
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Richard Che Bui

Richard Che Bui

Resistivity Estimation Using
Convolutional Neural Networks

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Carl Fredrik Berg and Kurdistan Chawshin

June 2021

M
as

te
r’s

 th
es

is

Richard Che Bui

Resistivity Estimation Using
Convolutional Neural Networks

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Carl Fredrik Berg and Kurdistan Chawshin
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis has been developed together with the BRU-21 group at NTNU during
the spring semester of 2021. The aim has been to investigate the possibilities of
predicting the resistivity of rocks using the learning structure of Convolutional
Neural Networks, together with 2D cross-sections of 3D core CT-scan data. Fur-
ther, this thesis is written as a contribution to digitalization in the Oil and Gas
industry.

During my past two years studying at Cybernetics and Robotics at NTNU, I have
felt an increase of motivation to attend Computer Science and Machine Learning
courses. This has been my motivation for selecting a Machine Learning problem
for my master’s thesis, and I have learnt a lot during this semester.

I would like to thank my supervisor, Professor Damiano Varagnolo and co-supervisors
Ph.D. student Kurdistan Chawshin and Associate Professor Carl Fredrik Berg for
the opportunity to work on this project together with their valuable discussions.
A special thanks to Kurdistan for providing me with the necessary code and re-
sources, as well as her guidance. I would further like to thank Equinor for allowing
me to work with their data sets.

v

Abstract

This thesis investigates the suitability of utilizing 2D cross-sections of 3D core
CT-scan data together with Convolutional Neural Networks to create models for
prediction of resistivity. One of the important roles of resistivity in the Oil and Gas
industry is to determine the hydrocarbon contents from well logs. Additionally,
in hydrogeology, resistivity can be used to locate water tables and estimate the
intrusion of salt water into fresh water aquifers. The data used in this thesis com-
prises 2D cross-sections of 3D core CT-scan data over a 142 meter interval. The
aim is then to extract features from the images, and use these features to predict
resistivity, thus contributing to technological development in geoscience and the
oil industry. By performing robust modelling of resistivity, additional information
can be provided to geologists, increasing time and economical efficiency. In this
thesis the Convolutional Neural Network, a state-of-the-art framework for model-
ling with image data is used. To tune the CNN hyperparameters, Keras was used,
which allowed for automated machine learning by searching over a pre-defined
space for optimal CNN hyperparameters. The data set itself turned out to be too
small and the quality, inconsistent, thus measures for regularization was used,
mostly in the form of data augmentation to improve the data set quality and size.
Data augmentation with 98% overlap was used to increase the data set size, as
well as flipping the images vertically and horizontally for increased robustness.
However, using augmentation with overlap resulted in an issue during splitting of
the data into training, validation and test sets. Therefore three different data set
distributions have been proposed to emphasize the importance of splitting of data.
A thorough analysis of hyperparameter tuning resulted in three optimal models,
one for each data set distribution. Finally, a holdout test set was predicted by all
three optimal models, where the best of the three achieved an R-squared of 0.51.

vi

Sammendrag

Denne oppgaven undersøker egnetheten av å anvende 2D tverrsnitt av 3D kjerneprøver
i form av CT-scan data sammen med konvolusjonelle nevrale nettverk(CNN) for
å bygge modeller for prediksjon av resistivitet. En av de viktige rollene til res-
istivitet i olje- og gassindustrien er å indikere mengden av hydrokarboner fra
en brønnlogg. I tillegg kan resistivitet anvendes i hydrogeologi til å lokalisere
grunnvannsspeil, og estimere inntrengelsen av saltvann i grunnvannsakviferer.
Dataen som er anvendt i oppgaven omfatter 2D tverrsnitt av 3D kjerneprøver i
form av CT-scan data over et 142 meters intervall. Målet er da å hente bilde-
trekk og bildekarakteristikker fra CT-scan bildene for å estimere resistivitet, og
dermed bidra til teknologisk utvikling innen geovitenskap og oljeindustrien. Ved
å utføre robust modellering av resistivitet, åpnes muligheten til å tilføre ytterlig
informasjon til geologer, som videre kan bidra til økonomisk og tidseffiktivitet. I
oppgaven anvendes CNN, et av de mest teknisk aktuelle rammeverkene for mod-
ellering med bildedata. For å innstille hyperparameterne til CNN har biblioteket
Keras blitt anvendt, noe som åpnet for automatisert maskinlæring ved å søke over
et egendefinert søkeområde av CNN-hyperparametere. Det viste seg at størrelsen
til datasettet var for liten, i tillegg til at kvaliteten var inkonsekvent. Dermed ble
det anvendt regulariseringsmetoder i form av bildemodifisering for å forbedre
kvaliteten og størrelsen av dataen. Bildemodifisering med 98% overlapp var an-
vendt for å utvide datasettstørrelsen, og i tillegg ble bildene snudd vertikalt og
horisontalt for å øke robustheten. På den andre siden ble det problematisk med
den overlappede dataen når datasettet skulle splittes. Dermed har vår strategi vært
å bruke tre forskjellige datasettfordelinger for å fremheve viktigheten av splittelse
av data. En grundig analyse av innstilling av hyperparametere resulterte i tre op-
timale CNN modeller, en fra hver datasettfordeling. Til slutt ble de tre optimale
modellene brukt til å predikere et testsett som ble holdt utenfor treningen, hvorav
den beste av de tre oppnådde en R-kvadrert på 0.51.

vii

Contents

Preface . v
Abstract . vi
Sammendrag . vii
Contents . viii
Figures . xi
Tables . xiv
Acronyms . xv
1 Introduction . 1

1.1 Motivation . 2
1.2 Research goals . 2
1.3 Thesis outline . 2

2 Background and Related Work . 4
2.1 Well logs and Resistivity . 4

2.1.1 Resistivity log . 5
2.1.2 CT-scan imaging and CNN . 6

2.2 Related work . 6
2.2.1 Classification of rock type classes using CNN 7
2.2.2 Regression of angle for handwritten numbers with CNN . . . 7
2.2.3 Data pre-processing techniques for fault diagnosis with CNN 8

2.3 Data set pre-processing for preparation of data 8
2.3.1 Interpolation to increase data set resolution 10
2.3.2 Artifacts and missing intervals acting as noise 11
2.3.3 Data augmentation for regularization 12
2.3.4 Normalization of data input . 14

2.4 Supervised learning . 14
2.4.1 Regression . 15
2.4.2 Bias variance tradeoff . 16
2.4.3 How the bias-variance tradeoff affects modelling in practice 17
2.4.4 Overfitting . 20
2.4.5 Regularization to combat overfitting 21

2.5 Artificial Neural Networks . 22
2.5.1 Hidden layers and neurons . 22
2.5.2 Activation functions . 23
2.5.3 Training neural networks . 25

viii

Contents ix

2.5.4 Artificial neural networks and its limitations with image pro-
cessing . 26

2.6 Convolutional Neural Networks . 27
2.6.1 Convolutional layers for feature extraction 28
2.6.2 Pooling layer . 30
2.6.3 Fully-connected-layer: The regressor 31

2.7 Hyperparameter tuning with Keras tuner 31
2.7.1 Tuning algorithms for hyperparameter search 32

2.8 Model validation and selection for evaluating and selecting optimal
models . 34
2.8.1 Splitting with the Holdout method 35
2.8.2 Splitting with the 3-way Holdout method 36
2.8.3 Model selection . 36

3 Methodology . 37
3.1 Data set and materials . 38

3.1.1 Three data set distributions for model validation 40
3.1.2 Testing different sizes of images: 30cm and 60cm 40

3.2 Pre-processing and preparation of data 41
3.2.1 Interpolation to increase data set resolution 43
3.2.2 Removal of artefacts, missing intervals, and high-density areas 44
3.2.3 Dividing the data into 30cm and 60cm images 44
3.2.4 Data augmentation . 44
3.2.5 Normalization of data input . 48

3.3 Splitting of data set for various data set distributions 49
3.3.1 The issue with data augmentation with overlap 49
3.3.2 Random sampling of training and validation sets after data

generation with overlap . 50
3.3.3 Manual sampling of training and validation sets after data

generation with overlap . 53
3.3.4 Random sampling of training and validation sets before data

generation with overlap . 56
3.3.5 Prediction and further validation 58

3.4 Training and Hyperparameter tuning of CNN Architectures 59
3.4.1 Training phase and trainable model parameters 60
3.4.2 Hyperparameter tuning with Keras tuner 61
3.4.3 General model architecture description 67
3.4.4 Tuning algorithms . 69

3.5 Model validation and selection of Convolutional Neural Network
architectures . 70
3.5.1 Model validation of random sampled split after data aug-

mentation with overlap . 72
3.5.2 Model validation of continuous split after data augmenta-

tion with overlap . 73

Contents x

3.5.3 Model validation of random sampled split before data aug-
mentation with overlap . 75

3.5.4 Predicting the holdout test set 76
4 Results . 77

4.1 Prediction on the holdout test set for the three optimal models . . . 77
4.1.1 Description of holdout test set 77
4.1.2 Optimal model 1: Tuned from the randomly split data set

after overlap . 78
4.1.3 Optimal model 2: Tuned from the continuously split data set 80
4.1.4 Optimal model 3: Tuned from the randomly split data set

before overlap . 82
5 Discussion . 85

5.1 Model performances on the holdout test set 85
5.2 Data set and pre-processing . 87
5.3 Hyperparameter tuning and regularization 87

6 Conclusion and Future Work . 89
6.1 Conclusion . 89
6.2 Future work . 91

Bibliography . 92
A Code Listings . 96

A.1 General code for construction of CNN model and performing pre-
dictions . 96

A.2 Keras module for hyperparameter tuning 97
A.3 Augmentation on-the-fly . 99

Figures

2.1 Example of a resistivity log used to locate the oil-water contact [2] 5
2.2 Regression of angle for handwritten numbers [5] 7
2.3 Generating fault diagnosis data using overlap [6] 8
2.4 CT-scan image of well sample with five 1m sections 9
2.5 Flowchart showing different steps of data set pre-processing 10
2.6 Example of linear interpolation, where the blue data points are the

original ones, and the red are interpolated [8] 11
2.7 Instances of noise and disturbance: color coded in red(missing data),

blue(mud invasion) and green(core barrel couplings). Inspired by
[7] . 12

2.8 Data set example of using height(x) to infer the shoe size(y) [14] . 15
2.9 Visualization of the bias-variance tradeoff with total error, MSE [17] 18
2.10 Visualization of the bias-variance tradeoff with four bullseye-diagrams

[17] . 19
2.11 Visualization of overfitting and underfitting during the training pro-

cess. Modified of [18] . 20
2.12 Visualization of an overfitted, an underfitted and a balanced model

[19] . 21
2.13 Example of feed-forward neural network with three hidden layers

and four neurons in each layer [20] . 22
2.14 Linear transformation within a neuron on the left. Four typical ac-

tivation functions on the right. Inspired by [22] 23
2.15 ReLU activation function, visualizing equation 2.10 [25] 24
2.16 Standard architecture of the CNN involving feature extraction us-

ing the convolutional and max-pooling layer. A prediction is then
produced from the fully-connected layer. In this classification ex-
ample, handwritten numbers are classified from 0 to 9 [28] 28

2.17 3×3 kernel activated with a grid of data, producing a feature map
[29]. 29

2.18 5 levels of extracted feature maps, each row with 8 kernels. From
each convolutional layer, feature maps are downsampled to capture
different levels of features, represented by each row[30]. 30

2.19 Max-pooling of feature map with window size and stride of 2 [31]. 31

xi

Figures xii

2.20 Random search algorithm for finding two optimal hyperparameters
[33] . 33

2.21 Data set splitting with the 3-way Holdout method [35] 36

3.1 Workflow of the various steps of the methodology 38
3.2 Resistivity vs depth over the whole data set 39
3.3 Two sample images showing the different sizes of inputs. 41
3.4 Workflow of pre-processing for preparation of the data set 42
3.5 Data before and after interpolation . 43
3.6 Data augmentation of 10 images using overlap 45
3.7 Data augmentation by flipping showing all four flips 47
3.8 Arguments of ImageDataGeneration for data augmentation of im-

ages. For our application, horizontal_flip and vertical_flip are used
[36]. 48

3.9 Workflow of splitting process into three different distributions . . . 49
3.10 Consequence of data augmentation with overlap visualization . . . 50
3.11 Simple example of random sampling [37]. 51
3.12 Plot of sampling intervals of resistivity distribution 1 for training,

validation and test sets . 52
3.13 Resistivity distribution 1, training data 52
3.14 Resistivity distribution 1, validation data 53
3.15 Resistivity distribution 1, test data . 53
3.16 Plot of sampling intervals of resistivity distribution 2 for training,

validation and test sets . 54
3.17 Resistivity distribution 2, training data 55
3.18 Resistivity distribution 2, validation data 55
3.19 Resistivity distribution 2, test data . 56
3.20 Plot of sampling intervals of resistivity distribution 3 for training,

validation and test sets . 57
3.21 Resistivity distribution 3, training data 57
3.22 Resistivity distribution 3, validation data 58
3.23 Resistivity distribution 3, test data . 58
3.24 Workflow of tuning hyperparameters for finding optimal CNN ar-

chitectures . 60
3.25 Input layer of hypermodel . 62
3.26 Looping convolutional and max-pooling layers of hypermodel . . . 63
3.27 Fully connected layer of hypermodel 64
3.28 Hypermodel for CNN hyperparameter tuning 66
3.29 General CNN architecture description, inspired by [4] 68
3.30 Random search configuration for hyperparameter tuning 69
3.31 Hyperband tuner configuration for hyperparameter tuning 70
3.32 Flowchart for model validation . 71
3.33 Visualization of CNN architecture for random sampling after overlap 72
3.34 Visualization of CNN architecture for manual sampling after overlap 74

Figures xiii

3.35 Visualization of CNN architecture for random sampling before over-
lap . 75

4.1 Visualization of test set: resistivity vs. depth 78
4.2 Prediction plot: test predictions vs. actual test resistivity from op-

timal model 1 . 79
4.3 Crossplot of test predictions vs actual test resistivity from optimal

model 1. The red dotted line and orange dotted line represent the
optimal prediction trajectory versus our prediction trajectory. 80

4.4 Prediction plot: test predictions vs. actual test resistivity from op-
timal model 2 . 81

4.5 Crossplot of test predictions vs actual test resistivity from optimal
model 2. The red dotted line and orange dotted line represent the
optimal prediction trajectory versus our prediction trajectory. 82

4.6 Prediction plot: test predictions vs. actual test resistivity from op-
timal model 3 . 83

4.7 Crossplot of test predictions vs actual test resistivity for optimal
model 3. The red dotted line and orange dotted line represent the
optimal prediction trajectory versus our prediction trajectory. 84

Tables

3.1 Hyperparameter search space for CNN using Keras 65
3.2 Four sample models from tuning . 67
3.3 Details of CNN architecture of optimal model 1 73
3.4 Model validation results for random sampled split after overlap . . 73
3.5 Details of CNN architecture of optimal model 2 74
3.6 Model validation results for manually sampled split after overlap . 75
3.7 Details of CNN architecture of optimal model 3 76
3.8 Model validation results for random sampled split before overlap . 76

4.1 Test prediction MSE and R-squared from optimal model 1 79
4.2 Test prediction MSE and R-squared from optimal model 2 80
4.3 Test prediction MSE and R-squared from optimal model 3 82

xiv

Acronyms

ANN Artificial Neural Network. 4, 23, 26, 27, 31, 61, 68, 72

BRU21 Better Resource Utilization in the 21st century. 6, 7

CNN Convolutional Neural Network. vi, vii, xi, 1, 2, 4, 6–9, 14, 16, 18, 23, 24,
26–29, 31, 32, 37, 38, 40–42, 49, 50, 59, 61–63, 67–70, 72, 85, 87–89, 91

CT Computed Tomography. vi, vii, 1, 2, 6–8, 13, 16, 85, 87

MSE Mean Squared Error. xi, 18–20, 32, 34, 36, 61, 62, 64, 67, 70–72, 77, 78,
80, 82, 86

ReLU Rectified Linear Unit. xi, 23, 24

xv

Chapter 1

Introduction

Machine learning is a subject area that is widely applied to solve many problems
today. Due to the evolution of technology and the large amount of data harvesting
in industries, machine learning has been able to solve problems that were previ-
ously not possible. With machine learning, scientists are improving at medical
diagnostics, self-driven cars are evolving, and energy production optimization is
getting better. In this thesis we utilize artificial neural networks, a subset of ma-
chine learning that uses algorithms to solve problems much like the human brain,
but with greater speed and with more computational complexity. This involves
tasks such as discovering patterns, automating processes, and predicting future
events.

This project covers the investigation and possibilities of utilizing image data for
predictive modelling of resistivity in wells. The structure of the learned model is
the Convolutional Neural Network, a state-of-the-art structure for modelling im-
age data. Usually, CNN is used to perform tasks such as classification and object
detection, but we want to find out if regression with CNN is compatible with us-
ing CT-scan images to predict the continuous resistivity variable. As the different
hyperparameter settings of CNNs can vary a lot, we utilize Keras, a library that al-
lows for automated machine learning during the hyperparameter tuning process.
The concept around Keras involves searching over a pre-defined search space to
find optimal CNN architectures.

The data we deal with consists of 2D cross-sections of 3D CT-scan of the core
retrieved from Equinor’s oil wells. The goal of this thesis is to create a model that
learns from the 2D image data and successfully predicts the resistivity. Resistivity
is a parameter among many others, e.g., permeability and porosity. The resistivity,
together with other log measurement parameters are used to identify the litholo-
gical characteristics of rocks. Usually, well logs are interpreted by petrophysicists
and geologists, but by performing robust modelling, one is able to provide useful
information derived directly from data. This contributes to time and economical
efficiency, as well as the possibility to adapt to other application areas.

1

Chapter 1: Introduction 2

To give the reader a brief overview of the thesis, we go over motivation, research
goals, and the thesis outline in this chapter.

1.1 Motivation

Among many parameters, porosity and permeability are the most descriptive ones
in terms of identifying rock characteristics. Resistivity is another important para-
meter that describes a material’s ability to resist electrical current. It is related to
the amount of dissolved salts in the water, and the distribution of water inside
the pore space. For our application in the Oil and Gas industry, one of resistivity’s
main contributions is to determine the oil content and the oil-water contact, loc-
ating the separation of oil and water in a well. In addition, resistivity estimation
has other applications as in hydrogeology for locating the water table, as well as
providing information about the water contents and the contamination level.

By performing proper and accurate modelling with resistivity, one opens up for in-
ference of other geological parameters such as permeability and porosity. Through
this thesis we want to contribute to further the research in the geoscience and data
science field, especially since there exists limited similar research on performing
regression using image data.

