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Abstract

The trajectory tracking problem is a standard problem for motion planning and control of
robot manipulators. Advances in recent years in embedded hardware and numerical optimal
control solvers motivates applying Nonlinear Model Predictive Control approaches to solve
this problem in real-time. In this report, we study Nonlinear Model Predictive Control for
Cartesian space trajectory tracking for robot manipulators in further detail, for its inherent
ability to adhere to nonlinear constraint while planning the robot motion. The real-time
feasibility of this approach is investigated when using the complete robot dynamics for
prediction. Furthermore, we consider how to include collision avoidance and singularity
avoidance in the resulting optimal control problem. The developed real-time Nonlinear Model
Predictive Control framework was tested in simulation and on a 6 DOF robot manipulator
arm. Real-time feasible computation time and low tracking errors were observed. Testing
obstacle avoidance of moving objects demonstrated satisfactory accuracy, yet at the cost of
increased computation time. The capabilities of the framework were also demonstrated by
having the robot grasp a moving object. The results showed how Nonlinear Model Predictive
Control based on the full robot dynamics is promising for safety-critical applications with
real-time requirements where the robot has to avoid moving obstacles.
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Chapter 1

Introduction

1.1 Motivation

The emergence of autonomous robots and especially its applications to human-robot collabo-
ration can provide many possible benefits to numerous industries. The ability for robots to
safely monitor, cooperate and contribute to production processes in complex environments
is evidently useful for many industrial applications. Yet in order for autonomous robots to
be effectively used in the industry, many challenges need to be addressed. Requirements for
safety, agility and robustness must be met, as well as real-time guarantees. This motivates
the development of motion planning and control methods for robots to be able to react in
real-time to dynamic environments and changing tasks while operating. How to achieve this
is an open and active area of research, and in this work a Cartesian space trajectory tracking
and collision avoidance framework based on optimal control is presented, to tackle a small
part of this problem.

Optimal control, which considers how to optimally solve such control problems over a
time horizon while adhering to constraints, provides a useful framework for motion planning
and control. Especially Nonlinear Model Predictive Control (NMPC), which closes the
loop by repeatedly solving the discretized nonlinear optimal control problem, is of interest
because of the requirements for robustness and real-time feasibility. Furthermore, one of
the main benefits of NMPC is that constraints can be considered explicitly when finding
the control input. This makes it possible to handle the nonlinear kinematics and dynamics
of the robot directly in the optimization problem, and changing tasks, safety constraints
and collision-avoidance constraints can be considered explicitly. The main limitation is the
computation time, especially for systems with fast dynamics. However, the advances in
recent years in embedded hardware and numerical optimization solver architectures makes
NMPC interesting to investigate for robotic systems with fast and nonlinear dynamics. In
the following, this will be investigated using the 6 degrees of freedom (DOF) UR10e robot

1



1.2. Objective Chapter 1. Introduction

manipulator arm, both in simulation and using the real robot.

1.2 Objective

The main objective of this report is to investigate the performance and real-time capability of
NMPC for trajectory tracking for robot manipulator arms. Being able to perform complex and
dynamic tasks while reacting to the environment is of great interest for robot manipulators,
both because of their use in production lines, and their applications to mobile robots, ships,
satellites and more. We will investigate how to incorporate obstacle avoidance, self-collision
avoidance and singularity avoidance in the NMPC problem. Moreover, motivated by the
emphasis on human-robot collaboration, we will investigate if these methods can be used to
grasp and avoid moving objects, by testing in simulation and on a UR10e robot manipulator.
The objectives for this work are summarized in the three following research questions that
will be investigated:

• How well does a task space trajectory tracking NMPC perform when using the full
robot dynamics as constraints, in terms of accuracy and computation time?

• How can collision avoidance and singularity avoidance be included in the NMPC
problem while maintaining real-time feasibility?

• Is it possible to use the developed methods to grasp moving objects and avoid moving
obstacles in the environment?

1.3 Contribution

In order to answer these questions, a framework for task space trajectory tracking NMPC for
robot manipulators was developed. By giving the kinematic and dynamic parameters of a
robot manipulator of arbitrary DOF as input, using the Unified Robot Description Format
(URDF) standard, a real-time NMPC solver is generated. More typical approaches either
use a joint space formulation or simplifies the dynamics by linearization or only considering
kinematic relationships, whereas here the full nonlinear dynamics are considered for torque
control of the robot. Furthermore, the developed framework uses the Real-time Iteration (RTI)
scheme for Sequential Quadratic Programming (SQP) to solve the problem in real-time. This
work also considers how to include collision avoidance and singularity avoidance constraints
in the NMPC problem, building on the previous works of Zube 2015, Krämer et al. 2020 and
Lunni et al. 2017. Simulation and lab test results are presented for trajectory tracking and the
singularity avoidance and collision avoidance extensions.

2



1.4. Outline Chapter 1. Introduction

1.4 Outline

The report starts in Chapter 2 by presenting the necessary background theory. Kinematics,
dynamics and manipulability for robot manipulators are reviewed, and a brief overview
of optimal control and NMPC is given. Finally, the SQP method and the RTI scheme is
presented. In Chapter 3, the specific trajectory tracking NMPC problem is proposed, and
extensions for singularity avoidance and collision avoidance are considered. The software
tools, as well as the UR10e robot used for testing, is also briefly presented. Chapter 4 presents
results from testing the NMPC in simulation and on the UR10e robot, by considering only
trajectory tracking, as well as tests with collision avoidance and singularity avoidance. A
demo of the robot grasping a moving object is also considered. In Chapter 5 the presented
results are discussed, and various issues, discrepancies and potential areas of further work
are explored. Finally, Chapter 6 contains some concluding remarks for the work presented in
the report.

3



Chapter 2

Theory

2.1 Kinematics and dynamics of robot manipulators

The foundation of control design, motion planning and simulation for robot manipulators
starts with how we describe the motion of robots. This is done similarly as to all mechanical
systems, by formulating the kinematics (motion as a purely geometric concept) and the
dynamics (motion as a consequence of applied forces and torques). In this section, we will
start by covering the necessary formalisms for representing the position and orientation of
rigid bodies in space, before formulating the kinematics and dynamics of robot manipulators.
Furthermore, the concept of manipulability will be presented.

2.1.1 Rigid body rotation representations

When expressing the state of a rigid body in space, it is uniquely defined by its position and
orientation (pose), relative to some reference frame. We can trivially describe its position by
the vector p ∈ R3. How we describe the orientation of a rigid body in space is however not as
trivial, and we will therefore in this section cover the different rotation representations used
throughout this report. The reader is referred to Siciliano et al. 2010, Fossen 1999, Brekke
2020 and Solà 2017 for further details on rigid body rotations.

2.1.1.1 Rotation matrices

A possible starting point when describing the rotation of a rigid body in some reference frame
is to look at how the axes of the reference frame are transformed under a rotation. Given the
unit vectors x, y, z and the rotated unit vectors x′,y′, z′, we can define the corresponding
rotation of an arbitrary vector v ∈ R3 as:

v′ = Rv =
[
x′ y′ z′

]
v, (2.1)

4



2.1. Kinematics and dynamics of robot manipulators Chapter 2. Theory

where R ∈ SO(3) is the rotation matrix, which has the properties that RR⊤ = I3 and
det(R) = 1. Note that a sequence of rotations is given by multiplication, e.g. R2

0 = R1
0R

2
1

describes a rotation from frame 0 to frame 1, followed by a rotation from frame 1 to frame 2,
which is equivalent to a rotation from frame 0 to frame 2 directly.

2.1.1.2 Angle-axis representation

An alternative way to describe rotation in R3 is to consider a rotation about an axis u by an
angle θ. The resulting representation called the angle-axis representation, is related to the
rotation matrix by

Ru,θ = I3 + sin θ[u]× + (1 − cos θ)[u]2×. (2.2)

For some applications, it may be useful to represent the rotation by the vector v = θu,
termed the rotation vector. Note that this transforms the representation from 4 parameters to
3 parameters, which introduces a singularity in θ = 0, for which the rotation is not defined.
The angle-axis representation and rotation vector and its relation to the rotation matrix is
visualized in Figure 2.1

x y

z

x ′

y′

z′

u

θuθ

θ

θ

Figure 2.1: Relation between the rotation matrix defined by x ′, y′ and z′, the angle-axis
representation by u and θ and the rotation vector θu.

2.1.1.3 Euler angles

Another possible minimal representation is to consider three consecutive rotations, each
around one of the coordinate axes. We can then define the Euler angles Θ = [ φ θ ψ ]⊤, for
some combination of three rotations about X, Y and Z. In the following, the ZYX (roll-pitch-
yaw) convention is used. Note that similarly to the rotation vector, this representation also
has a singularity. For the ZYX convention, this happens for θ = ±π/2. For further details
on rotation matrices, angle-axis and Euler angles the reader is referred to Fossen 1999 and
Siciliano et al. 2010.

5



2.1. Kinematics and dynamics of robot manipulators Chapter 2. Theory

2.1.1.4 Unit quaternions

Quaternions are a generalization of complex numbers which are often used to represent
rotations in 3-dimensional space. In the same way that a complex number on the unit circle
can represent a rotation in R2, quaternions of unit length can represent a rotation in R3. In
the section that follows, a brief overview of unit quaternions and their relation to rotational
motion is given, based on Solà 2017 and Brekke 2020.

Quaternions consist of a single real element and three imaginary elements and can be
written as the vector

q =


η

ε

 , (2.3)

where η ∈ R and ε ∈ R3 are the scalar and vector part of the quaternion respectively.

We define the multiplication of the two quaternions q1 = [ η1 ε⊤1 ]
⊤ and q2 = [ η2 ε⊤2 ]

⊤

as

q1 ⊗ q2 =


η1η2 − ε

⊤
1 ε2

η2ε1 + η1ε2 + [ε1]×ε2

 . (2.4)

The norm of a quaternion is ∥q∥ =
√
η2 + ε⊤ε, and the inverse of a quaternion is defined as

q−1 =
q∗

∥q∥2
, (2.5)

where

q∗ =


η

−ε

 (2.6)

is the quaternion conjugate.

A unit quaternion has unit norm ∥q∥ = 1, and is as previously mentioned one of the
standard representations of rigid body rotations. Going back to the axis-angle representation,
given a unit vector u and angle θ, the unit quaternion is given by

q =


cos θ2
u sin θ

2

 , (2.7)

analogous to Euler’s formula for two-dimensional rotation using complex numbers. In the
quaternion formalism, the rotation of a vector x by the θ about the axis u is given by

x′ = q ⊗


0

x

 ⊗ q∗. (2.8)

6
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Furthermore, the relation between the rotation matrix and the quaternion is as given in Solà
2017

R = (η − ε⊤ε)I + 2εε⊤ + 2η[ε1]×. (2.9)

Other conversion formulas between the different formalisms relevant to this work are given
in Appendix A.

Note that the unit quaternion representation is not unique, as q and −q represents the
same rotation. While the representation is not unique, it is however singularity-free.

Also note that a composition of several rotations, similarly to rotation matrices, is given
as the product of these unit quaternions, i.e. qAC = qAB ⊗ qBC . This lets us define the unit
quaternion error as

δq = q∗1 ⊗ q2, (2.10)

as this achieves q2 = q1 ⊗ δq.
Finally, we will consider the unit quaternion exponential, logarithm and power, as

presented in Solà 2017. The exponential of a unit quaternion is defined as

eq =
∞∑
k=0

qk

k!
= eη


cos ∥ε∥
ε
∥ε∥ sin ∥ε∥

 , (2.11)

and the inverse operation, the unit quaternion logarithm, is defined as

log q =


0

θu

 , (2.12)

where u and θ are defined as in Section 2.1.1.2. Note that the imaginary part of the quaternion
logarithm is the rotation vector, such that the logarithm defines a map from quaternions to
rotation vectors. Furthermore, the conversion formulas between rotation vectors and unit
quaternions are given in Eq. (A.3) and Eq. (A.4). Finally, using these definitions we find the
unit quaternion power as

qs = exp(s log q) =


cos sθ

u sin sθ

 , (2.13)

which creates the basis for linear interpolation between quaternions. This will be discussed
further in Section 3.2.2.

