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Abstract

Attitude control of autonomous fixed-wing unmanned aircrafts can
unfold in a number of ways, one of which is Model Predictive Control.
This control method optimizes a process given a set of constraints,
and depending on this process and the constraints, the controller can
be configured in different ways yielding different performances. In this
project, the trade-off between computation time and flight performance
is explored. Both a fully converged nonlinear MPC and a linear MPC
is used, and also the effect of Real-Time Iteration is studied. By expos-
ing the aircraft to different turbulence levels, the performance of the
different controller configurations is explored. The simulation study
showed that the linear controller is about twice as fast as the nonlin-
ear, but the effect on the aircraft dynamics is minimal. As the wind
conditions worsened, the linear MPC resulted in least error and faster
computation time.
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1 List of abbreviations

MPC
NMPC
LMPC
RTI
QP
SQP
NLP
OCP
AOA

Model Predictive Control
Nonlinear Model Predictive Control
Linear Model Predictive Control
Real Time Iteration

Quadratic programming

Sequential Quadratic Programming
Nonlinear programming

Optimal Control Problem

Angle of attack



2 Introduction

Attitude control of aerial vehicles can be done in several ways, such as
optimization-based controllers as Linear-Quadratic Regulator (LQR) and
Model Predictive Control (MPC), or PID controllers which correct error
with proportional, integral and/or derivative terms. In this report the MPC
is the control method that is to be studied. This type of controller solves a
pre-defined optimization problem based on a cost function and a set of con-
straints on the states and inputs. A linear MPC, which minimizes the cost
function based on a linear model, can be deployed relatively fast thanks to
algorithms solving the underlying quadratic programs (QPs) [5]. A Nonlin-
ear MPC (NMPC), which minimizes the cost function based on a nonlinear
model, requires more elaborate algorithms. These algorithms require longer
computational time, and the robustness of the controller becomes a topic as
the algorithm may not be able to find a solution at a given timestep. The
NMPC solves the nonlinear program (NLP) with a SQP solver which solves
a sequence of QPs using QP solvers.

The unmanned aerial vehicle (UAV) may experience a turbulent environment
due to strong wind gusts, and therefore the controller needs to be updated
at a high rate. If the controller is not updated fast enough, the aircraft
may be in a configuration not reversible, ultimately resulting in structural
damage or loss of the aircraft. An irreversible configuration may be an
orientation where the angle of attack is too large, resulting in loss of lift. In
this project, we analyze the potential loss of performance when using a fully
or partially converged solution by a NMPC, compared to the linear MPC.
There exists a trade-off between flexibility, memory usage and speed when it
comes to developing software for embedded optimal control [7]. So reducing
the computation time should yield in a faster control algorithm, but what
consequences does this have to the actual dynamics of the system?

The report is organized in the following manner. Section [3] introduces the
framework around the model and controller. This section is necessary for
understanding the results and to get a clear picture on what terms the sim-
ulation study is based on. Section [4]is about the linear and nonlinear MPC,
where the differences and similarities are discussed in relation to the UAV.
Section [5| explains in detail how these MPCs are to be tested in order to
compare them. The content of the section creates the framework for the
simulations and the data base for comparing them. Section [6] is about pro-
cessing the data from the simulations. Here the results of the various sim-
ulations are presented and discussed. Lastly, section [7] concludes the report
in a way that sheds light on the trade-off between computation time and
aircraft dynamics.



3 Background

There has been extensive work done regarding the modeling and control of
the aircraft. The aircraft in question is the Skywalker X8. The model of
the aircraft can be represented in several ways, resulting in several state-
spaces, parametrizations and frames. In this project, the full state-space
has been used to represent the aircraft. This state-space depends on the
chosen parametrization and frame, the various representations are presented
below.

