system dynamics throughout the
entire state space. The discrepancies observed in Figure 4.6, where not all safe actions were
admitted, can therefore be related to the accuracy of the posterior Gaussian process model.
Likewise, the result of the learned policies in the closed-loop systems sometimes being
unable to avoid unsafe regions can suggest that the one-step predictions of the Gaussian
process model are not accurate enough. In general, this is considered a signi�cant issue in
model-based reinforcement learning.
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Some of the challenges can stem from di�culties related to training a matrix variate
Gaussian process model, which is a complex model representation. Training separate GP
models per system dimension, as an alternative to matrix variate process regression, is not
feasible when utilizing the GP model to calculate the safety constraints in (3.7), since it is
necessary to capture the dependencies between the components in the drift and gain terms
of the control-a�ne system model. The predictions returned by the expression for the
probabilistic control barrier condition ��� (A ) (·) are de�ned based on the assumption that
the structure of the control-a�ne model of the system dynamics is on a matrix variate form.
As such, poor model estimates are likely to a�ect the performance of learned policies in a
model-based setting, and can also a�ect the accuracy of the predictions made by the control
barrier condition on probabilistic form. However, experiment 1 show that safe exploration
can be feasible, while experiment 2 show that safety-constrained policy optimization can be
implemented in practice, and although issues are encountered regarding the performance
of the learned policies, it may be a promising way forward.

The e�ects of a poor model estimate can perhaps be mitigated by using a di�erent type of
Gaussian process model, such as a Coregularization model [38]. Alternatively, a neural
network can be used to estimate the unknown dynamics instead of a stochastic process.
Such a function approximator can be based on a Bayesian neural network [62], where all
the network parameters are represented by separate probability distributions. The Bayesian
neural network model can then be used to perform variational inference, which will result
in approximate predictions of the system dynamics de�ned by a mean and variance. Such
a model may more easily capture unknown dynamics from limited training data due to the
�exibility in the neural network formulation, and some of the issues regarding training a
matrix variate Gaussian process can perhaps be avoided.

5.2 Theoretical results

The framework for safe learning presented in Chapter 3 allows a reinforcement learning
agent to adapt their model of the unknown system dynamics during the learning phase
through a process of safe exploration. In theory, such a way of performing model-based
learning will work in unstructured environments with no or little a priori knowledge of
the system dynamics.

It was demonstrated theoretically that control barrier functions enable the construction
of probabilistic safety constraints, which yield a su�cient condition for safety based on
a probability measure induced by the posterior estimate of unknown system dynamics.
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The proposed framework provides a permissive notion of safety, due to the set invariance
imposed in Lemma 1, compared to for instance probabilistic bounds on the asymptotic
stability of a system under a control policy. Furthermore, it will be easy to extend the
number of control barrier conditions used, as more safety constraints can easily be added
when performing safety veri�cation without needing to change the method for safe
exploration.

Many methods for safety-critical, learning-based control do not take performance require-
ments into major consideration [27]. The proposed safe learning algorithm does consider
performance requirements, and does not disregard the optimization objective during policy
optimization, since the expected return is still the main objective. The policy is instead
safety-constrained by the introduction of a surrogate objective, which aims to provide a
policy that is both an approximation of the optimal one as well as safe.

It should be noted that when performing safe learning using a model of the unknown
dynamics represented by a stochastic system, all bounds are a type of con�dence bounds,
and conversely no deterministic guarantees can be made. This is likely to be a limitation
in all frameworks for safe learning designed for use in situations where the environment
is unknown and has to be modeled under uncertainty. Nevertheless, safety can in theory
be guaranteed with high probability.

The proposed safe reinforcement learning framework will �t a large range of di�erent
problems, since CBFs, and for that matter CLFs which are de�ned on a similar form, are
generic constraints on the behavior of a system under a control policy. In theory, the
probabilistic constraints de�ned by (3.5) can be used as generic safety constraints for
any type of chance-constrained optimization problem. Thus, the framework can likely
be applied to many di�erent types of control tasks where a control-a�ne model can be
expressed on the form as in (3.1).