2.1.2 Manipulator kinematics and the Denavit-Hartenberg convention

A robot manipulator is a mechanical system, consisting of a chain of rigid body links,
connected by joints. One end of the chain is connected to a static base, while the other is

7



2.1. Kinematics and dynamics of robot manipulators Chapter 2. Theory

connected to the end effector, which is a general term for the tool at the end of the arm that
interacts with the environment. Analyzing the robot manipulator system we can define the
states of the system x ∈ R2n as the joint angles q ∈ Rn and the joint angular velocities
Ûq ∈ Rn, i.e.

x =


q

Ûq

 . (2.14)

We denote the space spanned by q as the joint space.
However, when interacting with the environment we usually express the tasks for the

robot in terms of a desired end effector pose h(t), not a desired joint configuration. The end
effector pose space is therefore fittingly called the task space. This motivates the introduction
of some mathematical framework for expressing the pose of the end effector using the
joint configuration of the manipulator q, which is called the forward kinematics. In the
following, we will formulate the forward kinematics equations for robot manipulators, using
homogeneous transformation matrices.

2.1.2.1 Homogeneous transformation matrices

Motivated by the goal of finding a mapping from the joint space to the task space, we note how
the rigid body transformation from the inertial frame to the end effector frame is a series of
rigid body transformations along the links of the manipulator. Homogeneous coordinates and
homogeneous transformations are convenient mathematical tools to represent this chain of
rigid body transformations, and will be introduced in the following. As discussed in Siciliano
et al. 2010, we first extend the representation of a point p ∈ R3 by appending a unit element,
i.e.

p̃ =


p

1

 , (2.15)

which is termed homogeneous coordinates. This lets us define the homogeneous transformation
matrix as

T 0
1 =


R0

1 r0
1

0⊤ 1

 ∈ SE(3), (2.16)

which transforms a homogeneous coordinate vector p̃ from frame 1 to frame 0 defined by
the translation vector r0

1 ∈ R
3 and rotation vector R0

1 ∈ SO(3). This transformation is then
simply written as

p̃0 = T 0
1 p̃1. (2.17)

Analogous to rotation matrices, a sequence of homogeneous transformations is given by

p̃0 = T 0
1 T 1

2 · · · T
n−1
n p̃n. (2.18)

8



2.1. Kinematics and dynamics of robot manipulators Chapter 2. Theory

It is then straightforward to formulate the forward kinematics of the end effector using a
series of homogeneous transformations. We define a fixed coordinate frame in every link, and
starting in the end effector frame we consider the sequence of homogeneous transformations
from every link to its parent, ending up in the base frame. The homogeneous transformation
matrix describing the pose of the end effector with respect to the base frame is then given as:

T b
e (q) = T b

0 T 0
1 (q1) T

1
2 (q2) · · · T

n−1
n (qn) T n

e , (2.19)

where T b
0 and T n

e are static transformations between the base frame and the first link, and
the last link and the end effector frame respectively.

2.1.2.2 The Denavit-Hartenberg convention

We have seen how to relate the pose of the end effector to the base frame using homogeneous
transformations. However, we have yet to see how we can formulate these homogeneous
transformation matrices, and therefore also the end effector pose, as a function of the joint
angles. This task comes down to how to define the link frames and the transformations
between them. The Denavit-Hartenberg (DH) convention formulates a systematic way of
defining these transformations for any robot manipulator.

The transform from frame i to frame i + 1 following the DH convention is defined as

T i
i+1 =


Rz (θi) diez

0T 1



Rx (αi) aiex

0T 1


=


Rz (θi)Rx (αi) aiRz (θi) ex + diez

0T 1

 ,
(2.20)

where Rx and Rz denote simple rotations around the x-axis and z-axis, and ex = [ 1 0 0 ]⊤

and ez = [ 0 0 1 ]⊤. The transformation consists of a translation by di and rotation by θi
about the z-axis, followed by a translation by ai and a rotation by αi about the x-axis of
the intermediate frame. Given the DH parameters for a robot manipulator, we are then able
to determinate the forward kinematics of the end effector as a simple sequence of linear
transformations. The reader is referred to Siciliano et al. 2010 for further details regarding
homogeneous transformation matrices and the Denavit-Hartenberg convention.

2.1.3 Differential kinematics and manipulability

An important consideration for robot manipulator motion planning and control is how to
handle and avoid singular configurations. The concept of manipulability, as first introduced
in Yoshikawa 1985, provides a convenient tool for numerically analyzing how close a robot

9



2.1. Kinematics and dynamics of robot manipulators Chapter 2. Theory

configuration is to a singular configuration.
First, consider the differential kinematics of a robot manipulator. As discussed in Siciliano

et al. 2010, the end effector velocity Ûh ∈ Rm is related to the joint angle velocities Ûq ∈ Rn by
the linear map given by the Jacobian J (q):

Ûh(q, Ûq) = J (q) Ûq. (2.21)

Furthermore, for the joint angles q̃ for which the Jacobian is rank-deficient, i.e.

rank J (q̃) < m, (2.22)

the configuration of the manipulator is singular. This means the motion of the end effector
is limited to some subspace of the full space Rm. Entering such a configuration (or rather
entering the vicinity of the singular configuration) is not desirable, as a small end effector
velocity could map to large joint angle velocities, which in turn could both damage the joint
motors and produce motions that are not safe, e.g. for humans that collaborate with the robot.
This motivates constructing some function that measures closeness to singular configurations,
which is termed manipulability.

In Yoshikawa 1985 the manipulability index

m(q) ≡
√

det(J (q)J (q)⊤) = σ1 σ2 · · · σm (2.23)

is introduced, with σ1 ≥ σ2 ≥ · · ·σm ≥ 0 being the singular values of J . The manipulability
index has the property that it approaches 0 as the robot configuration approaches a singularity,
and increases as the manipulability of the robot increases. It therefore provides a useful tool
for measuring the manipulability of the robot.

2.1.4 Manipulator dynamics

To simulate or design a control system for a robot manipulator it is evidently useful to
not only study the kinematics of the manipulator, but also the dynamics. As introduced in
Section 2.1.2, the states of the system are given by the joint angles q and the joint velocities
Ûq. The control inputs are the joint motor torques τ . It is worth noting here that while the
low-level input is the motor torque, many robotic manipulator arms provide joint angle and
joint velocity control interfaces.

The general manipulator equations of motion can then be derived as

M (q) Üq +C(q, Ûq) Ûq + Fv Ûq + Fs sgn( Ûq) + g(q) = τ, (2.24)

assuming the manipulator end effector exerts no forces or torques on the environment. Here
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2.2. Optimal control Chapter 2. Theory

M is the square, symmetric and positive-definite inertia matrix, C is the Coriolis and
centripetal force matrix, g is the gravity term, and Fv and Fs parametrize the viscous and
static (Coulomb) friction torques respectively. The equations of motion can be derived
e.g. by Lagrange’s equation or using a Newton-Euler based approach such as the recursive
Newton-Euler algorithm (see Siciliano et al. 2010).

By rewriting the equations of motion in terms of the state vector x = [ q⊤ Ûq⊤ ]⊤ =
[ x⊤1 x⊤2 ]

⊤ and assuming no friction terms we get the simplified state dynamics

Ûx = f (x, τ ) =


x2

M (x1)
−1(τ −C(x1,x2) − g(x1))

 . (2.25)

We denote this formulation as the inverse dynamics, as opposed to the forward dynamics
in Eq. (2.24). It can be derived by explicitly calculating the inverse of the inertia matrix, or
using a recursive inverse dynamics method such as the articulated body algorithm or the
composite rigid body algorithm (see Featherstone 2008).

2.2 Optimal control

Optimal control theory covers how to find optimal control policies for dynamical systems
with respect to some cost function. This approach to motion planning and control provides
many benefits which are relevant for autonomous robots, one of which is how constraints in
the system, such as bounds on the robot joints, can be considered explicitly when finding
the control policy. The branch of numerical optimal control within optimal control theory is
concerned with how to apply numerical methods to approximately solve such problems. This
is especially of interest, as it has potential for solving complex optimal control problems in
real-time. Numerical optimal control will be briefly presented in the following section before
we will discuss how to close the loop with NMPC. Then the real-time numerical solver used
in this work, SQP using the RTI scheme, will be presented. The section is based on Lars
and Jürgen 2011, Johansen 2011, Diehl et al. 2009, Nocedal and Wright 2006, Egeland and
Gravdahl 2002 and Gros et al. 2016.

2.2.1 Numerical optimal control

This section will introduce the general optimal control problem (OCP) and then look at
various discretization methods in the literature for making this problem computationally
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tractable. The continuous-time infinite horizon nonlinear optimal control problem is given as:

min
x,u

∫ ∞

0
ℓ(x,u) dt

s.t. Ûx = f (x,u),

x(t) ∈ X, ∀t,

u(t) ∈ U ∀t,

x(0) = x0,

(2.26)

where ℓ(x,u) is the cost function, f (x,u) are the system dynamics, X and U are some
in general non-convex state and input constraint sets, and x0 ∈ R

n is the initial condition.
For the case of robot manipulators, the state and input constraint sets typically include joint
angle, joint velocity and motor torque constraints, but other nonlinear constraints will also be
considered.

It is desirable to solve Eq. (2.26) analytically and apply the optimal control input u∗

to the system. However, finding the exact solution is rarely computationally tractable for
an nonlinear program (NLP). Discretization is therefore necessary, and here a distinction
is made between indirect and direct methods. Indirect methods deal with how to solve the
continuous OCP and then discretize the solution, while direct methods first discretize the
problem and then solve it using numerical optimization. In the following, we will explore
direct methods further, as they typically provide more real-time capable solvers for NLPs.

First, we constrain ourself to the finite horizon problem, i.e. by only considering
optimization over a finite time horizon T . Furthermore, we introduce the concept of sampling
x(t) and u(t) with a constant sample time ts. Finally, the integral of the cost function and the
dynamics are discretized with this sample time, such that we end up with the following NLP:

min
x,u

N−1∑
i=0

ℓ(xi,ui) + ℓf (xN )

s.t. xi+1 = f (xi,ui), i = 0, . . . , N − 1,

gi(xi,ui) ≤ 0, i = 0, . . . , N − 1,

hi(xi,ui) = 0, i = 0, . . . , N − 1,

gN (xN ) ≤ 0,

hN (xN ) = 0,

x0 = x̄0,

(2.27)

where x = [ x⊤0 x⊤1 · · · x
⊤
N ]
⊤ is a vector of the states at the sample times and similarly

for u = [ u⊤0 u⊤1 · · · u
⊤
N−1 ]

⊤. Furthermore, we introduce the final stage cost ℓf (xN ) and
rewrite the state and input constraints more explicitly as a set of nonlinear inequality and
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equality constraints using gi(xi,ui) and hi(xi,ui).

2.2.1.1 Numerical optimal control methods

In the following, a brief overview of the most relevant direct optimal control methods will be
presented, based on Johansen 2011. Starting with direct single shooting, the basic idea is to
eliminate the state variable x by recursively substituting the discretized system dynamics
f (xi,ui) for xi+1, such that we get a reduced problem where the cost and constraints are
only a function of the input variable u and the initial condition x̄0.

This implies the use of some numerical integration scheme for the cost and dynamics.
The integral of the cost function is typically evaluated using some simple quadrature rule,
such as the rectangle rule or the trapezoidal rule. The dynamics can be discretized using a
numerical integration scheme such as explicit Runge-Kutta (ERK) or implicit Runge-Kutta
(IRK) methods. One typical example is the 4th order explicit Runge-Kutta (ERK4) method,
which is given by

yk+1 = yk +
1
6
(k1 + 2k2 + 2k3 + k4) , where

k1 = hf (tk, yk) ,

k2 = hf
(
tk +

h
2
, yk +

k1

2

)
,

k3 = hf
(
tk +

h
2
, yk +

k2

2

)
,

k4 = hf (tk + h, yk + k3) ,

(2.28)

and will be frequently used in later sections. The reader is referred to Egeland and Gravdahl
2002 for further details on these numerical integration schemes.

The direct multiple shooting method is a generalization of direct shooting, where the
time horizon [0, T] is segmented into M + 1 intervals. For every interval [ti, ti+1] the direct
shooting method is applied, and an additional constraint is added to ensure continuity between
every interval. Finally, for direct collocation the general idea is to approximate the state and
input as piecewise polynomials, where the trajectory is then parametrized by a number of
knot points between every sample.

2.2.2 Nonlinear Model Predictive Control

After formulating the discrete-time finite horizon OCP in Eq. (2.27) we are able to formulate
the NMPC algorithm, as given in Algorithm 1. By solving the OCP at every time step with
the current sampled state, and applying the first control input from the solution, we effectively
close the loop. This introduces robustness against modeling errors and noise when comparing
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to applying the optimal control sequence u∗ directly in open loop. Yet this comes at the cost
of high computational demands. Theoretical details on NMPC, such as stability, feasibility
and robustness, will not be discussed here. See Lars and Jürgen 2011 and Johansen 2011 for
further details on this.

