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Abstract
Precise and energy-efficient motion control are important safety and economic aspects
for marine vessels. This master’s thesis presents the design and evaluation of a novel
multivariate-based adaptive controller for marine surface vessels.

The goal is to create a system that detects and models changes in the vessel dynamics used
in a dynamic positioning (DP) controller to improve the motion-control performance. A 3-
degree of freedom (DOF) vessel model is generated by analyzing measured actuator force,
velocity, and acceleration in a multivariate analysis (MVA). A lack-of-fit residual, defined
by the difference between the modeled and observed vessel dynamics, is fitted to update
the model with previously unmodeled dynamics.

This thesis covers the implementation of the adaptive controller in a full-scale vessel sys-
tem and demonstrates the proof-of-concept through experimental tests. The full-scale ex-
periments enlighten the robustness and reliability of the adaptive system. The experiments
also prove the system’s ability to generate good vessel models improving the performance,
even when impacted by unmeasured disturbances from wind gusts of at least 6 m/s. The
impact of unmeasured wave disturbances proves to be above the limit of what the adaptive
system handles.

This new approach to model-based adaptive controllers can be the foundation of creating
more reliable, safer, and precise control systems, approaching the goal of fully autonomous
operational ferries for the benefit of better transportation systems. Further investigations
towards these goals are suggested.
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Sammendrag
Nøyaktig og energieffektiv bevegelsesstyring er viktig for sikker og økonomisk drift av
marinefartøyer. Denne masteravhandlingen presenterer design og evaluering av en ny
multivariat-basert adaptiv kontroller for marine overflatefartøy.

Målet er å lage et system som oppdager og modellerer endringer i fartøydynamikken som
brukes i et dynamisk posisjoneringssystem, for å forbedre ytelsen til bevegelsesstyringen.
En 3-DOF fartøymodell genereres ved å analysere målt aktuatorkraft, hastighet og aksel-
erasjon i en multivariat analyse. Et mangel-på-passform residual, definert av differansen
mellom den modellerte og observerte fartøy-dynamikken, er modellert for å oppdatere
modellen med tidligere umodellert dynamikk.

Denne oppgaven dekker implementeringen av den adaptive kontrolleren i et fullskala
fartøysystem og demonstrerer konseptbeviset gjennom eksperimentelle tester. Fullskala
eksperimentene belyser robustheten og påliteligheten til det adaptive systemet. Eksper-
imentene viser også systemets evne til å generere gode fartøymodeller som forbedrer
ytelsen, selv ved påvirkning av umålte forstyrrelser fra vindkast på minst 6 m/s. Virknin-
gen av umålte bølgeforstyrrelser viser seg å være over grensen for hva det adaptive sys-
temet håndterer.

Denne nye tilnærmingen til modellbaserte adaptive regulatorer kan gi grunnlag for å skape
mer pålitelige, sikre og presise kontrollsystemer, og dermed ta oss nærmere målet om full-
autonome operative ferger og bedre transportsystemer. Det foreslås ytterligere tiltak og
undersøkelser for å kunne nå disse målene.
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Chapter 1
Introduction

In this chapter, the possibilities and the importance of autonomy in various industries are
presented, with main focus on the marine industry. Following, the problem description,
related work, and contributions are presented. The contributions relate to experimental
tests of new methods improving the performance of motion control for surface vessels.
Finally the outline for the thesis is presented.

1.1 Motivation
The race to achieve fully autonomous systems is on. During the past few years the car
industry has step by step approached the goal of fully autonomous cars. Back in 2015,
Waymo operated a fully autonomous car in an open environment, but was limited to op-
erate only in a small area with low speeds (Fairfield, 2016). A commercialized consumer
product that works in larger areas is yet to be seen.

Automation of transportation systems is not new. Subway systems such as the Paris, Lau-
sanne, and Copenhagen metro, function without human control and have been automated
for many years, but are not considered fully autonomous. According to NATO’s defini-
tions, autonomous systems relates to ”A unmanned systems own ability of integrated sens-
ing, perceiving, analysing, communicating, planning, decision making, and acting [...]”,
which makes the safety and control aspects of fully autonomous systems much more ad-
vanced and rely on completely different safety standards compared to automated systems
(Williams, 2015). Automation, on the other hand, refers to a system that operates in a
closed environment that do not interact with humans.

Elon Musk claims that Tesla will reach Level 5 Autonomy for their self driving cars,
the highest classification of autonomy, by the end of 2021 (International, 2021; Hyatt,
2021). The CEO of Waymo, head of Teslas biggest competitor on autonomous cars, claims
on the other hand that Tesla never will reach this level of autonomy with their current

1



Chapter 1. Introduction

Figure 1.1: Yara Birkeland undergoing sea-trials, by courtesy of Yara (2020).

approach (Wilkes, 2021). Tesla’s approach is to only use cameras as sensors and deep-
neural networks to train their system, while Waymo’s approach focuses on creating a full
3D model of entire cities, where lidars are used to map the surrounding objects and where
cameras read the signs. Waymo does not use machine learning for the maneuvers and
mapping of the surrounding but rather use it to predict the traffic and pedestrian movements
to smoothly execute the planed route. Tesla uses cameras and machine learning for both
the mapping and motion planning, similar to a human’s approach to driving. This solution
generalizes the problem and works anywhere. There is no doubt that investors see the
potential for autonomous systems. In fact, between August 2014 and June 2017, 80 billion
US dollars were invested into the automation of the car industry (Zanona, 2017).

The shipping industry is also getting closer to reach fully autonomous vessels. Kongs-
berg Maritime’s and Yara’s autonomous ship MS Yara Birkeland shown in Figure 1.1,
will be the first autonomous ship of its kind and is foreshadowed to be fully autonomous
operational in 2022. The ship has been launched and now undergoes preparations for
autonomous operation in a test area in Horten (Yara, 2020). In operation, the ship re-
moves 40 000 truckloads from the roads yearly between Yara’s fertilizer factory and the
shipping harbors (Stensvold, 2017; Yara, 2018). Kongsberg Maritime and Massterly also
signed contracts with ASKO, the leading Norwegian grocery distributor, delivering two
new zero-emission autonomous ships in 2022. The ships will be used across the Oslo
fjord and will replace 2 million kilometers of truck transport, saving 5 000 tonnes of CO2
annually. Initially, the ships will operate with a reduced crew for a two-year test period.
Approval for fully unmanned operations is expected during 2024 (Kongsberg, 2020).

The massive development in computer power and machine learning algorithms has made it
possible to develop such advanced systems for autonomous cars and ships. Until recently,
the processing of a large amount of data has been a slow process (Divino, 2020). Through
contests like ImageNet Large Scale Visual Recognition Competition (ILSVRC), massive
development in deep learning algorithms (Russakovsky et al., 2015) have been seen, and
Tesla’s approach to self-driving cars shows how the technology and industry closely follow

2



1.1 Motivation

Figure 1.2: Concept illustration of Zeabuz, by courtesy of Zeabuz (2021).

each other.

By 2050 nearly 70% of the world’s population will live in cities, 50% more than today (Ze-
abuz, 2021). Cities are often founded near waterways that also separate districts like seen
in New York City. Building bridges and tunnels are costly, non-scalable, and also leaves a
large and lasting footprint. The growing infrastructure requirement in the cities sparked the
idea to further utilize the seaways for better transportation systems (Cairns, 2020; Knut-
sen, 2020). This often unused space can be used by environmentally friendly passenger
ferries that efficiently transport people across the city. NYC Ferry recently expanded their
services with several routes and stops, but unfortunately, they are still not autonomous or
electric (Lee, 2019). Norwegian University of Science and Technology (NTNU)’s Aut-
oferry project, with close cooperation with the spin-off company Zeabuz, wants to make
this option available. Autonomous vessels will be safer, more energy-efficient, cheaper,
and can operate at any time of the day that all would benefit the passengers.

Zeabuz springs of decades of research on hydrolift smart city ferries at NTNU. As a part
of the ongoing research, NTNU has financed and built two research vessels, milliAmpere
and milliAmpere 2. Based on the experience from the milliAmpere vessels, Zeabuz plans
to design and launch their first pilot ferry in 2022 (Zeabuz, 2021).

The Autoferry project is an initiative to make a fully autonomous electric ferry that can
cross the channel in the city center of Trondheim between Ravnkloa and Vestre kanalhavn,
as seen in Figure 1.3. The two prototypes milliAmpere and milliAmpere 2, are used to
develop and test the systems created.

Marine vessels are dependent on precise and efficient motion control for operation pur-
poses. Model-based control is a good approach to accomplish this. A perfect model is,
however, impossible to obtain as it will always be based on assumptions and approxima-
tions that simplify the real behavior of a system. In most cases, a simplified model is
sufficient for control purposes. However, imperfect models in a control system might lead
to a waste of energy and imprecise maneuvers due to imprecise control actions. Many
systems overlook the value of sensor data that can be used to improve the performance of
a system. The milliAmpere ferry collects loads of data from different sensors located on
the vessel giving information about the vessel’s states and the surrounding environment.
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(a) The milliAmpere ferry at the christening, by
courtesy of the IE faculty at NTNU.

(b) From the first sea-trials for milliAmpere 2, by
courtesy of the IE faculty at NTNU.

(c) Operational route for milliAmpere, by courtesy of Egil Eide.

Figure 1.3: The Autoferry project.

Analyzing the data makes us able to better understand how the vessel behaves and moves
in relation to the environment. Jervan (2020) started the design of an adaptive controller
for milliAmpere based on big data cybernetics (BDC) to take advantage of all the collected
data. Aurlien (2020) expanded the system to also model wind forces. The motivation for
this master’s thesis is to finalize the adaptive controller and test the system in full scale on
the milliAmpere vessel.

BDC is a new and upcoming field in cybernetics (Martens, 2020). With this new approach,
the best from control theory, physics-based models, deep neural networks, and big data
are combined. The first professorship in BDC was established back in 2015 by NTNU
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and Kongsberg. BDC is a unique theoretical approach to Big Data management and is
important to utilize the vast amount of data that is measured and stored everywhere around
us (Kongsberg Group, 2015). Big data is more valuable than ever and will be important in
the development and improvement of current and future systems. NTNU and Kongsberg
therefore aim to contribute to world-leading research in the field.

In the context of control theory, BDC is essentially an improvement of the famous feed-
back loop. MVA is the concept of finding structures in data sets, and through hybrid
analysis and modeling (HAM), the models used by control systems can be improved for
better performance. HAM describes how to generate a model error based on observed and
measured data using all available data to model this model error. Deep learning is not
very intuitive but could be a solution. The advantage with HAM is that big data is used to
fit existing physics based models that can explain much of the model deviations, making
the models intuitive and trustworthy. HAM used for control purposes is BDC in a nut-
shell (Rasheed et al., 2019). In this thesis, the BDC approach is used to make an adaptive
controller detecting model changes or inaccuracies in real-time. This thesis furthermore
describes how to improve the motion control performance by identifying and modeling
unmodeled dynamics.

1.2 Problem Description
The problem description for this masters thesis is summarized by:

• Continue the work of Aurlien (2020) and perform full-scale experiments of the adap-
tive control system in closed-loop.

• Extend the adaptive model to support current modeling.

• Solve practical issues related to the transition from simulations to experiments and
make the system robust.

– Find a practical solution to how the lack-of-fit-residual is obtained.

– Find a precise way to estimate acceleration.

– Find a good enough set of basis functions to detect changes in the model dy-
namics.

– Develop a tuning process for the adaptive system parameters.

• Write an article summarizing the discoveries of the master’s thesis.

• Illuminate possibilities, advantages, and limitations of adaptive control systems.

• Perform experimental tests of the carrot-based control system developed by Aurlien
(2020).
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1.3 Related Work
The Autoferry project is all about developing a fully autonomous ferry suitable for ur-
ban areas. Such a complicated project needs many diverse systems to meet safety and
reliability conditions. The Autoferry project is built around the six PhD positions on

• Automation and autonomy

• Multi-sensor tracking via shore- and ferry-based sensors

• All-electric power and propulsion

• Human factors, remote monitoring, and control

• Communications and cybersecurity

• Risk management

that combined reflect the goals in the Assuring Trustworthy, Safe and Sustainable Trans-
port for All (TRUSST) project lead by DNVGL (2021). This boils down to three main
parts consisting of: 1. collision avoidance systems and monitoring, 2. path planning,
docking, and control, and 3. security and risk management.

Master students have contributed to the Autoferry project since the beginning of the project
in 2017. Some of the earlier masters thesis has been ”Estimating model parameters” by
Pedersen (2019), leading up to the model used on milliAmpere today, ”Efficient docking
minimizing energy usage” by Molven (2020), that ensures efficient docking path planning
and execution, ”Collision avoidance system” by Thyri (2019), that can use information
from radars, cameras, and lidar to map and respond to the environment, and ”Adaptive
control system” by Jervan (2020) that started the work to update the vessel model for
more precise control actions.

The work of Gale et al. (2017) of improving the model for a robotic manipulator based
on multivariate residual modeling has been an important inspiration for the methods sug-
gested in this thesis.

Regarding other approaches to FF controllers, Boerlage et al. (2003) proposes a model-
based FF controller for a 2-dof system, that consist of an acceleration FF part and and an
inverse dynamics model for flexible modes. The idea is to compensate for higher mode
dynamic effects making on-line tuning feasible. Depending on the mode, predefined ad-
justments in form of skew notch filters are applied to the dynamics, making the inverse
dynamics of the plant are accurate. This technique is similar to how the first autopilots for
airplanes used to be when dealing with un-linear lift models for different angle-of-attacks
(Ioannou and Sun, 2012). This was solved by implementing a parameter scheduler that
switched parameters for different ranges of angle-of-attacks.

Another FF design by Lambrechts et al. (2004) uses a 4-order trajectory planning with
both velocity, acceleration, jerk, and the derivative of the jerk (snap) in the FF controller
for single-axis motion. Trajectory planners for second and third-order models are fairly
known in academia, with this thesis suing a second-order trajectory planner for the 3-DOF
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system. Higher-order planners are highly complex, but time-optimality actuator effort
limitation, reliability, and accuracy can be improved.

Model-based feedforward–feedback tracking control is one of the most efficient methods
for real-time hybrid simulation (RTHS). RTHS is a testing technique applied to a struc-
ture that consists of physical and numerical components that are coupled in time. The
technique can be used to test the strength of a building or a bridge when impacted by
earthquakes. Chen et al. (2015) presents an adaptive model-based feedforward–feedback
tracking control to apply this technique to structures. The method is tested on a building
and compared to actual data from two earthquakes.

1.4 Contributions
In this thesis an adaptive control system for autonomous ferries is suggested, tested, and
evaluated. The adaptive controller is tested through realistic simulations and is verified by
full-scale experiments on milliAmpere. The suggested adaptive controller adds wind and
current modeling support, but this added functionality is not tested in experiments due to
the lack of wind and current measurement on milliAmpere. The thesis further presents
and experimentally tests the customized carrot-based guidance system by Aurlien (2020),
used for better path following. The contributions are summarized as the following:

1. Finalized an adaptive control system for surface vessels adding wind and current
modeling support.

2. A method for automated model verification is presented.

3. A modified line-of-sight (LOS) guidance law is suggested for the milliAmpère sur-
face vessel.

4. Experimental tests proving the robustness and limitations of the system when con-
sidering real environment forces and sensor disturbances.

5. Wrote and submitted an article for the 13th International Federation of Automatic
Control (IFAC) Conference on Control Applications in Marine Systems, Robotics,
and Vehicles (CAMS) The article is included as Appendix D.

1.5 Outline
Chapter 2 presents the basic theory of multivariate modeling and motion control of au-
tonomous ferries. Chapter 3 presents improvements to the motion control system regarding
path following, modeling, and control actions. Chapter 4 presents the system description
and setup, including the specifics for the milliAmpere vessel used for the experiments.
Chapter 5 presents and evaluates the simulations and experimental results. Chapter 6
presents the conclusion and further work.
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Chapter 2
Background Theory

This chapter presents the basic theory of multivariate modeling and control of autonomous
ferries. The content in this chapter is mostly based on Aurlien (2020).

2.1 Mathematical Modeling
This section will describe the mathematical system needed to understand vessel dynamics
and interactions with the surrounding environment.