The framework that the model is built in allows for three parameterizations;
quaternions, euler angles, and the rotation matrix. Quaternions is a four-
dimensional representation where the issue of a singularity is nonexistent.
However, this representation is not intuitive to humans, which makes the
simulation and results hard to interpret. The euler angles are very intu-
itive, but there is a singularity at § = +90deg. Hopefully the aircraft will
never find itself in such an orientation, but singularities should be avoided
either way. The rotation matrix is based on the rotations following the zyx-
convention. This is the parametrization that has been used throughout the
project.

There are also different coordinate frames one can develop the model and
its dynamics within. The relevant frames in this case are NED [n], BODY
[b], STABILITY [s| and WIND [w]. References |1| and [4] has been used in
the discussion of these coordinate frames. The n frame (North-East-Down)
is an inertial frame in which the x-axis is directed north, y-axis is directed
east, and z-axis is directed toward the center of the earth, or down. This
frame is useful to get an understanding of where an aircraft is in the world,
but not ideal to model the dynamics.



The b frame is fixed to the aircraft body, and this is where the aecordynamic
forces (and others) act, see figure |1| for illustration.
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Figure 1: b frame |\

The s frame is a rotation from b where the angle of attack plays a key role.
This frame is useful for analyzing the stability of an aircraft, and in this case
also place constraints on the AOA (). For an illustration of this frame, see

figure [2

Figure 2: s frame H

In most cases it is useful to include forces and moments due to wind. For
that the w frame is used. This frame is a rotation of the s, which is rotated
about the side-slip angle (). See figure [3| for illustration.



Figure 3: w frame H

All of these frames are related to each other, and it is necessary to rotate
between them to include all relevant parameters in the model dynamics and
simulations. Following the zyx-convention mentioned earlier, used to rotate
from b to n, the following rotation matrix is defined:

cpcl  —spep 4 cipsfsp  sihso + cpepsh
Ry = syl  cpcp + spslsyp  —cpsd + sbsipco (1)
—sb cOsp cOcp

where ¢ = cos(), s = sin() and [, 0,1)] are the euler angles. The rotation
from b to s is useful when analyzing AOA is of value. The transformation
between these two frames are given by the following rotation matrix, which
is a dependent on AOA («):

cosa 0 sina
R; 0 1 0 (2)

—sina 0 cosa

Lastly, the wind frame is obtained by rotating the s frame with the side-slip
angle 8. The allows for including the wind forces to the analysis through the
side-slip variable. This rotation is given by:

cosB  sinfg 0
RY = |—sinf cosf 0 (3)
0 0 1



As mentioned earlier, the wind forces enter the equations of motion in the
b frame, so using the defined relationships it is possible to derive a rotation
from w to b. This relationship is of interest when the environmental effects
is introduced later in the report.

cosfcosa —sinfcosa —sina
R: = RY)T =RYR; = sin 8 cos [ 0 (4)
cosfBsina —sinfsina  cosa

Through Newtons laws of motion it is possible to derive a model for the
aircraft dynamics. By relating the external forces F and moments M to
a rigid-body, being the aircraft, the Newtons law of motion results in the
following dynamics for the aircraft [6]:

mV +wxmV =F (5a)
Iv+wxIV=M (5b)

Where I is the inertia matrix, m is mass, V are the linear velocities [u, v, w]
and w are the angular velocities [p,q,r]. The forces and moments acting
on the aircraft consists of several subcomponents. The external force vec-
tor includes aerodynamic forces, gravitational forces, and propulsion forces
11]:

F=F,+F,+F, (6)

The external moments are a combination of aerodynamic and propulsion
moments |1]:
M =M, + M, (7)

In conlusion, there are several parametrizations and frames available. They
all serve their purpose, and it is necessary to switch between them in order
for computational efficiency and including all relevant parameters. They
result in a number of states and parameters, in which a few has been chosen
to study further. The airspeed is useful to observe and so are the rotations
of the aircraft. That is why the following states has been plotted in the
simulation study:

Xpiot = |Va Ris Raz  Rss) (8)
where R13, Ro3 and Rs33 represent the z-axis of the n frame in the b frame:

Ry3

Rys| =Rp-b, b=1[0 0 n (9)

R33



4 MPC and NMPC

A simplified overview of the different controllers is illustrated in figure[d] It is
a general description showing the main modules in the optimization problem.
As illustrated, the right path is the nonlinear MPC, which is solved by a SQP
solver. On the left is the linear MPC which is solved with a QP solver. It is
expected that the NMPC path would be more time-consuming compared to
the other path.