1.2 Research goals

With the use of CT-scan images, we want to investigate the possibilities of model-
ling the image data to perform regression of resistivity. We will utilize the tuning
library Keras, defining a suitable hyperparameter search space to find optimal ar-
chitectures of CNN. Because we are dealing with a small data set, various regular-
ization methods will be used to increase robustness and generalizability to avoid
overfitting. In the end, the goal is to test the models’ performances on a holdout
test set for a final evaluation. With these results, we will be able to observe the
reliability and confidence of deploying such models for application in real life.

1.3 Thesis outline

The structure of this thesis is divided into six main chapters. Chapter 1 has given
the reader an introduction to the problem, motivation, and research goals. In
Chapter 2 we delve deeper into various relevant theory regarding the thesis, such
as geology, convolutional neural networks, and model validation. This chapter
mainly gives the reader a background on what theory is needed for the rest of
the thesis. Chapter 3 shows the application of background theory on our data set.
Here, the data set is pre-processed and various CNN models are tuned and valid-
ated to observe different performances. These models are then compared, and we

Chapter 1: Introduction 3

then remain with a few optimal ones. Chapter 4 presents the results acquired in
the process of using the optimal models to predict the holdout test set. In Chapter
5 we discuss the results of the selected models, looking at which architectures
work better for the application, as well as revisiting our research goals. Chapter
6 involves concluding the thesis with accomplishments made, and what further
work can be done.

Chapter 2

Background and Related Work

This chapter covers previous research related to modelling with CNN, as well as
various background theory needed to perform regression of resistivity. First, we
introduce some background on geology and resistivity of porous media. Then we
go over three papers that we view as relevant for our thesis, covering various
methodology that we apply later. Further, we go over pre-processing and prepar-
ation of the data. This section introduces the sequence of steps required for the
data before we begin modelling. The learning structure used in this thesis is called
CNN, a state-of-the-art methodology for modelling with image data. We go over
the different types of layers, and emphasize why CNNs are effective for modelling
with image data compared to the classic ANN. Further, hyperparameter tuning of
CNN is covered, using Keras. Keras is a library that allows for automated machine
learning, searching over a pre-defined search space of hyperparameters. Finally,
model validation and selection will be covered to show the methods we use to
evaluate the CNN models from tuning.

2.1 Well logs and Resistivity

In the oil and gas industry, evaluating reservoirs has an important role in the
exploration of oil and gas [1]. With logging technology, geologists and petrophys-
icists have been able to measure the formation parameters for geological analysis.
In such reservoirs, there are many rock and lithological properties that are im-
portant to investigate to tell the properties of the formations. Therefore a detailed
record of measured parameters is put together, to present an overview. The well
log contains several types of geological information extracted, which are categor-
ized for the geologist to be able to navigate the desired information. For instance,
a log using resistivity to determine the oil-water contact is shown in Figure 2.1.
Here, the resistivity contrast, i.e., the rapid change in resistivity indicates that
there is a separation between water and oil.

4

Chapter 2: Background and Related Work 5

Figure 2.1: Example of a resistivity log used to locate the oil-water contact [2]

2.1.1 Resistivity log

We are most interested in electrical logs, where the resistivity parameter is the
goal of our predictions. Resistivity is the property of a material to resist electrical
current. This is linked to the material’s porosity, where a porous rock will let the
current flow through the mineral with ease, while a less porous rock makes it
harder for the current to flow. The liquid enclosed in the mineral essentially acts

Chapter 2: Background and Related Work 6

as a conductor, thus conducts electricity, while the mineral itself acts as an insu-
lator. The current will travel along the path of least resistance, thus materials with
low porosity have high resistivity and vice versa for high porosity materials.

This resistivity-porosity relationship can then be translated into providing inform-
ation about the lithological properties of the formation. Resistivity has for instance
applications such as in mineral exploration for iron and copper, geological dis-
posal, and in hydrogeology for water-well drilling. Resistivity may for instance be
an indicator of the water contents in the area, as well as providing information
about the contamination level in the water. Our application area is in the oil and
gas industry, where it is used for formation evaluation. One of the most useful
applications of resistivity logs is to indicate the oil-water contact [3]. Since the
oil contains hydrocarbons with high resistivity, and water has low resistivity, the
transition between oil and water can be indicated by resistivity contrasts. This is
although a major challenge as other factors than the water content, e.g. porosity,
also affect the rock resistivity.

Mud invasion

A known challenge in well drilling is mud invasion, an event where drilling fluids
are invading the pores in porous rocks. The invaded fluid can then displace some
or all the water or hydrocarbon present. Resistivity logging in the formation then
becomes disturbed, and may provide misleading information on the formation
resistivity.

2.1.2 CT-scan imaging and CNN

In this thesis, we therefore want to investigate the possibilities of using CT-scan
images of rock formations in a well to estimate resistivity with machine learning.
Computed tomography (CT) is a tool that has been used in the oil and gas industry
extensively for tasks such as imaging, characterizing lithofacies, and determining
fluids in porous rocks. The idea in this thesis is to use CNN, a state-of-the-art
learning method for 2D image data, to model the behaviour of resistivity.

2.2 Related work

This section involves presenting papers that are related to our research question.
The first paper is from NTNU’s BRU21 team that researches digitalization in the oil
and gas industry. They have provided me with the data and a paper regarding 2D
CT-scan imaging with CNN as well as project guidance. The second paper is about
regression of the angle of digits and robotic arms, also utilizing CNN. As there is
limited research on performing regression with CNN and image data, we found
this paper interesting. The third paper is about data pre-processing techniques for

Chapter 2: Background and Related Work 7

fault diagnosis, where generating data with overlap is presented. This is a central
concept for pre-processing our data, which we will go over later.

2.2.1 Classification of rock type classes using CNN

BRU21 is NTNU’s multidisciplinary program for digitalizing and developing tech-
nological contributions to the oil and gas industry in Norway. Some disciplines
include Cybernetics and Robotics, Computer and Data Science, Petroleum Engin-
eering, and Geoscience, centering around Ph.D. and PostDoc research projects.

From BRU21, Ph.D. student Kurdistan Chawshin from the Geoscience and Pet-
roleum institute has worked on using 2D CT-scan data to perform classification
of 20 rock-type classes. The paper presents a workflow of utilizing image data
from an oil well to perform rock classification [4]. The paper involves applying
CNN methodology together with Keras for hyperparameter tuning to find models
for classification. We utilize similar methodologies of pre-processing and hyper-
parameter tuning, although to perform regression instead of classification. In the
paper, a thorough analysis combining data science and geology is used both to
perform classification with CNN and interpret the results.

2.2.2 Regression of angle for handwritten numbers with CNN

Even though CNN has been a state-of-the-art learning method for handling im-
age data, most of the solutions revolve around classification tasks [5]. There is
therefore a lack of research that utilizes deep learning for regression. Paper [5] is
about regression performed with CNN, predicting a rotation angle for digits and
a robotic arm. The paper performs experiments first on digits presented in Figure
2.2, then on the robotic arm data. They utilize 5000 digit data for training and
5000 digit data for testing. Further, they used 6859 data for training and 5832 for
testing on the robotic arm.

Figure 2.2: Regression of angle for handwritten numbers [5]

The paper utilizes four CNN architectures: a handcrafted CNN architecture,

Chapter 2: Background and Related Work 8

and three pre-defined architectures known as LRF-ELM, H-ELM, and AlexNet [5].
The hyperparameter settings are presented in the paper and achieve good results
for both regression tasks for all four proposed models.

2.2.3 Data pre-processing techniques for fault diagnosis with CNN

The paper goes over several pre-processing techniques used for intelligent fault
diagnosis with CNN. The fault diagnosis is for rotating machinery, where data has
been gathered from the industry. However, there is a limited amount of data be-
cause of the difficulties to obtain sufficient real fault data [6]. They then propose
various pre-processing techniques where one of the motivations is to increase the
data set size. One of the pre-processing methods uses data augmentation with
overlap to generate more training data. This is presented in Figure 2.3, where
vibration signals are augmented. In our case we will use a similar concept to gen-
erate more training data, but with image data.

Figure 2.3: Generating fault diagnosis data using overlap [6]

2.3 Data set pre-processing for preparation of data

The data used for modelling is 2D CT-scan data of core from a well. 142 meters
of core were retrieved where each image represents 1m of CT-scan imaging. The
depths shown in some plots will be numbered as the respective location inside the
142 meter interval. In reality, these depths can be much deeper, but because of
confidentiality purposes, we decide to use the relative scale of 142 meter interval.

Before modelling with CNN, these images had to be pre-processed to be used as
input. Figure 2.4 shows an interval of 5 meters where each column represents one
meter of well sample starting from the left side. From Figure 2.4 there parts with
missing core, giving low-quality data that may disturb the performance. These are
occurences in the data that do not provide relevant information, acting as noise,
and is why pre-processing is necessary.

Chapter 2: Background and Related Work 9

Figure 2.4: CT-scan image of well sample with five 1m sections

An artifact is to be observed in the middle column, showing a white vertical
square. This is caused by core barrel couplings, having higher attenuation values
[7]. Above the white rectangle there are additional areas of brightness, caused
by mud invasion. A missing interval is also present from the middle to the fourth
column, where core in-between these depths are not present. There are also cracks
in the samples as shown in the columns on the right-hand side.

Additional to removing noise, we augment the data with overlap, generating more
data, previously presented in Figure 2.3. This is because our data set size is origin-
ally small. Another augmentation method we use is flipping the images vertically
and horizontally used as a regularization measure to prevent overfitting. In addi-
tion, an increase in data set size is also obtained by flipping.

The idea is to first pre-process these images, then use the cleaned and prepared
data as input to the CNN model. With CNN, features are extracted from the im-
ages used to predict resistivity with regression. To give the reader a brief overview

Chapter 2: Background and Related Work 10

of the pre-processing process, Figure 2.5 shows a flowchart describing the various
steps required for the preparation of the image data.

Figure 2.5: Flowchart showing different steps of data set pre-processing

2.3.1 Interpolation to increase data set resolution

As a first step of pre-processing, interpolation was performed on the data to in-
crease the data set resolution. Interpolation involves estimating new data by con-
structing new data points between the ones already known. This means that
between each resistivity-depth pair, additional data points are estimated and ad-
ded. To interpolate, one needs a mapping function f , that is created from the
original data. Figure 2.6 shows an example of linear interpolation.

Chapter 2: Background and Related Work 11

Figure 2.6: Example of linear interpolation, where the blue data points are the
original ones, and the red are interpolated [8]

Interpolation was done for the 932 data points in python, creating an mapping
function f that maps a given depth xdepth, to a new resistivity value yresistivity.

f (xdepth) = yresistivity (2.1)

With this new estimated function f, a new given depth x would map a resistiv-
ity value.

2.3.2 Artifacts and missing intervals acting as noise

Three instances were discovered in the data set that were regarded as disturb-
ance for modelling. These were missing data intervals, core barrel couplings and
high-density areas. The missing data was most likely caused by poor core recovery,
induced fractures, or rush plugs taken after retrieval of the core [4]. Another in-
stance of unwanted data was bright areas caused by core plugs and mud invasion.
These are described in Figure 2.7.

Chapter 2: Background and Related Work 12

Figure 2.7: Instances of noise and disturbance: color coded in red(missing data),
blue(mud invasion) and green(core barrel couplings). Inspired by [7]

These instances had to be discovered and removed before further pre-processing
of data. If not dealt with, they would likely act as noise and disturb the perform-
ance of the model during tuning. Code from [4][9] was used to find the intervals
with noise and remove them.

2.3.3 Data augmentation for regularization

Modelling with neural networks generally requires sufficient data to efficiently
learn. Collection or generation of such data is often expensive and hard to re-
trieve [10]. By the use of data augmentation methods one is able to artificially
generate unique data, thus increasing the data set size and the data variety. Addi-
tionally, data augmentation contributes to increased robustness during modelling
by performing simple modifications to the original data.

Take for instance a data set of dogs where the majority of the dogs are facing
to the left. By flipping the image horizontally, one is also able to capture dogs fa-
cing to the right, preventing the model of overfitting to only classifying left-facing
dogs [11]. Data augmentation therefore acts as a regularizer, increasing the gen-
eralizability of the model to new, unseen data. For instance, the study by [10]

Chapter 2: Background and Related Work 13

shows that using generic data augmentation methods such as rotating, flipping,
and cropping contribute to a richer training data set with less overfitting in their
object detection application.

In this thesis, we experience having a rather small data set size of 142 CT-scan
images covering 1 meter each. It is therefore desired to increase the data set size
using data augmentation. The augmentation methods we will use are

• Data generation with overlap: 98% overlapping sliding window for data
generation
• Horizontal and vertical flip: flipping of images horizontally and vertically

to introduce modified versions of the original data

Data generation with overlapping images

In this thesis, the data covered is retrieved from one well, ranging between over
142 meters interval. Each image is 1m long, thus the data set size is very small. To
increase the data set, a window of 98% overlap has been slid over each image to
generate more data. Each sliding of a 1m image should have resulted in 40 images
with a step size of 2%. A study done by [6] shows a similar approach, only with
vibration signals where using overlap with a sliding window is done to obtain a
bigger data set. Figure 2.3 previously presented shows their approach. To further
increase the data set size, we break down the 1m intervals into smaller image
sizes. The sizes used in this thesis are either 30cm or 60cm images. Application of
data generation with overlap and division into smaller images will be presented
later in Chapter 3.

Horizontal and vertical flip

As a measure to increase robustness, augmentation with flipping will be done to
attempt to present "unique" images to the model. The idea is to let the model see
modified images that can be candidates for future predictions outside the train-
ing set. The motivation for flipping is that if you flip a whole well upside down,
the sequences of rocks will be the same, just reversed, thus the resistivity also
remains the same. We will test models with and without flipping, to compare per-
formances.

To perform flipping, two augmentation methods have been used. The first method
generates additional data and increases the size of the data set with the new cop-
ies. The augmentation is done before training the neural networks since it is de-
sired to increase data set size. The other method involves creating copies "on-the-
fly", meaning it does not expand the data set before training, but instead, for each
training instance, during the training phase. The augmentation happens in-place,
where the model sees a new augmented version of the data. This ensures that the
model sees a new, unique version of the data as an attempt to prevent the same

Chapter 2: Background and Related Work 14

images to occur during training. This latter augmentation method also reduces
the amount of data needed to be processed overall, leading to less computational
load and RAM required.

2.3.4 Normalization of data input

As a last step before the data can be used for modelling with CNN, normalization
of the image data was done. In machine learning, time is an important factor, es-
pecially for real-time applications [12]. The ranges of inputs of data can be big,
thus slow down the calculation processes of neural networks. Applications such
as self-driving cars and speech recognition are examples of where time may be an
important factor.

Normalization is about bringing the ranges of values the input can have to a more
common scale. For some applications normalization can be crucial, as big input
values can have more impact than smaller values in neural network computa-
tions. By normalizing the data, the idea is to prevent this bias from occurring. In
this thesis, we use Min-Max scaling to map the input data to inputs between 0 and
1. This is done by dividing the original input by the maximum value of all inputs
given by

Xnorm =
Xold

Xmax
(2.2)

For our project, the maximum value for our image data is 255. This means we
have to divide every image data input by 255.

2.4 Supervised learning

The machine learning process used in this thesis is called supervised learning.
The name supervised learning comes from the learning process being directed by
a supervisor [13]. Here the supervisor is the human that in advance has labeled
and split the data which the algorithm learns from. The class label and data set
features are therefore known in advance, and the goal is then to use this known
data to train a model that maps the input x to the output y . The input x will
be the image data, trained on with the learned model structure CNN to perform
regression of resistivity y .

When considering images of 60cm height, the image data set consists of 2467
images. Based on the rock information, a logging tool has been previously used
to used to label the resistivity of the rocks throughout the well. Machine learn-
ing with CNN is then applied to use this labeled data to learn how to predict
the resistivity of future, unseen images. Figure 2.4, previously shown, shows five
non-processed 1m intervals, where each interval carries a sequence of resistivity
values. These resistivity values are the objective of predicting, by learning from
the labeled image data.

Chapter 2: Background and Related Work 15

2.4.1 Regression

Regression is the problem of finding the mathematical relationship between the
continuous variable y and a set of feature variables X. More precisely, given a
data set X and a target label y , the objective is to find a mapping function f (x),
x. By inputting a data point x , the mapping function outputs an estimate of y . In
machine learning, this involves training a model on a data set X where the target
variable y is already known. By learning from the data, the model estimates the
mapping function that describes the relationship between the data and the target
variable.

Simple linear regression example

A simple example is using linear regression to estimate a person’s shoe size based
on their height. Here, the height is the feature variable x , which is used to estimate
their shoe size y . Figure 2.8 shows sample data of a set of height and shoe size
pairs that are plotted.

Figure 2.8: Data set example of using height(x) to infer the shoe size(y) [14]

At first glance, we observe that there is a linear relationship between the two
variables. The objective is then to find the best fitting curve that describes the
relationship between the data X and target variable y . In this example we only
have one feature variable, x the height which is used to infer the target variable
y , the shoe size. Since we only have one feature variable, this means to find a line

f (x) = β1 + β2 x (2.3)

Chapter 2: Background and Related Work 16

where f (x) is a mapping function that predicts the shoe size, and x is the height.
β1 is the offset of the line, and β2 is the slope. These two variables are then adjus-
ted to fit the best line possible. To know how to adjust β1 and β2 a loss function is
used, describing the distance from the line and our prediction, known as residual
r. The residual for a given point i is given by

ri = yi − f (x i) (2.4)

Least squares is then the sum of the residuals squared given by

L =
n
∑

i=1

r2
i (2.5)

The goal of this example is then to adjust β1 and β2 to create a line that minim-
izes the least-squares loss function. There are several ways to solve this, where
one example is iteratively by testing out different values for β1 and β2. The line
with the smallest L is then our solution.

In this example we only had one feature variable x , so the example is pretty
simple. For bigger problems where there are multiple feature variables, the prob-
lem scales in dimensionality where a simple line would no longer be a sufficient
solution. This means that more complex learning methods than linear regression
may be needed, as the relationship between X and y often becomes nonlinear.

Regression of resistivity with CNN

Generally, regression is done with numerical data, together with classical machine
learning algorithms such as support vector machines, decision trees, or linear re-
gression. In this thesis, 2D CT-scan images are used as input x to find the tar-
get value of resistivity, y . To perform regression using images as input data, the
learning method CNN is used. For every 2D CT-scan image, a resistivity value is
assigned. With CNN, features are extracted from the images x , and are then used
to model the mapping function f̂ that estimates resistivity y .