2.1.1 Surface Vessel Model
The marine vessel notation used in this thesis follows the Society of Naval Architects
and Marine Engineers (SNAME) notation shown in Table 2.1. For surface vessels, heave,
pitch, and roll can be assumed small; hence, the model can be simplified from 6-DOF to 3-
DOF. The rigid-body dynamics for a 3-DOF surface vessel can be expressed in a vectorial
setting with generalized position vector ηηη = [x, y, ψ]> and velocity vector ννν = [u, v, r]>.
The pose vector ηηη is described in the Earth-fixed NED reference frame and the velocity
vector is described in the body reference frame. An illustration of the degrees of freedom
is shown in Figure 2.1.

Fossen (2011) describes the kinematics for surface vessels according to

η̇ηη = RRR(ψ)ννν, (2.1)

RRR(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 , (2.2)
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Chapter 2. Background Theory

Figure 2.1: Body fixed motion in 6-DOF, by courtesy of (Fossen, 2011).

whereRRR(ψ) is the rotation matrix from the Body to the NED reference frame. The kinetics
are described according to

τττ rb = MMMrbν̇νν +CCCrbννν, (2.3)

where MMMrb is the inertia matrix, CCCrb is the Coriolis and centripetal matrix and τττ rb is the
rigid body force. Equation (2.3) is Newton’s second law of motion on vectorial form.

When a vessel moves through the water it also moves water surrounding the vessel. This
volume of water is known as the hydrodynamic added mass and affects the dynamics of
the vessel. The considered forces acting on the rigid body forces are

τττ rb = τττhyd + τττ + τττdist (2.4a)
τττhyd = −MMMaν̇νν −CCCa(ννν)ννν −DDD(ννν)ννν, (2.4b)

where τττhyd is the hydrodynamic forces, τττ is the actuator forces, τττdist is disturbances,
MMMa is the hydrodynamic added mass matrix, CCCa is the added Coriolis and centripetal
force, and DDD is the damping matrix. The added mass and added Coriolis and centripetal
are effects resulting from water surrounding the vessel being moved, making the effective
mass greater than the rigid body mass. The wind and current impact τττw, τττ c ∈ τττdist are for
now, considered as unmodeled disturbance components that are components of the rigid
body forces. Defining

MMM := MMMrb +MMMa (2.5a)
CCC(ννν) := CCCrb(ννν) +CCCa(ννν), (2.5b)

combines the rigid body and hydrodynamic dynamics. The 3-DOFs model for the rigid
body kinetics is obtained by combining (2.3), (2.4), and (2.5):

τττ rb = MMMν̇νν +CCC(ννν)ννν +DDD(ννν), (2.6)

whereMMM is the inertia matrix andCCC is the Coriolis and centripetal matrix.
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Table 2.1: The notation for marine vessels defined by the Society of Naval Architects and Marine
Engineers.

DOF Forces and
moments

Linear and
angular moments

Position and
Euler angles

1 Motion in the x
direction (surge)

X u x

2 Motion in the y
direction (sway)

Y v y

3 Motion in the z
direction (heve)

Z w z

4 Rotation in the x
direction (roll)

K p φ

5 Rotation in the y
direction (pitch)

M q θ

6 Rotation in the z
direction (yaw)

N r ψ

It is common to assume that the vessel has homogeneous mass distribution and xz plane
symmetry so that Ixy = Iyz = 0 (Fossen, 2011). The body frame is set in the center-line
and at the point center of origin (CO) so that yg = 0. Furthermore, it is assumed that the
added mass is computed in CO. The effective mass is considered as the sum of the rigid
body mass and the hydrodynamic added mass. With all these assumptions, the inertia
matrix is constant, positive definite where

MMMrb =



m 0 0
0 m mxg
0 mxg Iz


 ,MMMa =



−Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ


 , (2.7)

and m is the mass of the vessel, (xg, yg) is the center of gravity (CG) of the vessel, Iz is
the moment of inertia for the rigid body in yaw, while the rest of the parameters are scalar
terms related to the added hydrodynamic mass.

The Coriolis and centripetal matrix can be described in terms of the inertia matrix so that
it always is skew-symmetric

CCC(ννν) = CCC(ννν)> (2.8)

where

CCCrb(ννν) =




0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0


 , (2.9)

CCCa(ννν) =




0 0 c13(ννν)
0 0 c23(ννν)

c31(ννν) c32(ννν) 0


 , (2.10)
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with

c13(ννν) = Yv̇ +
1

2
(Nv̇ + Yṙ)r (2.11a)

c23(ννν) = −Xu̇u (2.11b)
c31(ννν) = −c13(ννν) (2.11c)
c32(ννν) = −c23(ννν). (2.11d)

The hydrodynamic dampening matrixDDD(ννν) can be described as the sum of linear viscous
dampeningDDDL and nonlinear dampeningDDD(ννν)NL

DDD(ννν) = DDDL +DDDNL(ννν), (2.12)

where the nonlinear dampening describes the cross-flow drag Fossen (2011). The hydro-
dynamic dampening matrix is positive definite and defined by

DDDL =



−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr


 ,DDDNL(ννν) =



d11(ννν) 0 0

0 d22(ννν) d23(ννν)
0 d32(ννν) d33(ννν)


 . (2.13)

The model described by Blanke (1981) uses second order modulus functions to fit the
cross-flow drag dynamics where the elements inDDD(ννν) are modeled as

d11(ννν) = −X|u|u|u| −Xuuuu
2 (2.14a)

d22(ννν) = −Y|v|v|v| − Y|r|v|r (2.14b)
d23(ννν) = −Y|v|r|v| − Y|r|r|r| (2.14c)
d32(ννν) = −N|v|v|v| −N|r|v|r| (2.14d)
d33(ννν) = −N|v|r|v| −N|r|r|r|, (2.14e)

and where the parameters are scalars. The linear partDDDL can be neglected for high speed
maneuvering models since the higher order terms will dominate, but for station-keeping
and low speed maneuvering it is recommended to keep the linear terms. The third order
modulus term Xuuuu

2 can be added, to increase the complexity slightly. This term can be
added without any other further modifications because surge is assumed decoupled from
sway and yaw. Pedersen (2019) chooses to add Yvvvv2 and Nrrrr2 as well to d22, and d33
respectively to obtain a more complicated model, but this is considered slightly inaccurate
since then other terms should also be added to complete the third order modulus function
with coupling in sway and yaw.

2.1.2 Wind Load Model
The movement of a rigid body system will be affected by wind. According to Blendermann
(1994), the wind will apply a force to a 3-DOF ship model in the following manner:

τττw =
1

2
ρaV

2
rw




CXw
(γrw)AFw

CYw
(γrw)ALw

CNw
(γrw)ALw

L0a


 , (2.15)
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where ρa is the air density, Vrw is the relative air speed, γrw is the angle of attack of Vrw
relative to the bow of the ship, CX(γrw), CY (γrw) and CN (γrw) are the wind coefficients
for horizontal plane motion, L0a is the distance from the bow to the stern, and AFw

and
ALw

is the frontal and lateral projected areas, respectively. The relative air speed and the
angle of attack are further defined as

Vrw =
√
u2rw + v2rw , (2.16)

where urw and vrw are the speed of the rigid body relative to the wind in the longitudinal
and lateral direction, respectively, described in the body reference frame and where

γrw = −atan2(vrw, urw). (2.17)

The wind coefficients are defined as

CXw
(γrw) = −CDlAF

cos(γrw)

1− δ
2

(
1− CDl

CDt

)
sin2 (2γrw)

(2.18a)

CYw(γrw) = CDt
sin(γrw)(

1− δ
2

(
1− CDl

CDt

)
sin2(2γrw)

) (2.18b)

CNw(γrw) =

[
SL
L0a
− 0.18

(
γrw −

π

2

)]
CYw(γrw). (2.18c)

2.1.3 Current Load Model
Similarly to the wind load model, the current load model can, according to Blendermann
(1994), be described as

τττ c =
1

2
ρV 2

rc




CXc
(γrc)AFc

CYc
(γrc)ALc

CNc(γrc)ALcL0a


 , (2.19)

where

CXc
(γrc) = −2

(−X|u|u
ρAFc

)
cos(γrc)| cos(γrc)| (2.20a)

CYc(γrc) = 2

(−Y|v|v
ρALc

)
sin(γrc)| sin(γrc)| (2.20b)

CNc(γrc) =
2

ρALc
L0a

(−N|v|v sin(γrc)| sin(γrc)|+
1

2
(Xu̇ − Yv̇) sin(2γrc)). (2.20c)

Here, ρ is the density of water, and the subscript c denotes current parameters which make
γrc the angle of attack of the current, Vrc is the relative velocity between the vessel and the
current, and AFc

and ALc
are the frontal and lateral projected currents areas respectively.

2.2 Motion Control
Motion control describes how to achieve desired movement. A flow chart shown in Fig-
ure 2.2 shows an example of subsystems that can be used to achieve motion control.
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Figure 2.2: Flow chart for achievement of motion control.

2.2.1 Dynamic Positioning
A simple FB and a FF controller can be implemented to keep the surface vessel on a
desired trajectory. To handle constant disturbances in NED, the FB controller is suggested
to be implemented as a proportional-integral-derivative (PID) controller

τττFB = −RRR>(ψ)KKKp(ηηη − ηηηd)−KKKdamping(ννν − νννd)−RRR>(ψ)KKKi

∫ t

0

(ηηη − ηηηd)dt, (2.21)

whereKKKp,KKKi,KKKdamping ∈ R3×3 are design gain matrices withKKKp,KKKi,KKKdamping ≥ 0,
and where the subscript d denotes the desired value. The error is defined in NED because
current is considered as the greatest disturbance. By having the integrator in NED, constant
disturbances can be compensated for in NED. If the disturbance come from a bias in body,
say the motor was mounted with an angle grater than zero, relative to the bow, this constant
disturbance in body could be handled with an integration of the body error.

A FF controller can be used to predict and apply the needed force for the desired move-
ment. For control purposes it is convenient to describe the model in terms of the applied
actuator force. For now, in this vessel model, the wind and current impact is ignored since
the disturbances are considered not measured, but the real environment is still considered
to include these disturbances. From (2.6), it can be derived

τττ = FFF (ν̇νν,ννν) = MMMν̇νν +CCC(ννν)ννν +DDD(ννν). (2.22)

When the model is described in this way, the FF control signal gets generated by inserting
the desired values for the vessel states into the model

τττFF = FFF (ν̇ννd, νννd), (2.23)

so that when applying the force to the real system, the desired speed and acceleration
follow. If the FF model is perfect, the FB controller is not needed. However, the model
is never perfect and hence the FB controller is needed to support the FF controller. An
important aspect of a FF controller is its independence to vessel state measurements which
makes the FF controller robust against process noise. In a FB controller, a force gets
applied if there is a deviation between the measurement state and the desired state. A FF
controller is, therefore, faster than a FB controller because it makes adjustments before a
deviation between desired and actual movement occurs. Together, the FF controller and
the FB controller form a DP controller

τττd = τττFB + τττFF , (2.24)

where the subscript d denotes the desired control action.
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2.2.2 Trajectory Tracking
Following a smooth, time varying trajectory ηηηd(t) is accomplished by driving the trajec-
tory error to zero. The trajectory error is defined as

eee(t) := ηηη(t)− ηηηd(t) (2.25)

where eee(t) ∈ R3×1 is the trajectory error at time t. The reference signal ηηηd is generated
by filtering the desired waypoints with a third-order filter. The waypoints consist of the
desired pose. The filtration ensures a smooth and continuous reference signal for the
position, velocity, and accelerations making the trajectory tracking task feasible for the
surface vessel since the waypoints are steps in the desired position and heading. The filter
is described in a vectorial setting by

ηηη
(3)
d + (2∆∆∆ + I)ΩΩΩη̈d + (2∆∆∆ + I)ΩΩΩ2 + ΩΩΩ3ηηηd = ΩΩΩ3rrr, (2.26)

where ΩΩΩ,∆∆∆ ∈ R3×3 are positive definite design matrices that determine the dynamics of
the filter, and where rrr is the reference setpoint. For the dynamics of the filter, ∆∆∆ is the
damping ratios, while ΩΩΩ is the natural frequencies. Saturating elements are included in the
integrals to ensure feasible reference signals.

2.2.3 Path Following
When ignoring the timing aspect of trajectory tracking, the problem simplifies to path
following. The path is defined by a set of waypoints in the NED frame that can also
include the desired heading.

LOS guidance can be used for path following. There are two types of LOS guidance
laws described in Fossen (2011); enclosure-based steering and look-ahead-based steering.
What differs the two methods is how the (xlos, ylos) point in Figure 2.3, is determined.
Enclosure-based steering defines the point to be a constant distance away from the vessel,
while look-ahead based steering uses a constant along-track distance to determine this
point. In practice, only the look-ahead-based steering approach is used.

Look-ahead Based Steering

Look-ahead-based steering is mainly designed for under-actuated vessels, which usually
means that a rudder is used to generate a rotational force. The guidance system finds a
heading by aiming for a setpoint on the path that is a determined length in front of the
vessel’s projected position into the path. A common way to implement look-ahead-based
steering is to have two separate controllers; one for heading and one for speed.

2.3 Multivariate Modeling and Analysis
This section presents the remaining theory needed to understand how the new contributions
to the adaptive controller presented in Chapter 3 work.
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Figure 2.3: Look-ahead based line-of-sight guidance by courtesy of Fossen (2011). All variables
follow the Society of Naval Architects and Marine Engineers notation.

2.3.1 Big Data Cybernetics
Big data cybernetics is HAM in the context of adaptive control in cybernetics (Rasheed
et al., 2019). HAM combines the best of several research fields; machine learning, big data,
and physics based modeling (Tekna, 2019). Figure 2.4 shows how HAM is implemented
in cybernetics as BDC (Rasheed et al., 2019). Figure 2.5 shows the pipeline used in HAM
to develop a model.

2.3.2 Principal Component Analysis
Principal component analysis (PCA) can be used to find underlying structures of a data set
XXX (Esbensen et al., 2002). This method is useful for finding the core properties of a data
set and can optimize the best way to represent a data set when reducing the dimensionality.
WithXXX ∈ RN×J , the PCA of the jth ∈ {1, 2, . . . , J} order is

XXX = TTT jPPP
>
j +EEEj , (2.27)

where TTT j ∈ RN×j are the scores for XXX , PPP j ∈ RJ×j are the loadings for XXX and EEEj ∈
RN×J is the residual. N and J is the number of samples and dimensions respectively.
Figure 2.6 shows the visualization of a second order PCA on a data set. The columns in
PPP j are the principal components and represent the new axes in the subspace Rj ⊆ RJ of
the original vector space and the scores TTT j are interpreted as the coordinates of the data
points inXXX in the new subspace.
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(a) Big data cybernetics.

(b) Hybrid analysis and modeling.

Figure 2.4: Hybrid analysis and modeling in the context of big data cybernetics by courtesy of
Rasheed et al. (2019).

2.3.3 Partial Least Squares Regression
Partial least squares (PLS) regression can be used to find underlying structures between
two data sets. In the case of two data sets XXX ∈ RN×K and YYY ∈ RN×k, the goal is to
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Figure 2.5: The pipeline from data generation to data analysis to the new obtained model by courtesy
of Tekna (2019).

Figure 2.6: A visualization of PCA, by courtesy of Esbensen et al. (2002).

predict YYY with a linear combination ofXXX according to

ŶYY = [111,XXX]βββ, (2.28)

where 111 ∈ RN×1 is a vector, βββ ∈ RK+1×k is a matrix where k is the number of output
dimensions, K is the number of input dimensions, and N is the number of samples. In the
analysis the correlation betweenXXX and YYY is maximized so that the residualEEE in

YYY = [111,XXX]βββ +EEE, (2.29)

is minimized.

18



2.4 Control Allocation

Figure 2.7: Symmetrical two-thruster configuration for double ended vessels, by courtesy of Torben
et al. (2019).

