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Abstract

The integration of autonomous robot systems in medical procedures are challenging
due to the complex scene involved. The handling of moving objects and soft mate-
rials, combined with variations between patients, has proven to be an obstacle for
robot-assisted procedures. Research within reinforcement learning has facilitated
the design of new robot controllers, making it possible for robot manipulators to
learn from experience. Data is limited, but realistic simulators have shown to be
a possible source for acquiring the necessary training material and experience for
robot manipulators to adapt to a real-life scenario. Employing sophisticated robotic
systems could show great benefit in medical procedures, and possibly help reduce
the increasing workload in the health sector.

In this project, a prototype simulation framework for robot-assisted medical
procedures has been developed. The framework utilizes MuJoCo as its physics en-
gine, and the open-source simulation framework robosuite as the foundation of the
development process. Object models of an ultrasound probe and a soft torso has
been created and integrated into a simulation environment. In order to minimize
the reality gap, a calibration task of the modelled soft-body was designed. The
simulation framework was later integrated with baseline reinforcement learning al-
gorithms, and a simulation environment was created to showcase the functionality of
the integrated framework. This included designing a reward function and extracting
relevant observations from the simulation environment.

The resulting simulation environment consists of a robot manipulator with an
ultrasound probe as its tool, a soft body representing the patient and a table. The
framework has a modular structure, facilitating seamless interchangeability of its
components. The calibration task yielded a ratio specifying the relationship be-
tween the stiffness and damping of a real soft body, enabling realistic imitation of
its properties in simulation. As a proof-of-concept showing the integration of re-
inforcement learning in the simulator, an UR5e robot manipulator was trained to
push a cube.

The simulation framework looks promising for exploring the use of reinforcement
learning in a medical setting. The proof-of-concept exhibits the capability, however,
a vast amount of work and further investigations needs to be conducted to fully
exploit the potential and transfer the technology into clinical applications.
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Chapter 1

Introduction

Robots and automated processes are becoming increasingly integrated into society,
where they are capable of performing cumbersome and repetitive tasks historically
done by humans. In medicine, robot-assistants were introduced already in the mid-
eighties [1]. Later, they have evolved into becoming an established part of clinical
procedures. Robots have a huge potential within the healthcare sector, where they
are capable of executing precision demanding tasks with high repeatability. Com-
pared to humans, robots have a higher endurance making them both capable of
meeting the ever-growing demand for treatments and medical procedures, and prove
themselves economically beneficial. Generally, the cost of industry-standard robot
manipulators is decreasing and thus making robot manipulators more accessible.
Developed robotic systems could potentially prove to be a viable choice compared
to current solutions in terms of expenditure.

However, automation of tasks using robot manipulators, like ultrasound imaging,
has not been widely adopted within the healthcare sector. One of the reasons is that
current robot systems are still not proficient enough at handling moving objects and
soft materials. This makes it challenging to interact with body parts and organs
that are moving and changing shape, both because the patient does not necessarily
lie completely still, but also because of breathing motion and pulsation. The body
will in addition be manipulated as part of the procedure.

Machine learning has proven itself useful in creating robot controllers that gen-
eralize well and are able to handle new and unseen events [2]. By learning from
experience, machine learning algorithms are unlocking a whole new set of possi-
bilities. These algorithms, however, often require large amounts of data to obtain
sufficient results, and how to efficiently acquire such amounts of data is still an
unsolved problem. Using simulators to replicate the real world has proven to be a
feasible solution, where the robot can learn from simulated experiences.

The world population is both increasing and ageing. By 2050, the number of
older persons are expected to double [3]. Instinctively, this will create a higher
demand for medical procedures and thus greater workload in the healthcare sector.
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1.1. GOAL OF THE PROJECT CHAPTER 1. INTRODUCTION

Introducing sophisticated and autonomous robot-assisted medical procedures could
therefore have a significant impact on the healthcare sector in the following years.

1.1 Goal of the project
The goal of this project is to develop a realistic simulation framework for robot-
assisted medical procedures, with especially focus on ultrasound imaging. The
framework will include a robot arm holding an ultrasound probe in various real-
istic settings. One of the development criteria is that the framework will facilitate
development, training and evaluation of Reinforcement Learning (RL) algorithms,
making it possible to control the robot arm while dynamically compensating for
motion and changing shapes of objects. The project will contribute more knowledge
and methods in the field of robot-assisted medical procedures, and hopefully facili-
tate further research and development on the use of reinforcement learning combined
with robots in the medical setting.

1.2 Outline
This project report is organized into six chapters. The second chapter contains a
literature survey presenting the field of use and performance for a selection of physics
engines. The chapter further presents modeling concepts for the chosen physics
engine, an overview of a utilized simulation framework and a short introduction
to reinforcement learning. The chapter serves as the general background needed
to solve the project’s objective. The third chapter describes the implementation
of the simulation framework, together with the design process and execution of a
calibration task. Features of the resulting framework, together with the results from
the calibration task is shown in chapter four. The fifth chapter discusses the choice
of physics engine, the resulting framework and the data from the calibration task.
Suggestions for further work is also included. The report is concluded with closing
remarks in the last chapter.

2



Chapter 2

Background

2.1 Literature survey
There exists a wide collection of physics engines; ranging from game-focused engines
excelling at rendering large groups of rigid bodies to robotics-focused engines spe-
cializing in simulating accurate contact and interaction dynamics between robots
and objects. With a growing selection of both physics engines and simulation envi-
ronments it is important to get an overview of the optimal engine for the problem
at hand. The choice of engine must be based on specified performance on the sim-
ulation side, and minimum requirements on the problem side.

A literature survey was conducted in order to get an overview of some of the
most popular physics engines, their field of use and how they perform. Some of the
engines included in the survey were MuJoCo, Bullet, PhysX and ODE.

2.1.1 Speed, consistency and energy and momentum con-
servation

The metrics self-consistency and speed-accuracy trade-off of the numerical integrator
used in the physics engine are two quantitative measures used to evaluate simula-
tion performance. These focus on the numerical challenges typical for robotics, as
opposed to multi-body dynamics and gaming [3]. In the study by Erez et al. [3],
they use an engine-specific reference trajectory obtained by simulating the system
with a very small timestep ℎ. The timestep is then increased and the deviation from
the reference measured, iteratively. Note that this measurement does not capture
model errors, where non-physical modeling, like ignoring Coriolis forces, will go un-
punished. The different engines’ energy and momentum drift were also measured in
separate tests. In total, the paper tested the self-consistency of the engines in four
different model systems. Two of these model systems were further used to quantify
the engines’ energy and momentum conservation.

