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Abstract

This thesis documents the development of an over-actuated robot leg with four degrees
of freedom. The thesis covers design, fabrication, assembly, mathematical framework,
control, and simulation. The thesis aims to enable future research on biomimetic
robot movement and create a physical model for educational purposes in robotics.

The robot leg consists of four actuators where three are placed in the same plane
to emulate the hip, knee, and ankle of a domestic cat’s hind leg. This makes the
robot over-actuated when viewed as a planar robot. 3D-printed parts make up the
majority of parts connecting the actuators together. A simple anatomical analysis
was undertaken to find correct proportions for each link. The robot leg is fastened to
a stand with caster wheels to emulate locomotion.

A mathematical model for the kinematics of the robot leg was created and implemen-
ted in Matlab. This enabled planning trajectories between waypoints found in a gait
analysis on cats. The Matlab model for the robot was never implemented on the phys-
ical model but is included as a foundation for integrating Matlab with ROS in future
work. A more complete modeling scheme and more optimal controllers for the robot
are also discussed.

The embedded system consists of four brushed DC motors controlled by an Arduino
Mega running independent joint PID control for each actuator. Dual motor drivers are
used for translating the PID control signals into actuator speeds. The angular position
of the joints is recorded using incremental encoders connected to an Arduino Nano
operating as an incremental encoder interface. The communication between the units
is done using the I2C protocol and between the Mega and ROS using serial USB. In
the end, the physical model worked as intended, but the actuators were undersized
and could not handle the gravitational forces acting on the upper joints.

A robot model for use in ROS was created by exporting design files. The robot model en-
ables simulating movements and gaits before implementing it on the physical model.
Trajectories were generated by setting a start and stop pose for the robot leg. ROS
transmits setpoints to the embedded motor controllers that track the planned traject-
ory. Finally, a model including four legs was created and simulated with the use of
ROS.

In the end, most aspects of the robot worked as intended. The actuators were too weak,
but in the short time before failure ROS was able to send setpoints to the controllers,
and the correct poses were achieved. Given more time or a larger budget, the group is
confident that the robot would be completely operational. To make future work on the
robot easier, a lot of the discussions found in this thesis are focused on future work
and possible improvements.



Sammendrag

Denne bacheloroppgaven dokumenterer utviklingen av et overaktuert robotben med
fire frihetsgrader. Dette omfatter design, konstruksjon, det matematiske rammeverket,
regulering og simulering. Målet med prosjektet er å muliggjøre framtidig forskning på
biomimetisk robotbevegelse og skape en fysisk modell for bruk i undervisning innen
robotikk.

Robotbenet består av fire aktuatorer hvor tre er plassert i samme plan for å etterligne
hofte, kne og ankel til en vanlig huskatt. Dette gjør roboten overaktuert hvis den blir
sett på i to dimensjoner. 3D-printede deler utgjør de fleste delene som kobler aktuato-
rene sammen. En enkel anatomisk analyse ble utført for å finne korrekte proporsjoner
for hver lenke. Robotbenet er festet til et stativ med kulehjul for å muliggjøre bevegelse.

En matematisk modell for kinematikken til roboten ble implementert i Matlab. Det-
te muliggjorde planlegging av baner mellom viapunkter funnet i en gangeanalyse av
katter. Matlab modellen for roboten ble aldri implementert på den fysiske modellen,
men er inkludert som grunnlaget for integrasjon mellom Matlab og ROS i framtidig
arbeid. En mer komplett matematisk modell og optimal regulerings løsning er også
presentert.

Det integrerte elektroniske systemet består av fire likestrøms børstemotorer kontrollert
av en Arduino Mega som kjører individuell PID-regulator for hvert ledd. Doble motor-
drivere brukes for å konvertere PID-regulatorens pådragssignal til aktuatorhastighet.
Vinkelposisjonen til leddene er målt med inkrementelle enkodere, hvor signalene blir
lest og posisjonen lagret av en Arduino Nano for hver aktuator. Kommunikasjonen
mellom enhetene er gjort ved hjelp av I2C protokollen, mens mellom Megaen og ROS
benyttes seriell USB. Til slutt fungerte det integrerte elektroniske systemet som plan-
lagt med unntak av motorene som viste seg å være for svake for roboten under bruk.

Ved å eksportere informasjon fra designfilene ble det laget en robotmodell som kunne
brukes i blant annet ROS. Denne muliggjør simulering av bevegelse og ganglag før
testing på den fysiske modellen. Baner ble generert ved å sette start og stopp posisjoner
for robotbenet. ROS er satt opp til å sende settpunkter til motor regulatorene slik at
den fysiske roboten vil følge den planlagte banen. En modell med fire ben er også laget
og simulert i ROS.

De fleste aspektene ved roboten fungerte til slutt som planlagt, med unntak av ak-
tuatorene som var for svake. Før de sviktet ble det vist at ROS sendte settpunkter til
regulatorene og at ønskede posisjoner ble oppnådd. Gitt mer tid eller større budsjett
er gruppemedlemmene sikre på at full funksjonalitet ville blitt oppnådd. For å gjøre
framtidig arbeid enklere er mye av diskusjonen funnet i denne oppgaven fokusert på
framtidig arbeid og mulige forbedringer.
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Chapter 1

Introduction

1.1 Background

In modern times, automation is becoming an increasingly important topic, and tech-
nology is constantly developing new ways to eliminate menial tasks from everyday life.
One of the more exciting fields in the world of automation is the development of robots.
Robots have many possibilities for di�erent forms of locomotion. With the ability to
influence their environment, they can be a great way to spare humans from dull and
sometimes potentially dangerous physical tasks.

Robots come in many di�erent shapes and forms depending on what tasks they are
meant to do. They are most commonly found in industrial settings where they are
used in the manufacturing of products, typically in the form of a manipulator arm
fixed to a stationary frame along a manufacturing belt. However, as the development
of robots has progressed, the focus of many research institutions has turned slightly
over to mobile robots, with the existence of a mobile robotics lab in most renowned
technological universities. The ability to move around in a larger environment opens
the possibility for making robots with more flexible areas of use.

Mobile robots can travel by land, air, and sea. Land-based robots are the most uni-
versal, as they have the best possibilities to perform heavy physical labor with the
technology that exists today. Air and water-based robots are more suited for obser-
vational purposes such as exploration and inspection, as well as transportation of
lightweight cargo. When it comes to land-based mobile robots, the case has been
made that while wheeled and tracked robots seem to have the most e�ective way of
locomotion, legged robots have many environments in where they are superior (Silva
and Tenreiro Machado 2007). Legged robots can maneuver a larger variety of ter-
rain, even rough terrain that can prove di�cult for some humans, while wheeled and
tracked robots are more dependent on working environments with minimal verticality
and paved roads.

Legged robots can be categorized by how many legs they have. Bipedal robots, for
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example, are robots with two legs, typically made in an attempt to mimic humans.
Bipedal robots generally have a higher center of gravity than multi-legged robots and,
combined with fewer points of contact with the ground to distribute weight, they have
a harder time keeping their balance. They are therefore in need of more demanding
control systems and do not necessarily have fewer actuators than other multi-legged
robots. Four-legged robots, known as quadrupedal robots, have a lot more natural
stability and are therefore more suitable for practical use. This is also true for ro-
bots with even more legs, like hexapedals and octopedals. However, in their case,
the number of actuators will indeed increase and amount to more sources of power
consumption.

When it comes to the design of modern mobile robots, many of them are inspired by
living creatures. This is a practice known as biomimicry, meaning life imitation, and
is founded on the belief that one should look to nature for inspiration on how to solve
design problems. This is the case for most legged robots, and so, four-legged robots
are often inspired by naturally four-legged animals such as dogs and cats. Modern
examples of this are the robot Spot from Boston Dynamics, imitating a big dog (Boston
Dynamics 2021), and Mini Cheetah from MIT, imitating an average-sized cat (Katz,
Carlo and Kim 2019). Something worth noting is that their anatomies are not made to
be exact copies of these respectful animals. The designers have purposefully simplified
the robot’s legs, having one joint and link less than the animal they are inspired by.
The reasons for this are that the additional DOF increases the mechanical complexity
and cost considerably. Besides, there have been made studies of how many actuators
robots of di�erent leg categories can be reduced to without significantly impacting
their capabilities for locomotion (Yoneda and Ota 2003). This poses the interesting
question of the design of four-legged creatures, which is polished over millennia by
evolution, can eventually bring a noteworthy edge in agility over simplified robots,
or if their extra joints and links truly are redundant and not worth implementing in
future robots (Arnesen, Grinde, Hovland and Vestland 2021a).

1.2 Project Assignment

Developing test bench for robot leg with four degrees of freedom

Four-legged robots have in recent years become popular as a platform for future use
among humans. Common for many of them is a configuration with two degrees of
freedom in walking direction and one degree of freedom perpendicular to the walking
direction to make the robot more agile. The hypothesis that inspires this project is if
adding another degree of freedom, and making the robot more anatomically correct
compared to quadrupedal animals, can give the robot increased agility and mobility.
To be able to test this hypothesis, the group that undertakes this project will be tasked
to build a test bench for a robotic leg with four degrees of freedom, three in a two-
dimensional walking direction and one perpendicular to this walking direction for
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three-dimensional movement. Each joint could be controlled by a position regulator
where the result of inverse kinematics makes up the reference angels. The test rig
should include the possibility for horizontal and vertical movement where the robot
can move under its own power. Mounting the robot on a movable stand or track
enables the possibility of controlling the position of the robot by counting steps and
measuring the step length. The test bench should be constructed in a way that enables
it to be used for future projects and in a teaching setting. To test the hypothesis,
di�erent gaits can be calculated and tested. Comparisons in two dimensions can be
made in simulations to see possible improvements between two and three degrees of
freedom.

Possible topics for the execution of this bachelor thesis:

• Prepare concept drawings and schematics for future usage
• Calculation of direct, inverse, and velocity kinematics for the model
• Simulation of the kinematics in e.g., Matlab
• Choice of actuators and sensors based on specifications
• Design and construct the physical model
• Choice of microcontroller for communication with ROS (e.g., Arduino)
• Using ROS to set up communication between actuators and sensors
• Explore the possibility to measure impact in the foot to regulate angles /positions
• Designing a demonstration for a physical and mathematical model
• Setting up the project with future use in mind

1.3 Thesis Statement

Develop and build a 4dof robot leg, using mathematical modeling and ROS-applications,
for use in education and research.

1.4 Problem statements

Due to the wide breadth of the thesis, several problems would have to be overcome.
This non-comprehensive list aims to summarize the most pertinent to the project.

• The design of a robot leg on a tight budget demands careful planning when it
comes to design and material choices.

• Explore possibilities for model-based controllers and the required mathematics
to support this.

• Creating a simulated model would enable visualization of the robot leg and even
expand upon the physical model.

• Moving the robot leg between di�erent poses requires choosing and tuning con-
trollers.

• Choosing strong and fast enough actuators is crucial for achieving satisfactory
movement when implementing the controllers.
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• Using one or more microcontrollers in unison with ROS requires reliable com-
munication to be set up between the units.

• Documentation for all aspects of the project is crucial for future work and ex-
pansions.

1.5 Objectives

Some objectives were defined to solve the problems previously stated. This will enforce
a structure upon which the work on this thesis can be built.

• By designing as many parts as possible and using 3D-printing technology, the
budget can be held low.

• Using matrix calculations and trigonometry, a precise model for the kinematics
of the robot leg can be calculated. Implementing these in Matlab will simplify the
mathematics and allow visualization of the results.

• Implementation of the design in ROS will enable simulating di�erent gaits and
poses with Gazebo and Rviz. Exploring the possibilities for connecting Matlab
to ROS could expand the simulation possibilities.

• As a start, PID-based controllers will be implemented while exploring alternative
solutions using model-based controllers like LQR.

• Budgeting constraints will severely limit the available motors. But by sourcing
motors with a high gear ratio, strong enough motors will hopefully be found.

• The communication method between ROS and the robot would depend on the
microcontrollers selected. The speed and reliability of the method will be taken
into account before choosing between wired or wireless communication. If more
than one microcontroller were to be used, a choice between I2C and SPI would
have to be made.

• Using Git, all code is tracked and version history stored. This thesis paper will
serve as documentation, and the discussion within will focus heavily on future
work and expansions. All design elements like 3D models and electronic schem-
atics will be uploaded to the git repository.

1.6 Structure of the report

The report was divided into chapters based on the subject within. This structure was
enforced to make it easier to read and reference for future work. Each chapter will
contain its own sections on the method, theory results, discussion, and conclusions.
Due to the nature of the chapters some of them will contain all of the before-mentioned
sections.

The first chapter includes the background for the thesis as well as the project assign-
ment and thesis statement. Problem statements will be proposed, and objectives for
how to solve them will be presented. It will also contain a list of definitions for terms
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and abbreviations that will appear in the thesis to counteract any confusion.

The second chapter will include an overview of the development and research method
used to realize this project.

The third chapter will contain all aspects of the design process. It will present a simple
analysis of anatomical proportion and natural gait for selected animals. Thoughts
behind all parts that make out the physical model and the workflow to make the 3D
model work in ROS is also presented.

In the fourth chapter, the kinematics of the robot will be explained. Methods for
implementing the waypoints previously found in the gait analysis will be described
using kinematics. Finally, further modeling of the robot to allow for more optimal
controllers will be explored.

The fifth chapter will introduce di�erent principles in control theory, followed up by a
discussion on what and why the chosen control strategy is implemented in this thesis.
This will mainly serve as a theoretical chapter, and the discussion and result sections
are thus joined.

The sixth chapter will describe everything related to the embedded system. The mo-
tors, gearing, microcontrollers, and communication methods will be presented and
discussed.

In the seventh chapter, the implementation of ROS in this thesis is explained. This
includes a theoretical framework for the basic principles of the ROS features used.
How trajectories are executed using MoveIt, and further work on robot locomotion
using ROS will be discussed.

The final three chapters will include discussion, results, and conclusions for the pro-
ject as a whole. The possible future work for the project will also be presented.
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1.7 Definitions

Term Definition

ADC Analog-to-digital converter
API Application Programming Interface
Biomimetics Emulation of natural configurations or processes in man-made

products
CAD Computer-aided design
CoM Center of Mass
CPR Counts per Revolution (Encoders)
DAC Digital-to-analog converter
DH Denavit-Hartenberg
DOF Degrees of freedom
EEPROM Electrically Erasable Programmable Read-Only Memory
Gait Position and angles for all joints and end e�ector during a complete

walk cycle
HSE Health, Safety, and Environment
I2C Inter-Integrated Circuit
IMU Inertial Measurement Unit
LQR Linear-Quadratic Regulator
Lidar Light Detection and Ranging
MIMO Multiple-input and multiple-output
Odometry Estimated change in position and orientation from start position
Pose Position and orientation of all joints in a robot
PWM Pulse-Width Modulation
ROS Robot operating system
SCL Serial Clock Line
SDA Serial Data Line
SLAM Simultaneous localization and mapping
SPI Serial Peripheral Interface
STL Filetype representing design using only triangles
URDF Unified Robot Description Format
ZN Ziegler-Nichols
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Chapter 2

Method

2.1 Development method

During the preliminary phase of the project, a Gantt chart was made to plan the de-
velopment process. However, the need for a more agile development method was also
discussed (Arnesen, Grinde, Hovland and Vestland 2021a). The project consists of
di�erent components like hardware and software, which can be worked upon inde-
pendently. A general workflow representing the waterfall method is presented in the
Gantt chart shown in Appendix B. Within these di�erent components, the agile devel-
opment method Kanban was used. To support the use of Kanban, Trello was used as
a Kanban board. A Kanban board allowed easier management of the development pro-
cess as new features were needed or physical parts needed redesign. Figure Figure 2.1
shows how the Kanban board for Arduino software was set up to track features and
bugs. Limiting the number of WiP and tasks needed to be tested is a key structure of
Kanban. More information about Kanban and agile development is readily available
in software engineering textbooks Sommerville 2015.

Figure 2.1: Kanban board for Arduino Software

This project contains a lot of written software for its di�erent parts. Multiple languages
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are used, and some of the software was either worked on or used by multiple team
members simultaneously. A git repository was added to support the agile development
method further. Git is used for version control and collaboration. When features were
added or the bugs listed on the Kanban board were fixed, the changes were committed
to git. A public git repository also provides an easy code distribution for further work
and collaboration. The final commit to the Git repository is provided as a downloadable
ZIP file (Arnesen, Grinde, Hovland and Vestland 2021b). The software written in this
thesis is either shown in the chapters, provided in the appendix, or referred to the Git
repository, depending on size and importance.

Microsoft teams were used for communicating within the group for sharing files con-
nected to OneDrive. The combination between Git and MS teams allows for completely
remote work if the Covid situation demands it. It also ensures that each member is
always up to date with the latest code or figures. Bi-weekly meetings and communic-
ation with the thesis supervisor were also done using teams. For writing this thesis,
LATEX was used as the main word processing program. Like MS Teams and Git, this
enables the group to work on the same file simultaneously. LATEX also comes with Git
implementation for version control.

2.2 Research method

Developing a robot leg is a multidisciplinary task and requires many di�erent parts to
work together. An e�ort to divide the di�erent parts into separate functions was made.
This allowed the team to focus on individual tasks and narrow their research, and thus
the research method varies between the di�erent tasks. In general, an e�ort to use
primary or other high-quality sources was made. Some of the tasks were entirely
new for the team, and thus researching the basics was necessary. Other tasks were
based upon the knowledge already acquired from the Electrical engineering program
at NTNU.

2.3 HSE and Risk assessment

In the preliminary phase of the project, risk assessments concerning HSE and equip-
ment damage were assessed (Arnesen, Grinde, Hovland and Vestland 2021a). Having
a good grasp of the potential risks that may disrupt the project is essential to be able to
manage them as well as possible. Therefore, these risks were described and assessed
by probability and consequence. The electrical and mechanical risks addressed are
soldering, motor testing, 3D printing, and column drilling. The assessment of these
risks and risks concerning injury or regarding the COVID situation is included in the
preliminary project. In the end, the risk assessment done in the preliminary phase
was su�cient and well managed as there were no accidents, and COVID did not neg-
atively influence the project.
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Chapter 3

Design

3.1 Introduction

The design, fabrication and assembly of a physical robot leg involve planning for pro-
portions, material, assembly, and functionality. All these aspects must be taken into
consideration for the leg to be fully functional. This chapter will give an overview of the
design methods and choices made to meet the goals stated in the thesis statement.
An analysis of the biomimetic properties this thesis seeks to explore is also included.
The design of the individual parts will be explored, and the complete physical model
will be presented. Finally, an extensive discussion on the choices made during the
duration of the project will be conducted.
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3.2 Method and Equipment

3.2.1 Parametric modeling principles

The goal of parametric modeling is to enable editing important parameters without
having to do a complete redesign. In this project, the parametric model was imple-
mented to design every aspect of the robot’s leg and stand without having all the
precise measurements for every part and to ease changing dimensions later on. An
example of this is creating the slots for the captured nuts without having the width
or height of the nut. In Fusion 360, using a plugin to import and export user para-
meters (Autodesk 2021), the entire project was set up using one CSV database for all
essential and recurring parameters. This enables adjustments to be made in this one
database for use in all designs. The drawback or challenge with using this method is
that all di�erent designs must be opened and updated if a parameter is changed. This
also forces all group members to always import the database upon opening a new or
existing design to ensure the parameters are updated.

3.2.2 3D-printing

Most of the parts for the robot leg and stand were manufactured using additive man-
ufacturing in the form of 3D printing. This method involves adding thin layers of
molten plastics. In this project, polylactic acid (PLA) and polyethylene terephthalate
glycol (PETG) was used. PLA is an easy-to-use material with no dangerous vapors
during printing. This makes PLA a popular material for 3D printing. The downside
is that it is a brittle material that can easily break. The durability of PLA is also
low, making it less suitable for long-term use. The upside is that if parts break or
degrade beyond usability, they can easily be replaced since it is so readily available.
PETG is another plastic material that is perfectly safe for use. Compared to PLA, it
is both stronger and more durable for long-term use. However, when printing, it can
be a more di�cult product to handle since it is hygroscopic and will draw moisture
from the air. To avoid this, PETG should be stored in a dry box with some method of
desiccating the air. Before use, PETG should also be dried to increase the quality of
the print. Both of these precautions might not always be available at every printing
location, so the usage of PETG should be weighed against the risk if multiple tries is
not an option (Dwamena 2021).

3.2.3 Captured nuts

For both the leg and stand design, captured nuts were chosen to hold the parts to-
gether. This method enables the robot to be disassembled without wearing out the
plastic. The captured nut concept used in the links and other parts can be seen in
Figure 3.1. The first method involves having slots that the nut can be pushed into
sideways. This method is best for large parts where long screws would otherwise be
needed. The other method uses a recessed hole, with the same size as the nut, at
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the opposite side of the screw head. The screw then passes through both parts. This
method works best for thinner parts.

Figure 3.1: Captured Nut Design

3.2.4 Software

Name Description Documentation

A�nity Designer Vector design program A�nity 2021
Autodesk Fusion 360 3D modelling software AutoDesk 2021
Ultimaker Cura 3D-print slicer Ultimaker

2021b

3.2.5 Equipment

Name Description Documentation

Raise 3D Pro2 Plus Big format 3D-printer Raise3D 2021
Ultimaker 2+ 3D-printer Ultimaker

2021a
Ultimaker 2+ Extended 3D-printer with extended build-height Ultimaker

2021a

3.3 Results and Empirical Findings

3.3.1 Anatomical Analysis

As stated, one of the goals of this thesis is to design a setup that can test a four-dof
robot leg gait. An analysis of some quadrupedal animals was undertaken to determine
a set of possible link proportions, a. In our configuration, the di�erent links corres-
ponds to animal bones like stated in Table 3.1.
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Link number Animal counterpart
Link 1 Hip displacement
Link 2 Femur - Hip
Link 3 Tibia - Calf
Link 4 Metatarsal - Foot
Link 5 Phalanges - Toes

Table 3.1: Link and animal comparison

Two animals, feline (cat) and canine (wild dog), were chosen to have some options for
di�erent proportions. As seen in Table 3.2, the cat data (Gospodarek 2019) di�ers
little from the wild dog data (Hildebrand 1952). The two data sets use a di�erent
metric for the total length of the animal limb. The feline data includes phalanges,
while the canine source measures femur + tibia + metatarsal as the total length. With
the canine source missing data for phalanges, the cat proportions will be used going
forward with this thesis.

Animal Femur [%] Tibia [%] Tarsal and metatarsal [%] Phalanges [%]
Cat 32.9 36.43 20.09 10.59
Wild dog 39.6 41.9 18.8 -

Table 3.2: Proportions in percent of total leg length for cats and dogs

In this thesis, the flexibility of the phalanges is discounted. In cats, the phalanges
can bend over 180°. During a normal gait, the phalanges are pointed forward when in
contact with the ground. Therefore, it might be a good idea to add an angled part to
the end e�ector. This could enable the test bench to achieve a more natural gait.

Measurements on several images of domestic cats were done to find the proportions
for the base height. Using the ratios found earlier, the leg length to height proportion
was found to be 0.65.

3.3.2 Gait Analysis

It was decided to find some waypoints using motion studies for cats to get a good start-
ing point for the path and trajectory planning in Matlab. Using the same research
by Gospodarek used in the anatomical analysis (Gospodarek 2019), some waypoints
could be determined. Taking a picture from Gospodarek’s study (Figure 3.2), the relat-
ive lengths of the links were first measured. These measurements were then compared
to the proportions found in the anatomical analysis to find a proportional value for
y- and x-values that match the actual length of the robot. By measuring the three
longest links, finding the proportional value for each link, and taking the average, the
proportional value was found to be 2.14.
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Figure 3.2: Gait analysis - Finding angles and positions from slideshow of cat gait

In Figure 3.2, the position of the hip was approximated. Lines from the hip to the paw
and along the tarsal bones were added for each picture. Then trigonometry and the
Pythagorean theorem were used in combination with the proportional value was used
to find values for y,z, and ' in mm. No values for x can be found using this method,
as the analysis is in 2D. The result can be found in Table 3.3.

Waypoint 1 2 3 4 5 6 7 8

x [mm] 0 0 0 0 0 0 0 0

y [mm] 60 �60 �198 �344 �21 245 335 202

z [mm] �520 �520 �520 �520 �451 �477 �511 �520

' [deg] 48.9° 65.8° 86.9° 94.1° 55.1° 28.1° 28.8° 31.0°

Table 3.3: Gait analysis - Waypoints

The chosen angle for the phalanges would have to be taken into account to use this
set of coordinates and angles.

3.3.3 Robot Configuration

As shown in the section on the mathematical model, the configuration of the robot leg
is as shown in Figure 3.3. Here we can see the four actuators and the links and axis
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needed to model the leg correctly.

Figure 3.3: Robot-leg Configuration

Since almost all dimensions of this robot are found parametrically, the length of the
leg can be chosen arbitrarily. To keep the robot portable but still visually striking, a
total length for the leg of 800mm was decided. The total length of the links was found
using the proportions found in the anatomical analysis in Table 3.4.
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Link: Femur Tibia Tarsal Phalanges

Length [mm]: 263.2 291.44 160.72 84.72

Table 3.4: Actual link lengths

Degree of actuation

Since the configuration has three actuators in one plane and one in a perpendicular
one, the robot is under-actuated when looking at the complete robot. By looking at
the robot as a planer robot, the robot can be seen as over-actuated with only the three
outermost actuators.

3.3.4 Leg Design

The leg was designed around the possibility to change the length or proportions of the
leg. Therefore the link designs were made into separate pieces. This also simplified the
manufacturing process as the 3D printers available had limited printing volume. The
3D-print slicing parameters were tweaked with thicker walls and a higher percentage
of infill to get the most strength possible for each part. The orientation of the part
on the 3D-print build-plate was also considered. This was still limited by the time
restraints MAKE@NTNU has for each printing session.

Motor encoder cap

The motors only have an axle on one side, and the entire weight of the robot would
therefore rest on this one axle. A new plastic cap for the encoder was designed with
an axle to remedy this. This way, the weight could be distributed on both sides of
the motor. The axle and upper link were designed so that a good clearing would exist
between the parts. The parts experienced little friction but could be made smoother
by applying some dry lubricant, like graphite, to reduce it further. The end-cap design
can be seen in Figure 3.4.

Figure 3.4: Link Design - Motor encoder cap
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Upper link

The upper link connects the mounting hub on the motor axle to the middle link sec-
tion. This part was designed with a recessed hole to fit the mounting hub to minimize
the total width of the joints. Mounting holes were added to the bottom and backside
of the part to enable mounting both downwards pointing links: like the femur, tibia,
and end e�ector; and the backward-facing hip.

The biggest challenge with this part was printing it in a way that maximized the width
of each printed layer. The body of the part is 10mm thick, and the design includes 90°
angles. Therefore, angling the design 45° of the 3D-printers build plate will increase
the width of the layer from 10mm to about 14mm. This increase will help strengthen
the layer adhesion and, in turn, increase the strength of the part.

The clearance between the upper and lower link with the motor attached is quite small.
Therefore, a correct angle when mounting is needed together with a small amount of
force. The final piece is the bracket to lock the upper link to the end-cap axle. Since
the piece only measures 10mm, a captured nut solution was ruled out not to create
weak spots in the material. A solution where the plastic itself was threaded so that
the screw mated directly to the plastic was chosen. A chamfer was added to each side
of the mounting hub to ease the assembly of the part. A chamfer was also added to
the inside of the end cap axle hole. Both of these chamfers ensure that the part can
be mounted without bending or breaking. The design of the upper link can be seen
in Figure 3.5.

Figure 3.5: Link Design - Upper link
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Lower link

The lower link connects the motor to the middle link section. The reasoning behind
the design of the part is similar to that of the upper link. The main di�erence is that it
screws directly into the motor on one side and that the bracket goes around the body
of the motor. The bracket then helps to stabilize the joint and spread the load on the
part. The design of the lower link can be seen in Figure 3.6.

Figure 3.6: Link Design - Lower link

Middle link design

A simple, sleek design with a hollow center to facilitate neater cabling for the motors
and encoders was chosen for the links. Due to the hollow center, the design was
split in half so that the support structure needed in the 3D printing process could
be removed. Since the wires are entering opposite sides of the link, a single flipped
design could be used for both sides. Both the femur and Tibia links use the same
design but with di�erent lengths based on the proportions found in the anatomical
analysis. The finished design for the femur and tibia can be seen in Figure 3.7.
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Figure 3.7: Link design - Femur and tibia

The hip link is needed for connecting the base link with the rest of the leg. It needs to
do this without building too much in any direction. A design was made that would fit
within the dimensions of the joint pieces so that it would not impede any movement
of the leg. The hip design can be seen in Figure 3.8.

Figure 3.8: Link design - Hip
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End e�ector

The last link and end e�ector did not need a hollow center to accommodate any wire
harness. Therefore the parts were designed without the split used in the femur and
tibia designs. This change meant that the captured nut had to be inserted from the
outside of the design. This last link represents both the tarsal bones and phalanges
from the anatomical analysis. As stated in this analysis, the angle between the tarsal
and phalanges varies greatly at di�erent stages of the gait. Since the robot has this
as a fixed joint, the angle was set as a parameter in Fusion 360 together with the
length of both parts. This enables the printing of new parts with di�erent angles to
be printed for future testing. In the final prototype, this angle was set to 30°. On the
part where the end e�ector comes in contact with the ground, a 3.5 mm rubber sole
was added to increase the friction. The design of the end e�ector can be seen in Figure
3.9.

(a) Tarsal (b) Phalanges

Figure 3.9: Link design - End e�ector

3.3.5 Stand Design

The primary responsibility of the stand is to secure freedom of movement and stability
for the leg. It also serves as a platform for the electronic hardware used in this project.
In addition to 3D-printed parts, the stand consists of two sets of aluminum pipes, used
as reinforcement for the top plate and as legs for the stand, and four ball-casters to
allow the robot leg to move the stand. Each support leg is tilted 20° out diagonally
from the corners of the plateau. This enables greater maneuverability for the robot
leg by widening the area between the aluminum pipes and improving the stability of
the stand.
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Top plate

The top plate had to be designed so that the electronic hardware would fit neatly on the
plateau, as well as having easy wiring access to the leg. A 20⇥ 20 cm quadratic shape
was chosen as a reasonable build. To pull wires from the actuators to the drivers and
controllers, a rectangular 25⇥ 35 mm hole was placed at a logical location. The motor
drivers only had two mounting holes, so two rectangular extrusions were added as
support. To make sure the robot leg had a robust mounting point, an 18⇥ 4 cm metal
panel was added on the underside of the plate.