Optimal control of autonomous

UAV
MPC NMPC
QP problem INLP problem
QP solver SQP solver
| | u* | |
UAV

Figure 4: Optimal control using MPC.

In general, the difference between a linear and nonlinear MPC is that the
constraints are linear or nonlinear. Expanding on this, we note that what
makes this specific OCP nonlinear, is to use a nonlinear model for the UAV.
A linear model results in a convex QP problem, and a nonlinear model
turns the convex QP problem into a nonlinear and nonconvex problem |[3].
These kinds of optimization problems require a NLP solver. However, the
functionality of the MPC is the same, where you have an objective function
that is to be minimized given a set of constraints. According to [3| the MPC
principle is described as:

Model predictive control is a form of control in which the current control
action is obtained by solving, at each sampling instant, a finite horizon open
loop optimal control problem, using the current state of the plant as the initial
state; the optimization yields an optimal control sequence and the first control
in this sequence is applied to the plant.
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Figure 5: Illustration of MPC principle [3].

Figure [5] demonstrates this principle in a clear way. In regards to the NMPC,
it is the SQP algorithms that could result in a "slower" controller. The
QP subproblem solution is typically one of the most extensive steps in the
SQP schemes, the other being the simulation and sensitivity computations
of dynamical systems. The MPC controller is implemented through acados,
which is a tool for optimal control of nonlinear problems [7]. See problem
formulation below:



z(+),

s.t.

min
u(+),z(+),s(+),s°

/* Cost Function */

T S](T) T Z1 0 Z1
/Z(x(f),u(T),z(T),pH{su(f) 0 7 zu]
0 1 2" ze! 0

I R
m(a(), (D)) +5 [ sa | | 0z = || s
1 2T 28T 0 1

/* Initial value */

zo < Jbx,07(0) < Zo,

/* Dynamics */

fimpl(z(t), 2(t), u(t), 2(t),p) =0,

/* Path Constraints with lower bound */

h < h(z(t),u(t),p) + Jsnsin(t),

u < Jpuu(t) + Jsbustbu(t),
g < Cx(t) + Du(t) + Jsgsi4(t),
s, (t); s1bx (), S1bu(t), s1g(t) > 0,
/* Path Constraints with upper bound */
h(x(t),u(t),p) = Jsnsun(t) < b,
JoxZ(t) — JsbxSu,bx (t)
Jbuu( ) = JsbuSubu(t)
Cx(t) + Du(t) — Jsgsug < G,

/* Terminal Constraints with lower bound */
b° < h8(x(T),p) + Jg5Ths

ge < ngx( ) + JSbXSl,bx’

9" < C%(T) + Jgsig < G5,

e e e e
Sy SLbxo SLbus Sig = 0,

/* Terminal Constraints with upper bound */
he(x(T),p) — Jausi, < I,
Jix®(T) — JsbxShyx < T,
Cx(T) — JsS < g°
s¢ . >0

e
Su,h78u,bx7 u,bu? u,g
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4.1 RTI - Connecting the NMPC to LMPC

