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Abstract

The most prominent machine learning (ML) methods for classification rely heavily

on a massive amount of labeled data to create and train neural network classifier

models that perform their tasks accurately. With the complex structure of planktonic

species and an immense amount of data captured from autonomous underwater ve-

hicles (AUVs), a large burden is placed on the domain experts for plankton taxa labeling.

Active Learning (AL) is an ML paradigm that reduces this manual effort by proposing

algorithms that support the construction of the training datasets, thus enlarging the

sets while minimizing human involvement. To build the training set, AL methods apply

heuristics to select a subset of images, i.e., samples, from the entire data. The applied

AL algorithm should select samples that capture the common statistical patterns or

feature space and are likely to include all the information needed for the training and

the learning processes. In addition, the algorithm should prioritize samples that are

likely belonging to multiple classes, i.e., having close inter-class boundaries, and might

lead to model confusion. Many of the current AL approaches fail to incorporate both

types of samples representing the statistical pattern and the samples in which the

particular machine learning model is uncertain about. Inspired by these limitations,

this thesis presents a novel framework that combines these two types of sampling to

utilize the full data distribution, prevent redundant sampling from correlated queries,

and fine-tune the inter-class decision boundary.

The results from extensive experiments on the proposed framework and methods

from the AL literature show that several of the methods lack robustness to different

experimental conditions. However, the proposed hybrid framework proves to be robust

and accurate on complex active learning tasks and competitive with other active learn-

ing strategies under various experimental conditions. The thesis further shows that

the employment of a data augmentation module enhances the overall classification

performance and in particular can benefit the sampling strategy in an AL framework.
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Chapter 1

Introduction

Planktonic species are critically important to the oceanic ecological structure as they

are the basis of the aquatic food web. Hence, by studying temporal variations in

plankton taxa distribution, one can achieve a proxy for the development of the oceanic

ecosystem.

Progress in the development of autonomous underwater vehicles (AUVs) and

robotic visual sensing enables the possibility of capturing large amounts of plank-

tonic image data. Further, Convolutional Neural Network (CNN) models have proved

competent at solving computer vision problems in the supervised Machine Learn-

ing (ML) paradigm. Embedding CNN models into AUVs enables the identification

of plankton taxa distributions in-situ. However, modern CNNs require an immense

amount of pre-classified input to achieve satisfactory classification performance. Since

plankton biomass appears in many different species, forms, and stages depending

on the geographical environment and season, pre-classified training data has to be

constructed for each different geographical environment, season, and image-acquiring

system. Consequently, much effort is needed for the manual plankton taxa labeling

that requires domain expertise, i.e., biologists, to identify the complex structure of

planktonic organisms. Active Learning (AL) is a semi-supervised machine learning

approach that aims at mitigating this burden placed on domain experts. By leveraging

samples with a high amount of information, it is possible to sufficiently capture the

data distribution of a full dataset with only a fraction of the samples, hence minimizing

the manual labeling effort.

1
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1.1 Aim of study
The overall aim of the study conducted throughout this thesis has been to develop

a method to minimize the manual effort on plankton taxa labeling. An intermediate

objective has been to gain knowledge on research in the area of active learning and

identify gaps in existing methods proposed in the literature. Additionally, research on

planktonic species and their classification has been relevant to adopt AL strategies to

the planktonic domain.

1.2 Research questions
This section will provide some insight into the research questions this thesis is in-

tended to answer. These questions are considering relevant research in the field of

AL, considerations for implementation of AL, and prominent challenges in the field.

Hopefully, these questions would encourage further reading and give insight into the

ideas and challenges of AL.

• What is the current standing of research in the field of AL and in par-
ticular for the planktonic domain? To develop and adopt AL methods for

plankton taxa labeling, it is essential to gain an overview of previous work

and research in the field. This can be obtained through experiments on recent

modes and methods from the AL literature combined with an analysis of their

advantages and limitations.

• What are considerations and challenges related to the implementation
of AL? This research question intends to give a better overview of the consid-

erations needed when implementing an AL framework. In particular, it aims

to investigate the connection between the employed dataset, the AL strategy

and the number of queries in each round, and examine how it is related to the

performance of AL. The research question will also identify challenges and

limitations related to AL for deep learning.

• How can the challenges in current AL approaches be mitigated? This re-
search question concerns how the obtained knowledge on modes and methods in

AL can be used to mitigate gaps and challenges identified in the AL literature. In

other words, how can a novel framework be designed to mitigate the challenges

faced by other AL approaches in the literature?

By addressing these questions, the thesis aims to give a good understanding of active

learning and present its current position in the literature together with current gaps

and challenges. Further, the research and experiments conducted throughout this thesis
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are intended to provide additional aspects of the methods proposed in the literature

including their strengths and weaknesses. Finally, by focusing on the aforementioned

challenges, the framework proposed in this thesis intends to provide an accurate and

robust AL strategy for adoption to the planktonic domain.

1.3 Contributions
The contributions of this thesis are threefold.

• A thorough research is conducted on modes and methods of active learning to

provide knowledge on its current standing and related challenges.

• A novel hybrid framework for active learning that proves to be suitable for

the planktonic domain and in particular for the AILARON SilCam dataset is

proposed. The proposed hybrid framework is designed to mitigate challenges

identified in the AL literature. A paper presenting the proposed framework was

submitted and accepted at the "13th International Conference on Digital Image
Processing" [2]. Furthermore, an extension of the work focusing on the adoption

to the planktonic domain is currently under review at the "13th IFAC Conference
on Control Applications in Marine Systems, Robotics, and Vehicles" [1].

• Several different methods covering the broad categories of deep active learning

strategies are compared on both a benchmark dataset and three complex datasets

from the planktonic domain. The results are analyzed and relevant challenges

and considerations of active learning are discussed.

The aforementioned results and discussion are intended to assist the reader in choosing

the right strategy and parameters when implementing AL to minimize labeling effort

and speed up the construction of training datasets.

1.4 Outline
The rest of the thesis is organized as follows. Chapter 2 presents relevant background

knowledge on topics of machine learning with an emphasis on image classification and

active learning. The background presented is considered a precondition for a proper

understanding of the rest of the thesis and the experiments presented. The related

work presented in chapter 3 considers previous research on minimizing labeling effort

in the planktonic domain and general AL strategies related to the proposed hybrid

framework. The datasets employed in the experiments in this thesis are presented in
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chapter 4. Moreover, chapter 5 describes the set-up and methodology for the hybrid

active learning method proposed in this thesis, the chapter covers the framework,

employed image classifiers, and relevant implementation details. Furthermore, results

from the experiments are reported in chapter 6 followed by short analysis and sum-

maries. The discussion in chapter 7 aims to answer the research question presented in

the introduction by linking up the background material with an analysis of the experi-

mental results. The findings of the thesis are summarized in chapter 8, emphasizing

the most important results. Lastly, interesting future research directions are presented

in chapter 9.



Chapter 2

Background

The background chapter presents relevant knowledge in the field of machine learning

and its sub-domains computer vision and active learning. The concepts presented are

considered relevant for a further understanding of the work presented later in the thesis.

To begin with, a general introduction to ML is presented, then CNN and its components

are introduced due to their are high relevance for plankton taxa classification. Finally,

active learning and deep active learning are thoroughly presented with their modes

and methods.

2.1 Machine Learning

Machine Learning (ML) is a branch of data science where computers are allowed to

learn from data and make classifications or predictions, based on learned attributes

when presented with new data. ML is inspired by how humans extract and label

patterns to learn. It has a wide range of applications and is increasingly adopted to

new areas, however, this thesis will mainly cover the application of computer vision

and image classification. The field of computer vision is considered one of the very

successful applications of ML, where credit should be given to the development of

convolutional neural networks (CNNs) which leverages high computational power

and large amounts of image data. This category of artificial neural networks (ANNs)

will be further elaborated in section 2.2.1.

For a general ML model, one can classify images in a supervised or unsupervised
way. The former trains a model to map sets of image features X = {𝑥1, .., 𝑥𝑛} to a given
labelY, whereas the latter is only concerned with the sets of featuresX = {𝑥1, .., 𝑥𝑛} to

5
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discover patterns and commonalities between them. Further, when only a small amount

of labeled data is available, a third way, semi-supervised learning is employed. Semi-

supervised learning is midway between the two aforementioned categories and is the

domain of Active Learning which is the topic for this thesis. Furthermore, while there

exist multiple machine learning strategies for image classification such as decision

trees, K-nearest neighbors, and support vector machines (SVM), this thesis will mainly

concern with the field of deep learning, and from here on the terms machine learning

and deep learning will be used interchangeably. However, some of the alternative ML

strategies will be mentioned again as a part of the classical active learning methods

described in section 2.4.

Figure 2.1: Training and classification process of an ML model.

As illustrated in figure 2.1, the general supervised and semi-supervised machine

learning models do usually have two modes: training and classification. Common

between the modes is that they present the machine learning model with a set of

features, i.e training data, and feed it through the layers in the network to extract

relevant image features. As will be further elaborated in the coming sections, the

classification mode outputs a probability distribution based on the extracted image

features. This can be observed in figure 2.1 where the learning model is predicting

’Class 2’ for the input image. However, while the classification mode only makes a

prediction, the training mode compares the prediction with the true label to calculate
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how far off the prediction is. This sum, also referred to as the loss, is then propagated

back through the network for the model to learn. This concept of learning through

backpropagation is further elaborated in section 2.2.1 and 5.2.

Model fitting

In the classification and training process of a machine learning model, as described in

the previous section, training error and test error, are two central concepts for validation
of the model performance. The former represents the classification error, i.e number of

wrong predictions, on the dataset the model is trained on, whereas the latter represents

the classification error on a held-out dataset not seen by the model. Although the

training error is helpful to see how well the model is extracting features from a given

dataset, it can not be used to confidently evaluate the model performance. For this

purpose, a held-out dataset, i.e validation set, is used to see how well the model can

transfer its learning to new data, that is, how well it is generalizing. When a learning

model pays little attention to the features in the training data, as seen in figure 2.2a, it

is typically under-fitting the underlying data distribution and will typically lead to both

low training and validation accuracy. An under-fitted model may suggest that a too

sparse model is employed, hence not able to capture complex features of the dataset.

On the other hand, a model that is over-fitting the underlying data distribution will

have paid too much attention to the noise in the training data and will not generalize

well on new, unseen data. Hence, this will typically lead to high training accuracy and

low validation accuracy and indicate a too dense learning model. An illustration of

over-fitting can be seen in figure 2.2c. However, a model that can trade-off between

the training and validation accuracy, that is, only extract the most important patterns

from the underlying data distribution and disregard any noisy data, will perform well

both concerning training and validation accuracy. This concept of well-fitting the

underlying data distribution is illustrated in figure 2.2b.
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(a) Concept of under-fitting. (b) Concept of well-fitted model. (c) Concept of over-fitting.

Figure 2.2: Decision boundary on different levels of model fitting.

2.2 Image Classification
Computer Vision is a field of machine learning that trains computers to extract infor-

mation from images to interpret the visual world. It is an important research direction

for the automation of manual processes such as image classification and is resultingly

applicable for industrial automation and autonomous vehicles. Computer Vision has

been a research topic for many decades, however, progress in the field of deep learning

and increased availability of computational power has sped up the performance and

range of applications. The following section will give a brief introduction to the field

of image classification and convolutional neural networks.

2.2.1 Convolutional Neural Network

Convolutional neural networks (CNNs) are a sub-class of artificial neural networks

(ANNs) containing convolutional layers and are a major reason for the progress in the

field of computer vision. The convolutional layers extract features to enable encoding

of the images into lower-dimensional feature vectors These convolutional layers can

also be regarded as learnable filters that improve their feature extraction to only extract

the most relevant features so the neural network can correctly classify the input. A

CNN consists of multiple layers which will be introduced and briefly described in this

section.

For image processing, modern convolutional neural networks and GPUs
leverage the concept of tensors. A tensor is a mathematical object that works as a

generalization of n-dimensional arrays. For instance, a scalar is a zero-dimensional

tensor whereas a vector is a one-dimensional tensor. A tensor can have all sorts of

dimensions, however, for image processing, they most often have three or four. As
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seen in figure 2.3, a discretized image is commonly represented as a matrix of pixel

values, hence a two-dimensional tensor can represent a grayscale image with the shape

[Height, Width]. However, color images need one tensor per color dimension. That

is, an image represented with the red, green, and blue (RGB) color model would need

one frame per color representing the strength of the color at each particular pixel. For

instance, a white spot in an 8-bit RGB image is represented as [255,255,255].

Figure 2.3: An RGB image represented by a tensor with shape [4,4,3].

These frames representing the color intensities are known as channels, or color

depth, and the corresponding tensor for an RGB image can be summarized as [Height,

Width, Channels] as illustrated in figure 2.3. Furthermore, when processing batches of

images, all images in a batch are put together in one tensor. This adds one additional

dimension, the batch size, to the tensor. Consequently, when processing images in

a convolutional neural network, it is common to have tensors with the dimensions

[Batch size, Height, Width, Channels] where all the images in the tensor need to have

equal dimensions. Hence, before feeding the input image to the convolutional layer in

the CNN as illustrated in figure 2.4, it needs to be converted to a tensor as illustrated

in figure 2.3.

Figure 2.4: A sparse CNN consisting of a convolutionial layer, a pooling layer and a fully connected layer.

To create a probability distribution for the output, a softmax layer is usually added to the fully connected

layer.
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The first part of a CNN is the convolutional layer. Given two functions F and

G, a convolution F ∗ G = H , express how the shape of one variable, F , is modified

by the other, G. In a convolutional layer, this operation is typically two-dimensional

where the first variable is an image of pixel values, i.e a tensor, and the second variable

is a two-dimensional filter, as illustrated in figure 2.5. The discrete two-dimensional

convolution is formally described as

(𝑓 ∗ 𝑔) [𝑥,𝑦] =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓 [𝑥,𝑦]𝑔[𝑥 −𝑚,𝑦 − 𝑛] (2.1)

Figure 2.5: The convolutional layer. A filter (MIDDLE) is sliding over the input matrix (LEFT) to extract

important features from the input.

The employed filter, often referred to as a neuron or kernel in the CNN literature,

slides over the input image to create a feature map of a local region in the input image,

as illustrated in figure 2.5. This local region, colored green in figure 2.5, is known as

the receptive field. The size of the receptive field decides the size of the area from which

the filter considers information. Based on the numerical values in the filter, referred to

as weights in ML terminology, such filters can be handcrafted to detect vertical lines,

corners, or edges in an image. With convolutional layers in a neural network, these

filters are, instead of being handcrafted, learning which features to extract from a given

image. Based on the output from the filter, an activation function decides whether to

bring forward the extracted features or not. The most commonly employed activation

function is ReLU (Rectified Linear Unit), which apply the function

𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) (2.2)

to the input. In general, it forwards the value of the previous layer if the input re-

sembles the shape the filter is representing, that is, if the values in the receptive field
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correlates with the filter. The main purpose of the activation function is to combine

the linear summations from the filters into a non-linear output, enabling the network

to approximate non-linear inputs. Further, by combining multiple filters in parallel

for a given input, as illustrated in figure 2.4, each filter can extract a specific feature,

and by stacking multiple convolutional layers, the network is enabled to gradually

build an understanding of the input image. This is achieved by initially extracting

simple lines, corners, and edges, combine these to form shapes, and then again combine

these shapes to extract domain-related objects from the input image. This process is

highly flexible with regard to the input and by stacking a lot of layers, the classification

accuracy of the network can become very high and compete with humans for image

classification tasks [11].

Another distinctive part of CNNs is the pooling layer . As can be observed in

figure 2.4, the pooling layer is employed after and in between the convolutional layers

in the CNN. Their task is to downsample the dimension of the input to reduce the

number of parameters employed and make the model invariant to local translation.

This enables the classifier to recognize an object even though its position in the image

is shifted compared to the training data. The dimensionality reduction is realized by

sliding a pooling filter over the input and only pass on the largest value in the area (max

pooling), illustrated in figure 2.6, or the average value in the area (average pooling).

Figure 2.6: 2x2 max pooling on a 3x3 input image.

The last layer in the CNN is termed the fully connected (FC) layer . To bring
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forward the most prominent features from the convolution and pooling process and

optimize the class scores, the three-dimensional tensors are flattened and fed into the FC
layer. The FC layer will combine the extracted features into high-level features to learn

valuable non-linear combinations. Finally, the softmax layer is employed to transform

these high-level features into probabilities for each class. By leveraging properties from

the exponential function 𝑒𝑥 , the input, which can be any real number, is transformed

to a positive real number. In particular, the exponential function transforms differences

in the input into their ratios.

𝑒 (𝑥1−𝑦1,...,𝑥𝑛−𝑦𝑛) −→ ( 𝑒
𝑥1

𝑒𝑦1
, ...,

𝑒𝑥𝑛

𝑒𝑦𝑛
) (2.3)

To transform the features into probabilities, a normalization is made to sum the distri-

bution to one.

Softmax( ⃗⃗⃗𝑥) = ( 𝑒𝑥1

Σ𝑛
𝑘=1
𝑒𝑥𝑘

, ...,
𝑒𝑥𝑛

Σ𝑛
𝑘=1
𝑒𝑥𝑘
) (2.4)

To enable learning for a supervised network, a loss function is employed. Its
objective is to calculate a score based on the deviation in the softmax prediction from

the true label. In other words, the loss function is initiating the learning in the network

by finding how far off the target the current prediction is. The Cross-Entropy loss

function, also known as logarithmic loss, is the most commonly used loss function

in classification models. For a multi-class classification problem, the cross-entropy

function is expressed as

J = −
𝑁∑
𝑖=1

𝑦𝑖 · log(𝑦𝑖 ) (2.5)

where N is the number of samples evaluated, 𝑦𝑖 is the ground truth vector and 𝑦𝑖 is

the prediction from the softmax layer in the learning model. Important to notice for

the cross-entropy loss is that it only penalizes/rewards the prediction on the ground

truth class. That is, 𝑦𝑖 works as an activation function for the value of the prediction

in log(𝑦𝑖 ), so the confidence in other classes will not be considered. In other words,

cross-entropy can be regarded as the negative log of the estimated probability of the

true class. Since the score is logarithmic it will offer a small score for small differences

from the target value and enormous scores for large deviations. The output from

the loss function is used to optimize the model loss with respect to the weights in

the network layers. An optimizer is employed to search for the set of weights that

minimizes the loss function, i.e the difference between the prediction and the target.

Commonly used optimization functions include stochastic gradient descent (SGD)

and adaptive movement estimator (ADAM). Both methods choose random data points
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from the loss function to calculate a gradient and then move in the steepest direction

with the aim of minimizing the loss function with respect to the model parameters.

Mathematically, this optimization can be expressed as

W(𝑘+1) = W(𝑘) − 𝜂 · 𝜕

𝜕W(𝑘)
J(W) (2.6)

Where J(·) represents the loss function employed,W is the set of weights in the network

and 𝜂 is the learning rate. Based on the current set of weights and the learning rate 𝜂,

the optimization function finds the steepest direction to go and how big steps to take

to update the weights,W(𝑘+1) , such that the loss function is minimized. A challenge

with optimization is non-convex loss functions that can halt the optimization at local

minima or saddle points. In order to overcome these challenges, hyperparameters,

such as learning rate and batch size, needs to be fine-tuned. Moreover, optimization

functions such as Adam and Adagrad, do also employ individual and adaptive learning

rates for each weight making them converge faster and also more robust against local

minima.

2.2.2 Regularization

Regularization, in machine learning, is a set of techniques that aim to optimize the per-

formance of the learning model by promoting generalization and avoiding overfitting.

• Dropout is a regularization technique that randomly switches off neurons

in a deep learning network at run time. A neuron is switched off when the

ability to output a result from the activation function to the next layer in the

network is removed. In other words, with different configurations of neurons

at each training iteration, a single model can simulate having several different

architectures. This is effectively making each neuron more important in the

network and removing any large weights caused by dominant neurons. As a

result, each neuron becomes less sensitive to input changes which in turn results

in a model that is generalizing better.

• Data augmentation is a regularization technique to artificially increase the

amount of training data provided to amachine learningmodel. The augmentation

is achieved by applying a set of transformation functions to the existing pool of

samples so that the machine learning model will learn from new variants of the

existing images at each round. Typical methods of data augmentation include

random rotation, translation, and addition of jitter. With data augmentation, the

concept of static datasets becomes more dynamic and it artificially increases
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the number of images for the machine learning model to learn from. However,

data augmentation does not increase the number of features in the images,

so rather than replacing data gathering, it helps exploit the full potential in

the existing dataset. Its performance enhancement is especially prominent on

smaller datasets where the risk of overfitting on the training data is a potential

issue, hence it improves the generalization ability of machine learning models

trained on a small set of features.

• Early stopping is an effective, yet simple regularization technique applied in

deep learning. By monitoring the training and validation error described in

section 2.1, it aims at stopping the training process when the learning model

starts to overfit on the training data.