The top plate was printed in PETG due to being the component with the most mounted
parts, including 44 screw holes. This was done to compensate for the weaknesses
added by all the holes but also to add general strength and sti�ness. The design of
the top plate can be seen in Figure 3.10 and Figure 3.11.

Figure 3.10: Stand Design - Top Plate Top
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Figure 3.11: Stand Design - Top Plate Bottom

Plate to pipe connector

A connector to mount the aluminum pipes were added in each corner on the under-
side of the top plate. The connectors are linked with each other through additional
metal pipes, adding to the sturdiness of the stand. The lower part of the connectors,
mounted to the pipes, is tilted at a 20° angle diagonally outwards from the corners of
the plate. Each metal pipe is fastened with a screw and a captured nut. The connect-
ors themselves are mounted to the top plate using four screws and captured nuts.
The design of the connector can be seen in Figure 3.12.

Figure 3.12: Stand Design - Pipe Connector
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Caster to pipe connector

The connector between the ball casters and the aluminum pipe is angled 20° in the
opposite direction to the pipes. This allows the wheel to meet perpendicular to the
ground. The aluminum pipe and ball casters are both fastened using captured nuts.
The design of the connector can be seen in Figure 3.13.

Figure 3.13: Stand Design - Castor wheel connector

3.3.6 Complete Assembly

The robot leg and stand is assembled as shown in Figure 3.14. The leg is mounted to
the underside of the stand using a spacer to allow free movement of the first joint and
the metal plate mounted to the underside of the top plate.
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Figure 3.14: Complete Assembly - Leg and Stand Design

3.3.7 Order of operations

Due to the separate joint and link design and the use of captured nuts to connect
them, the entire design has a specific order of operations for the final assembly. An
example of this is that the joints need to be secured to the links before mounting
the motors. This is because the countersunk screws that mount them together rest
between the motor and joint after assembly. The mounting of the leg to the stand
requires the attachment of the base_link and hip to the top plate through the metal
plate. The rest of the leg has to be joined piece by piece, in no particular order, until
the assembly is complete.

3.3.8 URDF Export

To simplify creating a robot model to use in ROS and get an accurate simulation of
the model, a script to export a URDF file directly from Fusion 360 was used (Fischer
2021). A strict structure had to be followed, and all joints had to be either rigid,
rotating, or linear to use the script. A starting point had to be defined as "base_link,"
and all joints would have to fork out from this part. This structure prevents circular
links that could have broken the model. In this design, a spacer placed between the
top plate and robot leg was chosen as a natural base_link. The link tree would look
something like in Figure 3.15. Fusion 360 creates the moment of inertia matrices for
all components in its designs. By selecting the real-world material for each part, these
calculations can achieve better accuracy. How the robot model is implemented will be
presented in n chapter 7.
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robot

base_link

spacer

lower_link

lower_link_bracket

motor_assembly

motor

encoder_endcap

Figure 3.15: Part configuration-tree in Fusion 360

3.4 Analysis and Discussion

3.4.1 Anatomical and Gait Analysis

In an actual animal, the hip is a ball and socket joint. In robotics, this is considered
a spherical joint that needs three degrees of freedom to be emulated. As this robot
leg only has two, some natural motions are impossible. The same can be said for the
ankle and missing degrees of freedom. Even though this joint is not a ball and socket
joint, it is often modeled with three degrees of freedom to make all motion possible,
like the wrist. Finally, as proposed in the anatomical analysis, the phalanges angle
changes during the normal gait cycle, even modeling all phalanges as one means
adding another degree of freedom to the system.

All these extra degrees of freedom would add four more actuators to the leg, bringing
the total links in the Denavit-Hartenberg table to at least eleven. This would make the
mathematical model increasingly complex with the inverse kinematics hard to solve
and make the robot much heavier and bulky needing smaller actuators.

Creating four identical legs (two mirrored) and mounting them to a free-floating base
would be a logical goal for future research. This quadruped model would enable a
natural gait where the interaction between the legs and the body would come into
play. In addition, this would also complicate all mathematics and make a simple gait
analysis, like the one presented in this thesis, be less optimal. A simple visualization
can be seen in Figure 3.16.
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Figure 3.16: Quadruped robot visualization

3.4.2 Method of Mounting

It was considered using linear rails instead of a stand with wheels as support for
the robot early in the design process. A two-railed track with the robot leg in the
middle would probably require less 3D-printed material than a stand. The bulk of
the material would be the rails and a 3D-printed mount for connecting the leg. This
would give more stability to the robot, as there would not be any concern with the
level of friction in relation to ball casters or the possibility for the stand to tip over.

The rail-based solution eliminates any movement in the xz-plane, making the first
joint redundant. Sacrificing this degree of freedom would make this a two-dimensional
robot in terms of future work or research. In addition to expanding the robot’s freedom
of movement, the stand design requires less setup and is easier to carry. This improves
the ability of the robot to be used for educational and demonstrative purposes. Since
the goal of the thesis is to create a robot for future use in demonstrating and analyzing
gaits, the stand solution gives most options in poses and possible waypoints.

3.4.3 Leg Design

During assembly, it was discovered that the order of operations for mounting the leg
together meant that everything had to be assembled in a specific order. For example,
link_1 had to be connected to the base_link before the stand was connected. This
complicates the assembly process and makes swapping parts or taking the robot apart
harder.
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Upper link design

The upper-link design with the recessed hole for the mounting hub was one of the
designs that made this problematic. When the upper and lower links were properly
mated, only about 2 mm was set aside as clearance for the parts to move freely. This
clearance meant that there was too little space when putting them together. Manually
chamfering the edges of the recessed hole made this easier, but only so much plastic
could be removed before removing the outer shell from 3D printing. Later the entire
design was changed to the one presented in Figure 3.5. The old design can be seen in
Figure 3.17.

Figure 3.17: Link Design - Upper link, old design

When designing the parts, many measurements were taken from the supplier’s web-
sites. These measurements include the recommended through holes for the screws.
While these dimensions probably work as intended on metal, they were loose for this
project and introduced some play between the part and the mounting hub. There-
fore, the through holes were reduced in the new design to make the holes clamp tight
around the screw.

Lower link design

During testing, the force of the movement stripped the bracket threads that supported
the first actuator in the chain. A quick re-design (Figure 3.18) that increased the
contact area for the bracket and doubled the number of screws used was made. This
design still has threaded plastic, but it will hold temporarily, with the leg operating at
a lower speed. Finding a design that uses threaded inserts or captured nuts would
be advised for further work.
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Figure 3.18: Link Design - Lower link, new design

Asymmetric link design

When designing the link, the idea was to make it primarily symmetric, resulting in a
theoretical angle span of ±90° for the forward/backward motion of the hip and about
±15° for the sideways motion depending on the configuration of the other joints. The
rest of the joints have a theoretical span of ±125°. As the robot is meant to emulate a
four-legged biological animal, many of these angles would not be reached during nor-
mal gaits. Therefore a joint design where the span was not symmetric could increase
the angles available for the gait. An example of this is when the leg returns from the
point furthest back in the gait to the front. The current design gives less than 10 cm
clearance to the ground with both the knee and ankle joint contracted. By changing
the design to something asymmetric like in Figure 3.19, the span could be extended
to about 180° in the direction needed for the link.

Figure 3.19: Asymmetric link design
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Future work

Future expansion of the project could include sensory feedback on how hard the foot
is pressing down on the surface. This feedback would enable better control of how the
robot interacts with the ground and ensure that the robot gets enough friction when
moving. Adding this feature would mean redesigning the tarsal and phalanges parts
to facilitate the wires and placement needed for the sensor. This expansion is further
explored in subsection 6.5.8.

3.4.4 Stand Design

The design of the plateau ended up in a 20 ⇥ 20 cm quadratic configuration. These
dimensions were mainly chosen due to the physical limitations of the 3D printers. It
would be possible to increase the width of the plate by using a larger printer, making
room for more movement for the ✓2 angle on the robot. A larger top plate would also
make it easier to place the electronic components in an orderly disposition.

Another way to make more room for ✓2 is to increase the tilt of the pipe connector.
The current tilt of 20° allows for a rotation of ±17° for the leg on the xz-plane. This
flexibility is enough to turn the stand and enables two-dimensional motion on the
ground. A larger tilt could let it turn faster. However, if this angle is increased, the
stand support legs must be made longer for the robot base to remain at the same
height. Longer support legs increases the torsion force in the plate-pipe connector,
making it more prone to breakage. This again could be resolved by making a more
robust connector.

Caster wheels

The caster wheels were added to lessen friction between the stand and ground. The
balls in the casters rest on three ball bearings to reduce friction further. The casters
rotate freely when tested independent of the stand, but the weight of the stand seems
to introduce more friction making it harder to move. However, the wheels still reduce
the friction compared to having no wheels, so it is still a net positive. Reducing the
friction beyond the current level might need to be considered when the robot leg is
fully operational.

3.4.5 3D-Print and Material

Due to the number of parts, the single operational 3D printer at the department
would not have the capacity to print all the parts in the given time. Therefore most
of the parts were printed at MAKE@NTNU. MAKE have time restrictions of 6 hours
during the day and 16 hours for overnight printing. Many parts filled up the 16-
hour limitation even at lower settings, and some needed over 24 hours to print with
acceptable settings. Even with some special approval to print the most extensive parts
on weekends, most parts were sliced with settings lower than optimal. If the parts
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were remade or upgraded, thicker walls and thinner layers should be considered to
strengthen the model.

Another method previously mentioned is to angle the part on the 3D-printers build
plate. Angling the part is a good way to increase the strength of its layers, but it also
makes it more prone to printing failures and increases the print time significantly.
Because of this, only some parts were printed this way. This would also be an aspect
to consider if the parts were to be replaced. In the end, the final pieces printed were
printed on their sides so that the layers would line up with the longest sections of
the parts. This orientation seems to increase the strength beyond the 45° tilt used for
most of the parts. The di�erence can be seen in Figure 3.20.

A minor detail that can be seen on the finished physical model is that all parts are
printed in di�erent colors. The reason for this comes from printing most parts at
MAKE@NTNU, where the general rule is to use up any open filament spools before
opening new ones. This only has an aesthetic e�ect since the PLA filament in di�erent
colors should have the same properties. Future work could include painting the parts
or investing in filament for new parts if a more coherent color scheme is preferred.

Figure 3.20: Design on its side and tilted 45° on printer build plate

Other than the cost perspective, one of the main reasons for going with 3D-printed
parts is the weight of the final leg. The downside to this is that there is little control
over the physical properties of the robot. The layers in a 3d-printed part are a weak
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point that, on several occasions, caused parts to split during assembly. A better
solution for a project like this would be to cut the parts from nylon. Nylon parts
would require stronger motors since solid nylon has a greater weight than standard
3D-printed parts. Another option would be to completely design each part down to the
infill so that the inertia matrix for each link could more accurately be determined. By
3D printing and designing the links in separate parts, it would be easy to re-design
parts if needed. This will make things simpler when finding new actuators for the
robot.

The screws were fastened directly to the plastic for some of the connections. Making
threads in plastic can be challenging due to the plastic being soft. One of the holes
for the stando�s got stripped and had to be glued in place. For when captured nuts
could not be used, a better solution would be to use threaded inserts or stando�s with
threaded holes on each side and run a screw through the plastic from the other side.

Finally, the choice of plastics itself introduced non-planned issues. Even though PLA
is reasonably rigid, some flex was detected on the assembled model. This flex means
that that accurate angles will be hard to achieve. A stronger material like aluminum
could be chosen for some or all parts of the robot in conjunction with stronger actu-
ators.

3.4.6 Interdisciplinary Project

A large part of this project can be said to be interdisciplinary due to it including
parts from automation, electronics, industrial design, material, and mechanical en-
gineering. Therefore, if this project were to be repeated or built upon, this should be
considered. One way to do this is to have separate teams from the di�erent discip-
lines that would work towards improving their separate parts. Another would be to
have an interdisciplinary team that could see the whole scope of the project and thus
formulates a better way forward.

Involving more study programs would possibly prevent some of the issues that arose
during this project or at the very least mitigate the e�ects of said issues. For example,
students with material or mechanical background could run structural analyses to
determine the minimum thickness and infill for the parts. An industrial design stu-
dent could more easily design the parts and have the prerequisite knowledge to avoid
the strict order of operations that must be followed to assemble the robot leg. A fi-
nal advantage would be that each team member would work more closely with their
area of study so that their skill and knowledge in their field would better show in the
finished work.

3.4.7 URDF-Export

At the start of the project, the script used was fusion2urdf by Toshinori Kitamura
(Kitamura 2021). This script had some design specifications that had to be strictly
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followed. For example, the base link component had to be defined as "base_link,"
and no nested or linked components could be used. These limitations meant that all
designs had to be done in a single file and that only one person could edit the design
at a given time. A new version of the script, forked from the original, by Florian Fisc-
her, was found during the project that made nested and linked components possible
(Fischer 2021). This new script enabled a better workflow and the final file structure.
Unfortunately, during the work on the model, Autodesk updated how coordinates were
calculated in their API. The new method used to calculate coordinates meant that
the script used stopped working. This problem cost the project about 25 hours in
troubleshooting before the error was found. When asked, Fischer updated his script
to work with the changes and prevented further hours used to make a URDF model
manually.

The inertia matrices that Fusion 360 creates assume massive parts. This means that
the mass and CoM calculations will be wrong when 3D-printing with lower than 100

% infill. To counteract this, one could design all the infill directly in Fusion and then
print using 100 % infill in Cura. By doing it this way, one could also perform strength
analysis for each part in Fusion. Performing a strength analysis will enable possible
problems to be addressed before printing the parts.

Figure 3.21: Possible spring dampening system

3.4.8 Spring Dampening Addition

In animals, the hip is not at a fixed height. Therefore, it will move up and down during
the progress of the gait. The hip also cushions the force spike when the leg contacts
the ground. Because of this, a dampening system between the leg and stand could be
implemented like pictured in Figure 3.21.
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3.5 Chapter Conclusion

After the redesigns presented in the results and discussion were implemented, the
design of the robot satisfied all aspects of the project assignment. However, issues
still exist, and several improvements to the design are discussed. The robot has a
limited range due to the stand and the maximum range of movement for each joint.

As presented, the ability to export a URDF file for use with ROS has been a great help
and has meant that better visuals and physics for the simulation could be done. In
addition, designing the parts to be massive and not semi-hollow like the current parts
would improve the control over both the moments of inertia for the URDF export and
the general sti�ness of the robot.

Due to having 3D-printed most of the parts, the robot displayed more material flex
than wanted. Therefore, more robust materials or strengthening brackets should be
considered for further work.
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Chapter 4

Mathematical Model

4.1 Introduction

Mathematical expressions and algorithms can model and simulate a robot’s move-
ment. This chapter covers the theory and calculations of the mathematical frame-
work for the proposed robot leg design. The mathematical framework can be used for
more optimal control and simulation. The kinematics, path, and trajectory of the leg
will be calculated and visualized using Matlab combined with other tools. Finally, the
groundwork for future expansions will be laid down. This will involve finding more
optimal control and trajectory planning methods based on more advanced mathemat-
ical models. This chapter is heavily based on the lecture series by Anstensrud 2020a,
the books by Spong, Hutchinson and Vidyasagar 2006, Egeland and Gravdahl 2002;
and a paper on 3R kinematics by Kumar 2021.
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4.2 Method and Software

4.2.1 Method

This part of the project was completed using methods and knowledge acquired in
the electrical engineering study’s mathematics and robotics courses. The kinematics
will be found using trigonometry and matrix manipulations, along with conventions
and rules from the field of robotics. All parts of this chapter were implemented using
Matlab and imported toolboxes. This is also a part of the project where version control
was implemented with Git to safeguard against conflicting code.

4.2.2 Software

Name Description Documentation

MathWorks MATLAB Programming language and platform MathWorks
2021a

Robotics System Tool-
box

Functions for robot integration in Mat-
lab

MathWorks
2021b

4.3 Theoretical Framework

4.3.1 Rigid Transformation

Describing an object’s position and orientation given in a di�erent coordinate system is
useful in applications such as robotics. It is easier to describe the physical laws acting
on an object given in its own coordinate system and then transform it to the coordinate
frame of interest. One example of this is when describing the forces acting on an
airplane. An observer on the ground is in the center of the coordinate frame a placed
on the earth’s surface. Describing the forces on the airplane is done in coordinate
frame b, placed at the CoM for the airplane. If the observer wants to describe the
forces acting on the airplane in coordinate system a, a rigid transformation between
the coordinate systems is needed (Egeland and Gravdahl 2002).

Rotation

Describing a rotation in three dimensions is usually done by using a rotational mat-
rix, R 2 R3⇥3, with and a three-number representation. These three numbers can
represent the rotations roll �, pitch ✓, and yaw  , describing how the object rotates
around the x, y, and z-axis. The rotation matrix can be used to describe any rotation,
usually done by a multiplication of multiple basis rotations given by roll, pitch, and
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yaw:

R1(�) =

2

64
1 0 0

0 cos(�) � sin(�)

0 sin(�) cos(�)

3

75

R2(✓) =

2

64
cos(✓) 0 sin(✓)

0 1 0

� sin(✓) 0 cos(✓)

3

75

R3( ) =

2

64
cos( ) � sin( ) 0

sin( ) cos( ) 0

0 0 1

3

75

Every possible rotation can be described by the multiplication R1(�)R2(✓)R3( )

A vector v given in coordinate frame b can be described in coordinate frame a by the
rotation matrix R

a
b describing the rotation from a to b.

v
a = R

a
bv

b

Translation

A translation in kinematics refers to a rigid body’s movement along an axis i for a
distance di. The movement described in d is a vector consisting of the distance traveled
along the x-, y- and z-axis as shown in Equation 4.1.

d =

2

64
x

y

z

3

75 (4.1)

Homogeneous transformation

The complete movement of a rigid body can be described by a homogeneous trans-
formation matrix H. This matrix, shown in Equation 4.2, includes both the rotation
and translation to present a compact description of movement. (Anstensrud 2020d)

H =

"
R d

0 1

#
(4.2)

R 2 SO(3) d 2 R3⇥1

4.3.2 Denavit-Hartenberg Convention

The Denavit-Hartenberg convention is used to reduce the number of subsequent rota-
tions and translations needed to define the configuration of a robot. This convention
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also enables a shared reference point that makes the robot easier to understand for
people outside of the project group. The convention is based around a set of two
rotations and translations in a set order given by:

1. Rotation ✓ around the joints z-axis
2. Translation d along the joints z-axis
3. Rotation ↵ around the joints x-axis
4. Translation a along the joints x-axis

The order of rotation and translation along the same axis is arbitrary, but the order
with the z-axis first is set and needs to be followed to satisfy the convention. In
addition to the rotations and translations, there are two assumptions that need to be
fulfilled:

• DH1: The axis xi have to be perpendicular to the axis zi�1

• DH2: The axis xi have to intersect the zi�1 axis

If both these assumptions are fulfilled, the rotation and translations given above will
result in Table 4.1 which will then be a unique description of the robots configuration
(Spong, Hutchinson and Vidyasagar 2006, p. 68-78).

Link ✓i di ↵i ai

1 ✓1 d1 ↵1 a1

2 ✓2 d2 ↵2 a2

3 ✓3 d3 ↵3 a3

4 ✓4 d4 ↵4 a4

Table 4.1: Denavit-Hartenberg Table for an arbitrary system

4.3.3 World vs base frame

One concept worth diving into is the di�erence between world and base frame. The
world frame is a fixed point that does not move or rotate with the robot. The base
frame is sometimes called the robot frame and is the frame where the robot starts.
This frame will not move or rotate in reference to the robot but can move in reference
to the world frame depending on the type of robot. For example, for a robotic arm,
these two can sometimes overlap, but for a movable robot, the two frames will usually
move in relation to each other (Rust et al. 2018). A base frame will be used in this
project, and a possible world frame will be discussed.

4.3.4 Forward Kinematics

The forward kinematics of a robot refers to solving the position of the end e�ector
using the rotation and translation of each joint as parameters.

Development of Biomimetic Robot Leg with ROS Implementation Page 36



E2103 Bachelor thesis May 2021

Trigonometric method

For systems operating in two-dimensional movement, the easiest way to solve the
forward kinematics is by using trigonometric functions. Starting from the origin, one
has to calculate the end e�ector’s Cartesian x and y positions separately. The x value
is calculated recursively for n number of links along the horizontal axis from the origin,
shown in Equation 4.3.

x =
nX

k=1

ak cos(
i=kX

i=1

✓i) (4.3)

The y value is calculated using the same trigonometric logic but going in a vertical
direction using sine instead of cosine, shown in Equation 4.4.

y =
nX

k=1

ak sin(
i=kX

i=1

✓i) (4.4)

There is no general formula for calculating the forward kinematics of a three-dimensional
robot using trigonometric functions, but the same principles can be used. By using
the xy projection as a frame of reference combined with the use of Pythagoras The-
orem, the length of the robot in the projection can be defined as the radius r. This
radius can then be treated as one of the axes in an rz projection.

|r| =
p
a2 + b2 (4.5)

This method requires individual adjustments, and its complexity may vary according
to the robot’s configuration and the number of joints.

Matrix method

For three-Dimensional systems with multiple degrees of freedom, it is usual to solve
the forward kinematics using matrix calculations with the parameters from the DH-
table 4.1. This method establishes the homogeneous transformation matrix Ai for
each joint of the robot.

Ai =

2

66664

cos(✓i) � sin(✓i) cos(↵i) sin(✓i) sin(↵i) ai cos(✓i)

sin(✓i) cos(✓i) cos(↵i) �cos(✓i) sin(↵i) ai sin(✓i)

0 sin(↵i) cos(↵i) di

0 0 0 1

3

77775

Sequentially multiplying the A-matrices produces the matrix T describing the trans-
formation between the joints. For example, doing this with all the robot joints pro-
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duces the transformation matrix for the end e�ector given in the base frame.

T i =
n=iX

n=1

An (4.6)

The direct kinematics is derived from the transformation matrix’ last column, where
the three first elements correspond with the end e�ectors Cartesian coordinates (An-
stensrud 2020d).

2

64
T14

T24

T34

3

75 =

2

64
x

y

z

3

75 (4.7)

4.3.5 Inverse Kinematics

The inverse kinematics of a robot cover the conversion of Cartesian coordinates to joint
parameters. It can be quite a tricky task depending on the complexity of the robot.

Before calculating the inverse kinematics, the forward kinematics need to be determ-
ined. The kinematics will provide the equations needed to solve the joint parameters.

Although the forward kinematics is solved for one solution, the inverse kinematics
may have anywhere from zero to multiple, or even infinite, solutions depending on its
configuration. Multiple solutions are available because di�erent combinations of joint
values can produce the same coordinates for the end e�ector.

For example will a two-dimensional robot with two angular joints and identical links,
have the same end e�ector coordinates for ✓1 = ⇡

4 ✓2 = �⇡
4 and ✓1 = �⇡

4 ✓2 =
⇡
4

A set of coordinates outside the robot’s workspace will produce zero solutions for the
inverse kinematics. The inverse kinematics do not factor in physical obstructions.
These constraints must be taken into consideration when finding the solution.

Solving the position of the joint values usually requires the use of trigonometric iden-
tities, being more complex the more degrees of freedom the robot has (Anstensrud
2020e).

4.3.6 Velocity Kinematics

The velocity kinematics refers to the linear and angular velocity of the end e�ector
in relation to the velocities of the joints. Velocity kinematics are calculated using the
Jacobian matrix. The relationship between the body velocity ⇠ and state velocities q̇,
with respect to the Jacobian J is shown in Equation 4.8.

⇠ = J(q)q̇ (4.8)
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⇠ =

"
v
0
n

!
0
n

#
J(q) =

"
Jv(q)

J!(q)

#

J(q) 2 R6⇥n

The Jacobian matrix uses values from the transformation matrices. Hence, the direct
kinematics first need to be calculated. When the values needed are obtained, the
matrix is determined by following the steps shown in Equation 4.9 and Equation 4.10.

Jvi =

8
<

:
zi�1 ⇥ (on � oi�1) For rotating joint i

zi�1 For prismatic joint i
(4.9)

J!i =

8
<

:
zi�1 For rotating joint i

0 For prismatic joint i
(4.10)

The fully calculated matrix can then be multiplied with the vector of joint derivatives,
producing the body velocity matrix ⇠. A robot’s body velocity refers to the speed of the
end e�ector relative to its base (Anstensrud 2020f).

The process of finding the body velocity can be reversed to find the joints angular
velocities, although it requires an inverse Jacobian matrix which often does not exist.
For a non-square Jacobian matrix, the method of pseudoinverse matrices can be used
as shown in Equation 4.11. The calculation of a pseudoinverse matrix is beyond the
scope of this thesis but is explained in Krishna 2021.

q̇ = J(q)+⇠ (4.11)

4.3.7 Waypoints and path

A robot’s movement includes several positions it has to occupy to complete its cycle.
The positions described by the general coordinates q, or by Cartesian coordinates for
the end e�ector, translate to the di�erent waypoints. The sequence of these waypoints
is the path of the robot.

The planning of a robot’s path has to take into consideration its physical environment.
For example, there could be a risk of joints colliding with each other or other phys-
ical boundaries, causing material or human damage. It is therefore essential to take
precautions when choosing a robot’s waypoints (Anstensrud 2019).
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4.3.8 Trajectory

A robot’s trajectory refers to its movement, speed, and acceleration between waypoints.
For a robot moving on a path, an infinite number of trajectories can be generated
between each waypoint. Given the range of possibilities, it is not easy to find an
optimal trajectory.

One way to generate a possible trajectory is using a polynomial with limitations on
start and stop values. For example, a quintic polynomial allows for limitations for
angles, velocities, and accelerations at each waypoint, as well as the time duration
between waypoints.

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (4.12)

q̇(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (4.13)

q̈ = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 (4.14)

The equations can be solved with matrix calculations as shown in figure 4.1.

q0: start position qf : stop position
q̇0: start velocity q̇f : stop velocity

q̈0: start acceleration q̈f : stop acceleration
t0: start time tf : stop time

2

6666666664

1 t0 t
2
0 t

3
0 t

4
0 t

5
0

0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t

2
f t

3
f t

4
f t

5
f

0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f

3

7777777775

2

6666666664

a0

a1

a2

a3

a4

a5

3

7777777775

=

2

6666666664

q0

q̇0

q̈0

qf

q̇f

q̈f

3

7777777775

Figure 4.1: Trajectory equations expressed with matrices

With given start and stop values, the solutions produce functions with respects to time
for angle, velocity, and acceleration between the waypoints. These can be implemented
as references in possible control systems for the robot (Anstensrud 2019).

4.3.9 Lagrangian mechanics

Lagrange introduced analytical mechanics in his paper Mecanique Analytique (Lag-
range 1788). He provided an alternative way to derive the equations of motion based
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on algebraic operations, compared to the well-known Newton-Euler method based on
the vector formulation of Newton’s second law, called newtonian mechanichs. Newton-
Euler equations of motion are well documented and will not be discussed in this paper.
More information on the Newton-Euler formulation can be found in Spong, Hutchin-
son and Vidyasagar 2006. Lagrange’s formulation is based on kinetic T and poten-
tial P energy, which is of importance in control theory as many controller designs
are energy-based, (Egeland and Gravdahl 2002). Although the methods to derive the
equations of motion are di�erent. Newton-Euler and Euler-Lagrange derive equivalent
equations of motion. However, the Lagrangian approach is usually advantageous for
complex systems such as multi DOF robots.

The di�erences between the kinetic and potential energy are called the Lagrangian L
of the system, found by Equation 4.15. It is found as a term of generalized coordinates
(q1, ..., qn). The Euler-Lagrange equations of motion are then found using the Lag-
rangian. Deriving the equations of motion given in Equation 4.16 is well documented,
such as in Egeland and Gravdahl 2002 and will not be done in this thesis. ⌧ repres-
ents the generalized forces associated with its generalized coordinate. An example of
a generalized force is motor torque. Unconstrained Lagrange results in a second-order
ordinary di�erential equation.

L = T (q̇, q)� V (q) (4.15)

d

dt

✓
@L(q, q̇)

@q̇

◆
� @L(q, q̇)

@q
= ⌧ (4.16)

4.4 Results and Empirical Findings

4.4.1 Denavit–Hartenberg Parameters

Due to the chosen design, extra frames are needed to explain the orientation and
placement of the joints. The complete Denavit–Hartenberg table can be seen in Table 4.2.
Link 1 describes the rotation from a natural xyz-coordinate system to the starting
point for the robot, which has the z-axis pointing backward. Links 2 through 5 de-
scribe the links between where the actuators are placed, and ✓

⇤
2�5 are the actuator

angles. Link 6 describes the rotation needed to have the final z-axis point out through
the tip of the end e�ector, and link 7 describes the final translation to the end e�ector
tip.
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d ✓ a ↵

1 0 0 0 ⇡
2

2 d2 ✓
⇤
2 � ⇡

2 a2 �⇡
2

3 0 ✓
⇤
3 a3 0

4 0 ✓
⇤
4 a4 0

5 0 ✓
⇤
5 a5 0

6 0 ✓6 0 �⇡
2

7 d7 0 0 0

Table 4.2: Symbolic Denavit Hartenberg table for this specific configuration

The link lengths are described by a2�5, d2 and d7 where the variables correspond to
the physical model as follows:

a2: Hip height
a3: Femur
a4: Tibia
a5: Tarsal
d2: Hip length
d7: Phalanges

In this list, "hip-length" is the distance between joint two and three along y0, "hip
height" is the distance between the same joints along z0. As can be seen from the
Denavit–Hartenberg table and Figure 3.3, the base of the robot floats in mid-air. This
means that all Cartesian coordinates must be given in relation to this floating base
frame. As can be seen in the Denavit–Hartenberg table, ✓6 has not been defined. In
this thesis, this angle is given as ✓6 = ⇡

3 , but can be changed in future research. This
angle represents the bending of the phalanges and, as discussed in the anatomical
analysis, is not fixed in normal gaits.

