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Abstract

To ensure that autonomous surface vessels are safe for operation amongst the already existing

traffic, it must be equipped with a robust collision avoidance (COLAV) system. An important

part of such system is the ability to accurately detect potential threat and to avoid it. To achieve

this a tracking model must be able to reliably predict future trajectory of other vessels that pose a

potential threat.

For model-driven methods, the knowledge about the intent of other vessels can greatly in-

crease how far into the future their trajectories can accurately be predicted. In this thesis, three

model-driven methods for intent predictions have been analysed using measurements from Auto-

matic Identification System (AIS). These methods are all based on Bayesian bridging distributions

that compute the likelihood of possible destinations using the vessel’s measurements as input.

These are, (1) a Bayesian filtering approach that bridges the current state with the final state via

a joint state of the two, (2) a Bayesian filtering approach that bridges the current state with the

final state via a pseudo-measurement, and (3) a Bayesian smoothing approach that also uses a

pseudo-measurement for bridging.

Three bridged motion models were considered for tracking, a constant velocity (CV) model,

an equilibrium reverting velocity (ERV) model, and an Ornstein-Uhlenbeck (OU) model. These

were then used with the different bridging methods for destination inference and future predic-

tions. Good results were observed for most cases in predicting the intended destination. For

predicting future states, both filtering approaches had good estimates up to about 15-30 min of

future predictions, depending on the situation. Whereas the smoothing approach did not perform

well in predicting future states.
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Sammendrag

For å sørge for at autonome overflatefartøyer er sikre for bruk blant den allerede eksisterende

trafikk, da må den være utstyrt med et antikollisjonssystem. En viktig del av et slikt system er

evnen til å kunne oppdage potensielle trusler og unngå dem. For å oppnå dette må en målfølgings-

modell kunne predikere banen til andre overlatefartøyer.

For modellbaserte metoder, kan kunnskapen om intensjoner til andre fartøyer gi forbedrede

prediksjoner om fremtidige tilstander. Denne masteroppgaven analyserer tre modellbaserte metod-

er for å predikere intensjoner til fartøyer ved bruk av reelle måledata fra Automatic Identifica-

tion System (AIS). Disse metodene baserer seg på Bayesian bridging distribusjoner som beregner

sannsynligheten for mulige destinasjoner og bruker fartøyets målinger som input. Disse er, (1)

Bayesian filtreringsmetode som kobler nåværende tilstand med den endelige tilstanden via en joint

tilstand som innholder begge tilstandene, (2) Bayesian filtreringsmetode som kobler nåværende

tilstand med den endelige tilstanden via en pseudo-måling, og (3) Bayesian glattingsmetode som

også bruker en pseudo-måling for koblingen.

Tre målfølgingsmodeller ble brukt, constant velocity (CV) modell, equilibrium reverting ve-

locity (ERV) modell, og Ornstein-Uhlenbeck (OU) modell. Disse ble brukt i kombinasjon med

Bayesian bridging metodene for destinasjonsprediksjoner og fremtidige tilstandsprediksjoner. Det

ble observert gode resultater for destinasjonsprediksjonene ved bruk av de fleste modeller testet.

For fremtidige tilstandsprediksjoner, begge filtrerings metodene hadde godt estimat opptil omtrent

15-30 min, varierende for forskjellige situasjoner. Derimot hadde glatting metoden dårlige til-

standsprediksjoner.
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Chapter1
Introduction

1.1 Motivation

Safety on sea is of great importance to all involved in maritime activities to prevent both loss of

life and economical loss. Unfortunately, accidents do take place and it is estimated that about

75% of accidents on sea are due to human errors [1]. Hence, by reducing human intervention,

or removing it all together, could lead to improved safety on sea. Additionally, this reduces the

amount of personnel needed onboard, leading to fewer people being subjected to risks and creating

more space for cargo.

