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Abstract

Inspired by the growing field of application of unmanned aerial vehicles(UAVs),
this thesis investigates UAV-control in icing conditions. Specifically, a single robust
controller and a gain scheduled controller is implemented using an H∞ control
approach in order to mitigate the aerodynamic effects of icing on the UAV. The
control methods are tested through simulations in MATLAB/Simulink. From this,
it is concluded that both the single robust controller and the gain scheduled con-
troller gives satisfactory results in terms of stability and robustness. By comparing
the simulation results using the two controllers, the control performance of gain
scheduled control approach gives the best results.
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Chapter 1

Introduction

In aviation, icing conditions are potentially menacing and has been the source
of numerous accidents. Icing can occur both when an aircraft is on ground and
airborne. For airborne aircraft, in-flight airframe icing, often referred to as atmo-
spheric icing, occurs when supercooled water droplets in clouds strike the aircraft
surface and freeze and are the type of icing that is considered in this thesis. How
the icing affects aircraft performance has been a subject of research throughout the
last decades([1–3]). Generally, these effects include increased drag and weight,
decreased lift and instability due to adverse moments.

According to Thomas et al. [4], the airborne anti-icing and de-icing meth-
ods that are in use can be divided into three groups, freezing point depressants,
thermal melting and surface deformation. Where anti-icing methods refer to meth-
ods which prevent any ice from building up, and de-icing refers to methods which
remove ice from the surfaces. When looking at these techniques, it is essential to
distinguish between large aircraft, where they are commonly in use, and a much
smaller unmanned aerial vehicle(UAV). Even if any of these techniques would be
applicable for UAVs in theory, they have some disadvantages, such as high en-
ergy requirements and additional weight, which makes them more impractical
for small UAVs than for large aircraft.

In this thesis, different control strategies are implemented and tested in a MAT-
LAB/Simulink based simulation environment of a fixed-wing UAV which is subject
to in-flight airframe icing. The specific UAV that is used is the flying wings Sky-
walker X8, where the simulation model is based on the previous work of Gryte et
al. [5] and Winter et al. [6]. The objective of these controllers is to mitigate the
effects of icing while achieving desirable performance. Two control approaches
are used in this thesis;

• A single robust controller which gives sufficient performance for a range of
different levels of icing

• A gain scheduled controller, which uses different controller gains depending
on the state of level and type of icing. This method requires a way to detect
the level of icing so the appropriate gain schedule can be used.
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The idea with robust control is to have a control system that is capable of regu-
lating systems that contain some uncertainties. The amount of robustness required
depends on how good the model of the control system. In general, mathematical
models are approximations of the physical world. Therefore, some robustness is
always needed to some extent when designing a control system. There are several
ways to design a robust control system for aircraft. Many approaches are men-
tioned in Magni et al [7]. In this thesis, a H∞- approach is used because of how
it handles plant uncertainties in the frequency domain.

1.1 Structure of Thesis

The thesis is divided into 6 chapters.

• Chapter 2 presents the theory used in the subsequent chapters. Here, the
UAV dynamics and control techniques are presented.

• Chapter 3 presents the model for the Skywalker X8 and the controller im-
plementations.

• Chapter 4 shows the simulation results for the implemented controllers.
• The two final chapters, 5 and 6, contains the discussions and conclusions



Chapter 2

Theory

This chapter will present the basic theory and background information that is
needed to comprehend the material that is introduced throughout this thesis.

2.1 Modelling the UAV

This section will give the outlines of the derivation of the model, which is later
used in the simulations and to develop the controllers.

2.1.1 Coordinate Frames

The mathematical model used in this thesis is using different coordinate frames
in order to describe the motion of the UAV. The equations of motions are easiest
expressed with respect to a body-fixed coordinate frame, where a space fixed co-
ordinate frame is more suitable for longer-term guidance. A short description of
the coordinates frames that are used follows.

World Reference Frame

An external reference frame using the North-East-Down(NED) convention. This
frame has its origin at a fixed point on earth and does not move. The x-direction
of the frame points north, y-direction points east, and the z-direction points down
into the centre of the earth. This frame is denoted as F i .

Body Frame

The body coordinate frame is denoted F b, and has its origin at the centre of mass
of the vehicle. Here, the x-axis points out of the nose of the aircraft, the y-axis
points along the right-wing, and the z-axis points out of the belly of the aircraft.
By denoting a frame with origin at the vehicle centre of mass and axes aligned
with the inertial frame as F v , the body frame can be obtained by the rotational
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matrix in equation 2.1. Here, the φ, θ and ψ are the roll, pitch and yaw angles
respectively.

Rb
v (φ,θ ,ψ) =





cθ cψ cθ sψ −sθ
sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ
cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ



 (2.1)

Where sin(x) and cos(x) are written on a compact form sx and cx . The body frame
coordinate frame is illustrated in figure 2.1.

Figure 2.1: Illustration of the body frame coordinate frame, which follows the
aircraft. The x-axis denoted x b points out the aircraft nose, the y-axis denoted y b

points along the right wing of the aircraft, and the z-axis, denoted zb is pointing
out of the belly of the aircraft

Wind Frame

The wind coordinate frame, denoted Fw, is a coordinate frame with its origin at
the centre of mass of the aircraft, and the axes are oriented based on the aircraft’s
motion relative to its surroundings. This frame can be obtained by rotating the
body frame by the rotation described by the rotational matrix in equation 2.2.
This rotation corresponds to rotating the xb and zb axes the AOA, α, about the yb
axis. This gives a coordinate often referred to as the stability frame. In this frame,
the x-axis points along the projection if airspeed-vector into the xb-zb plane, the
y-axis still points along yb axis. The wind frame is then obtained by rotating the
stability frame axis xs and ys, a right-handed rotation of the AOS, β around the
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zs. Now, the xw axis points in the direction of the airspeed, Va.

Rw
b (α) =





cos(β)cos(α) −sin(β)cos(α) −sin(α)
sin(β) cos(β) −sin(β)sin(α)

−cos(β)sin(α) 0 cos(α)



 (2.2)

The longitudinal aerodynamic forces are usually expressed in this frame.

2.1.2 Mathematical Model

A twelve state 6 degrees of freedom(DOF) model is used to describe the motion of
the UAV. The inertial position, P = [pn, pe, h], is the UAV north, east and altitude
coordinates in the inertial coordinate frame. V= [u, v, w] is the velocity along the
x, y and z axes in the body frame. ω = [p, q, r] is the angular velocity about the
same axes. The Euler angles describing the UAV attitude is ˆ = [φ,θ ,ψ]. Where
φ is the roll angle, θ is the pitch angle, and ψ is the yaw angle.

Kinematic Equations

The positional and attitudinal states are given in another coordinate frame than
the velocity and angular velocity states, where the kinematic equations describe
this relation. The relationship between the derivative of P given in the inertial
frame, and the velocity, V, in the body frame can be found from equation 2.1, and
is shown in equation 2.3.