Simple Partial Least Squares

The simple partial least squares (SIMPLS) algorithm can be used for PLS regression
(De Jong, 1993). The nonlinear iterative partial least squares (NIPALS) algorithm is an
alternative algorithm that Jervan (2020) and Gale et al. (2017) use in the MVA for gen-
erating new models. The SIMPLS algorithm offers several advantages over the standard
NIPALS algorithm (De Jong, 1993). The most important for modeling purposes is that for
multivariate YYY , the SIMPLS algorithm truly maximizes the co-variance criterion, when
referring to the original data sets. Secondly, the SIMPLS does not involve a breakdown
of the XXX and/or the YYY matrix making it faster and less memory needy than the NIPALS
algorithm. Thirdly, it is easier to extract the regressions for direct usage when the factors
are already expressed as a linear combination of the original data sets. Alin (2009) verifies
that when the number of objects N is much larger than the number of variables K, for
XXX ∈ RN×K , the SIMPLS algorithm is not as time consuming as the NIPALS algorithm.
Appendix A lists the SIMPLS algorithm as explained by De Jong (1993).

2.4 Control Allocation
For vessels where the control force τττ is indirectly applied by rotating azimuth thrusters,
control allocation is needed. Control allocation is a problem where the goal is to find the
optimal realization to a control signal subject to constraints and cost functions. For double
ended vessels with symmetrical thruster configuration, nonlinear scalar control allocation
(NSCA) can be used to solve the control allocation problem (Torben et al., 2019). The
method finds the solution to

F1,xd
+ F2,xd

= Xd (2.30)

F1,yd =
Nd + LsYd

2Lx
(2.31)

F2,yd =
Nd − LsYd

2Lx
(2.32)

, where F1,x, F1,y , F2,x, and F2,y are the decomposed azimuth forces in the body frame
for the two thrusters respectively, as shown in Figure 2.7. The control force setpoint is
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realizes by

τττd = [Xd, Yd, Nd]
> = F1(α1d , ω1d) + F2(α2d , ω2d) (2.33)

τττ = F1(α1, ω1) + F2(α2, ω2) (2.34)

, where Xd, Yd, Nd are the desired forces and moment for surge, sway and yaw, respec-
tively, and where α1, α2 and ω1, ω2 is the azimuth angles and propeller rpm respectively.
A separate controller makes the azimuth thrusters obtain the desired set point angle and
rpm for each thruster.

2.5 Robot Operating System
ROS is a flexible open-source framework for robotic software development (Quigley et al.,
2009). Robot systems are complicated and often rely on many advanced subsystems.
Some teams might be experts in sensor fusion, while others are experts in deep neural
networks for object detection. The idea behind ROS is to encourage collaboration so that
groups can take advantage of each other’s expertise. The ROS framework is built in such
a way that using others packages is easy to implement in your system.
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Chapter 3
Improvements of Existing Methods

In this chapter, the new methods developed for more precise motion control are presented.

3.1 Carrot-based Steering
Carrot-based steering is a new path following guidance system by Aurlien (2020) that is
designed for getting the most out of a good vessel model during path following. Tradition-
ally, path-following guidance systems are separated into two independent control systems,
a heading controller and a speed controller. Such a control system is designed for autopi-
lots on large ships that mostly move in relatively straight lines using a rudder to control
the heading. As mentioned in Chapter 1, smaller fully autonomous vessels start being a
reality, and with this development, new navigation laws are needed to better fit the control
purposes and abilities of the vessels.

Smaller marine vessels, such as milliAmpere and milliAmpere 2, having azimuth thrusters,
are fully actuated and can apply a force in any direction at any time. This makes the
LOS approach more restricting than it needs since the course control is independent of
the heading control. Additionally, when dealing with high precision control, it is also an
advantage if the FF controller described in Section 2.2.1 can be utilized. The generation of
a set of position, speed, and acceleration references are not straightforward with the look-
ahead-based guidance system described in Section 2.2.3. A step in the speed reference
signal is not feasible for the system to follow, which shows that the control problem needs
adjustments to use a FF controller.

Jervan (2020) used enclosure-based steering in combination with a reference filter for his
normal operation test of the adaptive controller. By doing this, the adaptive controller
could be used to its full potential for the path following. However, the enclosure-based ap-
proach is, in some cases unfitted due to situations where the LOS point is undefined. When
replicating his results with the better defined and more commonly used lookahead-based
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approach, the speed and acceleration references were observed to be counter-intuitive to
a human’s approach to the turning movement by accelerating and increasing the speed
through the turn and decelerate when finishing the turn. This gave the inspiration to make
adjustments that would fix this undesired behavior and creating a new path-following guid-
ance law for FF based control. In the carrot-based steering approach, an imaginary ”carrot”
is placed in front of the vessel representing a desired pose in the near future. By describing
this carrot relative to the current pose of the vessel and update the carrot every time step,
the motion is planned into the future without describing it as a trajectory problem where
the timing aspects of the pose are considered. Compared to Jervan’s (2020) approach to
the FF based controller, where the carrot is locked to a specific distance away from the ves-
sel, the new steering by Aurlien (2020) adapts the position of the carrot to ensure smooth
and well-defined movements. A detailed description of the algorithm and steering law is
described in Appendix B. Since the vessel position is used to place the carrot, one might
argue that this is not fully FF based. The reference filter will, however, dampen out all
significant impact of measurement noise, leading to smooth reference signals used by the
FF controller.

The Carrot-based steering approach to path following combines the best from lookahead-
based steering and optimal control approach. In optimal control, the system generates
an ideal trajectory for a given time horizon. The trajectory ηηηd(t) can further be used
to generate the speed and acceleration references by taking the derivative. The obtained
reference signals are then used by the FF and a FB to ensure that the control object stays
on its trajectory due to model errors. In the carrot-based steering approach, a trajectory to
the carrot is calculated every time step. This approach shares some similarities to model
predictive control (MPC) as well because the FF control action adapts to the current pose,
unlike the optimal control approach. The relative pose between the vessel and the carrot
is fed into a third-order reference filter generating the trajectory. The first step of this
trajectory is used by the FF, and the pose of the carrot gets updated according to the
steering law.

When the steering law was designed, there were two important criteria:

1. The steering law must result in a set of feasible references that can be used by the
FF controller.

2. The movement of the vessel must be comfortable for passengers.

The second criterion relates to the speed reduction in the transition between two path seg-
ments. This is a concept many of us have experienced when driving with cruise control.
Maintaining the speed through a turn can be uncomfortable. To accomplish a comfortable
turning motion, the throttle can be released while gliding through the turn before accel-
erating towards the exit of the turn. The turning operation happens for a reason and is
probably to avoid obstacles close to the vessel. Thus, it makes perfect sense to also reduce
speed to ensure a precise and controlled motion.

Figure 3.1 shows the different phases of the carrot-based path following where the ”carrot”
is considered as the tip of the trajectory planning distance. The first phase shows the
approach towards the active waypoint. In this phase, the carrot is placed on the path a
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Figure 3.1: Carrot-based guidance.

chosen along-track-distance in front of the vessel. This aiming technique is similar to the
look-ahead-based steering law described by Fossen (2011). When the vessel enters the
switching radius, the carrot is rebased and stays stationary at the intersection between the
new path segment and the switching circle rim. Once the along-track distance greater than
zero, switching to the first phase completes the exit of the turn and starts the transition
towards the next waypoint. The reference filter makes the vessel brake harder for sharper
turns because the vessel is closer to the carrot. The trajectory will always end in a full stop
at the desired waypoint. Turns sharper than 90◦, skipping phase two is no problem because
the reference filter is defined in NED, leading to hard deceleration when the velocity and
acceleration references are rotated into the body frame.

3.2 Multivariate Modeling and Analysis
The improvements suggested for the multivariate modeling and analysis are based on the
work done by Jervan (2020). With the improvements, the system handles wind distur-
bances, and the improved model is selected automatically.

3.2.1 Lack-of-fit Residual
The lack-of-fit residual is a measure for a model error. For the specific surface vessel
model described in this thesis (2.23), the precision can be tested by comparing historical
data of the applied actuator force and the force that the model estimates was applied. In
this thesis, the measured actuator force is considered to be perfect. If this assumption is
correct, it can be used to gain information on how bad or good our model understands
the behavior of the system. By analyzing and finding meaning in the lack-of-fit residual,
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Figure 3.2: A block diagram showing the generation of the lack-of-fit residual.

(a) The lack-of-fit residual iteration of Jervan
(2020) designed for surface vessels.

(b) The generation of the lack-of-fit residual, by
courtesy of Gale et al. (2017).

Figure 3.3: The generation for the lack-of-fit residual by a) Jervan (2020) and b) Gale et al. (2017).

new information is obtained, leading to a better model. Figure 3.2 shows how the lack of
fit residual for a surface vessel model can be generated. Here, the lack of fit residual is
defined as

τττ ε , τττmes − τ̂ττ , (3.1)

with τττmes(ωωωmes,αααmes) being the inverse actuator model and where τ̂ττ = FFF (ν̇ννmes, νννmes)
is the surface vessel model. ωωωmes,αααmes ∈ Ra×1 are vectors that store the propeller rpm
and azimuth angle for a number of thrusters respectively.

The approach shown in Figure 3.2 is slightly different from the approach by Gale et al.
(2017) and Jervan (2020). The idea of system analysis using partial least squares originated
from Wold et al. (1983), and was further iterated by Gale et al. (2017) using the method
to improve the model and control of a robotic manipulator. The solution of Gale et al.
(2017) is shown in Figure 3.3b. Jervan (2020) further used this technique to suggest an
adaptive controller for surface vessels. The generation of the lack-of-fit residual is shown
in Figure 3.3a. The two approaches to the generation of the lack-of-fit residual are slightly
different. Gale et al. (2017) compare the real system against a simulation of the system.
Jervan (2020) uses the inverse vessel model to simplify the implementation process, but
the concept of assessing how well the model performs compared to real behavior stays
the same. Due to actuator dynamics, the reverse actuator model is needed to generate the

24



3.2 Multivariate Modeling and Analysis

Figure 3.4: A block diagram showing the generation of new models.

lack-of-fit residual in practice. According to Jervan (2020), the control setpoint τττd can be
used instead of τττmes, depending on the signal to be optimized. Here, τττd should be used for
best trajectory tracking performance since the lack-of-fit residual also include components
describing the actuator dynamics. This approach is questionable. It is suggested to create a
model using vessel states to estimate the control setpoint. Due to the delay in the actuator
dynamics, the control setpoint needs to be ahead in time to perfectly compensate for the
delaying mechanics for realizing the desired movement in time. The approach might be
possible in theory, and a model for the dynamics might be fitted by adding additional
measurements for the jerk and acceleration of the azimuth angle and rpm. However, for
all practical considerations, this is an over-complicated and possible infeasible approach
to the problem.

3.2.2 Updating the Model
The process for generating new models are shown in Figure 3.4. If measuring wave and
current, Vrw, Vrc, γrw, and γrc should also be included as input to the base model and basis
functions blocks of Figure 3.4. The base model only uses the measurements if a relevant
model already exist since the base model is not normally updated. The lack-of-fit residual
is modeled, using PLS regression as a linear combination of a set of basis functions. For a
successful analysis, the lack-of-fit residual can be described as

τττ ε(t) ≈ θθθ>φφφ(t), (3.2)

where φφφ(t) ∈ Rb×1 are the selected basis functions dependent on the measurements, θθθ ∈
Rb×3 is the scores of the selected basis functions, and b is the number of basis functions
used. θθθP is later used as Model P when the model is used in the DP system. In a real
environment there will always be noise and components to the lack-of-fit-residual that can
not be modeled, hence θθθ>φφφ is only an approximation to the lack-of-fit residual. Compared
with (2.28), φφφ ∈ R(K+1)×N = [111,XXX]>, while EEE contains the rest of the unmodeled
components of the lack-of-fit residual.

The more realistic approach, which is also suggested by Jervan (2020), and how this is
done in practice, is the approach taken in this thesis. The new approach by Jervan (2020)

25



Chapter 3. Improvements of Existing Methods

Figure 3.5: Error prediction and compensation where ModelP corresponds to the P th model up-
date, by courtesy of Gale et al. (2017).

that skips the parallel simulated system suggested by Gale et al. (2017), is on the other
hand, completely fine.

The advantage of describing the lack of fit residual as done in (3.1) is that the improved
model can be described by

FFFP (ν̇νν,ννν,φφφ) = MMMν̇νν +CCCννν +DDDννν + θθθ>Pφφφ, (3.3)

where P denotes the P th model update. Figure 3.5 shows a block diagram of how the
model is used to obtain more precise control signals (Gale et al., 2017).

3.2.3 Model Variables
A good approach to model the lack of fit residual is to use the decoupled 3-DOF model
introduced in Chapter 2, since it is assumed that this model is accurate when correctly
fitted. To be able to use the PLS regression method introduced in Section 2.3.3 to model
the lack-of-fit residual, a linear-combination of the selected basis functions must be a good
fit. The basis functions of the 3-DOF decoupled model is deduced from writing out (2.6)
and removing all the parameters leaving only the variables. The terms that are left are

φφφ1 = [u̇, v̇, ṙ, uv, ur, vr, rr, u, v, r, sgn(u)u2, sgn(v)v2,

sgn(r)r2, u3, v3, r3, |u|u, |v|v, |r|r|v|r, |r|v]>. (3.4)

Repeating the same strategy for (2.15) to find the basis functions for wind does, unfortu-
nately, not result in a linear combination of variables because the denominator of CYw in
itself is a linear combination of variables. According to Fossen (2011), the wind coeffi-
cients can be approximated by

CXw
(γrw) ≈ −cx cos(γrw) (3.5a)

CYw
(γrw) ≈ cy sin(γrw) (3.5b)

CNw
(γrw) ≈ cn sin(2γrw). (3.5c)
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When these approximations are used instead of (2.18), τττwind is described as a linear com-
bination of the basis functions

φφφ2 = [V 2
rw cos(γrw), V 2

rw sin(γrw), V 2
rw sin(2γrw)]>, (3.6)

when the equation is fully written out.

Finally the basis functions that describe (2.19) as a linear combination are

φφφ3 = [V 2
rc cos(γrc)| cos(γrc)|, V 2

rc sin(γrc)| sin(γrc)|, V 2
rcsin(γrc),

V 2
rc sin(2γrc). (3.7)

A collection of all the basis functions can be defined as

φφφ = [φφφ>1 ,φφφ
>
2 ,φφφ

>
3 ]>, (3.8)

and are the selected basis functions for the MVA.

3.2.4 Updating Criterion
An updating criterion is needed for the adaptive controller to automatically suggest new
model updates. Depending on what to model, the strategy varies. To compensate for
passenger load, quick updates are needed to take advantage of the model before the pas-
sengers leave the ferry. On the other hand, it is preferable to have as much data as possible
in our data set to ensure that the signal is persistent excitation (PE). A fresh test set is also
needed since the real dynamics might have changed. A suggested updating criterion to
compensate for passenger load can be as follows: Use half of a channel crossing as data
material. Extract every k sample of the data material and define the extracted samples as
the validation set. The remaining part of the data material is used as the training set. If the
new model significantly improves the mean squared error (MSE) of the estimated applied
actuator force, which will be an improvement of 5 % or more, the model is accepted and
replaces the previous one. The validation step is needed because the analysis can fail and
lead to a worse model if the training data is not PE.

3.2.5 Updating Base Model
An outer loop model update is a suggestion that can be implemented to assure that the
initial model improves over time. A collection of different model updates might result
in an oscillation around a specific model. If, for example, the vessels on average carry
ten persons, but the base model was generated when only two persons were on board, on
average, an adaptive model compensating for eight persons would be found. If this is a
lasting trend, the base model could be redefined to be the average of the latest models. The
slow updating process is described by

FFF (ν̇νν,ννν,φφφ) =
1

S

S∑

P=1

FFFP (ν̇νν,ννν,φφφ) (3.9)

where S is a predefined constant for the number of models to average.
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Chapter 4
System Description and Setup

This chapter shows how the system is implemented to verify how the adaptive controller
works. The milliAmpere vessel is also described in detail.

4.1 The milliAmpere Research Vessel
This section presents the system-specific properties for milliAmpere and practical deci-
sions taken to make the system robust.

4.1.1 Vessel Characteristics
The adaptive system is tested for the milliAmpere research vessel shown in Figure 4.1.
The vessel has a length of 5 m, a beam of 2.8 m, and weighs 1670 kg. It is controlled by
two electric azimuth thrusters delivering up to 500.3 N at 2kW each, giving the vessel a
top speed of 4.7 knots (Torben et al., 2019; Molven, 2020). The vessel is powered by six
24 V DC batteries with a capacity of 600 Ah, corresponding to 14.4kWh. The thruster
configuration of milliAmpere is shown in Figure 2.7, where Lx = 1.8 m.