5.3 Further work

A natural extension to the safe learning framework would be to consider safety and
stability constraints in combination. The proposed method for safe learning considers
safety in terms of probabilistic safety constraint satisfaction based on control barrier
functions. Signi�cant work has also been done on ensuring safety in terms of stability
guarantees, both indirectly through Lyapunov’s method, and with more direct approaches
by utilizing stability constraints based on control Lyapunov functions. As can be observed
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from De�nition 2 and De�nition 3, both CLFs and CBFs are expressed on an equivalent
form, and the control Lyapunov condition can also be expressed as probabilistic. Thus,
similarly to a CLF-CBF-QP, the combined constraints could be used to optimize a policy
that is safety- and stability-constrained. However, as pointed out in [34], this would likely
require a way to trade o� stability and safety, as CLFs impose more restrictive system
conditions. Alternatively, the stability constraint formulation could be used to verify the
asymptotic stability of state-action pairs to be applied to the real system during exploration,
in addition to safety veri�cation.

Another topic for further work is to provide the Gaussian process used to model the
unknown dynamics with prior information. This information could either be in the form
of a set of state-action pairs sampled in advance of the learning process, or through data
gathered from system trajectories recorded in a simulator or from human demonstrations.
In any case, if care is taken to ensure the trajectories issued to the prior GP model are safe,
they could e�ectively encode information about safe behavior in the model, which in turn
could yield better learning e�ciency and more accurate model predictions. Alternatively,
a version of the framework could be tested where the Gaussian process is replaced by a
Bayesian neural network.

The safe learning framework can also be easily extended to incorporate other types of
safety constraints. One of the main points of motivation in the �eld of safe reinforcement
learning is the ability to apply methods to safety-critical systems, which often naturally
impose restrictions on how the system is allowed to interact with the environment. Typical
constraints on the system state, like maximum velocity, minimum de�ection or restricted
regions of movement, are often required for safe, real-world operation. However, it would
be interesting to exploit the generality of control barrier functions to formulate other
conditions for system behavior, like survivability constraints that ensure persistent long
term autonomous system operation [63] or energy-aware coverage control [64].

Lastly, it would be interesting to test out a di�erent version of the safe learning framework
based on Algorithm 4, which incorporates a safety �lter to optimize the exploration policy
in order to ensure safe action selection during exploration.
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6 | Conclusion

In this thesis, a theoretical framework for safe model-based reinforcement learning using
control barrier functions has been proposed and evaluated. Unlike many existing methods,
which require accurate models of known system dynamics or impose more restrictive
conditions for safety through asymptotic system stability, the proposed framework uses
probabilistic safety constraints on the system states to provide high-probability guarantees
of safety during exploration. Control barrier functions provide a simple way to de�ne
permissive safety constraints.

The safe learning framework utilizes a Gaussian process to model the unknown system
dynamics. A safe exploration scheme was proposed, which actively gathers data samples
to be used for matrix variate Gaussian process regression. Further, a method for chance-
constrained policy optimization was proposed, which uses the model informed by safely
collected data in order to optimize a policy subject to probabilistic safety constraints.

Experiments revealed that the method for safe exploration successfully rejected most
unsafe actions when actively collecting data. Issues related to the accuracy of one-step
predictions made by the Gaussian process model however, meant that not all policies
learned by safety-constrained optimization were able to avoid unsafe regions when applied
to the true dynamics.

The proposed framework for safe learning shows promise for control barrier functions to
be used in order to ensure safety with high probability in unknown environments. The safe
learning algorithm may be applied to safety-critical systems, but more research is needed
to provide su�ciently accurate statistical model estimates. The use of a permissive notion
of safety de�ned by probabilistic safety constraints opens up possibilities in the future of
guaranteeing that autonomous systems learn to operate safely in real-world environments.
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