Ṗ= Rv
b(φ,θ ,ψ)V= Rb

v (φ,θ ,ψ)T V (2.3)

The relationship between the Euler angles, Θ, and the angular rates in body
frame, ω, is given by equation 2.4

Θ̇ =





1 sin(φ)tan(θ ) cos(φ)tan(θ )
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ ) cos(φ)sec(θ )



ω (2.4)

Dynamic Equations

General six-degrees of freedom dynamic equations for a rigid body can be ob-
tained through a Newtonian approach. By assuming a flat earth model, and de-
noting the sum of all external forces acting on the rigid body as F, and the sum of
all external moments about the centre of mass as M, we get the following equa-
tions

m(V̇+ω×V) = F

I( _ω+ω×V) =M
(2.5)

Where I is the inertia matrix. In order to describe these forces and moments,
it is common to assume that the forces and moments are primarily from three



sources [8], namely gravitation, propulsion and aerodynamic. Hence, the forces
and moments from equation 2.5 can be written as;

F= Fa + Fg + Fp

M=Ma +Mp +Mg
(2.6)

Where subscript p, a and g denotes propulsion, aerodynamic and gravitational
forces respectively.

Gravitational Forces and Moments

The gravitational moment about the center of mass is 0. Hence Mg = 0. The grav-
itational force can be written as Fv

g = [0,0, mg] in the vehicle carried coordinate
frame, denoted F v , with axes aligned with the inertial frame. The gravitational
force in body frame is therefore given as;

Fb
g =Rb

v Fv
g (2.7)

Where Rb
v is the rotational matrix mapping from F v to F b described in 2.1.1.

Aerodynamic Forces and Moments

This section will present a general mathematical model for aerodynamic forces
and moments. Here, it is assumed that Mach effects are negligible for the oper-
ating speeds of the UAV, the body is rigid, and the Reynolds number effects are
small. Another common simplification is to separate the aerodynamic equations
into longitudinal (xb-zb plane) and lateral direction (xb-yb- plane) [8]. By denot-
ing Va as the airspeed of the aircraft, S as the area of the wing, b as the wingspan
of the aircraft and c as the mean chord of the wing, the aerodynamic forces and
moments in the longitudinal direction can be expressed as in equation 2.8.





D
L
m



=
1
2
ρV 2

a S





CD(α, q,δe)
CL(α, q,δe)

cCm(α, q,δe)



 (2.8)

The lateral direction aerodynamic forces and moments can be expressed as in
equation 2.9





Y
l
n



=
1
2
ρV 2

a S





CY (β , p, r,δa,δr)
bCl(β , p, r,δa,δr)
bCn(β , p, r,δa,δr)



 (2.9)

In equations 2.8 and 2.9, D, Y and L are the drag, side and lift aerodynamic
forces along the wind-frame x, y and z axes respectively and l, m, n are the aero-
dynamic moments about body-frame x,y and z axes. CD, CY and CL , are non-
dimensional drag, lift and side force coefficients, and Cl , Cm and Cn are non-
dimensional are rolling, pitching and heading moment coefficients. α and β are
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the AOA and AOS. The control inputs that affects the aerodynamic forces and mo-
ments are δe, δa and δr , which is the deflection angle of the elevator, ailerons and
rudder. By denoting the aerodynamic forces along the body-frame axes as Fx , Fy
and Fz , they can be expressed as in equation 2.10.





Fx
Fy
Fz



= Rb
w(α)





−D
Y
−L



 (2.10)

Where Rb
s (α) is the rotational matrix from Fw to F b. The drag force and lift force

are acting in the negative x and z direction, which explains the choice of signs
in equation 2.10. Hence, the summarized equations of aerodynamic forces and
moments are gicen in equation 2.11





Fx
Fy
Fz



= Rb
w(α)

1
2
ρV 2

a S





CD(α, q,δe)
CY (β , p, r,δa,δr)

CL(α, q,δe)









l
m
n



=
1
2
ρV 2

a S





bCl(β , p, r,δa,δr)
cCm(α, q,δe)

bCn(β , p, r,δa,δr)





(2.11)

Propulsion Forces and Moments

A simple model for thrust force can be obtained by applying Bernoulli’s equation
to the air in front of and behind the propeller [8]. This model assumes that the
relation between throttle to exit velocity is linear, and that the propeller efficiency
is constant. It also assumes that the thrust force generated is directly along the
x-axis of the body frame. By denoting Sprop as the area swept out by the propeller,
and Cprop be an efficiency factor, the propulsion force is given in equation 2.12

Fp =
1
2
ρSpropCprop





(kmotorδt)2 − V 2
a

0
0



 (2.12)

2.2 H∞ control

The effect of icing can be looked at as uncertain plant model As briefly mentioned
in the introduction, the H∞ robust control approach is used because of how it
handles plant uncertainties in the frequency domain. In order to apply H∞ con-
trol method, the closed-loop system needs to be written as a generalized plant
shown in the block diagram of this form is shown in figure 2.2. Here the process
block, P has two inputs; The control input u and the exogenous inputs w, includ-
ing disturbances, sensor noise and reference signals. P also has two outputs; the
measured output signal used by the controller, y, and the weighted error signals,
z. The error signals are a collection of variables to be regulated.



Figure 2.2: H∞ closed loop block diagram formulation. Where P is the process,
w is the exogenous inputs, z is the generalized error signals, y is the measured
output signal used by the controller C .

Problem Formulation

For a linearized process, we can write the state-space equations as in 2.13.

ẋ= Ax+Bu+ Ew (2.13)

z= C1x+D2u+D1w

y= C2x+D4u+D3w

Where x is the system states. From equation 2.13, P in figure 2.2 can be found
as shown in equation 2.14.

P(s) =

�

P11 P12

P21 P22

�

=





A E B
C1 D1 D2
C2 D3 D4



 (2.14)

For the linear controller, K, connected from y to u as shown in figure 2.2, the
closed loop transfer function from exogenous inputs to the weighted error signal
can be written as a function of the process and the controller, as shown in 2.15
[9].

z
w
(s) = F(P,K)(s) = P11 + P12K(I− P22K)−1P21 (2.15)

The controller design goal is to minimize the weighted error-signals z, i.e. such
that the gain of the transfer function in equation 2.15 is as small as possible,
while the system remains internally stable. In other word, this means a controller
that minimizes the worst case effects of the exogenous inputs w on the weighted
error signal z. The H∞-norm gives a measure of transfer function gain. Hence, the
controller design can be obtained by minimizing the infinity norm of F(P,K)(s),
where the standard infinity norm is formulated as in equation 2.16

||F(P,K)||∞ = supωσ̄(F(P,K)( jω)) (2.16)
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Where σ̄ is the maximum singular value.