2.2.3 Transfer learning

As will be further elaborated in section 2.4, many applications of machine learning

suffer from constrained amounts of data to learn from. Moreover, image classifiers and

other machine learning models will often degrade in performance when employed

in a different domain from what it was trained in. In machine learning terminology,

the domain in which a model is trained is referred to as the source domain, whereas

the domain it is deployed in is referred to as the target domain [56]. To overcome the

challenge of limited data in the target domain, a model will be trained on samples

from a related source domain. Then, the weights and parameters of this model are

incorporated into a new model which is employed in the target domain. The idea

is to use the obtained knowledge from the source domain in the early layers of the

new neural network to identify high-level features from the target domain. Further,

training the subsequent layers of the model on data from the target domain optimizes

it for predictions in this new domain. This concept of sharing knowledge, i.e weights

and parameters, between learning models is known as transfer learning. In effect, this

concept reduces the demand for training data and elevates the initial knowledge of

the learning model.

2.2.4 Evaluation measures

Quantitative measures are needed to evaluate the performance of a classifier. It is in

general not possible to measure the overall performance of a classifier since various

metrics are weighted differently depending on the application. That is, for some

applications, such as medical imaging, it is more acceptable to have false positives

(FP) than false negatives (FN), hence recall (2.8) is the best measure. However, for the
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application of plankton classification, it is crucial to measure the number of images

being classified correctly, hence accuracy or balanced accuracy is mainly employed

as the evaluation metric. Furthermore, the properties of the training set presented

to the model will also lead to different results depending on the evaluation metric.

The accuracy paradox is an example of a situation where a metric leads to a bias in

the accuracy evaluation. When presented with an unbalanced dataset, the model will

predict the most prominent class correctly multiple times without necessarily learning

the underlying difference from the other classes. Thus, for unbalanced datasets, one

should consider balanced accuracy (2.10), over accuracy (2.7) as it will give a lower

score if the model is unable to predict sparse classes.

• Accuracy

Accuracy =
𝑇𝑃 +𝑇𝑁
𝑇𝑜𝑡𝑎𝑙

(2.7)

A measure of how many classes that got the right prediction among all predicted.

• Recall
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.8)

A measure of the proportion of samples that is correctly classified as the target

class. Also known as true positive rate (TPR).

• Specificity

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (2.9)

A measure of the proportion of samples not belonging to the target class that is

not predicted as the target class either. Also known as true negative rate (TNR).

• Balanced accuracy

Balanced accuracy =
𝑇𝑃𝑅 +𝑇𝑁𝑅

2

(2.10)

An average of recall 2.8 and specificity 2.9. Handles imbalanced datasets better

than accuracy 2.7.

2.3 Data labeling problem
The success in the field of computer vision is largely related to the development of

CNNs as described in section 2.2.1. However, the success comes at the price of immense
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amounts of labeled data needed for training the networks due to increasingly deep

networkswith large amounts of parameters [27]. It is non-trivial to quantify the number

of labeled images needed for each class since it will vary with the task complexity, the

learning model, and other parameters. That is, data augmentation and transfer learning
could both reduce the amount of data required. However, how aggressively the data

can be augmented is dependent on the dataset, and transfer learning would require

some similarities between the learning tasks to be advantageous. Further, the number

of features represented in the data pool are often considered more important than the

exact number of data samples. However, the former quantity tends to increase with

the number of data samples, hence more data are generally considered to be better.

Furthermore, labels categorizing cars and pedestrians can be acquired at a fairly

low cost. For more complex domains such as radiology or biology, a domain expert is

often needed to label samples. This drastically increases the cost of acquiring labels

and also puts a burden on the employed domain experts. Nevertheless, as discussed in

[14], the resulting manual classification is imperfect and prone to errors and multiple

domain experts are preferred to achieve high classification accuracy and confidence

in the labeled dataset. With the increased adoption of machine learning for image

classification, effective methods for the construction of labeled datasets are essential

to fully leverage novel models and algorithms. Active Learning (AL) is a technique

that has been proposed to address this challenge by only labeling the most informative

samples.

2.4 Active Learning

Active learning is a type of semi-supervised learning that aims at mitigating the burden

of manual labeling on domain experts and speed up the construction of labeled datasets.

By exploiting a non-uniform information distribution among images in a data pool

[61], active learning aims to find the most informative samples and query them for

manual labeling. By constructing a dataset leveraging samples with large amounts of

information, [12] showed that an employed classifier could achieve equal classification

performance as if it was trained on the full dataset. Active learning has previously

been applied to natural language processing (NLP) [54] and image segmentation [64]

in addition to other areas. However, since those areas of application are outside of this

scope, the following presentation of active learning modes and methods will mainly

consider the application for image classification. Moreover, this section will start with

a presentation of general concepts and modes in active learning before presenting

active learning for deep learning, namely deep active learning (DAL).
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Figure 2.7: The pool-based active learning cycle.

2.4.1 Active learning cycle

The aim of minimizing human effort in data labeling has been around for many years,

hence there exists a broad literature on active learning, including research conducted

before the widespread adoption of CNNs in the field of computer vision. The reader

can refer to a survey presented in [53] for a summary of the early work conducted

in the field of AL. The data flow in an active learning approach, as illustrated 2.7, is

common among most of the approaches in the literature and works as a backbone

in active learning. Commonly, the active learning cycle is initiated with a small pool

of labeled data used to warm up an employed ML model. After an initial training

round, the model is then employed as a classifier on an unlabeled data pool, and the

results from this classification are often used as the foundation for a query of new

data points. A pre-defined number of data points is then queried to a human oracle for

labeling and added to the pool of labeled data. This AL cycle repeats until a pre-defined

labeling budget is exhausted, or an early stopping criterion is met. The latter is applied

if the manual labeling effort stops giving significant performance enhancement for the

machine learning model.
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2.4.2 Sampling modes

Existing AL models in the literature can be classified based on the unlabeled data

readiness, the number of points queried and the strategy employed for querying. In

some cases, the data gathering is performed once, whereas in other cases the data

arrives as a stream of data points. In other words, when the data arrives in streams

the AL model is considered as a stream-based model [35], whereas a pool-based model
otherwise [38]. An application of the former is the construction of a machine learning

training set based on incoming radiology images of a newly discovered disease, as

proposed in [63]. When time and expert capacity is limiting factors in the construction

of the training set, images must be queried continuously for a human oracle, i.e

radiologist, based on the amount of information they provide to the image classifier.

On the other hand, for pool-based active learning, samples are captured in large

batches, e.g with a video camera as described in [45], and the overall goal is to create

a dataset while minimizing the human effort and time consumption. An illustration

of the data flow for the pool-based active learning is illustrated in figure 2.7. An

important distinction between the aforementioned modes is that the latter queries

samples based on an evaluation of all samples in an unlabeled data pool whereas

the former needs to make an independent judgment for each arrived data point. The

application of the work presented in this thesis is only concerned with pool-based

active learning with batch sampling for image classification. Hence, future references to

active learning will imply this mode unless other is specified. Pool-based active learning

and active learning will be used interchangeably hereupon. Further, the AL models’

mode of sampling varies between batch-mode [7] or single-mode [38] depending on

the number of data samples queried in each cycle. With the recent development of

CNNs, as described in 2.2.1, batch-mode sampling has become increasingly relevant as

it is not computationally feasible to update a large network with single data points

nor are single data points likely to give a significant update to the model parameters,

causing series of correlated queries. As will be elaborated in the upcoming sections,

the most important distinction between the above-mentioned sampling modes is their

prioritization between informative and representative samples.

2.4.3 Machine learning knowledge quadrant

For a machine learning model, one can divide the models’ knowledge into four different

categories based on their current knowledge and awareness of the available training

data. This grouping of knowledge, illustrated in table 2.1, is motivating the query

strategies for active learning frameworks. As described in section 2.4.1, methods of

active learning are often initiated with a small pool of labeled images, i.e samples,
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which will contribute to the current model state. A machine learning model trained

with this pool is parsed through unlabeled samples to find the most relevant unknowns
for the model to learn from.

Knowns Unknows
Known Current model state Non-confident predictions from the model

Unknown Transfer learning Gap in model knowledge

Table 2.1: Knowledge quadrant for machine learning.

Since active learning aims to minimize the amount of effort needed for data labeling,

it is important to address the different quadrants in figure 2.1, to utilize the data

distribution best possibly. By employing representative sampling, the learning model

can mitigate any gaps in knowledge and from informative sampling non-confident

predictions can be overcome. Lastly, transfer learning can be applied to give the

learning model a head start by incorporating initial knowledge, i.e pre-trained weights,

into the model. In the deep active learning section 2.5, the individual methods will be

further elaborated for use in a deep learning setting.

2.5 Deep active learning
The development of CNNs has brought high classification accuracy, however at the

price of increased amounts of manually labeled data needed for training. The promise

of removing the bottleneck of this manual labeling in the construction of these datasets

has brought a surge in DAL research. However, with the introduction of CNNs in the

field of computer vision, traditional methods of active learning have shown to strug-

gle and often perform worse than random benchmark sampling (RBS). In particular,

finding samples that the machine learning model finds informative has become more

challenging due to the more complex structure of neural networks. However, there

exists a broad literature on deep active learning approaches, and in general, they can

be split into informative, representative, and hybrid approaches. These, in addition to

some less focused approaches, will be further elaborated in the following sections.

2.5.1 Informative approaches
The informative mode of active learning aims to find the samples in which the image
classifier finds most informative. In other words, features the model knows it is uncer-

tain about, corresponding to the second quadrant in table 2.1. Important to notice is
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that the samples in which the model finds the most informative, not necessarily are the

overall most informative samples. This leads to the challenge of transferability which

will be discussed in later sections. There exist a broad literature on informative-based

active learning, and several heuristics for finding samples in which the learning model

finds informative have been proposed, the coming sections will provide a description

of the main categories.

Distance based methods

Distance-based methods aim to find samples that lie at the proximity of the inter-class

decision boundary. Samples that lie in this border area are considered to be informative

for the machine learning model as they can provide information to fine-tune the classi-

fication decision boundary, as illustrated in figure 2.9. [57] proposed a distance-based

method for an SVMs classifier. However, as it is feasible for an SVM, it is a more

complex operation for dense CNNs. Nevertheless, to transfer this approach to CNNs,

[16] proposed a way of measuring the distance by making adversarial attacks, that
is perturbing the pixel values in the input image until the employed image classifier

changes the classification. By ranking the amount of perturbation needed for a change

in classification, one can obtain a proxy for how far a given sample is from the deci-

sion boundary. The adversarial attack approach is based on the DeepFool algorithm

proposed by [42]. The idea is that the orthogonal projection of a sample 𝑋𝑖 onto the

hyperparameter plane representing the inter-class decision boundary is correspond-

ing to the minimal perturbation needed to change the decision of the classifier. This

orthogonal projection can be calculated as

𝑓 (𝑥𝑖 )
∥∇𝑓 (𝑥𝑖 )∥

· ∇𝑓 (𝑥𝑖 ) (2.11)

where 𝑓 (𝑥𝑖 ) is the output from the softmax layer of the CNN and ∇𝑓 (𝑥𝑖 ) is the calcu-
lated gradient from the loss function. This calculated projection is added to the sample

as a perturbation before the image is re-classified.



2.5. DEEP ACTIVE LEARNING 21

(a) Original image and its model

prediction.

(b) Perturbed image and its new

model prediction.

(c) Total perturbation.

(d) Original image and its model

prediction.

(e) Perturbed image and its new

model prediction.

(f) Total perturbation scaled up

with a factor of 10 for the pur-

pose of visualization.

Figure 2.8: Two samples showing how the images are perturbed to push them over the decision boundary.

The first row presents a sample from the first round of active learning, whereas the second row presents a

sample from the last round of active learning.

One can observe from two samples drawn from the DeepFool method in an active

learning cycle how the decision boundary has changed from the initial to the final active

learning cycle. For the image in figure 2.8a, the classifier has not seen enough features

to be confident about its classification and is conducting two wrong classifications. For

the image in figure 2.8d however, the classifier is accurately classifying it, but based on

the small perturbation needed to change its classification, as illustrated in figure 2.8f,

the classifier was not confident in its prediction. This uncertainty indicates a sample at

the proximity of the decision boundary, as illustrated in figure 2.9. The algorithm for

the DeepFool procedure described is presented in algorithm 1. While the process in

the algorithm will continue for several iterations, in particular for each data point 𝑥𝑖 in

the unlabeled data pool 𝐷𝑈 , the explanation hereafter will be restricted to a single data

point for simplicity. To begin with, the sample 𝑥𝑖 is classified by the employed classifier,

as described in line 3. Thereafter, projections to other hyperplanes corresponding to

the other classes are approximated in lines 6-8. For the smallest distance found, a

projection to the corresponding hyperplane is calculated in line 10. This projection is

then added to the sample 𝑥𝑖 as a perturbation, and a new classification is conducted in
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Figure 2.9: Informative sampling at the proximity of the inter-class decision boundary helps fine-tune the

decision boundary.

lines 13 and 14, respectively. This process continues until the data point 𝑥𝑖 changes its

classification, as illustrated in figure 2.8, or until a maximum number of iterations has

been reached. All perturbations are then sorted in a list 𝐷 . In the approach by [16], a

pre-defined number of the least perturbed samples were queried for labeling. For the

proposed framework in this thesis, a sub-modular heuristic will be applied instead to

avoid correlated queries, this will be further elaborated in section 5.1.

Ensemble methods

Ensemble methods of informative learning aim at comparing the opinion of multiple

network architectures to find samples on which they disagree. Often the disagreement

criteria employed is either entropy, indicating multiple different classifications, or mar-

gin sampling where the classifiers are usually split between two prominent classes. In

the literature, there are proposed two main ways of doing ensemble-based informative

sampling. In [8], multiple different network architectures are trained in parallel on the

same training set, before conducting separate predictions on new, unseen data. While

this achieves a broad range of perspectives on the same data, it is computationally

demanding to train multiple different networks, especially with increasing amounts of

training data and model parameters. A conceptually similar approach however was

proposed by [18], their method, adopting the work in [29] to deep learning, rely on

Monte Carlo (MC) dropout of neurons to effectively sample multiple different network

architectures. This brings a two-fold measure of uncertainty. First, by making multiple

runs and registering the different networks’ prediction on the input 𝑋 , some of the

network configurations associated with a set of neurons will be confident in the wrong

category. Thus, by labeling the images they are confidently wrong about, the associ-
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Algorithm 1 DeepFool: Multi-class adversarial attack.

Require: Unlabeled samples 𝐷𝑈

Require: Learning network hyper-parametersH
Require: Empty list of distances D
Require: Number of classes 𝑁

1: 𝑉𝑙 = inf

2: for 𝑥𝑖 ∈ 𝐷𝑈 do
3: 𝑛𝑦 = 𝑝𝑦 = Predict(𝑥𝑖 )
4: while 𝑝𝑦 = 𝑛𝑦 do
5: for 𝑥 𝑗 ∈ 𝑥 {1,..,𝑁 } do
6: 𝑊𝑖 ←− ∇𝑥𝑖 − ∇𝑥 𝑗
7: 𝐹𝑖 ←− 𝑓 (𝑥𝑖 ) − 𝑓 (𝑥 𝑗 )
8: 𝑉𝑖 ←− 𝐹𝑖

∥𝑊𝑖 ∥ ·𝑊𝑖

9: if 𝑉𝑖 ≤ 𝑉𝑙 then
10: 𝑅𝑖 ←− 𝑉𝑖

𝑊𝑖
·𝑊𝑖

11: end if
12: end for
13: 𝜂 ←− 𝜂 + 𝑟𝑖
14: 𝑝𝑦 = Predict(𝑋 + 𝜂)
15: end while
16: D ∪ 𝑟𝑖
17: end for
18: return D
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ated neurons can be corrected. Moreover, for other inputs, the ensemble of network

samples may in general be uncertain on the label, causing a high entropy in the output,

hence requiring the sample to be labeled. While the aforementioned method [18] was

restricted to single queries, it was expanded to batch mode sampling in [34]. How-

ever, research conducted by [9] comparing the aforementioned approaches reported

that ensemble-based approaches, as proposed in [8], outperforms other methods of

uncertainty estimation and in particular MC dropout. Their experiments compared

an ensemble of five networks with an MC dropout model with 25 forward passes. A

method combining ensemble methods with MC dropout was proposed by [49]. The

paper addressed challenges related to mode collapse causing overconfident predictions

in methods similar to [18].

Softmax based methods

A large number of the informative active learning approaches proposed in the literature

have been based on the softmax layer of a neural network as a proxy for the model

uncertainty. In general, three different heuristics of applying the probability scores

from the softmax layer have been studied in the literature.

• The least confidence strategy aims to find the samples which is predicted with

the lowest confidence. The expression 𝑝 (𝑦𝑖 = 𝑗 |𝑥𝑖 ;𝜃 ) describes the probability
for variable 𝑥𝑖 to belong to the j

th
category. Samples with low score indicates

low certainty from the model.

LC𝑖 = max

𝑗
𝑃 (𝑦𝑖 = j|𝑥𝑖 ;𝜃 ) (2.12)

• The margin sampling approach aims to find the samples where the margin

between the two most probable classes is the smallest. This margin is found by

subtracting the second highest class probability 𝑃 (𝑦𝑖 = 𝑗2 |𝑥𝑖 ;𝜃 ) from the highest

class probability 𝑃 (𝑦𝑖 = 𝑗1 |𝑥𝑖 ;𝜃 ).

MS𝑖 = 𝑃 (𝑦𝑖 = 𝑗1 |𝑥𝑖 ;𝜃 ) − 𝑃 (𝑦𝑖 = 𝑗2 |𝑥𝑖 ;𝜃 ) (2.13)

• The entropy sampling strategy finds the samples where it is the most dis-

order in the predictions. That is samples where no category is prominent in

the probability distribution. Higher values of entropy mean more disorder and

consequently higher uncertainty.

EN𝑖 = −
𝑚∑
𝑗=1

𝑃 (𝑦𝑖 = 𝑗 |𝑥𝑖 ;𝜃 ) log 𝑃 (𝑦𝑖 = 𝑗 |𝑥𝑖 ;𝜃 ) (2.14)
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In a paper by [62], the authors proposed a method leveraging the softmax layer of the

model to find samples in which the model is uncertain. Their proposed method also

employed a cost-effective module to find high-confidence samples for pseudo-labeling.

These samples, with confidence above some threshold, were added to the training pool

for one iteration to increase the robustness and accuracy of the model, however at

risk of being erroneously labeled. The results in the paper suggest that the most effec-

tive sampling heuristic was a combined approach where each of the aforementioned

methods selected a certain number of samples for the query. Additionally, the reported

results did also show a significant performance enhancement in terms of classification

accuracy when employing the cost-effective module. Nonetheless, research has shown

that these softmax probabilities often work as a bad proxy for the confidence of neural

networks [23, 50], and will often lead to worse performance than RBS. This can par-

tially be explained by overconfidence in the predictions due to the applied exponential

function in the softmax layer described in section 2.2.1. In particular, the exponential

function has the property of turning addition into multiplication, that is 𝑒𝑎+𝑏 = 𝑒𝑎 ·𝑏 .
It is trivial to show that this property makes the softmax layer translation invariant,

hence not a reliable measure for the uncertainty of the neural network.

Softmax(𝑥1 + 𝑎, ..., 𝑥𝑛 + 𝑎) = (
𝑒𝑥1+𝑎

Σ𝑛
𝑘=1
𝑒𝑥𝑘+𝑎

, ...,
𝑒𝑥𝑛+𝑎

Σ𝑛
𝑘=1
𝑒𝑥𝑘+𝑎

)

= ( 𝑒𝑥1𝑒𝑎

Σ𝑛
𝑘=1
𝑒𝑥𝑘𝑒𝑎

, ...,
𝑒𝑥𝑛𝑒𝑎

Σ𝑛
𝑘=1
𝑒𝑥𝑘𝑒𝑎

)

= ( 𝑒𝑥1

Σ𝑛
𝑘=1
𝑒𝑥𝑘

, ...,
𝑒𝑥𝑛

Σ𝑛
𝑘=1
𝑒𝑥𝑘
)

= Softmax(𝑥1, ..., 𝑥𝑛)

Redundant sampling

A challenge with pure informative sampling in batch mode AL is the labeling of

redundant samples and a lacking utilization of the full data distribution. This challenge

is a result of the sampling process not being batch-aware, i.e there is no knowledge

transfer among the queried samples in which areas are being covered, and informative

sampling often tends to query multiple samples from the same area of uncertainty. This

can be observed in figure 2.10 where 200 samples have been queried with an adversarial

attack AL strategy, as described in 2.5.1, from a pool of images from the CIFAR-10

dataset. It can be observed that the AL strategy is querying a lot of images from the

same areas of the feature space, and consequently lack covering in other areas. Themost

significant information for the classifier will be provided by the first images queried
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from new areas whereas the later queries will often tend to give redundant information.

To minimize the manual labeling effort, it is desirable to avoid this redundant querying.

By lowering the number of queries for each round, the number of correlated samples

would resultingly be lowered, however, at the expense of a higher computational effort,

this challenge will be further discussed in section 7.2.

Figure 2.10: 200 samples queried with the DFAL [16] informative approach. The different colored data

points represent the images of the ten different classes from the CIFAR-10 dataset. With the T-SNE algorithm

[58], the images are projected onto the two-dimensional feature space.