To be able to discuss the differences between a linear and nonlinear MPC, one
has to understand the underlying mechanisms from the problem formulation
to the solvers. As stated, a NMPC uses a SQP algorithm to iteratively
find a solution. When SQP is used in NMPC, and the reference is used
as an initial guess, the first step of a full step Gauss-Newton SQP delivers
the same control solution as a linear MPC |[5]. This property is used to
transfer the already-existing NMPC to a LMPC. There is another method
in the NLP solver that draws parallels to the LMPC, and that is Real-
Time Iteration (RTI). The main idea behind this is to at all times use the
latest information on the system dynamics in the algorithms computing the
NMPC solution [5|. This allows for approximating a solution based on the
most recent information, instead of an accurate solution based on outdated
information. The implementation of this on our system is a single line of
code in which one chooses the SQP solver to use or not use RTI within the
acados tool [7]. An illustration of this method is visualized in figure [6]

preparation feedback

%o delay ‘ 1

Figure 6: Illustration of preparation and feedback phase.

4.2 Real-time optimization strategies

While the real system evolves, the optimization problem is solved, and this
optimization problem itself takes time. This is sometimes referred to as "the
real-time dilemma" [5]. There exist different strategies that can be imple-
mented to decrease the time of the optimization solver such that the real
system is updated fast enough. The RTI can be viewed as one of these
strategies, but Moritz Diehl |2| proposes a few easily implementable strate-
gies.
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Offline precomputations

The idea behind offline precomputations is to ensure that what can be solved
offline, is solved offline. This is to minimize the number of computations done
online, ensuring that the online solver computes as fast as possible. There
are some simple actions one can take to implement this strategy:

e Factorize matrices
e Code generation (C-code)
e Model simplifications

In regard to the X8 aircraft, these actions have to a certain degree been im-
plemented. There is still a lot potential in simplifying the model however. It
could be interesting to explore how streamlining the algorithms potentially
has an impact on the computation time. Ultimately, this simple although
time-consuming process could yield in a faster controller without altering
the controller itself, resulting in better flight dynamics. When comparing
the different controllers, it is not relevant how offline precomputations im-
proves online computation time. However, it might improve the benchmark
computation times, rendering online controllers overall faster.

Delay compensation by prediction

Instead of acting on faulty dynamics after the fact, one can use the strategy of
compensating by prediction. What this entails is that while the optimization
computation takes place, one can use the previous input sequence as inputs
to the plant until a new solution has been computed. We have to implement
some control input to the plant anyways, so why not use the prediction that
is already computed. A simple example is that if the optimization takes 5
timesteps to compute, first 5 elements of the input sequence could be fed
to the plant, while the solver computes the next sequence. This method
is sensitive to large pertubations and disturbances, and the predicted input
sequence may be outdated to the point that controlling the system becomes
impossible. This is especially something to consider for small UAVs in harsh
environments. In those cases, the perturbations can be severe and rapidly
changing, and the predicted inputs could make the situation worse.

11



5 Simulations

In this section, the framework for the various simulations are described. Un-
fortunately, there has not been any actual flight tests, so all the experiments
and data is a result of simulating the aircraft model. A total of 9 simulations
have been done, all with different environmental conditions and controller
settings. In addition, at each of these simulations, the CPU time at each
iteration in the MPC loop has been sampled.

5.1 Controller configuration

The controller is designed as a NMPC, where it has to iteratively converge
to an optimal solution. However, by only allowing one iteration of the SQP
solver, the controller becomes linear at the current state. By manipulating
these controller settings, it is possible to simulate the system with both a
nonlinear and linear MPC. In the cases where NMPC is experimented with,
the maximum number of SQP iterations has been set to 1000 in order to
ensure full convergence. Full convergence can be hindered if the maximum
iterations constraint is reached. This is avoided when maximum iterations is
set to 1000. On the other end, for the LMPC, the maximum SQP iterations
has been set to 1, such that the system becomes linear. As discussed earlier,
the RTT functionality is useful for reducing computation time. In the opti-
mization algorithm it is possible to choose between SQP with and without
RTI, so a third controller configuration is NMPC with RTI. Including this
feature in the nonlinear case could be interesting in order to see how much
it reduces the computation time compared to the linear case.