The grasping model system, shown in Fig. 2.1a, is the most relevant modelling
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system presented in [4]. It consists of a 35 degree of freedom (DOF) robotic arm
grasping a capsule using fixed spring-dampers. The system has large mass ratios and
involves many simultaneous contacts, making dynamic simulation difficult. Hence,
this system has many similarities with the final environment of this project, and
the obtained results could therefore provide a good indication on how the physics
engines would perform in the finalized environment.

The results from the grasping model system is shown in Fig. 2.1b and Fig. 2.1c.
Here, MuJoCo is the fastest physics engine while also consistently providing the
best accuracy by a significant margin. The reason for some of the engines having
partial graphs in Fig. 2.1c is instability. For instance, Bullet and ODE yielded
unstable simulations for larger timesteps and it was therefore no longer meaningful
to measure the consistency.

(a) A 3D illustration of the
grasping model system.

(b) Raw speed as thou-
sands of evaluations per
second for each engine.

(c) Speed-accuracy trade-off in
terms of the consistency mea-
sure.

Figure 2.1: Results from the grasping model system.
Source: [4]

Results from the other model systems are in accordance with the results in
Fig. 2.1. The MuJoCo engine achieves the best overall results. When it comes to
consistency, MuJoCo outperforms the other engines by orders of magnitude. The
least consistent engines were Havok and PhysX. On systems relevant to robotics,
MuJoCo is the fastest engine. However, ODE is the fastest engine when simulating
gaming relevant systems, while MuJoCo is the slowest. Further, MuJoCo with
the 4𝑡ℎ-order Runge-Kutta integrator [5] outperforms the other engines in energy
conserving systems. Engines using Cartesian coordinates, like Bullet, performs best
when preserving linear momentum.

2.1.2 Reality gap
The necessity to abstract, approximate or remove certain physical phenomena will
lead to discrepancies between the simulations and the real world. As an effect,
control systems created in simulation will often not perform to the same standard
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in reality. The difficulty of transferring simulated experiences into the real world is
often referred to as a ”reality gap”. Gaps essentially relates to actuators, sensors and
physics that determine interactions between robots and objects in the environment.
Examples are gear backlash, sensor noise and interactions with soft objects. Reality
gaps are of increasing importance [6] as deep learning algorithms need large amount
of relevant data to achieve acceptable performance. In order to efficiently use data
from simulations, the resemblance to the real life task must be high.

Quantification of the reality gaps found in robotic grasping is done in [7]. A
total of three robotic manipulation tasks performed by a 6-DOF Kinova Mico2 arm
was recorded by a highly accurate motion capture setup and used as a ground truth.
The tasks include single-joint control, multi-joint control and interaction with an
object (i.e. a cube). The same scenarios were simulated across a range of popular
simulators, and the simulated data was then compared to the real movements given
by the ground truth. Note that the three simulators used to conduct the simulations
expose the following five physics engines: Bullet, ODE, Vortex, Newton and Mu-
JoCo. It is further worth noting that three different implementations of the Bullet
engine was used in the simulations: PyBullet, Bullet278 and Bullet283.

The accumulated euclidean errors of the different simulator and engine combina-
tions are shown in Table. 2.1. Overall, PyBullet, which exposes the Bullet engine,
achieves the lowest total accumulated euclidean error followed closely by V-Rep run-
ning the Newton and Vortex engine, respectively. In other words, PyBullet, Newton
and Vortex were considerably and consistently better at controlling the manipula-
tor compared to the other engines. MuJoCo, on the other hand, accumulates a
large error for the multi-joint control task, effectively increasing the engine’s total
accumulated error. ODE yielded an unstable simulation for all the scenarios, while
V-Rep with the Bullet engine gave consistently large accumulated euclidean errors.

Table 2.1: Accumulated (over timesteps) euclidean error (m) compared to ground truth.
Source: [7]

1 Joint 2 Joints Cube Total
MuJoCo 24.237 49.430 23.471 97.138
PyBullet 18.249 7.000 20.084 45.513
V-Rep (Bullet278) 27.412 81.166 25.034 133.611
V-Rep (Bullet283) 26.698 80.004 25.215 131.916
V-Rep (Newton) 18.810 5.579 21.069 45.458
V-Rep (Vortex) 18.887 5.664 21.130 45.680
V-Rep (ODE) 1.31e+17 1.19e+18 1.88e+18 3.20e+18

However, the results do not tell the whole story, and there are several character-
istics from the simulations that are worth noting. For instance, as shown in Fig. 2.2
only MuJoCo and Bullet283 were able to interact with the cube. PyBullet, which
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achieved the best results in Table. 2.1, was not capable of interacting with the cube
at all where the robot’s gripper moved over the cube. Further desirable simulation
characteristics can also be found in the simulations of the single- and multi-joint
control tasks. An example is that MuJoCo and Bullet283 are capable of replicating
the oscillations generated by the real controller. MuJoCo is the only engine capable
of reaching the goal positions before changing trajectory in the multi-joint control
task.

Figure 2.2: Two plots of scene 3 - three joints move in a sequence to push a cube along
a flat plane. In the upper plot, the x-axis represents the start position of the cube with
lines the cubes euclidean distance away. The lower plot shows the pitch of the cube (where
pitch is the rotation around the y-axis).

Source: [7]

2.1.3 Other factors
Overall, the engines offer documentation to some extent, either via web pages or
manuals. The documentation generally describes the use of functions together with
modelling examples and use cases. It is worth noting that MuJoCo also offers
explanation of the engine’s mathematical foundation and an in-depth modelling
tutorial. Well-written documentation lowers the barriers to entry, making it easier
to start creating quality models with desired properties.

MuJoCo also offers integrated soft body dynamics and the possibility to model
soft objects, both who are crucial components for the final environment. Bullet, on
the contrary, only contains soft body dynamics to a certain degree as expressed in
[8]. Better soft body dynamics are not imminent as the inventor states that the
focus is on improving the rigid/multibody/collision detection parts of the engine.
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Similar to Bullet, ODE also offers soft body dynamics to some degree where soft
materials can be simulated by specifying soft constraints for the joints of a rigid
body.