4.1.2 Surface Vessel Model
For Pedersen’s (2019) model used on the main system of milliAmpere, symmetry in the
xy and xz is assumed making the CO and CG correspond. The model is therefore sim-
plified to a decoupled 3-DOF model. The parameters are determined in Pedersen (2019)
and are listed in Table 4.1. Pedersen (2019) also estimated the wind load parameters for
milliAmpere listed in Table 4.2.
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Table 4.1: Estimated parameters for the model for milliAmpere (Pedersen, 2019).

Parameter Value

m11 2389.657
m12 0
m13 0
m21 0
m22 2533.911
m23 62.386
m31 0
m32 28.141
m33 5068.910
Xu -27.632
X|u|u -110.064
Xuuu -13.965
Yv -52.947

Parameter Value

Y|v|v -116.486
Yvvv -24.313
Y|r|v -1540.383
Yr 24.732
Y|v|r 572.141
Y|r|r -115.457
Nv 3.524
N|v|v -0.832
N|r|v 336.827
Nr -122.860
N|r|r -874.428
Nrrr 0.000
N|v|r -121.957

Table 4.2: Wind load parameters for milliAmpere found by Pedersen (2019).

Parameter Value Description

AFw 2.9 m2 Frontal surface area
ALw 8.6 m2 Lateral surface area
L0a 5 m Length overall
SL 0 m Centroid projected area on main section
CDt 0.90 Transverse resistance
CDlAF

0.5 Longitudinal resistance
δ 0.80 Cross-force
κ 1.1 Rolling moment
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4.1 The milliAmpere Research Vessel

Figure 4.1: The milliAmpere research vessel.

4.1.3 Thruster Force Model
The thruster force model used on milliAmpere is a fifth-order polynomial

F1,2(ω) = 2.396 752 90× 10−2ω+ 2.135 249 53× 10−4ω2 + 7.693 299 24× 10−7ω3

−1.081 512 33× 10−10ω4−4.096 994 44× 10−13ω5. (4.1)

where F1,2(ω) is the directional force produced by one thruster. To ensure the validity of
the model, ω is clipped so that ωmin < ω < ωmax. From here the total force τττ(ωωω,ααα) from
the two thrusters are calculated by simple geometry. The azimuth angles ααα = [α1, α2] are
measured by reading encoder values.

4.1.4 Navigation Sensors
The sensors used for navigation are

• a Real-time kinetic (RTK) global navigation satellite system (GNSS)
(VectorTMVS330 GNSS Receiver),

• an Inertial measurement unit (IMU) (Xsens MTi20), and

• an error state Kalman filter (ESKF) taking care of the sensor fusion of the GNSS
and IMU data that with an RTK lock on the GNSS measurements deliver positional
precision down to centimeters.

4.1.5 Computer Software
The software runs on the on board computer (OBC) that is an Axiomtek eBOX670-883-
FL with an Intel Core I7 processor. The environment used is Ubuntu 16.04LTS with the
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Figure 4.2: A simplified ROS graph of the software implementation. Boxes represent ROS topics,
and circles represent ROS nodes. The arrows show nodes publishing to the topics and which topics
each node subscribe to.

Kinetic ROS distribution. The vessel is manually controlled by a radio controller and is
equipped with two emergency switches.

4.2 ROS Graph
A simplified ROS graph of the system implementation is shown in Figure 4.2.

4.3 Base Model
FFF 0 is referred to as the the model used when booting the adaptive system. The current
model of milliAmpere is the model obtained by Pedersen (2019). Since this model is
assumed to be good, a scaled version of Pedersen’s (2019) model is selected as the base
model both for simulations and experiments. In the simulations, Pedersen’s (2019) model
defines the real dynamics. The system matrices for the base model FFF 0 are defined as

MMM = δMMM∗ (4.2)
CCC(ννν) = δCCC∗(ννν) (4.3)
DDD(ννν) = σDDD∗(ννν) (4.4)

τττ = ζτττ∗, (4.5)

where δ = σ = 0.4, ζ = 1, and ∗ denotes Pedersen’s (2019) model. This ensures that
components in the lack-of-fit residual can be found that the adaptive system can model.
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Figure 4.3: A block diagram of the DP system.

The slow outer updating loop suggested in Section 3.2.5 and the updating criterion in Sec-
tion 3.2.4 are not implemented for the tests in this thesis because these topics are problems
that need to be tuned for the specific operation the adaptive controller is used in, but also
because the implementations can interrupt the predictability of the model updates when
testing the adaptive controller.

4.4 Implementation of the Controller
The adaptive part of the FF controller is separated from the initial FF controller. Figure 4.3
shows how the learned model dynamics are added in the controller. Here,www = [Vrw, γrw],
and ccc = [Vrc, γrc] are used to simplify the notation for the wind and current measurements.

The values to be used for φφφ in the FF should be carefully chosen. The goal for the FF is
to apply the control force giving the desired vessel movement according to ν̇̇ν̇ν and ννν. With
(3.3), a new understanding of the rigid body forces acting on the vessel is obtained. The
lack-of-fit residual is generated in such a way that when obtaining the model update (3.3),
the FF is updated according to

τττFF = FFFP (ν̇ννd, νννd,φφφFF ), (4.6)

where φφφFF (ν̇̇ν̇νd,wwwmes, cccmes) = [φφφ>1d ,φφφ
>
2mes

,φφφ>3mes
]>.

An example, where only the FF is used, can explain why this works. The use of FB is also
acceptable, but complicates the equations unnecessarily. In the equations,ˆmeans that it is
a model, and ∗ refers to the correct force or model.

Step 1: To start, the rigid body dynamics are

τττ∗ + τττ∗w + τττ∗c = τττ∗RB ,MMM∗ν̇νν +CCC∗(ννν)ννν +DDD∗(ννν)ννν, (4.7a)
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where the external rigid body forces are on the left-hand side (LHS) and the 3-DOF model
by Fossen (2011) on the right-hand side (RHS).

Step 2: The model for the applied actuator force is obtained by

FFF 0(ν̇νν,ννν,www,ccc) = MMMν̇νν +CCC(ννν)ννν +DDD(ννν)ννν − τ̂ττw(www)− τ̂ττ c(ccc). (4.7b)

For the RHS, all terms are filled with whatever model that already exists. The models do
not need to be correct.

Step 3: When the control system is only driven by the FF controller, the applied force is

τττ∗ = FFF 0(ν̇ννd, νννd,wwwmes, cccmes) = MMMν̇ννd +CCC(νννd)νννd +DDD(νννd)νννd

− τ̂ττ(wwwmes)− τ̂ττ c(cccmes). (4.7c)

Step 4: Use the model to find the estimated actuator force

τ̂ττ = MMMν̇ννmes +CCC(νννmes)νννmes +DDD(νννmes)νννmes − τ̂ττ(wwwmes)− τ̂ττ c(cccmes), (4.7d)

where the measured vessel velocities and accelerations, wind and current speed and direc-
tion are inserted into the models.

Step 5: Generate the lack-of-fit residual

τττ ε , τττmes − τ̂ττ = τττ∗ −MMMν̇ννmes −CCC(νννmes)νννmes + τ̂ττ(wwwmes) + τ̂ττ c(cccmes), (4.7e)

which is the difference between the measured and estimated actuator force. It is assumed
that the measured force is correct and equal to the actual applied force.

Step 6: This step is the crucial part for the adaptive system to work. To show the concept,
the the lack-of-fit residual is assumed to be perfectly modeled through the MVA.

τ̂ττ ε = τ̂ττ∗ −MMMν̇νν −CCC(ννν)ννν + τ̂ττw(www) + τ̂ττ c(ccc) (4.7f)

The overall RHS model include the perfect rigid body model, but also contains neutralizing
terms of the existing model.

Step 7: Once the lack of fit residual model is added to the existing model

FFF 1(ν̇νν,ννν,www,ccc) = FFF 0 + τ̂ττ ε = τ̂ττ∗, (4.7g)

the updated model should be the perfect vessel model.

Step 8: The updated model written fully out:

τττ∗ = FFF 1(ν̇νν,ννν,www,ccc) = MMM∗ν̇νν +CCC∗(ννν)ννν +DDD∗(ννν)ννν + τ̂ττ∗w(www) + τ̂ττ∗c(ccc). (4.7h)

To make this to work, the lack-of-fit is generated so that if the lack-of-fit residual is mod-
eled, as in (4.7e), and added to the exiting modelFFF 0, the existing model is neutralized, and
the new modelFFF 1 in (4.7f) is modeling the perfect dynamics. It is, however, only possible
to obtain a sub-optimal model of the lack-of-fit residual. This will, nevertheless, lead to an
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(a) Part one of the 12 corner trajectory. (b) Part two of the 12 corner trajectory.

Figure 4.4: The calibration trajectory.

improved model. The better the model of the lack-of-fit residual gets, the closer the model
is to the perfect model.

The advantage of modeling wind and current is that knowledge of the environment can be
used to move more like a sailing ship. Knowledge tells that when moving forward with
tailwind, the actuator force can be reduced since the wind will help the vessel to reach its
desired movement.

4.5 Calibration Setup
An important concept in adaptive control is the property of PE for the input signal to a
system (Ioannou and Sun, 2012). When designing a simulation or experimental test, it
is essential to generate a rich signal that can describe the vessel’s dynamics accurately.
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Table 4.3: Waypoints - 12 corner test, by courtesy of Jervan (2020).

x(m)x(m)x(m) y(m)y(m)y(m) ψ(m)ψ(m)ψ(m)

0 -15 -90
15 -15 0
15 0 0
30 0 0
30 -15 0
30 -15 180
15 -15 180
15 0 135
0 0 135
0 0 -45
0 -15 -45
0 0 0

Skjetne et al. (2017) suggests using a four corner test to generate information about how
the states are coupled. Jervan suggests the 12-corner test, a modified version of the 4-
corner test, to be used so that no symmetry is assumed for any direction. It is necessary to
include rotation in yaw while sway movement occurs, since a coupling of these states is
expected. With this path, the data is expected to be PE. Figure 4.4 shows the path of the
12 corner test.

To generate a feasible trajectory for the 12-corner test, the waypoints are used as setpoints
to the reference filter described in 2.2.1. The setpoint is changed every 60 seconds. When
the vessel finishes the calibration cycle, it momentarily starts another round in the calibra-
tion pattern and automatically generates a model based on the earlier rounds performed
during the session. Thus, the model used by the controller during Round 3 is trained with
data collected in Round 1 and Round 2.

4.6 Estimation of Body Acceleration
The process of estimating the body acceleration proved to be a more difficult problem than
first expected. At first, IMU measurements were used to extract acceleration data for the
surge and sway movement. This proved to be impossible because the IMU data is in reality
the data used to estimate the pose of milliAmpere. For the pose estimation, it is assumed
that the only acceleration the IMU experiences is the g force. This is a good assumption,
since the maximum acceleration in the horizontal plane is 0.05 m/s2. This is such a small
component compared to the g force that the pose estimation is very accurate, as illustrated
in Figure 4.5. With the same argument, using IMU to estimate the body acceleration
is close to impossible. The smallest deviations in roll or pitch would make the g force
completely dominate the measured acceleration in the horizontal plane. In practice, this
could still work using an alternative way to estimate the pose of the vessel. One solution
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4.6 Estimation of Body Acceleration

Figure 4.5: Pose estimation.

Figure 4.6: Illustration of the smoothing prosess. Here, unav is the estimated surge velocity by the
navigation filter, and usmoothed is the smoothed surge estimate that is used in the MVA.

could be to use three GNSS antennas to estimate the pose, and if the estimates are accurate
enough, the impact of the g force could be filtered out in the IMU measurements so that
only the actual horizontal acceleration is left.

The way the estimation problem is solved, is to take the numerical derivative of the ve-
locity estimate provided by the navigation filter. This can work because of two important
properties of the adaptive system. First, the MVA handles white noise, since a white noise
signal is correlation-free. The second property is that the real-time estimates of the ac-

37
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celeration are not needed, since the data will be used as a training set. Since the velocity
noise is not white and too big to use in the MVA, the velocity estimates must be improved.
Only relative new data is needed, which opens the possibility for post-processing the nav-
igation data by smoothing. This improves the velocity estimates and reduces the impact
of colored noise. An illustration of the smoothing process is shown in Figure 4.6. The
smoothing process of the velocity estimates proved to be essential for the acceleration
estimates to be precise enough for the MVA to work.

Smoothing is a filtering process where data is used, not only from the past, but also from
the future. The convolution

νννsmoothed(t) = ννν(t) ∗ ggg(t) =

∫ ∞

−∞
ννν(ξ)ggg(t− ξ)dξ, (4.8)

where ggg is a square window, describes the smoothing process. The integral of the window
is 1, which in reality makes this an averaging process. The integral is approximated by
Euler integration so that our discrete measurements can be used. In practice, the smoothing
process is implemented by making a circular buffer that stores all velocity measurements
from the window used. Then the average value of the data stored in the buffer is used as
the estimate for the mid-value of the velocity buffer. The acceleration is then estimated
by taking the derivative of the smoothed velocity signal. The rest of the measurements
are also stored in a buffer to ensure that the data is synchronized. With this post-process
technique, good estimates for the acceleration are obtained while still having data no older
than half the window length, which is no problem at all for our purposes.

A Kalman filter (KF) was also tested, modeling the movement of milliAmpere as a con-
stant acceleration process impacted by process noise. The navigation estimates of the pose
and velocity were used as measurements. The tuning process suggested by Brekke (2019)
proved to be hard without several experimental tests, and the results obtained were not
precise enough for the high standards needed. Additionally, the relaxing property of not
needing real-time estimates made the numerical derivative approach with smoothing far
superior, both considering robustness and simplicity.

4.7 Performance Metrics
There are many metrics that can be used to evaluate the performance of the system. To
compare motion controllers for surface vessels Sørensen and Breivik (2015) suggest the
following metrics: The integral of the square of the error (ISE) is defined as

ISE =

∫ t

0

e2dt, (4.9)

and penalizes large errors more than small errors. The integral of the absolute error (IAE)
is defined as

IAE =

∫ t

0

|e|dt, (4.10)
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and penalizes errors linearly. The integral of the absolute error multiplied by the energy
consumption (IAEW) is defined as

IAEW =

∫ t

0

|e(t)|dt
∫ t

0

P (t)dt, (4.11)

and scales the precision with the power usage. In addition, the energy consumption (EC)
is interesting to know. The EC defined by

EC =

∫ t

0

P (t)dt, (4.12)

where P = |ννν>τττ | represents the mechanical power.

To evaluate how much the use of the FB can be limited by an improved FF controller, the
power of a signal can be used. The power of a discrete signal x is defined as

Px = lim
N→∞

1

2N

n=∞∑

n=−∞
|x[n]|2. (4.13)

4.8 Software Upgrade for High Precision of Encoder Val-
ues

Before the experiments can take place, the firmware on milliAmpere needs a software
update for azimuth thruster angles to be precise. The software update changes the encoder-
values of the thruster angles to be represented as floats and not integers. This update is
necessary because the applied force deviates from the measured force if the angle is not
measured precisely. For the adaptive system to work, it is essential that the measured
actuator force can be relied on as the true applied force.

4.9 Practical Considerations
This master thesis is focused on the experimental results and the practical decisions done
for the proof of concept of the adaptive controller in real conditions. It was therefore de-
cided to remove some concepts and implementations that were included in Aurlien (2020).
The main difference to the approach taken by Aurlien (2020) is not to search for a new
theoretical model improving existing models. Thus, multiple potential basis functions,
with the intent of removing the basis functions not contributing to the model, are no longer
included. This was one of the main contributions by Aurlien (2020), but the process of
removing unwanted basis functions proved to be difficult and not very successful. Instead,
a 3-DOF decoupled model is assumed to be sufficient to find significant improvements
in the model. This is assumed to be a better and more robust approach to the problem
since the goal is to detect model changes rather than trying to find a better technique to
determine model parameters. However, it is also assumed that the method presented in
this thesis is a good approach for model identification in itself.
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Chapter 4. System Description and Setup

Figure 4.7: An anemometer device that can measure the speed and direction of wind and current
flow. By courtesy of Matt Jameson.