As the autonomous technology is rapidly being developed and improved, it will not be long

until autonomous surface vessels (ASVs) will be a common way of transportation in marine envi-

ronments. To be used among the already existing traffic, the ASVs must be proven to be safe for

both themselves and other vessels. To get an approval for commercial use, it must demonstrate

that its design holds an equivalent level of safety compared with already approved vessels of sim-

ilar design [2]. To achieve this the ASVs must be equipped with a collision avoidance (COLAV)

system that detects obstacles and determines if and how to avoid possible collision. For station-

ary obstacles, one can simply maneuver around the obstacle diverging slightly from the originally

planned trajectory. For moving obstacles, however, COLAV can be more challenging as the mo-

tion is usually unknown and has to be estimated to then be able to predict the intended trajectory

[3]. A common practice for estimating future trajectory is to assume the obstacle moves with a

constant velocity while also keeping its course angle constant. This can be a decent estimation for

a short-term prediction, but as the prediction goes further into the future the uncertainty increases

quickly.

For long-term predictions, one could use data-driven methods where e.g. historical Automatic

Identification System (AIS) data is used to predict the future trajectory. However, this is dependent

on having access to enough data points to be accurate, and can be computationally heavy [4].

Another way is to use model-driven methods where the predicted trajectory is computed based on

circumstances. For instance, taking into account previous measurements of a tracked object and

possible destinations, e.g. harbours or ports, one could estimate the most likely trajectory. This

1



can be achieved by bridging the states of the tracked object and the possible destinations by the

means of Bayesian probability distributions [5, 6]. Furthermore, a model-driven method could

be used in combination with a data-driven method, or in situations where insufficient amounts of

historical data is available.

1.2 Problem description

Ahmad et al. [5] introduced a method of intent predictions for a tracked object using bridging dis-

tributions, and in [6] a different approach to the bridging method was introduced. Using Bayesian

framework, the proposed algorithms compute the intended destination likelihood for an object

in motion by utilising the available measurements. The models are low in complexity, require

minimal training, and computations can be performed in parallel. This leads to an efficient in-

tent inference with low computational cost. Additionally, the same framework can bu utilised to

predict future states, e.g. position and velocity, with little additional cost since many parameter

estimations have already been established.

In both articles, synthetic trajectories were generated for a maritime vessel travelling at sea

towards one of six possible destinations that were positioned in an arc along a coastline. The

trajectories were generated with a bridged constant velocity model, and even though the vessel

will go towards a certain destination, the path it takes is random. This might be an unrealistic

representation of the movement of maritime vessels in reality.

This thesis uses the work done in a preliminary specialisation project [7] as a basis. In [7] the

bridging method introduced in [5] was analysed, where a similar simulation study was performed.

It resulted in similar findings as reported in the article, that is, the bridging distribution resulted

in good destination predictions for the simulated scenario. Additionally, the effect of bridging on

the predictions was studied, which showed that it had better predictions with less uncertainty. The

aim of this thesis is to continue the analysis of this bridging method, in addition to the bridging

method introduced in [6], using real AIS measurements. The research questions to be answered

are:

• How will the different bridging approaches perform using real data measurements with

regards to intent inference, as well as future predictions?

• How are the bridging algorithms derived and can they be derived using a different ap-

proach?

To answer these questions, the following tasks are proposed:

• Study the theory about Bayesian probability distribution, and how this is used to derive a

Bayesian filter and smoother, to provide a good understanding of the subject.

• Derive the bridging equations in detail using the partial derivation given in the articles as

guidelines.

2



• Evaluate the performance of the algorithms in intent inference using real data measurements.

Furthermore, using the same framework, evaluate its performance in predicting future states.

1.3 Outline of thesis

The thesis is divided into 8 chapter. Chapter 2 provides background material, such as theorems

and the derivation of Bayesian filtering and smoothing. In chapter 3 the Bayesian bridging distri-

bution is described and the different bridging methods are derived. Chapter 4 describes the motion

models used for the study. Chapter 5 describes the test scheme and the different scenarios tested.