2.1.4 Summary
Based on the results from [4] and [7], and other factors presented in Section 2.1,
MuJoCo was chosen as the preferred physics engine. The engine is fast and shows
great consistency in a range of tasks, especially in the grasping task which resem-
bles the dynamics needed in the final environment. The engine can, however, be
regarded as suboptimal for closing the reality gap. In the results from [7], MuJoCo
accumulates a large euclidean error compared to the ground truth. Having said
that, MuJoCo resembles reality well when simulating interaction tasks between a
robot with gripper and an object, a scenario that is highly relevant for the final
environment.

Additional reflections on the choice of physics engine can be found in Section
5.1.1. In the following section, background theory for the MuJoCo physics engine
will be presented.

2.2 MuJoCo
MuJoCo (Multi-Joint dynamics with Contact) [9] is a physics engine aiming to aid
research in areas where fast and accurate simulations are needed. These areas include
robotics, biomechanics, graphics and animation. MuJoCo is designed for the purpose
of optimization through contacts, making it possible to apply computationally-heavy
techniques, such as optimal control, in contact-rich environments at a large scale.

2.2.1 Modeling
In MuJoCo, models are defined using XML files written in either the physics en-
gine’s native MJCF format, or the more well-known URDF format1. MJCF models
can represent complex dynamical systems with a wide range of features and model
elements, and the MJCF modelling language can be thought of as hybrid between
a modelling format and a programming language. At compile time, the plain text
XML file, stated in either the MJCF or URDF format, is compiled into a low-level
mjModel which is used for simulations and computations.

MuJoCo offers the possibility of modelling soft bodies. In MuJoCo, soft bodies
are modelled as composite objects, who are made up of a collection of rigid bodies.
The collection of rigid bodies can be organized in a 1D, 2D or 3D grid depending
on the type of soft body it is desired to model. For instance, the bodies could be
1https://wiki.ros.org/urdf
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(a) Particle system of rigid bodies. (b) Center of particle system.

Figure 2.3: Example of a soft 3D object modelled in MuJoCo. The rigid bodies are
organized in a 3D grid along the outer shell, with sliding joints between each rigid body
and the center in order to simulate a flexible object.

organized in a 1D grid in order to model a whip, while a piece of cloth would require
the bodies to be organized in a 2D grid. Thus, a composite object is essentially a
particle system of rigid bodies. However, the particles can be constrained to move
together in a way that simulates a flexible object.

Soft 3D objects are of special interest as they can be used to simulate a human
torso. An example of a soft 3D object is shown in Fig. 2.3. Here, the particles form
a grid along the outer shell, efficiently reducing the number of particles needed to
model the 3D object, compared to a dense 3D grid. In order to mimic the softness of
a flexible object, each particle has a single sliding joint pointing away from the center
of the grid. These joints allow the surface of the soft object to compress and expand
at any point. For the soft object to both maintain its shape after deformation and
for the deformation itself to be smooth, the joints are both equality-constrained
to their initial position and their neighbour joints. Finally, the sum of all joint
displacements should be constant in order to preserve the volume of the object.

2.2.2 Constraints
MuJoCo has a constraint model that includes several types of constraints, such
as equality constraints, friction loss constraints, limit constraints and contact con-
straints. Each conceptual constraint can contribute one or more scalar constraints
towards the total constraint count 𝑛𝐶, and each scalar constraint has a correspond-
ing row in the constraint Jacobian J.

MuJoCo models equality constraints in the general form

r(q) = 0 (2.1)

where r, connoted as a residual, can be any differentiable scalar or vector function
of the position vector q. Each equality constraint contributes 𝑑𝑖𝑚(r) elements to
𝑛𝐶.

The equality constraint for locking a single sliding joint into a constant position,
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as used in the composite 3D object, is simply given by

𝑦 −𝑦0 = 𝑎0

where 𝑦 is the joint’s position and 𝑦0 is the joint’s initial position. The left-hand side
can be interpreted as a residual, while the right-hand side is a model parameter that
is default set to zero. Hence, the equality constraint is stated on the form presented
in eq. (2.1).

The general constraint dynamics are set to follow

𝑎1
𝑖 = 𝑑𝑖𝑎∗

𝑖 +(1−𝑑𝑖)𝑎0
𝑖 , 𝑖 = 1,2, ...,𝑛𝑐 (2.2)

The variable 𝑎1
𝑖 represents constrained acceleration, while the unconstrained and

reference acceleration is denoted 𝑎0
𝑖 and 𝑎∗

𝑖 , respectively. It should be noted that
the accelerations are expressed in constraint space. Model parameters 𝑑𝑖, referred
to as impedance, are introduced to directly control the interpolation between the
unconstrained and the reference acceleration. The impedance satisfies 0 < 𝑑𝑖 < 1
and the impedance vector d has dimensionality equal to 𝑛𝐶. Small values of 𝑑𝑖
correspond to soft or weak constraints, while large values of 𝑑𝑖 correspond to strong
or hard constraints.

The reference acceleration is modeled as a spring-damper

𝑎∗
𝑖 = −𝑏𝑖(Jv)𝑖 −𝑘𝑖𝑟𝑖 (2.3)

where 𝑏𝑖 are the damping coefficients and 𝑘𝑖 are the stiffness coefficients. The
position residuals are denoted 𝑟𝑖, while (Jv)𝑖 are the joint velocities projected in
constraint space. Here, the indexing notation refers to one component of the pro-
jected velocity vector. An illustration of a mass-spring-damper system is shown in
Fig. 2.4. The relationships between the reference acceleration model and a general
mass-spring-damper system can then be summarized as

(Jv)𝑖 = ̇𝑥
𝑏𝑖 = 𝑐𝑠

𝑚
𝑘𝑖 = 𝑘𝑠

𝑚
where 𝑚 is the mass, 𝑘𝑠 is the stiffness of the spring, 𝑐𝑠 is the damping coefficient
and ̇𝑥 is the velocity of the mass.

Focusing on a single scalar constraint, inserting eq. (2.3) into eq. (2.2) yields
the following dynamics in constraint space

𝑎1 +𝑑(𝑏𝑣 +𝑘𝑟) = (1−𝑑)𝑎0

The constraint dynamics can therefore be adjusted by choosing values for 𝑑, 𝑏, and
𝑘. As an example, the softness and flexibility of a composite object are directly
related to the values of these parameters.