4.4.2 Forward Kinematics

Matrix method

Using the method described in the theory part of this section, the A and T matrices,
given the robots Denavit-Hartenberg parameters, could be calculated. To do the cal-
culations some simple functions were created in Matlab that created A-matrices for
a given link (Code snippet F.1), one that created all A-matrices for the configuration
(Code snippet F.2), and a function that returned all T -matrices from base frame to
each joint (Code snippet F.3). All functions were coded so that all configurations would
be calculated correctly, and any changes made to the configuration would not break
the code. The resulting A-matrices can be seen in Figure 4.2 and the T -matrices in
Figure 4.3.
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A1 =

2

66664

1 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 1

3

77775
A2 =

2

66664

sin(✓2) 0 cos(✓2) a2 sin(✓2)

� cos(✓2) 0 sin(✓2) �a2 cos(✓2)

0 �1 0 d2

0 0 0 1

3

77775

A3 =

2

66664

cos(✓3) � sin(✓3) 0 a3 cos(✓3)

sin(✓3) cos(✓3) 0 a3 sin(✓3)

0 0 1 0

0 0 0 1

3

77775
A4 =

2

66664

cos(✓4) � sin(✓4) 0 a4 cos(✓4)

sin(✓4) cos(✓4) 0 a4 sin(✓4)

0 0 1 0

0 0 0 1

3

77775

A5 =

2

66664

cos(✓5) � sin(✓5) 0 a5 cos(✓5)

sin(✓5) cos(✓5) 0 a5 sin(✓5)

0 0 1 0

0 0 0 1

3

77775
A6 =

2

66664

cos(✓6) 0 � sin(✓6) 0

sin(✓6) 0 cos(✓6) 0

0 �1 0 0

0 0 0 1

3

77775

A7 =

2

66664

1 0 0 0

0 1 0 0

0 0 1 d7

0 0 0 1

3

77775

Figure 4.2: A-Matrices for robot configuration with symbolic calculations

Both the A- and T -matrices are shown symbolically with the parameters described in
the section on Denavit–Hartenberg Parameters. When using these functions to find
the position of each joint and end e�ector, real values for the current configuration
were inserted. As far as possible, all functions were created to calculate everything,
both symbolic and with real values.
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T 1 =

2

66664

1 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 1

3

77775
T 2 =

2

66664

s2 0 c2 a2s2

0 1 0 �d2

�c2 0 s2 �a2c2

0 0 0 1

3

77775

T 3 =

2

66664

c2c3 �s2s3 c2 s2(a2 + a3c3)

s3 c3 0 a3s3 � d2

�c2c3 c2s3 s2 �c2(a2 + a3c3)

0 0 0 1

3

77775

T 4 =

2

66664

s2c34 �s2s34 c2 s2(a2 + a3c3 + a4c34)

s34 c34 0 a3s3 + a4s34 � d2

�c2c34 c2s34 s2 �c2(a2 + a3c3 + a4c34)

0 0 0 1

3

77775

T 5 =

2

66664

s2c345 �s2s345 c2 s2(a2 + a3c3 + a4c34 + a5c345)

s345 c345 0 a3s3 + a4s34 + a5s345 � d2

�c2c345 c2s345 s2 �c2(a2 + a3c3 + a4c34 + a5c345)

0 0 0 1

3

77775

T 6 =

2

66664

s2c3456 �c2 �s2s3456 s2(a2 + a3c3 + c34 + a5c345)

s3456 0 c3456 a3s3 + a4s34 + a5s345 � d2

�c2c3456 �s2 c2s3456 �c2(a2 + a3c3 + a4c34 + a5c345)

0 0 0 1

3

77775

T 7 =

2

66664

s2c3456 �c2 �s2s3456 s2(a2 + a3c3 + a4c34 + a5c345 � d7s3456)

s3456 0 c3456 a3s3 + a4s34 + a5s345 + d7c3456 � d2

�c2c3456 �s2 c2s3456 �c2(a2 + a3c3 + a4c34 + a5c345� d7s3456)

0 0 0 1

3

77775

Figure 4.3: T -Matrices for robot configuration with symbolic calculations

Trigonometric method

A trigonometric approach to calculate the forward kinematics of the robot was first
used. Two projections were used to simplify the calculations. As seen in Figure 3.3,
the first actuator works at a perpendicular direction compared to the rest and was
therefore isolated in a xz projection as seen in Figure 4.4. From this, equations for x

(Equation 4.17) and z (Equation 4.18) could be found using the length of the leg r in
its current configuration and the angle of the first actuator: ✓2.
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x0

z0

r✓
⇤
2

✓2

zc

xc

Figure 4.4: Forward Kinematics - xz-projection

x = r ⇤ sin(✓2) (4.17)

z = �r ⇤ cos(✓2) (4.18)

By removing the ✓2 calculation from the rest of the joints, the robot can now be pro-
jected in the yr-plane where r is the direction the leg is pointing from Figure 4.4. This
projection leaves a configuration with three unknown angles in a two-dimensional
plane as seen in Figure 4.5.

r

y0

r

yc

✓
⇤
3

✓
⇤
4

✓
⇤
5

�✓6

�

'

d2

a2

a3 a4
a5

d7

Figure 4.5: Forward Kinematics - yr-projection

Some of the angles in the yr-projection need to be explained as they are not that
intuitive.

': The angle between the ground and the robot end e�ector as defined in the gait
analysis.

�: The angle of the end e�ector as defined in the physical model (used for the r

length calculation).
�: The angle between the r-axis to the end e�ector (Used for finding ✓?5).
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Due to the rotation on link 6 in the Denavit-Hartenberg table, the angle ✓6 gets defined
di�erently than ✓3�5. Since ✓6 is defined negative due to the rotational direction, the
relationship between ✓6 and � is like stated in Equation 4.19.

� =
⇡

2
+ ✓6 (4.19)

An expression for the length r of the robot in the current position could then be de-
termined as seen in Equation 4.20.

r = a2 + a3cos(✓3) + a4cos(✓3 + ✓4) + a5cos(✓3 + ✓4 + ✓5) + d7cos(✓3 + ✓4 + ✓5 + �) (4.20)

The same method could then be applied to finding an expression for y as seen in
Equation 4.21.

yc = �d2 + a3sin(✓3) + a4sin(✓3 + ✓4) + a5sin(✓3 + ✓4 + ✓5) + d7sin(✓3 + ✓4 + ✓5 + �) (4.21)

4.4.3 Inverse Kinematics

The inverse kinematics for this robot was calculated using a method described by Vijay
Kumar (Kumar 2021). Using Figure 4.4 an expression for the actuator angle ✓

⇤
2 can

be calculated as seen in Equation 4.22. Due to the rotation on link 2, this angle will
have to be modified to ✓2 = ✓

⇤
2 � ⇡

2 for plotting purposes.

✓
?
2 = atan2(xc, zc) (4.22)

In the yr-plane, there are three unknown angles and only two expressions. The known
angle ' from the gait analysis will have to be used to solve the inverse kinematics. This
angle can be represented by the equation ' = �(✓3+✓4+✓5+✓6). The inverse kinematics
equation for ✓3 is calculated in Equation 4.23.

✓
?
3 = � ± cos

�1

 
�(r02 + y

02 + a
2
3 � a

2
4)

2a3
p
r02 + y02

!

where

� = atan2

 
�y

0
p
r02 + y02

,
�r

0
p

r02 + y02

!

y
0 = yc + d2 + a5sin('+ ✓6)� d7sin(

⇡

2
� ')

r
0 = rc � a2 � a5cos('+ ✓6)� d7cos(

⇡

2
� ')

(4.23)
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Combining the ' expression with the ones for r (Equation 4.20) an y (Equation 4.21) and
reordering them for sinus or co-sinus expressions containing ✓4 gives the opportunity
to use the inverse tangent function to find ✓4 as in Equation 4.24.

✓
?
4 = atan2

✓
y
0 � a3sin(✓3)

a4
,
r
0 � a3cos(✓3)

a4

◆
� ✓3 (4.24)

Now that expressions for ✓3 and ✓4 have been found, a reordering of the equation for
' gives the solution for ✓5 as given by Equation 4.25.

✓
?
5 = �('+ ✓3 + ✓4 + ✓6) (4.25)

In Matlab, both the inverse kinematic results for a given Cartesian position of the
end e�ector and a set of waypoints were needed. Code snippet F.5 implements the
equations listed for ✓2�5 and returns a momentary DH-table for the current posi-
tion. By using momentary DH tables, the same plotting function can be used to
visualize the robot in starting position and all momentary positions. Code snippet F.6
takes all Cartesian waypoints and uses the inverse calculation function to convert the
Cartesian waypoints to angular ones.

The complete calculations for forward and inverse kinematics using trigonometry can
be seen in Appendix G.

4.4.4 Velocity Kinematics

A function (Code snippet F.4) was created to calculate the Jacobi matrix. As stated,
the Jacobi matrix can be used to find the inverse kinematics for the robot by finding
its pseudo inverse. This was done by taking advantage of the built-in function pinv()
in Matlab. To implement this, one would have to find expressions for the linear and
angular velocities for the end e�ector in the base frame. By only looking at movement
along the y-axis and setting a constant velocity, this could be achieved by using the
projection in Figure 4.6. In this figure, the yz-axis is the base frame of the robot, and
the value b is the height from the ground to the first joint. y0 and y1 is the start and
stop point for the end e�ector, and the red line between them is the desired linear
path.
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y0

z0

b
✓

y1 y0

Figure 4.6: Linear and angular movement

Using trigonometry and finding the derivative gives expressions for linear velocity in
the y0 direction and angular velocity around the x0 axis (Equation 4.26).

ẏ(t) =
y1 � y0

tlim

✓̇x =
y1 � y0

btlim

⇣
1
b2

⇣
y1�y0
tlim

t+ y0

⌘
+ 1
⌘

(4.26)

Taking these expressions and inserting them into the column vector for body velocity
⇠ while setting the other values as zero allows calculating the angular velocities for all
joints. This work was not implemented for the simulations in Matlab but is included
in the code presented in the git repository (Arnesen, Grinde, Hovland and Vestland
2021b).

4.4.5 Path planning

Waypoints

The Cartesian waypoints from the gait analysis are used as a path for the trajectory
planning of this robot. Using a function (Code snippet F.6) that implements the in-
verse kinematics, the matrix of Cartesian points are converted to angles for further
calculations. A visual control plot was generated for the robot pose in each waypoint
to uncover possible problems (Figure 4.7).
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Figure 4.7: Robot plotted for each waypoint generated

Trajectory

The trajectory is solved in Matlab using quintic polynomials described in the theory
section. One value was given for the velocity limitation in each waypoint to simplify the
calculation. Since the angles might be going in both positive and negative rotational
direction and even change direction in a point, a function (Code snippet F.12) was
created to fix the sign of the velocity. This function would check the direction of
movement and give the velocity a negative sign if the movement was negative on both
sides of the waypoint. If the movement changed direction, the velocity was set to 0

rad/s to avoid overshoot.

A function that takes in the start and end parameters for angle, time, velocity, and
acceleration and creates a symbolic expression with respect to time was made, (Code
snippet F.7). The function sets the values for velocity or acceleration to zero for the start
and end parameters if the function does not receive its values. The function returns
expressions for angle, velocity, and acceleration. Another function (Code snippet F.8)
was made that takes in all waypoint angles created by the inverse kinematics waypoint
function (Code snippet F.6) and a list of time limits that each trajectory must adhere
to. It has two optional input variables for the start and end values for velocity and
acceleration. This function uses the trajectory function to return a matrix of symbolic
expression for all trajectories, for all joints on the path.

Finally, the symbolic expressions are fed into a function (Code snippet F.9) with the
time limits and a variable to set the number of time steps between each via points
for plotting. This function returns a matrix where each row contains a list of joint
angles for that specific joint. It also returns a timeline that contains the correspond-
ing timestamp for each angle. Plotting the angle (Figure 4.8), velocity (Figure 4.9) and
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acceleration (Figure 4.10) for each actuator enables spotting impossible angles or un-
wanted responses for velocity and acceleration. In this simulated gait, all waypoint
velocities were set to 0 rad
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Figure 4.8: Actuator angles for complete gait cycle
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Figure 4.9: Actuator velocities for complete gait cycle
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Figure 4.10: Actuator accelerations for complete gait cycle

4.4.6 Plotting Functions

Several functions were created to visualize the results from the calculations. Code
snippet F.10 takes in a momentary DH-table and runs it through the T and A mat-
rix functions. From the T matrices, it gets the Cartesian position of all links in the
DH-table. Link two has to be plotted separately to accommodate the hip design of
the robot. The configuration is plotted in a simple "stick-figure" presentation of the
robot leg. To analyze the resulting gait Code snippet F.11 was created. This function
takes in the original DH-table and base height in addition to the discrete angles and
timeline created by Code snippet F.9. The animation function then runs through the
timeline, creates a momentary DH-table for each time increment, and uses the plotRo-
bot function to draw the momentary configuration. Then the plotted image is stored
in a vector, and the plot is cleared when starting a new cycle. When the process is
completed, the vector is saved as a MPEG-4 video file.

4.4.7 System dynamics

As discussed in subsection 4.5.5, modeling the dynamics of this system is rather com-
plex. Looking at a simplified model of the system allows for the use of well-known and
more trivial modeling principles. For demonstration purposes, the leg was modeled
as a robot manipulator attached to a base frame, represented by the hip’s connection
to the supporting system as presented in chapter 3. Modeling dynamics for robotic
manipulators are well documented. The method used in this chapter is based upon
the principals from Spong, Hutchinson and Vidyasagar 2006, Freidovich 2017 and
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Egeland and Gravdahl 2002.

The simplified system contains four rotary joints connected to rigid body links. A
vector of generalized coordinates q represents the angle of joint i, denoted as qi. The
four rotary joints are q

⇤
2...q

⇤
5, while the other joints in Equation 4.27 are fixed.

q =

2

666666666664

q1

q
⇤
2

q
⇤
3

q
⇤
4

q
⇤
5

q6

q7

3

777777777775

. (4.27)

The kinetic energy of a link will be given by its angular velocity !i and the linear velocity
vi, both given by the Jacobian matrices previously found. Ii is the moment of inertia.
By substituting ! and v with their linear combination of the time derivative given by
the Jacobian matrices, we find the kinetic energy. Velocities and moments of inertia
are given around the CoM. The Lagrangian of the system is then found by evaluating
Equation 4.15. Kinetic and potential energy are found using physical properties such
as the moments of inertia and the kinematics of the robot. The moments of inertia
are provided in the Matlab section in the git repository.

The kinetic energy of a link will be given by its angular velocity !i and the linear
velocity vi, both given by the Jacobian matrices previously found. Ii is the moment of
inertia. By substituting ! and v with their linear combination of the time derivative
given by the Jacobian matrices, we find the kinetic energy. Velocities and moments of
inertia are given around the CoM.

T =
1

2
miv

2
i +

1

2
miIi!

2
i (4.28)

vi = Jvi(q)q̇ (4.29)

!i = J!i(q)q̇ (4.30)

The generalized coordinates and their derivative then give the total kinetic energy of
the leg.

T =
1

2
q̇
T
M(q)q̇ (4.31)
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M(q) =
nX

i=1

[miJ
T
vi
(q)Jvi(q) + J

T
!i
(q)IiJ!i(q)] (4.32)

M is the n⇥n symmetric mass matrix and is positive definite, (Egeland and Gravdahl
2002).

The potential energy of a rigid link will only be given by gravity. As the Lagrangian
states, the potential energy is only given by the generalized coordinates q and not their
derivative q̇.

V (q) =
nX

i=1

[migipi(q)] (4.33)

Where:

• m is the mass for the link
• g is the gravity vector
• p is the CoM coordinates given by the direct kinematics

The Lagrangian of the robot leg is then found by Equation 4.34, and the equations of
motion can then be calculated from Equation 4.16.

L =
1

2
q̇
T
M(q)q̇ � V (q) (4.34)

It can be shown that for any robotic manipulator and in general for a mechanical sys-
tem with kinetic energy in the same form as Equation 4.31. That the generalized forces
acting on the joints and thus the equations of motion can be written as Equation 4.35,
(Spong, Hutchinson and Vidyasagar 2006).

⌧ = M(q)q̈ +C(q, q̇)q̇ + g(q) (4.35)

Where:

• g is the gravity vector
• C is the matrix of centrifugal and Coriolis e�ects
• M is the mass matrix given by Equation 4.32

As discussed in subsection 4.5.5 fully calculating the equations of motions is a bit out
of the scope of this thesis. More information on how to calculate the C matrix is avail-
able in textbooks, such as Spong, Hutchinson and Vidyasagar 2006 and Freidovich
2017. A Matlab template for calculating the equation of motion and the contents of
the moments of inertia matrices is presented in the Matlab section of the Git hub
repository.
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4.5 Analysis and Discussion

4.5.1 Denavit–Hartenberg Parameters

As stated, the chosen configuration places the robot floating in the air with all Cartesian
z-coordinates being negative. A d1 translation corresponding to the distance from the
ground to the stands base link could be added to ground it. This would enable setting
values in relation to the ground when making paths. In this thesis, it was decided
that using the floating base frame was the most intuitive. If this were to change with
future use, a simple edit to the Denavit–Hartenberg, inverse kinematics and plotting
functions in Matlab would be needed. For the forward kinematics, Eq 4.18 would have
to be updated to accommodate this.

4.5.2 Velocity Kinematics

In this project, the Jacobi matrix was calculated but only used for an alternative in-
verse kinematics route that was not implemented. However, it was essential to include
as most future work regarding model-based controllers and simulations depends on
it. Also, the alternative inverse kinematics solution could help make a simple linear
Cartesian movement without having to replace large portions of the code.

Path and trajectory

As mentioned, the desired path is found by mimicking the domestic cat. The para-
meters for timing, velocity, and acceleration are, on the other hand, arbitrarily chosen
to create a smooth gait in simulations. If the future goal for the robot is a more biomi-
metic gait, further gait analysis and other algorithms for calculating the trajectories
are needed.

Another aspect of biomimicry is that the leg is not connected to an actual body. This
means that the hip joint does not move with the motion of the complete animal. Some
of this could be improved by implementing the spring dampening system discussed in
the design chapter (section 3.4). However, this still does not completely make up for
the moving body.

Linear trajectories

As can be seen in Figure 4.11 the quintic trajectories for the angles do not take the
ground into account. As the ground in this configuration is set at �520 mm, the end
e�ector will attempt to either dig into the ground or lift the stand.
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Figure 4.11: End e�ector coordinates for complete gait

As discussed in the design chapter, if the spring dampening system were in place,
this would probably remove some if not all of this e�ect. This trajectory would either
mean that the end e�ector has di�erent friction to the ground at di�erent parts of
the trajectory. If the linear Cartesian trajectories described in the section on velo-
city kinematics (subsection 4.4.4) were implemented, the curved movement could be
eliminated, and constant friction could be achieved.

Impossible configurations

Since the trajectory planning uses quintic polynomials with only start and stops para-
meters for angle, velocity, acceleration, and time limits. This means that no minimum
and maximum values for the angles or Cartesian coordinates are given. The resulting
trajectories could include collisions with either the ground or the robot itself. As the
robot is currently controlled with ROS, this is not a problem as ROS has built-in col-
lision avoidance and uses other kinematics solvers. If future work moves away from
using ROS as a trajectory planner and implements more advanced control in Matlab,
this would have to be addressed.

4.5.3 Trajectory Optimization

As discussed, the leg configuration and gaits planned in this thesis are based on an-
imal’s biomimetic properties, specifically the cat. However, gaits planned by solving
an optimization problem would provide a more optimal gate for a given robot con-
figuration and set constraints. Furthermore, a discussion can be made that a cat’s
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gait is the same as the optimal solution due to evolutionary properties. For robot
locomotion, finding a gait that minimizes motor torque or follows other constraints
is usually preferable. Solving optimization problems for trajectory planning is out of
the scope of this thesis but will be briefly discussed for further development in the
following section.

Planning a gate based on an optimization problem, formulated as a nonlinear program
(NLP), requires knowledge about the dynamic and kinematic model, which are not
found in this thesis. Solving a nonlinear optimization problem can be done using an
NLP solver and constraints to describe the desired outcome. Simplifying the problem
is usually done to reduce commuting time as the field of possible optimal solutions
shrinks. For example, these simplifications can limit the rotation and height of the
base link so that jumping or rotating solutions are not included. Initial guesses can
also be made for the same purpose. The hybrid system presented in this thesis would
require a multi-phase trajectory due to contact points. Solving hybrid systems such
as this is usually done by collocation methods such as implicit Runge-Kutta. More
information on this topic can be found in Nocedal and Wright 2006 and how it may
be used for optimal control is presented in Aksel N. Heirung 2016.

4.5.4 Code optimization

Functions were created to do most tasks so that no unnecessary lines were repeated.
This also simplifies the code. Since the algorithm involves running through many
large for-loops involving large matrices and symbolic calculations, the code’s run time
can get quite extensive. Even after optimizing with preallocating all variables, the
code takes several minutes (including plotting) from desired waypoints to symbolic
expressions for trajectories using eight waypoints for the complete gait. Since only
the angles for the four actuators are changing during the gait, the functions could be
optimized for this specific robot by only feeding these angles into the various functions.
This would reduce the momentary values from a 7⇥ 5 matrix to a 4⇥ 1 column vector.

In addition to the big momentary DH-table, the base height was, as described, not
included in the original DH-table. This meant that the base height would be fed into
every function that visualizes the robot. By adding a line to adjust the logical desired
z value from the base frame to the world frame, the DH-table could be completed with
the base height included. This would involve updating all the plot functions but would
result in a more streamlined code.

4.5.5 Hybrid systems

Modeling the system dynamics is needed for simulation and allows for the implement-
ation of model-based controllers, discussed in chapter five. Accurately modeling the
complete system introduces complexities that are not very trivial to solve and out of
the scope of this thesis. In subsection 4.4.7 the system was simplified as a robot ma-
nipulator. This simplification was made to present an overview of how to approach
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modeling the dynamics of a robot leg. If model-based controllers are to be implemen-
ted in further work on this project. The principles described can be used as a baseline.
Literature on this topic is also presented. A brief overview of the di�erent properties
needed to be included in the model will be discussed.

The robot leg, with its support system, is a hybrid system. A hybrid system has to be
modeled as a discrete model with a continuous mode and a discrete mode. A simple
example of a hybrid system is a bouncing ball, where the ball has a continuous mode
between each bounce; however, when the ball touches the ground, the model under-
goes a discrete change. In this case, the model will change when the leg touches the
ground. This can be described as a "contact problem" at z = 0. Conditions like this can
be calculated from the kinematics and implemented in software. Modeling and simu-
lating friction can also pose a problem. The model used in this thesis will have friction
between the ground and both the wheels and leg. Successfully detecting a change in
the model, including jumps from static to dynamic friction in the simulation scheme,
is necessary. If the step-time is not small enough around these discrete changes, the
simulated system will not behave properly. The controller for a hybrid system would
also need to be hybrid, and this could introduce problems when transitioning between
modes. E�ects of linear and angular motion on the supportive system were also not
addressed in subsection 4.4.7. A more detailed explanation of mathematical modeling
and control of a hybrid robot leg system is presented in Sobotka 2007.

4.5.6 Experimental modeling

When the system dynamics are unknown experimental modeling can be used to es-
timate transfer functions. The unknown transfer functions can be modeled as black
boxes with output and input. Performing impulse or step responses on the input of
this black box will give a measurable response to the output signal. There are dif-
ferent methods to estimate transfer functions for these responses. The impulse and
step method are described in Hveem and Bjørvik 2014. Measuring how the system
responds to changes in input frequency could also be used to plot a bode diagram,
which can be used to estimate a transfer function.

Experimental modeling is not done in this thesis due to the e�ciency of the PID
controller and due to properties of the dynamical system. These properties include
a hybrid model with an inconsistent gravity force, Coriolis e�ects, and centrifugal
forces on the joints that would cause inaccurate models when not operating within
a small constraint area. Trying to model all the cross-coupling in this MIMO system
would become quite cumbersome and not very e�cient. This is further discussed in
subsection 5.3.1.

4.5.7 Physical simulation in Matlab

Matlab includes some powerful packages for working with robotics. This includes
a toolbox that would enable importing the URDF generated in Fusion 360, adding
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physical properties, and simulating the drive train (MathWorks 2021b). Using this
package, one could synchronize the Simulink model with Gazebo in ROS so that the
controller in Matlab would directly work with the physical model. This would just
show the physical model mimicking the simulated one and presents no feedback from
the real system. The imported model for the complete quadruped can be seen in
Figure 4.12. Another option for this would be to set up Matlab as a ROS node so that
measured values could be fed back into Matlab. Then the controllers in Matlab would
send the control signal back to the motor drivers through ROS. Either way, doing
a completely simulated model in Matlab and Simulink would have been a great way
to figure out problems before building a physical model and would have helped with
choosing the actuators needed.

Figure 4.12: Imported URDF in Matlab

4.6 Chapter Conclusion

The mathematical model created includes the forward and inverse kinematic, path
and trajectory planning, and proposed velocity kinematics for the robot configuration.
It also contains a description for further modeling.

The complete calculation successfully plans and plots the trajectories between set
waypoints and allows for time, speed, and acceleration limitations. This includes
inverse kinematics from Cartesian waypoints to angles, trajectory planning between
actuator angles, and forward kinematics for plotting and simulation.

Alternative inverse kinematics using body velocity are explored but not implemented.
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This would allow for linear Cartesian movement of the end e�ector. Modeling the
system dynamics is also explored but not fully completed.

By importing the URDF file generated in Fusion 360, a model of a complete four-
legged robot was implemented. This enabled visualizing the robot using the same
calculations done before. The toolbox used for this also includes tools for modeling
the physical aspects of the actuators and how gravity would a�ect the robot.

In the end, as presented in the control chapter, the mathematical model was not used
in the controller implementation. However, the completed work lays the foundation
for more optimal control and simulation. Further work could elect to use Matlab as
a node for ROS to enable the position and speed controllers to run directly in the
program.
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Chapter 5

Control

5.1 Introduction

For a robot leg to track a planned trajectory, it is necessary to control each joint. The
inverse kinematics previously found provides the di�erent angles necessary to reach
a specific point. A gait, or a trajectory, will consist of di�erent points to move through.
This is discussed previously. Controlling the joints reliably to follow the trajectory for
each state will make the robot execute the planned gait. This chapter will assume
that the reader has a general understanding of control theory and the PID controller.
However, some core concepts will be briefly explained to make it easier to follow the
more advanced topics and reasoning behind the di�erent choices. The theoretical
framework is readily explained in textbooks that cover general control theory, e.g.,
Hveem and Bjørvik 2014. Based on what is presented in this chapter, the results
of the fully implemented control system will be provided in the main results, as it is
dependent on multiple parts of the project.
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5.2 Theoretical Framework

5.2.1 Feedback Loop

In control theory, a negative feedback loop provides the di�erence between a target
and the measured value. The measured value can be a signal from a sensor, or it can
be estimated based on the mathematical model. The negative feedback loop is the
core principle behind many di�erent control strategies, such as the PID controller. A
general example of how the feedback loop is implemented in control systems is shown
in figure 5.1.

Figure 5.1: Negative feedback loop

5.2.2 PID

The PID controller works by implementing a feedback loop and consists of three dif-
ferent components, which can be described by breaking down the summation form of
the PID. The three components are; proportional, integral, and derivative.

upid = up + ui + ud (5.1)

In the time domain, the PID continuously calculates an error given by the feedback
loop. This error e(t), is then used to calculate the P , I, and D terms, which adds up
to the actuating signal u.

The proportional term multiplies a constant Kp with the error.

up = Kpe(t) (5.2)

The Integral term multiplies the integral of the error with a constant Ti.

ui =
Kp

Ti

Z t

0
e(⌧) d⌧ (5.3)
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The derivative term only considers the error rate and multiplies it with a constant Td.

ud = TdKp
de(t)

dt
(5.4)

The proportional constant is used to tune how quick the response will be. The in-
tegration constant is often tuned to get rid of the steady-state error. The derivative
constant is usually tuned to reduce overshoot by limiting rapid changes when the er-
ror rate is significant. A simple illustration of how these terms change the response
of a unit step on the setpoint is shown in Figure 5.2. Note that the parameters are not
tuned to achieve any specific response.
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Figure 5.2: PID illustration

5.2.3 Pole Placement

A pole placement controller is a form of full feedback control that uses the system’s
states instead of its output(s) to control the system dynamics. The controller is imple-
mented by adding a feedback loop and a gain matrix. Implementing a pole placement
controller is only possible if the system is controllable, meaning the control signal can
reach all possible states. Equation 5.5 shows how the gain matrix k is found, using
the system matrix A, the signal matrix B, and the desired closed-loop poles P . A
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system with a state feedback controller is shown in figure Figure 5.3

P = |�I � (A�Bk)| (5.5)

u = �kx

r

kx

Step

u x 

Process

x y

Sensor
y

k

Figure 5.3: State feedback controller

The pole assignment is what decides the desired performance. There are di�erent
methods to determine the poles. For example, a practical solution for a faster closed-
loop response is to set the desired poles 2 � 5 times the system poles. (Anstensrud
2020b)

In instances where some of the systems states can not be measured, the implementa-
tion of an estimator is required. The estimator runs parallel to the process using input
and output values to estimate a state x̂ in real-time. A system with a state estimator
is shown in Figure 5.4, (Anstensrud 2020c).
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Figure 5.4: State Estimator, (Anstensrud 2020c)

5.2.4 Linear-Quadratic Regulator

The theory presented in this chapter is found in Douglas 2019 and more comprehens-
ively in kwakernaak 1972, chapter 3.

Although the method of deciding poles for a state feedback controller is easy to use, it
is not a method usually implemented for optimal control. An LQR is a more suitable
method to find an optimized gain matrix, using a cost function instead of placing poles.
The cost function shown in Equation 5.6 accounts for performance and actuator e�ort
and decides an optimal gain based on the weighted priorities. Q and R represent the
weighted performance and actuator e�ort respectively of the controller.

J(u) =

Z 1

0
[xT (t)Qx(t) + u

T (t)Ru(t)]dt (5.6)

x(t) refers to the trajectory for the system states. For robot movement, it is gener-
ally generated by solving an optimization problem. Since Q is a scaling matrix, the
weighted priorities to each state can be decided. A higher value in a state’s respective
element produces a faster convergence and better trajectory tracking.

The R matrix is also a scaling matrix, which size depends on the number of inputs u.
This makes it possible to decide the level of e�ort in each actuator. Higher values in
the R matrix entail less actuator e�ort.

Finding the gain matrix in an LQR is a simple process in Matlab using the function
>> k = lqr(A,B,Q,R)
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5.2.5 Digital Control Systems

Complex systems often consist of analog components and digital computers. A digital
computer allows for more complex and re-programmable behavior. Communication
between analog and digital components works by using DACs and ADCs. These are
converters that convert between digital or analog signals. When sampling a continu-
ous signal, the signal is replicated as a sequence of numbers in the discrete domain
Z. Where Z = e

sT .