2.4.2 Bias variance tradeoff

The big challenge in machine learning is to create a model that is good at predict-
ing new, unseen data. We then say the model has good generalizability. Looking
at two scenarios: a nonlinear model and a linear model. The nonlinear model is
often more complex and powerful, and in general achieves better accuracy than
the simpler, linear model. But should we always use nonlinear classifiers? This
question is answered by analyzing the bias-variance tradeoff.

Variance

Variance is known as the variation of predictions of our model, defined as the
average deviation of our prediction ŷ from the mean of our estimate E[ŷ] given

Chapter 2: Background and Related Work 17

by the following equation

Var(ŷ) = E
�

�

ŷ − E[ŷ]
�2�

(2.6)

In practice, this means that the model pays a lot of attention to the details
when modelling the relationship between x and y . This relates to that the estim-
ated function f̂ has high model complexity, but has low generalizability since it
is too used to model the training data. Models with high variance generally per-
form well on the training data as high variance is a sign of high model complexity.
Although, when applying the high-variance model on new, unseen data, the per-
formance is expected to be bad, as it is too familiar with the training data. This
concept of high variance is visualized in Figure 2.9. As the variance increases, the
model complexity follows, and the total error also increases. It is therefore cru-
cial to tune the model parameters that constructs f̂ in a way that we achieve low
variance.

Bias

Bias is the difference between the average prediction of our model E[ŷ], and the
ground truth y which we are trying to predict [15], given by

Bias(ŷ) = E[ŷ]− y (2.7)

Bias can be seen as the simplifications and assumptions a model makes when
learning the target function [16]. A model with high bias learns fast but struggles
to learn complex characteristics of the data. Simple models therefore have high
bias. Models with low bias are on the other hand more capable of adapting to
complex behavior in a data set, but learn slower. These are categorized as more
complex models. Both scenarios of high and low bias are unwanted, as they lead
to high-error modelling, presented in Figure 2.9.

2.4.3 How the bias-variance tradeoff affects modelling in practice

The bias-variance tradeoff is tied to the complexity of a model. A very complex
model will be good at modelling the training data set since it pays attention to
the details, and often achieves good training accuracy. But when introducing the
model to new, unseen data, the model will be bad as it is too "used" to modelling
the training data. We then say the model is overfitted to the training set since
it rather remembers the data rather than learns from the underlying semantics.
These models are classified as more complex models and are known to have high
variance and low bias. A very simple model will struggle at modelling the training
data set as it is too simple to be able to adapt to complex patterns and characterist-
ics of the data. Take for instance a linear model trying to model the characteristics
of a highly non-linear data set. We then say the model is underfitted and has high
bias and low variance. These two phenomenons are shown in figures 2.11 and
2.12.

Chapter 2: Background and Related Work 18

Loss functions and metrics for scoring

In machine learning, to optimize a given mode, loss functions are used. The loss
function is referred to as the objective function, where the goal is to minimize the
learning error by tweaking the parameters of the learned model f̂ . In regards to
this thesis where regression is used, the loss function mean squared error is one
of the candidate loss functions that can be used. Given a regression problem, we
have the mapping function f that is estimated by our CNN. The mapping function
f̂ outputs a resistivity prediction ŷ dependent on the input image x . The goal is to
estimate this mapping function f̂ that describes the relationship between x and
y as close to the real relationship as possible. We then evaluate the goodness of
the fit of f̂ to the data set based on MSE, i.e. the learning error. In this thesis, we
decide to use mean-squared error, MSE as our main loss function. Mean squared
error, MSE is a metric for the deviation of our prediction ŷ and the ground truth
y squared given by

MSE(ŷ) = E
�

(y − ŷ)2
�

= Var(ŷ) +
�

Bias(ŷ)
�2

(2.8)

MSE says how much the mean of our regression prediction E[ŷ] deviates from
the original y [15]. The goal of the regressor is to minimize this learning error,
and can be achieved by changing both bias and variance, hence the bias-variance
tradeoff. This tradeoff is something the supervisor has to take into account when
modelling, using different techniques to balance both bias and variance, thus keep
MSE low. Figure 2.9 illustrates the tradeoff.

Figure 2.9: Visualization of the bias-variance tradeoff with total error, MSE [17]

As visualized, the challenge is to avoid having both high bias and variance, as
this affects the learning error negatively. The sweet spot would then be to have
both low bias and variance. Figure 2.10 intuitively visualizes the tradeoff with a

Chapter 2: Background and Related Work 19

bullseye diagram. High variance leads to a wide spread in predictions, and high
bias results in large deviations from the target value.

Figure 2.10: Visualization of the bias-variance tradeoff with four bullseye-
diagrams [17]

Adjusting bias and variance in practice

How is low variance and bias achieved in practice? Essentially, it is achieved by
implicitly adjusting the bias and variance in the model by tuning the hyperpara-
meters. One wants to avoid having a too simple model, as bias tends to be high,
and a too complex model where variance is high. When tuning, one can start
with a simple model to "test out the waters", then iteratively increase model com-
plexity to investigate the need for a more complex model. For instance take a
simple neural network regression problem: starting with one hidden layer and
some neurons, then adding more layers and neurons to increase model complex-
ity. This follows the principle of Occam’s razor, which says that among several
competing models with similar scores, but different model complexity; pick the
model with the lower complexity. Lowering the model complexity means lowering
the variance, and contributes to better generalization.

Early stopping is a simple, yet effective regularization technique among neural
networks. It revolves around stopping the training of a model when accuracy stops
improving. As the model trains longer, the complexity of the model increases, since
the weights and biases in the network increase. This causes variance and MSE to

Chapter 2: Background and Related Work 20

increase as the training data is iterated over for longer than needed, thus causing
the model to risk overfitting to the training data.

2.4.4 Overfitting

Overfitting and underfitting are events that are consequences of the bias-variance
tradeoff. A model is overfitted if it pays much attention to the details of the data
set. Such models don’t learn and generalize from the data set, but rather remem-
ber the data. They often have low MSE on the training data, but when new unseen
data is presented to an overfitted model, its generalizing ability is low since it is
too "used" to model the training data. An underfitted model has the opposite char-
acteristics of an overfitted model. Its model complexity is low, hence its ability to
adapt to new data is low. Both of these cases are visualized in Figure 2.11 and
2.12.

Figure 2.11: Visualization of overfitting and underfitting during the training pro-
cess. Modified of [18]

Chapter 2: Background and Related Work 21

Figure 2.12: Visualization of an overfitted, an underfitted and a balanced model
[19]

Data leakage

Data leakage is an important concept regarding ML that can cause models to over-
fit. It involves using information outside the training data to perform predictions,
inserting bias into the modelling. The goal of predictive modelling is to create a
model that is good at predicting unseen data. We then say the model is good at
generalizing to new data. Data leakage is the event of using information from the
test set to purposely improve the score of the model. We then say that test data
has leaked into the training set.

In a general 3-way split, covered later in Section 2.8.2, a training set is used to
train models, a validation set is used to tweak the model performances, and the
test set is held outside untouched. The challenge is to use the training and valid-
ation sets to create robust models with good generalizability, and finally, when an
optimal model has been found, the test set is finally predicted. By splitting it this
way, we prevent test data to leak into the training set.

2.4.5 Regularization to combat overfitting

To combat overfitting, regularization methods can be used. Regularization meth-
ods are machine learning techniques used to lower the gap of generalization error.
Generalization error is known as the error of predicting new instances, i.e. the
test error. As introduced earlier, an overfitted model might perform well on the
training set, but when introduced to new data the performance may be bad. The
following regularization techniques will be used in this project.

• Early stopping
• Data augmentation
• Dropout

Chapter 2: Background and Related Work 22

We have already gone over data augmentation and early stopping slightly. Dropout
and early stopping will be discussed more later in this chapter.

2.5 Artificial Neural Networks

An artificial neural network is a machine learning algorithm that tries to replicate
the biological behavior of the brain. It goes by several names: artificial neural
networks, deep neural networks, feed-forward neural. The main goal of a neural
network is to approximate a function f̂ by learning a mapping y= f (x;θ) where
x is some data, and θ the model parameters. In theory, a neural network with
one neuron and one hidden layer can approximate any possible function. But by
increasing the number of hidden layers and neurons, allows the model for much
more computational power and better adaptive ability. An example of a neural
network with three hidden layers with four nodes in each layer is shown in Figure
2.13.

Figure 2.13: Example of feed-forward neural network with three hidden layers
and four neurons in each layer [20]

2.5.1 Hidden layers and neurons

A neural network consists of an input layer, n number of hidden layers, m num-
ber of neurons in each layer, and an output layer. The neurons have connections
from previous layers and form a network by having outgoing connections to the
next layer. Each node processes the output from the previous layer, processing the
numbers and outputting it to the next layer [21]. The processing is a linear trans-
formation of the input with adjustable weights, a bias, and an activation function
[22]. The weights are set and continually adjusted to fit the function f (x) better.
The activation function is a non-linearity that maps the input to the output, and
the bias shifts this non-linearity. The linear transformation can be given by

Chapter 2: Background and Related Work 23

y= g(Wx + b) (2.9)

where y is the output, g is the activation function, W, are the weights x are
the inputs and b are biases. Figure 2.14a shows the linear transformation of one
neuron.

(a) Linear transformation within one
neuron. Weights multiplied with inputs
are summed, and fed into the activation
function, resulting in an output [20] (b) Typical activation functions: tanh, sig-

moid, ReLU and linear function [23]

Figure 2.14: Linear transformation within a neuron on the left. Four typical ac-
tivation functions on the right. Inspired by [22]

Modelling with neural networks has become more popular through the last
decades, utilizing their ability to perform complex tasks such as classification, re-
gression, reinforcement learning, and so on. Neural networks’ capability to adapt
and surpass classical ML methods has attracted more users, especially in pattern
recognition. In theory, a neural network with one neuron should be able to es-
timate a function for prediction, but a deeper and wider network allows for more
computational complexity.

This thesis revolves around utilizing 2D CT core-scan images to predict resistivity
from well logs. CNN, a variant of the typical ANN is known for being state of the
art for image processing and is therefore used as the machine learning algorithm.
There exist a multitude of different CNN architectures for different applications,
and in this thesis, tuning and investigation of different architectures are done to
see if they can adapt to our image data. The tuning and searching of CNN archi-
tectures are shown later in chapter 3, Section 2.7.

2.5.2 Activation functions

The activation function is a non-parametric function that processes the node input
to an output. This can be as simple as an "ON"(1) and "OFF"(0) gate, or something
more complex as a continuous function [24]. Popular activation functions are for
instance the sigmoid or ReLU shown in Figure 2.14b. From each node, the weights
and outputs from the previous layer are multiplied and summed, then passed into
the activation function. Based on some threshold, the activation function maps

Chapter 2: Background and Related Work 24

the sum of inputs and generates an output.

The non-linearity can be shifted by adjusting the bias to adapt to an appropri-
ate value range based on the inputs. It is therefore normal to normalize the data
to avoid the summation reach saturation both on the lower and upper end [24].
The selection of a proper activation function is therefore an essential part of neural
network modelling since it is used for computation in each node.

The activation function essentially acts as a summary of the input to the output. A
node in a neural network may process hundreds or thousands of inputs from the
previous layer. Therefore it is effective to have activation functions that squash
these inputs into a less complex number.

In this thesis, the ReLU activation function is used extensively during modelling
with CNN shown in Figure 2.14b. ReLU maps the input of the node to a number
between 0 and the maximum value of all inputs received by the node. ReLU is
given by equation Figure 2.15 and 2.10

f (x) = max(0, x) (2.10)

Figure 2.15: ReLU activation function, visualizing equation 2.10 [25]

where x is the input from all connections, and f (x) is the output to all out-
going connections. The reason we choose to use ReLU is that the calculation of the
gradient is simple, [26] shown in equation 2.11, which makes backpropagation
with ReLU computationally low.

∂ f (x)
∂ x

=

¨

1, if x > 0

0, otherwise
(2.11)

Chapter 2: Background and Related Work 25

2.5.3 Training neural networks

During the training of a neural network, information flows through the network
and produces a final resistivity prediction. In a supervised learning problem, the
network knows the ground-truth label of the prediction for training. To know how
to adjust to errors, the network uses backpropagation, involving a loss function to
perform gradient descent. The gradient of the prediction tells us how far away we
are from the optimal solution, and allows us to adjust the weights of our neurons.
For each backpropagation, the loss from the loss function gets smaller and helps
to notify the model to adjust its weights. This adjustment of weights is what helps
the network to produce better predictions as the network trains for longer. The
name backpropagation comes from the fact that the calculation of the gradient
propagates backward in the network. It starts calculating the gradient of the loss
function at the output layer, propagating backward for each hidden layer, ending
up on the gradient of the first layer.

During training, when weights and biases get adjusted, the variance and bias in
the model get affected. To decrease the risk of overfitting during training, two
regularization methods are specifically applied called early stopping and dropout.

Epochs and early stopping

One iteration of sending training data forwards and then backpropagating until
the model has seen all training data once is called an epoch. For each epoch, the
weights of the network are adjusted hundreds or thousands of times, depending
on the size of the training data. This is the process where the network gets more
"known" to the data and is where the learning happens. After a multiple number
of epochs and weight adjustments, the network’s loss function should converge
to a minimum, as for every epoch, the weights get adjusted to the error. The idea
is through this process to let the neural network learn from the underlying com-
plexities of the data by adjusting the weights. One should therefore be mindful
of selecting the number of epochs to avoid overfitting as the network’s weights
and biases change when training for longer. This is because the variance and bias
increase for each epoch, leading to increased model complexity.

As introduced earlier, early stopping lets the user automatically stop when a neural
network’s loss is stagnating. Stagnating means that the network is not learning
more, but rather continuing training and updating weights, increasing the model’s
variance. This alone can lead to overfitting, and the challenge is then to stop at
the sweet spot where the network has trained enough. Early stopping can be per-
formed manually by investigating the learning behavior of the model through
graphic plots, or automatically by setting a patience parameter that stops the train-
ing whenever there is no decrease in loss over a set number of epochs.

Chapter 2: Background and Related Work 26

Dropout

Another regularization method for neural networks that is both cheap and effect-
ive called dropout. The way dropout works is to randomly remove nodes from
each hidden layer during training in each epoch, creating different neural net-
work models for each forward pass, and backpropagation pass.

What we often experience with neural networks without dropout is that some
nodes are more active than others, called co-adaptation. Co-adaptation is often
the root of overfitting since it makes so that some nodes are highly dependent on
others. If this independent node receives a bad input, it may affect the dependent
nodes to a large degree. Dropout then lets every node have an equal chance to
contribute towards the prediction, thus reducing the chance of co-adaptation.

During training, given a dropout probability p, for instance, 0.15. p is then the
probability of a node in a hidden layer being dropped out. The neural network
then drops the node and its in-going and outgoing connections. The active nodes
receive their input and perform forward pass and backpropagation, updating their
weights. This is then repeated for every epoch. Dropout is only used during train-
ing and not during testing. During training, the neural network incorporates the
characteristics of the different models into the last model so that the predictive
model contains all nodes.

2.5.4 Artificial neural networks and its limitations with image pro-
cessing

When it comes to modelling with image data, the standard ANN struggles to deal
with the computational complexity. For instance, say a 64×64 image is used as
input to an ANN. The neural network could probably deal with this kind of input,
but each neuron would have 4096 parameters in each neuron. With increased im-
age size, and usually also colored images, the parameters increase exponentially
regarding how many weights the ANN has to deal with. Using ANNs to perform
image recognition could in theory be possible, but probably not feasible when
it comes to bigger scales. One could increase the size of the network with more
hidden layers and neurons to compensate for the computational requirements for
image processing.

With convolutional neural networks, the number of parameters in the network
decreases exponentially, as CNNs are suited for grid-structure data. By utilizing
the convolutional operation, calculations are simplified, and the computational
requirements are reduced significantly.

Chapter 2: Background and Related Work 27

2.6 Convolutional Neural Networks

A more suitable approach to modelling with image data is with the CNN. Convo-
lutional Neural Networks are feed-forward neural networks inspired by the visual
cortex in the human brain. The visual cortex arranged in a way that they are
limited to only sense sub-regions of the visual field. The neural network then
works so that connections of neurons within the network make the CNN able to
cover the whole visual field, thus extracting patterns and information in parallel
[27]. The significant difference between ANNs and CNNs is that CNNs are more
suitable for image processing due to the convolutional operation. The convolu-
tional operation is a pixel-wise operation together with a kernel and an activation
function that results in an activation [4]. When the kernel is activated over the
whole image, it learns to detect patterns such as corners and edges, resulting in
a feature map extracted. These features extracted hold the relevant information
about the patterns that the model learns from and uses for prediction of resistivity.
One kernel might find corners, resulting in a feature map highlighting corners in
an image, while another kernel might learn to find vertical lines. The activation
with the convolution operation and the kernels are what makes the CNN effective
with grid-like structured data, hence images are effectively decomposed and in-
terpreted by CNNs. These can be of 2D, 3D, or bigger dimensional data dependent
on the application.

There are three main layers that make the architecture of a CNN: convolutional
layer, pooling layer, followed by the fully-connected layer. The convolutional layer
is the building block of CNNs, and is where feature maps are extracted from the
image data with kernels. The pooling layer is a layer that usually comes after
the convolutional layer. The pooling layer summarizes and down-samples the ex-
tracted feature maps, then sends them to the next convolutional layer, allowing
for features of different scales to be extracted. Usually, there are several pairs of
convolutional and pooling layers before reaching the fully-connected layer. The
fully-connected layer is the standard ANN, where prediction with regression hap-
pens, consisting of hidden layers with neurons. This sequence of layers is presen-
ted in Figure 2.16. In our problem, we have a regression task at the end instead
of classification, so only one neuron is used at the output layer.

Chapter 2: Background and Related Work 28

Figure 2.16: Standard architecture of the CNN involving feature extraction us-
ing the convolutional and max-pooling layer. A prediction is then produced from
the fully-connected layer. In this classification example, handwritten numbers are
classified from 0 to 9 [28]

2.6.1 Convolutional layers for feature extraction

The convolutional layer is the basic unit of a convolutional neural network. The
convolutional layer uses kernels to extract details in images [26]. Kernels are
known as the parameters of the convolutional layer, trained to learn specific pat-
terns from the images. These patterns can be a corner, an edge, eyes, and so on.
The convolutional layer utilizes these kernels together with the convolutional op-
eration on the image, called an activation. Figure 2.17 shows an example of a
kernel convolved with an image. This activation is performed over the whole im-
age, resulting in a feature map. The feature map represents the information of
which is specific to the kernel. For instance, the feature map from a kernel that
detects edges will be different from the feature map from a kernel that detects
eyes. Figure 2.18 shows eight kernels producing eight different feature maps over
5 sampling levels. For each level, the feature maps are downsampled.