It was decided to drop further analysis of current and wind impact, since the simulation
results by Aurlien (2020) are quite realistic and promising, showing that the adaptive sys-
tem is capable of modeling the wind impact quite accurately. Since the current impact is
close to identical to the wind impact, there is no reason to believe that simulations should
make any practical changes in simulations as long as a signal that is PE can be assured.
Therefore, more interesting problems were emphasized, since milliAmpere does not have
the opportunity to measure the wind nor the current. Measurements can be added by, for
example, installing anemometer devices at the center of the roof and on the outside of the
hull. An anemometer is shown in Figure 4.7.
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Chapter 5
Simulations and Experimental
Results

In this chapter, the results of the simulations and the experiments done to test the adaptive
control system are presented. The first experiments are pilot tests included to show the pro-
cess of how the final adaptive control system is reached. A summary of the key elements
from each experiment and why several experiments were needed is shown in Table 5.1.

5.1 Proof of Concept Simulation Results
Proof of concept simulation results for the adaptive controller and the carrot-based steering
law are presented in previous work (Aurlien, 2020).

5.2 Pilot Tests
The pilot tests are designed to get familiarized with the experimental environment and to
plan further tests. As these tests are not directly representative of the final performance of
the adaptive control system, in-depth analysis is not presented.

5.2.1 Pilot Tests Day 1
The importance of the pilot tests day 1 can be summarized by:

Goals

• Familiarizing with the milliAmpere system and procedures.
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Chapter 5. Simulations and Experimental Results

Table 5.1: Summaray of Experimental tests. The columns are A: Good Data Set B: Well Tuned
Adaptive System, C: Well Tuned Reference Filter, D: Final Adaptive Control System, E: Environ-
mental Disturbances, and F: Satisfying Results

.

Experiment A B C D E F

Pilot tests day 1 Yes No No No Negligible No
Pilot tests day 2 Yes Not optimal No No Negligible No
Experiment 1 Yes Yes Yes Yes Wind Yes
Experiment 2 No Yes Yes Yes Wind and waves No
Experiment 3 Yes Not optimal No No Negligible Yes

• Verifying the software update for improved azimuth encoder measurements is func-
tioning.

• Collecting data sets to evaluate the closed-loop performance. Differences between
simulations and experiments will identify problems that should be targeted in further
tests.

Lessons learned

• This version of the adaptive system does not work as intended, as no improvements
in the performance metrics occur.

• It is, at this point, assumed that the acceleration estimates are the only cause of the
system not improving.

5.2.2 Pilot Tests Day 2
The importance of the pilot tests day 2 can be summarized by:

Goals

• Test if the new acceleration estimates, using the smoothing approach, improve the
system performance.

• Finding optimal smoothing window length.

Lessons learned

• Acceleration estimates can not be the sole cause of the non-improving system perfor-
mance, as the performance still does not improve with better acceleration estimates.

• It can no longer be assumed that the base model used is inaccurate and that it is
easy to see improvements with this base model. The system works in the simulator
when including noise in the measurements, which indicates that the system has the
potential to show good results.
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5.3 Tuning the System

• Discovering that the reference filter used in the DP system is wrongly tuned in earlier
work by others, might explain some of the deteriorating performance during the
pilot tests. The bad tuning makes the reference signals for velocity and acceleration
saturate quickly, leading to sharp and infeasible control signals. Sharp and quick
reference signals are not feasible to realize precisely due to delay in the thruster
dynamics. Additionally, the desired rounds per minute (RPM) can be reached faster
than the desired angle; hence non-smooth and fast-changing FF control signals may
lead to worse performance compared to a slower and smoother control signal. The
reference filter was returned to give smooth reference signals similar to what is seen
in Aurlien (2020).

• Simulation must be updated due to control system updates.

5.3 Tuning the System
The two parts of the adaptive control system that need to be tuned are:

1. The number of principal components input for the SIMPLS regression algorithm.

2. The length of the window used in the smoothing of ννν for surge sway and yaw.

5.3.1 Tuning Number of Principal Components
To tune the number of principal components, the parameter in the SIMPLS algorithm was
varied while keeping the training and test-set constant. Since the smoothing window length
might impact the quality of the analysis, tests for different window lengths must be done.
The MSE of the lack-of-fit residual is used to compare and evaluate the models. Results
indicate that 12 principal components are the optimal choice and will perform well for all
window lengths.

5.3.2 Tuning the Smoothing Window Length
Tuning of the smoothing window length was done with a data set from Experiment 1, and
where different smoothing windows on this data set were used. This means that training
data is varied in the post process, while still being based on the same original data set.
Since the controller has not used these different models in experiments, evaluating the
performance can only be done from a modeling perspective. That is, how the lack-of-
fit residual will turn out to be. However, if the model correctly predicts the observed
dynamics, the DP system should perform well.

The different models are evaluated on a test set from Experiment 2 using smoothing of
1 second. Smoothing the data set is needed because the variance of the force prediction
signal will vary depending on how much smoothing is used in the training set. The noise
in the predicted actuator force that occurs due to noisy measurements is no problem in
itself, since the data is from a test set and because only smooth reference values are used
as model input in the DP system. It is, however, difficult to compare the models by using
the MSE of the lack-of-fit residual. The impact of smoothing the training set is shown in
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Chapter 5. Simulations and Experimental Results

(a) Training-set with smoothing window of 0.5 s.

(b) Training-set with smoothing window of 0.0 s.

Figure 5.1: Impact on the predicted applied force when smoothing the training-set. The test-set is
not smoothed. Here, τ̂ττnew uses the obtained model.

Figure 5.1. Using a smoothed test-set eliminated this effect, as seen in Figure 5.2. The
performance metrics used to evaluate the models are also here the MSE of the lack-of-fit
residual. By comparing the different models, a smoothing window of 1 second resulted
in the lowest MSE for both surge, sway, and yaw. The training set was smoothed with
windows of 0.0, 0.25, 0.5, 1.0, and 1.5 seconds, resulting in 5 different models.

44



5.4 Extended Simulation Results

(a) Training-set with smoothing window of 1.5 s.

(b) Training-set with smoothing window of 0.0 s.

Figure 5.2: Impact on the predicted applied force when smoothing the test-set. The test-set is
smoothed with a window of 1.0 s. Here, τ̂ττnew uses the obtained model and τ̂ττ uses the Master

Model.

5.4 Extended Simulation Results
In the simulation, no external wind is generated, but the wind resistance due to the move-
ment itself is included. Measurement noise is included and modeled as white Gaussian
noise (WGN) with standard deviations according to Table 5.2. Since the environmental
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Table 5.2: Standard deviation of measurement processes, by courtesy of Brage (2019).

States Standard deviation

x 0.02 m
y 0.02 m
ψ 0.2 deg
u 0.05 m/s
v 0.05 m/s
r 0.2 deg/s
u̇ 0.01 m/s2

v̇ 0.01 m/s2

ṙ 0.1 deg/s2

disturbances are lower in simulations than in experiments, a smoothing window of 0.25
seconds turns out to be the optimal smoothing window length. As seen in Figure 5.3, the
adaptive system works as intended, and the performance metrics improve for every new
model update. The system uses two rounds of training before the model converges.

Due to a slightly inaccurate simulator, the comparison to the control system initiated with
the simulation model is inaccurate. Inaccuracies occur because the simulated rigid body
dynamics do not correspond to the simulated rigid body model, but this does not im-
pact the qualitative performance of the adaptive control system. The simulations done in
Aurlien (2020) are more accurate in regards to dynamics and external disturbances and
better reflect the robustness and potential of the system. The lack of thruster dynamics
in the simulations by Aurlien (2020) is not relevant in regards to the MVA. The simula-
tions introduced in this thesis are, however, done with the same software as used in the
experiments and verifies that the system is implemented correctly.

5.5 Experimental Results
This section shows the results of the experiments performed to test the adaptive control
system and the novel carrot-based steering law for path following. The test setup for the
adaptive control system is explained in detail in 4.3 and 4.5. Procedures regarding safety
precautions and practical execution of the experiments are included as Appendix C. For
Experiments 1 and 2, the control system initiates the base model with Pedersen’s (2019)
parameters and uses δ = σ = 0.4 and ζ = 1, to ensure that the system can improve. For
Experiment 3 the control system is initiated with Pedersen’s (2019) parameters and uses
δ = σ = ζ = 1 = 1. An overview of all different rounds, different data sets, and obtained
models from Experiments 1, 2, and 3, is listed in Table 5.3.

5.5.1 Experiment 1: Performance In Windy Conditions
In the preparations for Experiment 1, a strategy was developed to tune the smoothing filter
without performing new experiments. The tuning of the reference filter dynamics was also
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Figure 5.3: Metric comparison related to model accuracy.

fixed to ensure that the control signal was easier for the actuators to realize. Initiating
the system with a scaled version of the current model of milliAmpere was a practical
decision made to show that the adaption mechanism of the controller works in case the
Master Model is close to the optimal model. An additional test is than needed to test
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Figure 5.4: Location of the experiments from Experiment 1 (A), Experiment 2 (B), and Experiment
3 (C).

the performance of the current model of milliAmpere. The weather conditions during
Experiment 1 were dominated by strong winds. According to the weather forecast, the
wind came from the NW direction and with speeds of 6 m/s and gusts up to 10 m/s.
Because of the molo, extending roughly 1.5 meters, and shielding buildings, winds were
estimated to range from 0 to 10 m/s depending on time and location in the path. The
location of the test leads to negligible wave disturbances. The goals of Experiment 1 can
be summarized as:

• Testing the system performance with improved tuning of the reference filter.

• Testing the system performance with improved adaptive tuning.

• Testing the system performance in strong winds.

Performance

The adaptive controller improves the precision and lowers the energy consumption as the
models are trained with larger data sets, as shown in Figure 5.5. The improvement from
Round 2 to Round 3 is, however, small, and from all earlier experiments, the performance
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Figure 5.5: Performance metrics for Experiment 1.

has converged within two rounds of training, which indicates that it is unlikely that Model
3 would lead to further improvements.
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Figure 5.6: Model fit for the Master Model and Model 2.

Model Fit

The model fit of Model 2 and the Master Model on Data Set 3 is shown in Figure 5.6
with additional zoomed-in sections of surge and sway. Here, τττmes is the actual applied
actuator force, and τ̂ττ is the predicted applied actuator force using the model specified by
the subscript. If the MSE of the lack-of-fit residual is used to compare the two models,
Model 2 performs 84%, 87%, and 68% better than the Master Model for surge, sway, and
yaw respectively.

Even though Model 2 reduces the MSE of the lack-of-fit residual significantly compared
to the Master Model, Model 2 still does not fully manage to estimate the applied force
correctly. Since wind is not measured, and therefore not a part of the MVA, Model 2 has
no understanding of the wind impact and can not separate it from the applied actuator
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Table 5.3: Overview of the data sets used in different models. Rounds 1-3 are from Experiment 1,
Rounds 4-8 are from Experiment 2, and Rounds 9-11 are from Experiment 3. Master Model refers
to the current model of milliAmpere, which is Pedersen’s (2019) model with δ = σ = 1 and ζ = 1.

Round Model Used Data Set Created Model Created Data Source

Round 1 Base Model Data Set 1 Model 1 Data Set 1
Round 2 Model 1 Data Set 2 Model 2 Data Sets 1-2
Round 3 Model 2 Data Set 3 Model 3 Data Sets 1-3

Round 4 Base Model Data Set 4 Model 4 Data Set 4
Round 5 Model 4 Data Set 5 Model 5 Data Sets 4-5
Round 6 Model 5 Data Set 6 Model 6 Data Sets 4-6
Round 7 Model 6 Data Set 7 Model 7 Data Sets 4-7
Round 8 Master Model Data Set 8 Model 8 Data Set 8

Round 9 Master Model Data Set 9 Model 9 Data Set 9
Round 10 Master Model Data Set 10 Model 10 Data Sets 9-10
Round 11 Model 10 Data Set 11 Model 11 Data Sets 9-11

force. Because the force impact can not be separated, deviation in the lack-of-fit resid-
ual occurs. The model only observes the resulting movement and connects it to actuator
forces. If a wind gust from NW pushes the vessel off its trajectory, the FB ideally reacts
with an equal and opposite force to counteract the wind impact. Because of the nature of
a FB being error-driven and not managing to act momentarily, the vessel is accelerating
in the SE direction while an actuator force is applied in the NW direction. The model
will naturally believe that the movement in the SE direction is caused by an actuator force
in the SE direction, but in reality, the actuator force applies the force in the opposite di-
rection to neutralize this undesired movement. This shows the weakness of not including
measurements of the known impacting environmental forces.

This is observed in the deviations in Figure 5.6. The deviations fit a natural compensating
force of the wind impact from NW. In the time period between t = 390 and t = 420
of the calibration pattern, the vessel’s heading is ψ = 180, and it tries to keep its pose.
At t = 405, a wind gust from the NW hits the vessel. The estimates and applied force
fit the description that the vessel’s movement and the applied force are initially in the
opposite directions. Shortly after, the FB controller manages to take control of the ground
movement in the desired direction and lead the vessel back to the desired trajectory.

Currents can also cause the estimate of the applied force to deviate from the measured
force. Currents cause the ground movement to deviate from the relative water movement,
which is problematic when all state measurements are relative to ground. If the current
speed is equal, but in opposite direction to the vessel speed, the vessel will stay still relative
to ground. Without measuring the current, the model’s best guess is to assume that no force
is applied.

It is expected to see unmodeled dynamics in the model fit due to the lack of wind and cur-
rent measurements and modeling. It is therefore a good sign that the system still manages
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Figure 5.7: Experiment 1: The FF and FB contribution to the control signal Round 1, using the Base
Model.

to obtain a good model that explains the rest of the components in the lack-of-fit residual.
This indicates that the adaptive system is well-tuned so that the lack-of-fit residual is not
over-fitted. However, the model does contain a small bias in yaw due to the symmetry
of milliAmpere. When milliAmpere turns 180 degrees, the wind impact is still trying to
rotate the vessel in the same direction, while the surge and sway biases are canceled out,
due to the more balances data set of head, side, and tail wind. The conditions are stable
enough for the adaptive model to outperform the Master Model also for sway, but would
probably not be the case for sway, if tested with a data set from calmer conditions.

Shift from FB to FF Control

The FF and FB control signals from Round 1 is shown in Figure 5.7. The corresponding
data for Round 3 is shown in Figure 5.8. Finding and comparing the power of the FB
control signal τττFB from Round 1 and Round 3 tells us whether the adaptive control system
successfully transfers more of the control response from FB to FF control. From Round
1 to Round 3, the power is reduced by 39%, 61%, and 51% for the surge, sway, and yaw
components, respectively. An easy place to spot the difference between the two figures
is in surge at t = 240 to t = 300. In Figure 5.7 it can be seen that the FB controller
drives most of the actuator force. In Figure 5.8, however, the FB control signal is much
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Figure 5.8: Experiment 1: The FF and FB contribution to the control signal Round 3, using Model
2.

lower in the period where the FF is active. A common trend seen in Figure 5.8 is that
the FB control signal spikes when the FF control signal activates when new waypoints are
set. This is probably due to the delay and dynamics of the actuators that make it difficult
to apply the desired force instantly. Because of the actuator delay, an error is observed,
and the FB control signal makes correcting adjustments. Strong winds in both Round 1
and Round 3 increase the need for FB adjustments, especially in yaw. This is expected
considering milliAmpere’s low moment of inertia in yaw.

5.5.2 Experiment 2: Performance in Windy and Wavy Conditions
The original goal for Experiment 2 was to re-test the adaptive system under ideal weather
conditions and to compare the performance when using the adaptive model and Pedersen’s
(2019) model. However, the winds were also significant during Experiment 2, even though
they were lighter than during Experiment 1. In addition, the waves were also significant
during Experiment 2. This made Experiment 2 rather focus on how robust the system is,
and how the adaptive system handles wave disturbances in addition to wind. The goals for
Experiment 2 can be summarized as:

• Analysing how the adaptive control system performs compared to the current control
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Figure 5.9: Experiment 2: Performance metrics.

system on milliAmpere.

• Analysing how robust the system is in regards to wave disturbances in addition to
wind.
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Figure 5.10: Experiment 2: Model fit for Model 6 and the Master Model on Data Set 7.

During Experiment 2, the wind speed was around 3 m/s from NE, which is considered a
light breeze according to the Buford scale (Beaufort, 1805). The wind was relatively stable
and little to no gusts.