2.5.2 Representative approaches

The representative mode of active learning aims to exploit the latent space of the

available unlabeled samples to best capture the data distribution, as illustrated in

figure 2.11. The information in the queried representative samples is often related to a

gap in the model knowledge, represented by the fourth quadrant in table 2.1. A large

number of methods for finding such representative samples have been researched in

the literature and will be described in the coming sections.
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Figure 2.11: 200 samples queried with the core-set [52] representative approach. The different colored

data points represent the images of the ten different classes from the CIFAR-10 dataset. With the T-SNE

algorithm [58], the images are projected onto the two-dimensional feature space.

Core-set approach

The core-set approach aims at selecting data points such that a model trained over

the queried data points is competitive with a model trained over the full dataset. By

regarding the query process of active learning as a core-set selection problem, the

strategy of querying data points can be formulated as an optimization problem where

the target is to select data points that cover the full feature space to minimize the

core-set loss. As described in section 2.1 an ML model aims to minimize the training and

classification error. However, in the core-set selection, and AL in general, another error

term, i.e core-set loss, is introduced. The core-set loss represents the information that

is not captured with the selected data points, in other words, the difference in the data

distribution between the full dataset and the queried samples. Formally, given a set of

data points defined over a feature space 𝑋 , a corresponding set of labels 𝑌 = {1, ..,𝐶}
and a loss function J (𝑋,𝑌,𝐴𝑠0∪𝑠1 ) where 𝐴𝑠0∪𝑠1 is the parameters of the machine

learning model, the optimization problem of a core-set approach can be expressed as

min

𝑠1:𝑠1≤𝑏

Loss over all data︷                        ︸︸                        ︷
1

𝑛

∑
𝑖∈[𝑛]
J (x𝑖 , 𝑦𝑖 ;A𝑠0∪𝑠1 ) −

Loss over selected samples︷                                   ︸︸                                   ︷
1

s0 ∪ s1
∑

𝑗 ∈s0∪s1
J (𝑥 𝑗 , 𝑦 𝑗 ;As0∪s1 )︸                                                                       ︷︷                                                                       ︸

Core-Set Loss

(2.15)

Where 𝑛 is the size of the full dataset, 𝑏 is the labeling budget, 𝑠0 is the initially labeled

samples, and 𝑠1 is the queried samples. The optimization problem aims to query 𝑏
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samples to minimize the overall core-set loss. In [52], the authors proved that this

optimization problem could be upper bounded by a constant 𝛿𝑠 representing the largest

distance from any single data point to its nearest cluster, i.e the radius of the largest

cluster. Consequently, minimizing the core-set loss is equivalent to optimizing the

K-center problem expressed as

min

𝑠1:𝑠1≤𝑏
max

𝑖
min

𝑗 ∈𝑠1∪𝑠0
△(𝑥𝑖 , 𝑥 𝑗 ) (2.16)

Where Δ(𝑥𝑖 , 𝑥 𝑗 ) represents the Euclidean distance between the data points 𝑥𝑖 and 𝑥 𝑗 .

As this problem is NP-hard, a sub-optimal solution is found by a greedy algorithmic

approach as described in algorithm 2. This greedy method is proven to have a solution

such that

max

𝑖
min

𝑗 ∈𝑠1∪𝑠0
△(𝑥𝑖 , 𝑥 𝑗 ) ≤ 2 𝑋 𝑂𝑃𝑇 (2.17)

is satisfied, where OPT is the optimal solution to the optimization problem in 2.16 [28].

The authors in [52] optimized this solution by applying a mixed-integer programming

(MIP) subroutine. However, while increasing the computational effort in finding a

solution, their reported performance enhancement was small. A further description of

the optimization is outside the scope of this thesis, however, the reader can refer to the

paper by [52] for further elaboration on the formulation of the optimization problem.

Nonetheless, two experiments comparing the core-set approach with and without the

optimization module are presented in section 6.1.

(a) 4 different classes in

2D feature space.

(b) Greedy solution to find

cluster centers.

(c) Optimal solution on cluster

centers.

Figure 2.12: Three steps of the core-set approach. The radius of the ball in (b) and (c) represents the upper

bound on the core-set loss. That is, the error of not labeling all samples in the dataset.

The concept of choosing cluster centers to minimize the core-set loss is illustrated in

figure 2.12. The figure presents four different classes projected to the two-dimensional
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space. In figure 2.12b a greedy solution with a resultingly large 𝛿𝑠 is shown, whereas

in figure 2.12c an optimal solution with a significantly smaller 𝛿𝑠 is presented. For the

former, the upper bound on the core-set loss is by visual inspection twice the optimized

solution. Further, it is trivial to observe that as the number of clusters approaches the

number of samples 𝑛, the core-set loss (2.15) becomes zero.

Algorithm 2 MinMax: Greedy geometric approach.

Require: Unlabeled data 𝑋𝑖
Require: Initial labeled data 𝑆0

Require: Labeling budget 𝐵

𝑆 = 𝑆0

while |𝑆 − 𝑆0 | ≤ 𝐵 do
𝑢 = argmax𝑖∈[𝑛]\𝑆 min𝑗 ∈𝑆 Δ(𝑥𝑖 , 𝑥 𝑗 )
𝑆 = 𝑆 ∪ {𝑢}

end while
return 𝑆\𝑆0

The algorithm for solving equation 2.16 with a greedy approach is described in

algorithm 2. A pitfall with the core-set approach is the reliance on extracted features

from the unlabeled data pool. To solve the optimization problem described in equation

2.16, the dimensions of the images needs to be lowered to make the computation

feasible. To successfully query representative data points, it is important that this

feature extraction best represents the underlying data distribution of the selected

images. Another challenge with the core-set approach is the propensity to query from

sparse areas which often can represent outliers in the unlabeled data. To overcome this,

the sampling strategy should be aware of sparse, outlier regions which can confuse

the learning model.

K-means approach

K-means is another clustering technique that has been proposed as a metric for repre-

sentative active learning approaches. It aims at minimizing the intra-class variance of

the cluster by minimizing the average squared distance to an approximated cluster

center for the data points within the same cluster. Different from the K-center approach

previously described, this is achieved by calculating a cluster center which represents

the average of all the points in the cluster. Formally, this minimization can be expressed
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as

𝑛∑
𝑖=0

min

𝜇 𝑗 ∈𝐶
(∥𝑥𝑖 − 𝜇 𝑗 ∥2) (2.18)

where 𝑛 is the number of data points and 𝜇 𝑗 is the mean of all samples in the cluster𝐶 ,

i.e the cluster center. Further, to give the algorithm a better initialization, [6] proposed

k-means++, a technique that instead of choosing 𝑘 randomly chosen cluster centers,

randomly picks one initial center and then strategically chooses 𝑘 − 1 more centers.

Each new initial cluster center is chosen with a probability of 𝐷 (𝑥)2, where 𝐷 (𝑥) is the
distance for any given point 𝑥 to its nearest cluster. Hence, the 𝑘 initial cluster center

gets spread out and results have proven this strategic initialization of the k-means

algorithm to give more optimal clusters and faster convergence speed [6].

Bayesian sparse-set approach

In a paper proposed by [48], the authors aim at querying a batch of data points D ′
at each AL cycle such that the data log posterior of the initially labeled samples D0

combined with D ′ best possible approximates the data log posterior of the full data

distribution log𝑝 (𝜃 |D0 ∪ D𝑝 ) where D0 and D𝑝 is the initially labeled samples and

the pool of unlabeled samples, respectively. However, as calculating the full data

posterior is not possible for the unlabeled dataset, the authors employ the expectation

of the predictive posterior distribution. Resultingly, their query function is based on

choosing samples that minimize the difference between this expected full posterior

and the resulting posterior from the queried data points. Their method is similar to

the previously described core-set approach in that they are trying to approximate

the complete data distribution with a subset of the samples. However, an important

distinction is that while the core-set approach achieved this by solving the k-center

problem described in algorithm 2, the proposed method is trying to resemble the

complete data posterior. Hence, due to the geometric approach, the former needs a

learned representation of the unlabeled data which is not needed for the probabilistic

Bayesian sparse set approach.

2.5.3 Hybrid approaches

Hybrid modes of active learning aim at combining the metric for informative sampling

with the metric for representative sampling to both utilize the full data distribution

and identify samples the classifier finds informative. Hence, hybrid mode active learn-

ing addresses the full column of unknowns in figure 2.1. This hybridization aims to

overcome many of the challenges that each of the metrics in separate suffers from,



2.5. DEEP ACTIVE LEARNING 31

among them is avoiding queries from areas where the model is uncertain. Moreover,

by not exclusively relying on the model uncertainty, the transferability, how well it

performs with different learning models and domains, is increased. In a hybrid method

proposed by [7], the authors employ the induced gradient of the predicted category,

described in 2.2.1, as an uncertainty measure for the model. The rationale behind this

choice of uncertainty metric is that the magnitude of the gradient increases with the

deviation between the prediction and the target value. Since this gradient is a vector

that is also employed to train the network through backpropagation, it is possible to

use the direction of the vector to incorporate diversity in the queried samples. In the

proposed framework, the authors employ the k-means++ strategy to select gradient

vectors that best enhances the diversity in the queries. Another way of combining

a representative and informative metric was proposed by [30]. Their method, Active
Learning by Learning, is a hybrid approach, inspired by the multi-armed bandit problem

[59], that chooses between different sampling strategies at run time. The method will

for each AL cycle explore the performance of different sampling methods and exploit

the one with the best performance. Furthermore, hybrid methods that directly leverage

the probability distribution of the softmax layer have also been proposed. In [67], the

author proposed a hybrid method with a weighted trade-off between the informative

and representative methods. To incorporate uncertainty, each sample is given a weight

based on its score from the softmax layer margin sampling, described in equation 2.13.

This score is combined with an additional representative score from k-means sampling.

The paper suggested that "diversity-enhancing approaches slightly or significantly

outperform the strong baseline of uncertainty sampling" [67].

2.5.4 Other approaches

Other AL approaches not as focused as the above-mentioned have also been proposed

in the literature. One example is the task-agnostic approaches which is designed

to be independent of the employed learning model and domain it is applied in, hence

increase the transferability. Such an approach, employing an auxiliary classifier to

predict the learning-loss, was proposed by [65]. The proposed method use extracted

features from the image classifier to train a separate learning model to predict the loss

from unlabeled samples. The key idea is that a high loss prediction indicates samples

that the classifier is uncertain about. The separate model is trained on an initial labeled

pool comparing the predicted loss with the actual loss calculated by the employed

image classifier. This module is adaptable to any learning model as it only employs the

extracted features from the intermediate layers of the model. A similar approach of

training a separate network for the task of querying informative samples was proposed

by [21]. Their proposed discriminative active learning method, is based on training
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a binary classifier to select samples such that the difference between the unlabeled

and labeled dataset becomes indistinguishable. This is achieved by querying samples

that brings features not seen in the labeled dataset, hence informative to the image

classifier. Another conceptually equal approach was proposed in [55]. Similar to the

above-mentioned approach, they aim at training an adversarial network to discriminate

between labeled and unlabeled samples. Their proposed method employs a variational

autoencoder (VAE) to learn a latent space for the adversarial classifier to predict from.

An important distinction from the method proposed in [21] is that the VAE is trained

to fool the adversarial classifier to believe that all samples are from the labeled data,

whereas the adversarial network is trained to discriminate between dissimilarities in

the feature space. These methods of constructing labeled datasets to approximate the

unlabeled data distribution is conceptually similar to the aforementioned methods in

2.5.2 and 2.5.2.

By addressing the third quadrant in table 2.1, transfer learning adds initial

knowledge to the target model without increasing the labeling effort, as described in

2.2.2. In a method proposed by [20], transfer learning is applied in the active learning

approach. Their proposed method will gain satisfying accuracy on a pre-trained net-

work and then apply active learning techniques to gain additional accuracy over the

long tail, that is apply active learning. to fine-tune the model. Their proposed method

employed farthest-first traversal, which is conceptually similar to the aforementioned

K-center algorithm, as an active learning strategy. Another method related to the

limited availability of images in a target domain was proposed by [19]. The proposed

method will initially train a model on images from a source domain before fine-tuning

the model on images from a target domain. Secondly, a domain expert is then employed

to label queried images that represent uncertain and abundant patterns from the target

domain.
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Related work

The related work chapter presents research and work related to this thesis. To begin

with, previous research related to minimizing manual effort for plankton taxa labeling

is presented. Then, similarities between the proposed framework and approaches from

the literature are presented.

3.1 Approaches tominimizemanual effort for plank-
ton taxa labeling

Classification of planktonic species with machine learning has been widely studied

in the literature with promising results [39, 15, 68, 66]. However, these methods are

developed based on a readily available data pool of labeled samples. The recent devel-

opment of data-intensive learning networks has created a surge in research due to the

rate of data gathering surpassing the human annotation rate. Methods proposed in the

literature cover a broad range of strategies from annotation-free learning to strategic

labeling with active learning.

3.1.1 Annotation-free learning of plankton for taxa classifica-
tion

In the paper [45], the authors proposed a framework for annotation-free learning of

plankton for classification. Their proposed method consists of an unsupervised and

a supervised part, as described in 2.1. Firstly, by employing a partition-energy-based

technique they were able to approximate the number of classes the dataset should

33
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be partitioned into. Following this procedure, three different unsupervised clustering

algorithms were employed to cluster the data samples. In their results, a fuzzy variant,

i.e each data point can belong to more than one cluster, of the previously described

k-means clustering algorithm proved to give the best result. To annotate the plankton

samples, two different methods were applied. Having labeled the different clusters, the

first method leverage these labels to label new samples based on their nearest cluster.

The second method, which also proved to give the best result in terms of classification

accuracy, applied the labels obtained from the unsupervised partitioning algorithm

to train a supervised classifier. Further, to account for novel and unseen samples the

authors proposed an anomaly detector based on an SVM binary classifier. Anomalies

were defined to be samples that deviated, above a given threshold, from the average

learned features for a particular class. Having one anomaly detector trained per class in

the framework, the authors successfully identified new and unseen plankton categories

in the unlabeled dataset.

3.1.2 Efficient clustering-based plankton annotation

In [51], the authors proposed a method for efficient plankton annotation by embedding

unsupervised clustering in the annotation process. The paper addresses the challenge

for a classifier to represent all possible planktonic classes present in an unlabeled

dataset. The authors’ main hypothesis is that a deep convolutional neural network

is sufficiently able to learn distinctive features in order to partition plankton images

based on their features. The proposed approach consists of multiple steps. Firstly,

relevant features are extracted with a trained feature extractor. Secondly, the data

points are clustered and visually pure clusters are accepted for further growing while

impure clusters are not. A cluster is considered visually pure if the dominant amount

of images in the cluster belongs to one class. For each iteration, the minimum cluster

size, i.e number of images in a cluster, is lowered in order to allow the model to

create smaller and purer clusters. The last step in the proposed approach includes

agglomerative clustering to create a hierarchical structure of the planktonic data.

Further by manual inspection, similar clusters are merged together and unique clusters

are labeled according to the desire of the user. Their reported results claimed to have

achieved a classification precision close to 0.9 for 1.08M images out of a pool of 1.2M.

3.1.3 Active learning on the planktonic domain

Another field of related work is plankton-specific active learning. In [40], the authors

proposed an AL method using multi-class support vector machines (SVM). In the

proposed method, least confidence sampling 2.12 and margin sampling 2.13 based on
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the SVMs decision function were employed to decide which samples to query. Their

method was conducted on 8440 grayscale images of zooplankton divided uniformly

into five classes. Their paper reported good results for the proposed method in both

single and batch mode settings. Following the development of CNNs, [10] proposed a

deep active learning approach using the probability distribution from the softmax layer

with least confidence, smallest margin, and entropy sampling as uncertainty metrics.

Further, aligned with the work in [62], the proposed method applied pseudo-labeling of

high-confidence samples to increase the robustness of the learning model, however at

the risk of training on erroneously labeled samples. In their proposed method, AlexNet

was employed as an image classifier on two datasets from two different biological

environments. They randomly selected 10K and 5K images from the two datasets

respectively to analyze the performance of the classifiers. Their results reported no sig-

nificant difference in classification performance for the uncertainty metrics employed.

However, the trials including pseudo-labeled high-confidence samples achieved the

best performance by reaching an accuracy of the full dataset with only a third of the

samples labeled. Moreover, the above-mentioned AL frameworks were implemented

on two different planktonic datasets in a report conducted by the undersigned [25]. The

three different query strategies based on the softmax layer; least confidence, margin

sampling, and entropy were applied in the experiments. The reported results were

aligned with the findings of [10], indicating that the cost-effective module is effectively

increasing the classification accuracy in a low-data setting. Further results showed

that the RBS performed equal to the active learning strategies when the labeled dataset

was small, suggesting that the learning model lacked enough feature knowledge to

confidently choose the samples it found most informative. This observation motivated

the initial incorporation of the full feature space as done in the proposed framework

in this thesis. The results from the report are presented in figure 3.1.
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(a) AL on the AILARON dataset.
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(b) Cost-effective AL on the AILARON dataset.
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(c) AL on the Kaggle dataset.
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(d) Cost-effective AL on the Kaggle dataset.

Figure 3.1: Results of applying AL and CEAL to the planktonic domain. From the work conducted in [25].

3.2 Related active learning approaches

A variety of other active learning methods from the literature are related to the pro-

posed framework in this thesis. The core-set approach proposed by [52] is related to the

representative metric applied. However, a distinction is that the proposed optimization

module is not applied in the proposed framework because of an increased computa-

tional effort, however with little gain in accuracy as can be observed in the experimental

results in section 6.1. Another pertinent strategy, related to the informative metric,

is the DFAL approach proposed by [16]. A difference from their work is the applied
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sub-modular heuristic, i.e representative metric, to prevent redundant sampling in the

queries. Furthermore, similar hybrid methods have also been proposed in the literature.

In [32], the authors combined the margin sampling described in equation 2.13 with the

k-means clustering algorithm, described in section 2.5.2, through a trade-off function

giving weight to the samples based on both the uncertainty and distinctiveness of the

sample. While this is conceptually similar to the proposed approach in this thesis, a

significant difference is the use of adversarial attack and data augmentation to improve

the informative sampling. Furthermore, by only passing on a few of the samples from

the informative method to the representative method, the computational effort of the

approach proposed in this thesis is lowered in comparison. Similar hybrid methods

employing the softmax layer for uncertainty measure have also been proposed by [33]

and [67]. These methods, in addition to [32], are represented by the ’softmax hybrid’

strategy in the experiments in chapter 6.
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Chapter 4

Datasets

The motivation for the experiments conducted in this thesis was twofold and for this

reason, two different grounds for testing were applied in the experiments. Firstly, to

compare different methods of active learning, including the proposed CIRAL frame-

work, andmeasure their performance in terms of classification accuracy, the benchmark

dataset CIFAR-10 was employed, a further description of the dataset is presented in

section 4.1. The second aim was to adopt the proposed framework to the planktonic

domain and evaluate its performance on more complex datasets. For this purpose, three

different datasets from the planktonic domain were employed. One of these included

a dataset collected with the SINTEF developed SilCam employed in the AILARON

project, hence an important measure for classification performance. All the datasets

from the planktonic domain are presented in section 4.2.

4.1 CIFAR

The CIFAR-10 (Canadian Institute For Advanced Research) [36] dataset consist of

60,000 32x32 colour images uniformly divided into 10 classes. It is commonly used as

a benchmark dataset to train and test machine learning algorithms and is the most

frequently tested dataset in the field of active learning [41]. The CIFAR-10 dataset is

applied in experiments in this thesis to have a common ground for validating AL meth-

ods proposed in the literature and compare them with the proposed CIRAL framework.

Example samples from the dataset are illustrated in figure 4.1 and a visualization of

the feature space is presented in figure 4.2.
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Figure 4.1: Samples from the CIFAR-10 dataset.

Figure 4.2: Feature visualization of the CIFAR-10 dataset. The different colored data points represent the

images of the 10 different classes from the CIFAR dataset. With the T-SNE algorithm [58], the images are

projected onto the two- dimensional feature space.
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4.2 Plankton data

The main objective of this thesis is to apply active learning to the planktonic domain.

Hence, it is essential to test and validate different methods on a variety of plank-

ton datasets. To achieve this, three different datasets from the planktonic domain

are selected, representing different levels of class balance, image quality, and image

dimension.

4.2.1 AILARON

The AILARON dataset consists of planktonic data divided into six different classes.

The collection of images was captured in the years between 2015 and 2018 in the fjord

of Trondheim. An AUV with the SINTEF developed SilCam was employed to capture

the images. Samples from the dataset are presented along with the class distribution

in figure 4.3. A visualization of the feature space is presented in figure 5.3. The classes

consist of four different categories of planktonic species, a category with air bubbles

and one category of uncategorized images labeled ’other’. Comparing with the other

plankton datasets in figure 4.5 and 4.7, one can observe that the AILARON dataset

has a lower resolution and not equally as distinct features. The images do also, before

transformation, have a greater variation in width and height. These variances make

the application of the dataset for classification more difficult, but also more important

in terms of validating different AL methods. However, the class distribution is fairly

balanced compared to the Kaggle dataset presented in 4.2.2.

Figure 4.3: AILARON sample images and class distribution.
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Figure 4.4: Feature visualization of the AILARON dataset. The different colored data points represent the

images of the 6 different classes from the AILARON dataset. With the T-SNE algorithm [58], the images are

projected onto the two- dimensional feature space.