9



2.2. MUJOCO CHAPTER 2. BACKGROUND

m
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ks cs

Figure 2.4: An illustration of a mass-spring-damper system, where a mass is connected
to a spring and a dampener. The mass is denoted 𝑚, while 𝑘𝑠 and 𝑐𝑠 is the spring and
damping coefficients, respectively. The position of the mass is specified as 𝑥. Applying an
external force on the system will cause a displacement in 𝑥.

The impedance is implemented as a function 𝑑(|𝑟|) parameterized by five num-
bers. These numbers specify the shape of the impedance function and corresponds
to the following properties

𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥, 𝑤𝑖𝑑𝑡ℎ, 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡, 𝑝𝑜𝑤𝑒𝑟

Examples of different parameterized impedance functions are shown in Fig. 2.5. The
parameterized impedance function depends on the absolute value of the quantity
𝑟, which is computed according to the type of constraint at hand. For equality
constraints, 𝑟 equals the constraint violation.

Figure 2.5: Examples of parameterized impedance functions. The impedance 𝑑(|𝑟|) is
plotted along the vertical axis, as a function of the absolute value of 𝑟.

Source: http://www.mujoco.org/book/image/modeling/impedance.png

The damping parameter 𝑏 and stiffness parameter 𝑘 are scaled such that the
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same numbers can be used with different impedances. The scaling formulas are

𝑏 = damping
dmax

𝑘 = stiffness
dmax2

Hence, the parameters can be chosen by specifying stiffness and damping assuming
the impedance function is already defined.

2.2.3 Contact model
MuJoCo uses a soft contact model. These type of models are often used to model
the contact between a soft finger and a rigid object, where the finger is allowed to
apply an additional torsional moment with respect to the normal at the contact
point.

Mujoco’s contact model differs from the de facto standard LCP (Linear Com-
plementarity Problem) contact models by dropping the complementarity constraint
in its entirety. The complementarity constraint states that force and velocity in the
contact normal direction cannot be simultaneously positive, and is an essential part
of the LCP formulation. Removing the constraint transforms the LCP model into
a convex model. MuJoCo’s contact model can therefore be regarded as convex.

The complementarity constraint is removed based on the argument that all phys-
ical materials allow some deformation in reality, essentially making all types of
physical contact soft. For soft contact, the complementarity constraint has to be vi-
olated: when there is penetration and the material is pushing the contacting bodies
apart, both the normal force and velocity are positive. The constraint would there-
fore impose an unrealistic restriction on the simulation when it is assumed that all
contacts in the real world are soft.

The contact model is further based on point contacts. A contact point is defined
geometrically by a point between the two contacting rigid bodies and a spatial frame
centered at that point. Both the point between the contacting bodies and the spatial
frame is expressed in global coordinates. The 𝑥-axis of the spatial frame points in
the contact normal direction, while the two remaining axes span out the tangential
plane. The contact distance is defined as positive when the two bodies are separated,
zero when they touch, and negative when they penetrate. The contact point is in
the middle between the two surfaces along the normal axis.

It is worth noting that MuJoCo assumes that all objects recover their shape
before the next contact. In some cases this will lead to an approximated contact
force which deviates from reality. Suppose you push your finger into a soft material,
pull it back faster than the material can recover its shape, and push again. The
contact force experienced on the second push will then also depend on the material
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deformation created by the first push, and not only on the rigid-body positions of
your finger and the object. The model implemented in MuJoCo fails to include this
additional dependency.

2.3 robosuite

A Nature study conducted in 2016 [10] indicated that more than 70% of researchers
have tried and failed to reproduce another scientist’s experiments, and more than
half have failed to reproduce their own experiments. robosuite [11] is a simulation
framework powered by the MuJoCo physics engine for robot learning which aims
to remove the problem of lack of standardization in papers, along with the need for
better benchmarks. This is done by offering a suite of easy to set up and compa-
rable benchmark environments facilitating reproducible research. The overarching
goals of robosuite is to provide researchers with a standardized set of benchmarking
tasks, flexibility in creating new environments, and a variety of implemented robot
controllers and learning algorithms to lower the entry barriers.

2.3.1 Overview

A structural overview of the framework is shown in Fig. 2.6. The framework offers
two main categories of Application Programming Interfaces (APIs). The modeling
APIs are used for defining simulation environments in a modular and programmatic
fashion. The simulation APIs, on the other hand, are used for interfacing with
external inputs, such as inputs from a policy or an I/O device. A simulation model,
specified by the modeling APIs, is instantiated by the MuJoCo engine. The result
is a simulation runtime, which is referred to as an environment. The environment
generates observations with the use of sensors such as cameras and proprioception.
Action commands are generated by policies or external devices and sent to the
environment through the controllers of the robots.

A simulation model is defined by a task object, which encapsulates three crucial
components of robot simulation. The components include robot models, object
models and an arena. Hence, a task can consist of one or more robots, none to
many objects and a single arena. A robot model consists of both a model of the
robot and a model of its corresponding gripper, both specified as an XML file. The
object model can either be loaded from an XML file, or procedurally generated with
programmatic APIs. The workspace of the robots is defined in the arena. The arena
includes environment installations and their placements, for instance a tabletop with
position and orientation. The task class combines the robot models, object models
and the arena into one XML object specified in MuJoCo’s MJCF modeling language.

12
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Figure 2.6: Structural overview of the robosuite framework. The diagram illustrates the
key components in the framework and their relationships.

Source: https://robosuite.ai/docs/images/module_overview.png

2.4 Reinforcement learning
Reinforcement learning is a type of machine learning [12]. In essence, reinforcement
learning aims at getting an agent to learn how to behave in an environment, where
the only feedback consists of a scalar reward signal. The distinction between the
environment and the agent might not always be intuitive. As a rule of thumb,
everything the agent cannot control is a part of the environment.

The goal of the agent is to maximize its reward. How RL algorithms operate can
be summarized by Fig. 2.7. The agent chooses to perform an action. This action
can either be chosen at random or by the agent’s policy. A policy is a function that
maps a state, or observations, into an action. The agent then performs its chosen
action and the environment returns a reward and observations based on the action.
The reward is a measure on how good the performed action was according to some
goal. Given the set of action, reward and observations, the agent can update its
policy to try to maximize the reward.