Converters

When supplying power to electrical machines, the most common method used to con-
vert a discrete signal is PWM. PWM is done by rapidly changing between the max
output and zero. How rapid the signal is changing is given by the period time T , and
the proportions between on and o� are given by the duty cycle D. Using a high PWM
frequency will make the electrical machine operate as if it were a smooth signal due
to the machines’ inductive traits.

Most digital computers used in control systems have an integrated DAC. In the Arduino
boards, the DAC is realized by the successive approximation method. The success-
ive approximation method consists of a binary search. A comparator compares the
bytes of the signal from the DAC converted by an ADC with the original digital signal.
This method is a quick converter as long as the input signal is constant during the
converting cycles.

Sampling and time delay

Sampling time is an important topic when it comes to digital systems. The sample
time describes how rapidly the digital system is sampling the analog signal. Sampling
can be done by a sample and hold circuit, which introduces additional dynamics in
the system. An example of this is the zero-order hold which holds the value over one
sample interval, with dynamics represented by FZOH .

FZOH =
1� e

�Ts

s
(5.7)

Having a su�cient sampling time is necessary to avoid problems with aliasing. A
su�cient sampling frequency is given by the Nyquist-Shannons sampling theorem.
Stability in the Z domain is also largely dependent on a su�cient sampling frequency
due to the traits of the Z transform. In practice, the sample time is determined by the
computing cost and the speed of the CPU. A comprehensive treatment of digital signal
processing is a bit beyond the scope of this thesis. For more information on this topic,
please refer to textbooks about digital signal processing such as (McClellan, Schafe
and Yoder 2018).

Digital control system introduces additional time delay into the system, which can
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cause stability problems. This time delay is entirely dependent on the sampling time
h. A simplified but practical method to find an approximate value for the additional
time delay based on the padé-approximation is described in Hveem and Bjørvik 2014.

⌧controller = 1.5h (5.8)

The constant 1.5 accounts for the calculation time as well as the speed of the ADC and
DAC converters.

5.2.6 MIMO Systems

Multiple-input and multiple-output systems have more than one input variable or
more than one output variable. MIMO systems often complicate the control due to
cross-couplings. Cross-couplings describe how the di�erent process variables inter-
act with each other. When one setpoint is changed, every other process variable with
cross-coupling to that variable will change. As a result, each controller will then ob-
serve a more complex system, which can make robust control di�cult. A decoupling
filter may be introduced to help fix this. However, implementing a decoupling filter re-
quires knowledge of how the variables interact with each other. Model-based methods
like RGA and singular-value analysis can be used to describe the couplings. These
methods can help to decide on which inputs or outputs to remove for more robust
control.

Figure 5.5: MIMO system
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5.2.7 Closed Loop Response

When tuning a controller, a specific response for the closed-loop system is usually
desired. In control theory, we often chose between a fast response with overshoot,
called a second-order response, or a slower response without overshoot, called a first-
order response. A stable second-order response is described by a complex conjugate
pair in the left-hand plane and a first-order by reel poles.

5.3 Discussion and Results

5.3.1 Choice of Controller

When choosing the controller for the robot leg, the PID and LQR controller were eval-
uated. The PID controller was selected due to the di�culty of modeling the system
dynamics for the hybrid system discussed in subsection 4.5.5. Using a PID control-
ler allows for easy implementation in digital control systems and does not require
an accurate dynamic model of the system. The joints are controlled by independent
joint PID control. Position control of a brushed DC motor is an integrator by nature,
and the controller should not need an additional integrator to avoid steady-state error
from a unit step at the setpoint, (Hveem and Bjørvik 2014). However, an integrator
was necessary for avoiding steady-state error due to significant disturbance.

Independent joint control trivializes the multivariable system. Trying to model it as
a nonlinear MIMO system would make it unnecessarily complicated. For example,
the cross-couplings in a robot leg, given by the equations of motion, are rather com-
plex. The equations of motion and the nonlinearities are described in subsection 4.4.7.
When controlled by independent joint control, the cross-couplings are represented
by a disturbance. The controllers are then tuned separately to suppress this dis-
turbance. The integration term of the controller counteracts the disturbance, which
mainly consists of the gradient of the gravity vector. Figure 5.6 shows a block diagram
for independent joint control of a given motor.

Figure 5.6: Block diagram for independent joint PID
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5.3.2 Discrete PID

In this thesis, a digital PID controller was used, programmed in the Arduino Language.
A digital PID was achieved by discretizing the equations given in the time domain. This
was done by substituting t ! nT . Where:

• T = sampling time
• n = n-th time step.

Applying this substitution directly to equation 5.2 gives a discrete equation represent-
ing the proportional term.

up(nT ) = Kpe(nT ) (5.9)

Representing an integral in discrete time can be done by a summation. By using
backward di�erence, the integral in equation 5.3 was written as a summation and
implemented in the digital controller.

ui(nT ) =
KpT

Ti

n�1X

k=0

e(kT ) (5.10)

The derivative term can be expressed discreetly as the change between two time-steps
over the sample time. Applying this to equation 5.4 gives a discrete derivative term.

ud = TdKp
e(nT )� e((n� 1)T )

T
(5.11)

When implementing a digital PID controller, it is common to add extra features to
make it more robust. One of these is anti-windup on the integrator. Anti-windup
stops the integrator when the control signal has reached its maximum or minimum
value. Successful implementation of anti-windup prevents windup in the integrator,
which would worsen the control. How windup on the integrator worsens the control by
introducing additional delay for a response is illustrated in Figure 5.7. Implementing
a filter for the derivative term of the PID is also commonly done. However, in this
thesis, incremental encoders were used. Sensor data from incremental encoders are
not noisy, and thus a derivative filter is not necessary. The working principles of
incremental encoders are discussed in subsubsection 6.3.7.
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Figure 5.7: Windup

5.3.3 Controller Tuning

When tuning the controller, the target was a first-order response with a fast rise time
and no overshoot. This response gave the best results when tracking a trajectory. Not
having overshoot eliminated some of the jerk as setpoints got updated along the tra-
jectory. The controller parameters were first tuned using the Ziegler-Nichols method
on the brushed DC-Motors without load (Hveem and Bjørvik 2014). ZN gave a good
starting point for further tuning. The system dynamics were unknown when tuning
the controller. This limited the use of other tuning principles that use either a Trans-
fer function or some other system model, like the SIMC method. When the load was
attached and the robot fully assembled, the step-response method was used (Hveem
and Bjørvik 2014). The ZN method is unpractical for the assembled robot due to the
risk of links colliding and losing control when the system is close to unstable or if it
became unstable during testing and could not be used. The parameters were manu-
ally tuned to give the desired first-order response with little overshoot by comparing
the two methods.

Controlling velocity was done by ramping the setpoint instead of having a large step
every time it was updated. The desired speed determines the rate at which the setpoint
is ramped. This desired speed is planned alongside the position by the trajectory
planner. By tuning the controller to follow the ramped setpoint, the result is a smooth
gate without sudden jumps at setpoint updates. The response from this controller,
implemented in a digital control system described in chapter six, is presented in the
main results.
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Chapter 6

Embedded Systems

6.1 Introduction

An embedded system is a microprocessor-based system with integrated memory and
peripheral devices that are built to control a function or range of functions, and are
not designed to be programmed by the end-user in the same way that a PC is (Heath
2003). It is estimated that ninety-eight percent of produced microprocessors are used
in embedded circuits and only 2 percent in computers, (Barr 2021). Embedded sys-
tems usually control physical operations through the use of an embedded machine.
In complex embedded systems, communication between the di�erent microprocessors
or the outside world is done using peripheral devices. This project’s embedded system
controls four brushed DC motors using incremental encoders and the Arduino plat-
form, which communicates with ROS running on a PC as described in chapter 7. This
chapter will cover the necessary theoretical framework to understand the implemented
embedded system, its flaws, and the reasoning behind the di�erent decision.
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6.2 Research Method and Equipment

6.2.1 Method

The knowledge and methods acquired during the electric circuit analysis, electronics,
and computer technology classes were used to design and program the electronics
in this chapter. In addition, further research was conducted for topics that went
beyond the scope of these curricula. All parts were connected using spring-loaded
connectors or soldered together. The programming was done using Visual Studio
Code while compiling, and upload was done using Arduino IDE. Version control was
done through Git.

6.2.2 Equipment

Name Description Documentation

Arduino Mega Arduino 2021a
Arduino Nano Arduino 2021b
Assorted Wires
Capacitor, 460 µF, 16 v
Mean Well power sup-
ply

24 V, 400 W Mean Well 2021

Metcal MX-500 Soldering station Metcal 2021
Pin headers
Pololu Dual G2 High-Power Motor Driver 24v14 Shield

for Arduino
Pololu 2021b

Pololu 37D 24 V, 150:1 Metal Gearmotor with 64
CPR encoder

Pololu 2021a

Pololu mounting hub Universal Aluminium Mounting Hub for
6mm Shaft, M3 Holes

Pololu 2021c

Protoboard
Schottky diode, bat43

6.2.3 Software

Name Description Documentation

Arduino IDE Arduino 2021c
DIYLC Layout creator DIY Fever 2021
Gears App Gear design program by Drive Train

Hub
Drive Train
Hub 2021

Visual Studio Code Microsoft 2021
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6.2.4 Arduino libraries

Name Description Documentation

DualG2HighPowerMotorShield Pololu 2020
EEPROM Arduino 2021d
rosserial Purvis et al.

2021
stdlib Michalkiewicz

and Wunsch
2017

Wire Arduino 2021e

6.3 Theoretical Framework

6.3.1 Actuator Types

Brushed DC-motors

In a simplified form, brushed DC-motors consist of a rotor, a stator, and brushes that
enable an electrical connection to the rotor through a commutator ring. The stator
is made up of either permanent magnets or coils that produce a magnetic field when
a current runs through them. The stator encloses the rotor so that the rotor can
rotate within the magnetic field. The rotor consists of one or more wire loops that
make a complete circuit through the brushes connected to the motor driver. The
current running through the rotor windings creates a magnetic field on its own. The
two magnetic fields generate a force on the rotor perpendicular to the stator magnetic
field and, in turn, creates a rotating movement. Slits in the commutator ring enable
the current direction to change so that continuous rotation can be achieved. This
mechanical connection introduces the problem of wear on the motor. In industrial
settings, the brushes would have to be changed and the commutator ring cleaned
to ensure optimal performance. Due to this, brushed motors have been changed for
brushless types in many applications. The brushed motors are often cheaper than
the alternatives. The cost, combined with less complex driver systems, makes it an
option in some situations (Umans 2013).

Brushless DC-motors

The working principle behind the brushless DC motor is the same as for the brushed
variant. The main di�erence is that the rotor windings are replaced with perman-
ent magnets in a brushless DC motor. This makes the brush and commutator ring
obsolete. As a result, the stator of this type of motor often has many more winding
pairs, and the moving magnetic field is controlled by powering the stator coils in a set
pattern (Moreton 1999). Thanks to this configuration, many brushless DC motors are
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designed with the rotor outside the stator. This is called an outrunner motor in op-
position to the traditional inrunner configuration. This outside rotating configuration
has become popular in drone and robot designs. One example of this type of motor is
the actuator designed for MIT’s Cheetah robot (MIT 2021).

Stepper motors

Stepper motors are designed with the same principles as the brushless DC motor.
Several stator coils are used to control the position of the permanent magnets in the
rotor. The di�erence is that stepper motors are designed to hold the rotor in a set
position, where the brushless variant is designed to make movement between the
poles smoother. This gives the stepper motor a stronger hold torque. Stepper motors
have been used in walking robots and o�er good accuracy in terms of joint angle. The
accuracy is limited to the number of coils in the stator, but using half steps, where
two coils are powered simultaneously, doubles the number of steps per rotation. Due
to the actuator design, the stepper motor is prone to slipping if the torque nears the
torque limits. An encoder to measure the angle is therefore often used as an additional
measurement. The torque of the stepper motor drops as the speed increases, making
it unsuited for high-speed applications (Freimanis 2021).

Servo motors

Servo motors are brushed or brushless motors with a built-in encoder providing a
feedback loop to work with angles instead of rotation. This paragraph, however, will
deal with the type of servo motors with a built-in feedback loop and regulator. These
types of actuators are popular in hobby projects as angle-regulation is done auto-
matically. They are also often used in spider-/insect-like robots like the MX-Phoenix
by Zenta Robotic Creations (Halvorsen 2021). Due to having all controllers internal,
these servos only take in a PWM signal that gives the desired angle, and the controller
does the rest. Most common servos do not have feedback outputs providing the actual
angle (Hughes and Drury 2013).

6.3.2 Back Driven actuators

Back-drive-ability is the ability to turn the motor axle when the motor is not powered.
This can be from the mechanical load on the motor itself or from external manipu-
lation. This ability can be both positive and negative depending on the robot’s area
of use. Back-drive-ability can prevent the robot from reaching its desired Cartesian
coordinates but can also prevent damage to the robot and to humans in contact with
the robot. A high gear ratio will make back driving harder to achieve (Sol 2021).

6.3.3 Braking

Braking involves locking the motor in its current position and can be done mechanical
or electrical. Mechanical braking involves applying friction by pressing two plates
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together or by having teeth locking the parts together. Both these methods usually use
a spring-loaded or magnetic mechanism to engage (Dragone 2021). Electrical braking
involves reversing the function of the motor and turning it into a generator. The energy
can either be burnt o� as heat in resistors or used to recharge batteries. Electrical
braking is used more in electrified transportation and not so much in robotics (Mohan,
Undeland and Robbins 2002). As mentioned in the back-driven actuators section, a
high gear ratio will make the actuators hard to rotate. This comes from the friction
created between the gears and will therefore vary by the type of gear and the gear ratio.
The high gearing used in this project can mimic a braking system but not completely
replace it. One of the more common usages of braking in robotics is to lock the robot
in place if the power cuts out, preventing the robot from collapsing (Dragone 2021).

6.3.4 Gearing

Gearing is used for increasing or decreasing the speed of a connected motor. The
torque a motor can deliver is proportional to the gear ratio, meaning that a high gear
ratio will enable the motor to deliver more torque. Di�erent gear types exist that have
varying properties pertaining to size, max gear ratio, e�ciency, and backlash. In this
section, the theory for some of the more common types used in rotational joints will
be presented.

Backlash

Theoretical, no gaps are needed between the teeth of connected gears. However, man-
ufacturing tolerances and needed room for lubricants between the gears ensure that
all traditional gears have some gaps. The rotational play between the gears is called
backlash and can lower the accuracy and precision of the angles wanted for each
actuator (Jelaska 2012).

Spur gears

Spur gears are the most common type of gear and what most people would picture
when imagining a gear. The teeth, or cogs, run along the outside or inside of the gear
wall. The teeth run perpendicular to the gear face. An example of spur gear with the
teeth on the outside can be seen in Figure 6.1a. Spur gears are noisy due to the teeth
colliding head-on and can cause problems with vibration. (Jelaska 2012).

Helical gears

Helical gears are designed much like spur gears, with the teeth manufactured with
an angle to the gear face. Due to this design, the teeth of a helical gear join together
gradually along the width. This means that the helical gear creates less noise and
vibrations than a spur gear. An example of a helical gear can be seen in Figure 6.1b
(Jelaska 2012).
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(a) Spur gear (b) Helical gear

Figure 6.1: Di�erent gear designs

Planetary gear train

A planetary gear train (or epicyclic gear train) consists of a central spur or helical gear
called a sun gear. In robotics, this is usually the gear connected to the motor. Several
"planetary" gears of the same type as the sun gear are connected together by a carrier
that forces equal spacing around the sun gear surrounding the central gear. Then sits
a ring gear that holds the planetary gears in place. Where the output is connected
varies between the planetary carrier or the ring gear depending on the application.
The gear train can be seen in Figure 6.2a. This type of gear train can achieve higher
e�ciency than many other designs (Jelaska 2012).

Harmonic gears

Harmonic gearing (or strain wave gearing) is an alternative to planetary gears. This
type has a central hub and outer ring (annulus) like the planetary gears but no sun
or planetary gear. Instead, the central hub is connected to an oval piece called a wave
generator. Then a flexible toothed rim, with fewer teeth than the annulus ring, is
added between the wave generator and the stationary annulus ring gear. Ball bearings
are placed between the flexible rim and the wave generator (Figure 6.2b). When the
wave generator rotates, it pushes the teeth of the flexible rim into the outer gear.
Because the wave generator has fewer teeth than the annulus ring, the rim rotates
to hit the outer gears. This creates a high gear ratio and close to zero backlash on
the flexible rim. The output axle is often mounted directly to the flexible rim (Jelaska
2012).
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(a) Planetary gear train (b) Harmonic gear drive

Figure 6.2: Di�erent gear drives

6.3.5 Inter-Integrated Circuit

The I2C bus is one of the most well-known and simple serial communication methods.
The bus consist of a clock (SCL) and a data (SDA) line, pulled up with resistors. It
allows for communication through a Master and Slave setup. The master node gen-
erates the clock and initiates communication with slaves, and the slave node receives
the clock and responds when addressed by the master. This bus connection allows
for four di�erent communication modes on the bus.

1. Master transmitting to a slave node.
2. Master receiving from a slave node.
3. Slave transmitting to master node.
4. Slave receiving from the master node.

Each message starts with a START condition and the slave address and ends with
a STOP condition. In addition to the SDA and SCL pin, the signal ground should be
shared for devices on the same bus. I2C communication is best suited for short-range
connections (Heath 2003).

6.3.6 Serial Peripheral Interface

The SPI bus is another well-known communication protocol. Like the I2C bus, it has
a clock (SCLK) and a data line for the master to slave (MOSI). However, it also consists
of lines for communication to master from slave (MISO) and slave select (SS). Having
di�erent lines for communication from master to slave and slave to master enables
SPI to send data in a continuous stream, making it faster than protocols that send
data in packages. In addition, the slave select line makes addressing the slaves easier.
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SPI communication is suited for systems that require higher speed than the I2C bus,
(Campbell 2021).

6.3.7 Encoders

Incremental Encoders

The incremental encoder, often called a rotary encoder, is a cheap and simple encoder.
It provides changes in position through two output signals, Pulse A and Pulse B. The
pulses are generated by having encoder discs like in Figure 6.3a, where sensors detect
the gaps in the concentric rings. The absolute position can be tracked through the use
of an incremental encoder interface. The encoder reports changes in position nearly
instantaneously and is well suited for high-speed applications that require precision.
The phase di�erence between Pulse a and Pulse B determines the direction of rota-
tion. A di�erence of +90° indicates clockwise rotation and �90° counterclockwise. The
frequency indicates the velocity. The resolution of an incremental encoder is specified
in pulses per revolution (PPR) (Craig 2021).

Alternative Encoders

An alternative to incremental encoders is to use absolute encoders. An absolute en-
coder has rings laid out on the encoder disc in a way to represent bits in binary or
Gray code (Figure 6.3b). This way, one would always know the angle of the actuator
without having to start at a known angle like for an incremental encoder. However,
the accuracy of an absolute encoder depends on the number of encoder rings. This
means that this encoder can become too big if higher accuracy is needed (Craig 2021).

(a) Incremental encoder disc with two chan-
nels

(b) Absolute binary encoder disc with 4 bit ac-
curacy

Figure 6.3: Di�erent gear drives
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Another alternative is to use a continuous potentiometer connected to the motor axle.
By connecting the middle terminal to the microcontroller’s analog input, and posit-
ive supply and ground to the others, one can read a binary value representing the
absolute position of the actuator. The accuracy of this solution depends on the bit
resolution of ADC used in the microcontroller.

6.3.8 Arduino Platform

The Arduino platform is based on AVR ATmega microcontrollers equipped with di-
gital and analog input/output pins. It features serial communication interfaces. The
boards also have built-in memory such as flash for firmware uploaded by its boot
loader and EEPROM support. The boards are programmed using the "Arduino lan-
guage" which is a standard API that uses C and C++. The internal clock speed of
the ATmega chips used in the Arduinos is 8 kHz, but the boards are equipped with
external 16 kHz crystals to double the processing speed.

Arduino Nano

The Arduino Nano (Figure 6.4a) has 22 digital and 8 analog pins. It has a 32 kB flash
memory to store programs and has a single RX/TX serial port.

Arduino Mega

The Arduino Mega (Figure 6.4b) has more digital pins (54) and analog pins (16) than
the Nano. It also has more flash memory (256 kB) for more extensive programs. In
addition, the Mega has the possibility for 4 RX/TX serial ports.

(a) Arduino Nano (Arduino 2021b) (b) Arduino Mega (Arduino 2021a)

6.3.9 EEPROM

Electrically Erasable Programmable Read-Only Memory is an integrated circuit that
consists of a re-programmable ROM. EEPROM is a non-volatile memory that allows
bytes to be stored even when power is lost. Bytes are stored by using Floating-Gate
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transistors witch keep their charge unchanged for long periods without current con-
nected. Writing to the EEPROM is slower than other memory types like flash. Flash
memory has a higher speed but is limited to around ten thousand writing cycles.
EEPROM has a longer lifetime, often as high as one million cycles. Higher lifetime
makes the EEPROM more suited to store a small number of parameters and history
that changes more frequently. Both flash and EEPROM have an unlimited amount of
reads, (Williams 2014).

6.4 Results and Empirical Findings

6.4.1 Embedded circuit schematic

The robot’s electronics are laid out as seen in Figure 6.5 where the Arduino Mega is
the communication hub that connects ROS to the motor drivers and Arduino Nano
slaves. The communication between the Mega and the Nano controllers is done via
the I2C protocol. Here the SDA and SCL lines marked are in green and yellow in the
schematic. The motor drivers are running directly from the Mega, and each motor
encoder is connected to its separate Nano.

Figure 6.5: Embedded circuit schematic

The Arduino Mega comes with a mounting hub and has female headers already moun-
ted, while the Nano comes with male headers. Therefore, each Nano was fitted to a
protoboard that contains the controller, power bu�er, and headers for connectivity.
Two sets of two boards are stacked as seen in Figure 6.6.
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Figure 6.6: On-board electronics

Since I2C requires all units connected in parallel, a bus for SDA, SCL, and 5 V and
ground were pulled from the Mega through all protoboards to simplify cabling. By
powering all Nano boards and encoders from the Mega’s 5 V output, only the USB
cable are needed to power the controllers. The complete wiring for the Nano boards
can be seen in Figure 6.7.
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Figure 6.7: Arduino Nano circuit board

The motor drivers are powered through an external 24 V power supply, and the power
ground is kept separate from the signal ground. The positive wire from the power
supply is wired through an emergency stop (not in the schematic) so that the ac-
tuator power can be cut if anything goes wrong. The emergency stop was mounted
temporarily to the power supply as seen in Figure 6.8 to easy transport.
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Figure 6.8: Power supply and emergency stop

6.4.2 Actuators

Due to budget constraints, the range of available motors was very limited. After some
searching and deliberation, the decision was made to go with brushed gear motors
with built-in incremental encoders. 150 : 1 geared 24 V motors were bought from Pololu
(Pololu 2021a) to have the best chance of getting strong enough motors. Unfortunately,
these motors turned out to be too weak to drive the two first joints reliably. During the
testing, two of the motors were damaged and could not be used further. Both ended
up with the last gear in the gear train being damaged, and one of the motors burnt
out. The actuators were then re-arranged so that the damaged actuators were placed
as the first two actuators. As a result of this, no movement in the first joints could be
used from this point on.

6.4.3 Embedded Controller

The purpose of the embedded controller is to actuate the embedded DC motors using
motor drivers. The Arduino library for the motor drivers was used to set the output
calculated from the discrete PID algorithm described in subsection 5.3.2, including
anti-windup for the integrator. PID control calculated e�ort based on joint position
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feedback. Because the DC motors all share the same properties, an actuator class
was created. This class is a general actuator class and should work for other motors
as well. It supports set & get functions to access the individual private values of the
objects and a PID algorithm. The full properties of the class can be inspected in Code
snippet D.1 and Code snippet D.2. An array containing four actuator objects was cre-
ated. This made it possible to access the di�erent objects in a structured manner, and
independent joint control was implemented by computing PID while looping through
the list. The essential of this code is shown in Code snippet 6.1. This algorithm only
shows how the e�ort is set to actuator 1. Since each motor driver supported two ac-
tuators, a separate if-statement had to be made for all four cases. More details can
be found in Code snippet D.4.

Code snippet 6.1: Creating a object list used to control the four actuators

1 Actuator actuators[4] = {Actuator(8), Actuator(9), Actuator(10),

Actuator(11)};

2 void controllActuators(Actuator actuators[]) {

3 for (int i = 0; i < numActuators; i++) {

4 actuators[i].readAngle(); // Stores angle from encoder

5 actuators[i].computePID(); // Comute pid and store output

6 if ( i == 0) { // Set speed to motor 1

7 md1.setM1Speed(actuators[i].getEffort()); // Motor 1 is

driver 1, M1

8 }

9 }

10 }

11 void loop() {

12 stopIfFault(); // Stops if fault

13 controllActuators(actuators); // Pid controll on all the acuators

14 rosPub(); // Publish to topics

15 }

The average loop time of the controller was found to be around 3 � 4 ms depending
on the calculations done, which gives the digital controller a time delay of 4.5 � 6 ms
calculated from equation Equation 5.8. Controller tuning was done as described in
subsection 5.3.3, and the time delay did not make the system hard to control.

6.4.4 Incremental encoder Interface

An interface for the incremental encoder was added to keep track of the joint positions
given by the changes in position. This was done by having a separate Arduino Nano
board connected to each encoder. The sketch uploaded to slave one is shown in Code
snippet D.5. The two pulses were recorded, and changes were saved as a counter.
The joint position can be directly calculated from this counter variable by using the
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properties of the encoder, described by Equation 6.1.

✓ =
360°
PPR

I (6.1)

Where:

• PPR = Pulses per revolution, witch is 9600 if all flanks are counted.
• I = number of increments stored in the counter variable.

The counter variable is transmitted to the Arduino Mega, using I2C communication,
running the control algorithm, and communicating with ROS. When sending the
counter integer, it is divided into two bytes consisting of 8 bits and sent as a lower
and upper byte described in Code snippet 6.3, before they are joined as an integer in
the master node, Code snippet 6.2.

Code snippet 6.2: Receiving integer from slave

1 counter = Wire.read() << 8 | Wire.read(); // Read upper/lower bytes

Code snippet 6.3: Transmitting integer from slave

1 void requestEvent() {

2 uint8_t buffer[2];

3
4 buffer[0] = counter >> 8; // Store the int as 2 bytes

5 buffer[1] = counter & 0xff;

6
7 Wire.write(buffer, 2); // Respond with message of 2 bytes

8 }

Auto saving on power loss

The ATmega processor in the Arduino has a built-in EEPROM rated for 100.000 cycles
and can store 512 bytes. This makes it easy to store and read encoder values using
the Arduino. The Arduino has support for an EEPROM library that includes reading,
writing, clearing, and updating the EEPROM. The get function checks the value stored
in the address and only writes to the EEPROM if it has changed. When power is lost,
the encoder increments are saved to the EEPROM using the put function. On program
startup, the encoder increments initial value is read from the same EEPROM address.
As the encoder increments are stored as a single integer on each Arduino Nano on
shutdown, EEPROM speed or life cycles is not a problem. Power loss was detected
using an interrupt pin on the falling edge connected to the 5v bus. Schematics for
power loss detection and the power bu�er can be seen in Figure 6.9.
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Figure 6.9: Power bu�er

Code snippet 6.4: Saving to EEPROM

1 attachInterrupt(digitalPinToInterrupt(2), saveToERPROM, FALLING);

2 void saveToERPROM(){ //ISR function for interupt

3 EEPROM.put(0, counter); // Store counter

4 delay(1000); // Wait to die

5 }

6.5 Analysis and Discussion

6.5.1 Actuators, Gearing and Belt Drive

Due to budget constraints, the actuators available would not be strong enough without
a high gear ratio. The 150 : 1 gear ratio in the actuators used in this project meant
that they were harder to turn manually. Initially, the actuators were too hard to turn
by hand, but they seemed to loosen up after some use, and it was possible to pose the
robot manually. Even with a 150 : 1 gear ratio, the actuators are operating on their
limits to hold up the leg in the common poses found in the trajectory.

As said in the results section, the strain on the actuators was too much, and two
actuators were irreversibly damaged during testing. Both times, the damaged actuator
was the one placed in joint two, which made sense as the joint takes almost the entire
load of the leg in the air. The motor drivers’ output was monitored but never showed
any indication that the actuator was about to be overheated. For future work, this
would have to be addressed by upgrading the actuators and implementing the current
sensor abilities of the motor drivers.

Higher gearing means more of the actual cogwheels. As a result, each cogwheel adds
more backlash to the system. This backlash manifests in movement in the joint that
the encoders will not register. In this project, this non-measured angle seemed to be
about 2�4° and will a�ect the movement greatly. Better, more expensive gearing would
help or eliminate the backlash, as the gears used in the actuators are both helical
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and spur type gears (Pololu 2021a). If strong enough actuators could be sourced,
the robot could be direct driven. Alternatively, a planetary gearbox could be used for
higher accuracy or a harmonic gearing that would eliminate backlash.

Alternative Actuators

Brushed DC motors are among the cheapest actuators when looking at stall torque
versus cost. The main drawback is that the brushes will wear out over time, and
the torque will decrease. With brushless motors, this would not be an issue. In
addition, brushless motors usually weigh less than brushed of equal stall torque. The
weight reduction achieved would help the robot move more easily, pulling less current
and exerting less torque. Brushless motors also can achieve higher e�ciency than
brushed to reduce the current draw further.

If one wanted to step back on the complexity of the robot, other actuator types could
be considered. For example, stepper motors could be controlled by the number of
steps or half steps with a known angle for each step. As mentioned in the actuator
theory, the stepper motor would have a higher holding torque making the robot more
stable. Servo motors would simplify the control in the same way as both stepper and
servo motors only need the desired position converted to either the number of steps
or duty cycle for the servos PWM signal.

Belt Drive

One way to limit the weight, and thus the torque needed, is to place the actuators
further up the leg and use a belt or possibly chain drive to transfer the torque to the
joint. An example of this is the MIT Cheetah (Katz, Carlo and Kim 2019) where all three
actuators are placed at the hip and belt drive is implemented to drive the lower joint.
This configuration allows the leg to be extremely light, and minimal torque would be
needed to lift it. The total weight would still be the same or slightly heavier due to the
belts. If the upgraded actuators still were too weak, one could implement a gearing
system for the belt drive where the toothed pulley on the actuator is smaller than the
one on the joint. This would work like having gearing installed.