Weighting Filters

This algorithm uses the weighting filters as tuning parameters to get a control-
ler meeting the desired frequency requirements. By denoting the model plant as
G(s), the open loop transfer function is given as L(s) = G(s)K(s). The sensitivity
function S(s) and complementary sensitivity function, T (s), can then be written
as in equation 2.17

S(s) = (I + L(s))−1

T (s) = L(I + L(s))−1 (2.17)

Where I is the identity matrix of the same order as L(s). From the block dia-
gram in figure 2.3, we can write the the transfer function from reference r to error,
e(s) and measured output y(s) as:

e(s) = S(s)r(s)

y(s) = T (s)r(s)
(2.18)

From the same block diagram, we now see that the error-signals z1 and z3 are
the weighted sensitivity and complementary sensitivity, and z2 is the weighted
control activity. Generally, you want to have high loop-gain at low frequencies to
have good reference tracking, but the loop gain should roll-off at high frequen-
cies in order to achieve good noise attenuation and robustness. This is equival-
ent to have a small S(s) at low frequencies(inside the bandwidth), and a small
T (s) at high frequencies (outside the bandwidth). There are several approaches
to design weighting filters. Two specific methods are discussed in Lundstrøm et
al [10], namely a signal approach used in Doyle et al [11] and loop-shaping. The
signal approach considers the response to sinusoidal signals, and are more ap-
propriate for multi-variable problems[10]. Hence, this thesis uses a loop-shaping
approach, which is described in Lavertsky et al. [12]. The weighting filters can be
used to design the desired S(s) and T (s). Here, S(s) can be used to reach accept-
able bandwidth and achieve desired disturbance rejection and reference tracking,
while T (s) can be used to avoid amplification of high-frequency noise. This is a
trial-error procedure. The weighting filters should be selected to be of minimum
order in order to avoid adding unnecessary complexity to the controller. The shape
of the weighting filter should be the inverse of the desired shape of the unweighted
function. By using the sensitivity function S(s) as an example, the WS should be
the inverse of the desired shape of S(s), such that when the H∞ norm of z1, e.i.
||WSS||∞, is minimized, it will shape S(s).

Output Feedback H∞ Control

In order to obtain an output feedback controller, a common approach is γ-iteration.
This method is thoroughly described in Lavertsky et al. [12]. By demanding the



Figure 2.3: Block diagram where WS , WC and WT are weighting filters. z1, z2 and
z3 are the weighted sensitivity, control activity and complementary sensitivity.

infinity norm of F(P,K)(s) to be less then some positive and predefined peak
||F(P,K)||∞ value γ, we can look at the problem of finding all stabilizing sub-
optimal controllers such that equation 2.19 is fulfilled.

||F(P,K)(s)||∞ < γ (2.19)

There are several numerical methods for solving this problem. One method
is to solve algebraic riccati equations, and then find the optimal controller by
iterating on γ.

Strong robustness results related to the H∞ controller. By introducing the Vin-
nicombe metric, often referred to as the ν-gap metric, which is a distance measure
between the closed-loop systems of two plants P1 and P2. A thorough description
of this metric is given in Vinnicombe [13]. As we have the plant model for both
clean and iced case from Winter et al. [6], this metric can be used as a measure of
plant uncertainty. By letting P1 and P2 be two lateral scalar transfer functions that
satisfies the winding number conditions given in equation 2.20, the ν-gap metric
is defined as in equation 2.21.

(1+ P2P1)( jω) 6= 0∀ω (2.20a)

wno(1+ P2P1) +η(P1)−η(P2) = 0 (2.20b)

Where wno is the winding number on the standard Nyquist contour. of the
and η(Pi) denotes the number of right half plane poles of Pi . Note that since the
plants that are being considered later in this thesis are scalar, both equations 2.20
and 2.21 are simplified to yield scalar transfer functions. General multivariable
plants are given in

δv(P1, P2) = supω
|P1(iω)− P2(iω|

p

(1+ |P1(iω)|)2(1+ |P2(iω)|)2
(2.21)

According to Åstrom and Murray[14], from this definition it follows that a
H∞ controller with performance level γ for plant P1 stabilizes all plants with ν-
gap distance less than 1

γ from P1.
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2.3 Gain Scheduled Controller

A gain scheduled approach is a method where a there is a set of controllers for
designed for different operating points in the operational area, and a selector
mechanism is implemented to select the controller suitable for the current state
of the system. This is a practical approach to control non-linear systems where
the process gain is changing considerably at different operating points [15]. Gain
scheduling is commonly used when a single set of gains does not provide the de-
sired performance and stability requirements throughout the area of operating
conditions. In order for this method to be implemented, there have to exist meas-
urable variables that correlate with the change in process gain.





Chapter 3

Methods

3.1 Simulation Model

A model of Skywalker x8 is used in this thesis. All parameters in this section are
from Gryte [16] unless other is stated. The complete simulation model is obtained
by using the theory from section 2.1 and the parameter values are given this sec-
tion. The air density ρ = 1.2250 kg/m3 and gravitational constant g = 9.8066
m/s2 are assumed constant during the simulations.

Elevons

Skywalker X8 is a flying wing UAV, and it is depicted in figure 2.1. For a flying
wing UAV, the control surfaces ailerons and rudder are combined into a pair of
elevons. By respectively denoting the left and right elevon deflection as δel and
δer , the mathematical conversion between elevons to aileron-elevator signals is
shown in equation 3.1 [8].

�

δe
δa

�

=
1
2

�

1 1
−1 1

��

δer
δel

�

(3.1)

Hence, the standard derivation using aileron and elevator signals in equation 2.11
can be used. Another characteristic feature with the flying wing X8 is that it has
no tail or rudder.

Aerodynamic Coefficients

The aircraft lift, drag, side force, pitching, rolling and heading moment coefficients
from equation 2.11 are in general non-linear equations of the system states. A
common simplification of the forces and moments in equation this can be found
by using first order Taylor series expansions [8]. This is shown in equation 3.2,
where the partial derivative of a state is denoted with subtext. I.e. Cix

is the partial

13



derivative of Ci with respect to x .