Algorithm 1 NMPC
1: for For every time step tk :
2: Sample the current state x(tk) of the system.
3: Solve Eq. (2.27) using x̄0 = x(tk), and denote the solution as x∗,u∗.
4: Let µ(tk) = u∗0 be the control input at the current time step.

2.2.3 Sequential Quadratic Programming

In order to solve the NMPC problem a nonlinear optimization solver is required, which
should be able to solve a general NLP at every time step:

min
z

f (z) s.t. g(z) ≤ 0, h(z) = 0. (2.29)

In the following, the SQP method is presented, yet the reader should be aware that many
other numerical methods exist, of which interior point solvers such as IPOPT (Wächter and
Biegler 2006) are also frequently used for numerical optimal control. The reader is referred
to Diehl et al. 2009 for further details on interior point solvers.

In order to formulate the principle behind SQP, we start by stating the first-order optimality
conditions for Eq. (2.29), known as the Karush-Kuhn-Tucker (KKT) conditions:

∇zL (z
∗,λ∗,µ∗) = 0,

g (z∗) ≤ 0,

h (z∗) = 0,

µ∗ ≥ 0,

gi (z
∗) µ∗i = 0, i = 1, . . . , ng,

(2.30)

where µ and λ are the Lagrange multipliers corresponding to the inequality constraints g
and the equality constraints h respectively, ng is the number of inequality constraints and L
is the Lagrangian function defined as

L(z,λ,µ) = f (z) + λ⊤h (z) + µ⊤g (z) . (2.31)

The SQP method is based on solving the KKT system Eq. (2.30) using Newton’s method
for nonlinear systems, i.e. iteratively solving its linearized system of equations. It can be
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shown that this is equivalent to iteratively solving the following quadratic program (QP):

min
z
∇zf

⊤(zk)(z − zk) +
1
2
(z − zk)

⊤∇2
zL(zk,λk,µk)(z − zk)

s.t. h(zk) + ∇zh
⊤(zk)(z − zk) = 0,

g(zk) + ∇zg
⊤(zk)(z − zk) ≤ 0,

(2.32)

where zk is the current iterate of the approximation of the solution z∗. We call one such
iteration a Newton step, as it corresponds to a single step of Newton’s method.

The Hessian ∇2
zL(zk,λk,µk) typically requires high computational effort to compute

exactly, and it must be positive definite for the problem Eq. (2.32) to be convex, which is not
guaranteed for z far away from the optimum. The Gauss-Newton method is one possible
solution to these problems, where the Hessian of f is approximated by

H = ∇r(x)∇r(x)⊤, (2.33)

given that the cost is of a sum of squares form, i.e. f (x) = 1
2 ∥r(x)∥

2. Further details
on Gauss-Newton, as well as other implementation aspects of SQP, such as globalization
strategies, are not considered here. The reader is referred to Nocedal and Wright 2006
for further details on these topics. One aspect of SQP implementations which is of vital
importance to NMPC specifically are warm starts, and this will however be considered in
further detail in the following section.

2.2.4 SQP Real-time Iteration scheme

For NMPC problems the solution at a certain time step is usually very similar to the solution
at the previous step. This motivates developing methods for warm starting the optimization
solver using the previous solution. One such method, the RTI scheme, will be briefly presented
in the following section. The section is based on Gros et al. 2016.

The RTI scheme makes use of the fact that shifting the previous SQP solution by one
time step produces an initial guess that is already very close to the solution at the current time
step. Furthermore, when doing this shifting procedure to warm start the solver, we can also
assume that performing a single Newton step of the SQP algorithm provides a reasonable
approximation of the converged SQP solution. The combination of warm starts by shifting
and only doing a single Newton step is the essence of the RTI scheme, and can in some
sense be regarded as running normal SQP while updating the information the solver has
about the current state of the system at every iteration. Also note that the Gauss-Newton
Hessian approximation given in Eq. (2.33) is usually used in SQP RTI. One additional trick
is however done before arriving at the final algorithm.

A problem with the approach so far, which moreover is a general problem for all real-time
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Model Predictive Control (MPC) solvers, is that there is a significant delay between when
the system state x(tk) is sampled, and when the solver is finished and the first control input
of the solution u∗0 can be applied to the system. This feedback delay results in the solver
using outdated information of the system state and can reduce the stability margins of the
closed-loop system. Gros et al. 2016 refer to this issue as the real-time dilemma.

The consequences of the real-time dilemma is mitigated in RTI by splitting the algorithm
into two phases: the preparation phase and the feedback phase. In the preparation phase
the shifting and linearization steps are executed and the QP is partially formed, and in the
feedback phase the QP is fully formed and solved. Since all the computations done in the
preparation phase are completely independent of the initial condition x̄0, the system state
x(tk) only needs to be sampled after performing the preparation step. The basic loop of
the preparation and feedback phase is shown in Figure 2.2, which illustrates how the RTI
scheme minimizes the feedback delay. Since in practice the preparation phase typically takes
longer to do than the feedback phase (Diehl et al. 2009), the feedback delay can be drastically
reduced. We then arrive at the basic SQP RTI algorithm which will be used in the following
sections, as given in Algorithm 2.

tk 1 tk tk + 1

x

State trajectory
Preperation phase
Feedback phase

Figure 2.2: Preparation phase and feedback phase loop of the RTI scheme.

Algorithm 2 SQP RTI
Preparation phase:

1: Shift previous solution x∗
k−1,u

∗
k−1 to construct initial guess x0

k
,u0

k
.

2: Evaluate the terms in the QP Eq. (2.32), and form the QP omitting x̄0.
Feedback phase:

3: Input x̄0 = x(tk) into the QP and solve it to get ∆x∗
k
,∆u∗

k
.

4: Apply the full Newton step to get the NMPC solution at the current time step:

(x∗k,u
∗
k) ← (x

0
k,u

0
k) + (∆x

∗
k,∆u

∗
k).
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Chapter 3

Design and implementation

3.1 Robot manipulator trajectory tracking NMPC

Given some desired end effector pose trajectory, we want to apply the NMPC approach to
solve the trajectory tracking problem for a general robot manipulator arm. This standard
problem is solved by considering a cost function that penalizes tracking error, typically the
quadratic Euclidean distance cost function

ℓTT (x,u) = ∥x − xd(t)∥2 + ∥u − ud(t)∥2, (3.1)

where xd(t) and ud(t) are the time-varying desired state and input trajectories. In this section,
we will start by considering how to formulate the tracking error for the end effector pose, and
then discuss the various formulations for the trajectory tracking NMPC problem for robot
manipulators, before arriving at the specific formulation that will be implemented and tested.

Since we will consider following an end effector pose trajectory, i.e. a task space
formulation of the trajectory tracking problem, certain changes have to be made to the
standard cost function in Eq. (3.1). First let hd(t) ≡ [ hd,p(t)⊤ hd,o(t)⊤ ]⊤ ∈ R7 denote
the desired pose trajectory consisting of the position hd,p(t) ∈ R3 and unit quaternion
hd,o(t) ∈ R4. By using the forward kinematics we can formulate the pose of the end effector,
and thus find the pose tracking error.

The end effector position hp(q) is derived from the last column of the homogeneous
transformation matrix from the robot frame to the end effector frameT b

e (q) given in Eq. (2.19):


hp(q)

1

 = T b
e (q)

[
0 0 0 1

]⊤
. (3.2)

The end effector orientation is given by the rotation quaternion ho(q), which is found from
converting the rotation matrixRb

e to a unit quaternion according to Eq. (A.11), or alternatively
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by performing a similar chain of frame transformations as in Eq. (2.19) with a unit quaternion
in conjunction.

With the end effector pose given by the kinematics, we can then formulate the pose
tracking error. Starting with the position error we have

ep(q) ≡ hd,p(t) − hp(q). (3.3)

For the orientation error the choice is not quite as trivial, and many possible formulations
exist, with different properties. One possibility is to consider the quaternion error

δq = qd(t)∗ ⊗ qa, (3.4)

where qd(t) and qa are the desired and actual quaternions respectively. We can then find an
error function based on making the quaternion error approach the identity unit quaternion
[ ±1 0 0 0 ]⊤. As discussed in Siciliano et al. 2010, we can define the orientation tracking
error as

eo(qd, qa) ≡ ηdεa − ηaεd − [εd]×εa, (3.5)

i.e. the vector part of the error quaternion. From the unit constraint it is seen thateo(qd, qa) = 0

will then uniquely track the desired trajectory exactly. The reader is referred to Jackson et al.
2021 for a brief discussion of other possible formulations of orientation error, including the
exponential map, Rodrigues parameters and Modified Rogrigues parameters. Other possible
error metrics based on quaternions and rotation matrices are presented in Huynh 2009, of
which the geodesic distance between the quaternions

eo,geo(qd, qa) ≡ ∥ log δq∥ (3.6)

also seems promising. However in the following, the vector part of the quaternion error in
Eq. (3.5) will be used as it is easier to compute. Therefore the orientation error in the NMPC
problem is given by

eo(q) ≡ ηd(t)ε(q) − η(q)εd(t) − [εd(t)]×ε(q). (3.7)

From here on we denote e(q) ≡ [ ep(q)
⊤ eo(q)

⊤ ]⊤ as the pose tracking error using this
orientation error formulation. We can then formulate the weighted quadratic tracking error
cost as ∥e(x)∥2Q.

In addition to penalizing the tracking error over the horizon, various other terms may be
considered. One may penalize the derivate of the tracking error Ûe(q, Ûq) to generate smoother
motion. Other cost terms that tries to accomplish additional tasks may also be considered,
such as singularity avoidance and collision avoidance, which will be discussed further in
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Section 3.3 and Section 3.4.
Regularization terms are also necessary to construct a well-behaved optimization problem

with unique minima. The most evident regularization term is to penalize the input, e.g. using
the weighted quadratic cost ∥u∥2R. For torque control of a robot manipulator this is evidently
useful as it reduces energy usage. Adding a regularization term in terms of the derivative of
the torque input Ûu is also of interest, as it will help avoid oscillatory and high jerk behavior.
The reader is referred to Nie and Kerrigan 2018 for how this may be implemented in practice.

Analogous to these two terms, but for the joint space, one may also consider minimizing
joint acceleration Üq or joint jerk Ýq (see Zhao et al. 2018), to force the solution to be smoother
in joint space. It is worth noting that costs on the state variables q and Ûq directly may also be
of relevance. The former could help mitigate self-collisions, by forcing the motion of the
robot to stay within some vicinity of a "default" joint configuration. The latter could also help
in generating smooth motion in the joint space, like acceleration and jerk costs. For the basic
trajectory tracking NMPC we will consider quadratic cost terms on tracking error e(q), input
u and joint acceleration Üq. The specific NMPC problem can therefore be formulated as:

min
x,u

N−1∑
i=0

(
∥e(xi)∥

2
Q + ∥ Üqi ∥

2
Ra
+ ∥ui ∥

2
Ru

)
+ ∥e(xN )∥

2
S

s.t. xi+1 = f (xi,ui), i = 0, . . . , N − 1,

xmin ≤ xi ≤ xmax, i = 0, . . . , N,

umin ≤ ui ≤ umax, i = 0, . . . , N − 1,

Üqmin ≤ Üqi ≤ Üqmax, i = 0, . . . , N − 1,

x0 = x̄0,

(3.8)

where u = τ is the joint motor torque inputs and f (x,u) are the discretized dynamics, found
by discretizing Eq. (2.25), e.g. by ERK4. The joint acceleration Üq is given by the second term
of the dynamics. We have inequality constraint on x and u in order to ensure that joint angle,
joint velocity and joint torque limits are satisfied. Furthermore, constraints on Üq are added to
ensure that the generated motion has sufficiently low acceleration.

Other formulations exist, such as considering velocity control of the robot manipulator
directly, where the basic integrator dynamics Ûq = u are used instead. This formulation is
used in Arbo et al. 2017 and Zube 2015, and is for most applications perfectly sufficient,
especially for static base systems. Furthermore, replacing the highly nonlinear dynamics
constraints by linear constraints evidently makes the problem simpler and thus faster to solve.
However, a torque input formulation of the NMPC problem with full nonlinear dynamics is
interesting, since it allows for torque minimization and more dynamic motion. The benefits
and limitations of this formulation will be further discussed in Chapter 5.

Finally, notice the terminal cost on the tracking error in Eq. (3.8), weighted on the
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terminal cost matrix S. This term may be used to approximate the remaining cost from N to
infinity in order to approximate the infinite horizon optimal control problem, as discussed in
Lars and Jürgen 2011. Designing terminal costs appropriately, as well as terminal constraints,
may have stabilizing effects. Several formulations of terminal costs and constraints were
experimented with during initial tests of the NMPC, but yielded no noticeable improvements
in performance or stability, and is therefore not considered in detail from here on. It is however
a potential area of further research for this work.

