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1 Introduction

Object recognition and 6-DoF pose estimation make up some of the most prominent
fields in computer vision and robotics today. With the arrival of more complex use cases
of robotic technology such as autonomous driving, or even medical robots performing
surgery procedures [14], the systems ability to accurately perceive their surroundings is
essential. Industrial assembly robots are examples of autonomous systems which require
information about their environment in order to interact with it. RGB cameras, IR depth
cameras and LiDAR are all examples of optical sensors that can provide the raw data
needed to obtain this information. By utilizing the techniques of object recognition and
pose estimation, these systems are able to discover and localize target objects or potential
obstacles. Industrial- and inspecting robots, modern visual surveillance [29], augmented
reality [48] and intelligent transportation [6] are just some of the applications relying on
the techniques of both object recognition and motion tracking.

This thesis will mainly focus on the industrial application of these techniques. As
we know, robots are widely used in manufacturing performing task such as pick and
place, assembly, packaging and painting. All of these tasks require an accurate identi-
fication and pose estimate of the object to be handled. Therefore, robotic vision has
great importance in automated industrial processes that otherwise would call for human
intervention. Reduced costs, increased production, improved consistency and safety are
some of the benefits from vision guided robotic systems [26, 37, 13]. However, recognition
and motion tracking still pose some notable challenges. For instance, varying lighting
conditions with shadows and glare, occlusion of objects and motion blur can all compli-
cate the tasks of object detection and 6-DoF pose estimation [28]. Furthermore, when
moving objects are added to the equation, an additional demand for real-time speed must
be taken into account. This demand illustrates a crucial challenge in pose estimation as
a trade-off between accuracy and computational cost is inevitable.

The problem to be solved in this thesis addresses to a chair manufacturing setting
and involves a UR10 robotic manipulator responsible for loading and unloading objects
off a hanger. The hanger, which is suspended from a roof mounted conveyor, is swinging
freely. This manufacturing setting is recreated in a lab setup as illustrated in figure 1. The
camera, an Azure Kinect DK, is mounted on the UR10 and provides both color and depth
(RGB-D) vision. In order to enable the use of the robotic manipulator it is important
to recognize and track the 3D object that we need the arm to interact with. Hence, a
flexible solution for 3D tracking of different objects is needed. Figure 2 illustrates the
chair parts that will be used for the object tracking. These objects have not undergone
any paint job at this point in the assembly process, and will consequently have a varying
surface texture.
The nature of this problem will be the basis for the literature study in section 2, where the
viability of relevant existing recognition and 6-DoF estimation techniques will be discussed
before proposing a feasible solution. Thereafter, the theories behind the selected methods
are shown in section 3 before discussing the implementation in section 4 and presenting
the results in section 5. Finally, a discussion and conclusion will be given in section 6 and
7 respectively.

2



(a) (b)

Figure 1: Lab setup for problem description a) Side view of the robotic manipulator and
hanger. b) Closeup of robotic manipulator loading object onto hanger.

Figure 2: Objects to track.
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2 Literature study

In this section we do a brief study of existing 6-DoF estimation methods, while also
discussing the suitability of these methods in relation to the problem given in section 1.
The study starts off by taking a look at feature based methods in 2.1, before discussing
template matching in 2.2, learning-based methods in 2.3, and point cloud based methods
in 2.4. Finally, a feasible framework will be proposed in 2.5.

2.1 Feature Based Methods

Feature based methods make up a variety of techniques utilizing local image descriptors to
match keypoints between the scene and textured target objects. Using either a monocular
RGB camera, or a multi-view stereo vision setup, the 2D key points in image coordinates
are back-projected to 3D before retrieving the 6-DoF pose of the object based on these
point-to-point correspondences. SIFT [23] and SURF [3] are both examples of feature
detection algorithms which describe and detect local features in images. In short, these
apply gradient magnitudes and orientations relative to the keypoint’s orientation, making
the descriptor invariant to rotation. The transition from n 2D-3D point correspondences
to a 6-DoF pose is defined as a Perspective-n-point (PnP) problem. Gordon and Lowe
[12] presented a 3D object pose estimation framework back in 2006, using SIFT corre-
spondences between the scene and a 3D model of the object, and thereafter solving the
following PnP problem. In order to prevent false matches the RANSAC algorithm [10]
is also implemented, which removes outliers from potential 2D-3D correspondences. For
further pose refinement the Levenberg-Marquardt algorithm [22] can also be applied, as
was done in [12], minimizing the geometric reprojection error. In total this framework
can provide a speedy 3D object detection and pose estimate for textured objects when
provided corresponding 3D object coordinates for each matching 2D scene point.
As a starting point of this project a similar framework was implemented using ORB [34],
an efficient alternative to SIFT or SURF, and solvePnPRansac which combines RANSAC
and a PnP-solver to give an estimated pose in 6-DoF. Both of these are provided by the
Open Source Computer Vision Library (OpenCV). Initial tests were carried out using
a planar flyer as tracking object, giving a simple translation from image to 3D object
coordinates. An illustration of the pose estimation result is shown in figure 3.