System Performance

The performance of the system is shown in Figure 5.9. The system does not nearly perform
as well as in Experiment 1. The performance in Round 4 is worse than the performance in
Round 2 and Round 3, both for precision and energy usage.
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Figure 5.11: FB and FF control signal for Round 7, using Model 6.

Model Fit

In Figure 5.10, Model 6 and the Master Model are tested on Data Set 7. At t = 365 in
surge, Model 6 struggles to match the precision of Model Master. Model 6 is, however,
closer in the spikes that occur due to wave disturbances, as seen in the sway from t =
400 to t = 420. This behavior is not unexpected because the unknown external force
disturbance from the waves is much greater than the force disturbance from the wind,
which makes Data Sets 4-6 much harder to fit accurately.

Wave Impact

The FB control signal from Round 7 shown in Figure 5.11 makes corrections up to 1500N .
Similar plots from Rounds 4-6 reveal several instances of correction of at least 600N and
up to 1000N in the FB control signal. These kinds of adjustments are never seen in the
data from Experiment 1, where FB control signals in its peaks lie between 100N to 200N
for all rounds. The FB control signal is not the real applied force and will be smoothed out
when realized because of the thruster dynamics, but the control signal can still be used to
indicate the impact of the disturbances.

The wave’s impact on the vessel’s movements from Round 8 can be seen Figure 5.15, and
corresponds with the timing of the FB control signal spikes in Figure 5.13. It is also at
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Figure 5.12: Experiment 2: Model fit for Model 2 on Data Set 7.

these time instances that the biggest steps in the performance metrics from Round 8 in
Figure 5.9 occur. The wave disturbance makes a significant impact on the performance
metrics, and variations in the waves from round to round explain why the precision in
Round 7 is worse than in Round 6.

Reasons for the Waves

The difference in the wave disturbance between Experiments 1 and 2 is primarily due to
the test location and external interference. The biggest waves occur because of other ves-
sels passing by. There will be more time for the waves to build up further away from the
molo. Considering the wind directions from NE and the location of the tests as seen in
Figure 5.4, it is reasonable to believe that the general wave disturbance was more signifi-
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Figure 5.13: Experiment 2: Wave impact on FB control signal from Round 8.

cant during Experiment 2 compared to Experiment 1, even though the winds were lighter.
This fits with the experienced disturbances onboard during the Experiments, the observed
FB adjustments, and the model error observed in Figure 5.10.

Waves Cause Bad Models

The adaptive models in Experiment 2 also contribute to the bad performance. The FB
and FF control signals from Round 7 where Model 6 is used is shown in Figure 5.11.
Compared to the FF and FB usage from Round 3 where Model 2 is used, it can be seen
that Model 6 does not manage to shift the FB control into FF control to the same degree
as with Model 2. In Figure 5.14 a direct comparison between the FF control signals from
Rounds 3 and 7 is shown. It can be seen that the FF signal is not as aggressive in Round 7
compared to Round 3 which reflects the needed FB in Figure 5.11.

A comparison between Model 4 and Model 8 reveals how much the wave disturbances
impact the resulting model. Round 4 and Round 8 are impacted by small waves and big
waves, respectively, which makes it interesting to analyze the properties of Model 4 versus
Model 8. Testing Model 4 versus Model 8 on Data Set 7 shows that Model 8 scores poorly
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Figure 5.14: Direct comparison of FF control signal generated with Models 2 and 6 from reference
signals in Data Set 3.

with a MSE of the lack-of-fit residual that is 217%, 171%, and 58% worse than Model 4
for surge, sway, and yaw respectively. This indicates that the waves’ disturbance can break
the model and is not easily filtered out.

Using the MSE to check the model precision of Models 2 and 6 on Data Set 7, Model 6
scores better. The model fits are shown in Figure 5.12 and Figure 5.10 respectively. The
MSE of the lack-of-fit residual is used to evaluate models and predict which model leads to
the best performance. Low MSE should give good performance. However, this contradicts
the observed behavior of Model 2 and Model 6, where Model 2 used less FB control. This
is a result of the lack of wave modeling. As earlier explained, the models can not separate
unmodeled external forces from the applied actuator force. When obtaining a model with-
out wave dynamics, the wanted lack-of-fit residual is what is seen in Figure 5.12. In the
calibration pattern at t = 360, the vessel starts to move in the surge direction towards the
South. In the beginning, the Master Model and Model 2 accurately estimate the applied
force, indicating that the wave disturbance at this point is not significant. From t = 375
to t = 420, the greater impact by the waves is observed, reflected by the differences in the
estimate and measured applied force.
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Figure 5.15: Experiment 2: Wave impact on the vessel states from the master round.

Due to Models 4-6 being trained to minimize lack-of-fit residuals containing big wave
components, the best fitting model is not necessarily the model that performs the best.
In Figure 5.10 it is seen that the dampening of the spikes in surge and sway comes with
the price of imprecise estimates around t = 360, where it should be precise. Since the
waves are of such a big impact, Models 4-6 have learned that acceleration and applied
motor force are not as tightly correlated as in reality, leading to bad fit in surge between
t = 360 to t = 375. Reflecting back to the corresponding situation from Experiment 1, the
correct model leads to the best overall fit. Trying to over-fit the small wave components
would have caused too big misfits for the rest of the data set; hence the wave impact was
correctly filtered out. In Experiment 1, the better MSE for Model 6 compared to the Master
Model was actual model improvements and not wind over-fitting, since the Master Model
does not outperform Model 6 at any location in the model fit. This is especially clear in
Figure 5.6 in surge at t = 600 and t = 660.

The over-fitting of wave components points out a weakness of the adaptive system. Trying
to fit an insufficient model of the lack-of-fit residual, might cause the adaptive system
to wrongly update the model when not desired. Small force disturbances like wind are
handled, but if the impact is too significant, as wave forces are, the system will struggle to
obtain the optimal model.

5.5.3 Experiment 3: Testing the Carrot-based Steering Law
Additionally, on the day of the Pilot Tests Day 2, the carrot-based steering law was tested
on an operational path similar to the operation path described in Aurlien (2020) but with
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Figure 5.16: Experiment 3: Operation path.

waypoints that were chosen from a manual run. The desired path created is shown in
Figure 5.16, where the switching radius circles of 5m are also illustrated. For Experiment
3, rounds are referred to as 12 minutes of path following. By chance, this fits quite good
with a complete cycle of the operational path.

For Experiment 3, in addition to test the carrot-based steering law for 24 minutes using
the Master Model, the adaptive controller was also tested. Using Data Sets 9-10, Model
10 was obtained and given to the DP system for Round 11. The adaptive tuning was not
optimal, using a smoothing window of 1.5 seconds for the acceleration estimates, and 17
principal components in the SIMPLS algorithm.

The body and NED responses from Round 10 are shown in Figure 5.17 and Figure 5.18
respectively. Looking closer at for example t = 60 in Figure 5.17 verifies that the speed
slows down while turning, before the vessel accelerates when exiting the turn. Similar
results can be seen around t = 180, when the vessel is in the north end of the path and two
quick waypoint changes occur.
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Figure 5.17: Experiment 3: Response in body for Round 10.
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Figure 5.18: Experiment 3: Response in NED for Round 10.

The results prove that the carrot-based steering law performs according to the design cri-
teria, reducing the speed when entering a turn and accelerating when exiting.
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Figure 5.19: Experiment 3: FB and FF control signal for Round 10.

The FB and FF control signals for Round 10 are shown in Figure 5.19. As discussed
previously, the reference filter from pilot tests day 2 was not properly tuned, which also is
the case for Experiment 3. The FF control signal is therefore quite sharp, leading to some
spikes in the FB control signal. Ignoring this factor, the FB control signal is relatively
small, indicating that the path following is FF driven.

The FB and FF control signals for Round 11 are shown in Figure 5.20. It is difficult to
notice any significant change in the FB usage between Round 10 and 11 indicating that the
adaptive model is doing well.

5.6 Discussion
This section covers an in-depth discussion of the experimental results.
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Figure 5.20: Experiment 3: FB and FF control signal for Round 11.

5.6.1 Solving Practical Issues
Before the Experiments could start, some practical issues needed to be solved. First of
all, the system needed to be moved from the simulator into a real environment, which
limited the sensors and signals that were available to work with. This gave complications
with the thruster dynamics and the acceleration measurements. The navigation system of
milliAmpere did not include estimation of the body acceleration, which was crucial for the
adaptive system to function. Exploring several different solutions lead to the smoothing
technique, which proved to be successful. Without going back and forth between the pilot
tests and further analysis of the system, the final system would never be realized. The pilot
tests made it possible to tune the system under real conditions that were different from
what could be simulated.

5.6.2 Experimental Performance
The experimental results show that the adaptive control system works and improves pre-
cision during the tests. Even in the presence of wind disturbances, the adaptive system
manages to find a precise model that even beats the current model of milliAmpere, which
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indicates that the adaptive system is well-tuned.

The high use of the FF control in Experiment 3 proves the carrot-based steering law to
be a success. The development of this steering law is crucial to take full advantage of the
adaptive control system for path following purposes, since the similar enclosure-based FF
approach can not fully be relied on.

5.6.3 Many New Possibilities
The development of this new approach to adaptive controllers for marine vessels opens
many new possibilities. First of all, it can be used to quickly and accurately make models
for all different kinds of ships, without being dependent on small-scale models in wind
tunnels to estimate the model parameters. Secondly, since the system is continuously
running, the system can detect and adapt to changing dynamics. Because the system is
flexible, the best fitting model will quickly be found, leading to fuel savings due to more
precise and optimal applied forces. Thirdly, a more precise and reliable control system
gives higher trust and robustness, increasing safety onboard the vessel.

Additionally, the adaptive model is flexible and can easily be extended to model wind
and current, leading to even better performance. This support can easily be added to mil-
liAmpere by adding an anemometer below the hull and on top of the roof. Wave modeling
has not been inspected closely, but since roll and pitch are exclusively related to waves,
assuming centered and non-moving load, and the actuators can not control these degrees
of freedom significantly, the wave disturbance could potentially be modeled indirectly by
a 5-DOF model. The pitch and roll measurements would then give information on how
big the waves are and correspondingly how big force the wave impact makes.

5.6.4 Proof-of-concept Simplifications
The experiments in this thesis show the proof of concept on this new approach to adaptive
control systems for marine vessels. Many simplifications have been done, revealing pos-
sibilities for further improving the system. The basis functions used, are based on 2. order
modulus functions for an uncoupled 3-DOF model that the MVA does not limit to only be
used in their intended dimension. This leads to somewhat odd models. The basis function
u is for example not necessarily weighted by zero in sway and yaw, even though the basis
functions chosen, suggest that the system tries to model a decoupled model.

Adjusting the basis functions to more complicated models is easy to do and should be
tested in further work. Models that can be tested are a 2. order modulus functions for a
fully coupled system and the 4-DOF model based on nonlinear model based on low-Aspect
ratio wing theory by Ross et al. (2007). A 4-DOF or even 5-DOF model is interesting to
investigate further for possibilities regarding wave modeling.

5.6.5 Aspects Concerning the Success for Operational Use
Results from Experiment 2 show that the system is vulnerable to wave disturbances that
can break the analysis resulting in a bad model. If the wave issues can not be solved, an
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important topic is whether the adaptive control system is best used for model identification
or if it still can be robust enough to be used in operations. The success of the adaptive
system in operations also depends on what the goal of the adaptive controller is. Some
different goals could be:

• Detect model changes due to passenger and cargo load

• Detect model changes due to bulks in the hull

• Detect model changes due to moss and algae

Importance of PE Data Sets

The success of these goals boils down to whether the data-set is PE and disturbance-free.
Say it is found a way to extend the model to include wave impact or find a way to disregard
data that includes wave disturbance. If the goal is to adjust the model to passenger load,
there is not much time to obtain a model if the system should take advantage of the model
before the passengers leave the ferry. The challenge here is to get a rich enough signal
to fit a new model properly. Detecting slower changing dynamics such as bulks, moss,
and algae are easily detected since the data-set can stretch over a larger time span without
problems. For these dynamics, it is sufficient to update the model, for example, once every
week.

A potential issue is that test sets also need to be based on the new conditions. Say the
passenger and cargo load modeling is addressed, and data is collected from the quay to
half across the channel. This data must be split into a training and test set if the updating
criterion is implemented according to Section 3.2.4. The model might perform better in
the test set, but a concern is that once new unseen maneuvers are done, the FF controller
might do strange things because the training data is only based on surge movement. There
is a famous saying by Aristotle, ”For the things we have to learn before we can do them,
we learn by doing them.” which is quite relevant here. The system can not be expected to
perform well in situations it has not been trained for, and relates to the PE issue.

When new models are created, the system forgets everything it has learned in the past if the
new dynamics should be detected accurately. If the data set is not PE, the extra maneuvers
needed to ensure the PE data set quickly exceeds the potential fuel save by the updated
model. Therefore, it needs to be investigated into what is needed for PE data set, or if an
imperfect model is OK if the data set used is representative for the future movements. In
regular operation, milliAmpere will mostly use surge and not rotate much due to the hatch
in both ends of milliAmpere. Results from Experiment 3 do not indicate that the adaptive
model obtained during operation is significantly worse than the Master model, but this
needs more investigation.

The lack of a PE data-set is scary because the model can easily be over-fitted. In a hypo-
thetical situation moving directly against the current, the adaptive system, without current
measurements, will learn that it has a constant bias force in surge. If it then changes di-
rection and moves with the current, the learned bias will now be applied in the wrong
direction, leading to undesirable behavior. The current impact could potentially be filtered
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out by extending the data-set to contain both down- and upstream movements, but it is not
a viable solution.

Introducing a Forgetting-factor

A different approach to the quickly changing dynamics, is to introduce a forgetting factor
and might solve some of the issues introduced. A forgetting factor can be implemented by
defining

θ̄θθP =

P−1∑

i=1

(αiθθθi) + βθθθP , (5.1)

where [α1, ..., αP − 1] and β are scalars that sum up to 1 and θ̄θθP being the theta that is
used in the DP system. In this way, some of the knowledge by earlier models can be kept,
while still trying to quickly adapt to the new dynamics.

Another approach to compensate for passenger load for milliAmpere, is to reduce the
adaptive model to a 1-DOF surge model and lock the model for sway and yaw. Since
surge can be assumed decoupled from sway and yaw, extra data including all possible
maneuvers would, in theory, not affect the obtained model in surge. The data set could
therefore consist of some seconds of data while accelerating away from the quay and
update the surge model thereafter.

Measuring the Passenger and Cargo Load

The optimal, and probably the best solution to the passenger and cargo load modeling is to
measure the weight directly. Since the vessel is floating, the weight load and distribution
can be estimated by observing the waterline of all four corners of the vessel. Cameras
can be installed, and a deep neural network can be trained to estimate the waterline. If
the weight is measured, a weight load model can be created and treated similarly to other
measured disturbances. If this solution is robust, the adaptive system no longer needs to
update the model to handle the variable weight correctly. The data sets could therefore
span over longer time periods since all variables are measured.
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Chapter 6
Conclusion and Further Work

This thesis covers the development and evaluation of a novel adaptive controller for au-
tonomous vessels improving the vessel model, leading to increased performance and re-
duced energy consumption. A novel FF-based path-following steering law is also tested in
combination with the adaptive model for high precision path-following.

Through MVA, an imprecise 3-DOF decoupled model is improved by formulating and
fitting a lack-of-fit residual using PLS regression. The lack-of-fit residual is obtained by
comparing the measured applied force to the estimated applied force using the model.

Experiments verify that the system works as intended. In the experiments, basis-functions
from a 3-DOF decoupled model is sufficient to find a performance-increasing model,
showing the proof-of-concept. Metric values, evaluated before and after the adaptive
model update, implies performance improvements. Even in rough wind conditions, the
system manages to find model improvements that also outperform the model currently ex-
isting for milliAmpere. This comparison is based on the MSE of the lack-of-fit residual.
The improved performance is a result of a shift in the control action from FB to FF. The
adaptive controller also supports wind and current modeling if measurements are obtained,
leading to further improvements.

The current adaptive system is disturbed by unmodeled wave impact. The wave distur-
bances are too significant to find a proper model in these specific conditions. For normal
operations, an assumption of no waves is not realistic. Therefore, a more complex model
is needed to model the wave disturbance.