5.2 Wind conditions

Atmospheric disturbances have a great impact on the aircraft dynamics, and
in the case of slow flying UAVs, the wind velocity is large relative to the
airspeed compared to larger aircraft [6]. This translates to the wind having
more impact on a small aircraft, which has to be dealt with in the design
of the controller. As mentioned before we want to analyze how the different
controller configurations handle various levels of turbulence. When simulat-
ing wind, it is useful to divide into the two subcategories steady ambient
wind and wind gusts. The former is easily dealt with by the controller, as it
acts as a constant disturbance. The latter however, depending on the level
of turbulence, could render the aircraft hard to control because of the abrupt
changes in wind velocity. The steady wind velocity is modeled as a constant
speed vector in the n frame. For all the simulations that were done, these
constants were set to a headwind of 5 m/s and a crosswind of 4 m/s. And
so the static part of the wind takes the shape of:

12



Yatie = |—5 4 0] (10)

static

The gust component of the wind is modeled as a stochastic process, where
the Dryden transfer functions are used to transfer white noise into wind ve-
locities [1]. Without going into detail in how these transfer functions are
developed, it is worth to mention that they are dependent on airspeed, alti-
tude, wingspan, and turbulence intensity. To see how the aircraft responds
in different environments, those are the factors that are manipulated. The
wind gusts are calculated in w and has to be rotated to b.

Vo, =RoVY (11)

gust w ¥ gust

5.3 Test scenarios

The controller has been configured and a model describing the wind impact
in different environments has been established. To test what happens to the
aircraft dynamics in different environments with different controller configu-
rations, it is important to run the simulations and extract the relevant data
in a systematic way. Across all the simulations, the airspeed reference is
set to 19 m/s, a normal cruising speed for the X8 aircraft. In addition, the
simulation time is 20 seconds. The control objective is to reach and hold the
desired airspeed while turning in a radius of 50 meters. That also means set-
ting the flight path angle reference to zero. The flight path angle is defined
as the angle between the speed over ground vector and the horizontal plane.
Lastly, the altitude reference is set to 300 meters. Below is a description of
the different simulations that is to be done.

Table 1: Description of test scenarios.

Simulation no. | Controller Wind conditions

1 LMPC Static wind only

2 NMPC w/RTI | Static wind only

3 NMPC Static wind only

4 LMPC Light turbulence

5 NMPC w/RTI | Light turbulence

6 NMPC Light turbulence

7 LMPC Moderate turbulence
8 NMPC w/RTI | Moderate turbulence
9 NMPC Moderate turbulence

13



6 Results and discussion

6.1 Computation time

For determining the computation time of all the different scenarios, the total
CPU time of every iteration has been sampled. In appendix [B] are plots
showing these CPU times throughout every simulation. In one simulation
there are 2000 timesteps (Smulation ;ime = 295 =2000). This amount of data
is too vast to extract information from, which is why the mean computation
time during the simulation has been used. In table|2|is a complete overview
of these mean computation times. The simulations have been done on the
same computer, meaning the same CPU has been used every time. However,
the CPU performance may be varying, which could be a source of error in

these experiments.

Table 2: Computation times in different simulations.

Simulation no. | CPU time
13.4 us
12.1 ps
23.1 us
14.5 ps
12.2 us
31.2 us
14.8 us
11.9 us
32.2 us

O© 00 ~J O T = W N =

These results are better interpreted in a diagram categorizing the testing
conditions. The computation times are categorized in a diagram shown in

figure

The NMPC computation is more time-consuming than LMPC. On the other
hand, the impact that RTI has on the nonlinear controller is quite signifi-
cant. Through all simulations, the NMPC with RTI computes faster than
the LMPC. The objective however, was to compare the linear case to the
nonlinear case, as as shown in figure [7] the linear case computes faster in all
simulations by a good margin. It is only logical, as the linear controller does
one SQP iteration, while the nonlinear controller does as many as necessary
in order to converge to an optimal solution.