This testing was for research purposes only, and will not be discussed in the remaining
thesis. This solution did however illustrate the importance of explicit features in order
to find point correspondences. As for SIFT and SURF, ORB can also be vulnerable to
illumination changes such as shadows and glare. Consequently, the flyer pose estimation
solution was only able to track its pose correctly in a span of ±30 degrees in roll, pitch
and yaw.
As stated in the problem description in section 1, the target objects will have a varying
surface texture. Naturally, this does not make the ideal conditions for a local feature
descriptor as each sample object will give rise to different keyponts. Self induced shadows
and a general lack of explicit features would further degrate the performance of a feature
based framework if applied to this problem.
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Figure 3: 6-DoF pose estimation of a textured flyer. Each colored circle represent an
ORB keypoint available for matching.

2.2 Template Based Methods

Template matching is another common approach for object detection and pose estima-
tion. In contrast to the feature based methods that use local feature descriptors, this
approach uses object descriptors. An object descriptor encode the entire observed object
based on a given modality, such as color gradients. The similarity score between a scene
image and a set of templates will hence decide if an object is present or not. During
training, these template images are obtained through sampling from different viewpoints.
This way the object’s pose can also be determined based on the pose of the template
match with the highest similarity score. However, in order to achieve high resolution
pose estimates with this approach, a huge set of template images would be required. A
trade-off between pose resolution, memory consumption and search speed is inevitable.
As a result, pose refinement algorithms like Iterative Closest Point (ICP) [4] have been
used to improve the initial pose estimate. This method operates on point clouds and can
only be applied when depth images are available. More details on ICP will be given in
the subsection on point cloud based methods in 2.4. For pose estimation setups using
RGB images only, the minimization of photometric energy functions have been used to
refine the initial pose estimates, as was done in [40].

2.2.1 LineMOD

LineMOD [18] is a well known method in template based pose estimation which uses
multiple modalities. The framework combines both RGB images and dense depth maps,
also known as RGB-D images, to give complimentary information on an object. As
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demonstrated in [18], the combination of a color gradient descriptor and a surface normal
descriptor makes a robust template representation. An illustration of these modalities
are shown in figure 4. As the figure shows, the color gradients are mainly located on the

Figure 4: A rubber duck with with different modalities, m. (Source: [18])

contours, while the surface normals are located on the body of the object. Unlike the
local feature descriptors discussed in 2.1, this template representation approach will also
be able to detect texture-less 3D objects. The contours are naturally also more robust to
illumination changes and noise compared to local feature keypoint found on the body. For
our problem, described in section 1, a LineMOD based template representation seems to
be a viable option for obtaining a decent initial pose estimate. As discussed, this solution
would however still need a pose refinement step. Given that this method already makes
use of depth images, the ICP-required cloud points would be easily accessible. Hence ICP
could be implemented and return the final 6-DoF pose for all detected objects.

Despite claiming real-time performance for multiple object detection and pose esti-
mation in [18], the efficiency of LineMOD has been discussed in various papers proposing
improvements on the pipeline. The exhaustive nearest neighbour search used for find-
ing the most similar template match is definetely not ideal. Shao et al. [36] recognize
this, but still proclaim this method to achieve real-time speed for single object pose es-
timation. They also discuss Approximate Nearest Neighbour (ANN) techniques such as
hashing-based and tree-based matching, while proposing a modified fuzzy decision forest
framework for improved matching efficiency. Although both hashing-based and tree-based
methods have sub-linear complexity for searching, these still have some drawbacks. For
one, the design of an efficient hash function is often not trivial [36]. Shao et al. also points
out the efficiency suffering related to the course of dimensionality due to backtracking
for the tree structure. Regardless, [21, 19] and [36, 33] all show improved efficiency on
the LineMOD ACCV12 dataset [18] by applying hashing-based and tree-based methods
respectively.

2.2.2 Region Based Methods

Region based methods, using RGB images only, constitute a different subcategory of
template matching. Simplified, these apply descriptors such as gradient response maps
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and local color histograms to find the template pose and its projected silhouette that
best fit the camera image. Just as for LineMOD, region based methods can be used for
detection of texture-less 3D objects. LINE-2D [16] is a popular and generic region based
method that applies gradient response maps for detection, just as LineMOD. In fact,
LINE-2D is what remains if the surface normals are omitted from the LineMOD method.
Tjaden et al. present a different approach in [40], using temporally consistent local color
histograms along the contours of the objects. An illustration of this technique is shown
in figure 5.

Figure 5: Projected contour of 3D object from a given template view. The local color
histogram regions are illustrated by colored circles. (Source: [40])

A drawback of this method is that it requires background knowledge, and must hence
be trained in the intended scene to outperform the more generic LINE-2D approach. In
addition, Gaussian based methods like [5] still perform better on the ACCV dataset [40]
compared to their method with scene knowledge. Stoiber et al. [39] also present a novel
sparse Gaussian approach to region based 6-DoF object tracking that was displayed at the
Asian Conference on Computer Vision (ACCV) in late November 2020. Although [5] and
[39] both have demonstrated some interesting results, the lack of implementation details
in [5] and documentation in [39] (at the time of writing) makes it difficult to experiment
or give a well-founded assessment of these methods in relation to our problem descrip-
tion. If considering region based methods as a whole however, the lack of complementary
depth descriptors can arguably make them more prone to false matches and drifting. For
instance, the pose refinement step, which normally utilizes something similar to a photo-
metric loss function, will naturally be less robust in terms of ambiguity compared to the
ICP algorithm which operates on 3D cloud points. To put it strongly, the shape of the
object will have no importance as long as the contours match the ones of a template. For
object with less distinct silhouettes than those from [40, 5] and figure 5, it is reasonable
to expect a somewhat impaired result in terms of detection and pose estimation. The
intended objects to track from figure 2 would also lose a lot of their characteristics if only
considering their silhouettes. Based on this brief assessment, LineMOD might be a more
suitable method for our problem than the region based approaches.
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2.2.3 Template Generating