4.2.2 Kaggle

The Kaggle plankton dataset [3] from the National Data Science Bowl (NDSB) of

2015 is a collection of images collected in the straits of Florida. A towed, underwater

imaging systemwas employed to capture the images. Close to 50M plankton images got

captured in the period May-June 2014, from which approximately 30,000 images have

been labeled by Hatfield scientists. The images are ranging from a 30x30 dimension

of the smallest up to 400x400 for the largest ones. Samples from the most prominent

classes are provided together with the class distribution in figure 4.5. A visualization

of the feature space is presented in figure 4.6. The images have high quality and cover

a lot of different classes, and for this reason, the dataset is considered among the best

possible of its kind [3]. It was initially published as a part of the NDSB competition and

the winners, team DeepSea, reported a validation accuracy of 82%. Comparing with the

findings of [14], reporting that domain experts can maintain 67 − 83% self-consistency

in taxa labeling, the supervised classification proved to compete with human domain

experts in terms of classification accuracy.
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Figure 4.5: Kaggle sample images and class distribution.

Figure 4.6: Feature visualization of the Kaggle dataset. The different colored data points represent the

images of the 10 different classes from the Kaggle dataset. With the T-SNE algorithm [58], the images are

projected onto the two- dimensional feature space.

While the Kaggle dataset has excellent image quality, the chosen subset of classes

has a heavy imbalance towards the "trichodesmium puff" class as can be observed in

4.5, making it a good measure to see how well the different AL frameworks tackle the

imbalance. To account for the imbalance in terms of evaluation methods, the balanced

accuracy metric described in section 2.2.4 is employed.

4.2.3 Pastore

The Pastore dataset [45] is composed of 5000 plankton images evenly distributed

over 10 different classes. The different freshwater planktonic species were captured on

video by a lensless microscope as a part of the work with the annotation-free plankton
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classifier approach described in chapter 3. As a part of the proposed pipeline, a series of

the captured videos, each ten seconds long, are processed to generate cropped images

of each plankter. Ten representative examples from the dataset are presented in figure

4.7 and a visualization of the feature space is presented in figure 4.8.

Figure 4.7: Pastore samples images.

The pastore dataset combines a balanced class distribution with excellent image

quality, hence works as a good combination of the datasets described in 4.2.2 and 4.2.1.

Figure 4.8: Feature visualization of the Pastore dataset. The different colored data points represent the

images of the 10 different classes from the Pastore dataset. With the T-SNE algorithm [58], the images are

projected onto the two- dimensional feature space.
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4.3 Data pre-processing
The images in the described datasets appear in a multitude of different formats and

dimensions. Since neural networks demand fixed input dimensions, as described in

2.2.1, some mild pre-processing is necessary to make the data readily available as

input to the network. The pre-processing step employed consists of three parts, firstly

the images are transformed into tensors, as described in section 2.2.1, optimizing

the images for processing in the GPUs employed in the experiments. Secondly, the

dimensions of the tensors are transformed to a fixed size due to the fixed dimensions

of the filters in the learning network. Lastly, to make the training more robust and

speed up the convergence, a normalization step is applied by transforming all the pixel

values in the aforementioned tensors from the range (0,255) to (0,1).
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Chapter 5

Methodology

The methodology chapter presents the framework for the novel active learning ap-

proach proposed in this thesis. It further describes the learning models employed in the

framework together with applied data augmentation techniques. Lastly, a presentation

of the implementation framework including relevant open source software, software

packages, and hardware-specific details are included at the end of the chapter.

5.1 Proposed active learning framework

To improve on existing active learning frameworks presented in the literature, a novel

method for active learning is proposed in this thesis. By leveraging research in the

field of AL, this novel framework aims to combine the advantages of an informative

and a representative query strategy in a hybrid active learning strategy. The frame-

work described is the work proposed in [26] and presented on the "13th International
Conference on Digital Image Processing" (ICDIP). Different from the presented work

is the data augmentation module, described in section 5.3, that was added after the

paper submission to increase the overall classification accuracy and in particular, give

a performance enhancement for the informative metric employed. From figure 2.10,

illustrating a batch of samples queried with an informative strategy, one can observe

a lot of queries from the same area in the latent space, suggesting high correlation,

and redundancy among the samples with regard to the information provided to the

classifier. Based on this inefficiency in the sample querying, a representative metric

is integrated into an informative-based active learning framework with a two-fold

motivation. First, by initially incorporating the full feature space, it enables the image
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classifier to utilize the full data distribution of the unlabeled samples, hence minimizing

the unknown unknowns, i.e the knowledge gap, described in section 2.4.3. Moreover, it

also avoids the redundant sampling previously described. This proposed hybridization

enables querying of informative samples that also best represent the feature space

of the unlabeled data. Figure 5.1 illustrates how the informative and representative

metrics are combined through a trade-off function for hybridization of active learning.

By initially presenting all samples for the representative metric, the learning model will

gain an overview of the whole feature space. Further, as the labeled pool is incremented

with new, queried samples in each AL cycle, the learning model will observe new

features and update its inter-class decision boundaries correspondingly. These decision

boundaries are represented by the trainable model parameters A𝑘 in algorithm 3.

Algorithm 3 CIRAL: Combined informative and representative active learning ex-

tended with the augmentation module.

Require: Unlabeled samples 𝐷𝑈
0

Require: Initially labeled samples 𝐷𝐿
0

Require: Query budget B
Require: Batch size 𝛽

Require: Set of hyper-parameters to train the networkH
Require: Set of data augmentation techniques T
𝐷𝐿
𝑘
= 𝐷𝐿

0

𝐷𝑈
𝑘
= 𝐷𝑈

0

while 𝐷𝐿
𝑘
− 𝐷𝐿

0
≤ B do

A𝑘 = Train(𝐷𝐿
𝑘
,H ,T)

for 𝑥𝑖 ∈ 𝐷𝑈𝑘 do
𝑟𝑖 ← DeepFool(𝑥𝑖 ,A𝑘 )

end for
𝑏𝑖 ←− TradeOff(𝑟𝑖 )
𝑄𝑘 ←− MinMax(𝑏𝑖 , 𝛽)
𝐷𝐿
𝑘+1 ←− 𝐷

𝐿
𝑘
∪𝑄𝑘

𝐷𝑈
𝑘+1 ←− 𝐷

𝑈
𝑘
\𝑄𝑘

end while

Still, as the training proceeds and the model become more confident, the decision

boundaries become more static. Wherefore it becomes increasingly important to put

weight on the samples that are in the proximity of the boundary to let the learning

model fine-tune its decision boundaries. This switch from representative to informative
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samples is achieved by employing the TradeOff method described in algorithm 4,

which eventually ignores samples found at large distances away from the decision

boundary.

Algorithm 4 Tradeoff: Hybrid AL trade-off function.

Require: Ranked informative samples 𝑋𝑖
Require: Trade-off constant 𝐾𝐾 = 1

Require: Trade-off rate 𝛿 ∈ (0, 1)
𝑏𝑖 ← 𝑋𝑖 [0 : 𝐾𝑘 ]
𝐾𝑘+1 ← 𝐾𝑘 · 𝛿
return 𝑏𝑖

To find the aforementioned distance, the DeepFool [42] algorithm, described in

section 2.5.1, is employed in the proposed framework, to compute adversarial attacks to

find a proxy for the distance to the decision boundary. By adding the above-mentioned

data augmentation module, described in 5.3, to the framework, the network will

improve its decision boundaries from training on more diverse samples, and resultingly

improve the accuracy of the boundary distance found by the informative metric.

Figure 5.1: The proposed hybrid active learning framework. Combined Informative and Representative

Active Learning (CIRAL).
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To find the representative samples among the queried informative samples, the

core-set approach described in 2.5.2 is employed, in particular, the MinMax problem

presented in algorithm 2 is solved at each AL cycle. A number of samples, 𝑄𝑘 , from

the representative sampling, is then queried to a human oracle for labeling and the AL

cycle is then repeated. This process continues until a labeling budget B is exhausted.

In summary, the aim behind this proposed hybridization has three folds

• The model will have a good initialization from incorporating the full feature

space in the early rounds of querying and training.

• Adding representative sampling to the queried informative samples prevents

redundant labeling representation from the same area of model uncertainty

• As the softmax layer in neural networks has shown to be a bad proxy for the

uncertainty of neural network [24, 50, 52], an adversarial active learning method

is employed. This method has previously shown good results [16], however it

was not employed with sub-modular heuristics as is done in this thesis.

5.2 Employed image classifiers

Due to the different complexity in the datasets presented in chapter 4, two different

image classifiers were employed in the experiments conducted for this thesis. For

the CIFAR dataset, ResNet-18 was employed, whereas, for the planktonic datasets, a

custom network was employed, both of which are presented in the upcoming sections.

The optimization of the image classifiers was not in the scope of this thesis, however,

to best validate the performance of the different active learning strategies, it was of

importance to employ classifiers that performed well in terms of classification accuracy.

ResNet-18

Given enough capacity, a neural network with one hidden layer is sufficient for approx-

imating any continuous function according to the universal approximation theorem

[13]. However, as described in section 2.1, such massive layers lack flexibility and

generalizability and are prone to overfitting the training data. To overcome this, novel

neural networks have a modularized design that forms a hierarchical decomposition

of the input image. This enables the network to decompose and interpret the different

images based on their features. Nevertheless, even though more layers mean less

weight on each layer and thus more flexibility, this type of deep architecture leads to

problems known as vanishing gradient problem and exploding gradient problem.
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Figure 5.2: ResNet skip connection block (Illustrated by [27]).

The backpropagation described in 2.2.1 calculates the gradient of the loss function

with regards to the weights in each layer. The gradient of the first layers in the network

will then become either infinitely small or very big from the series of multiplication

caused by the chain rule. That is, the gradient for the layer 𝑧 with respect to the weight

𝑤𝑖 in a neural network with depth 𝑗 is

𝜕𝑧

𝜕𝑤𝑖
=
∑
𝑗

𝜕𝑧

𝜕𝑦 𝑗

𝜕𝑦 𝑗

𝜕𝑤𝑖
(5.1)

This in effect will, for infinitely small gradients, lead to very slow training of the early

layers. To overcome this, [27] proposed a novel network design with skip connection

blocks as illustrated in figure 5.2, which allows the model to backpropagate through

the identity function, effectively preventing vanishing gradients. Further, instead of

mapping the identity function F (𝑥) = 𝑥 , the skip connection block allows for mapping

of the zero-function F (𝑥) = 0, which is an easier and computational more efficient

mapping. Formally, the underlying mapping from figure 5.2 becomes

H(𝑥) = F (𝑥) + 𝑥 (5.2)

a recasting gives the residual mapping

F (𝑥) = H(𝑥) − 𝑥 (5.3)

Consequently, F (x) only needs to learn any change in x, i.e residual, from the underly-

ing identity mapping, hence the name residual mapping. The details of the ResNet-18

architecture can be observed in table 5.1.
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ResNet-18

Layer type Output size Layer details
Convolution 1 112x112 7x7, 64, stride 2

3x3 max pool, stride 2

Convolution 2 56x56

[
3𝑥3, 64

3𝑥3, 64

]
x 2

Convolution 3 28x28

[
3𝑥3, 128

3𝑥3, 128

]
x 2

Convolution 4 14x14

[
3𝑥3, 256

3𝑥3, 256

]
x 2

Convolution 5 7x7

[
3𝑥3, 512

3𝑥3, 512

]
x 2

1x1 Average pool, 1000-d FC,

softmax

Table 5.1: ResNet-18 architecture.

Custom network architecture

The network employed for the plankton datasets is described in table 5.2. It is consisting

of only four convolutional layers and is considerably smaller in the number of trainable

parameters compared to the previously described ResNet-18. However, as discussed

in section 2.1, to avoid overfitting the dataset, it is important to limit the number of

parameters in the learning network. The custom network proved to give good accuracy

and avoid overfitting when tested on the planktonic dataset and was further employed

in the experiments presented in chapter 6.
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Table 5.2: Custom network architecture

Layer 1 Convolutional layer with 32 filters, kernel size=5

Layer 2 Convolutional layer with 32 filters, kernel size=5

2x2 Max pooling

Layer 3 Convolutional layer with 64 filters, kernel size=5

2x2 Max pooling

Layer 4 Fully-connected 1000-d layer

Layer 5 Fully-connected softmax layer with probability output

5.3 Data augmentation

A data augmentation module was added to the AL framework with a two-fold moti-

vation. First, to increase the robustness of the framework and ensure its adaptability

to the planktonic domain. Second, by adding the augmentation module, the classifier

performance increases, resulting in better decision boundaries for the informative

metric to work with. Regularization techniques are often disregarded in AL research

[41] since it is considered to only scale the existing relative performance of different AL

strategies. However, in this thesis, the regularization step is considered to be benefiting

the AL strategy which is dependent on good decision boundaries, hence improving its

performance relative to other methods.
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Figure 5.3: Visualization of the plankton classes from the Kaggle dataset shows how the "Chaetognath

Sagitta" class is separated into two groups based on its orientation. The plankton images are projected onto

the two-dimensional feature space using the T-SNE algorithm [58].

From an investigation of the feature clusters in figure 5.3, it was evident that

the same class, with different internal orientations, are divided by the classifier into

separate groups. Further, planktonic organisms are in general appearing in multiple

different orientations as can be seen in figure 4.5, allowing for a heavy augmentation.

Steps of augmentation applied in the proposed framework included

• Horizontal flip: Random with probability 0.5

• Vertical flip: Random with probability 0.5

• Translation: Random with shift 0.1,0.1 (pixel-wise)

• Rotation: Random with angle of 30
◦

The resulting data augmentation can be observed in figure 5.4 where a sample of

images are plotted before and after the augmentation is applied. One can observe that

the first and third samples from the right do not change much due to their initial form,

hence a more aggressive data augmentation could be applied for those samples. This

set of augmentation techniques are summarized as T in algorithm 3 and applied at

run time to the images before they are fed into the learning network.
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Figure 5.4: Comparison of samples before and after augmentation.

5.4 Implementation environment

The implementation of the ML and AL frameworks described in this thesis relied

mainly on the use of PyTorch, which is an open-source machine learning library

developed by the Facebook AI research lab [46]. At the granular level, PyTorch consists

of several components allowing it to be used for high-speed numerical operations

leveraging the power of GPUs and deep learning with high flexibility and speed. In

particular, PyTorch is leveraging the use of tensors described in section 2.2.1 that

accelerates computation when loaded into GPUs. PyTorch was chosen as the library

for the implementation of the active learning strategies and neural networks because

of its deep integration with Python and SciPy [60], the high level of support, and a

minimal framework overhead. Relevant alternatives to PyTorch that were considered

for implementation included TensorFlow and Caffe. Other relevant packages used in

the implementation included the Sklearn library [47] and also NumPy, Pandas and
Matplotlib from the SciPy ecosystem. These aforementioned packages are fundamental

for scientific computing and visualizations with Python. The Python distribution

platform Anaconda [4] was employed for package and dependency management.

Furthermore, the T-SNE library [58] was used for the feature visualizations in chapter 4.

All code for running the experiments described in this thesis is available out-of-the-box
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at https://github.com/AILARON/active-learning. The experiments were conducted on a

computer belonging to the AILARON project. The specifications of the computer can

be observed in table 5.3. Importantly, all of the experiments ran in a Linux environment

on the described GPUs, for which the aforementioned PyTorch library is optimized.

Computer specifications
OS: Ubuntu 18.04.3

CU: Intel Core i9 - 9900K

GPU: 2x ASUS RTX2080Ti Turbo

RAM: 64 GB

SSD: Crucial MX500 2TB

Table 5.3: Computer specifications.



Chapter 6

Experiments and results

This chapter presents the experiments conducted in this thesis together with visualiza-

tions and a brief analysis of the experimental results. All the experiments are conducted

on the datasets described in chapter 4. The setup for the conducted experiments is

as follows; An initial pool of 100 labeled data samples is selected to warm up the

employed image classifier and a budget of at least 70% of the unlabeled samples is

employed for each experiment. A conventional AL setup includes a human oracle

in the loop who labels the queried samples, as described in section 2.4.1. Since this

setup is impractical for the experiments conducted in this thesis, the human oracle

was simulated by employing pre-labeled samples. All reported results are the mean of

three trials and are presented with an uncertainty representing the standard deviation

of the results. The evaluation measure employed is noted on the y-axis of the figure

and is further described in section 2.2.4.

The next section will provide an evaluation of different representative metrics

before a comparison of different AL strategies is conducted. Lastly, an experiment on

the effect of data augmentation on AL strategies is presented in section 5.3.

6.1 Comparing representative metrics

This section presents visualizations and a brief analysis of the results from the experi-

ments on different representative metrics. The aim of the experiments was to identify

an applicable representative strategy for the proposed hybrid framework. In particular,

the core-set and k-means approaches with different configurations as described in

section 2.5.2 were employed in the experiments.
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Method Time

Core-set 00:03:52

Core-set w/opt 00:30:09
K-means 00:03:23

K-means++ 00:03:40

Figure 6.1: (LHS) Comparison of accuracy for different representative strategies on the CIFAR-10 dataset.

(RHS) The corresponding time consumption for each strategy.

Figure 6.1 and 6.2 visualize the results from the experiments conducted on the

CIFAR-10 and AILARON datasets, respectively. A subset of 5000 images was randomly

selected to represent the CIFAR-10 dataset, whereas the AILARON dataset consisted of

4840 images. The datasets got split into 80% unlabeled training samples and 20% testing

samples. A query size of 500 was used in both experiments. The experimental results

show marginal differences in classification accuracy, however, the core-set approach

including an optimization module is prominent with high computational time. Further,

minimal differences are apparent in the comparison of the k-means and k-means++

approaches, however, with a slight increase in computation time for the latter. One

can observe more uncertainty in the results from the experiments on the CIFAR-10

dataset compared with the experiments on the AILARON dataset. Observing that the

feature space of the Kaggle dataset illustrated in figure 4.6 is much more intertwined

compared to the AILARON feature space visualized in figure 4.4. This observation

suggests that the representative metrics benefit from a separated class distribution

as illustrated in figure 4.4. It can be seen in figure 6.1 that the k-means approach has

a much higher uncertainty compared to the k-means++ approach. As described in

section 2.5.2, the k-means++ approach trades off a high computation time to gain a

better initialization, and as result, a more stable clustering performance. As a result of

the experiments presented, in particular, the experiment on the AILARON dataset, the

core-set approach without the optimization module was selected for the AL framework
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proposed in this thesis.

Method Time

Core-set 00:03:13

Core-set w/opt 00:48:30
K-means 00:02:45

K-means++ 00:03:48

Figure 6.2: (LHS) Comparison of accuracy for different representative strategies on the AILARON dataset.

(RHS) The corresponding time consumption for each strategy.

6.2 Comparing active learning frameworks

This section presents visualizations and a brief analysis of the results from the exper-

iments comparing different AL approaches. The approaches employed in the exper-

iments are representing the broad categories of AL presented in chapter 2 and are

compared with the proposed CIRAL framework described in chapter 5. A summary of

the strategies is presented below.

• Active learning by learning (ALL): A hybrid approach, described in section

2.5.3, which varies between an informative and a representative method based

on their predicted performance.

• BADGE: A hybrid approach, described in section 2.5.3, that incorporates uncer-

tainty and diversity based on the gradients from the loss function.

• Core-set: A representative approach, described in section 2.5.2, that aims to

represent the full data distribution by finding samples that cover the full feature

space.

• DFAL: An informative approach, described in section 2.5.1, that uses adversarial

attacks to calculate image perturbations as a proxy for the images’ distance to
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the nearest decision boundary.

• CIRAL: The proposed hybrid method, described in 5.1, combines a distance-

based informative approach with a clustering-based representative strategy

through a trade-off function.

• Random: Chooses at random a set of points for each round. Considered the

benchmark for active learning methods. Also referred to as RBS (Random Bench-

mark Sampling).

For each dataset, two experiments are conducted with two different query sizes to

measure the impact of the batch size on the classification accuracy. The query size is

set to 200 and 400 for the CIFAR-10, Kaggle, and AILARON datasets, whereas 100 and

50 for the Pastore dataset. For each experiment, a bar plot is presented showing the

distribution of the queried classes when approximately 50% of the budget has been

queried. Each class is represented with the class number, and the height of the bar

represents the particular classes’ share out of all queried samples. The plot is added

to illustrate how the different strategies prioritize in their sampling. The coming sub-

sections motivate each dataset employed and presents the results from the experiments

conducted.

6.2.1 Experiments on the CIFAR dataset
The CIFAR-10 dataset, described in section 4.1, was employed in the experiments to

validate and benchmark different methods of active learning. A subset of 5000 samples

was randomly selected from the full dataset. This training set got split into a training

and testing set consisting of 4000 and 1000 samples, respectively. 200 of the samples

from the testing set were further selected as a validation set. The next section will

present visualizations and a brief analysis of the experiments conducted.

The results presented in figure 6.3b visualize how the CIRAL algorithm performs

compared to informative and representative approaches, whereas figure 6.3a visualize

the performance compared to other hybrid approaches, a query size of 200 was em-

ployed for both experiments. A full overview of the results can be observed in table 6.1.