3.1.1 Slack variables

Finally, we will consider extending the trajectory tracking NMPC problem Eq. (3.8) to use
slack variables were applicable. The main concept behind slack variables is that certain (hard)
inequality constraints can be extended to be soft by adding slack variables s, meaning that
the constraints may be violated but at a high cost when violated. Consider the slack variable
extension of the general inequality constraint:

g(x,u) ≤ 0 → g(x,u) − s ≤ 0, s ≥ 0, (3.9)

By adding a linear and quadratic cost on the slack variable, i.e.

ℓs(s) = z⊤s + s⊤Ws, (3.10)

with z and W being the linear and qudratic slack weights, one can improve the feasibility of
the NMPC problem, as the problem will no longer be infeasible if the system enters a state
outside the original feasible set of Eq. (3.8). For the trajectory tracking NMPC problem we
can then apply this principle to make the limits on Ûq and Üq soft, as the chosen limits for these
variables typically will be far lower than their actual maximum values.

3.2 Trajectory blending

So far a trajectory tracking controller has been developed, which tracks the target trajectory
appropriately given that it’s initial configuration is close to the initial target configuration.
However, for safety-critical applications, it’s important to also consider the approach towards
the target trajectory. A typical example where this is useful is pick-and-place operations
of moving objects, where the robot starts from some default configuration far away from
the target and it is desirable to smoothly and safely approach the target. Feeding the target
trajectory directly into the tracking controller will however create a large error signal, which
might lead to overshoot. In this work, trajectory blending methods are introduced to solve
this general problem of generating smooth motion from one pose trajectory to another. Note
that other approaches could be considered as well, such as filtering the desired trajectory.
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3.2.1 Position trajectory blending

The position hp(t, s) is blended from the initial position p0(t) to the position reference pr (t)

by interpolation
hp(t, s) = p0(t) + β(s)(pr (t) − p0(t)) (3.11)

at every time step. The characteristics of the blended motion are dictated by the monotonically
increasing function β(s) : [0, 1] 7→ [0, 1]. The most basic case is for β(s) = s where we get
linear interpolation. The first such function that we will consider is the logistic function

β(s) =
a

1 + e−ks
− b, (3.12)

where the parameter k shapes the steepness of the blending and a and b are chosen such
that the conditions β(0) = 0 and β(1) = 1 are satisfied, as discussed in Myhre 2016. This is
satisfied for

a = 2
1 + e−k

1 − e−k
, b =

1 + e−k

1 − e−k
.

This choice of blending function allows approximately linearly motion towards the target
in the beginning and then the motion will slow down as we approach the target. One downside
of this choice of β(s) is that it will result in a step in the initial velocity, which will require a
step in the initial joint motor torques to track correctly. This might damage the joint motors,
and since the controller will try to minimize acceleration it will also lead to an initial jump in
the tracking error that the controller needs to catch up with.

A possible choice to remedy this problem is to use the third-order exponential function

β(s) = c (1 − e−(αs)
3
) (3.13)

as in Rymansaib et al. 2013, where α > 0 is a parameter that will change the shape of the
resulting curve and c is chosen such that β(1) = 1. It can be shown that this is achieved for

c =
1

1 − e−α3 . (3.14)

The two blending shape functions are compared for different values of k and α in Figure 3.1.

3.2.2 Quaternion trajectory blending

Blending orientation trajectories is not quite as trivial as for position trajectories. Since the
quaternion is constrained by the unit length constraint we cannot use the linear interpolation
expression Eq. (3.11) directly. One simple option is to normalize the quaternion after linear
interpolation (QLB). In the following, we will use spherical linear interpolation (SLERP),
which linearly interpolates between the initial quaternion and the desired quaternion along
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Figure 3.1: Logistic function and third-order exponential function for different values of k
and α.

the 4-dimensional unit hypersphere

ho(q0, qd, s) = q0 ⊗ (q
−1
0 ⊗ qd)

β(s), (3.15)

using the quaternion properties defined in Section 2.1.1.4. The resulting operation results in a
rotation with a constant angular velocity around a fixed axis for β(s) = s. Again by choosing
a smooth, monotonically increasing β(s) such as Eq. (3.12) or Eq. (3.13) we can achieve
smooth motion between the initial orientation and the desired orientation.

An equivalent expression for SLERP (see Solà 2017) which is more suited for implemen-
tation in code is

ho(q0, qd, s) = q0
sin((1 − β(s))∆θ)

sin(∆θ)
+ qd

sin(β(s)∆θ)
sin(∆θ)

, (3.16)

where ∆θ = arccos(q⊤0 q1).
In Figure 3.2 a simple example is considered, where we want to approach the trajectory of

a pendulum while keeping a fixed orientation reference. Both the logistic function Eq. (3.12)
and the third-order exponential Eq. (3.13) is studied. From the resulting blended reference
trajectories, we see how the logistic function will result in a nonzero initial target velocity,
while the exponential function will start with zero velocity before ramping up, as previously
discussed.
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Figure 3.2: Blended position and orientation trajectories for pendulum motion with fixed
orientation. The blending is done by linear interpolation of position and SLERP interpolation
of the quaternion, where both a logistic function blend and a third-order exponential blend is
shown.

3.3 Singularity avoidance

Singularity avoidance is a useful extension for a robot manipulator trajectory tracking
controller for addressing safety concerns. This is especially motivated by the task space
formulation of the tracking problem in Eq. (3.8), which does not take into account singularities,
while a joint space trajectory could be directly designed to avoid the singular configurations
of the robot. Especially for redundant robot manipulators this is useful as they have additional
DOF they could use to optimize for manipulability while still tracking the desired pose
trajectory. In this section, we consider one possible way to avoid singular configurations
while tracking a trajectory, based on the manipulability index introduced in Section 2.1.3,
and how to implement this in practice with QR decomposition.

3.3.1 Singularity avoidance cost function

In order to design a cost term for avoiding singularities, we first simplify the computation by
considering the square of the manipulability index in Eq. (2.23)

m̃(q) ≡ m(q)2 = det(J (q)J (q)⊤), (3.17)

in order to avoid the square root, which would introduce unnecessary non-differentiability in
the cost function. A simple cost term to consider is then

ℓm1(q) ≡ −Qmm̃(q)2, (3.18)
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where Qm > 0 is the singularity avoidance weight and the negative sign is introduced since
we want to maximize manipulability. A square cost is considered as a sum of squares form is
simpler to implement, but a cost that is linear in m̃(q) is also a valid option.

In Lunni et al. 2017 a few other possible cost terms are explored, such as minimizing the
conditioning number of J (q)J (q)⊤, which can be written as

ℓm2(q) ≡ Qm
σ1

σm
, (3.19)

with σ1 and σm being the largest and smallest singular value of J respectively, as introduced
in Section 2.1.3. Alternatively the rational expression

ℓm3(q) ≡ Qm
1

m̃(q)2
(3.20)

is also possible. When comparing the cost terms we observe how Eq. (3.19) and Eq. (3.20)
approaches infinity as the robot approaches a singular configuration, while Eq. (3.18) ap-
proaches zero which might increase the risk of entering a singular configuration. Furthermore,
qualitatively Eq. (3.18) and Eq. (3.20) seem easier to implement, given a way to calculate
m̃(q) in a straightforward manner. This will be discussed in the following section.

3.3.2 Implementation using QR decomposition

One possibility for efficient computation of m̃(q) is by using QR decomposition to factorize
J (q)J (q)⊤ such that

J (q)J (q)⊤ = QR, (3.21)

where Q is orthogonal and R is upper triangular. We have that

det(J (q)J (q)⊤) = det(Q)det(R), (3.22)

and since Q is orthogonal we know that |det(Q)| = 1. Finally, since R is upper triangular we
get that det(R) = tr(R), such that

m̃(q)2 = tr(R)2. (3.23)

This provides a convenient and computationally efficient expression for evaluating the
manipulability index.
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3.4 Collision avoidance

When considering using robot manipulators in dynamic environments, such as environments
with requirements of human-robot collaboration, it is a necessity that the robot is not only
able to follow a desired trajectory but also dynamically avoid moving objects such as humans.
The NMPC approach to solving the trajectory tracking problem can easily be extended to
consider collision avoidance as well. By adding additional constraints and cost terms we
can make the controller plan its motion around objects in its environment, as well as avoid
self-collisions. In the following section, one approach to extend the original problem Eq. (3.8)
will be considered, adapted from the work of Zube 2015 and Krämer et al. 2020. The reader
is referred to these, as well as Cascio et al. 2009 and Homsi 2016 for further details on
implementing collision avoidance in MPC approaches for robot manipulator planning and
control.

3.4.1 Obstacle avoidance

The obstacle avoidance approach in this work is based on approximating the body of the robot
manipulator by a set of nR robot spheres, which is denoted by LR. Each sphere is described
by its corresponding link li, the translation from the link frame origin to the sphere center
pR,i and the radii RR,i. A simple illustration of this concept for a single link of the robot
is shown in Figure 3.3. Furthermore, a set of nO obstacle points LO in the cartesian space
is considered, which may be static or dynamic (in the sense that they follow some known
trajectory that varies with time). The obstacle spheres have center points pO, j and radii RO, j .
Extending the optimal control problem Eq. (3.8) to consider obstacle avoidance is possible
by formulating constraints that restrict the minimum distances between all possible pairs of
robot points and obstacle points to avoid collisions.

Figure 3.3: Sphere approximation of robot link li.

It should be noted that many other approaches exist, such as approximating the robot
links as ellipsoids as in Castillo-Lopez et al. 2018, line-swept spheres as considered in
Krämer et al. 2020 or as a set of polyhedra as in Gerdts et al. 2012. The decision of using
spheres which is also considered in Zube 2015 is motivated by its simplicity. The resulting
collision avoidance constraints are then analytic, smooth, computationally efficient and easy
to implement for a numerical optimization solver. This however comes at the drawback
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of needing many sphere instances to cover the robot body precisely, when comparing to
ellipsoids or line-swept spheres for example. This also makes it a non-trivial task to choose
how to optimally approximate the robot body with as few spheres as possible and with as little
extra volume outside the robot body as possible. One approach is to construct a sphere tree
representation of the robot, as in Zhao et al. 2018, but this will not be explored further here.

The kinematics of the points on the robot body are given by:


pR,i(q)

1

 = T b
li
(q)


ri

1

 , (3.24)

with T b
li

being the homogeneous transformation matrix from the frame of link li that the
control point is located on to the robot base frame. The obstacle positions are given by pO, j(t),
which may be a constant reference or a time-varying trajectory.

The geometry of the obstacle avoidance problem for a single robot point pR,i and obstacle
point pO, j is shown in Figure 3.4. The squared Euclidean distance between the robot point
and the obstacle point is then

di, j(q)2 = ∥pR,i(q) − pO, j(t)∥2. (3.25)

Furthermore, collisions are only considered between a robot point and an obstacle point if the
distance is less than the activation threshold βi, j , as depicted in Figure 3.4. βi, j is given by

βi, j = RR,i + RO, j + βmin, (3.26)

with βmin being the distance between the sphere surfaces for which collisions will no longer
be considered. This threshold is introduced to simplify the optimization landscape in complex
environments, as well as to reduce computational cost. Especially for mobile manipulator
systems this extension is useful, as they might traverse environments consisting of hundreds
of obstacles during operation, yet only need to consider a few of those obstacles at a given
location in the environment.

We first introduce hard constraints on the distance between every pair of robot spheres
and obstacles:

di, j(q)2 > δ2
O,i, j, ∀ (i, j) ∈ LR × LO, (3.27)

with
δO,i, j = RR,i + RO, j + dO,min (3.28)

being the minimum distance between the two points, and dO,min being a parameter for the
minimum allowed distance between the sphere surfaces.

In order to define the cost function for the extended NMPC problem with obstacle
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i
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RO,
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di, j

Figure 3.4: Obstacle avoidance problem for a single robot sphere in pR,i with radius RR,i

and obstacle sphere in pO, j with radius RO, j . The distance between the points di, j and the
activation threshold βi, j are also shown.

avoidance, we first consider the cost used in Zube 2015:

Gz,i, j(q) =
1

di, j(q)2 − δ2
O,i, j

. (3.29)

Note that adding an activation threshold for this cost function results in a jump along the
activation border given by βi, j . The cost term was therefore modified to

Gi, j(q) =
β2
i, j − δ

2
O,i, j

di, j(q)2 − δ2
O,i, j

− 1, (3.30)

such that the property δO,i, j = βi, j =⇒ Gi, j(q) = 0 was achieved. This cost will create
a repulsive potential around the sphere obstacle that grows to infinity as the distance goes
towards δO,i, j , and is zero outside the outer sphere with radius βi, j .