Chapter 2: Background and Related Work 29

Figure 2.17: 3× 3 kernel activated with a grid of data, producing a feature map
[29].

These kernels resemble the human brain, where our visual field is limited to
remembering small parts of patterns. Each kernel has its own characteristic, where
for instance a line or a corner is learned. What is amazing, is that convolutional
layers train multiple kernels at the same time, often hundreds of kernels, and can
therefore recognize different patterns at once when seeing an image. The feature
maps are stacked and sent forwards to the max-pooling layer where the feature
maps are downsampled, decreasing the resolution. This results in kernels early
in the network producing detailed feature maps of objects or patterns, while the
kernels in the later layers produce more coarsened feature maps. This property
allows the CNN to extract features from different scales regarded as low-level and
high-level features. Figure 2.18 shows feature maps of an image of a cat over five
convolutional layers. For each layer, the resolution gets more coarsened where
each layer contains 8 kernels each, extracting different types of features.

Chapter 2: Background and Related Work 30

Figure 2.18: 5 levels of extracted feature maps, each row with 8 kernels. From
each convolutional layer, feature maps are downsampled to capture different
levels of features, represented by each row[30].

2.6.2 Pooling layer

After applying trained kernels to the input images in the convolutional layer, fea-
ture maps are generated. These feature maps are fed into the pooling layer, which
acts as a "simplifier" by downsampling the feature maps. This is the main function
of the pooling layer, reducing the complexity of feature maps for further layers
[26]. The reduced feature maps are then used as input to the next convolutional
layer, where the same process of extracting feature maps and pooling happen.
Pooling helps to reduce the number of parameters trained in the network, thus
reducing computational load. In this thesis, we use max pooling, one of the most
popular pooling layers which extracts the most activated pixels in the images. An
example of max-pooling is shown in Figure 2.19. Max-pooling works by returning
only the maximum value inside of the kernel window. In this example, we have a
2× 2 window size, which is commonly used. The stride is 2 which is the number
of pixels we slide each time a pixel is sampled to the pooled feature map. This is
also the property that causes down-sampling. To avoid down-sampling, a stride of

Chapter 2: Background and Related Work 31

1× 1 can be used, although is not commonly used [26]. Max-pooling can also be
seen as augmenting the images, as the information loss causes coarsened or more
blurred feature maps, acting as a regularizer.

Figure 2.19: Max-pooling of feature map with window size and stride of 2 [31].

2.6.3 Fully-connected-layer: The regressor

The fully-connected layer is the classic neural network part of the CNN. After ex-
tracting feature maps and training kernels for pattern recognition, these feature
maps are fed into the fully-connected layer. First, the output from the convolu-
tional and pooling layers is flattened into a 1D vector. The reason for the flatten-
ing is so that the fully-connected layer can interpret the feature maps in a more
fitting shape, instead of grid-structured data. These layers are equivalent to the
classic ANN and are where regression and prediction of resistivity happens. The
number of parameters in the fully-connected layer can be high and computation-
ally exhausting. To provide regularization we use dropout in this layer, introduced
in Section 2.5.3 [26]. Dropout allows us to remove nodes with their in-going and
outgoing connections, reducing the number of computations. Dropout acts as a
regularizer to prevent co-adaptation.

2.7 Hyperparameter tuning with Keras tuner

Automated Machine Learning (AutoML) is a wide research field that has become
important with its application of ML techniques [32]. The motivation of AutoML
is to enable people with less machine learning experience to use machine learning
in practice more easily. Instead of hard-coding the machine learning algorithms,
libraries such as Sklearn and Keras offer in-built learning algorithms that the user
has to insert hyperparameters to begin modelling. Hyperparameters are the para-
meters of the machine learning algorithm that defines the behaviour of the model.

Chapter 2: Background and Related Work 32

These hyperparameters vary dependent on which machine learning algorithm is
used. For CNN used in this thesis, some hyperparameters are for instance the num-
ber of convolutional layers, the number of kernels in each layer, and the number
of neurons in the fully-connected layer. In this thesis, Keras is used for tuning,
where the user defines a search space of hyperparameters that Keras iterates over,
exploring different CNN architectures. This allows the user for neural architecture
search (NAS), which aims to search for the best neural network hyperparameters
[32].

Tuning the hyperparameters of a neural network can often be exhausting as there
can be a large number of factors that make the tuning process complex. As intro-
duced in Section 2.5: an artificial neural network with one hidden layer and one
neuron can model any function. So, how many hidden layers should be chosen,
and how many neurons in each layer should the network have? Making the net-
work too big may be ineffective and computationally exhausting. Making it too
small may not utilize the model capacity to its fullest. A too complex network
may tend to overfit, and vice versa for a simple network. This is an arbitrary prob-
lem, and considering the number of hyperparameter options in a neural network,
this problem can tend to be big. Unlike loss functions during training, the hyper-
parameters are not differentiable. There is no correct setting of hyperparameters,
and suitable ones are in general found by trial and error. The hyperparameters are
essentially the settings that can be adjusted in the neural network prior to training.

To select suitable hyperparameters with Keras tuner, a search space is first defined.
In this search space, we select which hyperparameters to tune, as well as the
ranges of which the hyperparameters can have. The search space is essentially
the ranges of values we, the user thinks are suitable and relevant for modelling.
This allows us, the user to insert domain knowledge, preventing tuning of most
of the bad models. For instance, the number of convolutional layers can be set
from 1 to 5, and the number of kernels from 32 to 256. Each pair of settings
defines a model with a certain performance where the performance is measured
by a loss function, In this thesis, mean squared error(MSE) is extensively used.
After searching and building different CNN architectures, Keras tuner will have a
ranking of the different models by their MSE, showing the best performing models
after tuning. The hyperparameters of the tuned models are then returned expli-
citly to the user, allowing for further development of optimal models. Application
of Keras tuner and validation of the different models is shown later in Chapter 3.

2.7.1 Tuning algorithms for hyperparameter search

From Keras, we decide to use two different tuning algorithms which dictate how
the hyperparameters are chosen, called Random search and Hyperband search.
Each tuning algorithm chooses the hyperparameters in a certain way, which can be
beneficial depending on the application. While random-search is a typical brute-

Chapter 2: Background and Related Work 33

force approach to tuning, Hyperband optimization is classified as a more adaptive
method, attempting to converge to the best models as fast as possible. Such adapt-
ive methods have been optimized and developed to make the tuning experience
more effective in terms of time.

Random search

Random search is a brute force approach to hyperparameter tuning where the
parameters are chosen randomly for each iteration. First, a number of trials is
defined, which is the number of models random search returns, each with differ-
ent hyperparameters. A higher number of trials means more models are tested
and evaluated. Then based on the defined search space, random search selects
random values for each hyperparameter. For each iteration, this creates a unique
model architecture each time, but the performance can vary a lot since there is no
adaptive part of the tuning that contributes to improved model performance for
each iteration. As shown in Figure 2.20 with two hyperparameters, one is labeled
as important and the other as unimportant. We then rely on tuning over sufficient
number of trials for convergence on the important hyperparameter.

Figure 2.20: Random search algorithm for finding two optimal hyperparameters
[33]

Although random search may be based on probability, using domain know-
ledge will increase the chance of finding good model hyperparameters. This in-
volves choosing a search space before training that is influenced by the knowledge
of the user which eliminates a big portion of bad-performing models.

Chapter 2: Background and Related Work 34

Hyperband tuner

Hyperband search is an attempt to develop more efficient optimization algorithms
for hyperparameter tuning. Compared to brute force approaches such as random
search and grid-search that can be time-consuming, the Hyperband tuner tries to
narrow down to the best models as fast as possible in an adaptive manner. The
Hyperband algorithm utilizes the successive halving algorithm to make the op-
timization adaptive. Successive halving revolves around allocating computational
resources optimally to efficiently find good model architectures. With resources,
we mean RAM and computational power required to train models, as well as the
time spent training the models. Below is a description of how successive halving
works in practice

1. Randomly sample a set of hyperparameters and train a set of models
2. Evaluate the performances of the trained models, ranked by i.e. MSE
3. Discard the bottom half of the worst-performing models
4. Repeat 2 until one model remains

The adaptive nature of Hyperband is able to sort out the good models from the
bad, thus preventing time waste on models that lead to nowhere. To prevent
spending too much time and resources on training bad models, early stopping,
a regularization technique is embedded into Hyperband. Early stopping makes
the training stop after a certain number of training epochs. With early stopping,
Hyperband is able to highlight the performances of the trained models based on
only a few epochs, hence more time and computational power is allocated to the
good models. To use Hyperband in practice, a library that saves the models then
reuses the good ones during training is required. Creating this functionality from
scratch may be time-consuming. Luckily Keras offers successive halving in their
Hyperband tuner.

Note that there is no guarantee that Hyperband finds the best models immedi-
ately, as the tuning algorithm is based on random search to sample the first mod-
els trained. It is therefore important to use domain knowledge to define a search
space that is most probable to cover good models. Another issue might be the
tradeoff between total resources versus the total number of models trained. We
do not want to train beyond the total amount of disk space or memory, leading to
limitations of how long and how many models we can train during one session.

2.8 Model validation and selection for evaluating and se-
lecting optimal models

How does one know that the model parameters for a given algorithm are the
most fitted for the application? For instance, how many hidden layers and neurons
should a neural network have? Model validation and model selection revolves
around creating different models with different hyperparameters and selecting

Chapter 2: Background and Related Work 35

the model that performs best. We then say that the model is a hypothesis in the
hypothesis space where a hypothesis is a "guess" on how the data is modelled.
The objective is to find the best combination of hyperparameters for the model
and the given application. Taken from [34], there are three main points tied to
model validation and selection

1. We want to estimate the generalization accuracy, the predictive performance
of a model on future (unseen) data.

2. We want to increase the predictive performance by tweaking the learning
algorithm and selecting the best-performing model from a given hypothesis
space.

3. We want to identify the machine learning algorithm that is best suited for
the problem at hand; thus, we want to compare different algorithms, select-
ing the best-performing one as well as the best-performing model from the
algorithm’s hypothesis space.

These three points involve using different techniques to create models in the hy-
pothesis space which we evaluate and select from. To create different models in
the hypothesis space, one changes the hyperparameters in the learning algorithm,
creating a hypothesis on how we think the data is modelled. By changing these
hyperparameters, different models or hypotheses with different performances are
constructed. The challenge is then to tune hyperparameters in a way that does
not overfit or underfit on the data set meaning the model is good at generalizing
to new data. After creating a set of competing models, model selection is done in
the end to pick a final optimal model. In this chapter, we will go through different
techniques for model validation and model selection.

2.8.1 Splitting with the Holdout method

A classic example of model validation is using the holdout method [34]. First,
the labeled data set is split into two parts where a general split is often 80% of
the data as training and 20% as the test set. The intuition here is to measure the
performance of how the model performs to new, unseen data. A set of hyperpara-
meters are selected, then the learning algorithm fits a model to the training set.
When a model is fitted/trained, it is ready to predict the test set, indicating the
performance of the model. This process is called model validation, as to validate
the performance of a set of models to find the best-performing ones.

It is though important to note that when validating a model, the training set is
not to be used to test on. Predicting the training set introduces optimistic bias as
we already know the "answers" since we already trained on it, resulting in severe
overfitting [34].

Chapter 2: Background and Related Work 36

2.8.2 Splitting with the 3-way Holdout method

A problem with the 2-way holdout model is that, when validating the model on the
test set, one has "used" up that test set for further tweaking and improvement of
the model. The user is then exposed to a phenomenon called data leakage, as we
are tuning the parameters of the model using information from the test set. Using
information from the test set is interpreted as "cheating", since we are looking at
the answer of the prediction when training the model. The concept of creating a
good model is to have a good metric score on new, unseen data. A solution to data
leakage is the 3-way holdout method, separating the data set into one training set,
one validation set, and one test set. This is illustrated in Figure 2.21.

Figure 2.21: Data set splitting with the 3-way Holdout method [35]

The 3-way holdout method takes away the information about the test set, thus
reducing data leakage. The test set is put away, and training and testing happen
on the training and validation set. The test set is used only once we have validated
several models and algorithms, and selected an optimal model. This way, one is
able to tune hyperparameters and validate different models without looking at
the test set.

2.8.3 Model selection

From the numbered list introduced in Section 2.8, model selection revolves around
the 3rd point.

• We want to identify the machine learning algorithm that is best suited for
the problem at hand; thus, we want to compare different algorithms, select-
ing the best-performing one as well as the best-performing model from the
algorithm’s hypothesis space. [34]

After training and validating with the 3-way holdout method, we are left with a
set of competing models with different performances. The models referred to are
the ones tuned from hyperparameter tuning with Keras tuner. These models have
different numbers of kernels, numbers of convolutional layers, etc, and the most
optimal one for our application is picked based on MSE.

Chapter 3

Methodology

In this chapter, we go over the process of data analysis, data pre-processing, data
set splitting, and hyperparameter tuning of CNN architectures. Lastly, we will se-
lect optimal models to predict the holdout test set.

First, an introduction of the data set is done to get an overview of what type
of data and materials we are dealing with. Then pre-processing of the data set
is done to prepare the data for modelling with CNN, involving interpolation, re-
moval of artifacts, data augmentation, and normalization of data. From data aug-
mentation with overlap, there was introduced a problem with data leakage which
lead to overfitting. We will therefore emphasize the importance of splitting the
data properly to decrease overfitting. Further, this chapter involves searching for
optimal CNN architectures through hyperparameter tuning with Keras-tuner. The
hyperparameters regarded are for instance the number of convolutional layers,
the number of kernels in each layer, the learning rate, and so on. Lastly, the op-
timal CNN architectures will be validated on different data set splits. The strategy
and flow of processes are presented in Figure 3.1

37

Chapter 3: Methodology 38

Figure 3.1: Workflow of the various steps of the methodology

3.1 Data set and materials

The data set used in this thesis consists of 2D CT scan data from 142 meter section
of a well drilled by Equinor. The goal is to propose a CNN regression architecture
that uses the image data to predict resistivity with confidence. The data set has
already been labelled using a logging tool during drilling, mapping the resistivity
continuously over the 142 meters. This is therefore known as a supervised learn-
ing problem, where the labels and features are known and then used for learning
with machine learning. The goal is then to train and tune a CNN model that learns
from the data, then predicts the holdout test set that was unseen by the training
process. The prediction results on the holdout test set can essentially be seen as
performance on future, unseen data. Thus, we want to tune on the training and
validation sets, then when ready, predict the test set.

Chapter 3: Methodology 39

To each image, a resistivity value has been assigned by interpolation of the log
values. Figure 3.2 shows a plot of resistivity over the 142 meter depth interval.
Here, the resistivity is only plotted, where for each resistivity point, a 2D CT-scan
image is assigned. From the plot, we can observe that there are uneven jumps in
resistivity values over time. This is caused by a lack of image data, together with
noisy data having to be removed after pre-processing. From an overview perspect-
ive, the resistivity values are mostly on the lower end of the range of resistivity,
but there are signs of spread in the middle and higher-end as well.

Figure 3.2: Resistivity vs depth over the whole data set

Chapter 3: Methodology 40

3.1.1 Three data set distributions for model validation

Later in this chapter, there are mainly three splits of the data set distributions that
are regarded during model validation. With these three different splits, the goal is
to investigate if the model performances are dependent on different distributions
of resistivity and image data. For instance, a training set with many high resistivity
values may perform poorly on a validation set with many low resistivity values.
This is a part of the model validation process, where different model architectures
are tuned and validated, and then, in the end, a final test set is predicted. The
three splits considered are one random sampled, one manually split of continuous
intervals, and one random sampled before data generation with overlap. Note that
only training and validation sets are sampled differently, as the test set is similar
in all distributions. More detail on this matter is presented in Section 3.3.

3.1.2 Testing different sizes of images: 30cm and 60cm

Additional to investigating different data set splits, different sizes of the input
images are tested out. The two image sizes we consider are 30cm and 60cm.
The purpose of trying out different data set sizes is to investigate see if the size
of the input images affects the CNN model’s capability to extract information to
perform regression. Additionally, with increased image sizes, came a decrease in
data set size, thus we also observe the effect of having a small and a bigger data
set. With 30cm images, a data set size of 10339 is acquired, while with 60cm
images, the data set size ends up at 2467. Figures 3.3a and 3.3b show the two
sizes of images. For simplicity, in the following sections, we will refer to the 60cm
size when showing augmentation and presenting data set distributions.

Chapter 3: Methodology 41

(a) Sample image of size
30cm

(b) Sample image of size
60cm

Figure 3.3: Two sample images showing the different sizes of inputs.

3.2 Pre-processing and preparation of data

Before using the data for modelling with CNN, it had to be pre-processed to re-
move disturbances in the data and augmented to increase robustness and data
set size. In the original data, missing intervals and artifacts were present, acting
as noise if not removed. These two instances were detected and removed using
a script from another projects [4][9]. A consequence of the removal of artefacts
and missing intervals was a loss of raw data, leaving us with a reduction in data
set size. As an attempt to deal with the small data set size, data augmentation
by overlapping 98% with a sliding window was done. This increased the data
set size from 142 1m images to 2467 60cm images or 10339 30cm images, de-

Chapter 3: Methodology 42

pendent on which image size was used. Further, as an attempt to increase model
robustness, vertical and horizontal flip of the images was done. As the last step
of pre-processing, the image data was normalized with Max-Min normalization,
bringing the input to numbers between 0 and 1. The pre-processed data could
then be used for training, validation, and testing CNN models. A flowchart of pre-
processing is presented in Figure 3.4.

Figure 3.4: Workflow of pre-processing for preparation of the data set

Chapter 3: Methodology 43

3.2.1 Interpolation to increase data set resolution

At first, a pair of resistivity values and their respective depths where the rocks
were located, were stored in a 932×2 matrix. This data covered depth interval of
142 meters where each 1 by 2 slice of data presented one depth and one resistiv-
ity value (resistivity, depth). To create image data out of this data set, a higher
resolution version of the data set was desired. Interpolation was therefore used
as a tool to increase the resolution of the 932 data points. Interpolation was done
for the 932 data points in python, creating an estimation function f that maps a
given depth xdepth, to a new resistivity value yresistivity. The function interp2d from
the scipy library was used to construct f .

f (xdepth) = yresistivity (3.1)

Using a data set with new shifted x values of the original x with size 313.924,
interpolation with f , constructed new data points in-between the original ones.
This resulted in an interpolated data set with higher resolution of both depths
and resistivity values, from 932 to 313.924 data points. Note that the new data
is not new in the sense of gathering new data, but a higher resolution data set is
needed to construct images of 166×76px(30cm) or 332×76px(60cm). The new
data of size 313.924 instead represents a more detailed version of the original
data, used to construct the images. To demonstrate interpolation on our data set,
a small interval of the data set is visualized. Figure 3.5 shows interpolation applied
before and after.