It is easily seen that none of the approaches are prominent in terms of classification

performance and the results include a lot of uncertainty. It is to be noted that the

CIFAR-10 dataset represents complex images with a lot of information, hence 4000

images is not enough to get an acceptable accuracy on the testing set. In figure 6.3b

one can observe the random benchmark sampling (RBS), to perform on par or better

than the other AL approaches. With the aforementioned complexity of the CIFAR-10

dataset, it can indicate that random sampling is an equally effective sampling technique

as the other strategies when most of the training examples are considered valuable.

However, when increasing the query size to 400 as is done for the experiments pre-
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Method\Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ALL 0.106 0.277 0.304 0.320 0.341 0.356 0.399 0.385 0.389 0.375 0.389 0.395 0.402 0.422 0.416 0.402 0.410 0.420 0.410

BADGE 0.116 0.2916 0.297 0.358 0.333 0.370 0.343 0.368 0.393 0.397 0.416 0.422 0.414 0.431 0.406 0.439 0.430 0.420 0.420

CIRAL 0.100 0.258 0.335 0.350 0.372 0.352 0.372 0.358 0.387 0.420 0.383 0.429 0.399 0.418 0.406 0.427 0.437 0.410 0.402

CORESET 0.122 0.272 0.331 0.320 0.352 0.377 0.370 0.364 0.370 0.397 0.387 0.397 0.406 0.408 0.402 0.408 0.429 0.418 0.427

DFAL 0.095 0.256 0.270 0.306 0.372 0.343 0.360 0.358 0.387 0.366 0.372 0.406 0.395 0.395 0.375 0.393 0.395 0.375 0.389

SOFTMAX HYBRID 0.091 0.277 0.343 0.343 0.345 0.354 0.395 0.406 0.360 0.406 0.404 0.399 0.433 0.418 0.404 0.395 0.391 0.406 0.408

RANDOM 0.100 0.287 0.354 0.329 0.372 0.385 0.379 0.410 0.375 0.385 0.402 0.427 0.425 0.420 0.437 0.458 0.431 0.431 0.437

Table 6.1: Balanced accuracy score from the experiment on the CIFAR dataset with a query size of 200.

The best score in each round is marked with a bold font.

Method\Round 1 2 3 4 5 6 7 8 9
ALL 0.091 0.306 0.327 0.350 0.352 0.383 0.431 0.387 0.381

BADGE 0.088 0.322 0.367 0.392 0.392 0.399 0.408 0.413 0.413

CIRAL 0.091 0.310 0.383 0.398 0.406 0.406 0.410 0.384 0.410

CORESET 0.083 0.353 0.373 0.393 0.397 0.397 0.416 0.424 0.417

DFAL 0.091 0.310 0.360 0.379 0.404 0.430 0.441 0.439 0.446
SOFTMAX HYBRID 0.100 0.339 0.391 0.405 0.400 0.427 0.446 0.437 0.424

RANDOM 0.094 0.298 0.363 0.366 0.391 0.409 0.425 0.440 0.432

Table 6.2: Balanced accuracy score from the experiment conducted on the CIFAR dataset with a query

size of 400. The best score in each round is marked with a bold font.

sented in figure 6.4b and 6.4a, the RBS performs worst. It can be observed in figure

6.4b that RBS needs approximately twice as many samples as the CIRAL approach

to reach the same accuracy. The CIRAL approach shows, for a query size of 400, to

be a good combination of the CORESET and DFAL approaches. While the DFAL has

low performance in the beginning and the CORESET has a low performance at the

end, the CIRAL has stable high performance. However, the results from later queries

indicate that the CIRAL approach is unable to query the most informative samples,

leading to worse performance than the DFAL approach. The CIRAL approach proves,

however, to give a consistently high performance as can be seen in figure 6.4a and

6.4b, and is performing on par or better than the other hybrid methods up until 50% of

the samples have been labeled.
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(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.3: Result from comparison of approaches conducted on the CIFAR dataset with a query size of

200.

(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.4: Result from comparison of approaches conducted on the CIFAR dataset with a query size of

400.

Figure 6.5 visualize the class distribution of the queried samples. The distributions

show no particular difference apart from the unbalanced class distribution created by
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the DFAL and ALL strategy. In particular the ALL strategy suffers from this unbalanced

query distribution as can be observed in figure 6.4a. It is apparent that a lot of the

samples have been queried from the same area of uncertainty, hence the model is

not provided with enough diverse features to give a good initial performance. This

is especially prominent when compared to the hybrid methods which incorporate

the full feature space in the early AL cycles. A full overview of the results from the

experiments with a query size of 400 can be seen in table 6.2.

(a) Distribution of ALL. (b) Distribution of

BADGE.

(c) Distribution of

CIRAL.

(d) Distribution of

CORESET.

(e) Distribution of

DFAL.

(f) Distribution of RAN-

DOM.

(g) Distribution of

SOFTMAX HYBRID.

Figure 6.5: Class distribution of the queried samples from the experiment conducted on the CIFAR dataset

with a query size of 400.

6.2.2 Experiments on the AILARON dataset

The AILARON dataset described in section 4.2.1 was employed in the experiments

due to its similarity with other datasets constructed for the AILARON project, hence

a good benchmark for the different AL frameworks. The dataset consisting of 4840

images was split into a training, test, and validation set with 3933, 807, and 100 images,

respectively. The custom network described in section 5.2 was employed as an image

classifier for the experiments conducted.
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Method\Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ALL 0.504 0.646 0.748 0.795 0.835 0.852 0.867 0.884 0.895 0.902 0.909 0.913 0.919 0.918 0.925 0.914

BADGE 0.528 0.680 0.795 0.813 0.843 0.859 0.869 0.883 0.891 0.898 0.898 0.903 0.918 0.907 0.917 0.921

CIRAL 0.512 0.674 0.764 0.797 0.840 0.851 0.862 0.863 0.876 0.886 0.893 0.892 0.893 0.902 0.899 0.911

CORESET 0.499 0.703 0.769 0.805 0.836 0.847 0.869 0.881 0.884 0.892 0.903 0.909 0.908 0.907 0.914 0.916

DFAL 0.488 0.606 0.743 0.793 0.828 0.831 0.841 0.860 0.869 0.886 0.897 0.900 0.909 0.912 0.921 0.912

SOFTMAX HYBRID 0.3915 0.647 0.750 0.792 0.840 0.852 0.860 0.864 0.873 0.885 0.888 0.891 0.886 0.898 0.899 0.903

RANDOM 0.534 0.681 0.771 0.806 0.845 0.857 0.879 0.893 0.899 0.904 0.912 0.916 0.913 0.917 0.921 0.929

Table 6.3: Balanced accuracy score from the experiment on the AILARON dataset with a query size of 200.

The best score in each round is marked with a bold font.

Method\Round 1 2 3 4 5 6 7 8 9
ALL 0.437 0.693 0.805 0.838 0.863 0.871 0.881 0.900 0.902

BADGE 0.514 0.729 0.799 0.839 0.871 0.884 0.897 0.893 0.903

CIRAL 0.464 0.701 0.801 0.844 0.868 0.883 0.894 0.907 0.913

CORESET 0.433 0.747 0.793 0.833 0.858 0.881 0.882 0.895 0.907

DFAL 0.510 0.702 0.811 0.835 0.868 0.882 0.900 0.912 0.913

SOFTMAX HYBRID 0.492 0.715 0.813 0.850 0.876 0.897 0.901 0.905 0.914
RANDOM 0.474 0.712 0.803 0.847 0.875 0.883 0.894 0.902 0.909

Table 6.4: Balanced accuracy score from the experiment on the AILARON dataset with a query size of 400.

The best score in each round is marked with a bold font.

Comparing the results of the experiments with query size of 200 and 400, shown

in table 6.3 and 6.4, one can observe that the general accuracy drops when the query

size is increased. This is in contrast to what could be observed for the experiment

on the CIFAR dataset in section 6.2.1. Further, it is prominent in figure 6.7a that the

different methods in the experiment with a query size of 200 are performing equally

well, however with ALL and BADGE performing marginally better than the other

hybrid methods. In figure 6.7b one can see that RBS achieves the best performance,

however, when the query size is doubled as seen in figure 6.8b, the CIRAL approach

is performing on par or better than RBS. Equal performance for the different hybrid

methods can also be observed in figure 6.8a. This can be explained by the larger batch

size which gives the different strategies increased probability of capturing relevant

information in the queries.
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(a) Distribution of ALL. (b) Distribution of

BADGE.

(c) Distribution of

CIRAL.

(d) Distribution of

CORESET.

(e) Distribution of

DFAL.

(f) Distribution of RAN-

DOM.

(g) Distribution of

SOFTMAX HYBRID.

Figure 6.6: Class distribution of the queried samples from the experiment conducted on the AILARON

dataset with a query size of 400.

(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.7: Result from comparison of approaches conducted on the AILARON dataset with a query size

of 200.
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(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.8: Result from comparison of approaches conducted on the AILARON dataset with a query size

of 400.

When comparing the class distribution of the queried samples illustrated in figure

6.6, one can observe that DFAL and ALL are prominent in terms of unbalanced query

distribution. An interesting observation is that the DFAL method has not queried any

data samples from ’Class 3’ when half of the budget has been queried. Still, it achieves

a good performance suggesting that the data incorporated in the initial labeled samples

provided enough information to correctly classify the samples from this category. From

table 6.3, it is evident that RBS are performing best on the AILARON dataset with a

query size of 200. However, as seen in table 6.4, the Softmax Hybrid is outperforming

the other approaches for a query size of 400.

6.2.3 Experiments on the Kaggle dataset
The Kaggle dataset described in section 4.2.2 was employed in the experiments to repre-

sent an unbalanced planktonic dataset, as illustrated in 4.5. For plankton classification,

the most realistic scenario is to have a few dense classes and multiple sparse numbered

classes. Hence, it is desirable to have an active learning strategy proven to work well

with unbalanced class distributions. The dataset consists of 9379 images split into a

training, testing, and validation set with 7484, 1516, and 379 images, respectively. The

results from the experiments on the Kaggle dataset is shown in figure 6.5 and 6.6 for a

query size of 200 and 400, respectively. Interesting to observe from the plotted results

in figure 6.9, is how the ALL and DFAL methods are performing significantly better

than the other methods from the point when approximately 20% of the samples have
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been labeled. This observation suggests that they are better at identifying informative

samples at later query cycles compared with the other methods in the experiment.

One can also observe in figure 6.9b, that the proposed CIRAL frameworks benefit from

this and are performing better than RBS up until 40% of the samples have been labeled.

From that point, only a minor increase is achieved with twice the amount of labeled

samples. This trend is also prominent when comparing with the other hybrid methods

in figure 6.9a. When increasing the query size from 200 to 400, the differences in the

results from the previous experiments are even more apparent. Observing from figure

6.10b how the DFAL approach suffers from not incorporating the full feature space in

the early training round, but performs significantly better in the later rounds. Moreover,

the CIRAL approach can have a good initial performance and in general outperform

the core-set approach due to the incorporated informative metric. However, it lacks the

utilization of informative samples in which the DFAL method is better at identifying.

This challenge will be further elaborated in the discussion in chapter 7.

Method\Round 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
ALL 0.234 0.553 0.712 0.755 0.798 0.848 0.873 0.885 0.902 0.906 0.917 0.922 0.918 0.926 0.931 0.929 0.933

BADGE 0.221 0.565 0.712 0.774 0.805 0.845 0.854 0.860 0.884 0.888 0.895 0.899 0.913 0.919 0.922 0.925 0.928

CIRAL 0.243 0.589 0.731 0.800 0.835 0.853 0.869 0.881 0.890 0.892 0.903 0.912 0.906 0.912 0.910 0.914 0.920

CORESET 0.215 0.578 0.744 0.807 0.818 0.845 0.864 0.884 0.889 0.903 0.906 0.914 0.915 0.919 0.929 0.929 0.935

DFAL 0.238 0.464 0.681 0.761 0.818 0.855 0.888 0.897 0.910 0.920 0.923 0.929 0.932 0.934 0.933 0.938 0.939
SOFTMX HYBRID 0.237 0.537 0.715 0.786 0.820 0.830 0.852 0.867 0.883 0.891 0.904 0.907 0.905 0.901 0.909 0.912 0.907

RANDOM 0.285 0.579 0.728 0.795 0.829 0.847 0.865 0.874 0.894 0.904 0.914 0.914 0.909 0.925 0.926 0.919 0.928

Table 6.5: Balanced accuracy score from the experiment on the Kaggle dataset conducted with a query

size of 200. The best score in each round is marked with a bold font.

Method\Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ALL 0.213 0.416 0.605 0.709 0.782 0.813 0.831 0.847 0.870 0.879 0.892 0.895 0.908 0.906 0.917 0.922 0.929 0.921

BADGE 0.204 0.484 0.646 0.706 0.759 0.785 0.833 0.835 0.851 0.868 0.874 0.889 0.898 0.903 0.910 0.910 0.919 0.921

CIRAL 0.236 0.484 0.667 0.727 0.782 0.820 0.826 0.842 0.852 0.864 0.877 0.874 0.894 0.901 0.902 0.905 0.907 0.913

CORESET 0.265 0.508 0.647 0.727 0.770 0.807 0.817 0.834 0.845 0.855 0.866 0.877 0.882 0.899 0.907 0.911 0.909 0.908

DFAL 0.273 0.388 0.513 0.631 0.717 0.769 0.827 0.854 0.865 0.887 0.907 0.911 0.909 0.918 0.920 0.923 0.928 0.930
SOFTMAX HYBRID 0.229 0.460 0.635 0.738 0.788 0.812 0.825 0.851 0.857 0.872 0.868 0.880 0.895 0.896 0.899 0.908 0.920 0.917

RANDOM 0.255 0.433 0.622 0.727 0.771 0.807 0.821 0.837 0.855 0.873 0.886 0.884 0.888 0.902 0.900 0.909 0.919 0.912

Table 6.6: Balanced accuracy score from the experiment on the Kaggle dataset conducted with a query

size of 400. The best score in each round is marked with a bold font.
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(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.9: Result from comparison of approaches conducted on the Kaggle dataset with a query size of

200.

(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.10: Result from comparison of approaches conducted on the Kaggle dataset with a query size of

400.

Comparing the results of the class distribution of the queried samples from figure

6.11, one can observe that the ALL and DFAL approaches are tackling the class imbal-
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ance well and can query samples from the less numerous classes. It is evident that the

other hybrid and representative methods are too focused on the most prominent class

in comparison and end up with more redundant samples. Comparing this result with

the plotted accuracy, one can observe that the DFAL and ALL approaches are also the

approaches that are performing best.

(a) Distribution of ALL. (b) Distribution of

BADGE.

(c) Distribution of

CIRAL.

(d) Distribution of

CORESET.

(e) Distribution of

DFAL.

(f) Distribution of RAN-

DOM.

(g) [Distribution of

SOFTMAX HYBRID.

Figure 6.11: Class distribution of the queried samples from the experiment conducted on the Kaggle

dataset with a query size of 400.

6.2.4 Experiments on the Pastore dataset

The Pastore dataset described in section 4.2.3 was employed in the experiments to

represent an optimal dataset, combining high image quality with a balanced class

distribution. Interesting observations from this experiment were expected to be which

AL strategy that would perform best in a low-data setting, and which strategy would

utilize the possible redundant information in the dataset best. The Pastore dataset

consists of 5000 samples divided into training, testing, and validation set of 4000, 800,

and 200 samples, respectively. Observing from the results in figure 6.13 that a lot of

redundant information is incorporated in the Pastore dataset. The first experiment

was conducted with a query size of 200, with the results presented in table 6.7. An

observation to be made for this dataset is how the AL strategies benefit from the use of

representative metrics instead of informative metrics. One can observe in figure 6.13

how the ALL andDFALmethods fall short compared to the other approaches. This is the

opposite of the results from the experiments on the Kaggle dataset presented in section
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6.2.3. To get a more clear picture of the performance of the different approaches on the

Pastore dataset, the query size and budget were lowered to 50 and 500, respectively.

The results from the new experiments is shown in figure 6.14. The pattern from the

previous experiment is still evident, however, the proposed CIRAL framework proves

to give the best performance out of the compared approaches in this low-data setting.

Interestingly, the same informative metric is used for both DFAL and CIRAL, however,

the CIRAL method employs a sub-modular heuristic which it benefits from in this

particular experiment.

Method\Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ALL 0.134 0.368 0.614 0.810 0.909 0.950 0.971 0.980 0.985 0.996 0.996 0.998 0.997 0.997 0.997 0.998

BADGE 0.101 0.385 0.688 0.902 0.957 0.974 0.985 0.988 0.991 0.992 0.996 0.993 0.994 0.996 0.997 0.997

CIRAL 0.129 0.388 0.775 0.916 0.963 0.980 0.985 0.989 0.995 0.995 0.997 0.996 0.995 0.998 0.997 0.997

DFAL 0.100 0.323 0.643 0.809 0.897 0.934 0.967 0.968 0.979 0.9840 0.992 0.994 0.996 0.990 0.994 0.997

CORESET 0.139 0.393 0.800 0.907 0.965 0.981 0.983 0.989 0.990 0.994 0.995 0.995 0.995 0.996 0.998 0.996

SOFTMAX HYBRID 0.099 0.370 0.772 0.906 0.949 0.971 0.981 0.985 0.987 0.990 0.992 0.994 0.996 0.996 0.996 0.997

RANDOM 0.119 0.417 0.770 0.914 0.962 0.981 0.986 0.993 0.994 0.995 0.996 0.997 0.997 0.999 0.997 0.999

Table 6.7: Balanced accuracy score from the experiment on the Pastore dataset conducted with a query

size of 200. The best score in each round is marked with a bold font.

Comparing the distribution of queried samples in figure 6.12, it is prominent how

the CIRAL, ALL, and DFAL approaches have a more unbalanced query distribution

compared to the other approaches. An interesting observation to be made is how the

CIRAL approach has the majority of queried samples from ’Class 8’, identical to ALL

and DFAL. However, the CIRAL is more balanced in its query from other classes and

as can be observed in table 6.7 and 6.8, it performs better or on par with the other

strategies for the experiments on the Pastore dataset.

Method\Round 1 2 3 4 5 6 7 8 9 10 11
ALL 0.131 0.204 0.324 0.462 0.670 0.773 0.855 0.884 0.916 0.942 0.955

BADGE 0.130 0.234 0.440 0.610 0.788 0.844 0.896 0.935 0.958 0.973 0.980

CIRAL 0.137 0.298 0.461 0.637 0.811 0.892 0.917 0.949 0.962 0.972 0.980
CORESET 0.099 0.231 0.373 0.612 0.779 0.860 0.930 0.942 0.968 0.965 0.976

DFAL 0.108 0.237 0.417 0.590 0.725 0.816 0.844 0.864 0.875 0.898 0.931

SOFTMAX HYBRID 0.115 0.227 0.429 0.631 0.760 0.854 0.919 0.939 0.956 0.71 0.973

RANDOM 0.099 0.265 0.459 0.625 0.813 0.880 0.920 0.940 0.960 0.970 0.980

Table 6.8: Balanced accuracy score from the experiment on the Pastore dataset conducted with a query

size of 50. The best score in each round is marked with a bold font.
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(a) Distribution of ALL. (b) Distribution of

BADGE.

(c) Distribution of

CIRAL.

(d) Distribution of

CORESET.

(e) Distribution of

DFAL.

(f) Distribution of RAN-

DOM.

(g) Distribution of

SOFTMAX HYBRID.

Figure 6.12: Class distribution of the queried samples from the experiment conducted on the Pastore

dataset with a query size of 50.

(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.13: Result from comparison of approaches conducted on the Pastore dataset with a query size of

200
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(a) Hybrid approaches. (b) Informative/Representative approaches.

Figure 6.14: Result from comparison of approaches conducted on the Pastore dataset with a query size of

50.

6.3 Experiments on the effect of data augmentation
Comparing the results of the approaches with and without the augmentation module

in figure 6.15, it is evident that the module is beneficial in terms of classification

performance. Yet, an interesting observation is that the non-augmented approaches

have an initial better performance than the augmented approaches. However, the

augmented approaches do eventually outperform the non-augmented approaches in

terms of final classification performance in all the experiments. Nevertheless, one

can observe that the effect of the augmentation module is dependent on the dataset

employed. For the AILARON dataset, with the result shown in figure 6.15e and 6.15f, the

performance enhancement is minimal, whereas for the CIFAR dataset, as illustrated

in figure 6.15a and 6.15b the difference is significant. A reason for employing the

augmentation module is to enhance the performance of the informative metrics relative

to the other approaches. The methods believed to benefit from the augmentation

module are the DFAL and CIRAL methods, which are dependent on good decision

boundaries. Observing from the result shown in figure 6.15b that the DFAL method

has a performance increase with the augmentation module employed. This effect can

also be observed in figure 6.15g and 6.15h, where the CIRAL method performs best

with the augmentation module, and second-worst without.
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(a) CIFAR. (b) CIFAR.

(c) Kaggle. (d) Kaggle.

(e) AILARON. (f) AILARON.

(g) Pastore. (h) Pastore.