ActionObservation,
Reward

Environment

Agent

Figure 2.7: Reinforcement learning

An example of a set-up suitable for reinforcement learning is a robot manipulator
trying to lift a cube from a table. In this case, the robot manipulator will be the
agent, while the cube and the table will be part of the environment. An action
would be a set of torques applied to the joints of the robot and its gripper. Joint
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angles and the position of the cube could be examples of observations, while the
reward could be a scalar proportional to how high the cube is lifted.
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Chapter 3

Methodology

Based on the project goals, the development process started out with defining the
framework requirements. By setting initial requirements for the framework, it was
then possible to draft the framework architecture and essential components. Due
to its usability and integration of reinforcement learning libraries, the framework
was developed using Python. The robosuite framework, with its structure shown in
Fig. 2.6, offers a modular architecture which fulfils many of the initial criteria and
was therefore used as a foundation for further development.

As already stated, the overall goal of the project is to establish a simulation
framework for reinforcement learning within robotic ultrasound imaging. In order
to obtain a functional simulation framework, there are several components that need
to be implemented and integrated together. To develop a medical ultrasound task
by extending the robosuite framework, the further steps include:

• Model relevant objects and environments, such as a robot holding an ultra-
sound probe gripper, a patient and a room with a table defining the workspace
of the robot.

• Extract relevant sensor-data from the environment.

• Integrate the simulation environment with OpenAI gym for performing RL.

With these requirements laying the foundation for further development, the neces-
sary components and framework architecture were specified precisely.

3.1 Modeling
The robosuite framework offers a wide collection of industry-standard robot models,
including the popular UR5e [13] and Franka Emika Panda [14] robots. The frame-
work also contains a set of pre-defined robotic environments intended for specific
tasks. One of the environments, the lift-environment consists of a table, a cube
placed on the table and a robot. The environment shows great resemblance to the
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desired environment, where the cube could represent a patient lying on a table.
The lift-environment was therefore used as a basis. Remaining modifications to the
lift-environment were then to attach an ultrasound probe as the robot’s end-effector
and substitute the cube for a soft torso.

Hence, the first task is reduced to modeling an ultrasound probe gripper and a
soft torso object. In order to specify the shape of the ultrasound probe, its mesh was
designed digitally and saved as a CAD model. By specifying an XML file written in
MuJoCo’s modelling language MJCF, the mesh was integrated into MuJoCo with
additional inertial properties. Utilizing MJCF again, the soft torso was modelled as
a 3D composite object. Contrary to the probe, the soft torso object was specified
solely in an XML file, as support for specifying the shape of soft objects with the use
of meshes is not yet implemented in MuJoCo. The shape of the soft object is then
defined by the amount, shape, size and spacing of the rigid bodies making up the
object. The modelling process of the soft object then included choosing the amount,
shape, size and mass of the rigid bodies, and the stiffness and damping parameters
for the composite object’s constraints.

How the two models are connected to the robosuite framework is shown in
Fig. 3.1. Using robosuite’s API, the ultrasound probe gripper is integrated into
the robot’s XML file as an end-effector. The robot, with the ultrasound probe, is
then loaded as a robot model. The soft torso, on the other hand, is a standalone
object and its XML file is loaded as an object model. Ultimately, the simulation
model consists of a robot with an ultrasound probe end-effector, a soft torso object
and an already implemented arena containing a tabletop.

Task

Robot

Model

Object

Model

Arena

Ultrasound

Probe Gripper

Soft torso

Figure 3.1: Illustration of how the modelled gripper and soft torso relates to the robosuite
framework. The gripper is integrated as part of the robot model and loaded with the robot
as a whole, while the soft torso is loaded as a standalone object.

3.2 Sensor data
Extracting relevant sensor data from the environment is crucial for implementing
RL algorithms, as the algorithms use knowledge about the environment to improve
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the control policy. robosuite’s APIs facilitate uncomplicated extraction of desired
and customized data while also simplifying the integration of different sensors. For
instance, a Force-Torque sensor was equipped at the tip of the ultrasound probe,
making it possible to extract torques and forces acting on the probe. Other im-
plemented data extractions include proprioceptive values, such as joint and gripper
positions, and RGB-D camera images. With the use of the framework’s APIs, it is
possible to extract additional data as they prove useful.

3.3 Integration with baseline RL algorithms
To incorporate the use of RL algorithms with the simulation framework, an RL
framework [15] was integrated into the architecture as shown in Fig. 3.2. The RL
framework offers a collection of RL algorithms and options to log helpful training
information. During training, the selected algorithm collects observations and re-
wards from the simulation environment. The algorithm uses the values to update
the policy while also sending a set of actions to the robot controller from the current
policy or a separate policy, based on the type of algorithm used. The format of the
actions depends of the type of controller for the robot. Based on the performed
actions, the environment will output new observations and rewards. This cycle is
performed until an optimal policy is found. Support for multiprocessing has also
been included, where multiple environments can be simulated simultaneously to in-
crease the training speed. During testing, the simulation framework is controlled
with a trained/learned policy. The learned policy computes a set of actions for the
controller based on the observations given by the environment.

Controller

Robot

Sensor

Trained RL
Model

Training

RL algorithm
Model

Obervations

Rewards

Actions Torques

Sim Data

Environment

Figure 3.2: Simplified illustration of the relationships in the simulation framework with
integrated RL framework.

To test the RL framework and to show a proof-of-concept, the simulation model
was simplified. In short, the soft body was substituted for a cube, and a goal position
for the cube was added. The robot’s task was then redefined to push the cube to the
goal position using the probe. The task can be regarded as a simplified version of
performing ultrasound imaging, where instead of sliding a probe across a torso, the
robot will push a cube to a goal using the probe and hence slide across the table.
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3.4 Calibration of body softness
The softness of the modelled torso should resemble the softness of a real torso in order
to minimize the reality gap. To accomplish this, a calibration task was designed. By
pushing a probe down on a real-life body, the body can be approximated to follow
the dynamics of the mass-spring-damper system [16] illustrated in Fig. 2.4 .