Figure 3.5: Data before and after interpolation

Chapter 3: Methodology 44

3.2.2 Removal of artefacts, missing intervals, and high-density areas

Three instances of noise were discovered in the data set that were regarded as
disturbances for modelling if not removed. These were missing data intervals,
core barrel couplings, and high-density areas. The missing data was most likely
caused by poor core recovery, induced fractures, or rush plugs taken after retrieval
of the core [4]. Another instance of unwanted data was bright areas caused by
core plugs and mud invasion. These were previously presented and described in
Figure 2.7. To remove these instances, code from projects [4] and [9] was used.
The code detected the ranges of all three instances and flagged them for removal.
The new cleaned data set consisted of 64.000 data points. This new data set was
then used to create 166× 76px and 332× 76px images with data augmentation
with overlap.

3.2.3 Dividing the data into 30cm and 60cm images

As presented in Figure 2.4, each column of gray-scale data consisted of 1 meter
from the well. The frequency of artefacts and missing intervals in the data could
vary, thus some intervals had more noise removed than others. From these inter-
vals cleaned of noise, images could be produced, and as mentioned in Section
3.1.2, it was decided to try out both 30cm and 60cm images, previously visual-
ized in figures 3.3a and 3.3b. This was to investigate if the image sizes affected
the model performance. The 30cm images had height 166px and 60cm images
had height 332px. Both sizes had width 76px.

3.2.4 Data augmentation

After the removal of artefacts, data augmentation was performed on the data set
to act as a regularizer. Regularization methods are used to prevent overfitting,
strengthening the model’s generalizability to new, unseen images. As introduced
in Section 2.3.3, data augmentation methods revolve around modifying the cur-
rent data to create unique, resampled data. The motivation of using data aug-
mentation in this thesis is therefore explained in the two following points

• Data generation with overlap: Increase data set size for sufficient data to
train on. It is important to let the model train on sufficient data for each
training iteration.
• Horizontal and vertical flip: Contributes to increased robustness in the

model, as the model is exposed to "noisy" data that is augmented. The idea
is to present unique images to the model to change the variation of images,
increasing generalizability to new, unseen data.

Data generation with overlap

As a measure to compensate for the small data set size, data generation with
overlap was done with code from [4] and [9]. The 64.000 data points were divided

Chapter 3: Methodology 45

into 1-meter intervals, then transformed into images. Using the 60cm size as a
base for this example, each image consisted of a height of 332×76px. For each 1-
meter interval, a new image was created, inheriting 98% of the information from
the previous image. This was done by using a window that was slid down 8 pixels
for each image generated. This meant that for each 60cm image, 40 additional
images were generated with overlap. Because some 1-meter intervals contained
more removed artefacts than others, this multiplier decreased. In total, the overlap
method increased the size of the data from 142 1-meter intervals to 2467 60cm
images.

Figure 3.6: Data augmentation of 10 images using overlap

The idea of generating data this way is to have more data for training. Instead
of having 142 1-meter images for training, an increase of 17.3 times was acquired
or 60cm height images, and an increase of 72.8 times for the 30cm height images.
Since there is some variation of 2% from last to the next image, the idea is to
have CNN think that these are new images. It is although important to note that
these generated images are actually not new images, but synthetic ones that have
inherited 98% of the image characteristics from the previous one. Figure 3.6 shows
10 images that were generated with the use of overlap.

Horizontal and vertical flip

Additional to generating data with overlap, data augmentation with flipping im-
ages was performed. This method was an attempt to increase the robustness by
letting the model see modified versions of the original image. Two augmentation
techniques were used, one where augmentation was done before training, and
one where the images were augmented during training.

Augmenting before training: The motivation for augmenting before training was
to increase the data set size further. By using four different augmentations, it was
acquired an increase of 4-fold. This was done in python with NumPy library, us-
ing functions flipud and fliplr for flipping "up-down", and "left-right". The flipping
was done first for the original image, both horizontally and vertically. Then the

Chapter 3: Methodology 46

horizontally and vertically flipped images were flipped once more. This way, we
obtained all the combinations possible shown in Figure 3.7

On-the-fly augmentation: The other method augments the images in real-time,
so no data preparation had to be done in advance. The data set size did though not
increase directly in size but rather lets the model see a unique, altered image of
the original image. This method requires less memory usage and offers a conveni-
ent class configuration. Instead of storing the augmented images in an array or a
folder, the images are loaded in batches, which saves memory. This method uses
the Keras library with the ImageDataGenerator API. This API lets the user config-
ure the desired augmentations such as zoom, flips, rotation, and more. Figure 3.8
as well as Appendix A.3 shows the class configuration for ImageDataGenerator.
For our images, horizontal and vertical flip were the only augmentations used.

Chapter 3: Methodology 47

(a) No augmentation (b) Horizontal flip

(c) Vertical flip
(d) Both horizontal and
vertical flip

Figure 3.7: Data augmentation by flipping showing all four flips

Chapter 3: Methodology 48

Figure 3.8: Arguments of ImageDataGeneration for data augmentation of images.
For our application, horizontal_flip and vertical_flip are used [36].

3.2.5 Normalization of data input

As a last step of the pre-processing, normalization was performed on the data.
The reason for performing normalization as mentioned in Section 2.3.4, was to
decrease the computational load in the neural network as mentioned previously
in Section 2.3.4. Normalization involved mapping the image input to numbers
between 0 and 1 so that high-valued inputs were avoided. An image consists of a
grid of values between 0 and 255 to represent colors. We then proceeded to divide
the image data on 255 to bring the image data input to a common scale. This was
done by simple division in python.

Chapter 3: Methodology 49

3.3 Splitting of data set for various data set distributions

Before tuning CNN architectures with the 3-way holdout method, splitting the
data set into training, validation, and test sets were done. As introduced in Section
2.8, the training and validation sets are used during hyperparameter tuning before
choosing an optimal model. The test sets are held outside this process since we
want an unbiased data set that we have not seen to evaluate the final performance
of our chosen models. This section will go over the process of splitting where we
propose three different splits. Figure 3.9 shows the flow of processes for splitting
the three distributions.

Figure 3.9: Workflow of splitting process into three different distributions

3.3.1 The issue with data augmentation with overlap

In this project, the process of splitting data was especially important. Since the
data was augmented using 98% overlap over images, this introduced the risk
of data leakage when using random sampling. Usually, when splitting, random
sampling of validation and test sets is often used. This means that the validation
and test sets are randomly picked from the whole data set distribution. The ad-
vantage of random sampling is that the picking of data is unbiased to the learning

Chapter 3: Methodology 50

method since it is not handpicked by the programmer. Additionally, using ran-
dom sampling often ensures that the validation and test sets represent a wide
range of different data values. Although when using random sampling on our
overlap-generated data, the issue with data leakage occurred. As introduced in
Section 2.4.4, data leakage is the event of having information outside the train-
ing set when modelling. We essentially experienced having validation samples in
the training set because of random sampling while having data generated with
overlap. This is known as inserting bias into the training since we are essentially
training on the samples that we are supposed to predict. As an attempt to visualize
this issue, Figure 3.10 is presented.

Figure 3.10: Consequence of data augmentation with overlap visualization

To show the consequences of the overlap-generated data set, we show a data
set split with random sampling and data leakage, then we propose two additional
data set splits to show our solution of handling the problem. These splits are used
further in this thesis during training of CNN models, and model validation. The
idea is to investigate different performances based on their respective data set
distributions. Note that all the test sets are similar, just to ensure that we measure
the same test data for the final evaluation. These test sets are held outside so that
we prevent having data leakage from the model validation phase.

3.3.2 Random sampling of training and validation sets after data
generation with overlap

The overlap issue was observed when splitting the data set with random sampling,
after data generation with overlap. Usually, this a common technique for splitting

Chapter 3: Methodology 51

in machine learning applications, where the validation and test sets consist of
about 10% each of the total data set size. By random sampling the validation set,
there is no bias towards handpicking the "right" data for later prediction and valid-
ation. Another advantage with random sampling is that the variation of resistivity
values usually covers a wide range, resulting in good, representative distributions
for model validation. Figure 3.11 shows a simple example of random sampling.

Figure 3.11: Simple example of random sampling [37].

For our problem, random sampling became an issue because of data augmenta-
tion of overlap. Since the overlapped images contained up to 98% similarity of
some images, this caused the validation set to contain many images that were al-
most identical to images in the training set. This is known as an instance of data
leakage where the performance on the validation set might be good, but not the
test set. Note that the test set was manually sampled to not contain leaked data.
Figure 3.12 shows the training and validation set retrieved by random sampling
and the continuous sample of the test set. Further, distributions of the three data
set splits are shown in figures 3.13, 3.14 and 3.15.

This overlap issue was detected progressively as the project was worked on, and
we therefore committed to using two additional splits, covered in the next sub-
sections as our attempted solutions.

Chapter 3: Methodology 52

Figure 3.12: Plot of sampling intervals of resistivity distribution 1 for training,
validation and test sets

Figure 3.13: Resistivity distribution 1, training data

Chapter 3: Methodology 53

Figure 3.14: Resistivity distribution 1, validation data

Figure 3.15: Resistivity distribution 1, test data

3.3.3 Manual sampling of training and validation sets after data gen-
eration with overlap

A solution to prevent data leakage of the validation set when splitting was to
sample continuous intervals of both validation and test sets. The challenge would
then be to select continuous validation intervals that contained a good spread of
resistivity values. Sampling this way was risky, as there was a risk of missing out
on important resistivity values or sampling too many outliers. An outlier is a data
point that holds a very uncommon value compared to the rest of the data set. Of-
ten they can disturb the prediction process since the trained model is not used to
see such data. It is therefore desired to have validation sets that are representative
of the training set.

Chapter 3: Methodology 54

A plot of the three sampling intervals is shown in Figure 3.16. As mentioned,
it was important for both test and validation sets to contain a good spread of
resistivity data points. This is visualized further in figures 3.17, 3.18, 3.19 to em-
phasize our point. With this method, overlap still had to be dealt with. This was
done by deleting images in front and behind each sampling interval to prevent
data leakage. Two intervals for test and validation sets were sampled, resulting in
the loss of 168 images.

Figure 3.16: Plot of sampling intervals of resistivity distribution 2 for training,
validation and test sets

Chapter 3: Methodology 55

Figure 3.17: Resistivity distribution 2, training data

Figure 3.18: Resistivity distribution 2, validation data

Chapter 3: Methodology 56

Figure 3.19: Resistivity distribution 2, test data

3.3.4 Random sampling of training and validation sets before data
generation with overlap

The other proposed solution to prevent data leakage was to sample the data before
data augmentation with overlap. This method involved random sampling the 1m
intervals into training validation and test sets, before augmenting with overlap
to increase the data set sizes. By random sampling before overlap, the 40 next
images would not contain parts of any other image in the data set, unlike the first
data distribution. Figures 3.21, 3.22 and 3.23 shows the distribution of resistivity
samples over all three data sets. As presented, the training and validation sets are
randomly sampled, while the test set is continuously sampled.

Chapter 3: Methodology 57

Figure 3.20: Plot of sampling intervals of resistivity distribution 3 for training,
validation and test sets

Figure 3.21: Resistivity distribution 3, training data

Chapter 3: Methodology 58

Figure 3.22: Resistivity distribution 3, validation data

Figure 3.23: Resistivity distribution 3, test data

3.3.5 Prediction and further validation

These three pairs of data set splits are the ones that are going to be used to tune
different models further in this chapter. By analyzing different distributions and
variants of splittings, the idea is to discover characteristics of splits and regulariz-
ation methods that work and do not work. When optimal models for each distri-
bution are tuned, testing on the holdout test set is performed for final evaluations.
The results of the test set will be presented in chapter 4.

Chapter 3: Methodology 59

3.4 Training and Hyperparameter tuning of CNN Archi-
tectures

In this section, we propose a strategy for training and tuning various CNN archi-
tectures. From the bullet-point list from Section 2.8, this section revolves around
the second point.

• We want to increase the predictive performance by tweaking the learning
algorithm and selecting the best-performing model from a given hypothesis
space.

To search for optimal models, we use the Keras library which allows us to auto-
mate the searching process. A pre-defined search space over hyperparameters will
be presented, as well as how we evaluate the models.

In neural network modelling, there are two types of parameters that affect the
model performance: hyperparameters that the user sets, and parameters during
training. The hyperparameters are adjusted before training, generating different
hypothesises of how we think the data is modelled. On the other hand, we have the
inner model parameters that are adjusted during training, involving the weights
and biases [38]. Both the hyperparameters and the trainable parameters affect
the bias and variance in the model. Thus we have to keep in mind the model
complexity to avoid overfitting. For hyperparameters, this involves assigning suit-
able values such as the number of convolutional layers, the number of kernels,
the number of neurons in the hidden layer, and so on. During training, we have to
think about things as how long the model should train with number of epochs and
the batch size. These are things that affect the model complexity, thus affecting
the bias and variance in the model. The goal is to tune the model complexity so
that it is able to predict resistivity, and not just remember the training data, avoid-
ing overfitting. On the other hand, we want sufficient computational complexity
in the model so that it is able to learn, avoiding underfitting. Figure 3.24 shows
the hyperparameter tuning process.

Chapter 3: Methodology 60

Figure 3.24: Workflow of tuning hyperparameters for finding optimal CNN ar-
chitectures

3.4.1 Training phase and trainable model parameters

During the training phase, the inner model parameters are adjusted during train-
ing. As the model trains on more data, it gets more familiar with data patterns and
characteristics and adjusts these parameters using backpropagation. The paramet-
ers are divided into two: kernels from the convolutional component, and weights
and biases from the fully-connected layer [4]. The kernels are essentially learning
different patterns such as edges and shapes. The weights and biases are tied to

Chapter 3: Methodology 61

the classic ANN part of the CNN, performing the actual regression.

Inner parameter optimization using loss functions and backpropagation

During the training phase, the CNN is fed with training data and its weights and
biases are set randomly to define a starting point. The model begins to predict
the training data, where these predictions ŷ are evaluated to the ground truth
labels y . This produces a prediction error y- ŷ . The neural network then uses
gradient methods together with a loss function to calculate the right "direction"
to adjust the weights. A classic gradient method is gradient descent, where the
gradient of the loss function is iteratively calculated backwards in the network
after each forward pass of data. This is called backpropagation and is essentially
where the learning of the trainable parameters happens. Since we are dealing
with a regression problem, MSE, a popular loss function is used. MSE is given by

MSE =
1
n

n
∑

i=1

(yi − ŷi)
2 (3.2)

where y is the ground truth, ŷ is our prediction, and n is the number of predic-
tion samples. MSE calculates the difference between the prediction of the training
data, versus the actual value of the data. As the model trains for longer, the CNN
gets better at predicting the training data. This involves that the convolutional ker-
nels improve at detecting patterns, and the weights in the fully-connected layer
are adjusted properly, producing better resistivity predictions.

Epochs and batch sizes

The pass of the data forward to acquire the prediction loss, then backwards with
backpropagation to adjust the weights is called an iteration, introduced in Section
2.5.3. During this process, the weights get adjusted, and generally, hundreds or
thousands of such iterations are required for convergence. When the whole train-
ing data set has been passed forwards, then backwards, it is called an epoch. The
number of epochs required to train depends on the model and the data set. When
calculating the gradient, there are different methods for deciding how many train-
ing samples are used. In this project, mini-batch gradient descent is used, meaning
the gradient is calculated based on a number of data points, called the batch size.
Usually, the batch size depends on the size of the training data set, so we use 32
if the training data is not augmented, while 128 if the data is augmented.

3.4.2 Hyperparameter tuning with Keras tuner

The hyperparameters are the second type of parameters that the users sets before
training CNN architectures. Each different setting produces a new hypothesis in
the hypothesis space. A hypothesis is a guess on how we, the user think the data
is modelled. The hyperparameters are essentially the parameters that define a
model’s behaviour. In our case, this relates among hyperparameters such as

Chapter 3: Methodology 62

• Number of kernels in convolutional layers
• Number of convolutional layers
• Kernel sizes
• Number of neurons in the fully-connected layer
• Dropout rate
• Learning rate

Selecting the proper CNN architecture is not a trivial problem, and is often solved
by trial and error. Compared to loss functions that can be differentiated and solved
using gradient descent or other numerical methods, model hyperparameters do
not have that characteristic. There is no simple and easy way to select the proper
hyperparameters, but rather testing out different hyperparameter settings. This
can be done manually, but in this thesis, Keras-tuner is used to automate hyper-
parameter tuning.

With Keras, we define the general structure of the network, then in each part
of the network, we define what ranges of hyperparameter values the different
components can have. Keras tuner essentially allows us to define a search space
of hyperparameters that are iterated over, creating and testing out different CNN
models. The models are ranked based on MSE on the validation data, so we can
separate bad architectures from good ones.

Before tuning, a hypermodel has to be defined, which is the search space we have
referred to. The architecture of the CNN consists of three main layers: the convo-
lutional layer where feature extraction of feature maps are produced, the pooling
layer where feature maps extracted are summarized and stacked, then lastly the
fully-connected layer where regression of resistivity happens.

Input layer

To begin with, we define the input layer of which the image data is received to
the model shown in Figure 3.25

Figure 3.25: Input layer of hypermodel

Chapter 3: Methodology 63

This input layer consists of a convolutional layer defined by Conv2D and a
max-pooling layer MaxPooling2D. To iterate over numerical values, we define a
hypermodel parameter as hp.Int, where in the example, kernels are set to. The
minimum number of kernels the convolutional layer can have is set to 32, and
the maximum to 256 kernels. For each iteration of different models, we want to
search with a step size of 32. This means that for each new model, the number of
kernels is randomly selected between 32 and 256 with a magnitude of 32. We also
search over the kernel size, which is defined with the hyperparameter hp.Choice.
This means that from all the possible choices defined, one of them is selected. Here
we search over kernel sizes 3× 3 and 5× 5. We use the activation function ReLU
and do not search over other functions. Since it is the input layer, we include the
input shape of the image. In this case, the input size is 60cm images, consisting
of an image of 332× 76 pixels. The max-pooling layer has a fixed kernel size of
2× 2.

Looping the number of convolutional layers

Further, we define a for loop which loops over the code inside of it to a defined
number of times, shown in Figure 3.26. Inside the for loop, we define a pair of
convolutional and max-pooling layers. The reason is to search over a different
number of layers in the CNN architecture. Here, the iterator i is set to be a nu-
merical hypermodel parameter since we want to search over CNN architectures
with different numbers of layers. One model might have 3 convolutional layers,
and another 5. Here we add the same code as in Figure 3.25, without having to
define the input shape.