Figure 6.15: Comparison of the effect of data augmentation in AL. The figures on the left-hand side show

the comparison of hybrid methods. The figures on the right-hand side show the comparison of informative

and representative methods.
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Chapter 7

Discussion

This chapter presents a review of the results of the thesis and a discussion on the

research questions presented in the introduction. The background material and the

conducted experiments presented in chapter 2 and 6, respectively, lay the foundation

for the discussion.

7.1 The current standing of research in the field of
AL

The different active learning methods presented in the literature are commonly divided

into informative and representative approaches, as described in section 2.4. Exper-

imental results from this thesis suggest that many of the informative approaches

proposed in the literature suffer from the inability to reliably measure the uncertainty

of a deep neural network. This was particularly evident in the experiments presented

in chapter 6, where methods relying on the uncertainty of the network, performed

worse than random benchmark sampling, RBS. Although uncertainty quantification

in the field of AL is paramount, the findings of the literature study conducted in this

thesis suggest that few studies have been done on this subject. Several methods for

uncertainty quantification (UQ) were presented in [5], however, they reported fewer

studies on semisupervised methods compared to the supervised and unsupervised

methods. Bayesian neural networks (BNNs) have commonly been applied in the litera-

ture to provide information about the reliability of the predictions in deep learning

(DL) frameworks [5]. Promising approaches leveraging Bayesian inference frameworks

for uncertainty measures [18], more recently representative measures [48] and addi-

75
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tionally meta-learning [37, 22, 31] have been proposed in the AL literature. However,

the uncertainty quantification represents a gap in the AL literature that can be filled

by further studies to label samples that provide the most information to the classifier.

Transferability and testing in the AL domain

Results from the experiments in chapter 6 show how the performance of different

strategies changes with the experimental conditions. Several heuristics for the identifi-

cation of informative samples have been proposed in the literature and reported to

perform better than random benchmark sampling, RBS. However, the experimental

results from this thesis suggest that many of the methods proposed in the literature are

only performing well under a brittle combination of experimental settings. Concerning

this discovery, two aspects of active learning in the literature should be discussed.

First, while having received little attention in the evaluation of AL approaches, the

transferability property is essential to prove the usability of an AL framework in

various domains. The concept of transferability is largely related to the task-agnostic

approaches which have gained increasing interest from researchers over the last years

[21, 65, 55]. This is an important research direction for making AL robust and appli-

cable for real-world problems. Second, a challenge in the current AL research is the

lack of a common ground for testing of the frameworks proposed in the literature. The

most common benchmark employed in the literature is RBS, however, as discovered

in [43], different papers reports deviating results for RBS under identical settings.

This lack of a common testing ground has also led to a disagreement in the literature

on the performance of informative and representative methods as indicated in [50].

Consequently, future research should be evaluated on universal benchmark results

for standard datasets. Further, another way of mitigating the aforementioned chal-

lenges in the AL research would be to create unified datasets where some samples are

proven to be more informative or representative than others. In addition to comparing

with unified benchmark classification results, proposed AL frameworks could also be

measured on the amount of proven informative and representative samples queried.

Methods for efficient plankton taxa labeling in the literature

The literature study conducted in this thesis identified several methods for efficient

plankton taxa labeling. However, a minority of the methods proposed in the AL litera-

ture have been adopted to the planktonic domain. Instead, clustering based methods

and unsupervised learning is prominent in the field [45, 51]. These proposed unsuper-

vised methods do, however, address an important aspect of the plankton taxa labeling,

that is, how to identify the number of classes present in an unlabeled dataset. Com-
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pared to other AL applications, this challenge is especially prominent in the planktonic

domain, as described in section 6.2.3, and should be considered when developing AL

frameworks for this application. Furthermore, T-SNE visualizations in chapter 4 show

how the plankton classes is highly separated based on their features, suggesting the

applicability of representative approaches in the domain. This assumption is further

supported by the experimental results presented in section 6.2.4, where the DFAL infor-

mative approach is shown to suffer from an unbalanced class querying. As previously

mentioned, the literature study conducted in this thesis revealed gaps in the adoption

of recent methods from the the AL literature to the planktonic domain. As described

in section 3.1.3, the proposed approaches relied on uncertainty sampling based on

support vector machines (SVMs) and the softmax layer in CNNs, respectively. The

latter has shown to be an unreliable metric for uncertainty in CNNs [17]. However,

this gap is addressed in this thesis by adopting novel methods from the AL literature

to the planktonic domain. The framework and considerations presented in this thesis

are creating a foundation for future adoption of AL in the planktonic domain.

7.2 Considerations and challenges related to AL

Most approaches of AL in the literature consider the situation where a fixed number

of samples is queried in each cycle until a budget B is exhausted. It is advantageous,

yet non-trivial to find the optimal number of samples to query in each AL cycle. The

number will, as seen in the experimental results presented in chapter 6, often be

dependent on the image classifier, the active learning strategy, and the dataset applied

in the framework. As described in section 2.5.1, batch-mode informative approaches

are often associated with correlated and redundant samples in the queried batches. A

simple, yet effective approach to mitigate this challenge has been to lower the query

size. However, as described in section 2.4, fewer data points would lead to a smaller

update of the network weights and a higher computational effort from an increased

number of AL cycles. This is in particular infeasible for a dense and parameter-rich

classifier. However, a low query size proved to be effective in the experiments presented

in section 6.2.2, where the overall accuracy dropped with an increasing query size. In

addition to redundant sampling, the high query size does also lead to fewer updates of

the weights in the image classifier. The queries will, as a result, be from less optimal

areas compared with a model trained over more iterations. In general, a lower query

size would lead to a more agile classifier in terms of updates on the decision boundary,

however, a too low query size would lead to insufficient data presented to the classifier.

Moreover, another factor to consider when selecting query size is the applied active

learning strategy. In a paper proposed by [44], the author found the core-set method to
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outperform random sampling for a high query setting whereas underperforming in a

low-budget setting. The core-set approach, which is a representation-reliant method, as

described in 2.5.2, needs an initial high amount of images to learn a good representation

of the feature space. The results from the paper suggest that the core-set approach and

other representation-reliant approaches could benefit from a dynamic query structure.

By initially querying a high amount of samples, the representative-reliant approach is

enabled to get a better initialization from which it can benefit in the later rounds with

lower query size. The choice of query size is dependent on the dataset, the employed

image classifier and the AL strategy. In general, a representation-reliant AL strategy

would need a high initial amount of labeled samples, whereas other informative-based

strategies would necessarily not. Hence, the latter strategy would be more dependent

on the image classifier applied and the trade-off between the computational effort

and the correlation among the queried samples. Furthermore, in low-budget regimes,

a large query size may lead to fewer updates on the classifier, which was observed

to be disadvantageous in the experiments presented in section 6.2.2. In addition to

the previously described dynamic query structure, another less static query structure

could also be applied. By considering the query size as an upper bound rather than a

fixed size, one can leave out samples that prove to be less informative or representative

with the advantage of having queries left for the coming rounds. This effectively opens

the possibility of dynamically making larger queries when the model identifies more

valuable samples and lower queries on the contrary.

Strategy- or data-driven implementation

Another consideration in the implementation of AL is whether it should be data-
or strategy-driven, that is, should the employed dataset and domain be considered

when selecting an AL strategy. From the experimental results presented in chapter 6,

it was largely evident that the performance of the AL approaches differs depending

on the experimental conditions. In particular, the results on the Pastore dataset in

section 6.2.4 reported that the representative approaches outperformed the informative

approaches, whereas the opposite was true on the CIFAR dataset in 6.2.1. Looking

behind the results, a large difference in the class separation for the two datasets

is observed in figure 4.2 and 4.8, suggesting that the feature separation and data

complexity should be considered when selecting a strategy for the AL framework. In

other words, the representative approaches are superior on datasets with a large class

separation, whereas the informative approaches are performing better on datasets

with an intertwined feature space. Furthermore, the experimental conditions in the

experiments presented in section 6.2.1 proved to be beneficial for the informative

approaches. Looking at the queried class distribution in figure 6.11, it is evident that the
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informative approaches, in particular DFAL and ALL, can mitigate the class imbalance

present in the Kaggle dataset. As a result, it can be observed in figure 6.9 and 6.10,

that these methods outperform the other representative and hybrid methods. This

observation suggests that the informative approaches are better at ignoring large

and prominent classes compared with the representative approaches. It should be

noted that ALL is selecting between an informative and a representative approach in

each round, however, in the aforementioned experiment, it was heavily reliant on the

informative approach. In general, it can be smart when choosing an AL strategy to get

an overview of the feature space of the available data. A challenge with representation-

reliant methods is to get a good feature extraction. This can, however, be solved with

transfer learning from similar domains as described in section 2.2.3.

Limiting factor of AL
The concept of AL is relying on the idea that some samples bring more information to

the classifier than others. However, when this condition is not present, the current

strategies developed for AL can not effectively reduce the labeling effort. That is, when

all samples are considered equally valuable, the full dataset needs to be labeled to

achieve the full accuracy score. This was particularly evident in the experiment on

the CIFAR dataset in section 6.2.1. The experimental results showed that the random

benchmark sampling (RBS), performed on par or better than the active querying

methods. This result suggests that in datasets where much of the training examples

are equally valuable, it is difficult to actively query samples better than RBS. The active

query methods will instead fail to sample the true data distribution, introducing a

bias in the distribution of the labeled samples. However, a dataset representing the

opposite was evident for the experiments presented in section 6.2.4, where only a

small fraction of the samples was needed to gain full accuracy. In a paper by [61], an

investigation was conducted on the information provided in the different datasets.

Their findings were aligned with the experimental results in this thesis, showing that

for some datasets, the performance of an AL framework is naturally limited by the

information distribution.

7.3 Towards a robust framework for the planktonic
domain

The framework proposed in this thesis is constructed to address gaps in existing

methods in the literature and be a robust method for actively querying samples from

the planktonic domain. In particular, the proposed hybridization looks to fully utilize
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the relevant knowledge found in the data distribution of the unlabeled data pool while

also considering hard examples lying close to the inter-class decision boundaries. By

leveraging two independent methods of sampling, the AL becomes more robust in

terms of adaptability to different experimental conditions. The experimental results

presented in section 6.2 show that the proposed framework is performing well in

a variety of experimental conditions. In particular, the framework is handling class

imbalance well, as is illustrated in figure 6.10. Further, the results from the experiment

conducted on the Pastore dataset illustrated in figure 6.14, suggests that it is an effective

strategy also in low-budget regimes. On the contrary, other methods are, as previously

discussed, observed to be performing well only for a given combination of experimental

conditions. These experimental results suggest that hybridization of AL is beneficial

for the robustness and accuracy of the AL strategy.

The effect of data augmentation

To enhance the classification performance, a data augmentation module is employed

in the AL framework. From the results in section 6.15b, one can observe how the DFAL

approach benefits from having improved decision boundaries and outperforms the

other methods. This can also be seen for the proposed CIRAL framework in figure

6.15g and 6.15h. From an initial average performance, it ends up performing on par

or better than the rest of the AL approaches. These results indicate the advantage of

applying data augmentation and suggest that the improved decision boundary of the

classifier is benefiting the informative metric employed. Nevertheless, one aspect to

notice here is that the strategies without the augmentation module have an initially

better performance on the planktonic datasets. This observation suggests that a larger

labeling budget should be employed when applying a data augmentation module

to the AL framework. Furthermore, it is observed large differences in the effect of

the augmentation module. For complex and information-rich datasets such as the

CIFAR, one can observe a large performance gain, as illustrated in figure 6.15a and

6.15b. However, the performance enhancement on the AILARON dataset, as seen in

figure 6.15e and 6.15f, is less significant. Nevertheless, both the Plankton and the

Kaggle dataset significantly increase their performance with the augmentation module,

suggesting its applicability for datasets with high image quality.

Challenges and improvements

While having a robust classification performance, the proposed framework suffers in

the later AL cycles of not identifying informative samples equally well as the pure

informative sampling. This is prominent in the results of the experiments presented in
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section 6.2. Ideally, the hybridization should have the high performance of the pure in-

formative metrics in the later rounds, and the robust performance of the representative

metrics in the early rounds. The trade-off function and representative metric employed

to avoid redundant sampling and incorporate the full data distribution are considered

to be the reasons for the performance degradation in the later rounds. In particular, a

pitfall with the representative metric is the querying of samples from sparse, outlier

regions that can confuse the model. The framework is constructed to be aware of

the latent space, and the performance degradation at the later AL cycles can indicate

that informative samples are traded for samples from sparse regions. The framework

should be improved to be further applicable for real-world applications. In particular, a

smarter trade-off function could be employed to utilize more high informative samples

in the later queries, and the representative metric should avoid querying samples from

outlier regions as they can be considered as noise in the dataset. The hybrid framework

will provide a stable and high accuracy if this challenge can be overcome.
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Chapter 8

Conclusion

This thesis assesses the field of active learning as a way of minimizing the manual

effort in plankton taxa labeling. The work resulted in a proposed hybrid active learning

framework that combines metrics for representative and informative sampling. The

framework has been compared to other state-of-the-art AL approaches and has proven

to achieve a more consistent classification performance in a variety of experimental

conditions.

The literature study conducted throughout this thesis identified two broad categories,

informative and representative approaches, that the proposed methods in the AL lit-

erature can be divided into. The informative approaches aim at identifying samples

the classifier is uncertain about and are often reliant on the uncertainty quantification

(UQ) of the employed classifier. These approaches can in theory identify hard examples

for labeling, however, current methods for UQ are not reliable, and will often lead

to a bias in the queried data distribution. The representative approaches, utilizing

the latent space, have shown to be a good way of capturing the data distribution of

unlabeled samples and mitigate the aforementioned bias. However, representative

methods in the literature have been shown to fail when the dataset includes many

hard examples or outliers. Hybrid approaches have been proposed in the literature as

a midway, combining the informative and representative approaches, to both utilize

the full data distribution and identify hard examples.

In the related work chapter of the thesis, methods for minimizing the manual ef-

fort for plankton taxa labeling were presented along with AL methods related to the

proposed framework. The chapter presents a gap in the development and adoption of
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AL methods to the planktonic domain, which the framework proposed in this thesis

intends to mitigate. To identify a representative metric for the hybrid framework,

two different clustering-based methods were implemented and tested. The core-set

approach achieved high accuracy in the planktonic domain and was employed in the

framework to utilize the full data distribution and avoid redundant sampling in the AL

queries. To mitigate the challenge with uncertainty quantification in the softmax layer

of CNNs, a distance-based approach employing adversarial attacks was implemented.

This informative metric is dependent on good decision boundaries to get full utiliza-

tion, and for this reason, a data augmentation module was employed to enhance the

performance of the classifier. The augmentation module allowed the classifier to be

more robust on complex data structures that exist in the plankton dataset and improve

its performance relative to other active learning strategies.

Several different approaches representing the broad categories in the AL literature

were implemented and compared together with the proposed framework to gain an

overview of potential challenges related to the implementation of AL. The output of

the results showed that informative AL approaches perform best when the dataset is

unbalanced or has intertwined classes. Moreover, representative approaches proved to

be superior when the dataset has a large class separation. It was further shown that the

query size in the AL frameworks largely affected the performance, and it was evident

that representative approaches benefit from a large query size whereas a lower query

size is advantageous for informative approaches in low-budget regimes. The study on

the implementation of AL suggests that the choice of strategy should be driven by

the dataset it is applied to. Considerations when picking strategy includes query size,

budget size, class separation, and data complexity. Finally, it was shown that random

benchmark sampling can outperform active learning when the dataset it is applied to

mostly contains valuable examples, in that case, AL has shown to be a less effective

way of minimizing the manual effort of labeling.

The proposed framework has shown promising potential as a tool for minimizing the

manual effort for plankton taxa labeling. Among the tested approaches, the proposed

framework gave the best overall performance on the planktonic datasets, indicating its

applicability for the AILARON project. It further proved to handle datasets with class

imbalance and situations with low-budget regimes well. The proposed AL framework

can work as valuable support for domain experts, and with additional improvements,

further reduce the number of manual labels needed to achieve a consistent and satis-

factory classification performance on planktonic datasets.



Chapter 9

Future work

Throughout the work with this thesis and the development of the proposed framework,

new challenges have been faced, and ideas to solve them have been born. This chapter

presents promising research directions that are both in general for the field of AL and

also specific for the proposed framework. Hopefully, some of these future research

directions would encourage further research on active learning for the planktonic

domain.

• Better way of trading off the informative and representative metric. A
potential improvement on the query selection should improve on the informative

sampling at later AL cycles. As evident in section 6.2.3, the proposed framework

is performing worse than the sole informative metric in the later AL cycles,

indicating that it is not able to efficiently leverage the informative metric in the

hybrid framework. A promising future research direction would be to find a

trade-off function that would put more weight on the informative samples at the

later AL cycles. A part of the solution for this problem could be to implement a

dynamic query structure in the AL framework.

• Find other representative metrics that are not reliant on feature extrac-
tion. The current representative metric employed in the AL framework is heavily

reliant on learned representations of the unlabeled data. Consequently, the frame-

work is dependent on leveraging a high amount of initial queried samples along

with transfer learning to incorporate initial knowledge into the feature extractor.

A promising future research direction would be to identify and implement alter-

native methods for representative sampling that are not as reliant on a trained

feature extractor. A particularly interesting addition to the framework would

have been the Bayesian sparse-set approach presented in section 2.5.2.
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• Make the informative metric more task-agnostic. The informative metric

proposed in the thesis is reliant on the decision boundaries and the classification

performance of the employed classifier. This makes the hybridmethod vulnerable

to other experimental conditions where another classifier may be employed.

To mitigate this, a promising future research direction would be to make the

adversarial attacks, described in section 2.5.1, on a separate network module,

independent of the image classifier. A relevant implementation question would

be how to train this separate network, however, this question along with the

task of making the framework more task-agnostic are left for future work.

• Away of finding the number of classes present in the unlabeled dataset.
An essential and promising future direction would be to add a module to identify

the number of different classes present in the unlabeled dataset. Relevant studies

and implementation of similar approaches have been conducted in [51, 45]. This

would be largely beneficial when applying the AL module to real-world appli-

cations. Evidently in the AILARON dataset described in section 4.3, the ’Other’

category could be mitigated by implementing the aforementioned module.

• Find better ways of measuring the informative value in samples. As dis-
cussed in 7.1, a prominent challenge in the field of AL is to confidently identify

samples in which the classifier is uncertain. A promising future research direc-

tion would be to investigate methods for uncertainty estimation in deep learning

and adopt them to an active learning framework.

• Compare the proposed framework with task-agnostic approaches. The
proposed AL framework has shown a high level of transferability in the ex-

perimental results presented in chapter 6. However, to get an indication on

how well the proposed hybrid framework performs in terms of transferability,

additional experiments should be conducted comparing the performance with

state-of-the-art task-agnostic approaches. Relevant approaches to compare with

include the learning-loss and variational autoencoder described in section 2.5.4.

• Construct classifier models that require a minimum amount of labeled
datasets for training and embed those models into AUV platforms for
in-situ plankton classification. This future research direction is broad and

concerns the application of an AL framework to real-world applications to mini-

mize the labeling effort for biologists. The proposed framework has proven a high

classification performance when adopted to the planktonic domain, however,

some adjustments in the implementation are needed to apply it for real-world

applications.
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ABSTRACT
With an ever-increasing amount of image data, the manual labeling process has become the bottleneck in many machine

learning applications. Plankton taxa labeling is especially a challenge due to its complex nature, and the manual labeling
effort places a large burden on the domain experts. The Active Learning (AL) paradigm is a promising research direction
adopted in the literature to minimize the manual labeling effort exerted by domain experts. Many approaches for AL have
been proposed over the recent years to improve the labeling task by supporting the construction of large datasets suitable
to train machine learning models while minimizing human involvement in the process. Our empirical study suggests that
many modern active learning methods fail to incorporate both the samples that represent the statistical pattern of the data
and the samples in which the machine learning model is not confident about.

Inspired by these limitations, we propose an algorithm that combines these two types of sampling in order to capture
the data distribution of the whole feature space, prevent redundant sampling from correlated uncertainty queries and fine-
tune the inter-class decision boundary. Our experiments show that the proposed method outperforms each of the methods
separately. Further, it also proves to be efficient on both the CIFAR dataset and the more complex Kaggle plankton dataset.

Keywords: image analysis, deep learning, plankton taxa distribution, active learning

1. INTRODUCTION
Convolutional Neural Networks (CNN) models have proved competent at solving computer vision problems in the

paradigm of the Supervised Machine Learning (ML) approaches. However, to make such models reliable, an immense
amount of pre-classified input datasets is required in the training process. Constructing such large datasets requires an
extensive manual effort for labeling, which requires a massive amount of time. Nevertheless, the resulting manual classifi-
cation is imperfect and prone to errors.

Active learning (AL) is a promising research direction of machine learning that aims at mitigating the burden of human
experts on labeling training instances. They do so by exploiting the fact that not all samples bring equally much information
to an image classifier.1 Therefore, by finding only the most informative samples and query them for manual labeling, the
classifier can be trained to achieve equal performance as if it was trained on the whole dataset.2 Existing AL models in
the literature can be classified based on the unlabeled data readiness and the sampling pool chosen. In other words, when
data arrives in streams, the AL model is considered as a stream-based model,3 while it is pool-based4 otherwise. Further,
the AL models’ mode of sampling varies between batch-mode5 or single-mode4 depending on the number of data samples
presented and chosen at each labeling round. With the recent developments of convolutional neural networks (CNN),
batch-mode sampling has become increasingly relevant as it is not computationally feasible to update a large network with
single data points.