In order to make the cost go to zero outside the activation radius βi, j we use a similar
approach as the one described in Tran et al. 2018. They propose to multiply the cost by a
logistic function in order to achieve this boundary property. The same approach is used here,
just written in terms of the square of the distance to simplify implementation:

Fi, j(q) =
1

1 + exp(
di, j (q)2−β

2
i, j

γ2 )

. (3.31)

Here γ is used to shape the steepness of the curve. Since the logistic function, as depicted in
Figure 3.5 for different values of γ, approaches a 0/1 barrier function around βi, j as γ goes to
zero, it achieves the desired effect.

The combined collision avoidance cost for a single robot sphere and obstacle is then
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Figure 3.5: Logistic function F(d) acting as a smooth barrier function, for activation threshold
βi, j = 1.0 and different values of γ.

given by:
Ci, j(q) = QOFi, j(q)

2Gi, j(q)
2, (3.32)

where QO > 0 is the weighting parameter. An example of how the cost function looks is
given in Figure 3.6, with QO = 0.03, δO,i, j = 0.1 and βi, j = 1.
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Figure 3.6: Collision avoidance cost for a single robot point and obstacle pair, with weight
QO = 0.03, minimum distance δO,i, j = 0.1 and activation threshold βi, j = 1.

It should be noted that the cost term is not absolutely needed, since the hard constraints
on distance in Eq. (3.27) will ensure no collisions. Then the robot would however only keep
the minimum distance to the obstacle, which could be problematic, especially for moving
obstacles. Adding the cost term helps the robot to traverse the environment in a safer way by
maximizing distance to the obstacles while following the trajectory.

3.4.2 Self-collision avoidance

This framework is easily extended for self-collision avoidance as well by considering the set
of pairs of links that potentially cause self-collisions LS ⊂ LR × LR. We will add distance
constraints on all robot point pairs in this set. The self-collision constraint is then similarly as
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before given by
di, j(q)2 > δ2

R,i, j, ∀ (i, j) ∈ LS, (3.33)

with
di, j(q)2 = ∥pR,i(q) − pR, j(q)∥

2, δR,i, j = RR,i + RR, j + dR,min, (3.34)

and dR,min being the minimum allowed distance between two robot sphere surfaces.
Observe how adding additional robot spheres leads to nO new obstacle avoidance

constraints linearly. For self-collision however, the number of constraints grows exponentially
with nR. A tradeoff therefore needs to made between the number of robot spheres and
reduction in computation time from adding additional self-collision constraints.

Finally, we can write the extended NMPC problem with obstacle avoidance and self-
collision as

min
x,u

N−1∑
i=0

©«∥e(xi)∥
2
Q + ∥ Üqi ∥

2
Ra
+ ∥ui ∥

2
Ru
+

1
nR

∑
(j,k)∈LR×LO

Cj,k(xi)
ª®¬

+ ∥e(xN )∥
2
Q +

1
nR

∑
(j,k)∈LR×LO

Cj,k(xN )

s.t. xi+1 = f (xi,ui), i = 0, . . . , N − 1,

xmin ≤ xi ≤ xmax, i = 0, . . . , N,

umin ≤ ui ≤ umax, i = 0, . . . , N − 1,

Üqmin ≤ Üqi ≤ Üqmax, i = 0, . . . , N − 1,

dj,k(x)
2 > δ2

O,i, j, ∀ ( j, k) ∈ LR × LO, i = 0, . . . , N,

dj,k(x)
2 > δ2

R,i, j, ∀ ( j, k) ∈ LS, i = 0, . . . , N,

x0 = x̄0,

(3.35)

where we sum over all possible obstacle collisions in the cost and normalize by nR to
make the cost invariant to how many control points are used to model the manipulator. It
should be emphasized that neither Zube 2015 nor Krämer et al. 2020 considers the full
dynamics or time-varying obstacle trajectories in the NMPC problem, which comprise the
main contributions to NMPC-based obstacle avoidance in this work. Finally, it is not shown
for brevity in Eq. (3.35), but slack is added to the obstacle avoidance and self-collision
avoidance constraints for better feasibility properties.

3.5 Software tools

In the following, the software tools used to implement the NMPC framework for robot
manipulators are presented. The framework is written in Python and has the overall goal of
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letting the user input a URDF model of the robot manipulator, and then generating a real-time
feasible solver for the NMPC problem Eq. (3.8). This is achieved by using the urdf2casadi
library to generate the forward kinematics and forward dynamics as analytic expressions,
and then using the optimal control library acados to generate the solver, as illustrated in
Figure 3.7. This will be discussed in further detail in the following.

urdf2casadi acados
URDF f , h NMPC solver

Figure 3.7: Architecture of the developed robot manipulator NMPC framework.

3.5.1 CasADi

CasADi (Andersson et al. 2019) is an open-source framework for nonlinear numerical
optimization and optimal control. It is based on generating expression graphs from symbolic
expressions, in order to compute algorithmic derivatives. The framework implements various
differentiable operations for these graphs, such as exponential, logarithmic and trigonometric
functions, and linear algebra based operations like matrix multiplication, trace and QR-
decomposition, most of which are used in this NMPC implementation. One can solve a wide
range of linear and nonlinear optimization problems, especially OCPs, using a set of different
solvers. CasADi is written in C++, with Python and MATLAB interfaces available.

3.5.2 urdf2casadi

urdf2casadi (Johannessen et al. 2019) is a Python library for generating forward kinematics
and forward and inverse dynamics of robots. It uses a robot modeled in the URDF format as
input, which is an XML file format for representing robot models, used in the Robot Operating
System (ROS). Using the URDF file the library generates symbolic CasADi expressions for
the kinematics and dynamics, which can then be used for simulation and optimization.

3.5.3 acados

With the forward kinematics and dynamics given by urdf2casadi, the NMPC was then
implemented using the optimal control library acados (Verschueren et al. 2019). It provides
SQP and SQP RTI solvers for solving OCPs, which are targeted for fast embedded applications.
It is implemented in C, and provides Python and MATLAB interfaces that allow C code
generation of solvers for embedded systems. Furthermore, it provides compatibility with
CasADi, such that the cost function and system model can be provided as CasADi expressions
when generating the solver. These properties made the library ideal for combining with the
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urdf2casadi library, with minimal need for developing additional interfaces between the
libraries.

3.5.4 PyBullet

The Python package PyBullet (Coumans and Bai 2016–2020) was used to test the developed
NMPC algorithms in simulation. PyBullet lets the user load robots into the simulation
environment from URDF, and simulates the robot dynamics with joint limits and collision
detection while allowing joint position, joint velocity and joint torque control.

3.6 Implementation on UR10e

The developed methods were tested on a 6 DOF Universal Robots UR10e robot. In Table 3.1
the DH parameters for the robot is given, and in Table 3.2 the joint angle, joint velocity
and joint torque limits are given. Note that the base, shoulder, elbow and wrist 1-3 joints
corresponds to q1 - q6. Furthermore, all the limits are symmetric, such that qmin = −qmax,
Ûqmin = − Ûqmax, τmin = −τmax. A visualization of the UR10e in PyBullet is shown in Figure 3.8.

Table 3.1: DH parameters for the UR10e robot

Joint θ [rad] a [m] d [m] α [rad]

Base 0 0 0.1807 π/2
Shoulder 0 -0.6127 0 0
Elbow 0 -0.57155 0 0
Wrist 1 0 0 0.17415 π/2
Wrist 2 0 0 0.11985 −π/2
Wrist 3 0 0 0.11655 0

Table 3.2: Joint limits for the UR10e robot. The maximum joint angle qmax, joint angle
velocity Ûqmax and joint torque τmax are presented for every joint on the 6 DOF robot (E-Series
From Universal Robots, Max. Joint Torques 2015).

Base Shoulder Elbow Wrist 1 Wrist 2 Wrist 3

qmax [deg] 360 360 360 360 360 360
Ûqmax [deg/s] 120 120 180 180 180 180
τmax [Nm] 330 330 150 56 56 56

The NMPC controller communicates with the UR10e robot using the Real-time Data
Exchange (RTDE) interface, which provides a 500 Hz interface to the UR controller over an
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Figure 3.8: UR10e robot in PyBullet simulation environment.

IP connection, and is therefore suitable for real-time control of the robot. The open-source
ur_rtde Python package (Lindvig 2020) was used to communicate with the robot over the
RTDE interface. Since RTDE only provides rotation vectors when sampling the end effector
pose of the robot, the conversion formulas between unit quaternions and rotation vectors in
Eq. (A.3) and Eq. (A.4) were used. Universal Robots also provides the simulation environment
URsim for testing communication and control of the robot, which was extensively used
during testing of the control system.
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Chapter 4

Results

The developed trajectory tracking NMPC was tested in the PyBullet simulation environment
and in a real lab environment with a UR10e robot with a gripper attachment. In this section,
results of the trajectory tracking controller following a pendulum trajectory in simulation
and in the lab are first presented. Then results from a grasping test of a moving object are
presented, before results considering singularity avoidance and collision avoidance are shown.

4.1 Trajectory tracking NMPC results

4.1.1 Pendulum trajectory in simulation

The trajectory tracking NMPC was first tested in simulation, with the task of tracking the
motion of a linearized pendulum. This choice of trajectory was motivated by considering
a pick-and-place operation of an object on a swinging hanger in an industrial setting. By
approximating the motion of the hanger as the motion of a linearized pendulum we get a
simple test case for the controller. We want to approach the pendulum over an approach
horizon of Ta seconds, before tracking the position of the pendulum, while keeping a constant
Euler angle reference Θd. Linear interpolation of position and SLERP interpolation of the
quaternion with a third-order exponential as in Eq. (3.13) was used, with α = 1.8.

For finding the desired trajectory in Cartesian space we consider the simple pendulum in
Figure 4.1. The pendulum angle trajectory is given by the solution of the linearized pendulum
differential equation

θ(t) = θ0 cos(
√

g

ℓ
t), (4.1)

where θ0 is the maximum amplitude, g is the gravity and ℓ is the pendulum length. By
considering the transformation from spherical coordinates with origin in p0 + [ 0 0 ℓ ]⊤ to
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Cartesian coordinates we get

pd(θ) =


xd(θ)

yd(θ)

zd(θ)


= p0 + ℓ


sin(θ) cos(φ)

sin(θ) sin(φ)

1 − cos(θ)


, (4.2)

which provides a simple initial trajectory to test the performance of the trajectory tracking
controller. Note that the orientation reference Θd was picked such that the end effector will
approach directly towards the pendulum, i.e. by the angle φ in the xy plane.

x

y

z

θ

φ

ℓ

Figure 4.1: Pendulum with angle θ and length ℓ in 3D Cartesian space constrained to plane
with rotation angle φ.

The solver was configured to use the ERK4 method in Eq. (2.28) to discretize the
dynamics, using the Gauss-Newton Hessian approximation. Furthermore, acados formulates
the numerical optimal control problem using the multiple-shooting method. The SQP RTI
solver in acados was used with a tolerance of 10−4, with the interior point QP solver HPIPM
(Frison and Diehl 2020) for solving the QP at every time step in the SQP RTI algorithm. This
configuration was empirically found to be a good tradeoff between efficiency and accuracy
for solving the OCP in Eq. (3.8), and was used for all the subsequent tests in this chapter.

The URDF for the UR10e robot (from ROS Industrial) was loaded into the simulation
environment and tested with motor torque control. An image of the simulation environment
for testing the performance of the NMPC when tracking a pendulum motion can be seen in
Figure 4.2. For this test, as well as for all the subsequent tests in this chapter, a computer
with an AMD Ryzen 9 3900X CPU using 16 GB RAM was used. A MPC time horizon of
Tf = 0.4 s with N = 20 steps was used, such that the sampling time was ts = Tf /N = 20 ms.
Other relevant parameter configurations are given in Table 4.1, of which the addition of a
quadratic cost term in Ûep with weight matrix Qd is especially relevant. Also note how the
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joint limits qmax and torque limits τmax are omitted, as the physical limits given in Table 3.2
were used for this and all subsequent tests. The joint velocity limits Ûqmax were however
lowered from the physical maximum values to ensure a slower and smoother motion. Also
note how adding additional safety margins around qmax and τmax is generally a good idea for
safe deployment in a real industrial setting but was not included here.

Figure 4.2: PyBullet simulation setup for tracking the motion of a pendulum.

Table 4.1: Configuration of NMPC parameters for test on pendulum trajectory in simulation.