The results are then provided in chapter 6. Chapter 7 provides the concluding remarks. Lastly,

suggested future work is presented in chapter 8.
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Chapter2
Background material

This chapter is partly based on the work done in the preliminary specialisation project [7]. The

chapter starts by providing the theorems and definitions necessary for the derivations in later sec-

tions. Thereafter, the general stochastic space model is introduced along with its discretization.

The general Bayesian filtering and smoothing equations are derived, and Kalman filter (KF) and

Rauch-Tung-Striebel (RTS) smoother are introduced. Lastly, a short introduction to modelling a

marine vessel is presented. The majority of this chapter is based on Simo Särkkä’s book Bayesian

Filtering and Smoothing [8], and will be indicated if otherwise.

2.1 Theorems and definitions

Definition 1 (Gaussian distribution) The Gaussian distribution of a random variable x ∈ Rn

with mean µ ∈ Rn and covariance P ∈ Rn×n has a probability density on the form

N (x; µ,P) =
1

(2π)
n/2 |P|1/2

exp(−1
2
(x−µ)T P−1(x−µ)) (2.1)

where |P| is the determinant of P.

Lemma 1 (Woodbury matrix identity) Let A ∈ Rn×n, U ∈ Rn×m, B ∈ Rm×m and V ∈ Rm×n be

matrices, then the inverse of the sum A+UBV will have the form

(A+UBV)−1 = A−1−A−1U(B−1 +VA−1U)−1VA−1 (2.2)

Lemma 2 (Bayes’ rule) The probability of A happening given that B has happened is given by

the following relation

p(A|B) = p(B|A)p(A)
p(B)

(2.3)

With three events the equation becomes

p(A|B,C) =
p(B|A,C)p(A|C)

p(B|C)
(2.4)
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Lemma 3 (Chain rule for probability distributions) A joint distribution of events can be repre-

sented as only conditional probability distributions.

p(A,B,C) = p(A|B,C)p(B,C) = p(A|B,C)p(B|C)p(C) (2.5)

Lemma 4 (Conditional distribution of Gaussian variables) If the random variables x and y
have the joint Gaussian probability distribution

p(x,y) = N

([
x
y

]
;

[
a
b

]
,

[
A C

CT B

])
(2.6)

then their marginal and conditional distributions are given as

p(x) = N (x;a,A)

p(y) = N (y;b,B)

p(x|y) = N
(
x;a+CB−1(y−b), A−CB−1CT )

p(y|x) = N
(
y;b+CT A−1(x−a), B−CT A−1C

)
(2.7)

Theorem 1 (Gaussian product identity I) Let a random variable x ∈Rn have mean µ ∈Rn and

covariance P ∈ Rn×n, and another random variable y ∈ Rm have mean Hx ∈ Rm and covariance

R ∈Rn×n, where H ∈Rm×n and m≤ n. Then the product of the two Gaussian distributions results

in the joint distribution

N (x; µ,P)N (y;Hx,R) = N

([
x
y

]
;

[
µ

Hµ

]
,

[
P PHT

HP HPHT +R

])
. (2.8)

Using lemmas 3 and 4, the joint distribution can be written as

p(x,y) = p(x|y)p(y)

= N (x;c,C)N (y ; Hµ, HPHT +R)
(2.9)

where
C = P−PHT (HPHT +R)−1HP

c = µ +PHT (HPHT +R)−1(y−Hµ)

Theorem 2 (Gaussian product identity II) [9] Let a random variable x ∈ Rn have mean µ ∈
Rn and covariance P ∈ Rn×n, and another random variable y ∈ Rm have mean Hx ∈ Rm and

covariance R ∈Rn×n, where H ∈Rm×n and m≤ n. The product of the two Gaussian distributions

will be on the form

N (x; µ,P)N (y;Hx,R) = N (x;c,C)N (y ; Hµ, HPHT +R) (2.10)

where
C = (P−1 +HT R−1H)−1

c = C(P−1
µ +HT R−1y)