6.5.2 Mounting Hub

After the first assembly, many sources of backlash were felt on the joints. Some were
found to be the gear backlash and too wide screw holes, as discussed previously.
However, some of the backlashes seem to come from the mounting hub itself. It was
found that the set screws locking the round hole of the mounting hub to the D-shaped
axle of the actuator would loosen as the robot was manipulated. When the set screw
loosened, it introduces some play between the axle and mounting hub. Some thread-
locking fluid was added to the set screws to fix this. Medium strength was used so
that the hub could be removed in the future. A future safe solution would be to have
new mounting hubs made with a D-shaped hole to fit the actuator axle better.
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6.5.3 Encoders

The code used to count and ascertain the direction of the motor only counts the rising
and falling edge of pulse train A. This means that only half of the possible accuracy
in measuring the angle is used. Pulse train B is then only used to view the direction.
The accuracy could theoretically be doubled by counting the rising and falling edges
for pulse train B. As the situation stands with the excessive backlash in the gearing
and flexing of the plastic, this increase of accuracy would probably not be needed.
Because of this, the final possible accuracy became 0.075°.

As the project uses incremental rotary encoders, a solution to store the final angles
had to be developed. If the robot was manipulated in between the sessions, these
angles would be incorrect, and a way to reset the angles to a known angle would be
needed. A solution with end stop sensors will be discussed later. Another possibility
to consider if the actuators were to be changed is to use an absolute encoder or a
continuous rotational potentiometer. Both these types would give the angular position
of the joints as soon as they have power, and one would not need to reset them.

6.5.4 Circuit Design

When designing the embedded circuit, several di�erent hardware limitations had to
be handled. Some of these include:

1. Limited interrupt pins and clock frequency
2. EEPROM life cycles
3. Dual Motor drivers

Limited interrupt pins and clock frequency

A limited number of interrupt pins on the Arduino Mega made it necessary to use
individual microcontrollers as Encoder Interfaces. The maximum angular velocity of
the Polulu motors used is 7.12 rad/s, which would result in new pulses from the en-
coder every 0.74 ms. This is faster than the loop time of the Arduino Mega, and thus
increments would be lost. However, the loop time in the slaves is fast enough as they
perform no heavy calculations. The interrupt pins on the slaves were used to detect
power loss, as discussed under EEPROM implementation. Communication between
the Arduino Mega and Nanos was done by using I2C. Di�erent communication peri-
pherals such as SPI were considered, but the simple implementation of the I2C bus
and wire library made it the obvious choice for this thesis.

EEPROM life cycles

Saving encoder data and loading these is crucial for a smooth startup. The internal
EEPROM on the Arduino boards supports a limited number of value updates. Con-
tinuously updating the encoder data to the EEPROM would wear it down quickly and
slow down the program significantly. In addition, as previously discussed, a slower
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program could result in lost pulses from the encoder. Saving the data to a directly
connected SD card reader was also considered but deemed too slow for continuous
saving. Using an external EEPROM or SD card reader connected to the I2C bus would
allow for continuous saving as it would not slow down the program too much. This
implementation would need extra hardware and is therefore not implemented. De-
tecting power loss and saving the data was the obvious choice since this means no
interruption during regular operation. Using a battery to keep the power on power loss
was considered. However, adding a small capacitor and preventing it from dischar-
ging into the 5v bus using a Schottky diode provided a low-cost and lasting solution.
A Schottky diode minimizes the voltage drop over the diode, giving the slaves a 4.7

v supply voltage. As mentioned, detecting power loss was made using a falling edge
interrupt pin. This results in immediate data storing on power loss using minimal
extra hardware, making it the best choice in this thesis.

Dual motor driver

During the preliminary phase of this project, dual motor drivers were chosen com-
pared to mono drivers due to budget constraints. This resulted in all control being
done in the Arduino Mega, as it has enough memory to handle the program size. Us-
ing four mono motor drivers would make it possible to implement control from each
slave, which would remove transport delay between the master and the slaves. The
control algorithm would also operate for single joints, which would increase perform-
ance due to reduced loop time. In addition, having control done by the slaves would
open up for having the master as a communication link between the slaves and ROS
interfaces.

The dual drivers were made as a shield for the Arduino Uno. Using them with the
Mega board meant that additional wiring had to be done. If control is moved to the
slaves in future work, mono motor drivers would be required.

6.5.5 Choice of Microcontrollers

By using Arduino Mega and Nano, many premade functions and resources are avail-
able. The downside is that these microcontrollers run at 16 MHz, and loop time could
be an issue. During testing of the controller on the actual robot, this manifested in
a noticeably delay between ROS setting a new setpoint and the controller reacting to
it. This meant that the robot exhibited a jerking motion between each setpoint. The
Arduino family of controllers uses a PWM frequency of 490 Hz as standard. This is well
below the 5 kHz specified in the Arduino library for the motor drivers (Pololu 2020).
The frequency on the Arduino can be adjusted up to 20 kHz, but this would prevent
both normal serial communication and ROS-serial. Using this low frequency means
that noise from the motors could be a problem. Another issue is that the control sig-
nal represented by the PWM signal would appear wavy by the motors and constantly
try to move slightly, drawing more power (Mohan, Undeland and Robbins 2002).
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For further work, upgrading at least the Arduino Mega would be recommended. The
most natural alternatives would be an ESP32 module (Espressif 2021) or a Teensy
(PJRC 2021). The ESP32 has a clock speed of up to 240 MHz. It also has the option
for both WiFi and Bluetooth for easier connectivity between ROS and the controller.
The Teensy 4.1 does not have wireless communications, but it has a clock speed of
600 MHz and built-in support for Ethernet.

(a) ESP32 (Espressif 2021) (b) Teensy 4.1 (PJRC 2021)

Another choice would be to use a Raspberry Pi (The Raspberry Pi Foundation 2021).
Since the Raspberry Pi is a small computer with an operating system, integration with
ROS is simpler. ROS can be installed directly on the device, and latency in the serial
communication between the current Arduino Mega and a computer would not be an
issue. The Raspberry also has both Bluetooth and WiFi and a CPU with a 1.5 GHz
clock speed. Even though the Raspberry has a higher clock speed than the Teensy,
some of the computing power for the Raspberry will be used to run the operating
system.
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Figure 6.11: Raspberry Pi 4 (The Raspberry Pi Foundation 2021)

The choice between these or other options depends on what aspects are prioritized.
For example, going with some of the faster microcontrollers could eliminate the need
for using one Arduino Nano on each encoder. Alternatively, one could change the Nano
for a faster model and run the regulator for each motor separately.

The biggest reason to go wireless is that the computer would not need to be tethered
to the robot leaving only the power cable. On the other hand, wireless communica-
tions are often slower than wired, so this would have to be considered. Furthermore,
removing the wired communication would eliminate any noise from using a long USB
cable.

Since the power is distributed through the Arduino Mega, another solution for power-
ing the controllers would be needed if the Mega was to be changed out. The easiest
solution would be to use the onboard regulator included in the motor drivers. The
only problem with this solution is that the emergency stop cuts power to the drivers.
If the emergency stop switch were moved to after the drivers changing it for a 4-pole
normally closed switch, this would still work, and the drivers would be able to send
status to the controllers even after the emergency stop was engaged.

6.5.6 Current Sense

The motor drivers have built-in current sensors that can be used to limit the current
to the motors. However, because the PWM frequency was low, this measurement
would be unstable. If better microcontrollers could be used, this would be one of the
upgrades recommended and could have saved the damaged actuators.
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6.5.7 Software Design

The software running in the embedded microcontrollers was made as modular as pos-
sible. For this reason, a custom actuator class was made. By taking the individual
properties such as slave addresses, control parameters, and gear ratios as parameters
in the constructor, the individual properties of the motor were easily managed. If a
di�erent gear ratio or encoder accuracy were to be used in the future, it could easily be
managed by the gear ratio properties of the actuator class. This supports di�erent PPR
for each individual motor as well. Implementing PID control from an existing Ardu-
ino library was discussed. The benefits of a custom PID algorithm became apparent.
These benefits include the possibility of a derivative filter, anti-windup, adaptive con-
trol by changing parameters, gravity compensation, limiting setpoint rate, and more.
In the future development of this robot, more features can easily be implemented to
the PID.

When writing modular code, dividing the di�erent parts of the program into separate
files makes for readable and easily modifiable code. In the git repository, two di�erent
versions of the main program are available, one with ROS control and one controlled
from the serial monitor. The Arduino main program controlled from the serial monitor
is provided in the git repository as it makes expanding the project easier since the
serial monitor can be used for printing results to verify them. Rosserial does not
work in parallel with Arduino serial monitor. The serial communication version also
includes support for writing joint values and a plot of these to two I2C Oled displays.
This feature was removed from the ROS version to improve loop time.

Communication with ROS was easy to implement as the rosserial library was an ex-
tension to how nodes were programmed using C++ and python. How these nodes
are programmed and the rosserial communication is explained in chapter 7. Imple-
mentation of multi-thread programming would be beneficial if a microcontroller with
more cores was used, such as the esp32. As the Arduino Mega only has one core,
multi-thread benefits using an Arduino library such as FreeRTOS are limited due to
an already low clock speed. Multiple cores could allow for one core to do calculations
and the other one to handle communication.

As discussed, actuating the DC motors is done using motor drivers. These drivers have
Arduino support using the DualG2HighPowerMotorShield Arduino library. The shield
was designed for use on a single Arduino Uno. As a single Arduino Mega is used for
two drivers in this project, the input and output pins had to be reprogrammed. This is
done in the variable file shown in Code snippet D.3. Controlling both drivers from one
Arduino Mega made it necessary to check each motor and assign the correct motor
driver and motor number when PID output was set.
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6.5.8 Future Expansions

Force sensor

One key element that was not explored in the design of the robot was force feedback
from the end e�ector to ensure a good balance between friction for movement and
torque needed. One way to measure this is to attach a force-sensitive resistor or load
cell underneath the end e�ector or between some of the parts for protection. Another
way would be to make a flexible part attached to the end e�ector with a gap. Then
one could measure the gap width and calculate the force needed for the compression.

Gyro and Accelerometer

One possible future goal for this robot would be to mount four legs to a body and
have it stand and walk without using the stand. This can be achieved by adding some
additional sensors to keep track of the orientation and acceleration in a 3D environ-
ment. The interconnectivity of the four legs, and relations between the robot body
and ground, could be addressed and accounted for by adding a gyroscope and accel-
erometer, or simply an IMU. These additional sensors would give the control system
additional information, which can be used for di�erent control strategies.

End stop sensors

Currently, the starting position of the actuator angles is set by either placing the leg in
the desired position and telling the controller the current angles or by always remem-
bering the last position before the controller loses power. Both these methods require
some procedure for shutting down, starting up, and storing the robot. A better solu-
tion would be to add a sensor that can detect the angles of the leg without having
to manually measure them or having to rely on the leg staying stationary between
uses. By having all actuators contract the leg upwards, micro switches, magnetic
reed switches, or hall e�ect sensors can be used to detect when they reach the max-
imum/minimum angle for each joint. This procedure could be implemented during
the startup of the controllers ensuring that the robot always starts in the same pose
with all angles correctly set.

Navigational Sensors

Navigational sensors like lidar and cameras enable feedback on a robot’s surround-
ings, making it possible to maneuver physical obstructions. This feature would be
necessary if the robot is ever made autonomous. Paired with a system that manages
the input from the sensor, this would be a natural expansion in later stages of the
robot development. For example, placing the sensor or camera in front of the top
plate tilting downwards would allow the robot to calculate immediate obstructions in
its path. An alternative is placing a spinning sensor or camera at the top of the robot.
This would provide a 360-degree view of its environment but could limit the perception
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of immediate ground-level obstacles given the robot’s height.

The use of navigational sensors in combination with SLAM algorithms are discussed
in subsubsection 7.5.6.

Battery

A logical final expansion for the robot would be to make it completely untethered by
adding a battery pack to it. Combined with wireless communications, this would let
the robot walk without hindrance or range limitations. A prerequisite for adding a
battery would be stronger actuators and more robust material used for the links as a
battery would add significant weight to the top of the robot. Since lithium batteries
would be the best choice in terms of energy density, additional precautions would have
to be taken to store and charge the batteries.

6.6 Chapter Conclusion

As already discussed, many aspects of the embedded systems were undersized for
what was needed. For example, the actuators were not strong enough to reliably reach
and hold all desired poses and the microcontrollers were not fast enough to ensure
smooth control. Despite this, the remaining parts of the embedded system worked as
intended.

Angle measurements were created in the slave units, using the motor’s built-in en-
coders, and transmitted to the master controller that again transmitted them to ROS
on a computer. Only half of the possible accuracy was used, but this was not deemed
necessary due to backlash and mechanical play.

The control of the actuators worked as intended by ROS sending out setpoints for each
joint and the actuating signal being sent from the master unit to the motor drivers.
However, the loop speed of the controller introduced significant transport delay and
made smooth control of the actuators di�cult to achieve.

Storage of final actuator angles with minimal components worked well and solved
the problem related to the initial value for the incremental encoder. However, better
fastening to ensure the links were locked in place, e.g., 3D-printed locking brackets,
should still be considered moving forward.

Some of the shortcomings (i.e., actuators and encoders) can be attributed to budget-
ary constraints. In contrast, others (i.e., microcontrollers and the communication
method) were due to time constraints and the extent of knowledge for the participants.

Since the actuators were not strong enough for the task selected, more care should
have been taken when sourcing them. Even to the point of scaling back the project to
accommodate better ones if restricted by the budget.
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Chapter 7

Robot Operating System

7.1 Introduction

Robot Operating System, or ROS for short, is an open-source collaborative project
that aims to make robot software development easier for everyone. The name "robot
operating system" is somewhat misleading as ROS is not truly an operating system
in the definition of the word. ROS is more like a framework, often termed as a "mid-
dleware" based on an already existing operating system. It is called a middleware
because it functions as a pipeline between two or more software programs to send
and receive information with each other e�ciently. This communication infrastruc-
ture is described in more detail in subsection 7.3.1. Ubuntu is the primary operating
system that o�cially supports ROS. ROS can also run on other well-known operating
systems such as Windows and macOS, but it is then dependent on volunteers from
the ROS community for continued support.

Besides the communication infrastructure in which information is shared between
programs, the ROS core package also includes some basic client libraries, develop-
ment tools, and a few other starting software packages. This provides the necessary
tools and generic functionality that is su�cient to act as a framework for writing one’s
own robot software. The reason for creating an individual robot software is that robots
can come in a wide variety of shapes and forms with entirely di�erent purposes, forms
of locomotion, communication, et cetera. Creating a general-purpose robot software
that will work for any robot is therefore essentially impossible. However, by using ROS,
one does not have to reinvent the wheel to make their own robot software but can build
upon the foundation that ROS provides. The open-source concept is what keeps the
ROS community thriving, as the international community of both independent and
established developers works like an ecosystem that will hopefully continue to develop
robot software for eventually any robot imaginable.

In this project, ROS uses a robot model that can be simulated and tested before build-
ing the physical robot leg. ROS is also used to generate a trajectory based on the
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configuration of the robot model, which is sent to the controllers in the joints to track.
Further development is taken into consideration, and various improvements to the
project are suggested in the discussion section of this chapter.
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7.2 Research Method and Equipment

7.2.1 Method

The beginner and intermediate tutorials created by the ROS team were used to get
familiar with the ROS structure and concepts (Open Robotics 2021n). In addition,
these tutorials provided the basic knowledge to start learning more project-specific
features. Furthermore, available documentation and o�cial guides were used for the
di�erent packages.

7.2.2 ROS packages

Name Description Documentation

MoveIt Motion planning and manipulation Ioan A. Sucan and Sachin
Chitta 2021b

Plotjuggler Plot graphs from published data Faconti 2021
rosbash Support for the rosrun command Open Robotics 2021o
ros_controllers Support for necessary controllers Chitta et al. 2017
ROS Noetic full-
desktop

ROS distro and basic packages Open Robotics 2021m

rosserial Serial communication with Ardu-
ino

Purvis et al. 2021 Ioan A.
Sucan and Sachin Chitta
2021b

7.3 Theoretical Framework

7.3.1 Communication Infrastructure

The communication infrastructure that comes with ROS consists of a collection of
communication tools. These are the cornerstones of any ROS application, and it is
essential to understand how they work when using ROS for developing robot software.

Nodes

In ROS, a node is a process that performs computation and plays a relatively small
and individual role as part of a larger software system. A robot application usually
consists of many di�erent processes that need to work together to give the robot full
functionality. With the help of ROS, they are able to communicate with each other
through a node graph architecture. The advantage of having multiple nodes run their
own separate processes is making the overall system more fault-tolerant. If one node
crashes, it does not stop the other nodes from running. As long as the most critical
nodes keep working, the application as a whole can keep running at sub-optimal func-
tionality. An example of this is a mobile robot with a mounted camera that an operator
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remotely controls through a screen with the video feed. Should the image processing
node for some reason stop working, the operator would still be able to control the robot
through a line of sight, though at perhaps a less functional capacity. The ROS nodes
can be written in several di�erent programming languages with the use of ROS client
libraries. The two most common are roscpp and rospy, which make it possible to write
nodes in C++ and Python respectively. ROS communication has the attribute of be-
ing language-independent, meaning that nodes can easily communicate regardless of
the programming language in which they are written. Nodes communicate with one
another using the ROS communication tools known as messages, topics, services,
actions, a parameter server, and a ROS Master node (Open Robotics 2021i).

ROS Master

The ROS Master is a node that is initialized at the startup sequence of every ROS
system. The ROS Master is, as the name implies, the master in a master/slave rela-
tionship, while all the other nodes in the system are considered slaves. The master
node serves as a form of communication hub for all the other nodes, similar to how
a Domain Name System works. The master contains a registry with the name and
location of every single node, topic, and service in the ROS system. Since every name
in the ROS system is exclusive, nodes can refer to topics and services by name, and
the master will translate it and relay their location. Once the locations are known,
the nodes can communicate with each other peer-to-peer through the topics and ser-
vices. The master also runs the parameter server, which will be discussed later in the
subsection (Open Robotics 2021g).

Messages

Nodes communicate by passing data in the form of messages. A message is a simple
data structure with its own distinct name and consists of various fields with spe-
cified data types. The supported data types are the standard primitive ones: integer,
floating-point, boolean, et cetera. In addition, arrays of these primitive data types
are also supported. The various packages in ROS include many predefined message
types, but it is unproblematic to define custom messages for one’s own application
(Open Robotics 2021h).

Topics

When messages travel between nodes, they go through what is called topics. Topics
function as a type of channel that nodes can either transmit messages to or receive
messages from. In ROS, this is called publishing and subscribing to a node. Each
topic has a distinct name to clarify what kind of data is published to it. Nodes can
then easily acquire the data they need from other nodes by subscribing to the relevant
topics. A topic can both be subscribed to and published to by multiple nodes sim-
ultaneously, kind of like how radio broadcasting works, where the name of the topic
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is the frequency that the publisher nodes transmit to and subscriber nodes listen in
on. This form of communication is asynchronous, meaning that there is no order in
which operations need to happen. This makes for fast transmission of data, which
is necessary for robot control systems, but does not o�er any form of confirmation
on sent or received messages. Like devices listening in on the same radio station,
the subscriber nodes are unaware of the existence of each other as well as the nodes
publishing to the topic. The publisher nodes transmitting messages to the topic are
also unaware of each other. This is an important aspect of ROS, as the decoupling
of the production of information from the consumption makes the system as a whole
more robust (Open Robotics 2021u).

Services

While topics use a form of fire-and-forget, one-way communication model, services
provide a means for a request-reply interaction between two nodes. This does not im-
ply that a direct connection is established between two nodes. They still do not know
of each other’s existence. In this model, the service is attributed to a specific node,
making the node the server in a server/client relationship. Any other node can func-
tion as a client by sending a request message with the appropriate data structure for
the given service. The server node will process the request and return a reply mes-
sage. This communication is synchronous, meaning that operations must happen in
a given order. After a client node has sent a request to a server node, it is essentially
blocked until it has received the server node’s reply. Therefore, this form of commu-
nication is only recommended for processes that do not require a long time for the
server node to compute (Open Robotics 2021s).

Actions

The ability to send requests to nodes to perform specific tasks and receive a form of
reply when the task is finished is extremely useful and a necessity in larger ROS-
based systems. Still, the fact that services block the client node while it is waiting
for a reply can cause some problems when dealing with longer tasks. This issue is
addressed with the implementation of ROS actions. Actions are built upon topics and
provide a form of asynchronous server/client relationship between nodes. Instead of
a request message, the action client node can send a goal to the action server node,
which then starts executing the task. While the server is working, the client is free
to do its own thing. It can even cancel the process that the server is working on at
any time, or it can send the server a new goal that it will immediately start working
on instead. Since the process can take a long time to execute, the server also has the
means of continually sending feedback messages to the client, for example, to let it
know how far along it is in the process. When the action server has completed the
task, it sends a result message back to the client, similarly to how a service would,
saying, for example, that the task was completed successfully (Open Robotics 2021a).
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Parameter server

The parameter server is a register of global variables that are available to every node in
the current instance of the ROS system. It is created in the ROS Master at the startup
of a session and can be accessed and modified at any time during the session. The
parameter server is good for storing variables that seldom change their value and are
relevant to many di�erent nodes. This way, the variables can be defined in one place
instead of locally in every single node. Values that are typically found on the parameter
server are configuration parameters like the name of the robot, link lengths, operating
frequencies of sensors, filesystem paths, et cetera (Open Robotics 2021k).

7.3.2 Filesystem

Workspace

A workspace is a repository where one would organize a ROS project. The workspace
is comprised of three folders: build, devel and src. The src folder is created manually
and is where the packages that comprise the project’s software ecosystem are located.
The build and devel folders can be automatically generated by the ROS build system,
catkin. Inside the generated devel folder are several setup.*sh files. One of these files
must be sourced to be able to utilize the packages in the workspace. For an overview
of how catkin works, consult the ROS wiki by Open Robotics 2021b.

Packages

ROS software is organized in the form of packages, which is the smallest unit that
ROS software can be built and released in. A package can vary largely in its contents.
However, a rule of thumb is that it should provide enough functionality to be useful
but compact enough to be reused by other software easily. Packages tend to contain
some common files and directories. A few examples of this are the folders called config,
launch, urdf and scripts, that contain configuration files, launch files, URDF files and
executable python scripts respectively. It is not a requirement for packages to contain
nodes. It can, for example, hold just a collection of datasets as long as it makes for a
useful module. Packages always have a package.xml file in their root folder that acts as
the packages manifest. It provides meta information about the package, including its
name, version, description, license information, maintainer, et cetera (Open Robotics
2021d). Packages also always contain a CMakeLists.txt file. This gives information
to the CMake build system, which catkin is based on, that describe how to build the
code and where to install it to (Open Robotics 2021c). (Open Robotics 2021j).

Unified Robot Description Format

URDF is built using XML code to describe the properties of a robot. This includes
links and joints and how they are connected. For links, this is done by adding inertial
elements, visual elements, and collision elements. For joints, this is done by adding
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the type of joint, origin, parent and child link, and the axis it rotates around. Physical
properties are only needed for simulations. Visualizing the robot can be done with
only visual properties.

Inertial values consist of the physical properties mass, origin, and moment of inertia.
Origin describes where the link has its origin, and the angular mass inertia around
this origin is described by the moment of inertia matrix. For a rigid body, the moment
of inertia describes the torque needed for a desired angular acceleration. For rigid
bodies that are free to rotate in three dimensions, R3⇥3, the moment of inertia is given
by a 3⇥ 3 matrix.

Visual properties consist of; an origin, a geometry tag, and material. The geometry
tag describes the geometry of the link. It is possible to use di�erent shapes like
"box" or simply exported STL files from the 3D model to get the most accurate visual
representation. The material tag describes the visual color, while the physical impact
of the material is found in the inertial properties. Completing the description of a link
is done by adding the collision tag. The collision tag describes how it collides, which
can also be done by an STL tag. Describing the collision with the STL files allows for
more accurate collision checking than a box description and can be done using a low
poly representation to save computing power.

Joints describe how the links are connected, which can be done by either a fixed
or continuous joint. Fixed joints describe how two links are attached to each other
rigidly, and continuous joints describe how two links are attached to each other via a
rotation that may change. They both need an origin to describe where the two links
are connected, but continuous joints also need to describe the axis of the rotation.

Launch Files

Single nodes can be started through the terminal with the command "rosrun". If
several nodes are started in this fashion in individual terminals and correct order, they
will eventually resemble a full application. Even so, the amount of di�erent running
terminals on the desktop can easily cause disorganization. Additionally, there are
probably several parameters that need to be defined manually for the application to
work, so this approach can be really tedious and impractical. The solution for this
is using what is known as launch files. In a launch file, one can write a call for any
number of nodes in a specific order as well as defining any number of parameters for
the parameter server. Then, all the parameters can be set and all the nodes can be
run in the specified order from this single file with the help of the terminal command
"roslaunch". Launch files can also be launched from within other launch files. An
application can then have several di�erent launch files for starting isolated parts of
the application, which makes for easier debugging, while for example having one main
launch file that starts the whole application. This way, launch files make the process
of starting an application much tidier, as well as saving the user a lot of time (Open
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Robotics 2021p).

7.3.3 Project-essential applications

Following are descriptions of some fundamental ROS applications that play a big part
in the completion of this project.

rqt

rqt is software that o�ers a graphical user interface with access to various tools in the
form of plugins. It can make many ROS operations simpler to perform and inform-
ation easier to break down for the user. Examples of this are the Message Publisher
plugin and the Node Graph plugin. The Message Publisher makes it possible to choose
a message type, specify its field values and publish it to a selected topic, all through a
menu-driven interface. This saves time compared to publishing messages by manually
typing out commands in a terminal. The Node Graph shows a graph structure of how
all the currently running nodes are connected and to which topics they are publish-
ing and subscribing. This paints a much clearer picture of the system’s information
flow. Generally, the rqt plugins make many aspects of ROS more user-friendly (Open
Robotics 2021q).

RViz

RViz is a three-dimensional visualization tool for ROS. The appearance of a robot can
be hard to imagine through only a URDF file, but with RViz, and help from the ro-
bot_state_publisher- and tf2-packages, the complete robot state is visualized. RViz
can visualize the 3D shape of every link described in the URDF, though the compos-
ition of the links may be incorrect. The robot_state_publisher node can assist with
this problem by translating the URDF files joint specifications, as well as listening for
updates to the joint positions on the joint_states topic. The node combines the values
of all the di�erent joints on the robot and calculates the forward kinematics to get the
correct coordinate frame of every link (Open Robotics 2021l). The coordinate frames
can then be managed by the tf2 library, which essentially functions as a database
that keeps track of every transform in the robot system at all times (Open Robotics
2021t). These transforms can be subscribed to by the RViz node so that every link is
connected in the right place with the current joint configuration. Lastly, with a joint
state publishing node, for example, from the joint_state_publisher_gui-package, one
can easily explore every possible configuration the robot may have visually through
RViz (Open Robotics 2021f). RViz is a useful tool, not only for developing robot designs.
It can also be modified with a large collection of plugins and act as a graphical user
interface to interact with robots in a variety of di�erent ways. MoveIt is an example
of a ROS package that utilizes a modified form of RViz as a user interface and will be
discussed later in this subsection (Open Robotics 2021r).
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Gazebo

Gazebo is an open-source robot simulation software with high-quality graphics and
a robust physics engine. Good simulations with realistic physics can be essential
in robotic systems development as it o�ers the ability to test algorithms and robot
design iterations rapidly. ROS can be integrated with Gazebo with a set of ROS pack-
ages named gazebo_ros_pkgs. The URDF also needs elaborating upon as the physical
properties of all the links need to be specified since it will a�ect the behavior of the
simulated robot. Gazebo will then make it possible to see how the robot will the-
oretically react to gravity, wind, and other physical disturbances that the robot may
be influenced by in its planned working environment. Another use for Gazebo is to
test the robot’s control system by implementing simulated actuators and control them
with the controllers provided by the ros_control-package. This package o�ers tools
to create custom controllers with ROS, but it also contains a collection of generically
functional controllers that can be used as-is. The primary controllers that are avail-
able are e�ort-, position- and velocity-controllers, named after the unit of their output
value. The e�ort is measured in either force or torque, depending on the type of actu-
ator, and is the most commonly used. These controllers are typically PID controllers
with feedback loops. However, there are also a more advanced group of controllers
called joint trajectory controllers. These have extra functionality for splining an entire
trajectory instead of just a single setpoint. This is very useful for robots that need to
perform more delicate and complicated movements. Ros_control is able to send and
receive commands to actuators through a hardware interface that describes the re-
lationship between actuators and joints. Many hardware interfaces are available via
the Hardware Resource Manager, which is included in ros_control. To implement this,
the URDF needs to be extended to include transmission elements for every joint that
is linked to an actuator. The transmission element specifies the hardware interface
that is being used. The transmission element can also specify mechanical reduc-
tion between joint space and actuator space (Chitta et al. 2017) to accommodate for
physical mechanisms like gear ratios that a�ect the relationship between actuators
and joint positions. Finally, for Gazebo to be fully integrated with ros_control, the
gazebo_ros_control plugin needs to be added to the URDF (Open Robotics 2021v).
With all these features, Gazebo can be used to develop a robot-proof of concept com-
pletely digitally, and thus save a lot of time and resources in the design phase of a
project by not having to make as many physical prototypes as one would otherwise
(Open Robotics 2021e).