CD(α, q,δe)
CY (β , p, r,δa)
CL(α, q,δe)

Cl(β , p, r,δa)
Cm(α, q,δe)

Cn(β , p, r,δa)















=



















CD(α) +
c

2Va
CDq

q+ CDδe
δe

CY0
+ CYββ +

b
2Va

CYp
p+ b

2Va
CYr

r + CYδa
δa

CL(α) +
c

2Va
CLr

r + CLδe
δe

Cl0 + Clββ +
b

2Va
Clp p+ b

2Va
Clq q+ Clδa

δa

Cm(α) +
c

2Va
Cmq

q+ Cmδe
δe

Cn0
+ Cnββ +

b
2Va

Cnp
p+ b

2Va
Cnr

r + Cnδa
δa



















(3.2)

Here, the c
2Va

and b
2Va

are standard factors used for nondimensionalization.
Since the model is of a UAV with no rudder, δr is removed from the equation set.
Due to the nonlinearities of CD, CL and Cm in α, these parameters are kept as a
nonlinear function of α to give a more accurate simulation model. CDδe

, CYδa
, CLδe

,
Clδa

, Cmδe
and Cnδa

are denoted control derivatives.
The aerodynamic coefficient model can be extended to include the element of

icing. An icing variable ζ is used to describe the level of icing. As emphasized by
Winter et al. in [6], the atmospheric icing will primarily affect the leading edge of
the aircraft. Hence, the assumption that the control derivatives is not affected by
icing during the simulations. The aerodynamic coefficient with icing cab then be
mathematically expressed as in equation 3.3

CD(α, q,δe,ζ) = CD(α,ζ) + CDq
(ζ)

c
2Va

q+ CDδe
δe

CY (β , p, r,δa,ζ) = CY0
(ζ) + CYβ (ζ)β + CYp

(ζ)
b

2Va
p+ CYr

(ζ)
b

2Va
r + CYδa

δa

CL(α, q,δe,ζ) = CL(α,ζ) + CLq
(ζ)

c
2Va

q+ CLδe
δe

Cl(β , p, r,δa,ζ) = Cl0(ζ) + Clβ (ζ)β + Clp(ζ)
b

2Va
p+ Clr (ζ)

b
2Va

r + Clδa
δa

Cm(α, q,δe,ζ) = Cm(α,ζ) + Cmq
(ζ)

c
2Va

q+ Cmδe
δe

Cn(β , p, r,δa,ζ) = Cn0
(ζ) + Cnβ (ζ)β + Cnp

(ζ)
b

2Va
p+ Cnr

(ζ)
b

2Va
r + Cnδa

δa

(3.3)

The icing variable ζ takes values between 0 and 1, where 0 indicates no ice, and
1 indicates a worst-case level of ice (mixed ice). Throughout this section, no ice is
referred to as clean, and worst-case level of ice is referred to as iced. In the simu-
lations, parameter values are collected from the work done in [5, 6]. The effects
of icing is implemented to the simulation environment by using linear interpola-
tion between the model values with no ice and mixed ice. This implementation
technique assumes that the effects of icing is linearly evolving with the level of
ice, which is a simplification.

The value of control derivatives used in the simulations is given in table 3.1.
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Table 3.1: Control Derivatives

Control Derivative Value

CDδe
0.8461

CYδa
−0.0696

CLδe
0.5872

Clδa
0.2987

Cmδe
−0.4857

Cnδa
0.0076

The parameters forming the aerodynamic coefficients are collected from Winter
[17]. As previously mentioned, CD(α,ζ), CD(α,ζ) and Cm(α,ζ) are kept as non-
linear function during the simulations. Plots of these functions are shown in figure
??.

As shown in equation 3.3, Cn, CY and Cl are all linearized in beta in the simu-
lation model. The values of the constant and linear factor for each parameter are
given in table 3.2.

Table 3.2: Shows the values of Cn, CY and Cl when linearized with respect to β .

Parameter Clean Iced

Cn0
0.0000 0.0000

Cnβ 0.0297 0.0348
Cl0 0.0000 0.0000
Clβ −0.1010 −0.0861
CY0

0.0000 0.0000
CYβ −0.2700 −0.2300

The final derivatives in equation 3.3 are the quasi-static derivatives, which are
the ones depending on the roll, pitch and yaw rates p, q and r. These derivatives
are damping coefficients. The lateral derivatives are shown in table 3.3. These val-
ues are primarily collected from Winter [17]. However, the sign of Cnp

is inverted.
Cnp

contributes to adverse yawing when negative. This is in line with the work
of Gryte et al. [5]. Cnp

is in other words, essential when describing the coupling
between yaw and roll. It is important to emphasize that the damping coefficients
are particularly hard to find precise values.

The influence of pitch rate on drag is CDq
is usually neglected, and are therefore

set equal to zero during the simulations. The other two longitudinal damping
coefficients, namely CLq

and Cmq
are given as functions of angle of attack(AOA),

α, in Winter et al. [6]. It is measured at low (2◦) and high (8◦) for clean and
iced case. The changes in values with respect to AOA is quite small. Here, the
coefficients are assumed constant, and the values the values that are used are



(a) Cm(α) (b) CD(α)

(c) CL(α)

Figure 3.1: Shows the Cm, CD and CL as function of AOA, α

Table 3.3: Shows the values of the lateral Quasi-static derivatives CYp
, CYr

, Clp
,

Clr
, Cnp

and Cnr

Parameter Clean Iced

CYp
−0.185 −0.034

CYr
0.005 0.002

Clp
−0.409 −0.407

Clr
0.039 0.158

Cnp
−0.027 −0.017

Cnr
−0.022 −0.049
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found by linear interpolation between the values for low and high AOA, and use
the value for α= 4◦. The values are given in table 3.4.

Table 3.4: Shows the values of the longitudinal damping coefficients CLq
and Cmq

Parameter Clean Iced

CLq
4.63 −3.38

Cmq
−1.99 −2.06

Actuator Model

For physical actuator components, there are both static and dynamic limitations.
In order to implement this in the simulator, there are both rate limits and minim-
um/maximum saturation applied to the control signals. For the elevons, the rate
limit and saturation of servos are set to ±3.4907 rad/s and (−30◦, 35◦) respect-
ively. These values collected from the work of K.Gryte [16], where the rate limit is
based on a typical delay for a mini servo, and the angular deflection limit is based
on measurements on the Skywalker X8.

The motor dynamics is modeled as a simple first order model as in equation
3.4

n
ncommand

=
1
τ

1+ 1
τ s

(3.4)

Where n is the motor speed and ncommand is the commanded motor speed.
During the simulations, time constant τ= 0.2 is used.

Skywalker X8 Model Parameters

Table 3.5 shows the total mass, moments of inertia and products of inertia to the
UAV. Here , Ix y = I y x and I yz = Iz y are assumed negligible. The values moments
of inertia are based on experimental data from Gryte [18], which was performed
after the report done in Gryte [16]. The new data seemed more realistic than the
ones calculated from the first experiment. Hence, these are the values that are
used in the simulations and stated in table 3.5.

Table 3.6 shows parameters used during simulations.

3.2 Trim Condition

A common first step to develop linear aircraft controllers is to specify an operating
point where trim conditions are calculated. Mathematically, trim conditions can
be found by solving a set of nonlinear algebraic equations. This is explained in
greater detail in Beard and McLain [8]. In this thesis, the Matlab function trim
is used to calculate the trim conditions. This function starts from a given initial



Table 3.5: Skywalker X8 mass, moments of inertia and products of inertia

Parameter Clean

m 3.3650 kg
Ix x 0.340 kgm2

I y y 0.165 kgm2

Izz 0.400 kgm2

Ix y 0.000 kgm2

Ixz −0.031 kgm2

I yz 0.000 kgm2

Table 3.6: Skywalker X8 physical measures

Parameter Symbol Iced

Wing span b 2.1 m
Mean aerodynamic chord cM 0.3571 m
Wing area Sw 0.75 m2

Area swept by propeller Sp 0.1018 m2

Motor constant km 40
Motor efficiency factor Cprop 1

point and then uses a sequential quadratic programming algorithm to find the
nearest trim point of a dynamical system. The initial starting point used for the
simulations in this thesis is given by table 3.7.