The task of generating a set of templates naturally applies to all 6-DoF object pose
estimation frameworks based on template matching. As mentioned, a large number of
template samples from different viewpoints are needed in order to recognize an object
and give a decent initial pose estimate. In [15] a total of 12960 templates are used per
object. These are rendered from 216 viewpoints uniformly distributed on a synthetic
sphere around the target object. For each viewpoint the camera is rotated around the
optical axis from −60◦ to +60◦ with a step of 10◦. Finally this is repeated for 5 different
spheres with varying radii with a step of 0.1m. A similar setup is used in [36], except they
only use the upper hemisphere for sampling as shown in figure 6. The general approach
to generate these sets of templates is to synthetically render a 3D mesh model of the
target object. These models can for instance be obtained by scanning the object. This
way we can obtain flexible template based frameworks for 6-DoF object pose estimation,
as a mesh model is the only requirement for tracking a new object.

Figure 6: A synthetic rendering sample of a bottle. This setup contains four different
hemispheres with varying radii. (Source: [36])

2.3 Learning Based Methods

Learning based methods make up a different approach to 6-DoF pose estimation which
generalize better to variations in viewpoint and slight shape deformations. [33] from
2.2, which extended LineMOD by introducing an efficient tree-based search for template
matching, is an example of such a method, as the templates are learned in a discriminative
fashion. In general, learning based methods often evoke less false positives than nearest
neighbour approaches such as the exhaustive LineMOD search from [18]. However, as
stated in [36], their efficiency often depends on the quality of negative training samples.
If trained for one specific scene, the performance may not be transferable to others. This
should also be considered when being presented with results from a learning based meth-
ods. As with the temporally consistent local color histogram approach from [40], these
have often been trained on that particular dataset to achieve the best performance for
that scene.
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Some of the latest and most prominent related works include PointNet [30], which di-
rectly uses point clouds for object classification and segmentation, and [41] which propose
a method for human pose estimation called DeepPose. Both are based on Deep Neural
Network (DNN) architecture. Gao et al. also present a method for 6-DoF object pose
estimation in [11] based on both PointNet and ICP for pose refinement. As for most
template and learning based methods, the trade-off between efficiency and accuracy may
hurt the performance of real-time systems with moving objects. For instance, [11] demon-
strate an average processing time of 0.41s for a single object image when running on a
Nvidea Titan X GPU. This naturally would not be sufficient for a real-time system unless
we were dealing with stationary objects. DOPE [42] and PoseCNN [45], both using DNN
architecture, also fail to meet the real-time requirements for dynamic tracking. However,
[42] present a novel synthetic data generation procedure which enables a more flexible
training setup with pre-labeled data. This way, the cumbersome process of image assem-
bling and labeling is avoided.

To summarize, learning based methods make up a variety of approaches. While typi-
cally generalizing better to variations such as shape deformations, their performance often
rely on scene specific training and the quality of negative training samples. Furthermore,
the popular DNN based architectures introduce high computational complexity, making
these methods unfit for the dynamic tracking problem described in section 1. On the
other side, approaches such as the tree-based LineMOD extension [36] can actually result
in increased efficiency.

2.4 Point Cloud Based Methods

The entering of low-cost 3D cameras in the market has resulted in increased focus on
approaches that operate directly on 3D point clouds. The 3D object classifier PointNet
[30] from 2.3, and the LineMOD surface normal descriptor from 2.2.1 both utilize 3D
point data, making these invariant to object texture and illumination changes. Meth-
ods employing depth data exclusively are mainly used for pose refinement or template
matching. The previously mentioned ICP algorithm [4] is an example of the former.

2.4.1 ICP

ICP, or Iterative Closest Point, differs from most object pose estimation methods as it
does not detect the object. Instead, ICP uses an iterative scheme to align two cloud points.
This geometric optimization will hence find the translation and rotation that minimize
the distances between corresponding object points in 3D. However, a decent initial guess
or estimate of the objects pose is required. The algorithm is sensitive to both the initial
pose and sensor noise, which in turn can result in convergence to local optima. In order
to reduce sensor noise Ruotao He et al. [15] use a moving least squares algorithm [2] for
smoothing scene points before applying ICP. For template based 3D object detection and
pose estimation frameworks, such as [15, 18, 36, 21], ICP is often applied as the template
matching alone won’t give a sufficiently accurate object pose estimate.
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2.4.2 Oriented Point Pairs

A different category of point cloud based approaches is presented by Drost et al. in [8].
Using oriented point pair features, they create global model descriptions of the objects,
which are later matched using a voting scheme. The features describe relative position
and orientation of two point normals, as illustrated in figure 7.