Revisiting section 2.2.2 and assuming that the real-life body behaves as a mass-
spring-damper system, the constraint dynamics presented in (2.2) can be rewritten
into 𝑎∗

𝑟 = −𝑐𝑠
̇𝑥

𝑟 −𝑘𝑠 (3.1)

Then, by measuring the acceleration of the body deformation 𝑎∗, the body pene-
tration 𝑟 and the body deformation velocity ̇𝑥, as the probe pushes down on the
body, it is possible to fit a curve to (3.1) using linear regression. The slope of the
regression curve will specify

𝑐𝑠 = 𝑏 ⋅𝑚
while the intersection of the curve will determine

𝑘𝑠 = 𝑘 ⋅𝑚

Hence, the values for the slope and the intersection have to be divided by the amount
of deformed body mass to obtain the true value of 𝑘 and 𝑏, which then can be used
in the MuJoCo model.

The calibration set-up is shown in Fig. 3.3. An ultrasound probe was attached
to a Panda robot and a dummy was used to represent a real human torso. Mea-
surements were taken from a total of five sampling locations, each marked on the
torso. The probe was manually placed at a sampling location, before being pushed
down by applying torques to the robot’s joints. In practice, it is difficult to mea-
sure the acceleration and velocity of the deforming body. Measurements from the
probe were used as an approximation instead. For each sampling location, the force
acting on the probe, the position of the probe and the velocity of the probe were
measured. The mass of the deformed body was not quantified. To combat the ef-
fect of gravity on the force measurements, an offset was subtracted from the force
measurements such that the force was equal to zero when the probe was held still.
Lastly, the same experiment was simulated in the framework, to allow comparisons
of the measurements.

Due to the mass of the deformed body not being quantified, it was not feasible to
obtain the true values of the stiffness and damping parameter to be used for the soft
body model in MuJoCo. However, the slope and intersection of the linear regression
can yield a ratio between the damping and stiffness parameter where the following
relationship can be stated,

𝑘𝑠
𝑐𝑠

= 𝑘 ⋅𝑚
𝑏 ⋅𝑚 = 𝑘

𝑏 . (3.2)

18



CHAPTER 3. METHODOLOGY 3.4. CALIBRATION OF BODY SOFTNESS

(a) Side view. (b) Front view.

(c) Manually placed probe at the upper-right
sampling location. Joint torques was applied
to the robot, making the probe penetrate the
body.

Figure 3.3: Set-up for calibration task. A dummy was used to replicate a real-life torso,
and an ultrasound probe was attached as the end-effector of a Panda robot. Measurements
were taken from a total of five sampling locations.

In essence, the calibration task is able to quantify the ratio between the stiffness
and damping parameter to use for the soft body model in MuJoCo.
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Chapter 4

Results

4.1 Simulation environment

The simulation environment for robotic ultrasound imaging is shown in Fig. 4.1. The
environment includes a robotic manipulator, an ultrasound probe as the robot’s tool,
a soft body and a table. The soft body is designed to simulate a human torso and
has therefore been coated with a skin. A red sphere on the tip of the ultrasound
probe, as for instance seen in Fig. 4.1c, represents a force-torque sensor. The robot
manipulators used in the environment are the UR5e and the Panda.

(a) Front view with the UR5e as the robot ma-
nipulator.

(b) Side view with the UR5e as the robot ma-
nipulator.

(c) Front view with the Panda as the robot
manipulator.

(d) Side view with the Panda as the robot ma-
nipulator.

Figure 4.1: Simulation environment for robot-assisted medical procedures.
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4.1.1 Soft body
To illustrate the softness of the body, the robot manipulator was commanded to
apply a contact force on the body by pressing down with the ultrasound probe. A
visualisation of the resulting scenario is shown Fig. 4.2, where the compliance of the
body is visible at the contact area.

Figure 4.2: Ultrasound probe exerting a contact force on the soft-body. The probe,
robot manipulator and tabletop have been made transparent to enhance visibility. The
force and torque sensor is visualized as a red sphere.

4.1.2 Sensor data
It is possible to extract a wide variety of sensor data from the simulation environ-
ment. An example of extracted sensor data is given in Fig. 4.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

−10

0

10

20

30

40

50

60

Fo
rc
e 
(N
)

Interaction forces between the probe soft bod 
x
 
z
contact

(a) Interaction forces between the probe and
sodt body, expressed in the end effector frame.
The contact value is a Boolean variable which
equal to one when the probe is in contact with
the body and zero otherwise.
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global frame.

Figure 4.3: Example of extracted sensor data from the simulation environment. Note
that the measurements are given in different coordinate frames.

Here, the robot manipulator was commanded to push the probe down and slide
it downwards across the body. The probe comes in contact with the body after
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Figure 4.4: Mean reward for the UR5e manipulator learning to push a cube towards a
goal. The mean is calculated over a batch of episodes. The x-axis shows the number of
timesteps the manipulator was trained for.

approximately 1.5 seconds. It is worth noting that the measurements are given in
different coordinate frames. The following list summarizes the available sensor data
in the simulation framework:

• The robot manipulator’s joint angle positions and velocities.

• The ultrasound probe’s position and orientation.

• Force and torque applied to the tip of the ultrasound probe.

• Position and velocity of each rigid body making up the soft torso.

• RGB-D images of the scene.

4.1.3 RL integration
Using the PPO [17] algorithm, the UR5e robot manipulator was trained to push a
cube towards a goal. The robot manipulator was trained for a total of 2M timesteps.
A graph of the mean reward, calculated over a batch episodes, is shown in Fig. 4.4.
The robot manipulator got a positive reward for both approaching and touching the
cube with its gripper. Rewards were also given for pushing the cube toward the
goal. If the robot manipulator was successful in its task, a large additional reward
was given. A video demonstrating the robot in action is available on YouTube1.
The robot manipulator was unfortunately not able to consistently push the cube
towards the goal.

4.2 Calibration task
Plotting values for (3.1) for each sampling location yields the plots shown in Fig. 4.5.
The mean value of the resulting slopes and biases, together with the slope and bias
1https://youtu.be/FjU5zna1ICk
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from the simulated experiment, are stated in Table 4.1. Applying the mean values
of the slopes and the biases into (3.2), the resulting ratio between the stiffness and
damping parameter is,

𝑘
𝑏 = 1485.64

28.84 ≈ 51.51 (4.1)

In the simulated experiment, the stiffness and damping parameters of the soft body
were set to the findings from the center sampling location. That is, 𝑏 = 17.59 and
𝑘 = 1324,17. The scatter plot for the simulated experiment is shown in Fig. 4.5f.
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(a) Upper-left sampling location.