Table 3.7: Shows initial values used to find a trim point

Parameter Symbol Value

Airspeed Va 20.0 m/s
Angle of attack α 2.5 (deg)
Sideslip angle β 0.0 (deg)
Height above ground h 50.0 m

3.3 Linearization

The controllers that are implemented in this thesis are linear controllers, and is
based on a linearized system. The system is linearized about the trim condition
found in section 3.2. The linearized model can be written as in equation 3.5.

∆ẋ=
d f
dx
∆x+

d f
du
∆u (3.5)
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Where x is the state vector containing the twelve system state, and f is defined
as in equation 3.6. d f

dx and d f
du are the jacobian matrices of f with respect to x and

u respectively.

f=









ẋ1
ẋ2
...
˙x12









=









f1
f2
...

f12









(3.6)

The system is linearized by using a finite difference method to calculate the
system Jacobian matrix. This is shown in equation 3.7.

d fi

∂ x j
=

fi(x+ e j∆x)− f (x)

∆x
(3.7)

Where e j is a vector of the same length as x, where the j’th element is 1, and
all other elements are 0. ∆x is a small value chosen equal to 10−3.

3.4 Lateral and Longitudinal Decomposition

The controller designs used in this thesis are based on decoupling the longitudinal
and lateral flight dynamics into two separate control systems. The lateral control-
ler controls the ailerons, and the longitudinal controller regulates throttle and
elevator. Since this is a flying wing and ailerons and elevator are elevons, they
can still be set separately using the relationship from equation 3.1. An important
note here is that this type of lateral and longitudinal decoupling only is appropri-
ate for gentle manoeuvring, and not appropriate for cases where there is a high
degree of lateral-longitudinal cross-coupling nor for aggressive manoeuvres.

3.5 Lateral Control

The inner loop lateral controller uses the elevons and the relationship in equation
3.1 to calculate the desired control signal δa based on the desired roll angle φc .
A new lateral state vector and input is defined as in equation 3.8.

xlat =







v
p
r
φ






(3.8a)

ulat = δa (3.8b)

The lateral state equations are extracted from the linearized model in section 3.3,
and used to obtain a lateral linear state space model as in equation 3.9.

∆ẋlat =
d flat

dxlat
∆xlat +

d flat

dulat
∆ulat (3.9)



.

The lateral dynamics of the UAV includes the roll rate damping mode, a spiral
mode and the dutch roll mode. These modes are obtained by from the eigen-
values to the lateral state matrix from equation 3.9, and listed in table 3.8. By
looking at the open-loop transfer function from input φc to output φ, there is a
right half plane(RHP) zero at 0.7961. The presence of a RHP zero, i.e. the system
is a non-minimum phase gives an upper boundary to the bandwidth frequency
and hence gives a fundamental limit to performance. Generally, these systems are
inherently difficult to control. In order to meet the robustness requirements for
such systems, the common approach is to reduce the bandwidth, which reduces
the performance.

Table 3.8: Values of lateral dynamics modes

Mode Clean Iced

Spiral mode -0.2517+0.0000i -0.8666 + 0.0000i
Roll damping mode -26.6236 + 0.0000i -25.3899 + 0.0000i
Dutch-roll mode -0.6360± 3.2100i -1.2132± 2.1586i

3.6 Longitudinal Control

The inner loop longitudinal control calculates the desired control signals throttle,
δt , and elevator, δe based on the desired airspeed Vac and desired pitch angle
θc . This control problem is complicated since the airspeed and pitch angle are
two strongly coupled quantities that both need to be controlled. There are sev-
eral ways to approach this control problem. One way is to use two single input
single output(SISO) controllers and introduce a state-machine with modes which
are used to decide how δt and δe are calculated. Typical state-machine modes of
operation are Descend mode, Climb mode and Level flight mode. This approach
is described in Beard and McLain [8]. The controllers in this thesis are based on
approach, but only the level flight mode controller is considered. It is important
to notice that there are some drawbacks using this method. Generally, by con-
trolling one variable using one controller, the other states controlled by the other
decoupled controller may be driven away from its equilibrium point. For instance,
if airspeed is being kept constant by the throttle controller, the altitude responds
rapidly to even small changes in aircraft pitch. More complex control techniques,
such as Total energy control system(TECS) (described in Faleiro and Lambregts
[19]) have later been introduced to cope with these problems.

A new longitudinal state vector and inputs are defined as in equation 3.10
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xlon =







u
w
q
θ






(3.10a)

ulon =

�

δe
δt

�

(3.10b)

By the using the same method as for the lateral system in section 3.5, the
longitudinal state equations can can be extracted from the linearized model in
section 3.3, which gives the longitudinal linear state space model in equation
3.11.

∆ẋlon =
d flon

dxlon
∆xlon +

d flon

dulon
∆ulon (3.11)

The longitudinal dynamics includes the short period modes and the phugoid
modes. These modes are obtained from the longitudnal state matrix and listed in
table 3.9.

Table 3.9: Values of longitudinal dynamics modes

Mode Clean Iced

Short period modes −9.9357± 15.6017i −8.5264± 4.0733i
Phugoid modes −0.4389± 0.3774i −0.5409± 0.4132i

3.7 Implementing Controllers

In aircraft control, it is quite common to distinguish between inner and outer
loop control. The task of the low-level inner loop control system is to stabilize the
body-frame states using measurements and actuators. In other words, the inner
loop keeps the aircraft flying. The tasks of the higher level outer loop control is to
implement guidance. This thesis looks at the inner loop control.

3.7.1 Airspeed Control

The main effect of icing on the SISO-airspeed controller is increased drag. This
means that more throttle is needed to maintain the airspeed. This will also lower
the maximum airspeed possible to achieve for the UAV. For considering in-flight
airspeed control well below the maximum achievable airspeed, a single PI airspeed
controller is found and used for all cases in the simulation. The output of the
airspeed controller is given by equation 3.12

δt = δ̃t + (Kp +
Ki

s
)(V c

a − Va) (3.12)



Where δ̃t is the calculated trim-value, and Kp and Ki are tuning parameters.
Values Kp and Ki are found by trial and error. By demanding an overshoot less than
15% and trying to get as short as possible settling time used to reach an acceptable
error as possible, the values of Kp = 0.124 and Ki = 0.123 are obtained. The step
response of the airspeed controller for the iced and clan cases are shown in figure
3.2, with a step of 1 m/s.
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Figure 3.2: Shows the airspeed step-response from the trimmed value with a step
size of 1 m/s

3.7.2 Robust Control

A robust controller is obtained using output feedback an H∞ control algorithm as
described in section 2.2. The weighting filters are designed based on arguments
given in that section. A starting point for the filters are given in equation 3.13.