5



2.2 Stochastic state space models

The stochastic state space model in continuous time is given by

ẋ = Ax+Bu+Gn (2.11a)

y = Cx+w (2.11b)

where, x is the state vector, y is the measurement vector, u is the control input, and n and w are the

process noise and the measurement noise, respectively. These are assumed to be Gaussian white

noise with zero mean, and can be described by eq. (2.12).

n∼N (0,qδ (t− τ)) (2.12a)

w∼N (0,rδ (t− τ)) (2.12b)

Here, q and r are the covariance matrices of the noises. For a system shown in eq. (2.11) that is

linear time invariant (LTI), the exact solution is given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ +

∫ t

0
eA(t−τ)Gn(τ)dτ (2.13a)

y(t) = Cx(t)+w(t) (2.13b)

For practical implementations, e.g. for Kalman filtering, the system is discretized by integrating

over the time intervals. Here a notation of tk is used to represent time at iteration k, and xk = x(tk)
for simplicity. The discretization becomes

xk = Fxk−1 +uk +vk, vk ∼N (0,Qδ (t− τ)) (2.14a)

yk = Hxk +wk, wk ∼N (0,Rδ (t− τ)) (2.14b)

where

F = eA(tk−tk−1), (2.15a)

uk =
∫ tk

tk−1

eA(tk−τ)Bu(τ)dτ, (2.15b)

vk =
∫ tk

tk−1

eA(tk−τ)Gn(τ)dτ, (2.15c)

Q = E[vkvT
k ] =

∫ tk

tk−1

eA(tk−τ)GqGT eAT (tk−τ)dτ (2.15d)

2.3 Filtering and Smoothing

2.3.1 Bayesian filtering

Let a probabilistic state space model be on the form shown in eq. (2.16) with its (a) dynamic model

and (b) measurement model.

xk ∼ p(xk|xk−1) (2.16a)

yk ∼ p(yk|xk) (2.16b)
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These are assumed Markovian, i.e. ”xk given xk−1 is independent of anything that has happened

before the time step k−1...” and ”...the current measurement yk given the current state xk is con-

ditionally independent of the measurement and state histories” [8]. This is illustrated in eq. (2.17),

respectively. The notation x1:k represents all states between, and including, the time steps 1 and k.

i.e. x1:k = {x1, ...,xk}.

p(xk|x1:k−1,y1:k−1) = p(xk|xk−1) (2.17a)

p(yk|x1:k,y1:k−1) = p(yk|xk) (2.17b)

Furthermore, eq. (2.18) describes (a) the joint prior distribution of the states p(x0:L), and (b) the

joint likelihood of the measurements p(y1:L|x0:L) for L time steps.

p(x0:L) = p(x0)p(x1|x0)...p(xL|xL−1) = p(x0)
L

∏
k=1

p(xk|xk−1) (2.18a)

p(y1:L|x0:L) = p(y1|x1)p(y2|x2)...p(yL|xL) =
L

∏
k=1

p(yk|xk) (2.18b)

Now, using Bayes’ rule the posterior distribution of the measurement-conditioned-states is

given in eq. (2.19). However, this will become very computational heavy to calculate for each new

measurement as L gets large, and is therefore impractical to do in real time applications.

p(x0:L|y1:L) =
p(y1:L|x0:L)p(x0:L)

p(y1:L)
∝ p(y1:L|x0:L)p(x0:L) (2.19)

The joint distribution of xk and xk−1 given the measurement yk−1 is given in eq. (2.20). Integrating

eq. (2.20) over xk−1 results in the prediction step of the Bayes filter given in eq. (2.21a) (also

called the Chapman-Kolmogorov equation). The update step is given by the Bayes rule given in

eq. (2.21b), where the term p(yk|y1:k−1) is called the normalization constant, denoted as Zk. The

combination of the equations in 2.21 are called the Bayes filter.