MoveIt

One of the most di�cult problems for robot manipulation is when a robot requires
delicate movements to perform tasks. This is often the case even for tasks that will
seem trivial to humans, like picking up an object with a gripper or moving a manipu-
lator past an obstacle without colliding with it. Without a human operator controlling
it, the robot needs to be able to plan its own trajectories to satisfy the goal of the task.
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This is more complicated than it first sounds, as the trajectory from one location to
another can have an unlimited amount of solutions, and the robot must be able to
determine which one is the best. Motion planning algorithms is a very large field in
and of itself, and a comprehensive treatment of this topic is beyond the scope of this
thesis. After the motion is planned, it also needs to be executed by the robot, which
often requires multiple timed adjustments in every active joint during the full range
of the motion. Thankfully, MoveIt is a state-of-the-art robot manipulation software
available to ROS that specializes in robot motion planning. The company behind it,
PickNik Robotics, has made the software open source and fully customizable, thereby
saving robot developers potentially months of development time. The software incor-
porates motion planners that give time-parameterized trajectories, 3D perception for
sensors, common inverse kinematic solvers for even over-actuated manipulators, and
collision detection capabilities. Despite the many advanced features, MoveIt is fairly
user-friendly as it comes with its own setup assistant that guides the user to use the
platform on any robot. Its only requirement is the URDF of the robot. The planning
groups, controllers, sensors, end e�ectors, and more can be configured in the setup
assistant. The full MoveIt-application is a large collection of packages, each with its
own collection of nodes that run in unison while the application is active. A simplified
overview of the flow of information shown in Figure 7.1 should make things more clear.
In the middle of the diagram is MoveIts primary node which is called move_group, and
is the one that provides the robot interface command the robot. The user is able
to interact with the node with one of three user interfaces, where one of them works
through RViz with a plugin, as was mentioned earlier. The interactions usually consist
of sending motion plan requests. These are either a goal for new joint positions that
can be solved with the use of forward kinematics or a new end e�ector pose that can
be solved with inverse kinematics. The Move Group fetches a Planning Scene, which is
a description of the environment in which the robot must plan its motions. The Move
Group then conveys command goals and the Planning Scene to a Planning Pipeline
that consist of a Planning Library and Planning Request Adapters. The Planning Lib-
rary takes the motion plan request and generates a possible trajectory for the robot
to follow. There are a few libraries available, and the Open Motion Planning Library,
or OMPL for short, is the one that is most commonly used. The Planning Request Ad-
apters allow for pre-and post-processing operations to the planned trajectory. When
the trajectory is determined, the Trajectory Execution Manager can transmit the ne-
cessary information through an action interface to the robot’s controllers so that it
can follow the planned trajectory. For further details consult the documentation on
MoveIts homepage by Ioan A. Sucan and Sachin Chitta 2021b.
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Figure 7.1: MoveIt pipeline overview (Ioan A. Sucan and Sachin Chitta 2021a)

7.4 Results and Empirical Findings

7.4.1 Source directory

The finalized source directory of the project workspace, with all its packages and sub
folders, is shown in Figure 7.2. The contents of all the folders are available for ex-
amination on the projects GitHub repository (Arnesen, Grinde, Hovland and Vestland
2021b).
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src

joint_command_interface

action

scripts

robotleg_bringup

launch

robotleg_description

config

launch

meshes

urdf

worlds

robotleg_moveit_config

config

launch

scripts

Figure 7.2: Source directory

7.4.2 Simulation

To simulate the robot in Gazebo, a launch file called gazebo.launch was made in the
robotleg_description package. gazebo.launch starts by including another launch file
from the gazebo_ros package called empty_world.launch, which simply starts an empty
Gazebo simulation window. To be able to edit and save the simulation configuration,
for example the starting view, a folder named worlds was created. There, the config-
uration can be saved and used as a launch argument. The robot model can then be
spawned. The path to the robot’s main URDF file is defined in the parameter server
under the name robot_description so that it can easily be found by other nodes in the
system. An executable from the gazebo_ros package called spawn_model then uses
this parameter to have the robot model appear in the simulation window. The URDF
describes the robot leg as fully extended so that the joints have a clear and recogniz-
able zero-configuration. Since the extended leg is longer than the height of the stand,
the robot model needs to be spawned slightly up in the air so that parts of the robot
will not appear in the ground, as it can crash the simulation. This spawn position
can be specified in the launch arguments of spawn_model. The simulation window
on startup is shown in Figure 7.3.
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Figure 7.3: Gazebo simulation window on startup

Time will start by pressing the small play button on the bottom left of the window, and
the model will fall to the floor. Additionally, the leg will collapse as there are no control-
lers to hold the joints in place. Controllers are added to the leg joints by first creating a
controller configuration file stored in a new folder called config. The configuration files
for controllers are by standard written as .yaml files, and the first file created is called
position_controller.yaml. This file is filled with the parameters for a joint state control-
ler as well as a position controller for every joint that is to be controlled. The joint
state controller publishes the state of all joints registered to a hardware interface to
the joint_states topic. The position controllers are PID controllers that use the joint po-
sition as a setpoint to determine e�ort. The PID parameters are specified in the .yaml
file. Another launch file called controller.launch is created to attach the controllers to
the simulated robot. This launch file first loads the position_controller.yaml file to the
ROS parameter server. Then, the spawner executable from the controller_manager
package is called upon with the name of the controllers from the configuration file
as launch arguments. Lastly, the launch file calls upon the robot_state_publisher to
convert joint states to transforms. This is relevant if, for example, RViz is going to be
used. The controller.launch file is included at the bottom of the gazebo.launch file that
was created earlier so that the controllers are launched together with the simulation.
The reason for having the controllers in a separate launch file is to make debugging
the package easier. Now, when launching the simulation, the leg joints are firm, and
so the whole model will tip over when it touches the ground. There should therefore
be published new setpoints to the controllers’ command topics so that the robot has
a more functional configuration. This can be easily done by running an rqt node with
the Message Publisher plugin. The robot is shown in a standing position with the
help of position controllers and the Message Publisher in Figure 7.4. The robot can
perform simple movements with this setup.
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Figure 7.4: Gazebo simulation with position controllers

7.4.3 Motion planning and trajectory execution

MoveIt was implemented to have the robot perform more advanced movements en-
abling it to go forwards. By having MoveIt plan and execute a trajectory imitating a
gait, the robot leg would, in theory, drag and push itself forward. For the robot to
support trajectory execution, the controllers would first need to be shifted from joint
position controllers to joint trajectory controllers. This was done by creating a new
controller configuration file called trajectory_controller.yaml with the relevant para-
meters for a trajectory controller. The controller.launch file must then be altered to
load this new file instead of position_controller.yaml to the ROS parameter server. The
spawner must also be launched with the name of the trajectory controller as an ar-
gument instead of the position controllers. The joint state controller is still needed
to publish joint states to the joint_states topic. The controllers will then function as
action servers and wait for an action client to publish an input on the goal topic. This
action client is created by MoveIt.

To use MoveIt, a MoveIt configuration package must be created in the workspace. This
package can be configured and generated by launching the MoveIt Setup Assistant that
comes with installing MoveIt. The setup assistant needs to know the location of the
robot’s URDF, which is in the robotleg_description package. It is then possible to let
the setup assistant check for potential self-collisions, create planning groups with
the four joints that are to be considered in motion plans, and define named robot
states that are going to be used often. The last thing that needs to be configured for
the robot leg is a FollowJointTrajectory controller, which can be automatically added
for the planning groups that have been defined by simply clicking a button in the
setup assistant. After adding meta information about the author of the package, the
package can be generated. The name of the package follows a standard and is called
robotleg_moveit_config.

Development of Biomimetic Robot Leg with ROS Implementation Page 107



E2103 Bachelor thesis May 2021

The MoveIt package comes with a large collection of launch and configuration files.
One of the generated launch files, called demo.launch, lets the user try out the mo-
tion planner on a dummy robot that does not let the environment restrict its move-
ments. However, the package does not come with a launch file that connects the mo-
tion planner to a real or simulated robot. This launch file must be created manually
and is given the name robotleg_planning_execution.launch. This launch file first runs a
joint_state_publisher node that publishes the joint states of the robot to the joint_states
topic so that they are available to other nodes in the system. Then, the launch file
includes two other launch files called move_group.launch and moveit_rviz.launch, that
were automatically generated when creating the package. move_group.launch initial-
izes move_group, which is the primary MoveIt node. moveit_rviz.launch opens RViz
with the MotionPlanning plugin for interacting with the move_group node. By launch-
ing gazebo.launch from the robotleg_description package followed by
robotleg_planning_execution.launch from the robotleg_moveit_config package, the sim-
ulated robot can be manipulated with MoveIt.

When configuring the package through the setup assistant, there was an option to
define named states for the robot. A state called front_step and a state named back_step
was defined to act as the start and end configuration of a gait. By moving the robot
leg to the front_step state and planning a trajectory to the back_step state, the robot
leg would in theory perform a movement resembling a gait and push itself forward.
The planned trajectory is visualized in Figure 7.5.

Figure 7.5: Planned trajectory generated by MoveIt

A problem was discovered with this plan. Part of the trajectory goes below the ground
level referenced to the stand. Since the hip is fixed to the base of the stand, and the
whole stand is rigid, the legs of the stand will be lifted o� the ground as the robot leg
pushes down during the execution of the trajectory. The result was that the model
would always tip over. This brought to attention a flaw with the design, which is that
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the height of the stand, thus the hip, is static. This is not the case in a natural
gait, as the hip would shift slightly vertically during the motion. This is discussed
in subsection 3.4.8. A more advanced path planning was needed to fix this problem.
The solution was to use the functionality known as Cartesian planning. Cartesian
planning ensures that the end e�ector moves in a straight line from start pose to
end pose, thereby preventing the leg from lifting the stand o� the ground. There are
several Cartesian planners that have been developed by the global MoveIt community
in collaboration with PickNik Robotics (Dave Coleman, Mark Moll and Andy Zelenak
2021). However, they are currently works in progress and can sometimes have trouble
planning complete trajectories. The planned trajectory with Cartesian path enabled
is visualized in Figure 7.6.

Figure 7.6: Planned trajectory with Cartesian path enabled

For the robot leg to move a considerable distance, the motion would have to be repeated
several times. This is not intuitive through the RViz GUI. Therefore, an action inter-
face to the move_group node is created with a Python script called loop_gait.py and the
moveit_commander package. Many parts of the code is modified from the o�cial Move
Group Python Interface tutorial by Acorn Pooley and Mike Lautman 2021. As the name
of the script implies, the robot leg is looped through a gait. The gait has four named
poses as waypoints: back_step, back_raised, front_raised and front_step. The traject-
ories from back_step to back_raised, back_raised to front_raised and front_raised to
front_step use regular planning, while the trajectory from front_step to back_step uses
Cartesian planning. These trajectories are executed in sequence inside a while loop.
The Cartesian path planning needs an exact start pose and end pose before comput-
ing a trajectory. Therefore, the script sends the robot leg to the back_step pose first so
it can copy the pose to a variable called end_step. The gait is performed successfully
most of the time, although the controllers sometimes have trouble executing the full
Cartesian trajectory. The result is showcased in Figure 7.7, where the robot leg has
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traveled from the vertical blue line by only running the script in Code snippet E.2.

Figure 7.7: A distance traveled by only running loop_gait.py

7.4.4 Joint command interface

A joint command interface was implemented to handle communication between Mo-
veIt and the embedded serial node. MoveIt expects communication with the fol-
low_joint_trajectory action server to send the planned path. This action server was
programmed using Python and the rospy library. Executing a trajectory is done by
implementing an execute callback function that receives the planned trajectory and
while subscribing to the actual joint positions, loops through it. When every joint is
within a tolerance, the following point is sent. Since there is currently no support
for e�ort measurement, only the velocity and position are being published to their re-
spective topics and subscribed to by the serial node. The details of the Python script
are shown Code snippet E.1.

Another crucial part of this joint command interface is to handle unexpected behavior
properly. A timer is set to exit the execution callback function if the trajectory is
not finished within a given timer. The success feedback is sent to MoveIt when the
trajectory is stored in the action server. Properly navigating the trajectory is up to the
embedded controllers and is monitored by the joint command interface. Dynamical
startup positions were added, making it possible to start in any position, as long as
the joints are within their respective bounds.

7.4.5 Hardware interface

A hardware interface was set up by initializing Arduino as a serial node using the ros-
serial library. Using Arduino as a serial node allows for communication between ROS
and embedded sensors and actuators. rosserial connects the Arduino microcontroller
to the master node allowing access to the topic like any other node in the ROS system.
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The communication between the PC and the Arduino operates as regular serial com-
munication, using a set baud rate. In this thesis, a baud rate of 115200 is chosen.
This means that the serial port can handle 115200 bits per second, representing
the amount of data for 114 float data types being handled per second. The rosserial
library does not currently support action server functionality, only publishing and
subscribing.

When launching the serial node, the di�erent publishers and subscribers are initial-
ized with their respective topics and expected data types. The data types used are
included as standard messages in the rosserial library and are the same as what is
used in the Python script mentioned using rospy. The subscriber nodes must also
contain a callback function with a node handle to handle the incoming data and store
it. The incoming data is stored in the list of actuator classes described in subsec-
tion 6.4.3. When communicating with the ROS master, a node handle for the current
node is initialized. This node needs to synchronize with the master frequently enough
to keep the same clock and sync information. In the serial node, this is done by calling
nh.spinOnce(). The terminal command shown in Code snippet 7.1 was used to reduce
serial latency. Details on how the node is initialized, the publisher and subscriber
nodes can be viewed in Code snippet D.4.

Code snippet 7.1: Low latency mode
1 $ setserial /dev/<tty_name> low_latency

The communication latency between the serial node running in the embedded system
and the ROS master is low. As shown in Figure 7.8, the latency average was around
4.63 ms. However, this average was heavily inflated by one single bit. The latency
for most of the data sent was between 0 and 0.01 ms after the low latency mode was
enabled. The latency check probably failed before completing due to compunction
dropout; this happened multiple times.

Figure 7.8: Latency test
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7.4.6 GUI

Visualizing the state of the real robot is done in RViz when using MoveIt. The joint_state
topic published by the serial node is transformed to display the robot state using the
URDF model. For monitoring process values on a more detailed level, the plotjuggler
package was used. plotjuggler allows the user to subscribe to all active topics and plot
the values in di�erent graphs. An example of how the plotjuggler window looks like
while plotting the joint_states and setpoint2arduino topics are shown in Figure 7.9.
The RViz window displaying the robot state based on the URDF model is also shown
in Figure 7.9.

Figure 7.9: Displaying information using RViz and plotjuggler

7.4.7 Launching physical robot

The di�erent launch files needed to execute a trajectory to the embedded actuators
were combined into one file in a separate package. By launching robotleg.launch in the
robotleg_bringup package, all communication is initialized. The content of this launch
file and its including launch files can be found in the catkin workspace of the ROS
section on the GitHub repository (Arnesen, Grinde, Hovland and Vestland 2021b).
Visualizing correctly initialized communication is done by checking the rqt_graph. The
correct rqt_graph and further instructions for properly initializing communication and
executing a trajectory to the robot are shown in the user manual, Appendix H.

7.5 Analysis and Discussion

7.5.1 ROS version and distribution

The choice of which ROS distribution to use had to be made. As the team members had
little previous experience with ROS, some research on the main di�erences between
ROS and ROS 2 and their di�erent distributions was done. At the start of this project,
ROS 2 was fairly new, which has its advantages and disadvantages. Developing the
project using ROS 2 would future proof the system as ROS 2 is the future of ROS.
Another benefit of ROS 2 is that it would allow the team to use the more familiar op-
erating system, Windows. However, the stable version of ROS 2 is recently published.
This means that existing projects and documentation are sparse compared to ROS.
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As the bachelor’s thesis project period is approximately five months, the benefits of
using ROS 2 did not outweigh the good documentation and examples available for
ROS. If in the future development of this project, a change to ROS 2 is made, imple-
mentation of the ros1_bridge package will allow for communication between the two
di�erent ROS versions, making the transition smoother (Thomas et al. 2021). In the
end, ROS Noetic, the newest ROS distribution and what is recommended on the ROS
website, was chosen. Ubuntu 20.04 LTS is the recommended operating system run-
ning Noetic. ROS Noetic has a planned EOL, end of life, in May 2025, and combined
with the long-time support version of Ubuntu, should allow for the same system to be
used for years even though ROS 2 was not used.

7.5.2 Motion Planning

Most of the testing of motion planning with ROS was done with MoveIt through the
RViz plugin interface. This interface was very user-friendly and therefore suitable
for beginners of ROS. However, the interface is more fitting for a manipulator arm
that requires delicate movements to perform a task with some type of tool on the end
e�ector, for example a gripper that picks up and moves loose objects around. The
end e�ector on the robot leg does not have a tool. It only has a rubber sole, which is
used for dragging and pushing itself along the ground. The motions needed for the
leg to fulfill its purpose of locomotion is largely dependent on the quantity of motion
cycles and not as much on having a visualized environment to work in. Further work
with the motion planning of the robot could therefore be done with the use of other
interfaces. Examples of this being the C++-based move group interface or the Python-
based move group interface, MoveIt Commander, which was barely explored in this
project.

The planned trajectories in this project are all exclusively made in the walking dir-
ection of the robot, even though the robot has a hip joint that would allow for small
movements to its sides. This joint could perhaps be used for turning the robot by
planning and executing small movements perpendicular to the walking direction, a
short distance either in front or behind its center of gravity. A di�culty with using a
four DOF robot is that the orientation of the end e�ector can not be independent of all
directions of translation. This would require at least six DOF. In the case of the robot
leg, any movement to either of its sides will give the end e�ector a new orientation.
An example of this is visualized from the front of the robot in RViz in Figure 7.10.
This can cause di�culties when trying to plan in Cartesian space since it would re-
quire knowing the exact orientation of the end e�ector in the goal pose of the path.
This issue is addressed by some Cartesian planners that have the property of being
underconstrained. These do not require a pose to be fully specified. This means, for
example, that the translation of an end e�ector can be set with an arbitrary orient-
ation, or in the robot leg’s case, whatever the orientation needs to be to support the
translation. This functionality could be implemented in future work. A table showing
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di�erent Cartesian planners, and if they have the underconstrained property, is found
on this blog post by Dave Coleman, Mark Moll and Andy Zelenak 2021.

Figure 7.10: Example of the end e�ectors orientation being dependent on the hip joint

7.5.3 Controller implementation

Implementing control as a ROS node running on the computer would allow the con-
troller algorithms to utilize more processor cores and faster processing speed, rep-
resented by the clock frequency of the CPU. Doing this would also free up processing
power for other tasks in the already bottlenecked microcontrollers. Implementing con-
trol in this way would not make the software any more complex. The controller code
running on the Arduino could be moved a layer up as a ROS C++ node. Instead of
publishing setpoints from the joint command interface to the Arduino, the controller
node would publish the desired actuating signal. This was not implemented because
of stability issues with the rosserial communication, and communication dropouts
would cause faulty control. Due to previous experience, implementing control in the
Arduino made it possible to get more familiar with the other aspects of ROS. When
the controller algorithm is placed close to the process, the current setpoints are kept
during synchronization issues.

If state feedback controllers were implemented and the communication dropouts re-
moved. The controller could be implemented by running Matlab and Simulink as
their independent nodes and publishing the desired actuation signal. Implementing
state feedback controllers on a microcontroller running C or C++ code could become
quite substantial for a dynamic system like the robot leg developed in this project.
They could require a lot of memory and computing power, especially when inverting
matrices. However, the ROS toolbox for Matlab and Simulink could make this more
manageable. There are also many features to aid controller tuning included in the
di�erent ROS packages. An example of this is an auto-tuner for the PID controller.
A control manager could also be implemented. This would allow for easy swapping
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between di�erent controllers.

7.5.4 Hardware interface

Implementing a robust hardware interface to handle communication between the
hardware layer and ROS is needed. The serial node used in this thesis can not operate
as an action server and needs a joint command interface to handle communication
with MoveIt. As mentioned, the joint command interface implemented in this thesis
is simple and not suitable for more advanced operations. The implemented interface
does not allow for re-planning as it stores the path planned from MoveIt and loops
through it. If features like obstacle avoidance or re-planning based on joint feedback
were added, this interface would need to be rewritten. Implementing re-planning was
not done in this thesis because the objective was to implement a set gait, and syn-
ergistic features like obstacle avoidance were out of the scope due to lack of sensors.
Suppose a di�erent communication method was used between the PC and microcon-
trollers, e.g. if the microcontroller did not have support for direct integration with ROS
as a node. An open-source boilerplate template for implementing a more robust hard-
ware interface could be used with support for a control manager. The ROS Control
Boilerplate supports trajectory execution from MoveIt and controller swapping using
ROS Control (Coleman 2015).

7.5.5 Serial comunication

Communication between the Arduino boards and the PC using the rosserial library
worked well in general. The problems encountered while using the Arduino serial
communication based on the UART protocol were mainly communication dropouts.
These dropouts were probably the cause of synchronization issues caused by commu-
nication with the ROS master by using rosserial. A deep dive into the UART protocol
and communication with ROS is out of the scope of this thesis. In the serial node,
the nh.spinOnce() command synchronized the node with the master. Synchronization
issues can occur if this does not happen frequently enough.

Another problem encountered with the rosserial library is that the serial node only has
support for publishing and subscribing. Ideally, the serial node would have support
for an action server functionality. This would allow the serial node to communicate
with MoveIt using the follow_joint_trajectory action directly. If faster communication
was desired, a separate PCI-Express RS232 card could be installed on the computer.
While using the Pololu motors and the Arduino Mega, the communication speed was
not a limiting factor. The rate at which the Mega publishes and subscribes is not quick
enough to warrant higher communication speed. If faster motors were used, a faster
microcontroller and communication could be required for robust control.
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7.5.6 Features for further work

Moving away from MoveIt

MoveIt is a great tool for easy control of robot manipulators and made testing traject-
ory execution on the robot leg in this thesis easier. However, for legged locomotion, a
continuous gait often planned by solving an optimization problem as described in sub-
section 4.2.1 is preferable. Implementing trajectory execution based on a gait given in
continuous time x(t) and using a controller like the mentioned LQR would not require
MoveIt. ROS integration with Matlab and Simulink could be implemented to support
this new control strategy. Doing this requires an accurate dynamic and kinematic
model and thus was not done in this thesis. This would allow for a more optimal gait
based on the cost function, allowing for minimizing motor torque. Optimizing the tra-
jectory for legged robots may be done by the use of ROS packages like towr (Alexander
W Winkler, Bellicoso, Hutter and Buchli 2018). These trajectories can be visualized
in RViz by plotting the planned gait and contact points with the use of ROS packages
like xpp (Alexander W. Winkler 2017).

ROS Navigation and SLAM

MoveIt has integrated support for obstacle avoidance, which can be implemented by
using SLAM to map the surroundings. Furthermore, the map made by the SLAM al-
gorithm can be visualized in RViz, and taken into consideration by the trajectory being
executed from MoveIt. Various SLAM algorithms exist in the form of ROS packages.
For example, a laser-based slam algorithm is Open SLAM’s gmapping (Gerkey 2019).
Implementation of SLAM for the robot in this thesis would require a laser sensor, as
discussed in subsubsection 6.5.8. For mobile robots, like the one in this thesis, ROS
navigation may be implemented to allow for autonomous navigation using the map
generated of the surroundings, odometry data, and a goal pose to generate a safe ve-
locity command (Marder-Eppstein 2020). SLAM and navigation may be used together
as the localization part of SLAM can help determine any errors from the odometry
data caused by a faulty model or encoders.

Complete robot configurations

A quadruped model using four of the legs created in this thesis was made as a sugges-
ted application of the leg for further research. Using the same principles as previously
discussed, a simulation in Gazebo with move groups in MoveIt were made, shown in
Figure 7.11. These are also provided in the Git repository in the catkin_ws_quad dir-
ectory. Implementation of the features discussed previously in this subsection may
be advantageous for fully implementing locomotion with localization and environment
mapping.
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Figure 7.11: Quadruped robot simulation in Gazebo and move groups in MoveIt

7.6 Chapter Conclusion

The implementation of ROS in this project worked as intended. Rosserial commu-
nication was set up to communicate with the embedded microcontrollers, and a low
latency meant that the communication speed was su�cient. Problems with commu-
nication dropouts and synchronization were worked around with the implementation
of the joint command interface. The joint states published by the Arduino were reli-
ably previewed in RViz using the URDF model. MoveIt allowed for motion planning,
including Cartesian path planning, which was implemented for executing a functional
gait. Simulation in Gazebo was successfully implemented with the use of an accurate
robot model. How Matlab may be used with ROS was discussed and presented for
further work.
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Chapter 8

Results and Empirical Findings

8.1 Physical Model

The resulting physical model of this project consists of the robot leg and stand com-
prised mostly of 3D-printed parts and the embedded system of microcontrollers, motor
drivers, actuators, and a wiring harness. As one of the more critical parts, the fin-
ished joint can be seen in Figure 8.1. The complete model was build according to the
order of operations presented in the design chapter and can be seen in Figure 8.2.

Figure 8.1: Physical model - Joint
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Figure 8.2: Physical model - complete
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8.2 Gait Execution

The executed gait is a result of the design, control strategy, and the embedded system.
The controller, described in chapter 5, implemented as a low-level discrete controller
in the embedded system, described in chapter 6, was tuned for the robot to follow a
planned trajectory executed by ROS, described in chapter 7. The trajectory tracking
had to be as smooth as possible due to restrictions posed by design and hardware. The
result of the executed gait is presented in Figure 8.3. A graph made from data pub-
lished to ROS topics containing setpoints, ramped setpoints, and actual joint states
show how the controller tracks the trajectory. Angles published to ROS topics are
given in radians. A video of the executed trajectories from early testing, before the
motors got damaged, is also presented with the hand-in of the thesis.

Figure 8.3: Joint 3 and 4 tracking trajectory
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Chapter 9

Analysis and Discussion

The development of a robot from scratch is a comprehensive and interdisciplinary
task. Finding optimal solutions in terms of control, design, and electronics involves
several disciplines and usually requires more time and planning than a�orded during
a bachelor’s thesis. Given the broad breadth of this project, some of the individual
parts were probably not given enough consideration. This was mainly due to the
project’s time frame and the knowledge gaps of the people involved. As mentioned
in the chapter on the design (chapter 3), involving people from other fields of study
would perhaps close some of the gaps mentioned. This solution would free up time
for the participants to work in their fields of expertise. As a result, more extensive
research could have been performed on each separate part, and several of the proposed
expansions could have been undertaken.

Budget constraints a�ected all parts of the project, as can be seen in the individual
discussions for the di�erent parts. This meant that all choices made had to take
budgeting into account, resulting in less than optimal actuators and material choices.
Another approach that could have mitigated some of the budgeting issues was to scale
back the project’s scope and focus more on the specific functionalities that would make
up a complete robot. A project like this could involve creating one functioning joint
with a more complete mathematical model that would allow a more optimal controller
like the LQR. Only using one actuator would mean that a higher quality one could be
used, as discussed in the embedded systems (chapter 6). Generally, a larger budget
could enable the purchase of additional sensors, more powerful actuators and using
sturdier materials than 3D-printed plastic parts. Adding more parts would have ex-
panded the total scope of the project and required either more people or a down-scaled
physical product.

9.1 Future Work

The expansions and improvements discussed for future work in the previous chapters
are suggestions for the future development of the robot leg. Some of these are sugges-
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tions, and some are mandatory improvements to achieve normal functionality. Man-
datory improvements would be addressing the weak actuators, where two of them are
currently permanently damaged. Motor upgrades, microcontroller upgrades, and ad-
ditional features could require new sensors or a new controller algorithm. A decision
about the suggested upgrades will have to be made by the future developers of this
project.
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Chapter 10

Conclusions

To sum up this project, some key conclusions will now be drawn. The design came
out as intended, with all parts mating correctly. Some adjustments were needed, and
material flex was greater than anticipated. The mathematical model created simu-
lations showing that the kinematic calculations were correct. In the end, it was not
implemented on the physical robot.

In the embedded system, all communication was set up successfully, and all parts
of the electronics functioned adequately. The microcontrollers were pushed to their
limits, so some optimization or an upgrade would be needed for future work. The
control system is fully operational and able to track a smooth trajectory. However,
stronger actuators are required for the hip joints as they su�ered damage during
testing and were rendered nonfunctional. To support further research, the strength
of at least these two motors will have to be addressed. Other physical properties of
the current design, i.e., gearing, will also need to be addressed to improve accuracy
for research requiring high precision.

Simulations in ROS are operational and available for further research. Furthermore,
the framework presented in chapter 4 and 7 are thoroughly explained and can be used
for educational purposes.