160 140 120 100 80 60 40 20 0
vz
r

1500

1000

500

0

500

1000

f z r

 = -15.69
 = -1445.75

r2 = 0.8590

Calibration curve - upper-right

(b) Upper-right sampling location.
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(d) Lower-left sampling location.
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(e) Lower-right sampling location.
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Figure 4.5: Linear regression of data points obtained from calibration task. The ratio
between the velocity of the probe in z-direction and the penetration distance is plotted
on the x-axis. The force acting on the probe in the z-direction divided by the penetration
distance is plotted on the y-axis. The parameter 𝛼 is the slope of the linear regression,
while 𝛽 is the bias. The coefficient of determination is denoted 𝑟2. A confidence interval
is specified by the translucent bands around the regression line.
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Table 4.1: Slope −𝑐𝑠 and bias −𝑘𝑠 from performing linear regression on data points
from calibration task. The average value ̄𝑥 and standard deviation 𝜎 are calculated using
measurements from the five sampling locations.

Sampling −𝑐𝑠 −𝑘𝑠
Physical experiment ( ̄𝑥±𝜎) -28.8 ±11.5 -1485.6 ±119.4
Simulation -68.96 -1134.22
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Chapter 5

Discussion and further work

5.1 Discussion

5.1.1 Literature survey

As stated in Section 2.1, MuJoCo was chosen as the preferred physics engine. The
engine is fast and shows great consistency in a range of tasks, especially in the
grasping task. Bullet is a popular engine and can be regarded as a contender for
MuJoCo. However, compared to MuJoCo, Bullet was slow and achieved poor con-
sistency. In addition, the engine yielded an unstable simulation for larger timesteps
in the grasping task. Other contenders like ODE also showed poor consistency
compared to MuJoCo. Based on consistency and speed, MuJoCo can therefore be
considered as the better physics engine choice.

Note that the speed and consistency results from [4] should not be blindly
trusted. For instance, the paper was published in 2015 meaning it is over five years
old. Many of the compared engines are undergoing active development, ultimately
enhancing their performance. Thus engines call for continuous efforts to evaluate
them, and the result they achieve today might not be in correspondence with the
results achieved in the paper.

Even though MuJoCo achieves great speed and consistency, the engine can be
regarded as inferior for closing the reality gap. Compared with other physics en-
gines like Bullet with the PyBullet implementation in [7], simulations in MuJoCo
accumulates a large euclidean error compared to the ground truth. Based on this,
MuJoCo can be regarded as mediocre if the focus is to control a manipulator while
minimizing the reality gap, and PyBullet could be considered as the better choice.
Having said that, MuJoCo resembles reality well when simulating interaction tasks
between a robot with gripper and an object, a scenario that is applicable for the final
environment. Here, all the other engines fall short except for Bullet283. However,
Bullet283 achieves a consistently higher euclidean error for all the tasks compared
to MuJoCo, and can therefore be regarded as a poorer engine choice.
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Lastly, MuJoCo is well-documented making it easier to fully utilize its capabil-
ities. The engine also offers the possibility to model soft bodies, where a crucial
component of the final environment is the soft torso model. The fully integrated
soft body dynamics available in MuJoCo could therefore prove itself beneficial by
making realistic soft body simulations and models achievable. The other physics
engines do not offer documentation and integrated soft body dynamics to the same
extent as MuJoCo.

5.1.2 Simulation framework
Due to the choice of using robosuite as a foundation for further development, the
simulation framework has inherited a modular structure. All the components in
the framework are implemented as modules, facilitating seamless interchangeability.
For instance, the simulation framework is not bound to use the UR5e as the robot
manipulator, as it can be easily be substituted for other manipulators such as the
Panda robot. The same applies for the robot controller, grippers, objects in the
environment and the workspace of the manipulator. The modular structure makes
it also easier to include new models, such as new robots when they are commercial
released. In this way, it is possible to keep the simulation framework updated
with the latest hardware used in robotics. Essentially, the simulation framework
is capable of being configured into simulating a wide variety of environments, which
can prove advantageous due to the various settings and environments encountered
in medical procedures.

Unfortunately, the policy obtained from training the robot manipulator was not
able to control the manipulator into consistently pushing the cube towards the goal.
There exists several reasons for this suboptimal result. Looking at the accumulated
reward graph in Fig. 4.4, the algorithm finds a local optimum after around 600k
timesteps. Hence, to improve the policy, extra care should be taken when designing
the reward function. By defining a more sophisticated reward function which makes
the algorithm converge closer to the global optimum, it is possible to achieve a policy
which makes the robot manipulator push the cube towards the goal. Alternatively,
a reward can be given only when the robot arm manages to complete the task. This
will give the manipulator exploration freedom while training. However, this type of
training will require a substantial increase in the number of training steps and thus
computational time. Additional attention to which observations are extracted from
the environment and sent to the algorithm can also enhance the training result.

5.1.3 Calibration task
The scatter plots in Fig. 4.5 show a semi-linear relationship between the force applied
to the probe and the velocity of the probe. Note that the linear relationship breaks
for small velocities as shown clearly in Fig. 4.5d and Fig. 4.5b. This might be due
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to noise dominating the measurements for small values. Small velocities can also
impose non-linearities to the system making the model in (3.1) inadequate.

The simulation was run with the stiffness and damping parameters found from
measurements at the centre sampling point. It would therefore be fair to assume
that the measurements acquired from the simulated environment will resemble the
measurements from the sampling point. Even though the results from the physical
and the simulated experiment have the same magnitude, they deviate. It should
be noted that MuJoCo, as well as other physics engines, are not able to precisely
simulate reality and their simulations are based on assumptions. Naturally, the
results obtained in simulation will not be equal to the results obtained from the
experiment. As an example, in MuJoCo a soft body is modelled as a collection of
mass-spring-dampers, where each rigid body is attached to the center with a spring
and a damper. The real-life body, however, is assumed to follow the dynamics of
a single mass-spring-damper as stated in Section 3.4. Moreover, in MuJoCo, the
stiffness and damping parameters are scaled by the constraint impedance. This
value has not been included in the physical experiment and will therefore cause
differences between the results.

That being said, the values being in the same order of magnitude shows the
potential of the calibration task. The simulated results correlates somewhat to the
physical results, meaning that the simulation reflects the reality to a certain degree.
By refining the design and execution of the task, it should be possible to close the
gap between the dynamics of the simulated soft body and the real soft body.