p(xk,xk−1|y1:k−1) = p(xk|xk−1,y1:k−1)p(xk−1|y1:k−1)

= p(xk|xk−1)p(xk−1|y1:k−1)
(2.20)

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2.21a)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
∝ p(yk|xk)p(xk|y1:k−1) (2.21b)

where the normalisation constant is given by

Zk := p(yk|y1:k−1) =
∫

p(yk|xk)p(yk|y1:k−1)dxk (2.22)

2.3.2 Bayesian smoothing

The marginal posterior distribution of the state xk can be computed with a smoother using the

future measurements up to step L > k, i.e. the distribution of xk given the measurements y1:L,

where L > k:

p(xk|y1:L) (2.23)
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The smoothed distribution in eq. (2.23) can be found for any k < L by going backwards in time. At

the last time step k = L both the filtering and the smoothing distribution coincide, p(xL|y1:L). The

same assumption are made as in section 2.3.1, that the model is Markovian, i.e. p(xk|xk+1,y1:L) =

p(xk|xk+1,y1:k). With Bayes’s rule this can be written as

p(xk|xk+1,y1:L) = p(xk|xk+1,y1:k)

=
p(xk,xk+1|y1:k)

p(xk+1|y1:k)

=
p(xk+1|xk,y1:k)p(xk|y1:k)

p(xk+1|y1:k)

=
p(xk+1|xk)p(xk|y1:k)

p(xk+1|y1:k)

(2.24)

Now, assuming the smoothing distribution of the next step, p(xk+1|y1:L), is available, the joint

distribution of xk and xk+1 given y1:L can be written as

p(xk,xk+1|y1:L) = p(xk|xk+1,y1:L)p(xk+1|y1:L)

= p(xk|xk+1,y1:k)p(xk+1|y1:L)

=
p(xk+1|xk)p(xk|y1:k)p(xk+1|y1:L)

p(xk+1|y1:k)

(2.25)

The marginal distribution of xk and y1:L is found by integrating eq. (2.25) over xk+1, which is the

backward update step of the Bayesian smoother, and is given in eq. (2.26b). The prediction step of

the Bayesian smoother is the same as the prediction step of the Bayesian filter given in eq. (2.21a),

it is again shown in eq. (2.26a) for another step. Together, eq. (2.26) forms the smoothing equa-

tions.

p(xk+1|y1:k) =
∫

p(xk+1|xk)p(xk|y1:k)dxk (2.26a)

p(xk|y1:L) = p(xk|y1:k)
∫ p(xk+1|xk)p(xk+1|y1:L)

p(xk+1|y1:k)
dxk+1 (2.26b)

2.3.3 Linear filtering and smoothing

Consider the following discrete Gaussian and LTI system given in eqs. (2.27a) and (2.27b), where

the initial state is distributed according to eq. (2.27c).

xk = Fxk−1 +vk, vk ∼N (0,Q) (2.27a)

yk = Hxk +wk, wk ∼N (0,R) (2.27b)

x1 ∼N (µ1,P1) (2.27c)

Furthermore, the distributions for the predicted state and current time measurement are given by

eqs. (2.28a) and (2.28b), respectively.

p(xk|xk−1) = N (xk;Fxk−1,Q) (2.28a)

p(yk|xk) = N (yk;Hxk,R) (2.28b)
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The joint distribution of the state x and the measurement y is given as

p(x,y) = N

([
x
y

]
;

[
µ

Hµ

]
,

[
P PHT

HP HPHT +R

])
(2.29)

Then their marginal distributions can be written as

p(x) = N (µ,P)

p(y) = N (Hµ,HPHT +R)
(2.30)

and their conditional distributions is given as

p(x|y) = N
(
x; µ +PHT (HPHT +R)−1(y−Hµ), P−PHT (HPHT +R)−1HP

)
p(y|x) = N

(
y; Hµ +HPP−1(x−µ), (HPHT +R)−HPP−1PHT )

= N (y; Hµ +H(x−µ), R)

(2.31)

From the above information the Kalman filter (KF) can be derived, which is the solution to the

Bayesian filtering equations in eq. (2.21) for a linear Gaussian system. The KF algorithm is shown

in algorithm 1 where the hat-notation above a state, or a measurement, illustrates its estimate. The

reader is referred to [8, pp.56-58] for more detailed information about the derivation of the KF.