In conclusion, the project statements have been solved, except for the problems in-
troduced by the hip joint actuators. This is mainly due to budgeting and a lack of
experience with torque sizing for gearing systems. Due to the limitations of the phys-
ical model, this thesis should be viewed as a pilot project for future work.
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Appendix A

Budget and Record

Description In Out Comment

Departmental financial support 5000kr
Pololu DC motors 1387.5kr 4 pieces
Pololu motor drivers 867.5kr 2 pieces
Pololu mounting hubs 138kr 2 packs of 2
Pololu caster wheels 310kr 6 pieces
Shipping Pololu 477kr
MVA Pololu 899kr
Mean Well 400W power supply 782.5kr
M4x40 screws 58.5kr

Sum 5000kr 4920kr

Table A.1: Bachelor thesis budget in NOK

131



Appendix B

Gantt
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Appendix C

Parts List

Part name Description Quantity
Spacer 1
Link 1 - Hip 1
Link 2 - Femur side 2
Link 3 - Tibia side 2
Link 4 - Metatarsal 1
Link 4 - Phalanges 1
Link 4 - Rubber sole 1
Link lower 4
Link upper 4
Encoder end cap 4
Top plate 1
Weight distribution plate 1
Stand to foot connector 4
Stand to ball wheel connector 4
Ball wheel caster 4
Stand support leg Aluminum pipe 4
Stand reinforcement pipe Aluminum pipe 4
M2x5 dome head machine screw 8
M2x15 socket head screw 8
M3x10 countersunk screw 24
M3x13 socket head screw 20
M3x15 countersunk machine screw 24
M3 hexagonal nut 12
M4x19 countersunk machine screw 8
M4x20 dome head machine screw 12
M4x20 countersunk machine screw 20
M4x26 dome head machine screw 8
M4x27 dome head machine screw 8
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M4x32 dome head machine screw 4
M4x33 dome head machine screw 4
M4x34 dome head machine screw 8
M4x35 countersunk machine screw 4
M4 hexagonal nut 76
Hexagonal spacer M3x10 4
Hexagonal spacer M2.5x6 8
Hexagonal spacer M2.5x20 8
Protoboard 20x14 4
Pin header female 1x15 8
Pin header angled male 1x3 4
Pin header angled male 1x5 4
Pin header angled male 1x15 4
Pin header angled male 1x17 4
Capacitor 470 µ F 16 V 4
Schottky diode 4
Resistor 10 ⌦ 4
Arduino Mega 1
Arduino Nano 4
Pololu 24 V 14 A motor driver 2
Pololu 24 V 1:150 gear motor 4
Pololu mounting hub 4
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Appendix D

Arduino Code

D.1 Master

Code snippet D.1: actuator.h

1 //Header file for acuator class

2 #ifndef actuator_h

3 #define actuator_h

4 #include <Arduino.h>

5 #include <Wire.h>

6
7 class Actuator {

8 private:

9 byte slaveadress; // Slave adress for a given actuator

10 bool windup; // windup indication flag

11 int counter; // Store counter from incremental encoder

12 int gearRatio; // The acuators gear ratio

13 unsigned int amps; // Store how much amps it is drawing

14 float ang, prevAngle;// The acuators angle and previous angle

15 float Kp, Ti, Td; // Controller constants

16 float ui = 0; // Integrator part

17 float ud = 0; // Derivative part

18 float elapsedTime; // Scan time

19 float error, lastError, cumError ; // Store last error

20 float prevOut, output, setPoint; // setpoints and outputs

21 float velocity;

22 float rateLimit;

23 float setpointRated; // Rate limited setpoint

24 float velRef; // Desiered velocity

25 unsigned long currentTime; // store current time

26 unsigned long previousTime; // Keep track of the previousTime
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27
28 public:

29 // Constructor function for actuator class

30 Actuator(byte encAddr, float p, float i, float d, int gr);

31
32 // Set functions

33 void setSetpoint(float r); // Set setpoint

34 void setRatedSetpoint(float r); // Set rate limited setpoint

35 void setParameters(float kp, float ti); // Set PID parameters

36 void setDesieredVelocity(float lim);// Set desiered velocity

37 void setAmps(unsigned int amp); // Set current readings in [mA]

38 void setSetpointRateLimit(); // Set rate limit for seetpoint

39
40 // Get functions

41 float getKp(); // Get PID parameters

42 float getTi();

43 float getTd();

44 float getRatedSetPoint(); // Get the rated setpoint

45 float getAngle(); // Get angle

46 float getSetpoint(); // Get actuator setpoint

47 float getVelocity(); // Get current velocity

48 int getEffort(); // Get actuator speed / effort

49 unsigned int getAmps(); // Get current readings in [mA]

50
51 void readAngle(); // read and calculate the angle

52 void computePID(); // Computes the pid algorithm

53 };

54 #endif
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Code snippet D.2: actuator.cpp

1 //This is the Cpp file for the actuator class

2 #include <Arduino.h>

3 #include "actuator.h"

4 #include <Wire.h>

5
6 //Constructor function for the class,

7 Actuator::Actuator(byte encAddr, float p, float i, float d, int gr)

{

8 slaveadress = encAddr; // Store actuator encoder slave adress

9 Kp = p; // Store pid parameters

10 Ti = i;

11 Td = d;

12 gearRatio = gr; // Store actuator gear ratio

13 }

14
15 //PID algorithm function

16 void Actuator::computePID() {

17 currentTime = millis(); // Get current time

18 elapsedTime = (float)(currentTime - previousTime); // Compute

time elapsed

19 rateLimit = abs(velRef / (elapsedTime) * 50); // calc ratelimit

20 setSetpointRateLimit(); // Calc limited setpoint

21 error = setpointRated - ang; // Determine error

22
23 if (!windup && Ti > 0.0) { // intergrator term if not

windup

24 cumError += error * elapsedTime;

25 ui = cumError / Ti; // Calc integrator term

26 }

27
28 if (Td > 0.0) { // calc derivative term if on

29 ud = ((error - lastError) * (Kp * Td)) / elapsedTime;

30 }

31
32 float out = Kp * error + ui + ud; // PID output

33
34 if ( out < 400 && out > -400) { // not windup if not within bounds

35 windup = false;

36 }

37 if (out > 400) { // if out of bounds, set windup

38 out = 400;
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39 windup = true;

40 }

41 if (out < -400) {

42 out = -400;

43 windup = true;

44 }

45 // Calculate angular velocity rad/s

46 velocity = ((ang - prevAngle) / 57.32 ) / (elapsedTime * 1000);

47
48 lastError = error; // Remember last error

49 output = out; // Store output. MAX 400, MIN -400

50 prevAngle = ang; // remember prev angle

51 previousTime = currentTime; // Remember current time

52 }

53
54 //Reads encoder counter from slave and converts to angle

55 void Actuator::readAngle() {

56 Wire.beginTransmission(slaveadress); // Starts transmission

57 int available = Wire.requestFrom(slaveadress, (uint8_t)2); //

Requests bytes

58
59 if (available == 2) { // Checks if 2 bytes avavible

60 counter = Wire.read() << 8 | Wire.read(); // int as combined

upper and lower byte

61 }

62 else { // Error in transmission

63 Serial.print("Unexpected number of bytes received: ");

64 Serial.println(available);
65 }

66 int result = Wire.endTransmission();// End transmission, store

result

67 if (result) { // check if sucessfulll

68 Serial.print("Unexpected endTransmission result: ");

69 Serial.println(result);
70 }

71 ang = (360.0 * (float)counter) / gearRatio;// Converts to

72 }

73
74 // Set function for setpoint

75 void Actuator::setSetpoint(float r) {

76 setPoint = r; //Updates setpoint

77 }
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78 // Set function for rated setpoint

79 void Actuator::setRatedSetpoint(float r) {

80 setpointRated = r; //Updates rated setpoint

81 }

82 // Set function for parameters

83 void Actuator::setParameters(float p, float ki) {

84 Kp = p; // Updates Kp

85 Ti = ki; // Updates Ti

86 }

87 // Set function for current [mA]

88 void Actuator::setAmps(unsigned int amp) {

89 amps = amp;

90 }

91 // Set function for the desiered velocity

92 void Actuator::setDesieredVelocity(float vel) {

93 velRef = vel;

94 }

95 // Set function for Rate limit for setpoint change

96 void Actuator::setSetpointRateLimit() {

97 float diff = setPoint - setpointRated;

98 if (setPoint > setpointRated) { // If setpoint larger then rated

99 if (diff > rateLimit) { // increase rated setpoint

100 setpointRated = setpointRated + rateLimit;

101 }

102 else {

103 setpointRated = setpointRated + diff;

104 }

105 }

106 if (setPoint < setpointRated) { // If setpoint smaller then rated

107 diff = diff * -1.0;

108 if (diff > rateLimit) { //decrease rated setpoint

109 setpointRated = setpointRated - rateLimit;

110 }

111 else {

112 setpointRated = setpointRated - diff;

113 }

114 }

115 }

116 // Get function for angle

117 float Actuator::getAngle() {

118 return ang;

119 }
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120 // Get function for setoint

121 float Actuator::getSetpoint() {

122 return setPoint;

123 }

124 // Get function for rated setpoint

125 float Actuator::getRatedSetPoint() {

126 return setpointRated;

127 }

128 // Get function for current velocity

129 float Actuator::getVelocity() {

130 return velocity;

131 }

132 // Get functions for PID parameters

133 float Actuator::getKp() {

134 return Kp;

135 }

136 float Actuator::getTi() {

137 return Ti;

138 }

139 float Actuator::getTd() {

140 return Td;

141 }

142 //Get function for speed command / Effort

143 int Actuator::getEffort() {

144 return (int)output; //Return as integer [-400,400]

145 }

146 //Get function for current [mA]

147 unsigned int Actuator::getAmps() {

148 return amps;

149 }
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Code snippet D.3: variables.h

1 //Constants

2 const int numActuators = 4 ; // Defines the number of actuators

3 const float startPos[4] = {0 , 0, -90, 40}; // Default Startposition

4 const char robot_id = "robotleg";// Robot namespace for topic

5 const char* joint_name[4] = {"joint1", "joint2", "joint3",

"joint4"}; // Name of joints for topic

6
7
8 //Driver 1, for actuator 1 and 2

9 unsigned char M11nSLEEP = 8; // Common sleep pin for all 4 actuators

10 unsigned char M11DIR = 3; // Directio pin for actuator 1

11 unsigned char M11PWM = 4; // PWM pin for actuator 1, pwm fq=980

12 unsigned char M11nFAULT = 9; // Common fault pin fot all 4 acutators

13 unsigned char M11CS = A0; // Pin for current sensing for

actuator 1

14
15 unsigned char M12nSLEEP = 8; // Common sleep pin for all 4 actuators

16 unsigned char M12DIR = 5; // Directio pin for actuator 2

17 unsigned char M12PWM = 13; // PWM pin for actuator 2, pwm fq=980

18 unsigned char M12nFAULT = 9; // Common fault pin for all 4

19 unsigned char M12CS = A1; // Pin for current sensing actuator 2

20
21 //Driver 2, for actuator 3 and 4

22 unsigned char M21nSLEEP = 8; // Common sleep pin for all 4 actuators

23 unsigned char M21DIR = 6; // Directio pin for actuator 3

24 unsigned char M21PWM = 10; // PWM pin for actuator 3, pwm fq=490

25 unsigned char M21nFAULT = 9;// Common fault pin fot all 4 acutators

26 unsigned char M21CS = A2; // Pin for current sensing actuator 3

27
28 unsigned char M22nSLEEP = 8;// Common sleep pin for all 4 actuators

29 unsigned char M22DIR = 7; // Directio pin for actuator 4

30 unsigned char M22PWM = 11; // PWM pin for actuator 4, pwm fq=490

31 unsigned char M22nFAULT = 9;// Common fault pin fot all 4 acutators

32 unsigned char M22CS = A3; // Pin for current sensing actuator 4
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Code snippet D.4: main.ino

1 #include <Arduino.h>

2 #include <stdlib.h>

3 #include "actuator.h"

4 #include "DualG2HighPowerMotorShield.h"

5 #include "variables.h"

6 #include <ros.h>

7 #include <sensor_msgs/JointState.h>

8 #include <control_msgs/FollowJointTrajectoryAction.h>

9 #include <control_msgs/FollowJointTrajectoryActionGoal.h>

10 #include <control_msgs/FollowJointTrajectoryGoal.h>

11 #include <trajectory_msgs/JointTrajectoryPoint.h>

12 #include <trajectory_msgs/JointTrajectory.h>

13 #include <std_msgs/UInt16.h>

14 #include <std_msgs/Float32MultiArray.h>

15 #include <std_msgs/Float32.h>

16 #include <std_msgs/Float64.h>

17
18 // Create node handles for publishers

19 sensor_msgs::JointState robot_state;

20 std_msgs::UInt16 curr_reading1;

21 std_msgs::UInt16 curr_reading2;

22 std_msgs::UInt16 curr_reading3;

23 std_msgs::UInt16 curr_reading4;

24 std_msgs::Float32 rated_setpoint1;

25 std_msgs::Float32 rated_setpoint2;

26 std_msgs::Float32 rated_setpoint3;

27 std_msgs::Float32 rated_setpoint4;

28
29 //Create node handle for ros communication

30 ros::NodeHandle nh;

31
32 // Init motordriverer1 as md1(motor driver 1)

33 DualG2HighPowerMotorShield24v14 md1(M11nSLEEP, M11DIR, M11PWM,

M11nFAULT, M11CS, M12nSLEEP, M12DIR, M12PWM, M12nFAULT,

M12CS);

34 // Init motordriverer2 as md2(motor driver 2)

35 DualG2HighPowerMotorShield24v14 md2(M21nSLEEP, M21DIR, M21PWM,

M21nFAULT, M21CS, M22nSLEEP, M22DIR, M22PWM, M22nFAULT,

M22CS);

36
37 // Create object array of the 4 actuators
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38 // slaveadress, pid parameters and gear ratio as parameters

39 Actuator actuators[4] = {Actuator(8, 80, 0, 0.005, 3200),

Actuator(9, 30, 8, 0, 4480), Actuator(10, 20, 20, 0, 4480),

Actuator(11, 15, 100 , 0, 4480)};

40
41 // Declare functions

42 void controllActuators(Actuator acts[]); // Comute PID on all joints

43 void stopIfFault(); // Disable the motordrivers if fault

44 void setupDrivers(); // Start the motor drivers

45 void setupRos(); // Initialize ros comunication

46 void rosPub(); // Publishes to topics

47 void legCb(const std_msgs::Float32MultiArray& leg); // pos cb

48 void velCb(const std_msgs::Float32MultiArray& vel); // velocity cb

49
50 // Declare ros publishers

51 // Robot state publisher on joint_state topic

52 ros::Publisher pubJoint("/joint_states", &robot_state);

53 // Publishers for current readings 1 - 4

54 ros::Publisher pubCurr1("/current_reading1", &curr_reading1);

55 ros::Publisher pubCurr2("/current_reading2", &curr_reading2);

56 ros::Publisher pubCurr3("/current_reading3", &curr_reading3);

57 ros::Publisher pubCurr4("/current_reading4", &curr_reading4);

58 // Publishers for rate limited setpoints 1 - 4

59 ros::Publisher pubSetPoint1("/ratedsetpoint1", &rated_setpoint1);

60 ros::Publisher pubSetPoint2("/ratedsetpoint2", &rated_setpoint2);

61 ros::Publisher pubSetPoint3("/ratedsetpoint3", &rated_setpoint3);

62 ros::Publisher pubSetPoint4("/ratedsetpoint4", &rated_setpoint4);

63
64 // Declare subscribers

65 // subscriber for planned setpoints

66 ros::Subscriber <std_msgs::Float32MultiArray>

sub("setpoint2arduino", &legCb);

67 // subscriber for planned velocities

68 ros::Subscriber <std_msgs::Float32MultiArray>

sub2("velocities2arduino", &velCb);

69
70 void setup() {

71 setupRos(); // initialize ros comunication

72 Wire.begin(); // Initialize wire

73 delay(10);

74 setupDrivers(); // Init drivers and startpositions

75 delay(10);
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76 }

77
78 void loop() {

79 stopIfFault();

80 controllActuators(actuators); // Pid controll on all the acuators

81 rosPub(); // Publish joint states and current readings

82 nh.spinOnce(); // sync with ros, needs to happen frequently

83 }

84
85 //Setup function for roscomunication

86 void setupRos() {

87 nh.getHardware()->setBaud(115200); // Set baud rate

88 nh.initNode(); // Initialize serial node

89
90 // Set publishers

91 nh.advertise(pubJoint);

92 nh.advertise(pubCurr1);

93 nh.advertise(pubCurr2);

94 nh.advertise(pubCurr3);

95 nh.advertise(pubCurr4);

96 nh.advertise(pubSetPoint1);

97 nh.advertise(pubSetPoint2);

98 nh.advertise(pubSetPoint3);

99 nh.advertise(pubSetPoint4);

100
101 // Set subscribers

102 nh.subscribe(sub);

103 nh.subscribe(sub2);

104
105 nh.spinOnce();

106
107 // Fulfill sensor_msg/JointState msg

108 robot_state.name_length = 4;

109 robot_state.velocity_length = 4;

110 robot_state.position_length = 4;

111 robot_state.effort_length = 4;

112 robot_state.header.frame_id = "";

113 robot_state.name = joint_name;

114 }

115
116 //Controlls all the actuators

117 void controllActuators(Actuator actuators[]) {
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118 nh.spinOnce(); // sync to get setpoints

from topic

119 for (int i = 0; i < numActuators; i++) { // Loops over the 4

actuators

120 actuators[i].readAngle(); // Get the actuators

angle

121 actuators[i].computePID(); // Computes output using

PID

122 nh.spinOnce();

123 if ( i == 0) { // Motor 1 is driver 1 M1

124 md1.setM1Speed(actuators[i].getEffort());

125 actuators[i].setAmps(md1.getM1CurrentReading());

126 curr_reading1.data = actuators[i].getAmps();

127 rated_setpoint1.data = actuators[i].getRatedSetPoint();

128 }

129 else if ( i == 1) { // Motor 2 is driver 1 M2

130 md1.setM2Speed(actuators[i].getEffort());

131 actuators[i].setAmps(md1.getM2CurrentReading());

132 curr_reading2.data = actuators[i].getAmps();

133 rated_setpoint2.data = actuators[i].getRatedSetPoint();

134 }

135 else if ( i == 2) { // Motor 3 is driver 2 M1

136 md2.setM1Speed(actuators[i].getEffort());

137 actuators[i].setAmps(md2.getM1CurrentReading());

138 curr_reading3.data = actuators[i].getAmps();

139 rated_setpoint3.data = actuators[i].getRatedSetPoint();

140 }

141 else if ( i == 3) { // Motor 4 is driver 2 M2

142 md2.setM2Speed(actuators[i].getEffort());

143 actuators[i].setAmps(md2.getM2CurrentReading());

144 curr_reading4.data = actuators[i].getAmps();

145 rated_setpoint4.data = actuators[i].getRatedSetPoint();

146 }

147 }

148 }

149
150
151 //Disable motordriver if fault

152 void stopIfFault() {

153 if (md1.getM1Fault() || md1.getM2Fault()) { // Checks fault on

driver 1

154 md1.disableDrivers(); // Disable driver 1
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155 delay(1);

156 Serial.println("M fault");

157 while (1); // Stop program

158 }

159 if (md2.getM2Fault() || md2.getM1Fault()) { // Checks fault on

driver 2

160 md2.disableDrivers(); // Disable driver 2

161 delay(1);

162 Serial.println("M fault");

163 while (1); // Stop program

164 }

165 }

166
167 //Setup function for motor drivers

168 void setupDrivers() {

169 md1.init(); // Init pinmodes driver 1

170 md1.calibrateCurrentOffsets();

171 md2.init(); // Init pinmodes driver 2

172 md2.calibrateCurrentOffsets();

173 md1.enableDrivers(); // Enable mosfet 1

174 md2.enableDrivers(); // Enable mosfet 2

175 for (int i = 0; i < numActuators; i++) {

176 actuators[i].readAngle(); // Read startpos

177 delay(10);

178 actuators[i].setSetpoint(actuators[i].getAngle()); //Initialize

start setpoints

179 actuators[i].setRatedSetpoint(actuators[i].getAngle());

180 }

181 delay(50); // Enabeling drivers needs some time

182 }

183
184 // Function for publishing joint states on the joint_state topic

185 void rosPub() {

186 float pos[4]; // Expected size for topic

187 float vel[4];

188 float eff[4];

189
190 for (int i = 0; i < 4; i++) { // Fulfill the arrays whith

readings

191 pos[i] = (float)((actuators[i].getAngle()) / 57.32);// store

angle in rad

192 vel[i] = actuators[i].getVelocity(); // velocity in rad/s
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193 eff[i] = actuators[i].getEffort(); // output from PID

194 }

195 // Fulfill the sensor_msg/JointState msg

196 robot_state.header.stamp = nh.now();

197 robot_state.position = pos;

198 robot_state.velocity = vel;

199 robot_state.effort = eff;

200
201 pubJoint.publish( &robot_state); // Publish joint states

202 pubCurr1.publish( &curr_reading1); // Publish current readings 1

to 4

203 pubCurr2.publish( &curr_reading2);

204 pubCurr3.publish( &curr_reading3);

205 pubCurr4.publish( &curr_reading4);

206
207 pubSetPoint1.publish( &rated_setpoint1); // Publish rate limited

setpoints

208 pubSetPoint2.publish( &rated_setpoint2);

209 pubSetPoint3.publish( &rated_setpoint3);

210 pubSetPoint4.publish( &rated_setpoint4);

211
212 nh.spinOnce(); // Sync with ros

213 }

214 // calback for setponts

215 void legCb(const std_msgs::Float32MultiArray& leg) {

216 for (int i = 0; i < 4; i++) {

217 float rad = leg.data[i]; // read radians planned in moveit

218 float deg = rad * 57.32; // Convert to degrees (180/3.14)

219 actuators[i].setSetpoint(deg); // Get angles from publisher node

220 }

221 }

222 // calback for velocities

223 void velCb(const std_msgs::Float32MultiArray& vel) {

224 for (int i = 0; i < 4; i++) {

225 actuators[i].setDesieredVelocity(vel.data[i]); // Set desiered

velocity

226 }

227 }
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D.2 Slave

Code snippet D.5: slave1.ino

1 #include <Wire.h>

2 #include <EEPROM.h> // Liberary for EEPROM saving

3 #define slaveAddr 8

4 //Constants:

5 int pinA = 3; // Encoder pin for A puls

6 int pinB = 4; // Encoder pin for B puls

7 //Variables:

8 int counter; // store the incremental encoders counter

9 int aState; // Store the state of the puls

10 int aLastState; // Save last state of the puls

11 void setup() {

12 pinMode (pinA, INPUT); //Defines the input pins

13 pinMode (pinB, INPUT);

14 EEPROM.get(0, counter); //Get last stored counter value

15 Wire.begin(slaveAddr);

16 Wire.onRequest(requestEvent); // On request from master

function

17 aLastState = digitalRead(pinA); // Reads outputA initial

state

18 attachInterrupt(digitalPinToInterrupt(2), saveToERPROM, FALLING);

19 }

20 void loop() {

21 aState = digitalRead(pinA); // State of puls A

22 if (aState != aLastState) { // Checks if a pulse has

happened

23 if (digitalRead(pinB) != aState) { // checks if clockwise

rotation

24 counter ++;

25 } else {

26 counter --;

27 }

28 }

29 aLastState = aState; // Saves previous state

30 }

31 void requestEvent() {

32 uint8_t buffer[2];

33 buffer[0] = counter >> 8; // Store the int as 2 bytes

34 buffer[1] = counter & 0xff; // each byte is 8 bits
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35 Wire.write(buffer, 2); // Respond with message of

2 bytes

36 }

37 void saveToERPROM(){ //ISR function for

interupt pin

38 EEPROM.put(0, counter);

39 delay(1000); // Wait to die

40 }
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Python Code

Code snippet E.1: command interface
1 %\begin{python}
2 #! /usr/bin/env python
3 import rospy
4 import actionlib
5 from std_msgs.msg import Int32
6 from sensor_msgs.msg import JointState
7 from control_msgs.msg import FollowJointTrajectoryGoal
8 from control_msgs.msg import FollowJointTrajectoryActionGoal
9 from std_msgs.msg import Float32MultiArray

10 import time
11 from trajectory_msgs.msg import JointTrajectoryPoint
12 from control_msgs.msg import (
13 FollowJointTrajectoryAction,
14 FollowJointTrajectoryFeedback,
15 FollowJointTrajectoryResult,
16 FollowJointTrajectoryGoal
17 )
18
19 class JointTrajectoryActionServer(object):
20 def __init__(self, controller_name):
21 rospy.init_node('robotleg_interface') # init ros node
22 self._action_ns = controller_name + '/follow_joint_trajectory'

#set ns
23 self._as =

actionlib.SimpleActionServer(self._action_ns,FollowJointTrajectoryAction,execute_cb=self.execute_cb,auto_start
= False) # Settings for action server

24 self._as.register_goal_callback(self.goalCB) # Register goal cb
function

25 self._action_name = rospy.get_name()
26 self._as.start() # Start actionserver
27 self._feedback = FollowJointTrajectoryFeedback
28 self._result = FollowJointTrajectoryResult
29 self.pos = Float32MultiArray() # Poisiton being

published
30 self.speed = Float32MultiArray() # velocity being

published
31 self.i=0 # Counter for

viapoint looping
32 self.timer = 0
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33 self.pos.data = [0, 0, -1.57, 0] # init pos for
joint positions

34 self.jointStates = [0, 0, -1.57, 0]
35 self.jointVel = [0, 0, 0,0] # init vel for

joint states
36 rospy.Subscriber('/joint_states', JointState, self.get_joints) #

define joint_states subscriber
37 self.speed.data = [0.0, 0.0, 0.0, 0.0] # init speed
38 self.pos.data = self.jointStates
39 self.speed.data = self.jointVel # store positions

from harware
40 self.pub = rospy.Publisher('/setpoint2arduino',

Float32MultiArray, queue_size=1000) # Publisher for
setpoints to arduin

41 self.pub2 = rospy.Publisher('/velocities2arduino',
Float32MultiArray, queue_size=1000) # Publisher for
velocities to aruino

42 rospy.loginfo('Successful init')
43 rospy.spin() # Loop ros

comunication
44
45 # Callback function for executing trajectory
46 def execute_cb(self, goal):
47 joint_names = goal.trajectory.joint_names # Get joint names
48 trajectory_points = goal.trajectory.points # get trajecotry
49 self.viapoints = trajectory_points # store as viapoints
50 self._goal = self._as.set_succeeded() # Sucessfully got

viapoint
51 self.i = 0 # reset
52 self.timer = time.time() # start timer
53 while self.i < len(self.viapoints): # Loop over all the

viapoints
54 for j in range(4): # loop over 4 joints and get curr

setpoints
55 self.pos.data[j] = self.viapoints[self.i].positions[j]#
56 self.speed.data[j] = self.viapoints[self.i].velocities[j]
57 if self.i == (len(self.viapoints) - 1): # avoid stopping

to early
58 self.speed.data[j] = self.viapoints[self.i

-1].velocities[j]
59 rospy.spin # Read new pos from

sensors
60 time.sleep(0.02) # sleep long enough to

get new joint_states
61 rospy.sleep # continue program
62 self.pub.publish(self.pos) # Publish current

setpoints
63 self.pub2.publish(self.speed) # Publish speeds
64 if self.tol(): # Check if close enough

to setpoint
65 self.i = self.i + 1 # loop to next setpoints

in path
66 if (time.time()- self.timer) > 10: # exit if not completed

within 10 sec
67 break
68 self.speed.data = self.viapoints[self.i - 1].velocities # set

final speed
69 self.i=0 # Reset counter for next trajecotry
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execution
70
71 def goalCB(self): # Goal callback function not used
72 self._goal = self._as.accept_new_goal() # Accept next goal
73 # Do something with goal, not used
74
75 def get_joints(self, msg):
76 self.jointStates = msg.position
77 self.jointVel = msg.velocity # Get joint states
78
79 def tol(self):
80 tolerance = True
81 for indeks in range(4):
82 if abs(self.pos.data[indeks] - self.jointStates[indeks]) >

0.035:
83 tolerance = False # if not within tolerance curently 2

degrees
84 return tolerance
85
86 if __name__ == '__main__': # Run class constructor on program start
87 JointTrajectoryActionServer('robotleg/robotleg_controller')
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Code snippet E.2: loop_gait.py
1 #!/usr/bin/env python3
2
3 # Software License Agreement (BSD License)
4 #
5 # Copyright (c) 2013, SRI International
6 # All rights reserved.
7 #
8 # Redistribution and use in source and binary forms, with or without
9 # modification, are permitted provided that the following conditions

10 # are met:
11 #
12 # * Redistributions of source code must retain the above copyright
13 # notice, this list of conditions and the following disclaimer.
14 # * Redistributions in binary form must reproduce the above
15 # copyright notice, this list of conditions and the following
16 # disclaimer in the documentation and/or other materials provided
17 # with the distribution.
18 # * Neither the name of SRI International nor the names of its
19 # contributors may be used to endorse or promote products derived
20 # from this software without specific prior written permission.
21 #
22 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 # POSSIBILITY OF SUCH DAMAGE.
34 #
35 # Author: Acorn Pooley, Mike Lautman
36 #
37 # Modified by Kristian Grinde
38
39 ## To use the Python MoveIt interfaces, we will import the

�moveit_commander�_ namespace.
40 ## This namespace provides us with a �MoveGroupCommander�_ class, a

�PlanningSceneInterface�_ class,
41 ## and a �RobotCommander�_ class. More on these below. We also import

�rospy�_ and some messages that we will use:
42
43 import sys
44 import copy
45 import rospy
46 import moveit_commander
47 import moveit_msgs.msg
48 import geometry_msgs.msg
49 from math import pi, tau, dist, fabs, cos
50 from std_msgs.msg import String
51
52 class MoveGroupPythonInterface(object):
53 """MoveGroupPythonInterface"""
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54 def __init__(self):
55 super(MoveGroupPythonInterface, self).__init__()
56
57 ## First initialize �moveit_commander�_ and a �rospy�_ node:
58 moveit_commander.roscpp_initialize(sys.argv)
59 rospy.init_node('move_group_python_interface', anonymous=True)
60
61 ## Instantiate a �RobotCommander�_ object. Provides information such

as the robot's
62 ## kinematic model and the robot's current joint states
63 robot = moveit_commander.RobotCommander()
64
65 ## Instantiate a �PlanningSceneInterface�_ object. This provides a

remote interface
66 ## for getting, setting, and updating the robot's internal

understanding of the
67 ## surrounding world:
68 scene = moveit_commander.PlanningSceneInterface()
69
70 ## Instantiate a �MoveGroupCommander�_ object. This object is an

interface
71 ## to a planning group (group of joints). In this tutorial the

group is the primary
72 ## arm joints in the robotleg robot, so we set the group's name to

"robotleg".
73 ## If you are using a different robot, change this value to the name

of your robot
74 ## arm planning group.
75 ## This interface can be used to plan and execute motions:
76 group_name = "robotleg"
77 move_group = moveit_commander.MoveGroupCommander(group_name)
78
79 ## Create a �DisplayTrajectory�_ ROS publisher which is used to

display
80 ## trajectories in Rviz:
81 display_trajectory_publisher =

rospy.Publisher('/move_group/display_planned_path',
82 moveit_msgs.msg.DisplayTrajectory,
83 queue_size=20)
84
85
86 ## Getting Basic Information
87 ## ^^^^^^^^^^^^^^^^^^^^^^^^^
88 # We can get the name of the reference frame for this robot:
89 planning_frame = move_group.get_planning_frame()
90 print("============ Planning frame: %s" % planning_frame)
91
92 # We can also print the name of the end-effector link for this group:
93 eef_link = move_group.get_end_effector_link()
94 print("============ End effector link: %s" % eef_link)
95
96 # We can get a list of all the groups in the robot:
97 group_names = robot.get_group_names()
98 print("============ Available Planning Groups:",

robot.get_group_names())
99

100 # Sometimes for debugging it is useful to print the entire state of
the
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101 # robot:
102 print("============ Printing robot state")
103 print(robot.get_current_state())
104 print("")
105
106 # We can get a list of all the named joint targets:
107 print("============ Printing named targets")
108 print(move_group.get_named_targets())
109 print("")
110
111 # Misc variables
112 self.robot = robot
113 self.scene = scene
114 self.move_group = move_group
115 self.display_trajectory_publisher = display_trajectory_publisher
116 self.planning_frame = planning_frame
117 self.eef_link = eef_link
118 self.group_names = group_names
119
120 # Plan and execute a trajectory to a named group state
121 def go_to_named_target(self, target):
122
123 # Update the joint values of a group state to the joint target
124 joint_goal = self.move_group.get_current_joint_values()
125 joint_goal = self.move_group.get_named_target_values(target)
126
127 # Plan and execute to the joint target
128 self.move_group.go(joint_goal, wait=True)
129
130 # Make sure there is no residual movement
131 self.move_group.stop()
132
133 # Copy the start and end pose of the Cartesian path
134 def calibrate_cartesian_path(self):
135
136 # Copy the end pose of the Cartesian path to a variable
137 self.go_to_named_target('back_step')
138 end_step = self.move_group.get_current_pose().pose
139
140 # Follow the gait pattern to avoid collisions
141 self.go_to_named_target('back_raised')
142 self.go_to_named_target('front_raised')
143
144 # Copy the start pose of the Cartesian path to a variable
145 self.go_to_named_target('front_step')
146 start_step = self.move_group.get_current_pose().pose
147
148 # Make an array of the waypoints used to compute a Cartesian path
149 waypoints = []
150 waypoints.append(copy.deepcopy(start_step))
151 waypoints.append(copy.deepcopy(end_step))
152
153 (plan, fraction) = self.move_group.compute_cartesian_path(
154 waypoints, # waypoints to follow
155 0.1, # eef_step
156 0.0) # jump_threshold
157
158 return plan, fraction
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159
160
161 def execute_plan(self, plan):
162
163 ## Executing a Plan
164 ## ^^^^^^^^^^^^^^^^
165 ## Use execute if you would like the robot to follow
166 ## the plan that has already been computed:
167 self.move_group.execute(plan, wait=True)
168 self.move_group.stop()
169 ## **Note:** The robot's current joint state must be within some

tolerance of the
170 ## first waypoint in the �RobotTrajectory�_ or ��execute()�� will

fail
171
172
173 def main():
174 try:
175
176 # Begin the gait by setting up the moveit_commander ...
177 gait = MoveGroupPythonInterface()
178
179 # Start by planning the Cartiesian path and saving the plan to a

variable
180 cartesian_plan, fraction = gait.calibrate_cartesian_path()
181
182 # Perform all the movements of the gait in sequence and repeat until

interrupted
183 while True:
184
185 gait.execute_plan(cartesian_plan)
186
187 gait.go_to_named_target('back_raised')
188
189 gait.go_to_named_target('front_raised')
190
191 gait.go_to_named_target('front_step')
192
193 except rospy.ROSInterruptException:
194 return
195 except KeyboardInterrupt:
196 return
197
198 if __name__ == '__main__':
199 main()
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Appendix F

Matlab Code

Code snippet F.1: calculation of A-matrix

1 function [A] = calcA(d, theta, a, alpha)

2 %calcA creates the transfer matrix between two joints using Denavit−
3 %Hartenberg parameters

4
5 A = [cos(theta) −sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta);

6 sin(theta) cos(theta)*cos(alpha) −cos(theta)*sin(alpha) a*sin(theta);

7 0 sin(alpha) cos(alpha) d;

8 0 0 0 1];

9 end

Code snippet F.2: Symbolic calculation of all A-matrices

1 function [A] = symCalcA(dh)

2 %symCalcA calculates all transfer matrices between two joints for the

3 %entire robot configuration using Denavit−Hartenberg parameters. By

4 %declaring "A" symbolic, the function enables symbolic calculation but it

5 %can also be used numerically.