Parameter Value

N 20
Tf [s] 0.4
Ta [s] 5
Θd [rad] [− π2 , 0.0,−

π
2 + 1.3]

q0 [deg] [100,−84,−140, 10, 87, 0]
p0 [m] [0.4, 0.8, 3.2]
Ûqmax [rad/s] 1.0
Üqmax [rad/s2] 3.5
Qp 103 · I3

Qd 101 · I3

Qq 103 · I3

Ra 10−2 · I6

Ru 10−4 · I6

In Figure 4.3 the control input from the NMPC solver u∗ is presented, and in Figure 4.4
the joint angles and joint velocities resulting from applying u∗ in simulation are given. The
corresponding end effector pose trajectory is given in Figure 4.5. Notice the approach in the
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first Ta = 5 s where the initial pose of the end effector is blended with the desired trajectory,
to generate a smooth motion towards the target.
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Figure 4.3: Computed control input u∗ from NMPC solver for trajectory tracking test in
simulation.
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Figure 4.4: Resulting joint angle q and joint velocity Ûq trajectory for trajectory tracking test
in simulation. The dashed lines indicate the joint limits.
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Figure 4.5: Desired end effector pose trajectory and resulting pose from simulation.

The tracking error is shown in Figure 4.6, and it can readily be observed that the worst-case
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norm of the position tracking error is about 4 mm, while the worst-case norm of the tracking
error in Euler angles is about 0.2 deg. Furthermore, it is observed that the error enters a cycle
with the period of the pendulum trajectory, which is not asymptotically decreasing. It can be
seen that the error peaks correspond to the maximum angles of the pendulum, which are the
points of maximum acceleration.
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Figure 4.6: Resulting pose tracking errors. Euclidean norm of error is also shown.

Finally, in Figure 4.7 the solve time of the SQP RTI solver is presented. Specifically, both
the timing of the preparation stage tp and the feedback stage tfb are given. First we see that the
solver is able to run with a sampling time of 20 ms with sufficient margins, which corresponds
to a frequency of 50 Hz. Secondly, this helps to illustrate the benefits of the RTI scheme,
as discussed in Section 2.2.4. For the preparation stage the mean computation time was
4.77 ms during the test, while for the feedback stage it was 0.34 ms, which is over a magnitude
lower. This shows how separating the SQP algorithm into these two steps drastically reduces
feedback delay, as discussed in Section 2.2.4.
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Figure 4.7: Solve time for preparation stage and feedback stage of SQP RTI solver.

4.1.2 Pendulum trajectory with UR10e

A similar test was then performed on a UR10e robot with the lab setup seen in Figure 4.8.
The same trajectory and initial configuration of the robot was chosen, and the same tuning of

37



4.1. Trajectory tracking NMPC results Chapter 4. Results

the NMPC was used as in Table 4.1. There are however a few significant differences between
the simulation and the lab test, which will be discussed in the following, before the results
are presented.

Figure 4.8: Lab setup with UR10e and Polaris Vicra optical tracker.

The first discrepancy is that several extensions were added to the end effector of the robot
during the testing phase, specifically a SCHUNK AXIA FT-80 force/torque sensor, Azure
Kinect camera, Robotiq 2F-85 gripper, as well as 3D-printed parts for assembling these
together (see Figure 4.9). Testing the controller without this extra added mass and inertia
taken into account led to oscillatory behavior. This was expected, as the controller is based
on having an accurate URDF file for the robot, which evidently was no longer the case when
additional parts were added.

Figure 4.9: UR10e with Robotiq 2F-85 gripper, Azure Kinect camera and SCHUNK AXIA
FT-80 force/torque sensor attached.

This was solved by approximating the end effector attachment as a solid cylinder with
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(a) UR10e with gripper. (b) Ur10e with cylinder approximation.

Figure 4.10: UR10e robot with gripper and cylinder approximation of gripper in PyBullet
simulation.

constant mass density, such that the inertia is given by

Ixx = Iyy =
1
12
(3r2 + l2), Izz =

1
2

mr2, Ixy = Ixz = Iyz = 0, (4.3)

where m is the mass, r is the radius and l is the length of the cylinder. Using the robot’s end
effector calibration procedure the mass was estimated to be m = 2.48 kg. The radius of the
cylinder was picked to be the radius of the tool flange of the robot, which is r = 0.045 m
(Universal Robots e-Series User Manual, UR10e). The cylinder length that was used is the
distance from the flange to the start of the gripper, found from the CAD of the end effector
extension to be l = 0.176 m. The inertia of the cylinder approximation of the extension was
then calculated to be

Ixx = Iyy = 7.66 × 10−3 kgm2, Izz = 2.51 × 10−3 kgm2. (4.4)

A visualization of the the actual attachment and the cylinder approximation is given in
Figure 4.10a and Figure 4.10b respectively. It should be noted that this is a very crude
approximation, since the assumption that the mass center is in [ 0 0 l

2 ]
⊤ of the end effector

link frame is evidently false. The mass distribution is far from uniform along the body, and
especially the camera complicates the inertia matrix substantially. An area of further work
is therefore to improve this approximation, possibly by use of CAD software directly. Note
however that approximating the entire end effector link as a single rigid body will never be
completely accurate, as closing and opening the gripper naturally changes the inertia over
time. An even better approximation would therefore be to model the joints in the gripper
individually. Nevertheless, the solid cylinder approximation is sufficient for testing the NMPC
and comparing to the simulation case.

Another quite significant difference with the simulation in Section 4.1.1 is that UR robots
do not provide direct torque control interfaces, only position and velocity control. Therefore,
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in order to test the developed methods on the robot certain simplifications had to be made for
control allocation. Specifically the joint velocity control interface was used instead, such that
for a given solution q∗, Ûq∗,u∗, the torque control input was not applied directly, but rather Ûq∗1
was applied as a joint velocity control input. This control allocation simplification will be
further discussed in Chapter 5.

An additional quadratic cost term in joint velocity ∥ Ûq∥2Rv
was added, with Rv = 1. It

was observed that this helped with reducing oscillatory behavior in the system. Finally, note
that since the UR10e robot has active gravity compensation, the dynamics were configured
with an all-zero gravity vector, as opposed to the simulation case. The constant offsets in the
control input for counteracting gravity observed for the simulations e.g. in Figure 4.3 are
therefore not present in the tests on the real robot.

In Figure 4.11 the "virtual" torque control input is presented, and in Figure 4.12 and
Figure 4.13 the resulting joint space and task space trajectories are shown. Note how the
initial conditions in task space is a little different to the simulation, even though the initial
conditions are the same in joint space. This is because of the additional transform added from
the end effector attachment. The joint and task space trajectories are otherwise similar, yet the
computed torque is substantially noisier and more oscillatory, in addition to the previously
discussed missing offset to counteract gravity. This is likely a result of modeling errors
leading to the NMPC producing a more oscillatory control input.
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Figure 4.11: Computed control input u∗ from NMPC solver for trajectory tracking test on
UR10e.

From the tracking error in Figure 4.14 we see that the error is noisier and of about the
same magnitude as in Figure 4.6, with errors peaking at about 5.5 mm and 0.25 deg for
position and Euler angles respectively.

Finally, we observe a significant increase in computation time in Figure 4.15, with mean
computation times of 8.99 ms and 0.459 ms for the preparation phase and feedback phase
respectively. Yet this is still far within the total sample time of ts = 20 ms. It is of interest
that when comparing to Figure 4.7, there is a larger variance in computation time, and
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Figure 4.12: Resulting joint angle q and joint velocity Ûq trajectory for trajectory tracking test
on UR10e.
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Figure 4.13: Desired end effector pose trajectory and resulting pose from UR10e trajectory
tracking test.
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Figure 4.14: Resulting pose tracking errors. Euclidean norm of error is also plotted.
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some structure emerges. Both this longer computation time and larger empirical variance
in computation time is likely a result of taking the controller from simulation to a real
environment, which brings noise, disturbances and modeling errors.
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Figure 4.15: Solve time for preparation stage and feedback stage of SQP RTI solver.

4.2 Grasping moving object

In the following, we will consider having the robot perform a pick and place type operation of
a moving object. As this work is motivated by human-robot collaboration and the emerging
need for robot manipulators to perform tasks in dynamic environments, it seems like a fitting
benchmark to test the system on the more realistic example of grasping a moving object.
Specifically, the task will be to approach a moving optical pointer (held by a human), which
will be tracked by the Polaris Vicra optical tracker system seen in Figure 4.8, grasp it with
the gripper and move back to the initial configuration. An example of the gripper grasping
the pointer can be seen in Figure 4.16.

Figure 4.16: UR10e with gripper grasping pointer that is being tracked by Polaris Vicra
optical tracker.
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First, in order to get the pointer pose in the base frame, such that the robot is able to
approach and grasp it, certain computations have to be made. The transform from the pointer
to the tracker T t

p is measured at every time step, and the transform from the tracker to the
robot base frame T b

t is known from calibrating the tracker, such that the pointer pose is given
in base frame by T b

p = T b
t T t

p.

The experiment was then implemented as a simple timed sequence of actions. First the
robot will move from the initial configuration and approach the pointer using the blending
function in Eq. (3.13) over a time horizon of T1 = 7.5 s. Then the robot will wait and simply
track the position of the pointer for a duration of T2 = 1.0 s, before using T3 = 2.25 s to close
the gripper. Finally, the robot will move back to the initial configuration while grasping the
pointer over a duration of T4 = 7.5 s. The other parameters for the experiment are presented
in Table 4.2.

Table 4.2: Configuration of NMPC parameters for UR10e grasping test of moving pointer.

Parameter Value

N 15
Tf [s] 0.6
Θd [rad] [− π2 , 0.0, 0.0]
q0 [deg] [94,−64,−156, 39, 82, 0]
Ûqmax [rad/s] 1.0
Üqmax [rad/s2] 2.5
Qp 103 · I3

Qd 101 · I3

Qq 103 · I3

Ra 10−2 · I6

Ru 10−4 · I6

The relevant results of this test can be seen in the position trajectory Figure 4.17 and
the pose tracking error Figure 4.18. In the former, the different phases of the sequence are
also visualized, and we can see how the robot is able to approach the pointer and grasp it,
while it is moving, mostly in x and y direction. We observe a constant offset between the
gripper and the pointer when the gripper grasps it, which is likely a consequence of the
tracker having some small error from T b

t not being completely accurate. We can also see that
while the object is moving the tracking error is much larger since the controller is responding
to unforeseen changes in the trajectory. The system is especially prone to this because it
is assumed that the object is static over the MPC horizon, which was not the case for the
predefined trajectory in Section 4.1. A possible extension to this system is therefore to use
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tracking methods such as Kalman Filter or particle filter based approaches, to predict the
future motion of the target and input this over the MPC horizon. Yet since the error peaks at
about 13 mm and 0.25 deg it shows that the static target assumption works acceptably even
when the object is moving.
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Figure 4.17: Position trajectory of gripper pg and position trajectory of pointer object pp.
The two red time intervals indicate the blending phases for approaching the pointer and
moving back to the initial configuration. The blue interval corresponds to the time interval
when the gripper is closing.
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Figure 4.18: Pose tracking error from grasping moving object.

Note that for this experiment a longer sample time of 40 ms has been chosen. This is
because the tracker runs at 60 Hz, or for this experiment a mean duration of 17.3 ms per time
step, to sample the current pose of the pointer, and the call is blocking. The total time for the
solver was 8.14 ms, so this blocking call to sample the current track increases computation
time significantly. Finding ways to overcome this limitation of the tracker blocking while
sampling, possibly by multithreading or using an alternative tracking system, is a possible
area of further development.

Several other improvements could be made to the system. First, the pose information
from the tracker could be used such that the robot approaches with orientation normal to
the pointer, instead of having the desired orientation given and constant. This could help
avoid colliding with the object and is evidently necessary for actual industrial use cases.
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Furthermore, the implementation based on a predefined sequence of steps is not very robust
or modular, and only serves as a small demo of the possible uses of the NMPC controller.
Especially the trajectory blending for approaching and moving away with the pointer could
be improved to not use a predefined amount of time, but rather make decisions dynamically,
e.g. based on the distance to the pointer.

4.3 Singularity avoidance results

The singularity avoidance NMPC extension discussed in Section 3.3 was tested in simulation
by having the robot follow a trajectory spanning a large part of the task space with certain
points close to a singularity. Specifically, a trefoil knot position trajectory was considered:

pd(t) = p0 + a


sin(ωt) + 2 sin(2ωt)

cos(ωt) − 2 cos(2ωt)

−b sin(3ωt)


, (4.5)

with ω = 0.25 rad/s, a = 0.10 and b = 2.5, while keeping a constant quaternion reference
Θd. The blended pose trajectory is shown in Figure 4.19. It was observed that this choice of
trajectory produced configurations with low manipulability.
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Figure 4.19: Blended trefoil knot trajectory for testing singularity avoidance. The red, green
and blue axes represent the XYZ orientation of the end effector for those points of the
trajectory.