Figure 7: a) Point pair feature F of two oriented points. F1 is set to the distance between
the points, F2 and F3 equals the angle between the normals and the vector defined by
the two points. Finally, F4 is set to the angle between the two normals. b) The global
model description. Point pairs with similar vector F are stored in the same slot in the
hash table. (Source: [8])

By analysing point pair features from the object scene, this method can detect the tar-
get objects while simultaneously output probable poses in 6-DoF. For increased stability
Drost et al. also use pose clustering which removes isolated poses with low scores. Simi-
lar techniques are applied in template based methods such as [15]. Unlike this LineMOD
based approach however, [8] is not refined by methods such as ICP. Nevertheless, when
requesting high precision, this framework will pay the price in terms of high processing
time. For our intended real-time application this naturally won’t be desirable. On the
other hand, it offer a somewhat flexible solution, as a 3D model is the only thing required
for tracking a new object.

2.5 Proposed Method

When considering what method should be applied to the problem described in 1, a tem-
plate based approach like LineMOD seems to be a reasonable choice. This method has
been proven to work on texture-less objects while being robust to illumination changes.
Works like [36] and [21] also demonstrate that it can be made more efficient by proposing
new template matching strategies. The synthetic template generating approach from sec-
tion 2.2.3 is also practical, and provides a flexible solution for multiple object tracking. As
previously mentioned, the region based methods [5] and [39] also show some interesting
results, but the lack of implementation details and documentation respectively makes it
difficult to experiment or give a well-founded assessment of these methods in relation to
our problem. Hence, a LineMOD based framework with template clustering and subse-
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quent ICP pose refinement will make up the final proposed pipeline. A rough sketch of
this pipeline is shown in figure 8. LineMOD will accordingly serve as the detector, while
template pose clustering and evaluation provide the inital pose estimates before the ICP
pose refinement.

Figure 8: Rough sketch of the proposed 6-DoF pose estimation pipeline. The template
generating and loading to detector, i.e. training, will be done offline.

3 Theory

In this section a more detailed description of the proposed framework methods will be
provided. First, the LineMOD [18] descriptors and similarity measures are presented in
3.1, before additional information will be given on clustering and the ICP algorithm in
3.2 and 3.3 respectively.

3.1 LineMOD

The following subsection is based on [18] and [17] by Hinterstoisser et al. Both papers
cover the LineMOD image representation and template matching strategy.

3.1.1 Similarity Measure

In order to find potential matching objects in an input image, a similarity measure is
required. The generalized LineMOD variant can be formalized as:

ε(I, T, c) =
∑

(r,m)∈P

max
t∈R(c+r)

fm(Om(r), Im(t)), (1)

where I is the input image and T is a given template. This template is defined as
T = ({Om}m∈M , P ), where Om is the template image of modality m, and P is a list
of pairs (r,m), where r is the location of a discriminant feature of modality m. The
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comparing between a scene image and a template is done through a sliding window
approach, where c is the location in I to be evaluated. By summarizing the similarity
scores over the discriminant features in P , through a similarity function fm, a total
similarity score is provided. A template is matched if the score is higher than an applied
threshold. Furthermore, the separate feature scores corresponding to (r,m) ∈ P are set
to equal the maximum similarity score in a neighbourhood R(c+ r) of size N with r + c
as the midpoint. This way the similarity measure in equation 1 archives robustness to
small translations and deformations.

3.1.2 Modalities

As previously mentioned, LineMOD combines the modalities of both color gradients and
surface normals. For the case of color gradients, these are obtained by in inspecting
each of the three color channels (R,G,B) separately. This naturally increases robustness
as the different channels provide a greater option of gradients than what would be the
case in grayscale images. Figure 9 also illustrates the difference in contour visibility using
both methods. In addition, this method considers only the orientation of the gradients
and not their norms, which increases robustness to contrast changes. For each image lo-
cation the gradient orientation of the channel whose magnitude is largest will be selected.
This can be illustrated by equation 2 and 3 where IG(x) is the gradient orientation at
location x in the input image.

IG(x) = ori(Ĉ(x)) (2)

Ĉ(x) = arg max
C∈{R,G,B}

∥∥∥∥∂C∂x
∥∥∥∥ (3)

As the normalized gradient map only considers the gradients orientation, and not their
direction, the orientation space of the map is divided into no equal spacings as shown in
figure 9. This will prevent the detection from being affected if the background changes
from bright to dark. The similarity measure for the gradient orientation can accordingly
be stated as:

εG(I, T, c) =
∑
r∈P

max
t∈R(c+r)

|cos(ori(O, r)− ori(I, t))|. (4)

In addition, to make the quantization of orientations more robust to noise, each location
will be assigned the quantized orientation which occurs most often in a 3 x 3 neighborhood.
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Figure 9: Upper Left: Quantization of the gradient orientations: The pink orientation is
closest to the second bin. Upper Right: A toy duck with a calibration pattern. Lower
Left: The gradient image computed on a grayscale image. Lower Right: The gradient
image computed using maximum magnitude from the separate color channels. (Source:
[17])

The second modality, surface normals, are computed from a dense depth field pro-
vided by the 3D camera. The method apply the first order Taylor expansion of the depth
function D(x):

D(x+ dx)−D(x) = dxT∇D + h.o.t. (5)

For each pixel location x, an optimal depth gradient estimate ∇̂D can be found given
some pixel offset vectors dx. This gradient can accordingly be expressed as a 3D plane
going through three points X1, X2 and X3:

X1 = ~v(x)D(x) (6)

X2 = ~v(x+ [1, 0]T )(D(x) + [1, 0]∇̂D) (7)