6
7 n = length(dh(:,1)); %Number of links

8 A = sym('A', [4 4 n]);

9
10 for i = 1:1:n

11 d = dh(i,1);

12 theta = dh(i,2);

13 a = dh(i,3);

14 alpha = dh(i,4);

15 A(:, :, i) = calcA(d, theta, a, alpha);

16 end

17 end
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Code snippet F.3: Symbolic calculation of all T -matrices

1 function [T] = symCalcT(dh)

2 %symCalcT calculates all T matrices from base link to end effector for any

3 %robot configuration. By declaring A symbolic, the function enables

4 %symbolic calculation but it can be used numerically

5
6 A = symCalcA(dh);

7
8 n = length(dh(:,1)); %number of links

9 T = sym('T', [4 4 n]);

10
11 T(:,:,1) = A(:,:,1);

12 for i = 2:1:n

13 T(:,:,i) = T(:,:,i−1)*A(:,:,i);
14 end

15 end

Code snippet F.4: Symbolic calculation of J-matrix

1 function [J] = symCalcJ(dh)

2 %sumCalcJ calculates the Jacobi matrix for any given robot configuration

3 % By defining the Denavit Hartenberg table with an extra row for

4 % rotational or translational joints the Jacobi matrix can be calculated

5 % directly from the DH−table
6
7 n = length(dh(:,1)); %number of links

8 Jv = sym('Jv', [3 n]);

9 Jw = sym('Jw', [3 n]);

10
11 T = symCalcT(dh);

12
13 for i = 1:n

14 type = dh(i,5);

15 if lower(type) == "rot"

16 if i == 1

17 Jv(1:3, i) = cross([0;0;1],(T(1:3, 4, n) − [0;0;0]));

18 Jw(1:3, i) = sym([0;0;1]);

19 else

20 Jv(1:3, i) = cross(T(1:3, 3, i−1),(T(1:3, 4, n) − (T(1:3, 4,

i−1))));
21 Jw(1:3, i) = T(1:3, 3, i−1);
22 end

23 else
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24 if i == 1

25 Jv(1:3, i) = [0;0;0];

26 else

27 Jv(1:3, i) = T(1:3, 3, i−1);
28 end

29 Jw(i,1:3) = 0;

30 end

31 end

32
33 J = [Jv;Jw];

34 end

Code snippet F.5: Inverse kinematics for the configuration using geometry

1 function [dh] = invKinCalc(x,y,z,phi,dh,pi)

2 %invKinCalc calculates robot angles given desired values for x, y, z, phi

3 % This function returns a full Denavit−Hartenberg table for all momentary

4 % values at the current stance.

5
6 if ~exist('pi','var')

7 pi = pi;

8 end

9
10 theta2 = dh(2,2) + atan2(x,−z);
11 dh(2,2) = quadCheck(theta2);

12
13 r = sqrt(x^2+z^2);

14 ym = y+dh(2,1)+dh(5,3)*sin(phi+dh(6,2))−dh(7,1)*sin(pi/2−phi);
15 rm = r−dh(2,3)−dh(5,3)*cos(phi+dh(6,2))−dh(7,1)*cos(pi/2−phi);
16
17 gamma = atan2(−ym/sqrt(rm^2+ym^2),−rm/sqrt(rm^2+ym^2));
18 theta3 = gamma −

acos(−(rm^2+ym^2+dh(3,3)^2−dh(4,3)^2)/(2*dh(3,3)*sqrt(rm^2+ym^2)));
19 dh(3,2) = quadCheck(theta3);

20
21 theta4 =

atan2((ym−dh(3,3)*sin(dh(3,2)))/dh(4,3),(rm−dh(3,3)*cos(dh(3,2)))/dh(4,3))−dh(3,2);
22 dh(4,2) = quadCheck(theta4);

23
24 theta5 = −(phi+dh(3,2)+dh(4,2)+dh(6,2));
25 dh(5,2) = quadCheck(theta5);

26 end
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Code snippet F.6: Using the inverse kinematics function to return a matrix containing
all angles for all via points

1 function [theta] = invKinViasCalc(xVias,yVias,zVias,phiVias,dh,pi)

2 %invKinViasCalc Creates viapoints using the inverse kinematics function

3 % This function returns a matrix containing angles for each actuator in

4 % each via point

5
6 if ~exist('pi','var')

7 pi = pi;

8 end

9
10 n = length(xVias);

11 theta = sym('theta', [4 n]);

12 for i = 1:n

13 dhMom = invKinCalc(xVias(i),yVias(i),zVias(i),phiVias(i),dh,pi);

14 theta(:,i) = dhMom(2:5,2);

15 end

16 end

Code snippet F.7: Symbolic calculation of quintic polynomial between two angles

1 function [thetaFunc,velFunc,accFunc] = tradjCalcQuint(theta, time, vel, acc)

2 %pathCalc calculates the quintic trajectory between two points

3 % Returns symbolic trajectory functions using a quintic function. This

4 % function enables the setting of start/stop times and acceleration but

5 % sets them to 0 when the values are missing.

6
7 t = sym('t');

8
9 if ~exist('vel','var')

10 % Velocity parameters is not set, defaults to 0

11 vel(1) = 0;

12 vel(2) = 0;

13 end

14 if ~exist('acc','var')

15 % Acceleration parameters is not set, defaults to 0

16 acc(1) = 0;

17 acc(2) = 0;

18 end

19
20 c=[theta(1) vel(1) acc(1) theta(2) vel(2) acc(2)]';

21 b = [1 time(1) time(1)^2 time(1)^3 time(1)^4 time(1)^5; 0 1 2*time(1)

3*time(1)^2 4*time(1)^3 5*time(1)^4; 0 0 2 6*time(1) 12*time(1)^2
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20*time(1)^3; 1 time(2) time(2)^2 time(2)^3 time(2)^4 time(2)^5; 0 1

2*time(2) 3*time(2)^2 4*time(2)^3 5*time(2)^4; 0 0 2 6*time(2)

12*time(2)^2 20*time(2)^3];

22 a = b\c;

23
24 thetaFunc = a(1) + a(2)*t + a(3)*t^2 + a(4)*t^3 + a(5)*t^4 + a(6)*t^5;

25 velFunc = a(2) + 2*a(3)*t + 3*a(4)*t^2 + 4*a(5)*t^3 + 5*a(6)*t^4;

26 accFunc = 2*a(3) + 6*a(4)*t + 12*a(5)*t^2 + 20*a(6)*t^3;

27 end

Code snippet F.8: Symbolic calculation of all polynomials for the configuration

1 function [thetaFuncs,velFuncs,accFuncs] = pathCalcTot(thetaVias,timeLimits)

2 %pathCalcTot calculatesthe total path functions for alle via points

3 % Using the pathCalc function, this function returns the symbolic

4 % functions with respect to t for angle, velocity and acceleration for

5 % all trajectories between via points.

6
7 n = length(timeLimits);

8 m = length(thetaVias(:,1));

9
10 timeLine = zeros(length(timeLimits)+1);

11 timeLine(1) = 0;

12
13 thetaFuncs = sym('thetaFuncs', [m,n]);

14 velFuncs = sym('velFuncs', [m,n]);

15 accFuncs = sym('accFuncs', [m,n]);

16
17 for i = 1:length(timeLimits)

18 timeLine(i+1) = timeLine(i)+timeLimits(i);

19 end

20
21 for i=1:n %Number of via points

22 for j = 1:m %Number of actuators

23 [thetaFuncs(j,i), velFuncs(j,i), accFuncs(j,i)] =

pathCalc([thetaVias(j,i) thetaVias(j,i+1)], [timeLine(i)

timeLine(i+1)]);

24 end

25 end

26 end

Code snippet F.9: Converting the symbolic functions into arrays of angles for plotting

1 function [thetaDiscrete, timeLine] = pathDiscrete(thetaFuncs,timeLim, timeStep)
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2 %pathDiscrete creates an array of angles for each function in thetaFuncs

3 % This function takes the symbolic functions in thetaFuncs and creates

4 % angles given the time step. It also returns a timeline of all

5 % timestamps where angles were calculated.

6
7 numVias = length(timeLim);

8
9 time = cell(1,numVias);

10 time{1} = 0:timeStep:timeLim(1);

11 numVals = length(time{1});

12 for i = 2:numVias

13 time{i} = time{i−1}(end):timeStep:time{i−1}(end)+timeLim(i);
14 numVals = numVals + length(time{i});

15 end

16
17 thetaPath = cell(1,numVias);

18 for i = 1:numVias

19 numTimeSteps = length(time{i});

20 for j = 1:numTimeSteps

21 t = time{i}(j);

22 thetaPath{i}(:,j) = subs(thetaFuncs(:,i), t);

23 end

24 end

25
26 thetaDiscrete = thetaPath{1};

27 timeLine = time{1};

28 for i = 2:numVias

29 thetaDiscrete = [thetaDiscrete thetaPath{i}];

30 timeLine = [timeLine time{i}];

31 end

32 end

Code snippet F.10: Ploting function for the robot in its current configuration

1 function [] = plotRobot(dh, baseHeight)

2 %plotRobot Plotting robot in current configuration

3 hold on

4 grid on

5 xlim([−400 400]);

6 ylim([−400 400]);

7 zlim([−50 550]);

8 xlabel('X');

9 ylabel('Y');
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10 zlabel('Z');

11
12 T = symCalcT(dh);

13 n = length(dh(:,1)); %number of links

14
15 for i=1:n

16 x(i) = T(1,4,i);

17 y(i) = T(2,4,i);

18 z(i) = T(3,4,i);

19
20 c = {'k' 'r' 'm' 'b' 'b' 'c' 'g' 'k'}; %Color for each joint and end

effector

21 plot3(x(i), y(i), z(i)+baseHeight, 'color', c{i}, 'marker', 'o')

%Justerer for aksene til DH og høyden til stativet

22 if i==2

23 plot3([0 0],[0 y(i)],[baseHeight baseHeight], 'k');

24 plot3([0 x(i)],[y(i) y(i)],[baseHeight z(i)+baseHeight], 'k');

25 elseif i>1

26 plot3([x(i−1) x(i)], [y(i−1) y(i)], [z(i−1)+baseHeight
z(i)+baseHeight], 'k')

27 end

28
29 end

30 view([100 10])

31 end

Code snippet F.11: Animated plotting of robot

1 function [] = plotAnimation(dh, baseHeight, thetaDiscrete, timeLine, fileName)

2 %plotAnimation creates and exports an animation of the robot

3 % The thetaDiscrete matrix includes actuator angles for all time steps in

4 % a complete gait.

5
6 figure()

7
8 %Preallocation

9 numFrames = length(timeLine);

10 frames = struct('cdata',cell(1,numFrames),'colormap',cell(1,numFrames));

11 dhMom = dh;

12 for i = 1:numFrames

13 clf; %Clearing plot values

14 dhMom(2:5,2) = thetaDiscrete(:,i);

15 plotRobot(dhMom, baseHeight);
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16 frames(i) = getframe(gcf);

17 end

18
19 video = VideoWriter(fileName, 'MPEG−4');
20 video.FrameRate = 10;

21
22 open(video)

23 writeVideo(video,frames);

24 close(video)

25 end

Code snippet F.12: Determining the velocity direction if any for waypoints

1 function [velVias] = velViasCalc(thetaVias,velLim)

2 %velViasCalc generates velocity limitations for all waypoints

3 % This function takes an absolute value for the velocity limit and adds

4 % the correct sign for the direction of the joint. If the direction

5 % changes the velocity is set to 0.

6
7 [numActuators, numVias] = size(thetaVias);

8 velVias = zeros(numActuators, numVias);

9
10 for i = 1:numActuators

11 for j = 2:numVias−1
12 if thetaVias(i,j−1) > thetaVias(i,j) && thetaVias(i,j) >

thetaVias(i,j+1)

13 velVias(i,j) = −velLim;
14 elseif thetaVias(i,j−1) < thetaVias(i,j) && thetaVias(i,j) <

thetaVias(i,j+1)

15 velVias(i,j) = velLim;

16 else

17 velVias(i,j) = 0;

18 end

19 end

20 end

21 end
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Appendix G

Inverse Kinematics

The complete trigonometric calculation of the forward and inverse kinematics for the
robot leg used in this thesis can be found in this appendix. As noted in the chapter
on the mathematical model, the kinematics is easier to solve splitting it up into two
projections. The first projection is of the xz-plane and can be seen in Figure G.1.

x0

z0

r✓
⇤
2

✓2

zc

xc

Figure G.1: Forward Kinematics - xz-projection

Using this projection both the direct kinematics for x and z can be found (Eq G.1) and
the inverse kinematic function for ✓2 can be worked out (Eq G.2).

x = r ⇤ sin(✓2)

z = �r ⇤ cos(✓2)
(G.1)

✓
?
2 = atan2(xc, zc)✓2 = ✓

⇤
2 �

⇡

2
(G.2)

In the angle expression for actuator 2, separate equations for ✓⇤2 and ✓2 is made. The
✓
⇤
2 is the actual actuator angle and ✓2 takes into consideration that the leg is pointing

down in its natural state. This last angle is used for plotting only.

The other projection is in the yr-plane, where r is pulled from the xz-projection. This
projection can be seen in Figure G.2.
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Figure G.2: Forward Kinematics - yr-projection

Some of the angles in the yr-projection need to be explained as they are not that
intuitive.

': A known angle between the ground and the robot end e�ector as defined in the
gait analysis.

�: The angle of the end e�ector as defined in the physical model (used for the r
length calculation).

�: The angle between the the r-axis and the end e�ector.

As can be seen in Eq G.3, using the known angles ✓6 and ', an expression that includes
the 3 unknown actuator angles can be worked out. This makes sure that there is three
equations for the three unknown variables and that the equation set can be solved.
Its worth noting that ✓6 is negatively defined and will have a negative value.

� = ⇡ � ⇡

2
� ' = ✓

⇤
3 + ✓

⇤
4 + ✓

⇤
5 + �

� =
⇡

2
+ ✓6

' = �(✓⇤3 + ✓
⇤
4 + ✓

⇤
5 + ✓6)

(G.3)

Using the fact that all joints connect to where the last link end, an equation can be
formed that describes the y and r value of the end e�ector in the current pose. The
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calculation for the y-value can be seen in Eq G.4.

yc = �d2 + a3sin(✓
⇤
3) + a4sin(✓

⇤
3 + ✓

⇤
4) + a5sin(✓

⇤
3 + ✓

⇤
4 + ✓

⇤
5) + d7sin(✓

⇤
3 + ✓

⇤
4 + ✓

⇤
5 + �)

yc = �d2 + a3sin(✓
⇤
3) + a4sin(✓

⇤
3 + ✓

⇤
4) + a5sin(�('+ ✓6)) + d7sin(

⇡

2
� ')

yc + d2 + a5sin('+ ✓6)� d7sin(
⇡

2
� ') = a3sin(✓

⇤
3) + a4sin(✓

⇤
3 + ✓

⇤
4)

where

y
0
c = yc + d2 + a5sin('+ ✓6)� d7sin(

⇡

2
� ')

(G.4)

To ease in calculating the inverse kinematics, all known values were placed in the y
0

variable and the final equation can be seen in Eq G.5.

y
0
c � a3sin(✓

⇤
3) = a4sin(✓

⇤
3 + ✓

⇤
4) (G.5)

Using the same method for the r-value gives the equation in Eq G.6.

r = a2 + a3cos(✓
⇤
3) + a4cos(✓

⇤
3 + ✓

⇤
4) + a5cos(✓

⇤
3 + ✓

⇤
4 + ✓

⇤
5) + d7cos(✓

⇤
3 + ✓

⇤
4 + ✓

⇤
5 + �)

r = a2 + a3cos(✓
⇤
3) + a4cos(✓

⇤
3 + ✓

⇤
4) + a5cos(�('+ ✓6)) + d7cos(

⇡

2
� ')

r � a2 � a5cos('+ ✓6)� d7cos(
⇡

2
� ') = a3cos(✓

⇤
3) + a4cos(✓

⇤
3 + ✓

⇤
4)

where

r
0 = r � a2 � a5cos('+ ✓6)� d7cos(

⇡

2
� ')

(G.6)

As with the y equation, all known values are collected in the r
0 variable and the final

equation can be seen in Eq G.7.

r
0 � a3cos(✓

⇤
3) = a4cos(✓

⇤
3 + ✓

⇤
4) (G.7)

Taking both the equation for y
0 (Eq G.5) and r

0 (Eq G.7), an equation for ✓3 can be
formed by combining them. Squaring both equations and adding them together in Eq
G.8 results in an expression that can be used further.

(y0c � a3sin(✓
⇤
3))

2 + (r0 � a3cos(✓
⇤
3))

2 = (a4sin(✓
⇤
3 + ✓

⇤
4))

2 + (a4cos(✓
⇤
3 + ✓

⇤
4))

2

y
02
c � 2a3y

0
sin(✓3) + a

2
3sin

2(✓3) + r
02 � 2a3r

0
cos(✓3) + a

2
3cos

2(✓3) = a
2
4

�2a3r
0
cos(✓3)� 2a3y

0
sin(✓3) + r

02 + y
02 + a

2
3 � a

2
4 = 0

(G.8)

This leaves us with an equation on the form Pcos✓+Qsin✓+R = 0 which can be solved
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like shown in Eq G.9.
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(G.9)

The inverse kinematics equation for ✓3 gives two solutions. After simulating the solu-
tions, the negative solution was found to be the correct for achieving the desired pose
of the robot. solving Eq G.5 and Eq G.7 for the sin and cos expressions containing ✓4
gives:

sin(✓3 + ✓4) =
y
0 � a3sin(✓3)

a4

cos(✓3 + ✓4) =
r
0 � a3cos(✓3)

a4

This can be solved using inverse tangent in Eq G.10.

✓4 = atan2

✓
y
0 � a3sin(✓3)

a4
,
r
0 � a3cos(✓3

a4

◆
� ✓3 (G.10)

Finally, using Eq G.3, ✓5 can be found in Eq G.11

✓5 = �('+ ✓3 + ✓4 + ✓6) (G.11)
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Appendix H

User Manual

H.1 Introduction

This user manual provides a detailed description of how to simulate and control a 4
DOF robot leg using ROS with MoveIt. ROS Noetic and required packages specified
in the equipment section should be installed. The joints of the robot leg should only
operate within a natural gait as the motors currently equipped are not strong enough
to handle the extensive gravitational load. The safety mount keeping the leg in place
should not be removed before the Arduino boards are powered. Doing this would
result in losing the current position, which would require a re-calibration of the start
position. The emergency power button should be used if the leg does not operate
as expected and control is lost. Do not turn on the power until everything is set up
properly.

H.2 Equipment

Name Description

MoveIt Motion planning and manipulation
Robot leg 4 DOF Robot leg
rosbash Needed for the rosrun command
ros_controllers Support for necessary controllers
ROS Noetic full-desktop ROS LTS distribution
PC with Ubuntu Tested for Ubuntu 20.04
rosserial Allows for serial communication with ROS
Plotjuggler Plot information published on topics
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H.3 Create Catkin workspace

Create a catkin workspace and clone repository.

Code snippet H.1: Create catkin workspace
1 $ mkdir -p ~/catkin_ws/

2 $ cd ~/catkin_ws/

3 $ git clone https://github.com/VegardHovland/src

4 $ catkin_make

Source the setup file, and confirm correct package path.

Code snippet H.2: Source setup file
1 $ source devel/setup.bash

2 $ echo $ROS_PACKAGE_PATH

H.4 Running simulation

To run a simulation of the robot leg in Gazebo, a slight modification needs to be
made in one of the launch files. In robotleg_planning_execution.launch, in the ro-
botleg_moveit_config package, the call for the joint_state_publisher node needs to be
uncommented. This needs to be commented again if using the real robot.

Start by making sure the workspace is sourced and launch the gazebo.launch file.

Code snippet H.3: Launch Gazebo simulation
1 $ cd ~/catkin_ws

2 $ source devel/setup.bash

3 $ roslaunch robotleg_description gazebo.launch

Wait for the simulation window to load in. Unpause the simulation and let the robot
fall to the ground. The model will be reset after giving the leg a better configuration.
Now open a new terminal and make sure to source the workspace before launching
MoveIt.

Code snippet H.4: Launch MoveIt
1 $ cd ~/catkin_ws

2 $ source devel/setup.bash

3 $ roslaunch robotleg_moveit_config robotleg_planning_execution.launch

Use the motion planning panel to plan and execute any named goal state except zeros.
Then, expand Edit in the top left corner of the Gazebo window and press Reset Model
Poses. The robot should now be upright and the simulation is free to be explored at
own will.
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To perform the step motion, send the robot leg to the front_step state. Check the box
called Use Cartesian Path, and plan with back_step as the goal state. If the planning
or execution of this trajectory for some reason does not work, try setting the start state
as front_step instead of <current>. If this also does not work, plan and execute a new
trajectory to front_step and try again.

To have the robot loop a walking motion, open a new terminal and run the loop_gait.py
executable script after sourcing the workspace. Make sure to have the robot in the
back_step state first, as the script will start by moving the leg to this state, which
might tip the robot depending on the start state.

Code snippet H.5: Loop gait
1 $ cd ~/catkin_ws

2 $ source devel/setup.bash

3 $ rosrun robotleg_moveit_config loop_gait.py

The loop can be canceled by pressing Ctrl+Z in the terminal where the script is run-
ning.

H.5 Executing on real robot

The first step to execute a planned gait on the robot leg is to ensure that the USB
is plugged into the Arduino mega and the PC. To validate the connection, ensure
that all five Arduino boards have their light indicators running. When the boards
are correctly powered, the security strap can be removed, and the leg safely set to a
given start position. The start position must satisfy the upper and lower bounds set
by the individual joints. Figure H.2 shows two examples of good start positions. As
long as the Arduino boards are powered, the encoders will store their value for any
given start position to be initialized. Starting serial communication, launching MoveIt,
and initializing communication with the hardware interface is done by launching the
robotleg.launch file.

Code snippet H.6: Launch robotleg.launch
1 $ roslaunch robotleg_bringup robotleg.launch

The correct starting position is confirmed by checking the robot state in RViz. When
the launch program has successfully launched, validating successful communication
is done by checking the rqt_graph.

Code snippet H.7: rqt_graph
1 $ rosrun rqt_graph rqt_graph

The rqt graph should look like the one in Figure H.1 if set up correctly.
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Figure H.1: rqt_graph

Figure H.2: Suggested start positions

H.5.1 Plot data from topics

In addition to the robot state displayed in RViz, plotting the data sent to the di�erent
topics can be done to display data. This is done by a ROS package called plotjuggler.
How to install plotjuggler is shown on their GitHub repository, Faconti 2021. Running
plotjuggler is done by running Code snippet H.8 in a new terminal window.

Code snippet H.8: Run plotjuggler
1 $ rosrun plotJuggler plotJuggler

Loading the layout file in the source folder will subscribe to the joint state and set-
point2arduino topics. The response of the system can be monitored when executing a
trajectory. How the plotjuggler window should look is shown in Figure H.3.
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Figure H.3: Plotjuggler layout

H.5.2 Executing trajectory

Before turning on the power, unplug and plug in the Arduino to set its new starting
position. Validate that the position is kept in RViz. The power button for motor supply
voltage can now be turned on. Nothing should happen. Executing a trajectory is done
using MoveIt. Pre-set positions are already initialized. Start by selecting the "middle
step" position and pressing "plan" to verify that a path is available from the start
position. If a path is available, execute the trajectory by pressing "plan and execute".
The robot leg should now move to the middle step position. Repeat this step for the
"front step" position. When the leg is in the "front step" position, select Cartesian
planning. This will make the robot go in a linear path. Then select goal position to
"back step" and verify that a plan is available. Execute the step by pressing "plan
and execute". Running this gait in a loop is done by executing a script in a separate
terminal, Code snippet H.9.

Code snippet H.9: Run gait loop
1 $ rosrun robotleg_moveit_config loop_gait.py
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Motivation

Four-legged robots have in recent years become popular as a platform for future use
among humans. Common for many of them is a configuration with two degrees of freedom
in walking direction and one degree of freedom perpendicular to this to make the robot
more agile. The hypothesis that inspires this project is the following:

"If adding another degree of freedom, and making the robot more anatomically correct

compared to quadrupedal animals, can give the robot increased agility and mobility?"

Although the research itself is beyond this project’s scope, the goals were to develop a test
bench for a biomimetic robot. This way, different gaits could be executed and analyzed.
In addition, the robot could also serve as an educational example in various engineering
disciplines.

The project culminated in the bachelor’s thesis for the group in electrical engineering with
a specialization in Automation [1].

Design

The goal of the design was to make a biomimetic robot leg modeled after feline proportions.

• An anatomical analysis was undertaken to find correct proportions for the feline leg.
• Using mostly 3D printed parts, the individual links and joints were connected with

screws to form the leg.
• Hollow links allow hiding the cables.
• Having the leg mounted to a wheeled stand would enable a normal gate to move the

robot.
• The stand consists of a 3D-printed top plate connected to four caster wheels via metal

pipes. The top plate doubles as a mounting plate for the electronics and wiring.
• PLA was used for most 3D-printed parts except top plate made in PETG for strength.
• An URDF description of the robot with one and four legs was created for later use with

ROS and Matlab.

Embedded System

The embedded system powering the robot consists of four actuators with built-in incremen-
tal encoders, two dual motor drivers, an Arduino Mega, and four Arduino Nanos.

• Motors used was 24V brushed DC gear motors with a gear ratio of 1:150 to improve
torque and 68PPM encoders.

• To read the incremental encoders, four Arduino Nanos transmits the pulse counts to
the master controller.

• An Arduino Mega concerts the pulse counts to angles and acts as a communication
hub between ROS and the motor drivers.

• The Mega also powers the slaves and encoders, with a power buffer so that the Nanos
has time to store values to EEPROM.

• Communication between the Arduino Mega and Nanos is done via the I2C protocol.
• Each individual actuator is controlled via independent joint PID controllers with anti-

windup in the Mega.

Results and Future Work

The robot leg was built as shown in Figure 1 and with some tweaks made operational. It turned out
that the gearing for the motors could not handle the torque needed to hold the leg up and two of the
actuators became damaged. This resulted in only the knee and ankle joints remaining operational.

Fig. 1: Finished physical robot

With only two operational actuators, the goal of creating a test bench for future research in gait
analysis was not fulfilled. However, the control of the robot was proven to work before the failure.
Future work would include finding stronger actuators and adjusting the holders.

The models in both ROS and Matlab works as intended and enables them to be used for future work
and educational purposes. The entire project is thoroughly documented using Git [2]. Since the robot
is a pilot project, adjustments and perhaps a recreation with better material and hardware is possible
and may be required in the future.

ROS

ROS was used to simulate and send setpoints to the physical robot. Cartesian planning in MoveIt

allowed for executing a functional gait.

• MoveIt was set up to plan and execute trajectories
• Simulation was done in Gazebo

Fig. 2: MoveIt

Mathematical Framework

With the hope of future implementation with ROS, the mathematical model including
kinematics was created in Matlab.

• The forward kinematics was found using trigonometry and the Denavit Hartenberg
Convention.

• The inverse kinematics was calculated using the found trigonometric expressions.
• A gait analysis of feline movement gave Cartesian waypoints for the end effector.
• Using the inverse kinematics, this was converted to angular waypoints.
• Trajectories between waypoints were calculated using quintic polynomials.
• The robot’s Jacobian matrix and body velocity was calculated, enabling alternative

inverse kinematics for linear Cartesian trajectories of the end effector.
• A model using the URDF description of the robot was was created to allow simula-

tions (Figure 3).

Fig. 3: Four legged model

In the end, Matlab was not implemented as a ROS node for the physical robot.
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