The singularity avoidance cost in Eq. (3.20) was used, and implemented using QR
decomposition, based on the brief discussion of the different alternatives in Section 3.3. The
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parameters for the simulations are given in Table 4.3.

Table 4.3: Configuration of NMPC parameters for UR10e singularity avoidance test in
PyBullet simulation.

Parameter Value

N 20
Tf [s] 0.4
Θd [rad] [− π2 , 0.0, 0.0]
q0 [rad] [−2.0,−1.7, 2.1, 2.6,−1.6, 0.0]
Ûqmax [rad/s] 1.0
Üqmax [rad/s2] 3.0
Qp 103 · I3

Qq 103 · I3

Qm 101

Ru 10−4 · I6

Ra 10−2 · I6

The resulting manipulability index values while tracking the trajectory with and without
singularity avoidance is shown in Figure 4.20. We clearly observe that the NMPC is able to
improve the manipulability index of the manipulator, especially in the local minima, which
are also the most important as they are the critical points that are closest to the singularity.
And it should be noted that the mean solve time only goes from 5.31 ms without singularity
avoidance to 5.64 ms with, so little additional computational effort is needed. However, the
improved manipulability comes at the cost of increased tracking errors, as seen in Figure 4.21.
Especially we observe two error peaks that correspond to the two prominent local minima in
Figure 4.20 where the robot is closest to a singular configuration. For this tuning the errors
are also significantly larger in general, which shows a limitation of the NMPC approach,
that trying to weight several different conflicting cost terms might result in overall lower
performance and makes tuning quite difficult and localized to a single scenario. This is
especially prominent for a 6 DOF robot, and lower errors might be observed when testing
with a redundant robot manipulator with 7 or more DOF.
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Figure 4.20: Manipulability index mm and m0 for NMPC respectively with and without
singularity avoidance cost.
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Figure 4.21: Resulting pose tracking error where the m and 0 subscripts correspond to with
and without singularity avoidance respectively.
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4.4 Collision avoidance results

4.4.1 Static obstacle in simulation

The trajectory tracking NMPC with obstacle avoidance and self-collision avoidance constraints
was first tested in simulation. A single static sphere obstacle was considered for simplicity.
The UR10e robot was approximated by nR = 16 spheres of varying radii. The simulation
setup with both the set of robot spheres and the obstacle is shown in Figure 4.22. The robot
was given a circular position trajectory to follow in the xy-plane, while keeping a constant z
value and orientation. In Figure 4.23 the desired trajectory, as well as the actual trajectory of
the robot is shown.

Figure 4.22: PyBullet simulation setup for testing collision avoidance.
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Figure 4.23: Geometry of the considered collision avoidance problem. Desired pose trajectory
is shown in blue and actual pose trajectory is shown in red.

It was observed that the added nonlinear constraints increased computation time sig-
nificantly, such that a time horizon of Tf = 0.6 s over N = 20 steps was now used, which

48



4.4. Collision avoidance results Chapter 4. Results

corresponds to 30 ms time steps. Other parameters for the experiment, such as the position pO

and radius RO of the obstacle, and the radius rd and height zd of the planar circular trajectory
is given in Table 4.4. Note that for the collision avoidance experiments slack variables
were used on the joint velocity, joint acceleration, and collision avoidance constraints, with
corresponding linear cost weights z Ûq = z Üq = 10, zca = 103 and quadratic cost weights
W Ûq =W Üq =Wca = 103.

Table 4.4: Configuration of NMPC parameters for UR10e collision avoidance test in
simulation.

Parameter Value

N 20
Tf [s] 0.6
Θd [rad] [π, 0.0, 0.0]
q0 [rad] [1.2,−1.8,−1.5,−1.2, 1.5, 0.0]
Ûqmax [rad/s] 1.0
Üqmax [rad/s2] 5.0
pO [m] [−0.3, 0.5, 1.6]
rO [m] 0.2
zd [m] 0.75
rd [m] 0.6
dO,min [m] 0.05
dR,min [m] 0.01
βmin [m] 1.0
Qp 5 · 103 · I3

Qq 104 · I3

QO 10−2

Ru 5 · 10−4 · I6

Ra 10 · I6

In Figure 4.24 the control input and corresponding position trajectory are shown, and the
resulting pose errors are given in Figure 4.25. As expected, a large error can be observed
when the robot avoids the obstacle, before it continues along the desired trajectory with
comparable tracking error to the previous simulation results.

Finally, in Figure 4.26 the distances between the obstacle and all the points on the robot
body are shown. It is clearly seen that all the distances stay outside the specified minimum
distance to avoid collisions.

The total mean computation time for the collision avoidance test in simulation was
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Figure 4.24: NMPC control input and pose trajectory for collision avoidance test in simulation.
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Figure 4.25: Pose tracking error for collision avoidance test in simulation.
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Figure 4.26: Distance between robot spheres and obstacle for collision avoidance test in
simulation.
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19.2 ms, which is a very notable increase when comparing to the test in Section 4.1.1 with no
obstacle avoidance and self-collision avoidance.

Apart from the increased computation time, which is still real-time feasible, the solver
produced the desired behavior and avoided the obstacle. During testing of the collision
avoidance NMPC, it was however observed that the solver was prone to crashing from
infeasibility in extreme cases. Specifically, the combination of limits on the joint velocity with
Ûqmax and the highly nonlinear collision avoidance constraints lead to the internal QP solver
reporting the problem to be infeasible when close to the minimum obstacle distance given
by δO,i, j . Adding slack to the collision avoidance constraints partly helped to mitigate this
infeasibility problem, but the solver was highly sensitive to the tuning of the slack weights
and the other weight matrices in general, and having slack on these constraints are not really
wanted in the first place.

In a sense this displays some of the limits of this approach to the collision avoidance
problem. The use of SQP RTI to solve NMPC problems with highly nonlinear constraints
and conflicting nonlinear costs push the solver to its limits and numerical issues can arise, as
observed here. An area of potential further research is therefore to formulate the problem to
be more numerically stable and less dependent on having very precisely tuned parameters for
a specific situation.

4.4.2 Moving obstacle with UR10e

One of the major benefits of the NMPC approach to collision avoidance is that moving
obstacles, such as humans or other robots, can easily be considered by updating the
corresponding sphere positions at every time step. This was tested in a realistic scenario by
having the UR10e robot follow a simple trajectory while avoiding the pointer used previously
in Section 4.2 that was tracked by the optical tracking system. The same setup as in Figure 4.8
was used, with a human holding the pointer. A trefoil knot position trajectory as in Eq. (4.5)
was again considered, with ω = 0.5 rad/s, a = 0.025 and b = 2.5, while keeping a constant
quaternion reference Θd. The blended trajectory is shown in Figure 4.27. The parameters for
the test are given in Table 4.5.

The control input and end effector position trajectory from the test are shown in Figure 4.28,
and the tracking error is shown in Figure 4.29. A large position error is observed as the robot
avoids the pointer, which is being moved towards the robot to disrupt its nominal motion.
The robot avoids the pointer successfully, as can be seen in Figure 4.30.

Earlier for the simulation test, we observed some oscillations when the robot is moving
around the obstacle in Figure 4.24, and these oscillations are only more present when testing
in the lab with a moving obstacle, as can be seen in Figure 4.28. The oscillations are likely
a result of the conflicting trajectory tracking and collision avoidance cost terms in the cost
function. When close to the obstacle these two cost terms will generate a border where the
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Figure 4.27: Blended trefoil knot trajectory.

Table 4.5: Configuration of NMPC parameters for UR10e collision avoidance test in lab.

Parameter Value

N 15
Tf [s] 0.65
Θd [rad] [π, 0.0, 0.0]
q0 [rad] [1.2,−1.8,−1.5,−1.2, 1.5, 0.0]
Ûqmax [rad/s] 1.0
Üqmax [rad/s2] 5.0
rO [m] 0.2
dO,min [m] 0.05
dR,min [m] 0.01
βmin [m] 1.0
Qp 103 · I3

Qq 104 · I3

QO 10−3

Ru 5 · 10−4 · I6

Ra 2 · I6
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Figure 4.28: NMPC control input and pose trajectory for collision avoidance test with pointer.
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Figure 4.29: Pose tracking error for collision avoidance test with pointer.
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Figure 4.30: Distance between robot spheres and pointer.
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cost terms are in balance. And because of the large sensitivity of the collision avoidance cost
and constraints close to the obstacle, oscillations will occur, where the robot moves too close
to the obstacle and the NMPC pushes the robot away, before the tracking error cost dominates
the cost function and pushes it closer to the obstacle again and so on. Modeling errors, a
moving obstacle and high computation time only amplify this effect further. Especially the
issue with the optical tracker introducing a long time delay as discussed in Section 4.2 is
therefore problematic, which lead to a mean computation time of 32.0 ms.
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Chapter 5

Discussion and further work

In this chapter, the results from Chapter 4 will be discussed and possible areas of further
work will be explored. Many specific issues and possible improvements have already been
mentioned throughout Chapter 4, so in the following the emphasis will be on the overall
performance and larger-scale problems that were observed throughout this work, as well as a
larger outlook on further work.

Firstly, the performance of the trajectory tracking controller was found to be satisfactory,
both in simulation in Section 4.1.1 and on the real UR10e robot in Section 4.1.2. The low
tracking errors and real-time feasible computation time, even for quite fast and dynamic
trajectories, show that the NMPC approach to the problem works well. Especially the
simplification in the SQP RTI solver of only doing a single Newton step at every iteration
seems to be reasonable. Based on the overall results, the developed NMPC framework for
robot manipulator trajectory tracking is very promising, especially because of the inherent
capability of handling dynamic trajectories and changing environments. However, several
problems and areas of further improvement have been established during testing of the NMPC
and will be discussed in detail in the following sections.

5.1 Benefits and limitations of NMPC based on full manipulator
dynamics

The end effector that was added to the UR10e in Section 4.1.2 demonstrated an important
limitation of the NMPC approach using the full equations of motion in Eq. (2.24) as dynamics
constraints. As discussed in Section 4.2, running the controller without accurate knowledge of
the added mass and inertia reduced performance substantially. This shows how the controller
is specific to a single robot model, and even slightly changing the dynamic parameters can
make the closed-loop system oscillatory. Firstly, this means that expert domain knowledge is
needed for modeling the robot, and changing the robot will then require modifying the URDF
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model accordingly, which is not trivial. This also shows how the controller is not very robust
to modeling errors. Yet the use of the full dynamics in NMPC of robots allows for more
dynamic maneuvers, which especially for dynamically stable floating base systems is very
useful. Yet for the application of controlling a static base robot manipulator it is probably not
needed in most applications, especially because industrial robot manipulators usually have a
quite advanced internal controller for following the input signal.

The fact that robot manipulators usually have advanced internal controllers, and that full
dynamics are usually not necessary then motivates using simple velocity control dynamics
Ûq = u instead, as discussed in Section 3.1. However, without going into more detail here, when
comparing the simple dynamics approach to the full dynamics approach for more advanced
tasks such as collision avoidance, the full dynamics approach had a better performance overall
during testing. So for extensions of the system with increased requirements of agility, such as
manipulator arms mounted on wheeled or legged robotics, the full dynamics formulation
might be more suitable. A quite open area of further research is therefore to extend the NMPC
to floating base mobile robotic systems and test this in simulation and in a real-world setting.
It should be emphasized that the real-time trajectory tracking NMPC framework developed
in this work is quite general, so using the same methods for mobile manipulator systems or
even completely different robotic systems is entirely possible.

Furthermore, it might not even be necessary to run the NMPC in closed-loop directly, as
that may interfere with the inner control loop, especially if the speed of the outer NMPC
control loop approaches that of the inner loop. Yet from the observed results this was not
considered a significant issue, because of the combination of the low feedback delay of the
RTI scheme and the fast RTDE communication interface with the robot controller giving a
low overall delay, as well as the sampling time of the NMPC being significantly larger than
the sampling time of the internal robot controller in the UR10e.