WS =
s/M + 1)
s+ω0A

(3.13a)

WC = Constant (3.13b)

WT =
s+ω0/M
As+ω0

(3.13c)

Where ω0 is the desired controller bandwidth, M is limiting the maximum
sensitivity peak, A gives limits the low frequency gain. As mentioned in chapter
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2, WT are usually formed to get sufficient noise attenuation, and robustness to
uncertain high-frequency dynamics. Icing is can bee looked at as a low frequency
disturbance and the simplification of excluding measurement noise is made during
the simulations. Hence this WT is simply chosen as a high pass filter symmetric
Ws around the bandwidth as shown in equation 3.13. However, in order to not
get unrealistically high bandwidth, a maximum crossover frequency at 2.5 Hz is
chosen based on the control choices made in Lavertsky [12]. Hence, this is the
noise attenuation requirement. This system differs from the ones mentioned in
Lavertsky [12]. However, the noise attenuation requirements are comparable.

Control activity is limited by the |WC |−1. By choosing WC as a constant, all
control activity is penalized equally at all frequencies. If this constant is chosen
to small (e.i. control activity does not get a high penalty), it can lead to oscillat-
ory responses. If the constant is chosen too large (e.i. control activity gets a high
penalty), it can reduce the bandwidth capability of the controller. This is shown
in figure 3.3, where a control variable y is controlled using a high and low value
of WC , while other filter parameters are constant.
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Figure 3.3: Shows the change in control signals of the controlled stat, y , with
high and low WC

Closed Loop Specifications

The control objective is to have controllers with good reference tracking and reas-
onable gain, phase stability margins for both the clean and iced case. When tun-
ing the H∞-controller, stability, robustness and performance requirements are
considered. The stability requirement is formed by using the ν-gap introduced
in chapter 2 to express the plant uncertainty when the UAV is subject to icing



conditions. The winding condition in 2.20 is satisfied for both the lateral and lon-
gitudinal case. The ν-gap between the two plants is calculated using the gapmetric
function in MATLAB. The H∞-controller is based on a nominal plant. This nom-
inal plant is chosen as the plant with the approximately same ν-gap distance to
the clean and iced plant. By denoting the clean plant as Pclean, the iced plant as
Piced), and the nominal plant dependant on the icing level ζ as Pnominal(ζ), the
stability requirement is expressed in 3.14

1
γ
>Max(δv(Pclean, Pnominal),δv(Pnominal, Piced)) (3.14)

Where γ upper limit to the acceptable H∞-norm of F(P,K) as introduced 2.
This requirement sets an upper limit for γ. Due to the general relationship in
equation 3.15, this choice of nominal plant relaxes this requirement.

Max(δv(Pclean, Pnominal),δv(Pnominal, Piced))≤ δv(Pclean, Piced) (3.15)

If the requirement in equation 3.14 is full-filled, in addition to the winding number
condition in equation 2.20, it follows that the controller will stabilize both the
clean and iced plant.

The closed-loop robustness requirements are chosen based on Astrom and
Murray [14], which states that reasonable closed-loop values for margins are

• Minimum phase margin φm = 30◦

• Minimum gain margin gm = 2
• Minimum stability margin sm = 0.5

Here, the stability margin is the smallest distance from the Nyquist contour of a
plant to the critical point at −1 + 0i. For SISO systems, this is equivalent to the
maximum peak of the sensitivity function S(s).

The performance are measured in terms of maximum closed-loop overshoot
and settling time when the system is subject to a step in reference signal. Accept-
able value of settling time and overshoot is are dependant on the on the controlled
variable. Hence, they will be mentioned at each specific controller implementa-
tion. Since the controller goal is to have satisfactory performance for different
types of plants, there will always be some sort of trade-of between performances
for different plants. The tuning method that is used to find the

Longitudinal Robust Controller

The first step is to find the nominal longitudinal plant which will be used for im-
plementing the H∞ controller. This is found by iterating through the icing level ζ,
and finding Pnominal(ζ) that minimizes Max(δv(Pclean, Pnominal),δv(Pnominal, Piced)).
This gives ζ= 0.6500 and Max(δv(Pclean, Pnominal),δv(Pnominal, Piced)) = 0.1929.

By using the nominal plant as reference plant for tuning the H∞ - control-
ler, guarantee stability requirements for iced and clean case are met if the H∞-
controller achieved γlon∗ <

1
0.1929 = 5.1840. The controller is tuned by in an iter-
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ative process by increasing the bandwidth while the closed loop requirements in
previously mentioned is met.

The weighting filters parameters needs to be chosen. the constant A from
weighting filters in equation 3.13, decides the gain at low frequencies, and there-
fore decides the maximum allowed steady state offset. Different values were tested,
and the final value is chosen equal to 0.001. M limits the maximum peak of the
sensitivity function S(s). Since the stability margin sm is the given as the maximum
peak of S(s) for SISO systems, the M in equation 3.13 can be chosen based the
minimum stability margin sm = 0.5. Here, M = 2 is chosen. The value WC = 8.4
is finally chosen to avoid oscillatory response as previously discussed, and to get
the satisfactory performance for both clean and iced case.

The filter frequency response are shown in figure 3.4. The initial value for
ωb is 1 rad/s. The final value for ωb given the chosen parameters, and where all
requirements are met is 13.56 rad/s. The achieved γ∗lon - value is 5.1748. The final
controller values are summarized in table 3.10.

Figure 3.4: Frequency response of longitudinal the tuning filters WS and WT

The tuning procedure that is used can be summarized in the following steps;

• Find the icing level ζ of the nominal plant which minimizes
Max(δv(Pclean, Pnominal),δv(Pnominal, Piced)), and use this value to set the sta-
bility requirement.

• Choose appropriate weighting filter constants A and M based on the desired



low frequency gain and stability margin sm.
• Set a suitable starting point for WC and ωb. Increase ωb until either the

stability requirement or robustness requirement for iced and clean case are
no longer satisfied.

• Repeat the last step by adjusting WC such that good performances are achieved
for both the iced and clean case.

Table 3.10: Longitudinal Robust Controller Summary

Performance parameter Value
ωb 13.56 rad/s
γ∗lon 5.1748
Filter parameter Value
M 2
A 0.001
WC 8.4

Lateral Robust Control

A similar method tuning method is used in the lateral case. Pnominal(ζ) is found.
Max(δv(Pclean, Pnominal),δv(Pnominal, Piced)) = 0.2433 at ζ = 0.5700. Hence, the
lateral stability requirements for the H∞ controller is met if γ∗ < 1

0.2433 = 4.110.
A = 0.005 and M = 2 are chosen for the same reasoning as in the longitudinal
case. The initial value for ωb is 0.1. WC = 0.3 is chosen by doing the iteration
as before. The largest value for ωb given the chosen parameters, and where all
requirements are met is 0.4150 rad/s. The controller is summarized in table 3.11.
The filter frequency response are shown in figure 3.5. While achieved γ∗lat-value
is 2.0371. Here, it is the general stability margin sm > 0.5 for the iced case that
stops the iteration.