Figure 3.26: Looping convolutional and max-pooling layers of hypermodel

Fully-connected layer

The last part of the CNN is the fully-connected layer where the regression happens.
These layers consist of one flattening layer, one hidden layer, and one regression
layer. After the for loop of extracting features with the for loop of convolutional

Chapter 3: Methodology 64

Figure 3.27: Fully connected layer of hypermodel

layers, the feature maps are flattened with Flatten() to a 1D vector as input to
the fully-connected layer. Here, the hidden and regression layer is added as the
Dense() layers. The neurons number of neurons in the hidden layer is defined as a
hypermodel parameter hp.Int, where the minimum and maximum values for the
number of neurons are set to 32 and 256 respectively. Activation is set to ReLU. In
this layer, Dropout() is added as a regularizer, with a dropout probability between
0 and 0.2 and step size 0.05. Finally, the regression layer is a dense layer with
one neuron. The activation is a linear activation function since we are performing
regression.

Optimizer and loss function

As a finishing touch, we compile the model. We then have to select an optimizer
and a loss function. Here, we have used Adam, a popular optimizer with a learn-
ing rate between 0.0001 and 0.01. The loss function is set to be MSE since we
want to measure the distance between our prediction and the ground truth.

Adam stands for adaptive moment estimation and is based on stochastic optimiz-
ation. Unlike the classic gradient descent, Adam stores a history of the past gradi-
ents. These gradients averaged by a decaying exponential. This property of Adam
leads to its adaptive characteristic when updating the gradient direction, and is
one of the most popular optimizers today.

How the network decides to adjust the weights depends on the optimizer and the
learning rate. The learning rate is the size of the step of which we move towards
the minima in the loss function. With bigger steps, the loss function is converged
faster but might miss the actual minima. With a smaller learning rate, the conver-
gence is slower but might have a higher probability of finding the local or global
minima.

Chapter 3: Methodology 65

Hypermodel summary and sample models

To visualize the whole hypermodel, Figure 3.28 and Table 3.1 are presented. Ad-
ditional code for hyperparameter tuning with Keras is attached in Appendix A.2.

Hyperparameter Min value Max value Step size
Number of kernels in each convolutional layer 32 256 32
Kernel sizes in each convolutional layer (3,3) (5,5) 2
Number of convolutional layers 1 5 1
Number of nodes in the fully connected layer 32 256 32
Dropout rate 0 0.2 0.05
Learning rate 0.0001 0.01 0.001

Table 3.1: Hyperparameter search space for CNN using Keras

Chapter 3: Methodology 66

Figure 3.28: Hypermodel for CNN hyperparameter tuning

Chapter 3: Methodology 67

Note that these are the hyperparameters that we, the user think are a suitable
guess on what type of architecture that will give a good performance for predic-
tion. There therefore exist other search spaces that weigh the hyperparameters
differently and produce other types of architectures. The following image shows
the code of the defined hyperparameter search space. Additionally, the ranges of
the hyperparameters were also limited to how much GPU power was available.

With this search space, the tuning algorithm selects a combination of values inside
the defined hyperparameter ranges. The idea is to test out enough hyperparameter
settings until we find optimal ones. In this thesis, mainly two tuning algorithms
are used: brute force with random search and adaptive tuning with the Hyperband
tuner. Below are four sample models found with random search to demonstrate
results from Keras tuner. As shown in Table 3.2, the found hyperparameters are
explicitly presented to the user, together with the score(MSE), indicating which
models performed the best. In this example case, 20 models were tuned, and Keras
tuner found these four models to perform the best.

Hyperparameter Model 1 Model 2 Model 3 Model 4
Number of kernels in each convolutional layer 256 160 256 128
Kernel sizes in each convolutional layer (3,3) (3,3) (3,3) (5,5)
Number of convolutional layers 5 3 2 2
Number of nodes in the fully connected layer 256 160 160 96
Dropout rate 0.1 0.05 0.25 0.45
Learning rate 0.005 0.003 0.008 0.008
MSE 0.4275 0.4463 0.4530 0.4670

Table 3.2: Four sample models from tuning

3.4.3 General model architecture description

Since we are dealing with three different data set splits, we want to search for one
optimal model of each split. We then present a generalized figure for hyperpara-
meter tuning. The following figure attempts to visualize the search space of CNN
architectures.

Chapter 3: Methodology 68

Figure 3.29: General CNN architecture description, inspired by [4]

The first convolutional layer takes the raw input, where the convolutional
layer has an N number of kernels. N is a number between 32 and 256 that the
tuner decides. The kernel sizes are set to either be (3x3) or (5x5) as we want
to test out both kernel sizes. Going above these two selected would increase the
loss of information so we limit the tuner to only try these two. The kernels are
convolved and activated with the images, where we use the activation function
ReLU. Each convolutional layer produces feature maps that are stacked depend-
ent on the number of kernels. After each convolutional layer, the feature maps are
max-pooled with kernels of (2x2), decreasing the image resolution by a factor of
2. This results in decrease of computational complexity by reducing the number
of trainable model parameters. This process with convolutional and max-pooling
layers continues depending on the number of such pairs. The number of pairs are
searched over by the tuner, where we have set the number of convolutional and
max-pooling pairs to be between 1 and 6. In the image, it is only shown 2 pairs
for simplicity. With an increased number of convolutional and max-pooling lay-
ers, the model will be able to extract more abstract features from the images. This
is something to keep in mind when tuning, as it affects the bias and variance of
the model. We therefore want to keep an eye on these hyperparameters to avoid
overfitting.

From the last max-pooling layer, the feature maps are flattened to be fed into
the fully-connected layers. These layers are known as the classic ANN structure
of the CNN. In this layer, we have one hidden layer with N numbers of nodes in
the layer. The number of nodes is searched over by the tuner, choosing a number
between 32 and 256. These are also set to be activated with the ReLU function.
In the hidden layer, dropout is also used to drop out nodes as a regularization
measurement. This makes it so that for each epoch, the hidden layer drops out
nodes with a probability of p, the dropout rate. This lets more nodes of the hidden

Chapter 3: Methodology 69

layer contribute towards prediction, rather than having most of the computational
load on a few neurons. Lastly, we have the last layer of the fully-connected layers,
where the regression happens. Since we are dealing with a regression problem,
this layer contains one node with a linear activation function, producing the pre-
diction output. The details of the search space were previously presented in Table
3.1. Code for creating a general CNN model is also added in Appendix A.1.

3.4.4 Tuning algorithms

Random search

Random search is known as a brute-force tuning algorithm. With enough trials,
the chance of finding a decent model will be high with the cost of time. For big
model architectures where tuning is computationally costly, random search might
not be the best alternative as other tuning algorithms converge to "good" models
faster. Starting out with tuning in this thesis, Random search was frequently used
to tune and test out simple CNN architectures. The main motivation with this take
was to confirm if the code worked. Below are the arguments the tuning algorithm
needed.

Figure 3.30: Random search configuration for hyperparameter tuning

For Random search, a number of trials had to be set for how many models
were to be tuned. A number of epochs, i.e. how long the model would be trained
for also had to be set. Objective was set to "validation mean squared error" to
rank the models based on validation loss. Seed was set to make the tuning re-
instantiate for each compilation, preventing the same models to appear. Below is
a figure of the random search parameters used

Tuning with Hyperband

The Hyperband tuner bases its optimization on the successive halving algorithm
which tries to allocate the resources optimally to find model architectures. By
experience through this project, Hyperband was an efficient tuning algorithm.
Instead of tuning for a big number of epochs, it tuned up to 3 epochs before
starting on a new iteration, saving the score of the last one. It kept iterating over

Chapter 3: Methodology 70

again, discarding the bad ones before continuing training on 7 epochs this time.
This halving process kept on until the max_epochs epoch was met. The arguments
for Hyperband tuner are shown in 3.31. max_epochs is set as the ceiling of where
the tuner stops tuning. The parameter factor decides how many of the total models
are reduced for each iteration, as well as how big the increase of resources for the
remaining models.

Figure 3.31: Hyperband tuner configuration for hyperparameter tuning

3.5 Model validation and selection of Convolutional Neural
Network architectures

Now that a search space has been defined, we want to evaluate use this tuning
strategy to find the three optimal models. This involves applying regularization
techniques such as data augmentation, dropout, early stopping to find architec-
tures for all three splits. These models will be evaluated based on their MSE score,
until three optimal model architectures, one for each split, has been found. From
the bullet-point list of model validation and selection, this involves the third point,
as mentioned in Section 2.8.3

• We want to identify the machine learning algorithm that is best suited for
the problem at hand; thus, we want to compare different algorithms, select-
ing the best-performing one as well as the best-performing model from the
algorithm’s hypothesis space.

Tuning was done in the previous section, consisting of using the 3-way holdout
method together with Keras-tuner. This allowed us to validate various CNN ar-
chitectures without looking at the test set. From the tuned models, Keras ranked
each model with an MSE score, and from the list of tuned models, we selected the
best fitting ones from each data distribution. Additional to MSE, R-squared will be
used to evaluate the correlation between our predicted resistivity, and the actual
validation resistivity labels, where an R-squared of 1 indicates perfect correlation.

In this section, we will present the performances of the three optimal models on

Chapter 3: Methodology 71

the validation set. Since we have three types of data sets, together with augmented
data(horizontal and vertical flip), and different sizes of data(30cm and 60cm im-
ages), we will present validation results of the combination of all the settings: two
image sizes, as well as the different augmentation techniques: no augmentation,
augmentation before training and augmentation during training. In the end, one
combination of image size and augmentation method used will be picked based
on validation MSE and R-squared to test the holdout test set. The test results will
be presented in the next chapter.

Figure 3.32: Flowchart for model validation

Chapter 3: Methodology 72

3.5.1 Model validation of random sampled split after data augment-
ation with overlap

As the randomly sampled validation set after data generation with overlap, we
refer to the training and validation data distributions previously presented in Sec-
tion 3.3.2 respectively. Tables of MSE vs. validation MSE will be shown to evaluate
the performances. Additionally, both augmented and non-augmented validation
will be done as well as validation on both 30cm and 60cm images.

Tuning with Keras tuner, the optimal model for this data set split was found with
Hyperband search. Figure 3.33 visualizes the CNN, while Table 3.3 shows the de-
tails of the model. The optimal model contains five pairs of convolutional and
max-pooling layers for feature extraction. The feature maps are downsampled for
each layer pair, allowing the CNN to extract detailed information from the input
images. After feature extraction, the feature maps are flattened and fed into the
fully connected layer. Here, an ANN with one hidden layer containing 224 nodes
computes the flattened data before the final regression layer with one node pre-
dicts resistivity.

Figure 3.33: Visualization of CNN architecture for random sampling after overlap

Chapter 3: Methodology 73

Component Layer type Kernels/Nodes Kernel size Activation function

Convolutional component
(Feature extractor)

Conv2D 160 (3x3) ReLU
MaxPool2D 160 (2x2) -

Conv2D 128 (3x3) ReLU
MaxPool2D 128 (2x2) -

Conv2D 128 (3x3) ReLU
MaxPool2D 128 (2x2) -

Conv2D 128 (3x3) ReLU
MaxPool2D 128 (2x2) -

Conv2D 128 (3x3) ReLU
MaxPool2D 128 (2x2) -

Fully connected layer
(Regressor)

Flatten - - -
Dense 224 - ReLU
Dense 1 - Linear

Table 3.3: Details of CNN architecture of optimal model 1

This model was validated on the two proposed sizes: 30cm images and 60cm
images. For each of the image sizes, validation was further done for no augment-
ation, augmentation before training the neural network, and after. Validation of
all of the combinations proposed is presented in Table 3.4.

Size of images Augmentation Training MSE Validation MSE R-squared

30cm
No augmentation 0.0044 0.0056 0.9864
Augmentation before training 0.0010 0.0451 0.8662
Augmentation during training 0.0050 0.0067 0.9645

60cm
No augmentation 0.0021 0.0075 0.9687
Augmentation before training 0.0038 0.0048 0.9868
Augmentation during training 0.0076 0.0056 0.9487

Table 3.4: Model validation results for random sampled split after overlap

3.5.2 Model validation of continuous split after data augmentation
with overlap

The model found for this data set distribution was tuned on the manually sampled
data presented previously in Section 3.3.3. This data set split was our first pro-
posed solution to the data leakage problem with overlapped data. The same pro-
cedure with model validation is done for all combinations of image sizes and aug-
mentation methods presented in Table 3.6. Visualization of the optimal model
found for this distribution is presented in Figure 3.34, and the details in Table 3.5

Chapter 3: Methodology 74

Figure 3.34: Visualization of CNN architecture for manual sampling after overlap

Component Layer type Kernels/Nodes Kernel size Activation function

Convolutional component
(Feature extractor)

Conv2D 128 (3x3) ReLU
MaxPool2D 128 (2x2) -

Conv2D 224 (3x3) ReLU
MaxPool2D 224 (2x2) -

Conv2D 224 (3x3) ReLU
MaxPool2D 224 (2x2) -

Conv2D 224 (3x3) ReLU
MaxPool2D 224 (2x2) -

Conv2D 224 (3x3) ReLU
MaxPool2D 224 (2x2) -

Conv2D 224 (3x3) ReLU
MaxPool2D 224 (2x2) -

Fully connected layer
(Regressor)

Flatten - - -
Dense 192 - ReLU
Dense 1 - Linear

Table 3.5: Details of CNN architecture of optimal model 2

Chapter 3: Methodology 75

Size of images Augmentation Training MSE Validation MSE R-squared

30cm
No augmentation 0.0036 0.3732 0.0532
Augmentation before training 0.0021 0.4290 0.0885
Augmentation during training 0.0114 0.4107 0.0421

60cm
No augmentation 0.0082 0.3725 0.0132
Augmentation betbfore training 0.0044 0.2994 0.2507
Augmentation during training 0.0092 0.4844 0.2831

Table 3.6: Model validation results for manually sampled split after overlap

3.5.3 Model validation of random sampled split before data aug-
mentation with overlap

The last optimal model found by Keras was tuned on our second proposed solu-
tion. The data was randomly sampled before overlap, allowing us to random
sample as well as avoiding data leakage, presented previously in Section 3.3.4.
The same procedure as the last two optimal models were done, where model val-
idation results for this optimal model are presented in Table 3.8. Visualization of
the model and its details are presented in Figure 3.35 and Table 3.7.

Figure 3.35: Visualization of CNN architecture for random sampling before over-
lap

Chapter 3: Methodology 76

Component Layer type Kernels/Nodes Kernel size Activation function

Convolutional component
(Feature extractor)

Conv2D 192 (3x3) ReLU
MaxPool2D 192 (2x2) -

Conv2D 192 (3x3) ReLU
MaxPool2D 192 (2x2) -

Conv2D 192 (3x3) ReLU
MaxPool2D 192 (2x2) -

Conv2D 192 (3x3) ReLU
MaxPool2D 192 (2x2) -

Fully-connected layer
(Regressor)

Flatten - - -
Dense 224 - ReLU
Dense 1 - Linear

Table 3.7: Details of CNN architecture of optimal model 3

Size of images Augmentation Training MSE Validation MSE R-squared

30cm
No augmentation 0.1549 0.4007 0.5069
Augmentation before training 0.0083 0.3041 0.4841
Augmentation during training 0.1418 0.3759 0.4762

60cm
No augmentation 0.1518 0.1935 0.5354
Augmentation before training 0.0097 0.2909 0.4510
Augmentation during training 0.1401 0.2462 0.3960

Table 3.8: Model validation results for random sampled split before overlap

3.5.4 Predicting the holdout test set

We have now validated three optimal models on the different variants of data sets,
involving image sizes 30cm and 60cm, and also augmentation with and without.
This has allowed us to observe how different data set distributions, image sizes,
and data augmentation affect the performances measured with MSE. Further, we
want to pick the best-performing instance from each of the three optimal models
and predict the holdout test set. This will be presented in the next section.

Chapter 4

Results

In this section, the holdout test set is predicted with the three proposed CNN ar-
chitectures found by model validation. One optimal model was constructed from
the three different data set distributions: random sampled after overlap, manually
sampled, and randomly sampled before overlap. The test set is considered as un-
seen data to our models, where validation of optimal models has been performed
on training and validation sets. In this chapter, we will present the holdout test
set, and predict it with the three optimal models. Cross-plots of predicted test set
vs actual test set predictions will be shown to visualize the three models’ perform-
ances. In these cross-plots, an optimal regression line and a regression line derived
from our predictions will be presented for comparison measurements. The orange
regression line represents the R-squared of our predictions. Prediction plots will
also be shown to observe if the models are able to successful in modelling a tra-
jectory similar to the test set. The models trained for each distribution are based
on the model validation done in Section 3.5, where we choose the combination
of augmentation and image size based on the validation MSE.

4.1 Prediction on the holdout test set for the three op-
timal models

4.1.1 Description of holdout test set

The holdout test set is continuously sampled, allowing us to cover the same depth
interval, and the same resistivity values for all three data set distributions. A plot
of the test set’s resistivity values over the corresponding depths is plotted in Figure
4.1 over 13 meters. The depth in the plot will be numbered as the respective depth
interval inside the 142 meter interval because of confidentiality. From the plot, we
observe that there are clusters of data points over the trajectory of the test set. The
density of data points in these linear clusters are caused by data generation with
overlap. There are also gaps between the clusters which are caused by removal of
data from pre-processing. With each optimal model found and their combination
of data augmentation and image size, the holdout test set is predicted.

77

Chapter 4: Results 78

Figure 4.1: Visualization of test set: resistivity vs. depth

4.1.2 Optimal model 1: Tuned from the randomly split data set after
overlap

The validation results of this distribution showed very good results both of train-
ing MSE and validation MSE from Table 3.4. The R-squared value showed almost
perfect correlation between validation predictions and the actual validation labels.
This was although expected since the random sampling was done after overlap,
leading to data leakage of training samples in the validation set. In this subsection
we will predict the holdout test set to observe the performance on unseen data.

From Table 3.4 from model validation and selection, it was observed that the
combination of 60cm image size and augmentation before training resulted in
the best validation results. The optimal model architecture from Figure 3.33 was
then trained on with 60cm images and augmentation before training as regulariz-
ation. This meant that the training data set consisted of 8000 images with image
height of 60cm. To visualize the test performances, we present a prediction plot

Chapter 4: Results 79

presented in Figure 4.2 and a cross plot in Figure 4.3. The red dotted regression
line is the optimal, desired line of predictions we want, whereas the orange dotted
regression line represents the R-squared of our predictions.