Another problematic aspect of using an NMPC formulation based on the full robot
dynamics is that the control variables are the joint torques, while commercial robot manipulator
manufacturers typically only provide position and velocity control interfaces to their robots.
This is for instance the case for UR robots like the UR10e. As previously discussed, the
joint velocities at the following time step, i.e. Ûq∗1, was therefore used with velocity control
instead. What then should happen is that the internal robot controller will apply a torque that
accelerates the joints from the current velocity to the target velocity, given some maximum
acceleration. This torque will be close to the "virtual" torque of the solver u∗0, but it will not
be exactly the same. How the internal controller in the robot works is of course not generally
known, so this is just an assumption one has to make when doing control allocation from
torque control to velocity control for robot manipulators. Yet assuming a short sampling time
and an accurate model of the robot dynamics, it is reasonable. This was also experimentally
observed in simulation, as no noticeable differences were observed when comparing torque
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control and velocity control for the same test parameters. Yet it does mean that we lose some
of the rigidity of the torque and acceleration constraints in the optimization problem, as these
variables are not exactly the same as the ones that will actually be used on the robot.

This discussion motivates several branches of further work. Firstly, one could explore
other control allocation strategies from torque to velocity, or experiment further with the
simple integrator dynamics. Secondly, it would be of interest to test the torque controller on
a robot manipulator arm with an actual torque control interface, such as the Franka Emika
Panda robot.

The discussion of the limitations of using URDF models for obtaining the system dynamics
also motivates trying to learn the dynamics directly based on data. System identification
of the robot model, e.g. by using Gaussian processes, is therefore an interesting area of
further research. Particularly combining prior knowledge of the system with learning-based
approaches to identify the dynamical model to be used in an NMPC seems promising for
robot manipulator motion planning and control, and could build on a lot of the methods in
this work.

5.2 SQP RTI and numerical issues

One of the main challenges during testing has been that adding highly nonlinear constraints
and costs that are conflicting with each other creates an optimization problem that is not
always well-behaved. Specifically, numerical instability and oscillatory behavior in the system
has been repeatedly observed, most notably in Section 4.4. It clearly shows a general limitation
of this approach, so further work on how to formulate a better-posed problem is definitely
relevant.

One idea is to consider constraints and costs on Ûu in order to deal with the oscillations.
This was briefly tested but was found to be difficult to implement in practice. This is because
one would typically want to approximate Ûu with finite differences, which introduces coupling
terms between optimization variables in different time steps of the NMPC problem, which
is not possible in acados. An alternative is to let Ûu be the control input directly in the
optimization problem, but this poses other problems when you want to input this new control
input into your physical system, such as time delays.

Yet the main cause of the oscillations and numerical issues are likely the conflicting cost
terms, so finding ways to better deal with these directly could also be explored. Multiple
task-priority control methods for redundant robotic systems, that consider how to achieve
multiple tasks with different priorities, are possibly better suited for dealing with such
problems. So work on combining these methods and NMPC is relevant, possibly by solving
nested optimization problems like in Lunni et al. 2017.

Furthermore, the SQP RTI solver in acados does not consider globalization, in order

57



5.3. Stability Chapter 5. Discussion and further work

to guarantee a reasonably consistent solve time, so getting stuck in local minima is also
a concern. The sub-optimality of using the SQP RTI solver is also important to be aware
of, especially for a trajectory tracking controller, where the cost function is changing at
every time step. It could mean that the solver is always trying to catch up and never really
converging. In theory, this is a large concern, as it could in worst-case lead to constraints not
being satisfied and therefore posing a safety risk in a real-world scenario. However, from
warm starts and the fast convergence rate of SQP, this was not seen as a big issue in practice.

5.3 Stability

A recurrent issue that was observed for the results in this work was a lack of asymptotic
stability, both in simulation and lab experiments. Instead of converging asymptotically to the
desired trajectory, the error converged to a cycle in the vicinity of it, as can for instance be
seen in Figure 4.6. Several hypotheses for the cause of these cycles were investigated and
will be summarized and discussed in this section.

Initially, it was hypothesized that the observed cycles around zero tracking error were
caused by the RTI scheme causing the optimizer to not fully converge. However, configuring
the solver to use normal SQP, i.e. running consecutive Newton steps until convergence
produced the same result. This shows how the RTI scheme works well and that the assumption
made with a single Newton step being sufficient seems to be reasonable. Yet that means the
RTI scheme causing the solver to never converge is not the cause.

It was also believed that the nature of the trajectory tracking problem caused the solver
to always lag behind, as the desired trajectory is changing at every time step. However, by
studying setpoint regulation, i.e. using a constant desired pose trajectory instead, a constant
offset was observed, analogous to the cycles that were observed for trajectory tracking.

A constant offset could point to modeling errors being the issue. And while there are
certainly modeling errors for the real-world tests, for the simulation tests the exact same
URDF was used to generate the dynamics constraints in the NMPC and to simulate the robot
dynamics. Even when simulating the closed-loop system with ERK4, such that even the
numerical integration scheme in the controller and in the simulation was the same, the same
cycles were observed. Furthermore, it could also have been that inaccuracies in the ERK4
integrator in the NMPC were causing these issues. Yet trying different numerical integration
schemes, both explicit and implicit, and with fewer or more steps, yielded the same resulting
errors. Also modifying the solver tolerances had no noticeable effect.

So after ruling out most of the logical error causes, it would then seem that the
resulting trajectories are indeed what the optimization solver actually finds to be optimal.
And considering the NMPC solver tries to weight tracking error against torque and joint
acceleration minimization it would then make sense that the manipulator will not track the
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trajectory exactly. This however does not explain why it does not converge exactly for the
setpoint regulation case, so further work should be done on investigating asymptotic stability
of the developed NMPC. Yet it should be emphasized that this is a theoretical issue, and in
reality the observed errors are so low that this can largely be ignored.

This discussion also motivates further experimentation with terminal sets and terminal
costs, as this could improve stability. However, testing with a separate terminal cost on
tracking error and having terminal constraints on tracking error had no noticeable effect.

5.4 Other

A few additional areas of discussion and further work are also worth mentioning here. Firstly,
the computation times presented in this work have definitely shown that NMPC of 6 DOF
robot manipulators with the full dynamics is real-time feasible. We have seen that this
comes at the cost of sacrificing optimality and constraint satisfaction guarantees by using a
real-time SQP solver. Yet further computation time decrease would of course be desirable,
and parallelization is a topic which has not been considered for this work that has potential
for significant speed improvements. To maximize the performance and capabilities of the
system this should definitely be investigated further. It is worth noting that acados supports
multithreading via the OpenMP implementation, so the already developed framework for
NMPC could possibly be extended to use multithreading without having to port any code.

Another interesting area of further work is to extend the NMPC problem to consider
uncertainties with stochastic NMPC. This ties nicely in with the previously discussed concept
of using learning-based approaches for learning the dynamics, many of which are probabilistic.
Then knowledge of the uncertainties of the model can be taken into account when finding the
optimal control policy. If real-time feasibility can be maintained while doing online dynamics
learning and stochastic NMPC is however questionable.

Furthermore, considering uncertainties is also very useful for collision avoidance. As
previously discussed, it would be interesting to use some tracking strategy, e.g. a Kalman
filter based tracker, to predict the future motion of moving obstacles and use this in the NMPC
problem. Since most tracking strategies are probabilistic by nature and provide information
about the uncertainties involved, it could potentially be included in the optimization problem.
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Chapter 6

Conclusion

This report has investigated the use of NMPC for real-time task space trajectory tracking
for robot manipulator arms. In order to answer the previously posed research questions
in Chapter 1, a general framework for trajectory tracking NMPC was developed for robot
manipulators, using an SQP RTI solver for solving the NMPC problem. The framework was
tested on a UR10e robot, both in simulation and in a lab environment. The results presented
in Chapter 4 showed satisfactory tracking accuracy, and the solver was able to run at 50 Hz.
Furthermore, singularity avoidance, obstacle avoidance and self-collision avoidance was
included in the NMPC problem and tested. The results showed that there was a significant
increase in computation time for collision avoidance, yet the controller was still real-time
feasible. This was demonstrated practically by having the robot grasp a moving object, as
well as avoid a moving obstacle.

The approach presented in this work based on using the full nonlinear robot dynamics
in the NMPC problem shows promise for performing agile maneuvers, but also has the
limitation of needing an accurate model of the robot. Moreover, this work has illustrated
how the RTI scheme is an effective strategy for employing NMPC for robotic systems with
demanding real-time requirements. Yet the NMPC approach with highly nonlinear constraints
also comes at the risk of numerical issues and oscillations. Despite these issues the developed
trajectory tracking NMPC has shown to be very promising for autonomous and collaborative
robotics applications.
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Appendix A

Conversions between rotation
representations

This appendix expands on the rotation representations discussed in Section 2.1.1, by providing
addition conversion formulas used in this work, found in Diebel 2006 and Egeland and
Gravdahl 2002.

A.1 Euler angles - unit quaternion conversion

The transformation from ZYX Euler angles Θ to a unit quaternion q is given by

q(Θ) =



cϕ/2cθ/2cψ/2 + sϕ/2sθ/2sψ/2

sϕ/2cθ/2cψ/2 − cϕ/2sθ/2sψ/2

cϕ/2sθ/2cψ/2 + sϕ/2cθ/2sψ/2

cϕ/2cθ/2sψ/2 − sϕ/2sθ/2cψ/2


, (A.1)

where we note sα = sin(α), cα = cos(α). The inverse transformation is given by

Θ(q) =


atan2(2ηε1 + 2ε2ε3, η

2 − ε2
1 − ε

2
2 + ε

2
3)

− arcsin(2ε1ε3 − 2ηε2)

atan2(2ηε3 + 2ε1ε2, η
2 + ε2

1 − ε
2
2 − ε

2
3)


. (A.2)

61



A.2. Rotation vector - unit quaternion conversion Appendix A. Rotation conversions

A.2 Rotation vector - unit quaternion conversion

From Eq. (2.7) we see that we map a rotation vector to a unit quaternion by

q =


cos( ∥v ∥2 )

v
∥v ∥ sin( ∥v ∥2 )

 , (A.3)

and the inverse map from a unit quaternion to a rotation vector is given by

v =
2 arccos(η)√

1 − η2
ε. (A.4)

A.3 Rotation vector - rotation matrix conversion

Finally, the map from rotation vector to rotation matrix is given by[
r1(v) r2(v) r3(v)

]
, (A.5)

where

r1(v) =
1
∥v∥2



(
v2

1 − v
2
2 − v

2
3
)

s2
∥v∥

2
+ ∥v∥2c2

∥v∥
2

2s ∥v∥
2

(
v1v2s ∥v∥

2
− | v∥v3c ∥v∥

2

)
2s ∥v∥

2

(
v1v3s ∥v∥

2
+ | v∥v2c ∥v∥

2

)

, (A.6)

r2(v) =
1
∥v∥2


2s ∥v∥

2

(
v1v2s ∥v∥

2
+ | v∥v3c ∥v∥

2

)
(
v2

2 − v
2
3 − v

2
1
)

s2
∥v∥

2
+ ∥v∥2c2

∥v∥
2

2s ∥v∥
2

(
v2v3s ∥v∥

2
− | v∥v1c ∥v∥

2

)

, (A.7)

r3(v) =
1
∥v∥2


2s ∥v∥

2

(
v1v3s ∥v∥

2
− | v∥v2c ∥v∥

2

)
2s ∥v ∥2

(
v2v3s ∥v ∥2 + | v∥v1c ∥v ∥2

)
(
v2

3 − v
2
1 − v

2
2
)

s2
∥v∥

2
+ ∥v∥2c2

∥v∥
2


. (A.8)

The map from rotation matrix to rotation vector is given by

v =
1
2


r32 − r23

r13 − r31

r21 − r12


. (A.9)
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A.4 Rotation matrix - unit quaternion conversion

The transformation from unit quaternion to rotation matrix is given by

R(q) =


η2 + ε2

1 − ε
2
2 − ε

2
3 2ε1ε2 + 2ηε3 2ε1ε3 − 2ηε2

2ε1ε2 − 2ηε3 η2 − ε2
1 + ε

2
2 − ε

2
3 2ε2ε3 + 2ηε1

2ε1ε3 + 2ηε2 2ε2ε3 − 2ηε1 η2 − ε2
1 − ε

2
2 + ε

2
3


. (A.10)

The inverse mapping is not quite as trivial, and in general four possible mappings exist. One
possible mapping is

q(R) =
1
2



(1 + r11 + r22 + r33)
1
2

(r23 − r32) /(1 + r11 + r22 + r33)
1
2

(r31 − r13) /(1 + r11 + r22 + r33)
1
2

(r12 − r21) /(1 + r11 + r22 + r33)
1
2


, (A.11)

yet there exist cases where this transform is not defined, and all four mappings must be
considered in general. The reader is referred to Diebel 2006 for further details.
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