Table 3.11: Lateral Robust Controller Summary

Performance parameter Value
ωb 0.4150 rad/s
γ∗lat 2.0371
Filter parameter Value
M 2
A 0.005
WC 0.3

3.7.3 Gain Scheduled Controller

The gain scheduled approach is using the exact same tuning method as above.
Here, a set of H∞ controllers are made for using different levels of icing as nom-
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Figure 3.5: Frequency response of lateral the tuning filters WS and WT

inal plants. Generally, this gives a much lower ν-gap between the the plants that is
used for the controller synthesis and the plants that needs to be stabilized, which
in turn relaxes the stabilizing γ-requirement. Here, it is chosen to use the ζ-values
of 0.1, 0.3, 0.5, 0.7 and 0.9 as nominal plants, where the controller selected if the
icing level is ζ ∈ [ζnominal−0.1,nominal+0.1). The results presented in 4 are sim-
ulations made for ζ-values 0, 0.3 and 1. Hence these controllers are summarized
in the tables below. Lateral controllers for ζ-values 0, 0.3 and 1 are summarized
in table 3.12. Here, it was the robustness requirement of sm > 0.5 which was the
limiting factor when tuning. Longitudinal controllers for ζ-values 0, 0.3 and 1 are
summarized in tables 3.13. Here it was the maximum frequency of 2.5 Hz to pre-
serve general noise attenuation capabilities which was the limiting factor when
tuning.



Table 3.12: Lateral gain scheduled controllers with ζ= 0.1, 0.3 and 0.9

Performance parameters ζ= 0.1 ζ= 0.3 ζ= 0.9

ωb 0.7150 rad/s 0.6500 rad/s 0.3800
γ∗lat 2.1514 2.2393 2.3184

Filter parameters

M 2 2 2
A 0.001 0.001 0.001
WC 0.3 0.3 0.3

Table 3.13: Longitudinal gain scheduled controllers with icing level value ζ

Performance parameters ζ= 0.1 ζ= 0.3 ζ= 0.9

ωb 15.7 rad/s 15.7 rad/s 15.7
γ∗lat 2.54 5.2861 6.6221

Filter parameters

M 2 2 2
A 0.001 0.001 0.0003
WC 1.3 6.2 14.6
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Results

The simulation results are represented by looking at the controlled variables re-
sponses from a step in commanded roll angle,φc , and commanded pitch angle, θc
for each of the controllers in 3. Each case is simulated with no ice (ζ = 0), some
ice (ζ = 0.3) and full ice (ζ = 1). The steps in φc , θc are of size 4 ◦. In each sim-
ulation, one control variable is tested per simulation. The step occurs after 10s,
and a negative step of the same magnitude is applied after 60 seconds. The total
simulation time is 90 seconds. In other words, the testing sequence is a step at
10s, hold the angle for 50 seconds, then a step back to the initial value and hold
this angle for the last 30s. The initial values are the calculated trimmed values
from section 3.2

4.1 H∞ Robust Controller

This section will present the simulation results for the roll and pitch testing se-
quences using the H∞ Robust Controller.

4.1.1 Roll testing sequence

The H∞ robust controller tuning parameters are summarized in tables 3.11 and
3.10 for the lateral and longitudinal respectively. The roll angle testing sequence
simulation results are shown in figure 4.1. The variables presented for this test se-
quence is roll angle, pitch angle, aileron deflection and elevator deflection. Figure
4.1 a) shows the roll angle response. The settling time (measured from the step)
increases as with the ν-gap distance from the nominal plant. For the worst-case
scenario of icing, the settling time is 21.31 seconds, with no overshoot. However,
there is a small, steady-state offset, but this is less than the acceptable error band
of ±2% of the final step value. For the clean case, the settling time is about 18.8s.
The clean response has an overshoot of 26.5%. For the icing level ζ = 0.3, the
settling time is 13.9s, which is faster slower than for the clean case. There is an
overshoot of 11.5 %. The undershoot caused by the RHP zero is also increasing
with ice. The undershoot of icing levels ζ = 0, ζ = 0.3 and ζ = 0.9 are 24.7%,
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27.3%, and 45.3 % respectively. Figure 4.1 b) shows the aileron deflection. The
control effort is increased with ice. In other words, a larger aileron deflection is
needed to hold the reference roll in icing conditions. Figure 4.1 c) shows how the
pitch angle deflects when a step in roll is applied. The deviation from the steady
angle in the iced case is not as large as in the clean case. The pitch angle has a
steady state offset from the trimmed-value, which increases with ice. Figure 4.1 d)
shows the elevator deflection during the simulation. The required elevator deflec-
tion to fly in level-flight with constant pitch decreases for a higher level of icing.
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Figure 4.1: Shows the robust controller response to a step in commanded roll
angle φc . a) shows the roll angle. b) shows the aileron deflection. c) shows the
pitch angle and d) shows the elevator deflection.

4.1.2 Pitch testing sequence

The simulation results for the testing sequence of pitch angle using the robust
controller are shown in figure 4.2. The variables presented here are pitch angle,
roll angle airspeed, elevator deflection, aileron deflection and throttle. The pitch
angle are shown in figure 4.2 a). The settling time is quite similar for different
levels of ice. For the iced case with ζ = 1, there is a steady-state offset of 0.12◦

as previously mentioned. For the worst-case scenario of icing, there is also some
quick oscillations before it settles. The response settles at this value after 9.8s after
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Figure 4.2: Shows the robust controller response to a step in commanded pitch
angle θc . a) shows the pitch angle. b) shows the elevator deflection. c) shows the
roll angle and d) shows the aileron deflection. e) shows the airspeed. f) shows
the throttle

the step. The responses for ζ = 0 and ζ = 0.3 are quite similar. The overshoots
are both 10.7 %. The settling times are 7.56s and 7.8s for ζ = 0 and ζ = 0.3
respectively. Figure 4.2 b) shows the elevator deflection. On the iced case, there
is an oscillatory behaviour on the step after 10s, as described for the pitch angle.
4.2 c) shows the roll angle. This emphasize the previously mentioned statement
about longitudinal and lateral coupling for aggressive manoeuvres. 4.2 d) shows
the aileron input. The airspeed response is shown in figure 4.2 e). As mentioned



earlier, the airspeed and pitch angle variables are strongly related. This is shown
here, where an increase in pitch leads to a drop in airspeed. 4.2 f) shows the
throttle. This increases with icing as a result of the increased drag.

4.2 Gain Scheduled Controller

This section will present the simulation results for the roll and pitch testing se-
quences using the gain scheduled controller.