X3 = ~v(x+ [0, 1]T )(D(x) + [0, 1]∇̂D), (8)

where ~v(x) is the vector along the line of sight pointing towards the 3D point given by pixel
x. This vector can be seen as a projective element provided by the internal parameters
of the depth sensor. Finally, the surface normal at the 3D point can be estimated as
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the normalized cross-product of X2 −X1 and X3 −X1. The similarity function for these
surface normals is defined as the dot product of the normalized surface normals. Hence,
the similarity measure for the depth image can be expressed as:

εD(I, T, c) =
∑
r∈P

max
t∈R(c+r)

OD(r)T ID(t), (9)

where OD(r) is the normalized surface normal at location r from the reference image, and
ID(t) is the normalized surface normal at location t in the input image. As for the color
gradients, the surface normals are also quantized into n0 bins. These are spread out in a
right circular cone as shown in figure 10. In order to reduce the quantization noise on the
surfaces, the pixels, or 3D points with substantial depth differences will be ignored. This
primarily increases robustness for areas with depth discontinuity. In addition, to further
increase the robustness to noise, each location in the normalized surface normal map will
be assigned the quantized orientation which occurs most often in a 5 x 5 neighborhood.

Figure 10: Upper Left: Quantization of the surface normals: The pink orientation
is closest to the precomputed normal v4. Upper Right: A person standing in an of-
fice. Lower Left: The corresponding depth image. Lower Right: Computed surface
normals. The background was removed for visibility reasons. (Source: [17])
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3.1.3 Precomputed Response Maps

For efficient computation of similarity scores, the method introduces a binary represen-
tation of spread orientations, and a lookup table for fast computation of the similarity
measures found in precomputed response maps. The spreading of orientations and its
simple representation prevents us from having to evaluate the max operator in equation
1. For each image location, a binary string indicates the presence of a quantized orienta-
tion by setting the corresponding bit to 1. Similar representation is used for the surface
normal modality. However, for simplicity, only the color gradient representation and re-
sponse map computation will be illustrated in this subsection. This representation, and
the process of orientation spreading is shown in figure 11. The encoding of this spreading
is performed by OR’ing the concerning binary strings resulting in the more robust gradi-
ent representaion, denoted by m.

Figure 11: Spreading the gradient orientations. Left: The n0 gradient orientations and
their binary code. a) The gradient orientations in the input image, shown in orange.
b) The gradient orientations are spread to a neighbourhood of size T, as shown in blue.
c) The binary representation of the spread orientations. For this figure T = 3 and n0 = 5.
In practice, the method uses T = 8 and n0 = 8. (Source: [17])

When assessing the similarity for each discriminant feature i of modality m in P , a pre-
computed lookup table τi is utilized, where the integer value of m is used as an index to
the corresponding similarity score:

τi,m[m] = max
l∈m
|fm(i, l)|. (10)

For the case of color gradients, i is the index of the quantized gradient orientation of
the template feature from P , while l is the individual gradient orientations in a location
as shown in figure 11 b). Accordingly, the similarity score between each discriminant
gradient feature i, and corresponding spread input image orientations J can be stated as:

τi[] = max
l∈
|cos(ori(i)− ori(l))|. (11)

As  in principle represent all gradient orientations present in a neighbourhood, the
method achieves robustness to small translations and deformations without having to
iterate through t ∈ R(c+ r), as done in equation 1 and 4. By defining J as an image of
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-pixels, the values of the response map Si can be precomputed as:

Si(c+ r) = τi[J(c+ r)]. (12)

Finally, the similarity measure from equation 4 becomes:

εG(I, T, c) =
∑
r∈P

Sori(O,r)(c+ r), (13)

where the different response map variants are chosen as specified by the orientation i
of the current reference image feature in location r. The process of precomputing the
response maps is illustrated in figure 12.

Figure 12: Precomputation of the response maps Si. Left: There is one response map for
each quantized orientation. These store the maximal similarity between this quantized
orientation, and the corresponding combinations of orientations i the input image. Right:
This process is done efficiently by using the binary representation in J as index to lookup
tables of maximum similarity. (Source: [17])

3.2 Clustering

Clustering or cluster analysis is the task of classifying objects into distinct groups or
classes based on their available data [24]. Objects with similar attributes will hence
be clustered together, while more dissimilar objects will be placed in different classes.
This multi-objective optimization problem can be solved by numerous different cluster-
ing methods, such as connectivity-based clustering, also known as hierarchical clustering,
distribution-based clustering and centroid-based clustering [25]. k-means clustering is an
example of the latter and is illustrated in figure 13. Given a fixed number of clusters k,
this method minimizes the total Euclidean distance between all objects and their nearest
cluster center by iteratively changing the centroid positions. The objective function can
be expressed as:
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J =

k∑
j=1

nj∑
i=1

||xi,j − cj ||2, (14)

where k is the number of clusters, nj is the number of objects in cluster j and xi,j is object
of index i in cluster j. The center position of cluster j is given by cj . As the optimization
problem itself is NP-hard [43] the iterative approach will search for approximate solutions.
Lloyd’s algorithm [35], also known as k-means algorithm, does this by repeatedly assign-
ing each object to its nearest centroid cj before computing the new centroid positions
as the mean of these objects. The expression for finding the closest cluster center for a
given object xi is shown in equation 15, while the computation of new centroid positions
is shown in equation 16.

argmin
j
||xi − cj ||2 (15)

cj =
1

nj

nj∑
i=1

xi,j (16)

The algorithm stops when the object distribution converges, i.e. no objects are assigned
to new clusters.