Image size Augmentation Test MSE Test R-squared

60cm Before training 0.4022 -0.2377

Table 4.1: Test prediction MSE and R-squared from optimal model 1

Figure 4.2: Prediction plot: test predictions vs. actual test resistivity from optimal
model 1

Chapter 4: Results 80

Figure 4.3: Crossplot of test predictions vs actual test resistivity from optimal
model 1. The red dotted line and orange dotted line represent the optimal pre-
diction trajectory versus our prediction trajectory.

4.1.3 Optimal model 2: Tuned from the continuously split data set

The same procedure as the first optimal model was done for the model found
from the manually split data distribution. Figure 3.34 shows the optimal model
we refer to. This was our first attempt to avoid data leakage by manually sampling
the validation set. The test set for this split is though approximately the same as
the test set from the previous subsection. Table 3.6 shows the MSE and R-squared
from predicting the test set. Further, figures 4.4 and 4.5 show the prediction plot
as well as a cross plot.

Image size Augmentation Test MSE Test R-squared

60cm Before training 0.3047 0.061

Table 4.2: Test prediction MSE and R-squared from optimal model 2

Chapter 4: Results 81

Figure 4.4: Prediction plot: test predictions vs. actual test resistivity from optimal
model 2

Chapter 4: Results 82

Figure 4.5: Crossplot of test predictions vs actual test resistivity from optimal
model 2. The red dotted line and orange dotted line represent the optimal pre-
diction trajectory versus our prediction trajectory.

4.1.4 Optimal model 3: Tuned from the randomly split data set be-
fore overlap

The last optimal model was tuned from the randomly split data set before overlap.
This was our second solution as an attempt to deal with data leakage since we
were able to random sample without having to deal with the overlap issue. The
optimal model regarded for this split was previously shown in Figure 3.35 and
Table 4.3 shows the test MSE and test R-squared for this model. Again, a plot of
test predictions vs actual resistivity labels is shown in Figure 4.6 and the cross plot
in Figure 4.7.

Image size Augmentation Test MSE Test R-squared

60cm No augmentation 0.1754 0.5117

Table 4.3: Test prediction MSE and R-squared from optimal model 3

Chapter 4: Results 83

Figure 4.6: Prediction plot: test predictions vs. actual test resistivity from optimal
model 3

Chapter 4: Results 84

Figure 4.7: Crossplot of test predictions vs actual test resistivity for optimal model
3. The red dotted line and orange dotted line represent the optimal prediction
trajectory versus our prediction trajectory.

Chapter 5

Discussion

We have now presented a strategy of predicting resistivity using 2D core CT-scan
images of well formations, involving pre-processing, hyperparameter tuning, and
model validation and selection. The data set quality and data set size have been
two central factors, contributing to difficulties during modelling. Removal of dis-
turbances in the data has been done, as well as regularization in form of augment-
ation as an attempt to both increase the data set sizes and prevent overfitting on
the training data. With Keras, numerous CNN architectures have been searched
over to find models that are fitting to model the lithofacies image data. In this sec-
tion we want to discuss the test performances of three optimal models from each
data distribution in light of pre-processing, hyperparameter tuning, and model
validation. Various limitations of the three processes will continuously be high-
lighted and discussed.

5.1 Model performances on the holdout test set

Optimal models from three data distributions have been tested on the mutual
holdout test set, and performances have been presented in Tables 4.1, 4.2 and
4.3. Different sizes of input images (30cm and 60cm), as well as augmentation
with and without flipping have been utilized to train the models. The same Tables
previously mentioned also show the chosen combinations of image sizes and aug-
mentation method used to train the final model. As observed from cross plots in
figures 4.3, 4.5 and 4.7, there is no clear correlation between our predicted res-
istivity versus the actual resistivity labels. One would desire to get an affine map
throughout the plot, indicating that there is high correlation between both the
actual test resistivity and our test prediction. From all three cross plots, the pre-
dictions are though very choppy, since we can observe linear clusters and gaps of
the predictions. The cause of this might be because the test set in itself has gaps
and is not very continuous by nature. More on the data set and pre-processing is
discussed further in this chapter.

The first optimal model, trained on data distribution 1 showed to have very good

85

Chapter 5: Discussion 86

performance during model validation from table 3.4. This outcome was expected
as we desired to show how data leakage affected our validation vs. test results. On
the other hand, the test results on this data set split showed to have a rather high
test MSE of 0.4022 and a test R-squared of -0.2377, showing weak correlation
between the model’s test predictions and the actual test resistivities. This is a big
sign of overfitting, as the validation and training results are overly optimistic. We
see the test predictions, which were held outside training and validation, are not
comparable to the validation results looking at the validation R-squared of 0.98
and test R-squared of -0.2377. Having that big of a difference in performance
between validation results and test results is a clear sign of overfitting, which we
have attempted to emphasize with the three data set splits.

The second optimal model, validated on the continuous validation set performed
better than the previous with lower test MSE and R-squared of 0.3047 and 0.061
respectively. However, the overall performance is still classified as bad, as both
the prediction and cross plot show big spread in resistivity and struggles to find a
similar trend to the original test resistivity curve presented in Figure 4.5.

The third optimal model was validated on the randomly sampled validation set
before data generation with overlap. From both the cross- and prediction plots
of the test set in Figures 4.6 and 4.7, we see large improvement in predictions.
The MSE and R-squared from this model are also showing improvement, with a
test MSE of 0.1754 and over 0.51 in R-squared score. The predictions have im-
proved, and the spread is not as high as the two previous ones, which can be an
effect of the random sample before overlap. Unlike the two previous models, the
training data was not augmented which might have had an impact on the test
performance. From table 3.8 of model validation for the third optimal model, we
see that for both 30cm and 60cm image sizes, no augmentation had the highest
R-squared, although not the highest validation MSE. However comparing the val-
idation results to the two previous models, this third model performed the best
on all points except for training MSE. This could mean that the type of training
and validation distribution trained on might have had more impact on the test
performances rather than regularization and augmentation methods applied.

At this point, looking solely at the test results, the three performances are not
close to the kind of performance required for practical use in the industry. As also
commented in the conclusions section, very likely more work on the data in form
of analysis or data gathering, and probably more detailed modelling, should be
performed to arrive at high technology readiness levels. In the two following sec-
tions, we then discuss the results from the pre-processing and the hyperparameter
tuning steps.

Chapter 5: Discussion 87

5.2 Data set and pre-processing

Pre-processing has been a central part of the thesis, both for constructing the im-
ages with code from BRU-21 and augmenting the images to increase the data set
size. Using data generation with 98% overlap, we were in theory able to increase
the data set size by a 40-fold. However, having this much synthetic data may have
limited the learning performance of our models as we have augmented the data to
the point where a big majority of the data was synthesized. Additionally, there are
several gaps in the resistivity channel because of the removal of missing intervals,
artefacts, and high density areas. A major solution to these two issues would be to
gather more field data so that the training data becomes cleaner (preventing the
need for augmentation), and also so that the missing gaps "fill". This is also the
cause of the jump in resistivity predictions from the cross plots previously shown
in figures 4.3, 4.5 and 4.7. Having enough data is usually a requirement for proper
modelling, something we do not experience in this thesis, having to use regular-
ization to fix the data set issue.

Another reason why CNN might have difficulties modelling the image data could
be the lack of distinct patterns in some images. Looking back at Figure 3.3b show-
ing the 60cm image, there are some cracks and the color might be distinct, but
there are no corners, edges, or patterns that stand out. The 30cm image in Figure
3.3a might although have more distinct features that are more meaningful to the
CNN, making it easier to recognize other images with the same features. This leads
to another point about the difficulties of using CNN for regression. CNN has lately
shown to be very effective with object detection, for instance with self-driven cars:
detecting humans, traffic light, and so on. In such image frames, there might be
more distinct features involving humans, bikes, etc, making CNN more compat-
ible with classification. Such distinct features are something we might lack in our
application, leading to difficulties performing regression of resistivity.

Additionally, two images from totally different depths can have the same resistiv-
ity, but the CT-scan images may visually be different from each other in sense
of color and cracks, etc. This may be caused by two different-looking rock types
having the same resistivity, or the lack of image quality during retrieval of the
rock samples. This then requires more detailed feature engineering, analyzing the
visual features of the images.

5.3 Hyperparameter tuning and regularization

Tuning with Keras allowed us to search over the hyperparameters and the value
ranges that we thought were suitable for modelling the image data. For instance,
the range of the number of kernels and number of convolutional layers was prob-
ably sufficient in terms of model complexity. The kernel size was varied between
sizes of 3 and 5 for the convolutional layers, but it seemed like the smaller kernel

Chapter 5: Discussion 88

size tended to perform better as it was chosen for all three optimal models. The
number of neurons was also varied between a rather big range from 32 to 256.
When defining the search space, bias and variance was taken into consideration,
resulting in not too complex and also not too simple models. Hyperband tuner
was used much more frequently than Random search for searching for CNN ar-
chitectures. We experienced that Hyperband was more reliable and consistent in
finding good models as random search was more probabilistic.

On the other side, other hyperparameters may have been tuned to create a more
dynamic search space. For instance, tuning with different activation functions
other than ReLU, although we focused in our thesis on ReLU, given its fame for
being a function that typically leads to good performance. The same applies to
the choice of the optimizer, that also could have been tuned instead of using only
Adam. We could also have used additional layers such as batch normalization to
add regularization. Unfortunately the constrained amount of time given to M.Sc.
thesis implied we had to make some choices, and a-posteriori maybe we could
have done differently (a-priori, though, the choices we made were in our opinion
sufficiently well-thought).

Regularization techniques such as early stopping, dropout and data augmentation
were used as attempts to avoid overfitting. However, it could be that adding more
regularization and other techniques might not have been sufficient enough for this
application. As mentioned in the previous section, there is an internal problem in-
volving the data set quality and continuity of data set samples. Working more
on gathering data would probably increase the performances greater than adding
more regularization methods and tweaking hyperparameters. It could also be that
modelling this application is not feasible enough to arrive at field deployments.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have analyzed and presented a strategy of applying the state-
of-the-art learning method CNN for predicting CT-scan image data for regression
of resistivity. In overview, the whole process involved tasks of data analysis, data
pre-processing, and hyperparameter tuning of CNN architectures. Three optimal
models were found from tuning, and finally, prediction on a holdout test set was
done to evaluate the performance on unseen data. All three models however per-
formed pretty poorly on predicting the test set, showing signs of incapability of
learning the underlying characteristics from the images. Revisiting our research
goal from the Section 1.2, i.e., "we want to investigate the possibilities of modelling
the image data to perform regression of resistivity", our results did not quite meet
the requirements of models that are sufficiently well-performing to be used in real
life operations. The next paragraphs discusses on why we think this happened, and
potential solutions to the issue.

Because of the small data set size, data augmentation has been a central part
of the thesis for expanding the size with data augmentation with overlap and
acting as a regularizer with flipping. The overlapped data was experienced to be
troublesome, as splitting by random sampling lead to data leakage. We proposed
three data set splits to first show an example of severe overfitting, then our two
following solutions as attempts to deal with the overlap issue. The two latter dis-
tributions were presented as our solution to the overlap issue, where the model
from random sampling before overlap performed best with an R-squared of 0.51.
From this, we learned that using too much synthetic data became troublesome.
Augmentation essentially cannot alone be used to the degree that the data set
becomes good in terms of data set size and quality. Augmentation acts as a regu-
larizer, and is limited on how much increase of performance it can provide. The
starting point regarding the data set size and quality is still a bottleneck for this
specific application where we have to process images that are very rich in features
and possible looks even if belonging to the same rock type.

89

Chapter 6: Conclusion and Future Work 90

With Keras, a pre-defined search space over relevant hyperparameters we desired
to tune was constructed. Using Hyperband search, we were able to effectively
find efficient models due to the searching algorithm’s adaptive nature. For model
validation, two image input sizes were considered: 30cm and 60cm, and aug-
mentation with and without flipping was also performed as regularization. It was
observed that the 60cm image input performed best, however, there were mixed
results with augmentation methods used. Using Hyperband we learned that we
saved a lot of time because it converges very fast, as each iteration in most cases
guarantees to return some good performing models. Compared to random search,
Hyperband returns better models and the adaptive nature of the algorithm proves
efficient (i.e., its additional computational requirements per step are effective in
reducing the number of steps required, thus leading overall to a smaller compu-
tational requirement). We believe that this algorithm works well on our specific
learning problem, likely because the hyperparameters range we defined is quite
broad (this corresponding to a small prior information derived from domain ex-
pertise) and thus random search has a large field to search, causing it to be much
less efficient than Hyperband.

In any case, by looking at a combination of validation results from Section 3.5
and of test results from Section 4.1, we conclude that the performances were more
dependent on the data distribution trained on, rather than on accurately tuning
the hyperparameters or applying specific regularization methods. Since the same
tuning strategy was used when finding all three optimal models, this fact high-
lights that the poor results problem lies in the data set size and quality, which
has contributed to difficulties in this modelling process. More work on gathering
data and a more detailed modelling process is probably needed before deploying
models in practice for this application.

Finally, we want to discuss the case of cross-validation on another well: after mod-
elling the CT-scan image data for regression of resistivity, we desired to test the
performance on a different, but similar well. Unfortunately, our modelling did not
produce good enough results, thus cross-well validation on another well was not
performed. Discussing with geologists, this may be because the formations at two
different wells may be quite different, i.e., the same rock types in two different
wells may present very different features (e.g., veins, strata, etc.). It is expected
that cross-testing wells should perform better when these wells are geographically
close, i.e. selecting a well close to the original one. It would therefore be interest-
ing to see if our model would be able to adapt to unseen, but similar data from
another well. Interestingly, different companies may want to pool their images so
to enable better learning; however images from the own wells are considered very
important proprietary information, and such information sharing mechanisms are
unlikely to be implemented in the foreseen future.

Chapter 6: Conclusion and Future Work 91

6.2 Future work

To improve modelling performance, we propose a list of tasks that we think are
worth investigating further for improvement of regression of resistivity.

Gathering more data: Gathering more data might be the most influential pro-
cess, considering the state of our application. With enough data, the need for
data generation with overlap should not be needed to the same degree, or
not needed at all. This should allow us to observe a more realistic perform-
ance since the degree of synthetic data will decrease. The gaps of resistivity
shown earlier in the data set should also be lesser, reducing the clusters of
data. Gathering enough data should also open up for other powerful model
validation techniques such as K-fold cross-validation, which we did not at-
tempt because of the difficulties revolving around overlapped data. Note
though that we do not know at the moment how much more data would
be necessary to collect to achieve this. Very likely it is more about collecting
enough diverse images corresponding to the same rock types, increasing the
degree of seeing enough features that a rock type may present.

Pre-processing: A big part of the project was using pre-processing to remove
disturbances from the data and turning the raw data into images. This has
resulted in loss of data and inconsistencies in the continuity of resistivity
labels. There are probably other pre-processing methods that can enhance
our data so that the learning capabilities of CNN increases.

Tune more hyperparameters: In this thesis, there was a big focus on the number
of convolutional and max-pooling pairs, as well as the number of neurons in
the fully-connected layer. We focused on tuning these parameters because
we thought they had the most influence on feature extraction and mod-
elling of the image data. Testing out other hyperparameters such as other
optimizers, different activation functions, and layer-types may contribute to
better performance.

Testing other data augmentation methods: The augmentation method used dir-
ectly on the images in this thesis was mainly flipping the images both ver-
tically and horizontally. We also obtained some augmentation through max-
pooling due to downsampling, thus blurring the feature maps. The reason-
ing of only using vertical and horizontal flip was due to our assumption that
for instance rotating a well would interfere with the underlying character-
istic of a well. Although, other image augmentation techniques probably
could be used, such as zooming, rotating, or other creative methods.

Bibliography

[1] Y. Wu, B. Lu, W. Zhang, Y. Jiang, B. Wang and Z. Huang, ‘A new logging-
while-drilling method for resistivity measurement in oil-based mud,’ Sensors,
vol. 20, no. 4, p. 1075, Feb. 2020. DOI: 10.3390/s20041075. [Online].
Available: https://doi.org/10.3390/s20041075.

[2] Z. Bassiouni, ‘Well logging,’ in Geophysics and Geosequestration, T. L. Davis,
M. Landrø and M. Wilson, Eds. Cambridge University Press, 2019, pp. 181–
194. DOI: 10.1017/9781316480724.012.

[3] Nmr Radial Saturation Profiling For Delineating Oil-Water Contact In A High-
Resistivity Low-Contrast Formation Drilled With Oil-Based Mud, vol. All Days,
SPWLA Annual Logging Symposium, SPWLA-2008-Y, May 2008. eprint:
https://onepetro.org/SPWLAALS/proceedings- pdf/SPWLA08/All-
SPWLA08/SPWLA-2008-Y/1799356/spwla-2008-y.pdf.

[4] K. Chawshin, C. F. Berg, D. Varagnolo and O. Lopez, ‘Lithology classification
of whole core ct scans using convolutional neural networks,’ SN Applied
Sciences, vol. 3, no. 6, pp. 1–21, 2021.

[5] N. Aldahoul and Z. Zaw, ‘Benchmarking different deep regression models
for predicting image rotation angle and robot’s end effector’s position,’ Oct.
2019, pp. 1–6. DOI: 10.1109/ICOM47790.2019.8952047.

[6] S. Tang, S. Yuan and Y. Zhu, ‘Data preprocessing techniques in convolu-
tional neural network based on fault diagnosis towards rotating machinery,’
IEEE Access, vol. 8, pp. 149 487–149 496, 2020. DOI: 10.1109/access.
2020.3012182. [Online]. Available: https://doi.org/10.1109/access.
2020.3012182.

[7] K. Chawshin, A. Gonzalez, C. F. Berg, D. Varagnolo, Z. Heidari and O. Lopez,
‘Classifying lithofacies from textural features in whole core ct-scan images,’
SPE Reservoir Evaluation & Engineering, vol. 24, no. 02, pp. 341–357, 2021.

[8] R. Wicklin. (2020). ‘Linear interpolation in sas,’ [Online]. Available: http:
//proc-x.com/2020/05/linear-interpolation-in-sas-2/. (accessed:
28.04.2021).