14



COMPUTATION TIMES

ELMPC  mNMPCw/RTI mNMPC

TIME

ETATIC WINDONLY LIGHT TURBULENCE MODERATE TURBULENCE

Figure 7: Visualization of computation times.

In the static wind case, the LMPC is 1.7 times faster, in the light turbu-
lence case 2.1 times faster, and in the moderate turbulence case 2.2 times
faster. This indicates that as the environmental conditions gets worse, the
NMPC controller computes slower relative to the LMPC. A worsening tur-
bulence level leads to more significant pertubations of the aircraft, which the
controller needs to compensate for. As the LMPC only allows one SQP iter-
ation no matter the situation, the NMPC needs and does more calculations
in order to compensate.

The variations in computation times were quite significant. In some instances
the computation time spiked, which for example can be seen in figure 21] in
appendix [B] It should be noted that the simulations were done on a CPU of
type "AMD Ryzen 5 2500U" which can be subject to delays and irregular
performance. These spikes does not affect the mean computation time across
the simulation to any important degree, and occur in every simulation, so
they are regarded negligible. An interesting observation between the LMPC
and NMPC computation times is the way these times develop through the
simulation. In figure24]the LMPC controller only needs milliseconds to work
its way down in computation time, while the NMPC in figure 26 needs a cou-
ple of seconds to do so. This occurs in the beginning of the simulation when
the aircraft approaches the references, where the most volatile dynamics are

15



expected. This phenomenon indicates that the NMPC controls the aircraft
more actively than the LMPC especially in this time period, which might be
necessary in order for the aircraft dynamics to be acceptable.

6.2 Aircraft performance

In appendix [A] one can find plots describing the key performance parame-
ters in each scenario. For each scenario, there are two plots; The first one
consisting of the four states in X, , and the second one being the error
of the same states in addition to the cost function. The first plot serves as
a visualization of how the aircraft dynamics unfold throughout the simula-
tion, and the second figure can be used as a gauge to observe how much the
states deviate from the references. The second figure also includes the cost
function, which is a good way of illustrating how well the controller man-
ages to minimize the cost function. If the cost function has a small value, it
indicates that the solution is more optimized than a cost function of larger
value.

In general, it is the case that the aircraft dynamics become less stable as more
and more turbulence is introduced to the system. This is due to the wind
forcing the aircraft in an orientation not desirable, which the controller has
to compensate for. This issue can also be observed in the plots illustrating
the cost function. For instance, the cost function in the LMPC controller
is very different from the static wind case to the moderate turbulence case.
Below is a figure showing the differences in the cost function in the two
different environmental conditions.

Only static wind

T T T T T T
102 cost function [J] | 4

101 L

1
0 2 4 6 8 10 12 14 16 18 20

time [s]
Moderate turbulence
T T T T T T T T T
102 cost function [J]] |

| 7
0 2 4 6 8 10 12 14 16 18 20
time |s]

Figure 8: Cost function for static wind and moderate turbulence.
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Clearly the OCP is better optimized when the aircraft is subject to less
disturbances. In some parts of the simulation, the difference is as large as
an order of magnitude.

What is more interesting however, is how the various controller configura-
tions deal with the same environmental conditions. Overall, the environmen-
tal conditions does not impact the error dynamics to a large degree, which
indicates that all controller configurations manages to control the aircraft
in a satisfying manner. The state R;3 will be used to represent the aircraft
dynamics. As the cost function described, there are larger errors as the dis-
turbances intensifies. In the case of no wind gusts, i.e only static wind, the
aircraft performance is overall very good. Figure [0 describes this scenario.
The maximum error (e =y — yres) is 0.2, and quickly approaches and oscil-
lates around zero. In addition, there is little difference between the different
controllers. The beginning of the simulation is the most eventful, and that
is where the biggest differences are. Here the NMPC with RTT sticks out as
worse controller in regards to error, and it seems that it overcompensates in
some instances. Comparing the LMPC with the NMPC, there are little no
to differences in error in the static wind case.