Figure 13: Two dimensional k-means clustering for k = 3. The different colors illustrate
to which cluster the objects have been assigned. (Source: [7])
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3.3 ICP

Iterative Closest Point (ICP) [4] is an algorithm used to minimize the difference between
two clouds of points. As discussed in section 2.4.1, ICP is often applied when given
an approximate initial pose estimate from a template based framework. Through an
iterative scheme, the geometric distances are minimized, resulting in a translation and
rotation which aligns the two point clouds as illustrated in figure 14.

Figure 14: Alingning of point clouds using ICP. Left: Two clouds of points (blue and red)
given as input for the ICP algorithm. Right: The red point cloud has been translated
and rotated in order to minimize geometric difference to the blue point cloud. (Source:
[27])

In contrast to Kabsch algorithm [20] and other solutions, ICP needs no correspondences
between the two sets of points. Instead, for each iteration, every point in the source point
cloud will be matched with the closest point in the reference point cloud. These matches
will then be the basis for the subsequent geometric difference minimization, providing
the transformation applied in the next iteration. Zhang [47] also proposes a modified
k-d tree algorithm for efficient computation of the closest point matches. A statistical
method furthermore takes care of outliers and variations in the presence and absence of
corresponding object points.

4 Solution and Implementation

This section will focus on the implementation of the proposed pipeline as described in
section 2.5. First, the offline template generating is explained in section 4.1, before the
detector implementation is addressed in section 4.2. Both solutions were written in C++.
For reasons to be discussed in section 6, the ”match evaluation” and ”pose refinement”
modules were not implemented.
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4.1 Template Generating

In order to obtain the required set of template images for the detector, a synthetic image
renderer was utilized. Similar to the approach described in section 2.2.3, a 3D mesh model
of the target object is given as input. The template images are then acquired by visit-
ing a number of uniformly distributed viewpoints on synthetic spheres of different radii,
while also rotating around the optical axis. The source code for this image rendering was
provided by the Object Recognition Kitchen (ORK) [31]. For 3D model operations and
scene creation, Open Asset Import library (Assimp) and Simple DirectMedia Layer (SDL)
functionality is employed. In addition, the Open Graphics Library (OpenGL) yields the
more elemental graphics operations.

The implementation of this image renderer proved to be a rather demanding process.
Although the source code was easily accessible, integrating the different libraries was
quite challenging. For instance, not having the correct extension or version of different
software caused a lot of time-consuming troubleshooting. This was particularly the case
when trying to make use of some additional required OpenGL functions. Various OpenGL
extensions, such as GLFW, FreeGLUT and GLEXT were all tested before finally making
it work by directly adding the source code from OpenGL Extension Wrangler Library
(GLEW) into the project. Otherwise, the binary 64 bit versions of SDL 2.0 (SDL2) and
Assimp 4.1.0 were both installed before linking these to the project by adding their respec-
tive Dynamic-link library (DLL) files to the repository. The same was done for FreeImage
3.18.0, which provides image reading and converting functionality for the model module
in the 3D renderer implementation.

Seeing that a 3D mesh model is required for this template generating approach, mod-
els of the objects from figure 2 would be necessary for performing the intended object
detection. A 3D model of the large chair part was therefore created using the free and
open-source software FreeCAD [32]. An illustration of both the 3D model and the actual
object is shown in figure 15. By using this model, and the image renderer from ORK,
template images such as the ones from figure 16 were produced.

(a) (b)

Figure 15: 3D mesh model and real image of the object to track. a) 3D mesh model
created in FreeCAD by project supervisor Klaus Ening. b) Illustrative image of object.
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(a) (b)

Figure 16: Sample of produced template images. a) Template color image. b) Template
depth image. This image was edited in order to increase visibility.

As mentioned in section 2.2.1 on LineMOD, the color gradients for texture-less objects
will mainly be located on the contours of the object. Consequently, the 3D models require
no data concerning the object texture. The binary image representation, as illustrated
in figure 16a, will furthermore make the detection more robust to the varying surface
texture of target objects in the pre-paint stage as addressed in the problem description
in section 1.

4.2 Detector

Given a set of template images, the work of producing efficient modality descriptors and
performing template matching still remains. As suggested by the proposed detection and
6-DoF pose estimation pipeline in section 2.5, this was done using a LineMOD detector.
This detector implementation was provided by OpenCV, or more precise, their additional
repository for unreleased modules called opencv contrib [1]. Despite having to do some
extra installs, and linking these to the repository, the process of applying this detector
was not too challenging. It did however require a rebuild of the original OpenCV reposi-
tory in order to add the extra module, rgbd. This build was executed using CMake GUI.