The development of this new approach to adaptive controllers for marine vessels opens
many new possibilities. First, it is a quick and robust system for model identification,
that works for all sorts of marine vessels, and can be performed without wind tunnels and
small-scale models. Secondly, when using the adaptive controller in combination with the
FF carrot-based control law, precision for path following can be increased to a new level.
Thirdly, since the system is constantly active, the system can detect and adapt to changing
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dynamics. The best-fitting model will quickly be found, leading to better performance and
lower fuel costs. Fourthly, a more reliable and robust control system increases the safety
and leads to a better experience for passengers onboard.

The adaptive controller still has room for improvement. The following topics could be
further explored:

• Add measurements of the known disturbances wind, current, and weight load. In-
cluding measurements of the disturbances makes it possible to extend the model
even further, leading to even better performance. Anemometers can measure the
wind and current impact, and the weight load and distribution can be estimated by
measuring the waterline in all four corners of the vessel.

• Strategies for when to suggest model updates. For the current adaptive system tested
on milliAmpere, there will be a trade-off between too short and too long intervals
between model updates. It is not desirable to make continuous updates because of
too small data sets. It is not desirable to wait weeks before suggesting an update
because dynamic changes like passenger loads would then not be compensated.

• Operation performance when training with normal operation data. A crucial com-
ponent for the adaptive controller to work in everyday operations is that the data
used to obtain the models are sufficient to increase the model performance. The
calibration pattern used in the experiments is explicitly designed to ensure a PE data
set. For normal operations of milliAmpere, the vessel confines itself to mostly surge
movements. The question to be answered is whether the new models obtained to
compensate for passenger load will increase the performance of crossings even if
the models lack training data to understand movements in sway and yaw.

• Creating performance-improving models based on small data sets. If it proves to be
difficult to obtain performance-improving models with small data sets, the following
approaches could be evaluated:

– Introducing forgetting factor to model updates. In this way, the controller can
still mostly rely on earlier models while still adapting quickly to new condi-
tions.

– Reducing to a 1-DOF adaptive surge model. A simplified solution can be to
assume surge decoupled from sway and yaw, so that a 1-DOF adaptive surge
model can be updated based on limited data sets from crossings.

• Using basis-functions that are based on more advanced models. In this thesis, a
simple 3-DOF model has been used as a proof of concept. Further work should
also look into more complicated models that introduce other basis functions. A
suggestion is to try the nonlinear model based on the low-aspect-ratio wing theory
suggested by Ross et al. (2007). Wave models should also be looked further into.
One possible approach interesting to look into is:

– Using a 5-DOF model, including roll and pitch, to measure the size and di-
rection of the wave. Only waves cause significant roll and pitch different to
zero, which could make it possible to quantify characteristics of the direction
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and size of the waves. A simplified model based on these variables could
potentially describe some of the wave components of the lack-of-fit residual.

• A better navigational filter to estimate acceleration. A necessary condition for the
MVA to work is to have accurate estimates for the vessel states. The solution pre-
sented in this thesis might not be the optimal solution, and a more detailed and
complicated navigation filter might lead to better performance.
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Chapter A. Detailed SIMPLS Algorithm.

Algorithm 1: SIMPLS
Input: n× p matrixXXX ,

n×m matrix YYY ,
number of factors A.

Output: BBB,hhh, varXXX, varYYY
1 YYY 0 = YYY −MEAN(YYY ) // center YYY
2 SSS = XXX ′∗YYY 0 // cross-product
3 for a = 1, . . . , A do // For each dimention
4 qqq = dominant eigenvector of SSS′∗SSS // YYY block factor weights
5 rrr = SSS∗qqq // XXX block factor weights
6 ttt = XXX∗rrr // XXX block factor scores
7 ttt = ttt−MEAN(ttt) // center scores
8 normt = SQRTttt′∗ttt // compute norms
9 ttt = ttt/normt // normalize scores

10 rrr = rrr/normt // adapt weights accordingly
11 ppp = XXX ′∗ttt // XXX block factor loadings
12 qqq = YYY ′∗0 ttt // YYY block factor loadings
13 uuu = YYY ∗0qqq // YYY block factor scores
14 vvv = ppp // initial orthogonal loadings
15 if a > 1 then
16 vvv = vvv − VVV ∗(VVV ′∗ppp) // make vvv ⊥ previous loadings
17 uuu = uuu− TTT ∗(TTT ′∗uuu) // make uuu ⊥ previous ttt′ values
18 end if
19 vvv = vvv/SQRT(vvv′∗vvv // normalize orthogonal loadings
20 SSS = SSS − vvv∗(vvv′∗SSS) // deflate SSS with respect to current

// loadings
21 Store rrr, ttt,ppp,qqq,uuu, and vvv intoRRR,TTT ,PPP ,QQQ,UUU , and VVV respectively.
22 end for
23 BBB = R∗R∗R∗QQQ′ // regression coefficients
24 hhh = DIAG(TTT ∗TTT ′) + 1/n // leverages of objects
25 varXXX DIAG(PPP ′∗PPP )/(n− 1) // variance explained for XXX

// variables
26 varYYY DIAG(QQQ′∗QQQ)/(n− 1) // variance explained for YYY

// variables
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Appendix B
Carrot-based Steering Law

Algorithm 2: Carrot-based Steering Law
Input: n× 2 matrix of waypointsQQQ,

2× 1 vector ηηη = [x, y]>,
switching-circle radius r

Output: 3× 1 vector ηηηd = [xd, yd, ψd]
>

1 lad = 2r // look-ahead distance
2 qqqprev = QQQ0,: // previous waypoint
3 qqqcurr = QQQ1,: // current waypoint
4 if NORM(qqqcurr − ηηη) ≤ r then // inside switching circle
5 ROLL(QQQ, axis= 0) // circular shift all rows 1 step up
6 qqqprev = QQQ0,: // previous waypoint
7 qqqcurr = QQQ1,: // current waypoint
8 end if
9 [xk, yk]> = qqqprev // coordinates of previos waypoint

10 [xk+1, yk+1]> = qqqcurr // coordinates of current waypoint
11 αk = arctan2(yk+1 − yk, xk+1 − xk) // path angle
12 atd = (x− xk) cos(αk) + (y − yk) sin(αk) // along track distance

13 RRR = RRRpathned (αk) // rotation matrix from path to NED
14 if atd >NORM(qqqcurr − qqqprev) then // error handling: re-aim
15 [xd, yd]

> = qqqcurr // desired pos
16 else if atd > 0 then // phase 1: approaching waypoint
17 [xd, yd]

> = qqqprev +R[atd+ lad, 0]) // desired pos
18 else // phase 2: deaccelearate and turn
19 [xd, yd]

> = qqqprev +R[r, 0])
20 end if
21 ψd = αk
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Appendix C
Procedures for Experiments with
milliAmpere

C.1 Safety
When using milliAmpere it is important that safety and HMS-guidelines are followed.
Operating an experimental vessel with unverified software can cause undesired situations
to occur. It is also important that procedures are followed making it easy for the next
group to complete their experiments. The following procedures and guidelines should be
followed carefully:

C.1.1 Before Testing
• The crew must be of at least two persons.

• All crew members must be trained in procedures and risk analysis.

• All crew members must use a life-jacket when leaving the quay.

• Battery status must be checked.

• Emergency buttons must be tested.

• The weather must be suitable and the crew must be aware of other activity in the
harbour.

C.1.2 During Testing
• The harbour activity must constantly be observed.

• The controller and emergency buttons must always be in reach.
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Chapter C. Procedures for Experiments with milliAmpere

• For the maneuvering, margins of error are added, and responsibly handled.

C.1.3 After Testing
• The vessel is safely moored ashore.

• The monitor, keyboard and life-jackets are placed in the boxes and locked.

• Both main power switches is switched off.

• The milliAmpere is connected to shore power.

• The controller and emergency system is charged and brought back to ”murhuset”.

C.2 Test Goal
Goals for Experiment 1:

• Testing the system performance with improved tuning of the reference filter.

• Testing the system performance with improved adaptive tuning.

• Testing the system performance in strong winds.

Goals for Experiment 2:

• Analysing how the adaptive control system performs compared to the current
control system on milliAmpere.

• Analysing how robust the system is in regards to wave disturbances in addition to
wind.

C.3 Handling of Test Data
ROS-bags are used to store all the complete log for all topics. ROS-bags can be replayed
and re-simulate the system at a later time. To skip the re-simulation data from
performance and data sets are stored and saved as a pickle file containing a dictionary of
numpy arrays. A complete procedure is the following:

• Start the recording of a ROS-bags containing all topics.

• Store the generated picle files on the computer after each finished calibration round.

• Use a timer for 12 minutes to keep track the calibration cycles.

C.3.1 Organization and Storage
ROS-bags are automatically named witht the following convention:
MA YYYY-MM-DD-HH-MM-SS.BAG.
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C.4 Location

Figure C.1: Location of the experiments from Experiment 1 (A), Experiment 2 (B), and Experiment
3 (C).

• Note the time when a test is started and the time when the rosback started
recording.

• Note that the time is according to the GMT time.

C.4 Location
The tests are conducted in the Brattøra harbour in Thondheim. The locations of
Experiments 1, 2, and 3 are shown in Figure C.1.

C.5 Experiments 1 and 2: Calibration Procedures
Experiments 1 and 2 run the same test. The following procedure is followed for each
experiment.

1. Manually maneuver milliAmpere close to the desired starting point.
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2. Activate the DP system in the bridge and set the desired waypoint.

3. Update the starting position in the waypoint scheduler.

4. When milliAmpere has stabilized, boot the adaptive model node, the data-collector
node, and the waypoint scheduler.

5. Now, pay attention to the surroundings while the test is beeing conducted.

6. Store the auto-saved data in a fitting folder for every completed round.

7. When the number of desired calibration rounds have been completed, stop the
adaptive model node, data collector node, and the waypoint scheduler node.

C.6 Experiment 3: Path Following Procedures
The following procedure is followed for Experiment 3.

1. Manually maneuver through the desired path. Note the desired waypoints.

2. Activate the DP system.

3. Insert the desired waypoints into the path-following script.

4. Manually maneuver milliAmpere close to the desired starting point.

5. Activate the DP system and set the starting position.

6. When milliAmpere has stabilized, boot the path-following node.

7. Now, pay attention to the surroundings.

8. Store the auto-saved data in a fitting folder.

9. When the number of desired cycles has been completed, stop the path-following
node and take active control of milliAmpere.
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Abstract: This paper deals with the design and evaluation of a multivariate-based adaptive
controller for marine surface vessels. The goal is to make a system that periodically updates
the vessel model, used by a dynamic positioning (DP) controller, in order to improve the
motion-control performance. The model is generated by analyzing speed and acceleration data
using multivariate analysis (MVA) to fit a 3-degrees of freedom (DOF) surface vessel model.
Experimental results show that the adaptive control system works as intended and manages to
make significant improvements in all performance metrics, compared to the initial system. The
results also show that the system is robust even with the impact of wind and wind gusts of at
least 6 m/s.

Keywords: Autonomous ferries, Big data cybernetics, Adaptive control, Multivariate analysis,
Model-based control.

1. INTRODUCTION

Autopilots for ships have existed for a long time, but
only in the past few years fully autonomous vehicles has
started to become a reality. We see automated public
transportation such as trams and busses, and Tesla is
close to make their cars fully autonomous. Investments of
80 billion US dollars occurred between August 2014 and
June 2017 for automation of the car industry (Zanona,
2017). The shipping industry is also gaining speed in the
process of automating the industry. Kongsberg Maritime’s
and Yara’s autonomous ship MS Yara Birkeland is soon
ready for sea tests (Yara, 2020). This ship is the first of its
kind and is expected to replace 40 000 truckloads yearly,
between Yara’s fertilizer factory and the shipping harbors
(Stensvold, 2017).

The growth of infrastructure in the cities has sparked
the idea to further utilize the seaways for transportation
(Cairns, 2020; Knutsen, 2020). This often unused space can
be used by environmentally friendly passenger ferries as
an additional mobility option or even as a replacement for
some of the transportation on land. Through Norwegian
University of Science and Technology (NTNU)’s Autoferry
project, we have designed the research vessel milliAmpère,
showed if Fig. 1, which is used to develop algorithms
needed for fully autonomous ferries. The Autoferry team
designs and creates systems such as collision avoidance
systems, docking systems, thruster allocation, interactive
design, and regulations.
Recently, we launched the second version of milliAmpère.
Its design supports the transportation of 12 passengers
across the canal in the city center of Trondheim (Stensvold,
2016). NTNU’s research on autonomous ferries has also

lead to the spin-off company Zeabuz, that plans to design
and launch their first system in 2022 (Zeabuz, 2021).

When controlling autonomous ferries, an accurate and
efficient system is needed for docking and other high-
accuracy operations. Model-based control is a good way
to achieve high accuracy for such systems. A perfect
model is, however, impossible to obtain. Assumptions and
approximations are made to get a simplified model of the
vessel system. In most cases, this results in a good enough
model for control purposes. However, an imperfect model
will result in sub-optimal control actions. This can result in
energy inefficient and imprecise maneuvers. Many systems
overlook the value of sensor data that can be used to obtain
a better model.

Big data cybernetics (BDC) is a new and upcoming field
in cybernetics (Martens, 2020). NTNU, Kongsberg and
Equinor have established the world’s first professorship
in BDC (Group, 2015). The CEO of Kongsberg, Walter
Qvam, says that the need to utilize smart data will only
grow bigger as new methods for production, operation,
and industrial solutions are taken into use (Group, 2015).
We are on the verge of an industrial revolution in regards
to the value of data, and NTNU and Kongsberg want
to contribute to world-leading research in the field of
BDC (Group, 2015). In BDC, multivariate analysis (MVA)
forms the basis for modeling unmodeled dynamics by
analyzing sensor data. Analyzing the data collected from
the sensors gives an estimate of the model error. The
concept is that MVA finds a correlation in the data that
best describes the model error. With this kind of analysis,
an adaptive control system for updating the model is
obtained, which can reduce the inconsistency observed in



Fig. 1. The milliAmpère 1 ferry right after the launching.

the gathered data. This method for generating an adaptive
control system is the core focus of this paper.

In this paper, Jervan (2020) started the design of an
adaptive controller for milliAmpère that used available
sensor data to improve the model and Aurlien (2020)
continued the work to finalize the controller and test
the system full scale. We have used Gale et al. (2017)’s
improvement of a robotic manipulator model as the basis
of our work. The motivation for this paper is to share the
design of an adaptive control system and how it performs
compared to a non-adaptive control system.

Section 2 introduces the surface vessel model and Section
3 shows how we can use such a model to obtain precise
and efficient motion control. The core part of the adaptive
control system that builds on MVA gets introduced in
in Section 4. Section 5 describes the experimental setup
and shows the improvements in performance due to the
adaptive control system. Finally, in Section 6, we sum up
the paper and presents the conclusion.

2. SURFACE VESSEL MODEL

The motion of a surface vessel is with the Society of Naval
Architects and Marine Engineers (SNAME) notation rep-
resented by the pose vector ηηη = [x, y, ψ]> ∈ R2 × S and
the velocity vector ννν = [u, v, r] ∈ R3. Here (x, y) is the
Cartesian position and ψ is the yaw angle, both given in
a local north-east-down (NED) frame. Furthermore, (u, v)
are the linear velocities given in the body-fixed frame, and
r is the yaw rate.

Fossen (2011) models the 3 degrees of freedom (DOF)
dynamics of a surface vessel as:

ν̇νν = RRR (ψ)ννν (1)

MMM∗ν̇νν +CCC∗(ννν)ννν +DDD∗(ννν)ννν = τττ∗ +RRR>(ψ)www∗, (2)

where

RRR(ψ) =

[
cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
(3)

is a rotation matrix RRR ∈ SO(3), and where MMM∗, CCC∗, DDD∗,
and τττ∗ are the real inertia matrix, Coriolis and centripetal
matrix, damping matrix, and control input vector respec-
tively. The vector www∗ models the real disturbances which
includes environmental forces such as wind and current.