Algorithm 1 Kalman filter (KF)

1: procedure KF(x̂k−1,Pk−1,yk)

2: x̂k|k−1← Fx̂k−1 . Predicted state estimate

3: Pk|k−1← FPk−1FT +Q . Predicted covariance

4: ŷk|k−1←Hx̂k|k−1 . Predicted measurement

5: υk← yk− ŷk|k−1 . Innovation measurement

6: Jk←HPk|k−1HT +R . Innovation covariance

7: Wk← Pk|k−1HT J−1
k . Kalman gain

8: x̂k← x̂k|k−1 +Wkνk . Posterior state estimate

9: Pk← (I−WkH)Pk|k−1 . Posterior covariance

10: return x̂k, Pk, x̂k|k−1, Pk|k−1, Jk

11: end procedure

From the KF the posterior state distribution conditioned on the measurements is given by

p(xk|y1:k) = N (xk; x̂k,Pk) = N (xk; µk,Pk) (2.32)

With the assumption that the time step interval is fixed the Rauch-Tung-Striebel (RTS) smoother

can be derived given eqs. (2.27)–(2.31). Firstly, using Gaussian distribution computational rules,
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the joint distribution of the state xk and xk+1 given the measurement y1:k can be expressed as

p(xk,xk+1|y1:k) = p(xk+1|xk)p(xk|y1:k)

= N (xk+1;Fxk,Q)N (xk; µk,Pk)

= N

([
xk

xk+1

]
;

[
µk

Fµk

]
,

[
Pk PkFT

FPk FPkFT +Q

])

:= N

([
xk

xk+1

]
;ν1,p1

)
(2.33)

Secondly, using the conditioning rule, the joint distribution of xk given xk+1 and all measurements

y1:L can be expressed as

p(xk|xk+1,y1:L) = p(xk|xk+1,y1:k)

= N
(
xk; µk +Gk(xk+1−Fµk), Pk−Gk(FPkFT +Q)GT

k
)

:= N (xk;ν2,p2)

(2.34)

where

Gk = PkFT (FPkFT +Q)−1 (2.35)

Finally, the joint distribution of xk and xk+1 given all measurements y1:L can be expressed as

p(xk+1,xk|y1:L) = p(xk|xk+1,y1:L)p(xk+1|y1:L)

= N (xk;ν2,p2)N (xk+1; µ
s
k+1,P

s
k+1)

= N

([
xk+1

xk

]
;

[
µs

k+1

µk +Gk(µ
s
k+1−Fµk)

]
,

[
Ps

k+1 Ps
k+1GT

k

GkPs
k+1 GkPs

k+1GT
k +p2

])

:= N

([
xk+1

xk

]
;ν3,p3

)
(2.36)

Here the s-superscript is used to refer to smoothing, e.g. µs
k is the smoothing mean at time step

k. With the marginal mean and covariance from eq. (2.36) the smoothing distribution is Gaussian

and can be written as

p(xk+1|y1:L) = N (xk; µ
s
k ,P

s
k) (2.37)

where
µ

s
k = µk +Gk(µ

s
k+1−Fµk)

Ps
k = Pk +Gk(Ps

k+1−FPkFT −Q)GT
k

Here the mean µk and the covariance Pk are calculated with KF. The backward recursion begins at

the last time step k = L where µs
k = µk and Ps

k = Pk.