The offline template loading, i.e. the response map computation described in section
3.1.3, is performed for one template image pair at a time, as the 3D model is being ren-
dered. When the rendering is done and all templates have been added to the detector,
all information is written to an Extensible Markup Language (XML) file. In addition, an
XML file is created containing rendering parameters like the synthetic camera incintrics
and the rotation matrices associated with the id of the corresponding template instance.
This approach was inspired by [44]. After loading a given detector and the related pa-
rameters from the rendering, the approximate rotation of a target object can be found
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through the id of the matched template. In addition, the approximate translation can be
estimated from the image coordinates of the match, along with the camera depth image
and the camera incintrics. First, the 3D points for the matching object is found using the
camera depth image and the camera incintrics. This functionality is provided by a func-
tion called depthTo3d from the rgbd module, and is primarily applied for the possibility
of executing a subsequent step of ICP. The 3D points do however give an approximate
camera-to-object translation by selecting the coordinates belonging to the center of the
matching frame. Examples of such matching frames can be found in figure 17 and 18 in
section 5, illustrated by green rectangles. The final step of finding the initial translation
estimate is to add the distance from the object surface to the object coordinate center for
the given template match. This distance is saved among the rendering parameters and
is added to the to the z-axis (camera depth) of the translation. Accordingly, an initial
pose estimate can be provided for all potential matches attaining a similarity score above
a given threshold.

For handling of the RGB-D sensor data, Azure Kinect Sensor Software Development
Kit [9] was utilized. In order to reduce computational time, the lowest resolution (1280
x 720) was selected. This toolkit also provided functionality for aligning the depth image
into the format of the color camera image, which is required for the lineMOD detector
approach.

5 Results

In this section some results from the object detection and initial pose estimation is pre-
sented. Referring to the pipeline sketch in figure 8, these will correspond to the the
preliminary matches from the detector. Although a complete pipeline will not be im-
plemented before the master thesis, these matches should still contain the information
needed to make well-founded assumptions on the presence of target objects, and further-
more give a decent initial pose estimate. For practical reasons, the detection was only
tested for the large object illustrated in figure 15b.

As there are many different parameters to consider for the detector, it is difficult to
decide an optimal configuration which gives the best results. By changing the sampling
step T, illustrated in figure 11, the image resolution, and the number of templates and
their geometric distribution, both the detection rate, the initial pose precision and the
computation time for matching are affected. However, the number of templates seems to
mostly affect the computational time, while not influencing the detection rate. The pose
estimation precision also appear to be rather unaffected by moderate changes in the num-
ber of templates. For the presented results, a set of approximately 6000 - 8000 templates
were used, uniformly distributed on six spheres with radii between 0.4 m and 0.9 m. Using
a combination of two different sampling steps, with T1 = 8 and T2 = 10 seems to give the
best results. This two-leveled pyramid approach does however increase the computational
time for template generating and matching, as an extra set of precomputed response maps
must be created and evaluated. By cropping the RGB-D camera images from 1280 x 720
pixels to 640 x 480 pixels, the matching time is reduced by approximately 60 % at the
expense of reducing the field of vision. Results from both formats are presented in this
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section. For the template generating, the template resolution should remain the same as
the original camera resolution, as a change of resolution would affect the response map
computation. The input image cropping evade this problem, as the pixel-to-point distri-
bution remain unchanged. Using this camera resolution, and the mesh model from figure
15a, the set of templates is created in around 40 - 50 minutes. Thereafter, the detector
can be loaded in approximately half a minute given the implementation in section 4.2.
The matching on the other hand can be done in approximately 0.5 s or 1.1 s for cropped
and non-cropped input images respectively. All computational times are based on the
performance of a personal desktop with 1.80 GHz Intel Core i5 CPU and 8 GB RAM.

The results from the object detection and initial pose estimation are presented in fig-
ures 17 - 23. The green rectangles illustrate the matching frame, while the yellow dots
illustrate the modality feature locations corresponding to the color gradient orientations.
The surface normal features, which are distributed within the contours of the potential
matches are not demonstrated in these images. In figure 19 and 21 the poses of the best
matches from figure 17 and 20 are also illustrated by plotting their respective local coor-
dinate axes onto the color image. All matching results are obtained using both the color
images and their attached depth image. As a consequence of low visibility however, the
depth images are not presented in this section.

When studying the results, it is clear that the implemented detector is capable of
detecting the target object in several of the presented images. In figure 17, 18 and 20
particularly, there are multiple matches concentrated around the real object. Overlapping
true matches like these are especially important when dealing with the presence of false
matches. While some of these false matches can be easily thrown away by cross-checking
the matching frame size and the depth value at this location, and thus detect mismatches
in object size, a cluster of matches can often be necessary in order to exclude other
singular false matches.
The process of picking out the true matches become a lot more difficult when dealing
with only a few true positive detections, which is the case for the detection in figure 22
with just one positive match on the target object. Needless to say, when given no true
positives, as in figure 23, the tracking is lost and there is no way to give an estimated
6-DoF pose of the object. Consequently, one could argue that the current implementation
of the object recognition and motion tracking system has some flaws in relation to the
recognition of the target object.
In addition to the detection rate, the precision of the initial pose estimates are also key
for the system performance. As illustrated in figure 20, even the best matches can still
provide poses which deviate from the true object pose. In this case however, a subsequent
ICP step could give a much better final pose estimate. At first glance, the initial pose
estimate in figure 19 looks better, but as the object in reality is flipped the other way
around, a subsequent ICP step could converge to a local minimum [46], still being upside
down. This could also be the case for the singular positive match on the object in figure
22, which is clearly upside down relative to the real object.
This match also demonstrate a notable tendency of the detector to favor templates with a
uniform flat surface. The detector seems to struggle more when the camera is not aligned
along the coordinate axes of the object. In addition, plain surfaces are the source of most
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Figure 17: Positive template matches Figure 18: Positive template matches

false matches, as they are being matched with flat surface templates.