4.2.1 Roll testing sequence

The gain scheduled controller tuning parameters for the lateral and longitudinal
controllers is summarized in table 3.12 and 3.13 respectively. The roll angle test-
ing sequence simulation results are shown in figure 4.3. Figure 4.3 a) shows the
roll angle. Here, the iced cases are considerably better compared to the robust
controller. For icing level ζ = 0.3, the settling time is 4.9s with the previously
used acceptable error-band of ±2% of the final step value. The overshoot for this
case is 2.6%. For icing level ζ= 1, the settling time is 9.8s without any overshoot.
For the clean case, the settling time is 9.36s with an overshoot of 5.3%. The un-
dershoot of icing levels ζ = 0, ζ = 0.3 and ζ0.9 are 27.3%, 39.7%, and 47.2 %
respectively. More icing moves the RHP zero closer to 0, meaning that the zero gets
slower, which again will give a stricter limitation on controller bandwidth. This
can be seen in table 3.12, where the achieved bandwidth for the gain scheduled
controllers are decreasing when ζ is increasing. This can also be seen in figure
4.3 a), where the rise-time of the step response for ζ= 1 is slower than the other
two curves. figure 4.3 b) shows the aileron deflection. Here, it can be seen that
the control signal is a more aggressive than in the single robust H∞ controller.
This can also be seen in figures 4.3 c) and d), which shows a greater dependency
between the pitch angle and the steps in roll angle. The magnitude of these effects
is still less than 0.1 ◦, which is a small deviation.

4.2.2 Pitch testing sequence

The simulation results are shown in figure 4.3. Figure 4.3 a) shows the roll angle.
Here, the offset from the robust controller is effectively eliminated by reducing A
for the worst-case icing scenario. The responses are now quite similar for all levels
of icing. The maximum overshoot is 9.67 %, and worst-case settling time is 7.16s
with the error bandwidth of 2%. Figure 4.3 b) shows that as a result of reducing
the steady-state error in pitch angle, the magnitude of elevator deflection in the
iced case is increased. It is still smaller than in the clean case. The responses for
roll angle, aileron deflection, airspeed and throttle in figures ?? c), d), e) and f)
respectively, are quite similar to the response for the robust control design. Small
improvements still occur, such as the roll angle steady-state offset is reduced.
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a) b)

c) d)

Figure 4.3: Shows the gain scheduled controller response to a step in commanded
roll angle φc . a) shows the roll angle. b) shows the aileron deflection. c) shows
the pitch angle and d) shows the elevator deflection.



a) b)

c) d)

e) f)

Figure 4.4: Shows the gain scheduled controller response to a step in commanded
pitch angle θc . a) shows the pitch angle. b) shows the elevator deflection. c) shows
the roll angle and d) shows the aileron deflection. e) shows the airspeed. f) shows
the throttle



Chapter 5

Discussion

The results showed the performances of the implemented controllers. This section
will discuss some of the results and look at the challenges and limitations of the
implemented methods.

5.1 Tuning Approach

As mentioned in chapter 3, when designing the tuning filters for theH∞-controller
is there are trade-offs that need to be made. The fact that the controller needs to
take the performance and robustness of different plants into account make the
tuning problem complex. Here, there is not only the general trade-off between
performance and robustness for tuning filters for a single plant but also a trade-off
between performances of different plants for different levels of icing, ζ ∈ [0,1]. A
mathematical model is always an approximation of the real system, and hence all
the plants should have a minimum level of robustness. The tuning approach that
was used here was that an absolute lower limit of closed-loop robustness and sta-
bilization requirements was set, and then the performance of the plants of clean
and worst-case ice was improved through an iterative process when the controller
bandwidth was increased, and the control signals limitations were adjusted. There
are several factors that are not included in the icing model [17]. This includes sur-
face quality of the wings, thermal conductivity, the structural composition of the
wing, etc. This emphasizes the importance of robustness to model uncertainties.
The robustness requirements were chosen based on the literature, and not com-
pared to the magnificence of unmodeled dynamics in this specific model.

5.2 Longitudinal and Lateral Decoupling

The controller method implemented this based on a linearized model where the
longitudinal and lateral dynamics are decoupled. The results show that there is
a weak coupling, which is illustrated by investigating the roll angle for a step in
pitch angle and the pitch angle for a step in roll angle. The results indicate that
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this coupling increases for more aggressive manoeuvres. Note that during this test
sequence, the coupling is quite weak (small deviations in reference values to the
investigated angle variables), but it illustrates the general concept that increased
longitudinal and lateral coupling for aggressive manoeuvres.

5.3 Controlling Right Half Plane Zeros

The lateral dynamics has an RHP zero. This is illustrated in the simulation result
with the characteristic non-minimum phase response to a step input. As previ-
ously mentioned, this gives fundamental limits to achievable performance and
robustness. As seen in the results, the RHP zero is moving closer as the icing
level is increasing, which gives stricter limitations to performance and robustness.
The performance measures in this thesis are primarily settling time and overshoot
to step response. Hence, the attempt to minimize the undesirable non-minimum
phase undershoot has not been a control objective. However, the usual method of
reducing the undershoot is to reduce the bandwidth, which again reduces the rise
time and increases the settling time.

5.4 Single Robust Controller

There are some drawbacks by using the single robust controller for plants with
large uncertainties. Generally, this method assumes the worst-case scenario at all
times, which again gives stricter robustness requirements and worse performance
than necessary. This is best illustrated by comparing the performance of the roll
test sequence for the single robust and the gain scheduled controllers. In a scenario
where the icing is absent, or there is low level of icing during the entire flight, the
performance is using this method could have been a lot better by using a different
method. On the other hand, this quite simple method that gives a guarantee of
stability during the entire flight while being in the region of the trim point, without
needing any information of the actual level of icing.

The effect of icing is a function with AOA. The trimmed point used during the
simulations shown in section 3.2, has a quite low AOA. By increasing the AOA,
the maximum Vinnicombe distance between the new linearized plants for the
clean and iced case is likely to change, and therefore change stability requirement
for the controller tuning method. If the Vinnicombe distance gets to large, it will
make it difficult/impossible to achieve satisfactory results in terms of robustness
and performance[14].

5.5 Gain Scheduled Controller

The gain scheduled controller improves the performance compared to the single
robust controller. During the simulations, the icing level is assumed known. The
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main drawback of this controller is that it requires a method to measure the level
and type of ice. In general, this is a quite difficult quantity to measure.





Chapter 6

Conclusion

This thesis has investigated the control of an in-flight UAV that is subject to icing
conditions. Two different control techniques were used to create an inner-loop
controller that ensures stability and robustness to model uncertainty in order to
mitigate the icing effects in the UAV. The results shows that both the single robust
controller and the gain scheduled controller gave satisfactory results in terms of
robustness and stability. The results also shows that by increasing the available
information available and assuming that the level of icing is known, the perform-
ance in terms of settling time and overshoot can be significantly improved by using
a gain scheduled controller and using the icing signal as selector variable.
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