10



Algorithm 2 Rauch-Tung-Striebel (RTS) smoother

1: procedure RTS(µk, Pk, µ̂k+1, Ps
k+1)

2: Compute mean µk and covariance Pk with KF.

3: µ̂k+1← Fµk . Predict next step mean

4: P̂k+1← FPkFT +Q . Predict next step covariance

5: Gk← PkFT P̂−1
k+1

6: µs
k ← µk +Gk(µ

s
k+1− µ̂k+1) . Previous smoothing mean

7: Ps
k← Pk +Gk(Ps

k+1− P̂k+1)GT
k . Previous smoothing covariance

8: return µs
k , Ps

k

9: end procedure

2.4 Marine vessels in motion

Thor I. Fossen [10] presents a detailed description of the mathematical models for marine vessels

in his Handbook of Marine Craft Hydrodynamics and Motion Control [10]. From which, a short

introduction to modelling of marine vessels is presented, to provide a basic understanding of their

behaviour.

A marine vessel that can move freely in 3D space is represented by a maximum of 6 degrees of

freedom (DoF). These represent position along the x, y and z-axes, and the orientation around said

axes, represented by Euler angles. The state vector is defined as x= [x,y,z,φ ,θ ,ψ]T . Furthermore,

the time derivatives represent the translation in x, y and z direction and its rotation about their axes,

called surge, sway, heave, roll, pitch and yaw, respectively, with the notation ν = [u,v,w, p,q,r]T .

This is illustrated in fig. 2.1 for the body {b}-frame of a marine vessel, {b} = [xb,yb,zb]. Table 2.1

lists the notations for its position, angles, and its corresponding velocities and forces/moments.

Figure 2.1: The 6 DoF velocities of a marine vessel in its {b}-frame [10, pp.16].
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Table 2.1: Notation for marine vessels according to The Society of Naval Architects and Marine Engineers
(SNAME) [11]

DoF description Forces and

moments

Linear and

angular

velocities

Position and

Euler angles

Motion in the x direction, surge X u x

Motion in the y direction, sway Y v y

Motion in the z direction, heave Z w z

Rotation about the x axis, roll K p φ

Rotation about the y axis, pitch M q θ

Rotation about the z axis, yaw N r ψ

A common reference frame is the North-East-Down (NED) coordinate system {n} =

[xn,yn,zn], where x-axis points towards true north, y-axis towards east, and z-axis down towards

the centre of the earth.

For a surface vessels the 6 DoF model can be simplified to a 3 DoF model, where heave, roll,

and pitch are all assumed zero. Therefore, the corresponding states can be ignored, decreasing

the state vector to x = [x,y,ψ]T and the velocity vector to ν = [u,v,r]T . This will produce relative

accurate model for surface vessels as long as there is not too much wind or waves affecting the

vessel [10].
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Chapter3
Destination prediction using bridging

distribution

Ahmad et al. [5] and Liang et al. [6] introduced models for predicting the intended destination

of a tracked object. This chapter presents these models in detail along with their mathematical

derivations.

3.1 Systems general tracking model

The discretization of a linear-Gaussian tracking model used for destination inference, with time

step T = tk− tk−1, can be written as

xk+1 = Fxk +m+vk, vk ∼N (0,Qδ (t− τ)) (3.1a)

yk = Hxk +wk, wk ∼N (0,Rδ (t− τ)) (3.1b)

where F, m and Q are all functions of the time step T and a given destination d, i.e. F = F(T,d).
v and w are the process and measurement noises, respectively, which are both assumed Gaussian

and zero mean. Equation (3.1a) differ slightly from the conventional tracking model, where the

vector m is added to the equation. Depending on the specifics of the motion model, this vector will

help the state revert towards desired values, or for some models it becomes zero, e.g. the constant

velocity (CV) model.