Figure 19: Camera color image with local object coordinate axes corresponding to the
best match from figure 17
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Figure 20: Positive template matches

Figure 21: Camera color image with local object coordinate axes corresponding to the
best match from figure 20
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Figure 22: Positive template matches

Figure 23: Positive template matches

25



6 Discussion and Future Work

Overall, the results from the implemented solution clearly shows some potential. The
detector usually finds at least one approximate match for the target object, whilst not
obtaining too many false matches. For future work however, i.e. during the master thesis,
it would be preferable to attain a higher share of matches on the object. It would also be
preferable for these matches to present some more precise pose estimates. While small
deviations can be corrected by some subsequent pose refinement, this will most likely
not be the case when the real object is flipped a different way around, as was pointed
out in section 5. These improvements would also permit the utilization of the ”match
evaluation” and ”pose refinement” modules from the proposed pipeline in 2.5, which nat-
urally require a decent selection of potential true matches in order to deliver a proper
final estimate of object poses.

The shape of the target object could be a contributing factor to the insufficient recog-
nition rate for the detector. As expressed in section 5, the detector struggles more when
the object is not perpendicuarly aligned along the camera’s line of view. The current
implementation clearly promotes flat uniform surfaces, while object poses not fulfilling
this criterion are overturned by false matches, primarily from plain surfaces in the scene.
It arguably seems like the discontinuity of the multiple flat surfaces on the target object
provides a more challenging task of surface normal matching. The LineMOD source code
from [1] indicate that when computing normals, the contribution of a pixel will be ignored
if the depth difference with the central pixel is above 50 mm. This threshold should be
suitable for the presented object. Nevertheless, the object characteristics appear to com-
plicate the object detection. As an initial poof of concept, the 3D renderer and LineMOD
detector was tested using a 3D mesh model of a soda can and some RGB-D images from
a kitchen-scene dataset including similar shaped soda cans. In general, this test displayed
some very good result, clearly pointing out the target object from the scene. Although
the sensor data quality in theory could have an influence, the uniformly curved surface
seemed easier to distinguish from the surroundings scene. However, there are some alter-
ations which may improve the detector performance. For instance, more testing of the
sampling step T , or additional filtering of the sensor depth data might result in a better
detector configuration and more true object matches. Better lighting conditions while
testing could also improve the detection rate, by making the object contours easier to
detect from the background.

The ability of real time performance is also an important aspect of all object recog-
nition and motion tracking systems. For the problem described in section 1 particularly,
fast detection of objects is crucial as we are dealing with a free swinging hanger for load-
ing and unloading. Based on a detection time of 0.5 s for cropped camera images, and
furthermore additional computational time for subsequent clustering evaluation and ICP,
the computational costs will arguably exceed what is considered real time capable. How-
ever, as discussed in section 5, there are ways to reduce the computational time of the
presented object detector. For instance, reducing the camera resolution, or the number
of templates, can both make the detection faster at the expense of possibly also reducing
the detector precision. As discussed in 2.2.1, hashing-based [21, 19] or tree-based [36, 33]
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methods could also be applied. By searching for approximate solutions, these methods
achieve sub-linear complexity for the template matching. [18, 17] also state that using
a GPU can speed up the mathcing process. A different approach could be to combine
the implemented detector with a simpler motion tracker, only requesting a refined pose
estimate from the full pipeline (figure 8) for every n-th RGB-D image recieved from the
sensor. In other words, there are ways to make the implemented pipeline more capable
of real time performance.

Apart from the detection rate, the initial pose estimate precision and the computa-
tional properties, which have already been discussed, the implemented framework also
provides some very practical template generating functionality. In order to track a new
object, only a 3D model of the object is required. For common daily-life objects, these
can easily be found online. For more unique objects, like industrial parts, the models
can either be provided by the manufacturer, or be created using a 3D scanner. Anyhow,
this flexible solution enables efficient generation of templates, which furthermore can be
loaded to a detector in less than a minute.

Having all of this in mind, it is tempting to see if the proposed modifications can
improve the detection rate of the current implementation. Even though the LineMOD
detection approach has appeared to be rather challenging for the target object, the pro-
posed pipeline still seems like a viable option with a decent potential. If there is no
progression however, it might be necessary to look at different detection methods. If that
is the case, Stoiber et al. from section 2.2.2 recently published their paper [38] on their
sparse gaussian approach to region-based object tracking, which seems promising. As
their source code is available on github [39], it would be interesting to see if this approach
could work for this problem.

7 Conclusion

Based on the provided object tracking problem, which includes a free-swinging hanger
for loading and unloading, and a brief literature study of existing methods, a feasible
template based framework for object detection and 6-DoF pose estimation is proposed.
Using a synthetic template rendering approach, new objects can easily be added to the
detector. The LineMOD matching strategy then combines the color gradient and depth
normal orientations to find the template RGB-D image and belonging pose which best fit
the sensor data. Despite the presence of true matches in most of the presented results,
the shape of the tested object seems to make the detection rather challenging. Increased
detection rate and more precise initial pose estimates are preferable if additional steps
of pose cluster evaluation and ICP should be implemented. Consequently, it would be
desirable if modifications to the detector could improve the matching results. If not, it
might be necessary to look for different detection strategies.
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