For the sampling modes aforementioned, there are differences among them in how samples are queried for labeling.
Mainly, the most important difference is in choosing between informative and representative samples. While the former
aims to find samples which the image classifier finds most informative, the latter exploits the feature space of the data
points to best capture the data statistical patterns. There exists a broad literature on active learning. The reader can refer to
a survey6 on active learning based on traditional methods of ML, and more recently, the survey7 on deep learning versions
of AL techniques.

Previous work has shown that active learning has proven to be an effective way of choosing informative samples from
a large number of unlabeled samples.8–10 Although hybrid methods that combine informativeness and representativeness
are increasingly popular among researchers, much of the existing methods only incorporate either informativeness or
representativeness. Existing AL models lack efficient utilization of the feature space of the dataset under consideration.



They sometimes select samples for the training that fail to fit the different classes’ representation specifically when the
boundaries between the classes have some overlap. The resulting proposed samples suffer over-fitting or under-fitting the
dataset. Therefore they affect the performance of the classifier. Furthermore, in [1], the authors investigated how different
datasets had various amounts of information incorporated in the images. The study found that for some datasets,11 a few
representative samples were enough to capture the data statistical distribution. However, for other datasets,12 this proved
not to be true. Thus, the success in employing a stand-alone uncertainty or representative sampling mode is dependent on
the dataset.

Therefore in this paper, we propose an efficient algorithm that combines an informative metric with a representative
metric approach for active learning. The proposed algorithm begins with a focus on the diverse feature space. It gradu-
ally focus more on samples located at the proximity of the classes’ decision boundaries to further fine-tune the machine
learning model. The aim behind this hybridization has three folds: 1) the novel model will have a good initialization from
incorporating the full feature space in the early rounds of query and training. Inspired by the work in [13], a trade-off
function gradually moves the focus from diverse samples to more uncertain samples during the training process in order
to fine-tune the model with samples located at the boundaries of the classes representations. 2) Adding diversity sampling
to the queried uncertainty samples prevents redundant labeling representation from the same area of uncertainty. 3) As the
softmax layer on neural networks have shown to be a bad proxy for the uncertainty of neural networks,7, 14 an adversarial
active learning method is employed. This method has previously shown good results,15 however it was not employed with
sub-modular heuristics as is done in this paper.

Experiments are conducted on the plankton dataset from National Data Science Bowl16 and the CIFAR dataset.12 The
ResNet-1817 architecture is employed as the learning network model. It is worth noting that no data augmentation was
performed on neither the CIFAR nor the plankton dataset, as is often done to enhance the performance on classification.
The results demonstrate that the proposed algorithmic framework is more efficient compared to each of the strategies
separately. Furthermore, they have shown that the novel proposed hybrid algorithm is more effective when dealing with
difficult datasets such as the plankton.

The rest of the paper is organized as follows. Section 2 introduces some preliminary knowledge related to this paper.
Section 3 presents related work in the area of active learning, and hybrid sampling methods in particular. Section 4 explains
our proposed algorithmic framework. Section 5 presents the experimental results. Finally, in section 6, a conclusion is made
on the the contributions of this paper and also future directions are presented.

2. BACKGROUND
Active learning is a type of semi-supervised learning that provides classification accuracy competitive with fully-

supervised learning approaches, while having the benefits of minimal human interaction from unsupervised learning. The
main principle is to iteratively pick subsets from the available unlabeled data in order to build a training set for a machine
learning model. As described in the previous section, the query methods of active learning can primarily be categorized
into methods that exploit the feature of the data and methods that search for samples the machine learning model finds
informative. A way of finding the latter has often been done by finding samples the learning model is uncertain about, e.g.
samples in the proximity of the inter-class decision boundaries.

A large number of methods for finding uncertainty samples have been proposed in the recent years due to their simplic-
ity and comprehensiveness. Many of these have been based on the softmax layers of CNNs as a proxy for the networks’
uncertainty. Such an approach was proposed by [18], who in addition pseudo-labeled high confidence samples for addi-
tional robustness. However, research7, 14 has shown that these softmax probabilities work as a bad proxy for the confidence
of neural networks, and will often lead to worse performance than random benchmark sampling. Consequently, other ways
of measuring the uncertainty of neural networks have been proposed in the later years. [8] proposed a way of creating an
ensemble of network architectures by using Monte Carlo dropout and measure the disagreement in prediction among the
networks. A conceptually equal method have also been studied in [9] where the authors employed an ensemble of different
CNNs instead of MC dropout. A drawback with these ensemble methods is the computational effort that is increasing with
the dimensions of the learning network and number of unlabeled samples.

A different approach from using the classification results of the learning networks has been proposed by [19] to calculate
the distance to the inter-class decision boundary. Samples lying close to the decision boundary are considered to be
informative for the machine learning model as they can help fine-tuning the model parameters. However, as it is feasible



for support vector machines (SVM), it is a more complex operation for CNNs. Nevertheless, to transfer this approach to
CNNs, [15] proposed a way of measuring the distance by making adversarial attacks and find which of the images change
the classification. By ranking the size of the perturbation needed to change the sample classification, one can get a proxy
on how far the sample is from the decision boundary. This method of looking at the input to the network is somewhat the
other way around of looking at the softmax layer as done in [18]. However, both of the latter methods queries the top most
uncertain images. As can be seen in figure 1 and also stated in [20], uncertainty sampling tend to lead to high correlation
among the samples leading to a lack of utilization of the data distribution and also the labeling of redundant samples. From

(a) Core-set representative metric. (b) DeepFool informative metric.
Figure 1: T-SNE plot of 200 samples queried with a representative metric and an informative metric. The different colored data points
represent the images of the 10 different classes from the CIFAR dataset. With the T-SNE algorithm,21 the images are projected to the
two-dimensional feature space.

figure 1 (a) one can observe that by employing a representative metric exploiting the full feature space of the available
data points, this problem can be overcome. A large number of methods for finding such representative samples have been
investigated over the later years. They can be roughly divided into categories that tries to exploit the feature space and
others that aims to maximize some performance metric. An example of the latter is, as proposed in [10], a method that
approximates the complete data posterior of model parameters that produces diverse batches. By selecting sub samples,
the method tries to lower the expected value of the loss function. An example of the former is, as proposed in [22], a
diversity method that performs a farthest-first traversal to cover the feature space. A similar example is shown in [20]
that proposes a core set method to find clusters based on the min max facility location problem and then optimize these
clusters with mixed integer programming. The overall aim for most of the representativeness methods is to replicate the
distribution of the complete unlabeled set. By regarding active learning as a binary classification task between the labeled
and unlabeled sets, [23] aims to make the labeled dataset indistinguishable from the unlabeled dataset by capturing the
statistical distribution of the unlabeled data.

3. RELATED WORK
This paper proposes a hybrid active learning framework combining the informative and representative sampling strate-

gies described in section 2. This hybridization of active learning has become increasingly popular among researchers in
later years. In [24] a method of combining predictive entropy based uncertainty sampling and a distance function on a
learned feature space to optimize the selection of unlabeled samples was proposed. Their method was based on the as-
sumption that the most informative samples are the ones where the model has the highest uncertainty and greatest distance
to the existing training examples. In [13], the authors aim to fine-tune pre-trained networks with a combination of infor-
mative and representative samples. They are also employing a trade-off parameter to let the representative samples have
high influence in the beginning, and gradually use more uncertain samples. Further, [25] proposed a hybrid method to deal
with the imbalanced classification problem. Their uncertainty metric was based on the probability output from the neural
network, while their diversity metric was based on distance from k-means clusters on already labeled data points. Similarly,
[26] proposed a work of diversified subset selection that use classical methods of uncertainty, margin sampling and entropy



from the softmax probability distribution. To find diverse samples they used, similar to this paper, min-max facility location
in addition to disparity minimum. An important finding in the paper suggested that similar data points within a class made
disparity-min pick outliers and thus confuse the model. Moreover, instead of using the output layer probabilities directly,
[5] proposed a hybrid method that uses the size of the backward gradient to incorporate the uncertainty metric. For the
diversity the authors employed the k-means++27 algorithm. Furthermore, [28] proposed a method to increase diversity
in mini-batch active learning. Their experiments showed that diversity-enhancing approaches outperformed a baseline of
uncertainty sampling methods. They combined informativeness with representativeness by using margin sampling from
the softmax layer as uncertainty metric and the k-means algorithm as representative metric.

The aforementioned related work are often reliant on the output layer of the network employed as an uncertainty metric.
Motivated by this, we build on the uncertainty metric proposed in [15] and employ it with a min max sub-modular heuristic
to form a hybrid active learning method. Furthermore, similar to [13], we combine the metrics with a trade-off parameter.
This is aligned with the findings of [5], who observed that it is advantageous to do representative sampling early in the
training then in later rounds focus more on informative samples to fine-tune the model.

4. PROPOSED FRAMEWORK
The framework introduced in this paper combines the informative metric of an adversarial attack with the representative

metric of the facility min max problem. Figure 2 illustrates how these methods are combined in the proposed framework.
From the plot of the informative metric shown in figure 1 (b), one can observe that the queried samples have high cor-
relation in some areas; this suggests that there exists some redundancy among the queried samples. By incorporating a
representative metric to the active learning framework, one can choose the informative samples that also best represent the
feature space. Moreover, with a trade-off function initially incorporating all samples, the learning network will gain an
overview of the whole feature space. As the training proceeds and general decision boundaries are formed, more focus is
put on samples on the inter-class decision boundaries. By switching focus to these samples, the learning model is able to
fine-tune the decision boundaries to handle examples that are difficult to classify. As described in algorithm 1, the number

Algorithm 1 CIRAL: Combined informative and representative active learning

Require: Unlabeled samples DU
0

Require: Initially labeled samples DL
0

Require: Query budget B
Require: Batch size β
Require: Set of hyper-parameters to train the networkH
Require: Trade-off constant K0

Require: Trade-off rate δ ∈ (0, 1)
Kk = K0

DL
k = DL

0

DU
k = DU

0

while DL
k −DL

0 ≤ B do
Ak = TRAIN(H, DL

k )
for xi ∈ DU

k do
ri ← DEEPFOOL(xi,Ak)

end for
bi ←− TRADEOFF(ri,Kk)
Qk ←− MINMAX(bi, β)
DL

k+1 ←− DL
k ∪Qk

DU
k+1 ←− DU

k \Qk

Kk+1 ← Kk · δ
end while

of samples going from the informative metric to the representative metric is lowering with a rate δ each round, indicating
that the algorithm prioritize samples with high level of informativeness at the later AL cycles. The active learning cycle
described is continued until a labeling budget B is exhausted.



As illustrated in figure 2, a neural network is trained on the labeled pool in each iteration, forming the decision bound-
aries used by the informative sampling method. However, as the training proceeds and the model becomes more confident,
the decision boundaries become more static, thus it becomes increasingly important to put weight on the samples that
are at the proximity of the boundary rather than samples far away from it. This is done by filtering out the samples with
the largest distance result from the informative sampling, illustrated with module 5 in figure 2. To find this distance, the
informative metric employed uses the DEEPFOOL29 algorithm to compute adversarial attacks in order to find a proxy for
the distance to the decision boundary. The DEEPFOOL algorithm finds the closest hyperplane for each sample and then
pushes the sample beyond it with a minimal possible perturbation.

Moreover, to find the representative samples in the next step, the min max facility location problem, well known from
literature and described in [30], is employed. It can be formally described as

min
s1:s1≤b

max
i

min
j∈s1∪s0

4(xi, xj) (1)

Where ∆(xi, xj) represents the Euclidean distance between the data points xi and xj . Further, s1 and s0 is the new queried
samples and existing pool of samples, respectively. The optimization problem in 1 can be understood as choosing b cluster
centers such that the largest distance from any single point to its nearest cluster center is minimized. As this problem is
NP-hard, a sub-optimal solution is found by a greedy algorithmic approach as described in [20]. This method is proven to
have a solution such that

max
i

min
j∈s1∪s0

4(xi, xj) ≤ 2X OPT (2)

is satisfied, where OPT is the optimal solution to the optimization problem in 1.30 As described in our framework, the
representative and informative metrics are combined through a trade-off function that gradually puts more focus on the
informative samples at the cost of the representative samples. As the DEEPFOOL algorithm returns a list of samples based
on their distance to the decision boundary, the trade-off function is only passing on a fraction Kk of the most informative
samples to the representative function. Thus, the algorithm will eventually ignore samples found at large distances away
from the decision boundary. Formally, this trade-off method can be described as

Qk = MINMAX(Kk · DEEPFOOL(X), β) (3)

Where Kk is the trade-off constant, X is the input from the unlabeled samples and β is the number of samples to be queried.



Figure 2: Block diagram of the active learning framework showing the relevant modules and the flow of samples from the unlabeled
pool to the labeled pool.

5. EXPERIMENTAL RESULTS
The experiments were performed on subsets of the CIFAR12 and Kaggle National Data Science Bowl16 (plankton)

datasets, both containing 10 different classes. After each round of querying, the neural network got trained on the labeled
pool until convergence of validation accuracy. A prediction was then performed on a separate testing set.

In figure 3 (a-c), results from the proposed hybrid method tested on the plankton dataset are presented. Further, in
figure 3 (d-f), the results on the CIFAR dataset are presented. For both datasets, the result for the hybrid method is plotted
relatively to the accuracy of the DFAL,15 core-set20 and random strategy. Results are also presented in figure 3 (g-h)
for the CIFAR and plankton datasets, respectively. One can observe that the hybridization is performing steadily better
than the other methods separately. As can be seen in figure 3 (a-c), the proposed method gains advantage on combining
representative and informative metrics on the more complex plankton dataset. Looking at figure 3 (a), the method is
performing better than the core-set method because it is better at choosing samples that fine-tune the decision boundaries.
Further, looking at figure 3 (b) the hybrid method is clearly better in the early rounds of training suggesting that the
incorporated representative samples in the early rounds are beneficial for the model.

Looking at the graphs in figure 3 (g-h), the proposed method is consistently having high accuracy compared to the
other methods. Observing from the results in table 1 and 2 that the proposed method is achieving good results overall, it is
especially prominent on the CIFAR dataset.



(a) Comparison of CIRAL and a
representative method.

(b) Comparison of CIRAL and an
informative method.

(c) Comparison of CIRAL and the
random benchmark.

(d) Comparison of CIRAL and a
representative method.

(e) Comparison of CIRAL and an
informative method.

(f) Comparison of CIRAL and the
random benchmark.

(g) Comparison of CIRAL and other hybrid methods. (h) Comparison of CIRAL and other
informative/representative methods.

Figure 3: Results from experiments with our proposed framework (CIRAL). Results in plot (a-c, g) are from experiments on the
plankton dataset. Results in plot (d-f, h) are from experiments on the CIFAR dataset.



Method/Round 1 2 3 4 5 6 7
CIRAL 0.1 0.574 0.62 0.624 0.64 0.64 0.64
DFAL 0.1 0.511 0.62 0.52 0.647 0.63 0.638
CORE-SET 0.1 0.573 0.61 0.62 0.63 0.64 0.61
RANDOM 0.1 0.61 0.61 0.63 0.60 0.63 0.62

Table 1: Classification accuracy from the experiments with our proposed framework on the plankton dataset.

Method/Round 1 2 3 4 5 6 7 8
CIRAL 0.1 0.48 0.614 0.66 0.613 0.68 0.69 0.68
DFAL 0.1 0.532 0.59 0.608 0.63 0.67 0.65 0.66
CORE-SET 0.1 0.51 0.58 0.64 0.65 0.655 0.653 0.67
RANDOM 0.1 0.48 0.605 0.612 0.66 0.67 0.676 0.67

Table 2: Classification accuracy from the experiments with our proposed framework on the CIFAR dataset.

6. CONCLUSION
This paper presents a new framework furthering the field planktonic image analysis. Manual labeling of planktonic data

is time consuming and puts a large burden on the domain experts. The proposed active learning method is able to minimize
this effort while still achieving satisfactory classification results. The framework presented in this paper combines metrics
for representative and informative sampling and achieve better performance than each of them separately. The method
has proven to be efficient on both the benchmark CIFAR dataset and the more complex plankton dataset, suggesting that
these metrics should be considered in combination when applying active learning. The informative metric employed in
the proposed framework is dependent on good decision boundaries to get full utilization. An interesting future direction
would therefore be to investigate how other representative functions affect the performance of the classifier. In particular,
looking at combining Bayesian-based representative metrics with the informative metrics employed in this framework is
an interesting direction.
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Abstract: With the complex structure of planktonic species and an immense amount of data
captured from autonomous underwater vehicles (AUVs), a large burden is placed on the domain
experts for plankton taxa labeling. At the same time, the most prominent machine learning
(ML) methods for classification rely heavily on a massive amount of labeled datasets to create
and train neural network classifier models that perform their tasks accurately. Active Learning
(AL) is a ML paradigm that reduces this manual effort by proposing algorithms that support
the construction of the training datasets, thus enlarging the sets while minimizing human
involvement. To build the training set, AL methods apply heuristics to select a subset of images,
i.e., samples, from the entire data. The selected samples that capture the common statistical
patterns or feature space are likely to include all the information needed for the training and the
learning processes. In addition, the algorithm should prioritize samples that are likely belonging
to multiple classes, i.e., having close inter-class boundaries, and might lead to model confusion.
Many of the current AL approaches fail to incorporate both types of samples representing the
statistical pattern and the samples in which the particular machine learning model is uncertain
about.
In this paper, we extend our framework which addresses these challenges with an augmentation
module to increase robustness of the model and ensure its adaptability to the planktonic domain.
We compare the framework with existing hybrid AL techniques and test an adaption of our
extended framework on the planktonic domain. The empirical results from the experiments
exerted in this paper confirm higher accuracy achieved by the new extended framework.

Keywords: image analysis, deep learning, plankton taxa distribution, active learning, computer
vision

1. INTRODUCTION

Planktonic species are critically important to the oceanic
ecological structure as they are the basis of the aquatic
food web. Hence, by studying temporal variations in
plankton taxa distributions, one can achieve a proxy for
the development of the oceanic ecosystems.

Progress in the development of autonomous underwater
vehicles (AUV) and robotic visual sensing enables the
possibility of capturing large amounts of planktonic im-
age data. Further, Convolutional Neural Network (CNN)
models have proved competent at solving computer vi-
sion problems in the supervised Machine Learning (ML)
paradigm. Embedding CNN models into AUV enables
identification of plankton taxa distributions in-situ. How-
ever, modern CNNs require an immense amount of pre-
classified labeled input in order to achieve satisfactory clas-
sification performance. Since plankton biomass appears in
many different species, forms, and stages depending on
the geographical environment and season, pre-classified
training data has to be constructed for each different ge-
ographical environment, season and image-acquiring sys-
tem. Consequently, much effort is needed in the manual

plankton taxa labeling with a constrained budget that
requires domain expertise, i.e., biologists, to identify the
complex structure of planktonic organisms.

Active Learning (AL) is a semi-supervised machine learn-
ing approach that aims at mitigating this burden placed on
the domain experts. The key idea of AL is to capture the
data distribution of the full dataset with only a fraction
of the samples. This is possible from the fact that not all
images bring equal amounts of information to the image
classifier (Vodrahalli et al., 2018).

Existing AL models in the literature can be classified based
on the unlabeled data readiness and the sampling pool
chosen. In other words, when data arrives in streams,
the AL model is considered as a stream-based model,
(Krishnamurthy, 2002), while it is pool-based otherwise
(Lewis and Gale, 1994). Further, the AL models’ mode
of sampling varies between batch-mode (Ash et al., 2019)
or single-mode (Lewis and Gale, 1994) depending on the
number of data samples presented and chosen at each
labeling round. With the recent developments of CNNs,
batch-mode sampling has become increasingly relevant as



it is not computationally feasible to update a large network
with single data points.

The most important distinction between the different
sampling modes aforementioned is in their prioritization
between informative and representative samples. While
the former aims to prioritize samples that are at the
proximity of the inter-class decision boundaries, the latter
exploits the feature space of the data points to best capture
the statistical patterns of the data. There exists a broad
literature on Active Learning. The reader can refer to the
survey presented in (Settles, 2009), and more recently,
the survey on deep learning version of AL techniques is
elaborated in (Ren et al., 2020).

The promise of removing the bottleneck of manual labeling
in machine learning pipelines in addition to progress in
the development of deep learning models has brought a
surge in AL research. AL has been proven to be an efficient
method of querying informative samples from an unlabeled
pool of data points (Gal et al., 2017; Yoo and Kweon,
2019). Further, other approaches focusing on exploiting
the latent-space structure of unlabeled samples have also
been successfully proposed (Sener and Savarese, 2018).
Furthermore, hybrid methods combining the informative
and representative metric have become increasingly pop-
ular among researchers over the later years (Hsu and Lin,
2015). Still, much of the existing AL methods lack efficient
utilization of the latent-space structure and often suffer
from high correlation among queried samples. Moreover,
by only incorporating model-based query methods, many
existing AL approaches lack transferability to other deep
learning models. In (Vodrahalli et al., 2018), the authors
investigated how different datasets had unequal amounts
of information distributed among the images. In some
cases a few samples were enough to represent the full
distribution of the dataset yet in other cases this proved
not to be true. The success of active learning often depends
on the information distribution of the dataset; hence, it is
rarely possible to rely on either representative or informa-
tive sampling.