Attention should also be directed towards the validity of the calibration task.
The calibration task can be regarded as somewhat primitive, where it is based on
several assumptions and approximations. For instance, the constraint dynamics in
(3.1) includes the acceleration of the mass-spring-damper system. It was deemed
challenging to measure this quantity during the experiment, and the force applied
to the probe was therefore used as an approximation. The acceleration could be
derived from the force by dividing with the mass of the deformed body. However,
the experiment also showed that it was difficult to measure the mass. As a result,
the 𝑦-values in Fig. 4.5 are too large and therefore erroneous. Dividing the 𝑦-values
by the mass will yield lower values, giving smaller slopes and intersections closer to
zero for all the curves.

Note that the ratio derived in (4.1) does not have to perfectly resemble the
stiffness and damping ratio of a physical torso in order to be used in the simulation
framework. Reinforcement learning algorithms are capable of creating policies that
generalize well in the physical world, even though they are trained with data from
a simulation that does not perfectly model reality. Therefore, it is sufficient that
the derived stiffness and damping parameters lie in an interval close to the true
values. The parameters used in the soft body model can then be randomly chosen
from the interval between simulations, essentially implementing softness variations
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for the body model accordingly to how the physicality of patients vary.

5.2 Further work

5.2.1 Closing the simulation-to-reality gap
As mentioned, further improving the model of the soft-body is essential in minimiz-
ing the reality gap and make the transfer from simulation to reality as effective as
possible. The properties and behaviour of the soft body is not only dependent on
the stiffness and damping parameters quantified in the calibration task, but also on
the constraint impedance and the size, mass and spacing of the rigid bodies making
up the soft-body model.

One clear improvement is to modify the calibration task. As of now, the task
is dependent on several assumptions that deteriorate the results. Hence, minimiz-
ing the use of assumptions would prove advantageous when designing an improved
calibration procedure. For instance, the mass of the deformed body should be quan-
tified and thus making it possible to compute the acceleration of the deforming body.
Then, it would no longer be needed to assume that the force is equal to the accel-
eration. Quantifying the mass would also make it possible to obtain the true values
of the 𝑏 and 𝑘 parameter instead of only the ratio. The calibration task should also
quantify the constraint impedance. With a known impedance, it would be possible
to fully calculate the stiffness and damping coefficients used in the modelling from
the 𝑏 and 𝑘 parameter obtained in the experiment.

Breathing motion is a central part of how the human body behaves, and is
one of the factors making it difficult for robot manipulators to interact with the
human body. To further increase the realism of the soft-body, it could therefore
be beneficial to implement a breathing motion. In practice, this could be done by
applying an outwards force on the rigid bodies making up the upper layer of the soft
body. Applying this force with a given interval will cause the soft body to repeatedly
expand and regress, essentially simulating a breathing motion.

To facilitate easier simulation to reality transfer, it is important to implement
domain randomization. By initializing the scene with different joint configurations
for the robot manipulator together with distinct start positions and softness specifi-
cations for the soft body, the policy derived by the reinforcement learning algorithm
will have greater generalization capabilities. In this way, the robot controller will
perform better in a wider variety of settings and scenes when applied to the real
world.

5.2.2 Extensions of the framework
As stated, a simplified simulation environment was created in order to show a proof-
of-concept of how the reinforcement learning framework could be developed with
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minimal effort on sim-to-real transfer. A crucial and natural next step for the de-
velopment of the simulation framework is to fully integrate the ultrasound imaging
environment with the reinforcement learning framework. This mainly includes defin-
ing a reward function and decide which observations should be extracted from the
environment. The reward function should be defined such that the robot manip-
ulator learns how to perform an ultrasound imaging procedure by gently sliding
the probe downwards the body. The rewards should therefore be dependent on the
probe pose relative to the body and how hard the probe is pushing down. Extracting
the force applied to the probe can be beneficial, as this can be used as measurement
on how hard the probe is pushing down. Images of the scene can prove useful for
improving model training, and should therefore also be included as an observation.
Other observations that obviously should be included are, for instance, the probe
and the body position.

Another possible extension is to integrate ultrasound feedback with the frame-
work. As the probe slides across the body, real-life ultrasound images could be
displayed according to the position of the probe relative to the body. Such a feature
would enhance the total simulation experience as the feedback would resemble how
the medical procedure is done in real life. The ultrasound feedback could also be im-
plemented as a part of the reinforcement learning training loop, where the sequence
of obtained images could be a measurement of how well the ultrasound procedure is
being executed.
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Chapter 6

Conclusion

In this project, a simulation framework for robot-assisted medical procedures has
been developed. The underlying purpose of the project was to create a simulation
framework that could function as a building block for further research and devel-
opment on the use of reinforcement learning combined with robots in the medical
setting.

The developed simulation environment consists of a robot manipulator, an ultra-
sound probe as the robot’s tool, a soft body and a table. The framework utilizes
MuJoCo as its physics engine, and the open-source simulation framework robosuite
has been used as a basis in the development process. The result is a simulation
framework with a modular structure, making it seamless to substitute out compo-
nents. A calibration task was conducted to quantify two of the parameters specifying
the softness of the body model. Lastly, the simulation framework was integrated
with a reinforcement learning framework, and a robot manipulator was trained to
push a cube as a proof-of-concept.

The framework looks promising and several extensions for further development
have been introduced. A natural next step is to fully integrate the ultrasound imag-
ing environment with the reinforcement learning framework. In addition, improving
the calibration task, implementing domain randomization and modelling human-like
breathing motion are all believed to help minimize the simulation-to-reality gap.
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Appendix A

Digital appendix

The link below gives access to the code for the simulation framework.

Simulation framework:
https://github.com/hermanjakobsen/robotic-ultrasound-imaging

Please do not hesitate to ask if there are any problems or questions. I can be reached
on my student email address hermankj@stud.ntnu.no.

35

https://github.com/hermanjakobsen/robotic-ultrasound-imaging


36


	Introduction
	Goal of the project
	Outline

	Background
	Literature survey
	MuJoCo
	robosuite
	Reinforcement learning

	Methodology
	Modeling
	Sensor data
	Integration with baseline RL algorithms
	Calibration of body softness

	Results
	Simulation environment
	Calibration task

	Discussion and further work
	Discussion
	Further work

	Conclusion
	Bibliography
	Digital appendix