R, 4 error with only static wind
01 T T T T T T T T T

LMPC

NMPC w/RTI
0.05 p NMPC i
\
|

-0.05 [

R;5 error

-0.15 7

0.2 y

_0.25 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
time [s]

Figure 9: Error with static wind.
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Introducing light turbulence to the system also introduces more error. This
is illustrated in figure [I0] In this case the maximum error is 0.25, which
is a relatively small change compared to the static wind case. There are
also differences between the controllers, and it can be said that the LMPC
error dynamics seems a bit delayed compared to the nonlinear controller.
Overall, the LMPC displays least error throughout the simulation, and the
NMPC with RTT results in the most error. It should be noted that both
nonlinear controllers have similar error dynamics, despite the large difference
in computation time.

R13 error with light turbulence
01 T T T T T T T T T

LMPC

0.05 f NMPC w/RTI| |
NMPC

-0.05

011

R;s error

-0.15

-025

_0-3 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
time [s]

Figure 10: Error with light turbulence.

When the aircraft is exposed to moderate turbulence, the already discussed
effects are amplified. The maximum error is now increased to 0.3, and the
LMPC controller continues to be the better controller in regards to error.
The error dynamics does not change much besides the amplitude, which is
logical as the environmental conditions are worsened. See figure [L1] for error
development in the moderate turbulence case.
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Ry3 error

0.1

0.05 i

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

R1 4 error with moderate turbulence

T

T T T T T T T T T

LMPC
NMPC w/RTI

1 1 1 1 1 1 1 1 1

1

2 4 6 8 10 12 14 16 18

time [s]

Figure 11: Error with moderate turbulence.
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7 Conclusion

A total of 9 different simulations have been performed in order to determine
the trade-off between computation time and aircraft dynamics. The LMPC
has been tested against the NMPC, and also compared to NMPC with RTI.
These have been compared in a range of environmental conditions, whose
purpose is to single out the better performing controller.

In regards to computation time, it is clear that the nonlinear MPC with
RTTI is the fastest. This is a smart algorithm which takes advantage of
recent dynamics to more effectively compute the nonlinear solution. When
comparing the LMPC to NMPC, there is a large gap in computation time.
The linear controller is approximately two times faster than the nonlinear
controller, and this gap increases as the disturbances intensify. The nonlinear
controller also needs some time to work its way down in computation time
due to demanding dynamics in the beginning of the simulation. This is much
better handled in the linear case.

The aircraft dynamics are overall satisfying given the environmental condi-
tions. There were not any large errors in either of the controllers, which
indicates that computation time does not affect the system in a significant
way. As the wind conditions gets worse, the LMPC is the better perform-
ing controller. The error dynamics expressed more overcompensation in the
nonlinear controller, and the linear controller has slower and calmer error
dynamics.

Further work

A natural continuation for this simulation study would be to test the results
in real-world studies with the physical aircraft. It would also be interesting
to identify the potential of how model simplifications and streamlining the
algorithms improve computation time and controller performance. These
tests resulted in a positive result for MPC in general, and comparing this
control method with other methods could substantiate the performance of
this controller even further or render it less effective.
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Simulation 2
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Simulation 3
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Simulation 4
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A.7 Simulation 7
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A.9 Simulation 9
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B Computation times
LMPC - static wind (simulation 1)
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NMPC w/RTI - static wind (simulation 2)
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NMPC - static wind (simulation 3)
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LMPC - light turbulence (simulation 4)
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NMPC w/RTI - light turbulence (simulation 5)
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NMPC - light turbulence (simulation 6)
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LMPC - moderate turbulence (simulation 7)
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NMPC w/RTI - moderate turbulence (simulation 8)
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NMPC - moderate turbulence (simulation 9)
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