To address this issue, we proposed in Haug et al. (2021)
a combined representative and informative active learning
(CIRAL) approach that incorporates the full feature space
in the early cycles of querying and puts more weight
on samples at the proximity of the inter-class decision
boundaries at the later cycles. We compared the novel
hybrid framework with informative and representative ap-
proaches. We proved that this hybridization outperforms
the classical AL approaches under the two categories in
terms of the overall model accuracy on the CIFAR dataset
with minimal possible data presented to the model. The
CIFAR dataset was the most utilized in the literature as
a benchmark for performance comparison and as a proof
of concept.

The aim behind the proposed hybridization has three
folds: 1) the model will have a good initialization from
incorporating the full feature space in the early rounds of
querying and training. 2) Adding diversity sampling to the
queried uncertainty samples prevents redundant labeling
representation from the same area of uncertainty. 3) As
the soft max layer on neural networks have shown to be
a bad proxy for the uncertainty of neural networks (Guo

et al., 2017; Ren et al., 2020), an adversarial active learning
method is employed. This method has previously shown
good results (Ducoffe and Precioso, 2018), however it was
not employed with sub-modular heuristics as is done in
this work.

The contributions in this paper are two folds:

• First, we compare the performance of the novel hybrid
framework with other well-known hybrid methods
and show that it achieves better accuracy.

• Second, we extend the originally proposed framework
with a data augmentation module to increase the
robustness of the model, and to ensure the adapt-
ability of the proposed semi-supervised method to
the plankton domain with the goal to minimize the
burden on domain experts.

The experiments in this paper are conducted on subsets
of the plankton dataset from National Data Science Bowl
(kag, 2015) and the CIFAR dataset (Krizhevsky, 2009).
The ResNet-18 architecture is employed as the learning
network model (He et al., 2015) for the CIFAR, whereas
a custom network is made for the plankton dataset.We
further created a pre-processing module to adapt the
images to the deep learning models employed in this paper
and speed up the convergence of the training process.
Pre-processing operations include normalization of pixel
values and resizing of input images to a fixed dimension.
Further, as opposed to many other AL studies (Mittal
et al., 2019), we employ regularization techniques in order
to enhance the classification performance of the AL models
and improve their robustness. More specifically, we employ
a random horizontal and vertical flip and a random affine
transformation.

The rest of the paper is organized as follows. Section
2 introduces some preliminary knowledge related to this
paper. Section 3 presents related work in the area of AL,
emphasizing hybrid and plankton specific AL methods in
particular. Section 4 explains our proposed algorithmic
framework. Section 5 presents the experimental results. In
Section 6, a conclusion is made on the the contributions
of this paper and also future directions are presented.

2. BACKGROUND

Active Learning is a type of semi-supervised learning that
provides classification accuracy competitive with fully-
supervised learning approaches, while having the benefits
of minimal human interaction from unsupervised learning.
The main principle is to iteratively pick subsets from the
available unlabeled data in order to build a training set for
a machine learning model. As described in the previous
section, the query methods of active learning can be
primarily categorized into methods that exploit the feature
of the data and methods that search for samples the
machine learning model finds informative. A way of finding
the latter has often been done by prioritizing samples the
learning model is uncertain about, e.g. samples in the
proximity of the inter-class decision boundaries.

A large number of methods for finding uncertainty samples
have been proposed in the recent years due to their sim-
plicity and comprehensiveness. Many of these have been
based on the softmax layers of CNNs as a proxy for the



networks’ uncertainty. Such an approach was proposed
by Wang et al. (2017), who in addition pseudo-labeled
high confidence samples for additional robustness. How-
ever, research has shown that these softmax probabilities
work as a bad proxy for the confidence of neural networks
(Guo et al., 2017; Ren et al., 2020), and will often lead
to worse performance than random benchmark sampling.
Consequently, other ways of measuring the uncertainty of
neural networks have been proposed in the later years. Gal
et al. (2017) proposed a way of creating an ensemble of
network architectures by using Monte Carlo dropout and
measure the disagreement in prediction among the net-
works. A conceptually equal method have also been stud-
ied in (Beluch et al., 2018), where the authors employed
an ensemble of different CNNs instead of the Monte Carlo
dropout. A drawback with these ensemble methods is the
computational effort that is increasing with the dimensions
of the learning network and number of unlabeled samples.

A different approach from using the classification results
of the learning networks has been proposed by Tong and
Koller (2001) to calculate the distance to the inter-class
decision boundary. Samples lying close to the decision
boundary are considered to be informative for the machine
learning model as they can help fine-tuning the model
parameters. However, as it is feasible for support vector
machines (SVM), it is a more complex operation for CNNs.
Nevertheless, to transfer this approach to CNNs, Ducoffe
and Precioso (2018) proposed a way of measuring the
distance by making adversarial attacks and find which
of the images change the classification. By ranking the
size of the perturbation needed to change the sample
classification, one can get a proxy on how far a given
sample is from the decision boundary. This method looks
at the input to the network rather than the soft-max
layer as done in (Wang et al., 2017). However, both of
the latter methods queries the top most uncertain images.
As can be seen in figure 1 (b) and also stated in (Sener
and Savarese, 2018), uncertainty sampling tend to lead to
high correlation among the samples leading to a lack of
utilization of the data distribution and also the labeling
of redundant samples. The experiments in this paper are
exerted on the plankton dataset with a custom neural
network.

From figure 1 (a) one can observe that by employing a
representative metric to exploit the full feature space of
the available data points, this problem can be overcome.
A large number of methods for finding such representa-
tive samples have been investigated over the later years.
They can be roughly divided into categories that try to
exploit the feature space and others that aim to maximize
some performance metric. An example of the latter is, as
proposed in (Pinsler et al., 2021), a method that approx-
imates the complete data posterior of model parameters
that produces diverse batches. By selecting sub samples,
the method tries to lower the expected value of the loss
function. An example of the former is, as proposed in
(Geifman and El-Yaniv, 2017), a diversity method that
performs a farthest-first traversal to cover the feature
space. A similar example is shown in (Sener and Savarese,
2018) proposing a core set method to find clusters based on
the min max facility location problem and then optimiz-
ing these clusters with mixed integer programming. The

overall aim for most of the representativeness methods is
to replicate the distribution of the complete unlabeled set.
By regarding Active Learning as a binary classification
task between the labeled and unlabeled sets, Gissin and
Shalev-Shwartz (2019) aims at making the labeled dataset
indistinguishable from the unlabeled dataset by capturing
the statistical distribution of the unlabeled data.

(a) Proposed points resulting from the representative metric

(b) Proposed points resulting from the informative metric

Fig. 1. T-SNE plot of 200 samples queried with a representative
metric and an informative metric. The different colored data
points represent the images of the 10 different classes from the
CIFAR dataset. With the T-SNE algorithm (van der Maaten
and Hinton, 2008), the images are projected onto the two-
dimensional feature space.

3. RELATED WORK

Two areas of active learning are related to our work.
Firstly, other methods of hybrid active learning have been
increasingly popular among researchers in later years.
Kaushal et al. (2018) proposed a work of diversified subset
selection that utilize methods of least confidence, smallest
margin and highest entropy from the softmax probability
distribution to find informative samples. To incorporate
representative samples they used, similar to this work,
min-max facility location in addition to disparity mini-
mum. A similar approach was proposed by Zhdanov (2019)



Fig. 2. Visualization of the plankton classes show how the Chaetog-
nath Sagitta class is separated into two groups based on its
orientation. The plankton images are project onto the two-
dimensional feature space using the T-SNE algorithm (van der
Maaten and Hinton, 2008)

to increase diversity in mini-batch Active Learning. Their
experiments reported that diversity-enhancing approaches
outperformed a baseline of uncertainty sampling methods.
They combined informative sampling with representative
sampling by using smallest margin sampling from the
softmax layer as uncertainty metric and the k-means algo-
rithm as representative metric. In (Huang et al., 2018),
the authors aim to fine-tune pre-trained networks with
a combination of informative and representative samples.
Further, by employing a trade-off parameter, they can
let the representative samples have high influence in the
beginning, and gradually put more weight on informative
samples.

Moreover, instead of using the output layer probabilities
directly, Ash et al. (2019) computed a gradient of the
predicted category with respect to the parameters of the
last layer in the network. To measure the uncertainty of
the model, they used this gradients magnitude. Further,
to find diverse samples, they collected a batch of samples
with the k-means++ algorithm (Arthur and Vassilvitskii,
2006) to find gradients that span a diverse set of directions.
Furthermore, another way of combining informative and
representative sampling was proposed by Hsu and Lin
(2015). Their method, inspired by the multi-armed bandit
problem, would for each iteration explore the performance
of different sampling methods and exploit the one with the
best performance.

Another field of related work is the plankton specific active
learning. Luo et al. (2005) proposed an AL method using
multi-class support vector machines (SVM). They used
least confidence sampling and margin sampling based on
the SVMs decision function to decide which samples to
query. Following the developments of CNNs, Bochinski
et al. (2018) proposed a deep active learning approach
using the probability distribution from the softmax layer
as uncertainty metric for the learning model. Equal to Luo
et al. (2005), they proposed least confidence sampling and
smallest margin sampling in addition to entropy sampling.
Additionally, by pseudo-labeling high-confidence they in-
creased the robustness of their learning model, however at
the risk of training on erroneous labeled samples. Another
approach for minimizing human labeling effort in plankton

taxa labeling was proposed by Pastore et al. (2020). Their
method utilized fuzzy k-means clustering on extracted
features, and a supervised model trained using the k-
means clustering labels. Further, they also employed an
SVM to do anomaly detection and detect unseen species
of plankton.

The aforementioned related work on hybrid AL are often
reliant on the output layer probability distribution to work
as an uncertainty metric. Additionally, a majority of the
proposed hybrid approaches makes no use of modern data
augmentation, making it difficult to assess their validity
on real applications. Motivated by this, we employ in this
paper a data augmentation module as an extension to
our original work in Haug et al. (2021) and assess the
frameworks applicability to the plankton domain. Further,
we compare the results of the novel framework with other
well-known hybrid AL methods on both datasets the
CIFAR and the plankton datasets.

4. PROPOSED FRAMEWORK

The framework introduced in this work builds on the
active learning hybridization proposed in Haug et al.
(2021). Figure 3 illustrates how the informative and a
representative metric are combined. A data augmentation
is added to this framework to increase the robustness of
the model and enhance the performance of the informative
metric. The reason behind extending the framework with
this module is that captured planktonic species have
complex structures compared to other datasets; moreover,
we found that planktonic organisms from the same class
but captured with different orientations are usually split
by the models into separate groups as shown by the
visualization tool in figure 2.

The data augmentation module, illustrated by module 8 in
figure 3, consists of two steps. The first step is the flipping
function which randomly generates images horizontally
or vertically flipped with 50% probability. The flipping
function allows the model to be more invariant to 90°image
rotation; The second step is an affine transformation func-
tion that is applied with a rotation angle of 7◦ and with
a horizontal and vertical translation of 0.1. This step is
used to keep the images center-invariant, thus making the
dataset dynamic rather than static which is particularly
beneficial for tasks with small amounts of labeled data
where overfitting is an issue. This set of augmentation
techniques are summarized as T in Algorithm 1.

Figure 1 shows that the batch of samples queried with
an informative metric have high correlation in some areas;
this suggests that there exists some redundancy among
the queried samples. Based on this inefficiency in sample
querying, a representative metric is integrated to the
active learning framework. This hybridization enables the
algorithm to choose the informative samples that also
best represent the feature space of the unlabeled data.
Moreover, with a trade-off function initially incorporating
all samples, the learning network will gain an overview
of the whole feature space. As the training proceeds and
general decision boundaries are formed, more focus is
put on samples on the inter-class decision boundaries. By
switching focus to these samples, the learning model is able



to fine-tune the decision boundaries to handle examples
that are difficult to classify.

Algorithm 1 CIRAL: Combined informative and rep-
resentative active learning extended with the augmen-
tation module

Require: Unlabeled samples DU
0

Require: Initially labeled samples DL
0

Require: Query budget B
Require: Batch size β
Require: Set of hyper-parameters to train the network
H

Require: Set of data augmentation techniques T
Require: Trade-off constant K0

Require: Trade-off rate δ ∈ (0, 1)
Kk = K0

DL
k = DL

0

DU
k = DU

0

while DL
k −DL

0 ≤ B do
Ak = Train(DL

k ,H, T )
for xi ∈ DU

k do
ri ← DeepFool(xi,Ak)

end for
bi ←− TradeOff(ri,Kk)
Qk ←−MinMax(bi, β)
DL

k+1 ←− DL
k ∪Qk

DU
k+1 ←− DU

k \Qk

Kk+1 ← Kk · δ
end while

As described in algorithm 1, the number of samples going
from the informative metric to the representative metric
is lowering with a rate δ each round, indicating that more
of the informative samples are chosen in the end of the
training. After the representative sampling, a number Qk

of samples are queried to a human expert for labeling. This
active learning process continues until a labeling budget B
is exhausted.

As illustrated in figure 3, a neural network is trained
on an augmented labeled pool in each round. For the
CIFAR dataset, the ResNet-18 architecture is employed
as the learning network model. However, for the plankton
dataset, a custom network architecture consisting of 3
convolutional layers, 2 max pooling layers and 2 fully
connected layers is employed to avoid overfitting and
increase generalization.

By increasing the labeled pool with queried samples and
updating the parameters of the neural network at each
iteration, the inter-class decision boundaries are changing
for each round. However, as the training proceeds and
the model becomes more confident, the decision bound-
aries become more static, thus it is becoming increasingly
important to put weight on the samples that are in the
proximity of the boundary rather than samples far away
from it. This is done by filtering out the samples with
the largest distance result from the informative sampling,
illustrated with module 5 in figure 3. To find this distance,
the informative metric employed uses the Deep-Fool
(Moosavi-Dezfooli et al., 2016) algorithm to compute ad-
versarial attacks in order to find a proxy for the distance
to the decision boundary. The Deep-Fool algorithm finds

the closest hyperplane for each sample and then pushes the
sample beyond it with a minimal possible perturbation.
By adding the aforementioned data augmentation module
to the framework, the network will improve its decision
boundaries from training on more samples, and resultingly
improve the accuracy of the boundary distance proxy
provided by the informative metric.

Moreover, to find the representative samples in the next
step, the min max facility location problem, well known
from literature and described in (Hochbaum and Shmoys,
1985), is employed. It can be formally described as

min
s1:s1≤b

max
i

min
j∈s1∪s0

4(xi, xj) (1)

Where ∆(xi, xj) represents the Euclidean distance be-
tween the data points xi and xj . Further, s1 and s0 is
the pool of labeled and unlabeled data points, respectively.
The optimization problem in 1 can be understood as choos-
ing b cluster centers such that the largest distance from
any single point to its nearest cluster center is minimized.
As this problem is NP-hard, a sub-optimal solution is
found by a greedy algorithmic approach as described in
(Sener and Savarese, 2018). This method is proven to have
a solution such that

max
i

min
j∈s1∪s0

4(xi, xj) ≤ 2X OPT (2)

is satisfied, where OPT is the optimal solution to the
optimization problem in 1 (Hochbaum and Shmoys, 1985).
As described in our framework, the representative and
informative metrics are combined through a trade-off
function that only pass on the top Kk samples closest to
the decision boundary. Thus, the algorithm will eventually
ignore samples found at large distances away from the
decision boundary. Formally, this trade-off method can be
described as

Qk = MinMax(Kk ·DeepFool(X)) (3)

Where Kk is the trade-off constant and X is the input
from the unlabeled samples.

5. EXPERIMENTAL RESULTS

The experiments were performed on the CIFAR dataset
(Krizhevsky, 2009) and a subset of the plankton dataset
of the Kaggle national data science bowl (kag, 2015),
both containing 10 different classes. After each round of
querying, the neural network got trained on the labeled
pool until convergence of accuracy on a held out validation
set. A prediction was then performed on a separate testing
set. We repeated this process until a pre-defined labeling
budget was exhausted. All our results report the average
of 3 complete trials. In figure 7, results from the proposed
hybrid method tested on the plankton dataset is presented.
In figure 7 (a), the accuracy of our method is compared to
other hybrid methods. Further, in figure 7 (b), our method
is compared to informative and representative methods.
Random benchmark sampling is included in both (a) and
(b) for reference. One can observe from these results that
our proposed method(CIRAL) is performing steadily in
terms of classification accuracy and is outperforming the
random sampling benchmark by a large margin. The ran-
dom sampling need approximately twice as many sam-
ples to reach the same level of accuracy as our proposed



Fig. 3. Block diagram of the Active Learning framework. The process is initiated with an unlabeled pool of N images. An adversarial
attack is performed on the unlabeled instances and they are sorted by how much perturbation is needed in order for the neural network
to change their classification. This adversarial attack works as a proxy on how far each sample is from the decision boundary, and is
an uncertainty metric for the model. Based on the trade-off function, a set of K uncertainty samples are sent to the representative
sampling method. Lastly, Q samples with combined informative and representative value are queried to a human expert for manual
labeling.

Fig. 4. (LHS) The proposed AL method compared to informative,
representative and random methods. (RHS) The poposed AL
method compared to other hybrid methods (BADGE, Active
Learning by Learning, Softmax Hybrid). All experiments in this
figure are performed on the CIFAR dataset.

method. This result is valid for the other methods as well,
suggesting that active learning is effective on the plankton
dataset. Furthermore, the results can be studied in more
details in figure 5, where the classification accuracy of
our method is presented relative to the other methods.
In each plot, our method is compared with one other AL
method. Similar results can also be found in figure 4, where
our method has been applied on the CIFAR dataset. In
the latter plot, one can observe that the hybridization
benefits from combining informative and representative
methods in that it outperforms each of them individually.
This performance enhancement compared to the other
strategies is a result of incorporating the full feature space
while also taking samples close to the inter-class decision

Fig. 5. (LHS) The proposed AL method compared to informative,
representative and random methods. (RHS) The proposed AL
method compared to other hybrid methods (BADGE, Active
Learning by Learning, Softmax Hybrid). All experiments in this
figure are performed on the plankton dataset.

boundaries into account. The samples obtained in the
latter case help fine-tune the model to gain additional
performance. This is particularly evident in figure 5 where
one can observe how our proposed method outperforms the
coreset representative method when 20% of the samples
have been labeled. Moreover, the proposed CIRAL method
is also showing promising results compared to the BADGE
(Ash et al., 2019), Active Learning by Learning (Hsu and
Lin, 2015) and Softmax hybrid (Kaushal et al., 2018)
methods. Furthermore, from figure 6 one can observe how
the data augmentation module significantly increase the
classification accuracy of the active learning methods.



(a) Our method(CIRAL) vs hybrid methods with and without
data augmentation on the plankton dataset. Results without
augmentation are denoted as ’wo-Aug’

(b) Our method(CIRAL) vs informative/representative with
and without data augmentation. Results without augmenta-
tion are denoted as ’wo-Aug’

Fig. 6. Comparison of the experimental results with and without
data augmentation during training. (a) Performance compar-
ison between our method and other hybrid AL methods with
and with out data augmentation. (b) Performance comparison
between our hybrid method and informative and representative
methods with and without data augmentation.

6. CONCLUSION AND FUTURE WORK

This paper presents a novel framework furthering the
field of in-situ underwater planktonic image analysis (Saad
et al., 2020, 2021). Manual labeling of planktonic data is
time consuming and puts a large burden on the domain
experts. The proposed active learning method is able
to minimize this effort while still achieving satisfactory
classification results. The framework presented in this
paper combines metrics for representative and informative
sampling and achieve better performance than each of
them separately. The method has proven to be efficient on
both the benchmark CIFAR dataset and the more complex
plankton dataset, suggesting that these metrics should be
considered in combination when applying active learning.

The informative metric employed in the proposed frame-
work is dependent on good decision boundaries to get
full utilization. Empirical results show that our proposed
framework outperforms other state-of-the-art hybrid AL
methods. Moreover, the augmentation algorithm which is
added as an extension to the originally proposed CIRAL

(a) Our method(CIRAL) vs hybrid methods

(b) Our method(CIRAL) vs informative/representative meth-
ods

Fig. 7. Results from the experiment of the proposed method on
the plankton dataset. (a) Performance comparison between
our method and other hybrid AL methods. (b) Performance
comparison between our hybrid method and informative and
representative methods.

framework Haug et al. (2021), further allowed the model
to be more robust on complex data structures that exist
in the plankton dataset. An interesting future direction
would be to investigate how other representative functions
affect the performance of the classifier. In particular, look-
ing at combining Bayesian-based representative metrics
with the informative metrics is an interesting direction.
Another interesting future direction is to construct, from
this novel hybrid AL framework, classifier models that
require minimum amount of labeled datasets for training
and embedding those created models into AUV platforms
for in-situ plankton classification.
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