In the model, the system matrices are assumed to satisfy
the properties MMM∗ = MMM∗> > 0, CCC∗(ννν) = −CCC∗(ννν)>, and
DDD∗(ννν) > 0. The considered model will, however, never be
perfect. We model the uncertainties related to the error
between the real and considered model as

MMM∗ =
1

δ
MMM (4)

CCC∗(ννν) =
1

δ
CCC(ννν) (5)

DDD∗(ννν) =
1

σ
DDD(ννν) (6)

τττ = ρτττ , (7)

where δ ∈ R+ express the uncertainty associated with
the inertia and Coriolis matrix, σ ∈ R+ express the uncer-
tainty associated with the damping matrix, and ρ ∈ R+ is
the uncertainty associated with the control input vector.
The goal of the adaptive controller is to minimize this
model error.

3. MOTION CONTROL

Motion control for autonomous ferries describes how to
achieve the desired movement. Fig. 2 shows a flow chart
of how a motion control system can be designed. The
guidance law provides way-points that when combined
maps out a path for the vessel to follow. A third-order
reference filter then uses the way-points to calculate a
feasible transition between the way-points by providing
desired values for position, velocity, and acceleration. The
dynamic positioning (DP) system then uses the desired
values and measurements to maintain the desired trajec-
tory. The control signal from the DP system is processed
by a thruster allocation system that finds a feasible way
for the thrusters of the vessel to make the desired control
action.

Fig. 2. Flow chart for achievement of motion control.

3.1 Dynamic Positioning

A DP system’s task is to maintain a ships position and
heading. Such a system can be implemented as a PID
controller and a feed-forward (FF) controller. The PID
controller is defined as

τττPID = −RRR>(ψ)KKKp(ηηη − ηηηd)−KKKd(ννν − νννd)

−RRR>(ψ)KiKiKi

∫ t

0

(ηηη − ηηηd)dt, (8)

where KKKp,KKKi,KKKd ∈ R3×3 are design gain matrices with
KKKp,KKKi,KKKd ≥ 0 and νννd ∈ R3 is the desired velocity vector.
To improve the performance, we also use a FF controller
that is defined as

τττFF = FFF (ν̇ννd, νννd), (9)

where

FFF (ν̇νν,ννν) = MMMν̇νν +CCC(ννν)ννν +DDD(ννν)ννν −RRR>(ψ)www (10)

is the surface vessel model.



4. MULTIVARIATE ANALYSIS

By analysing the vessel state measurements an improved
vessel model can be obtained by checking for model
inconsistency. Partial least squares (PLS) regression can
be used to find underlying structures between two data
sets. For the data setsXXX ∈ RN×K and YYY ∈ RN×k, the goal
is to predict YYY with a linear combination of XXX according
to

ŶYY = [111,XXX]βββ, (11)

where 111 ∈ RN×1 is a vector, βββ ∈ RK+1×k is a matrix where
k is the number of output dimensions, K is the number of
input dimensions, and N is the number of samples. In the
analysis the correlation between XXX and YYY is maximized so
that the residual EEE in

YYY = [111,XXX]βββ +EEE, (12)

is minimized. This means that white noise will not affect
the analysis, since there are no correlation in white noise.
The simple partial least squares (SIMPLS) algorithm can
be used to solve the PLS regression problem.

Storing and analysing the error between model predicted
and real motion can lead to an improved vessel model. The
lack-of-fit residual is a measure of the unmodeled forces
acting on a surface vessel. It is defined as

τττ ε , τττ − τ̂ττ , (13)

where
τ̂ττ = FFF (ν̇ννmes, νννmes) (14)

is the estimated applied force, ν̇ννmes, νννmes ∈ R3 is the
measured vessel acceleration and speed, respectively.

With MVA the lack-of-fit residual is modeled as

τττ ε ≈ θθθ>φφφ, (15)

where φφφ(t) ∈ Rb×1 contains the selected basis functions,
θθθ ∈ Rb×3 is the scores of the selected basis functions, and
b is the number of basis functions. To clarify, this is the
model for the lack-of-fit residual, so when comparing to
(11) that has gathered samples over a period of time, we
have φφφ ∈ R(K+1)×N = [111,XXX]> and θθθ = βββ>.

Better estimates of the parameters describing the model
of Fossen (2011) can be made by adding each term in the
model as a basis function in the MVA. The basis functions
that describe the 3 DOF model of Fossen (2011) without
disturbances is

φφφ1 = [u̇, v̇, ṙ, uv, ur, vr, rr, u, v, r, sgn(u)u2, sgn(v)v2,

sgn(r)r2, u3, v3, r3, |u|u, |v|v, |r|r|v|r, |r|v]>. (16)

The remaining components in the lack of fit residual such
as current and wind impact should be modeled by other
basis functions. According to Blendermann (1994), the
wind will apply a force to a 3 DOF ship model in the
following manner:

τττwind =
1

2
ρaV

2
rw

[
CX(γrw)AFw

CY (γrw)ALw

CN (γrw)ALw
L0a

]
, (17)

where ρa is the air density, Vrw ∈ R is the relative air
speed, γrw is the angle of attack of Vrw relative to the bow
of the ship, CX(γrw), CY (γrw), and CN (γrw) are the wind
coefficients for horizontal plane motion, L0a is the overall
length, and where AFw and ALw is the frontal and lateral
projected areas, respectively. The basis functions

Fig. 3. A block diagram of the DP system.

φφφ2 = [V 2
rwcos(γrw), V 2

rwsin(γrw),

V 2
rwsin(γrw)γrw]>, (18)

are a good linear approximation to the Blendermann wind
model. If wind is measured the basis functions are added
to the MVA. In simulations done by Aurlien (2020), φφφ2
detects most of the wind contribution in the lack-of-fit
residual. Similarly, we can use the basis functions

φφφ3 = [V 2
rccos(γrc), V

2
rcsin(γrc), V

2
rcsin(γrc)γrc]

>, (19)

where Vrc ∈ R is the relative current, γrc is the angle of
attack of Vrc relative to the bow of the ship, to model
the current if we add current measuremetns. The basis
functions take inspiration from the Blendermann (1994)
model. With these basis functions we assume uniform flow
around the ship. This assumption is justified for relative
small ships. All basis functions are gathered according to

φφφ = [φφφ>1 ,φφφ
>
2 ,φφφ

>
3 ]>. (20)

The advantage of describing the lack of fit residual as done
in (13) is that an improved vessel model can be described
as

FFFP (ν̇νν,ννν,φφφ) = MMMν̇νν +CCCννν +DDDννν + θθθ>Pφφφ, (21)

where P denotes the P th model update. The FF control
signal from (9) is now updated to

τττFF = FFFP (ν̇ννd, νννd,φφφd), (22)

where φφφd(ν̇̇ν̇νd, νννd, Vrw, γrw, Vrc, γrc) = [φφφ>1d ,φφφ
>
2 ,φφφ

>
3 ]>.

A slower model update loop is introduced by redefining
the base model as

FFF (ν̇νν,ννν,φφφ) =
1

S

S∑

P=1

FFFP (ν̇νν,ννν,φφφ) (23)

where S is a predefined constant for number of models
to average. The slow model update will ensure that the
system always is booted with a good dynamics model.
Fig. 3 shows how the improved model is used as a part
in the DP system. The block diagram in Fig. 4 shows how
the improved model is generated by providing the lack-of-
fit residual and the basis functions for the MVA. In Fig. 4,
wwwmes ∈ R2×1 and αααmes ∈ R2×1 are the measured thuster
rpm and angle respectively.



Fig. 4. A block diagram showing the generation of the
improved model.

5. EXPERIMENTAL RESULTS AND
PERFORMANCE EVALUATION

5.1 Experimental setup

Experiments are designed for the research vessel mil-
liAmpère to verify the adaptive controller. The vessel has
a length of 5 m, a beam of 2.8 m and weighs 1670 kg.
Two azimuth thrusters, delivering 2 kW each, control
the movement of the ferry. The hull of milliAmpère is
symmetrical both around the x, and the y axis and is
flat underneath. There lack of a keel makes milliAmpère
turn quickly, but makes it quite unstable in yaw. When
assuming symmetry along the x-axis the inertia matrix is
given as

MMM∗ ,MMMRB +MMMA

=

[
m11 0 0

0 m22 m23

0 m32 m33

]

The Coriolis and centripetal matrix is given as

CCC∗(ννν) , CCCRB(ννν) +CCCA(ννν)

=

[
0 0 c13(ννν)
0 0 c23(ννν)

−c13(ννν) −c23(ννν) 0

]

where c13(ννν) = Yv̇v + 1
2 (Nv̇ + Yṙ) and c23(ννν) = −Xu̇u.

Finally, the damping matrix is given as

DDD∗(ννν) ,DDDL +DDDNL(ννν)

=

[−d11(ννν) 0 0
0 −d22(ννν) −d23(ννν)
0 −d32(ννν) −d33(ννν),

]

where d11(ννν) = Xu + X|u|u|u| + Xuuuu
2, d22(ννν) = Yv +

Y|v|v|v|+ Y|r|v|r|, d23(ννν) = Yr + Y|v|r|v|+ Y|r|r|r|+ Yvvvv
2,

d32(ννν) = Nv + N|v|v|v| + N|r|v|r| and d33(ννν) = Nr +

N|v|r|v| + N|r|r|r| + Nrrrr
2. The parameter values for

MMM,CCC(ννν), and DDD(ννν) for milliAmpère are listed in Table 1.
To compare the performance of the adaptive controller

relative to a controller using an imperfect model we use a
12 corner motion test. This path is used to ensure that the
adaptive controller has persistent excitation (PE).

We use a reference filter to generate the trajectory for the
DP system to follow. The reference filter is given by

ηηη
(3)
d + (2∆∆∆ + I)ΩΩΩη̈d + (2∆∆∆ + I)ΩΩΩ2 + ΩΩΩ3ηηηd = ΩΩΩ3rrr, (24)

where ΩΩΩ,∆∆∆ ∈ R3×3 are positive definite design matrices,
that determine the dynamics of the filter and rrr is the
reference setpoint. The output of the filter is the reference
signals ηηηd, η̇ηηd, and η̈ηηd. The reference filter receives way-

Table 1. Estimated parameters for the model
for milliAmpère (Pedersen, 2019).

Parameter Value

m11 2389.657

m12 0

m13 0

m21 0

m22 2533.911

m23 62.386

m31 0

m32 28.141

m33 5068.910

Xu -27.632

X|u|u -110.064

Xuuu -13.965

Yv -52.947

Parameter Value

Y|v|v -116.486

Yvvv -24.313

Y|r|v -1540.383

Yr 24.732

Y|v|r 572.141

Y|r|r -115.457

Nv 3.524

N|v|v -0.832

N|r|v 336.827

Nr -122.860

N|r|r -874.428

Nrrr 0.000

N|v|r -121.957
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Fig. 5. The calibration path used to exitate the adaptive
controller.

points with a frequency of 60 seconds. We use the pose
from all corners of the calibration path showed in Fig. 5 as
waypoints. The DP system then uses the desired values for
position, velocity, and acceleration, to follow the trajectory
generated by the reference filter.

For the experiments, we used the base model of mil-
liAmpère with δ = 0.4 as the initial model. By doing
this we ensured that the adaptive system could find a
new and better model, in case the current model is quite
good. In the MVA, we use 12 principal components when
performing the SIMPLS algorithm. The wind was quite
strong the day the test was performed with winds of 6 m/s
and up to 10 m/s in the gusts, according to the weather
forecast. It is worth mentioning that the vessel was, to
some degree, sheltered from the wind by the milo in the
harbor. The adaptive system suggests a new model once



the calibration trajectory is completed, and automatically
starts a new round. This means that the model used in
round 3 is based on data collected in rounds 1 and 2.

5.2 Estimation of acceleration

In order to do the MVA, we need acceleration data for
surge, sway, and yaw. Since the acceleration data is only
used as a part of a training set, we do not need to do the
estimation on-line. Since the PLS regression is unaffected
by white noise, we can also allow the acceleration esti-
mate to contain white noise. Taking advantage of these
relaxing requirements, we use the numerically derivative
of smoothed velocity data to estimate the acceleration.
Smoothing is a filtering process where we use data not only
from the past but also from the future. The convolution

νννsmoothed(t) = ννν(t) ∗ ggg(t) =

∫ ∞

−∞
ννν(ξ)ggg(t− ξ)dξ, (25)

where ggg is a square window, describes the smoothing pro-
cess. In the experiments we use a window of ±1.0 seconds
for both surge, sway, and yaw, where all component of ννν
inside the window, is weighted the same. The integral of
the window is 1, which in reality makes this an averaging
process. We need the smoothing step because the velocity
data is no longer white, due to the previous filtration in a
navigation filter.

5.3 Performance metrics

To compare motion controllers for autonomous ferries
Sørensen and Breivik (2015) suggest the following metrics:
The integral of the square of the error (ISE) that is defined
as

ISE =

∫ t

0

e2dt, (26)

and penalizes large errors more than small errors, the
integral of the absolute error (IAE) that is defined as

IAE =

∫ t

0

|e|dt, (27)

and penalizes errors linearly, and the integral of the abso-
lute error multiplied by the energy consumption (IAEW)
that is defined as

IAEW =

∫ t

0

|e(t)|dt
∫ t

0

P (t)dt, (28)

and scales the precision with the power usage. Additionally
we use the integral of the energy consumption (IEC),
defined as

IEC =

∫ t

0

P (t)dt. (29)

5.4 Experimental results

Fig. 6 shows how the adaptive model improves the per-
formance every round. The results show that the use of
the adaptive model in the FF increases the precision and
reduces the energy usage. To quantify the results, we find
that the IAE, ISE, IAEW, and IEC from round 1 to round
3 are improved by 46%, 75%, 57%, and 20% respectively.

Fig. 7 shows how the model reconstructs the estimated
actuator force τττmes, based on velocity and acceleration
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Fig. 6. Performance of the adaptive system in experiments.
The model is updated every round based on the data
from previous rounds.

data. Here, τ̂ττ is estimated using the current base model of
milliAmpère with δ = 1, while τ̂ττnew is estimated with the
adaptive model found after completing round 2. We use
the mean squared error (MSE) to compare the model fit
which shows that the model error gets improved by 84%,
87%, and 68% for surge, sway, and yaw respectively.

Considering the experimental results, we see that the
adaptive system manages to adaptively find a better model
of the hydrodynamics. However, there are still deviations
between the measured and estimated force applied. The
most likely explanation for this is that wind gusts have
pushed the vessel off its trajectory so that when the vessel
applies a counterforce the vessel stays relatively still. In
Fig. 7 we see that all deviations fit a natural compensating
force to wind disturbances from the NW direction, which
was the actual wind direction. At t = 405 to t = 420 the
vessels heading is ψ = 180 and tries to keep its pose. Once
the wind gust comes from the NW direction, we observe
that the models detect the force and that the thrusters
try to cancel out the wind impact by applying a force in
negative surge and positive sway, which with the current
heading is a force in the NE direction. The models then
detect the net force that takes the vessel back to its desired
pose.
Currents can also be a component of deviations between
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Fig. 7. Model fit for base model and improved model.

the measured and expected force. When currents are
present, the ground movement and the relative water
movement will no longer be the same.
Since the adaptive system lacks wind and current measure-
ments, we can not expect the model to understand these
components. It is therefore a good sign that we observe
that the adaptive system does not over-fit the lack-of-fit
residual and at the same time finds an improved model of
what the system can model.

6. CONCLUSION

We have presented the design of an adaptive control
system using position and acceleration data to fit a 3-
DOF vessel model with MVA. Experimental results show
that the adaptive system manages to increase the motion
control precision and lowering the energy usage when
the system is initiated with an imprecise model. The
adaptive system also proves to be robust against wind
impact. The adaptive model obtained in the experiments
out-performs the current model of milliAmpère found
by Pedersen (2019). Additionally, we have designed the
adaptive control system so that is flexible for further model
improvements by adding measurements from wind and
current.

For further work, we need to test how the adaptive system
works under normal operation. A concern is that normal
operations will not fully exitate the adaptive system and
therefore suggest imprecise or even wrong model improve-
ments that could lead to worse performance.
We also need research on when it is strategic to update
the model. On the one extreme, you want to have as much
data as possible before making a model suggestion, while
on the other hand, updating the model often will account
for disturbances such as passenger load. Another factor

that needs to be considered is that if too small data sets are
used to detect passenger load, we could potentially over-fit
static disturbances. A worst-case scenario would be if the
data set only contain surge movement with γrc = 0 rad.
The model generated would then not be able to filter out
the current impact in the MVA.
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