92

https://doi.org/10.3390/s20041075
https://doi.org/10.3390/s20041075
https://doi.org/10.1017/9781316480724.012
https://onepetro.org/SPWLAALS/proceedings-pdf/SPWLA08/All-SPWLA08/SPWLA-2008-Y/1799356/spwla-2008-y.pdf
https://onepetro.org/SPWLAALS/proceedings-pdf/SPWLA08/All-SPWLA08/SPWLA-2008-Y/1799356/spwla-2008-y.pdf
https://doi.org/10.1109/ICOM47790.2019.8952047
https://doi.org/10.1109/access.2020.3012182
https://doi.org/10.1109/access.2020.3012182
https://doi.org/10.1109/access.2020.3012182
https://doi.org/10.1109/access.2020.3012182
http://proc-x.com/2020/05/linear-interpolation-in-sas-2/
http://proc-x.com/2020/05/linear-interpolation-in-sas-2/

Bibliography 93

[9] A. Gonzalez, L. Kanyan, Z. Heidari, O. Lopez et al., ‘Integrated multi-physics
workflow for automatic rock classification and formation evaluation using
multi-scale image analysis and conventional well logs,’ in SPWLA 60th An-
nual Logging Symposium, Society of Petrophysicists and Well-Log Analysts,
2019.

[10] L. Taylor and G. Nitschke, ‘Improving deep learning with generic data aug-
mentation,’ in 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), IEEE, Nov. 2018. DOI: 10.1109/ssci.2018.8628742. [Online].
Available: https://doi.org/10.1109/ssci.2018.8628742.

[11] N. Tomar. (2020). ‘Data augmentation for semantic segmentation — deep
learning — idiot developer,’ [Online]. Available: https://nikhilroxtomar.
medium.com/data-augmentation-for-semantic-segmentation-deep-
learning-idiot-developer-e2b58ef5232f. (accessed: 22.04.2021).

[12] JoJun-Mo, ‘Effectiveness of normalization pre-processing of big data to the
machine learning performance,’ vol. 14, no. 3, pp. 547–552, Jun. 2019.

[13] C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Re-
trieval. Cambridge University Press, 2008. DOI: 10.1017/CBO9780511809071.

[14] T. P. S. University. (2020). ‘Lesson 3: Describing data, part 2,’ [Online].
Available: https://online.stat.psu.edu/stat200/book/export/html/
61. (accessed: 03.05.2021).

[15] B. Ghojogh and M. Crowley, ‘The theory behind overfitting, cross valida-
tion, regularization, bagging, and boosting: Tutorial,’ arXiv preprint arXiv:1905.12787,
2019.

[16] J. Brownlee. (2019). ‘Gentle introduction to the bias-variance trade-off in
machine learning,’ [Online]. Available: https://machinelearningmastery.
com/gentle-introduction-to-the-bias-variance-trade-off-in-
machine-learning/. (accessed: 10.12.2020).

[17] S. Fortmann-Roe, ‘Understanding the bias-variance tradeoff.,’ 2012. [On-
line]. Available: http://scott.fortmann-roe.com/docs/BiasVariance.
html.

[18] J. Jordan. (2017). ‘Evaluating a machine learning model.,’ [Online]. Avail-
able: https://www.jeremyjordan.me/evaluating-a-machine-learning-
model/. (accessed: 30.10.2020).

[19] S. Seema. (2018). ‘Understanding the bias-variance tradeoff,’ [Online].
Available: https://towardsdatascience.com/understanding-the-bias-
variance-tradeoff-165e6942b229. (accessed: 05.11.2020).

[20] A. Navlani. (2019). ‘Neural network models in r,’ [Online]. Available: https:
//www.datacamp.com/community/tutorials/neural-network-models-
r. (accessed: 18.11.2020).

https://doi.org/10.1109/ssci.2018.8628742
https://doi.org/10.1109/ssci.2018.8628742
https://nikhilroxtomar.medium.com/data-augmentation-for-semantic-segmentation-deep-learning-idiot-developer-e2b58ef5232f
https://nikhilroxtomar.medium.com/data-augmentation-for-semantic-segmentation-deep-learning-idiot-developer-e2b58ef5232f
https://nikhilroxtomar.medium.com/data-augmentation-for-semantic-segmentation-deep-learning-idiot-developer-e2b58ef5232f
https://doi.org/10.1017/CBO9780511809071
https://online.stat.psu.edu/stat200/book/export/html/61
https://online.stat.psu.edu/stat200/book/export/html/61
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://www.datacamp.com/community/tutorials/neural-network-models-r
https://www.datacamp.com/community/tutorials/neural-network-models-r
https://www.datacamp.com/community/tutorials/neural-network-models-r

Bibliography 94

[21] E. Alpaydin, Introduction to Machine Learning, third edition, ser. Adaptive
Computation and Machine Learning series. MIT Press, 2014, ISBN: 9780262325752.
[Online]. Available: https://books.google.no/books?id=7f5bBAAAQBAJ.

[22] A. T. Henriksen, ‘Domain adaptation for maritime instance segmentation:
From synthetic data to the real-world.,’ 2019. DOI: http://hdl.handle.
net/11250/2631161.

[23] P. Singh. (2020). ‘Neural network from scratch,’ [Online]. Available: https:
//medium.com/analytics- vidhya/neural- network- from- scratch-
ed75e5e14cd. (accessed: 19.11.2020).

[24] B. Müller, J. Reinhardt and M. T. Strickland, Neural networks: an introduc-
tion. Springer Science & Business Media, 2012.

[25] A. Suman. (2020). ‘Activation function,’ [Online]. Available: https://
medium.com/analytics-vidhya/activation-function-c762b22fd4da.
(accessed: 06.05.2021).

[26] S. Albawi, T. A. Mohammed and S. Al-Zawi, ‘Understanding of a convo-
lutional neural network,’ in 2017 International Conference on Engineering
and Technology (ICET), 2017, pp. 1–6. DOI: 10.1109/ICEngTechnol.2017.
8308186.

[27] F. La Rosa, ‘A deep learning approach to bone segmentation in ct scans,’
2017.

[28] K. O’Shea and R. Nash, ‘An introduction to convolutional neural networks,’
ArXiv e-prints, Nov. 2015.

[29] D. Cornelisse. (2018). ‘An intuitive guide to convolutional neural networks,’
[Online]. Available: https://www.freecodecamp.org/news/an-intuitive-
guide-to-convolutional-neural-networks-260c2de0a050/. (accessed:
12.04.2021).

[30] A. Dertat. (2017). ‘Applied deep learning - part 4: Convolutional neural net-
works,’ [Online]. Available: https://towardsdatascience.com/applied-
deep-learning-part-4-convolutional-neural-networks-584bc134c1e2.
(accessed: 17.04.2021).

[31] R. Hassan and A. Mohsin Abdulazeez, ‘Deep learning convolutional neural
network for face recognition: A review,’ Jan. 2021. DOI: 10.5281/zenodo.
4471013.

[32] ‘Auto-keras: An efficient neural architecture search system,’ 2020. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/3292500.3330648.

[33] D. Baskan. (2020). ‘An introduction to bayesian hyperparameter optim-
isation for discrete and categorical features,’ [Online]. Available: https://
medium.com/analytics-vidhya/bayesian-hyperparameter-optimisation-
for- discrete- and- categorical- features- a26454f77ab2. (accessed:
20.04.2021).

https://books.google.no/books?id=7f5bBAAAQBAJ
https://doi.org/http://hdl.handle.net/11250/2631161
https://doi.org/http://hdl.handle.net/11250/2631161
https://medium.com/analytics-vidhya/neural-network-from-scratch-ed75e5e14cd
https://medium.com/analytics-vidhya/neural-network-from-scratch-ed75e5e14cd
https://medium.com/analytics-vidhya/neural-network-from-scratch-ed75e5e14cd
https://medium.com/analytics-vidhya/activation-function-c762b22fd4da
https://medium.com/analytics-vidhya/activation-function-c762b22fd4da
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://doi.org/10.5281/zenodo.4471013
https://doi.org/10.5281/zenodo.4471013
https://dl.acm.org/doi/pdf/10.1145/3292500.3330648
https://medium.com/analytics-vidhya/bayesian-hyperparameter-optimisation-for-discrete-and-categorical-features-a26454f77ab2
https://medium.com/analytics-vidhya/bayesian-hyperparameter-optimisation-for-discrete-and-categorical-features-a26454f77ab2
https://medium.com/analytics-vidhya/bayesian-hyperparameter-optimisation-for-discrete-and-categorical-features-a26454f77ab2

Bibliography 95

[34] R. Sebastian, ‘Model Evaluation, Model Selection, and Algorithm Selection
in Machine Learning,’ 2018. DOI: https://arxiv.org/abs/1811.12808.

[35] Y. Dfertin. (2019). ‘Create a multi-label classification ai: Train our ai [part
2],’ [Online]. Available: https://towardsdatascience.com/create-a-
multi-label-classification-ai-train-our-ai-part-2-85064466d55a.
(accessed: 10.11.2020).

[36] F. Chollet et al., Keras, https://keras.io/api/preprocessing/image/,
2015.

[37] S. Thatte. (2019). ‘Importance of sampling in the era of big data,’ [On-
line]. Available: https://towardsdatascience.com/importance- of-
sampling-in-the-era-of-big-data-d2cf83e06c6a. (accessed: 14.04.2021).

[38] L. Yang and A. Shami, ‘On hyperparameter optimization of machine learn-
ing algorithms: Theory and practice,’ Neurocomputing, vol. 415, pp. 295–
316, Nov. 2020. DOI: 10.1016/j.neucom.2020.07.061. [Online]. Avail-
able: https://doi.org/10.1016/j.neucom.2020.07.061.

https://doi.org/https://arxiv.org/abs/1811.12808
https://towardsdatascience.com/create-a-multi-label-classification-ai-train-our-ai-part-2-85064466d55a
https://towardsdatascience.com/create-a-multi-label-classification-ai-train-our-ai-part-2-85064466d55a
https://keras.io/api/preprocessing/image/
https://towardsdatascience.com/importance-of-sampling-in-the-era-of-big-data-d2cf83e06c6a
https://towardsdatascience.com/importance-of-sampling-in-the-era-of-big-data-d2cf83e06c6a
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061

Appendix A

Code Listings

A.1 General code for construction of CNN model and per-
forming predictions

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import optimizers

height = 332
width = 76

#Load training, validation and test sets
x_train = np.load(’x_train.npy’, allow_pickle=True)
y_train = np.load(’y_train.npy’)
x_val = np.load(’x_val.npy’, allow_pickle=True)
y_val = np.load(’y_val.npy’)
x_test = np.load(’x_test.npy’, allow_pickle=True)
y_test = np.load(’y_test.npy’)

#Extract image from x_train(depth, image)
x_train_depth = []
x_train_imdata = []
for i in range(0, len(x_train)):

x_train_depth.append(x_train[i][0])
x_train_imdata.append(x_train[i][1])

x_train_depth = np.array(x_train_depth)
x_train_imdata = np.array(x_train_imdata)

x_val_depth = []
x_val_imdata = []
for i in range(0, len(x_val)):

x_val_depth.append(x_val[i][0])
x_val_imdata.append(x_val[i][1])

x_val_depth = np.array(x_val_depth)
x_val_imdata = np.array(x_val_imdata)

96

Chapter A: Code Listings 97

x_test_depth = []
x_test_imdata = []
for i in range(0, len(x_test)):

x_test_depth.append(x_test[i][0])
x_test_imdata.append(x_test[i][1])

x_test_depth = np.array(x_test_depth)
x_test_imdata = np.array(x_test_imdata)

#Assign training data to images, reshape input and rescale
x_train = x_train_imdata
x_val = x_val_imdata
x_test = x_test_imdata
#reshape input
x_train = x_train.reshape(-1, height, width, 1)
x_val = x_val.reshape(-1, height, width, 1)
x_test = x_test.reshape(-1, height, width, 1)

x_val = x_val/255
x_train = x_train/255
x_test = x_test/255

#Define CNN model, here a random model has been used. General template for
#constructing model from known hyperparameters
def CNN_model():
Regressor = Sequential()
Regressor.add(Conv2D(192, kernel_size=(3, 3), activation = ’relu’,

padding=’same’, input_shape=(height,width, 1)))
Regressor.add(MaxPooling2D(pool_size=(2, 2),padding=’same’))
for i in range(1,4):
Regressor.add(Conv2D(224, kernel_size=(3, 3), activation = ’relu’, padding=’same’))
Regressor.add(MaxPooling2D(pool_size=(2, 2),padding=’same’))

Regressor.add(Flatten())
Regressor.add(Dense(96, activation=’relu’))
Regressor.add(Dropout(0.05))
Regressor.add(Dense(1, activation=’linear’))
Adam= optimizers.Adam(lr=0.0013)
Regressor.compile(loss = ’mean_squared_error’, optimizer=Adam, metrics=[’mean_squared_error’])
return Regressor

#Initiate CNN model and show details of model
CNN_model = CNN_model()
CNN_model.summary()

#Fit CNN_model to the training data as well as validating on the validation data
history = CNN_model.fit(x_train, y_train, batch_size=32, epochs=40,

validation_data=(x_val, y_val), shuffle=True, verbose=1)

A.2 Keras module for hyperparameter tuning

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import Adam
from kerastuner.tuners import Hyperband

#Size of input image

Chapter A: Code Listings 98

height = 332 #166
width = 76

#Define search space(hypermodel)
def build_model(hp):

model = Sequential()

Input convolutional layer
model.add(Conv2D(filters=hp.Int(’conv␣input␣layer’,

min_value=32,
max_value=256,
step=32),
kernel_size=hp.Choice(’kernel_size’, (3, 3), (5, 5)),
padding=’same’,
activation=’relu’,
input_shape=(height, width, 1)))

Maxpooling layer
model.add(MaxPooling2D(pool_size=(2, 2), padding=’same’))

Searching over 1 to 5 conv layers
for i in range(hp.Int(’conv_layers’, 1, 5)):

model.add(Conv2D(
hp.Int(’number␣of␣conv␣layers’,

min_value=32,
max_value=256,
step=32),

kernel_size=hp.Choice(’kernel_size_2’, (3, 3), (5, 5)),
activation=’relu’,
padding=’same’))

model.add(MaxPooling2D(pool_size=(2, 2), padding=’same’))

Flattening of feature maps
model.add(Flatten())

Fully-connected layer
model.add(Dense(units=hp.Int(

’dense_units’,
min_value=32,
max_value=256,
step=32),
activation=’relu’))

Dropout in fully-connected layer
model.add(Dropout(rate=hp.Float(’dropout_3’,

min_value=0.0,
max_value=0.2,
step=0.05)))

Regression layer
model.add(Dense(1, activation=’linear’))
model.compile(optimizer=Adam(hp.Float(’learning_rate’,

min_value=1e-4,
max_value=1e-2,
sampling=’LOG’,
default=1e-3)),

loss=’mean_squared_error’,
metrics=[’mean_squared_error’])

return model

#Define hyperband search parameters

Chapter A: Code Listings 99

tuner=Hyperband(
build_model,
objective=’val_mean_squared_error’,
seed=137,
factor=3,
max_epochs=20,
directory=’tuner_9’,
hyperband_iterations=1
)

#Search over defined search space(hypermodel)
tuner.search(x_train, y_train, batch_size = 32, validation_data=(x_val,y_val),

shuffle=True, verbose=1)

#Print 10 best models found
tuner.results_summary()

#Retrieve the best model from tuning
best_hps = tuner.get_best_hyperparameters(num_trials = 1)[0]

#Print details of CNN architecture(layer types, number of kernels in each layer, details of fully-connected-layer etc.)
model_best_hps.summary()

#Tune the optimal model found over an increased number of epochs
history = model_best_hps.fit(x_train, y_train, batch_size=32, epochs=50,

validation_data=(x_val, y_val), shuffle=True, verbose=1)

A.3 Augmentation on-the-fly

from keras.preprocessing.image import ImageDataGenerator

#Initiate ImageDataGenerator for augmentation with flipping
datagen = ImageDataGenerator(

horizontal_flip=True,
vertical_flip=True,
fill_mode = ’constant’
)

#Augments training data respective to the settings in ImageDataGenerator
augment = datagen.flow(x_train, y_train, batch_size=32)

#Fit the CNN_model to the augmented data
history = CNN_model.fit_generator(augment, steps_per_epoch=len(x_train)/32,

epochs=50, validation_data=(x_val, y_val), shuffle=True, verbose=1)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Richard Che Bui

Richard Che Bui

Resistivity Estimation Using
Convolutional Neural Networks

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Carl Fredrik Berg and Kurdistan Chawshin

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Research goals
	Thesis outline

	Background and Related Work
	Well logs and Resistivity
	Resistivity log
	CT-scan imaging and CNN

	Related work
	Classification of rock type classes using CNN
	Regression of angle for handwritten numbers with CNN
	Data pre-processing techniques for fault diagnosis with CNN

	Data set pre-processing for preparation of data
	Interpolation to increase data set resolution
	Artifacts and missing intervals acting as noise
	Data augmentation for regularization
	Normalization of data input

	Supervised learning
	Regression
	Bias variance tradeoff
	How the bias-variance tradeoff affects modelling in practice
	Overfitting
	Regularization to combat overfitting

	Artificial Neural Networks
	Hidden layers and neurons
	Activation functions
	Training neural networks
	Artificial neural networks and its limitations with image processing

	Convolutional Neural Networks
	Convolutional layers for feature extraction
	Pooling layer
	Fully-connected-layer: The regressor

	Hyperparameter tuning with Keras tuner
	Tuning algorithms for hyperparameter search

	Model validation and selection for evaluating and selecting optimal models
	Splitting with the Holdout method
	Splitting with the 3-way Holdout method
	Model selection

	Methodology
	Data set and materials
	Three data set distributions for model validation
	Testing different sizes of images: 30cm and 60cm

	Pre-processing and preparation of data
	Interpolation to increase data set resolution
	Removal of artefacts, missing intervals, and high-density areas
	Dividing the data into 30cm and 60cm images
	Data augmentation
	Normalization of data input

	Splitting of data set for various data set distributions
	The issue with data augmentation with overlap
	Random sampling of training and validation sets after data generation with overlap
	Manual sampling of training and validation sets after data generation with overlap
	Random sampling of training and validation sets before data generation with overlap
	Prediction and further validation

	Training and Hyperparameter tuning of CNN Architectures
	Training phase and trainable model parameters
	Hyperparameter tuning with Keras tuner
	General model architecture description
	Tuning algorithms

	Model validation and selection of Convolutional Neural Network architectures
	Model validation of random sampled split after data augmentation with overlap
	Model validation of continuous split after data augmentation with overlap
	Model validation of random sampled split before data augmentation with overlap
	Predicting the holdout test set

	Results
	Prediction on the holdout test set for the three optimal models
	Description of holdout test set
	Optimal model 1: Tuned from the randomly split data set after overlap
	Optimal model 2: Tuned from the continuously split data set
	Optimal model 3: Tuned from the randomly split data set before overlap

	Discussion
	Model performances on the holdout test set
	Data set and pre-processing
	Hyperparameter tuning and regularization

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Code Listings
	General code for construction of CNN model and performing predictions
	Keras module for hyperparameter tuning
	Augmentation on-the-fly