Assume there is a set of N possible destinations D = {d = d1, ...,dN} which includes all

possible destinations the tracked object can be going towards. The destination dn ∈ D , ∀n =

1, ...,N is modelled as a Gaussian a priori distribution, i.e. dn ∼N (xd ,Σd), rather than a single

point. In two DoF (xy-coordinates) the destination mean is given by xd = [xd ,yd ,0,0]T , where

x = [x,y, ẋ, ẏ]T , and the object will reach its destination at a time step f , at time t f . The final state

x f is therefore assumed to be a random variable with the Gaussian distribution N (x f ;xd ,Σd).

This can be viewed as an ellipse with its centre at xd . The tracked object is assumed to arrive at

its destination on the time interval t f = [t f min, t f max], assuming t f min is the least amount of time

it takes for the object to travel towards its destination, and t f max the most amount of time. For a
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discrete arrival time, the interval is evenly divided between q quadrature points. In other words,

there exists a set T = {t f = t f 1, ...t f q} that includes all possible arrival times, where t f 1 < t f 2... <

t f q. Abbreviations for the transition functions in eq. (3.1), with different time steps, are listed in

table 3.1. Using these abbreviations, the system’s structure is illustrated in fig. 3.1.

Table 3.1: Abbreviations for the transition func-
tions in the system in fig. 3.1 for different time
steps.

t F(t,dn) m(t,dn) Q(t,dn)

tk− tk−1 FT mT QT

t f − tk F f m f Q f

t f − tk−1 F f−1 m f−1 Q f−1

y1

x1

x1
Prior

yk-1

xk-1

yk

xk xf

dn

FT
mT

Ff
mf

Figure 3.1: The structure of the system after k mea-
surements. The transition matrix and vector are a
function of the time step between states and the des-
tination dn. [5]

3.2 Bayesian distribution

3.2.1 Arrival time distribution

To derive the arrival time distribution the destination, dn, is assumed known. Using Bayes’ rule,

the conditioned arrival time distribution is given by

p(t f |dn,y1:k) ∝
p(y1:k|t f ,dn)p(t f |dn)

p(y1:k|dn)
(3.2a)

=
p(y1:k|t f ,dn)p(t f |dn)∫

p(y1:k|t f ,dn)p(t f |dn)dt f
(3.2b)

∝ p(y1:k|t f ,dn)p(t f |dn) (3.2c)

where p(y1:k|dn) is the normalisation constant, and p(t f |dn) is the prior distribution of the possible

arrival times t f i,∀i = 1, ...q, which for simplicity, could be assumed uniformly distributed between

t f 1 and t f q, i.e. p(t f |dn) =U (t f 1, t f q). The measurement conditioned distribution p(y1:k|t f ,dn) for

a given arrival time t f i and a destination dn is given in eq. (3.3).

p(y1:k|t f i,dn) = p(y1:k−1|t f i,dn)p(yk|y1:k−1, t f i,dn) (3.3a)

= p(y1|t f i,dn)
k

∏
m=2

p(ym|y1:m−1, t f i,dn) (3.3b)

For a discretization of the arrival time interval the integral becomes a sum over the quadrature

points. This leads to the weighted likelihood of a given arrival time and a destination given by

p(t f i|dn,y1:k)≈
p(y1:k|t f i,dn)p(t f i|dn)

∑
q
i=1 p(y1:k|t f i,dn)p(t f i|dn)

(3.4)
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and the approximated arrival time distribution is then given by

p(t f |dn,y1:k)≈
q

∑
i=1

p(t f i|dn,y1:k)δ{t f i} (3.5)

where δ{t f i} is the Direc delta function at t f i.

3.2.2 Destination inference

The measurement likelihood, for an unknown arrival time, can be found by integrating the arrival

time conditioned likelihood in eq. (3.2c) over the arrival time interval, which gives

p(y1:k|dn) =
∫ t f q

t f 1

p(y1:k|t f ,dn)p(t f |dn)dt f (3.6)

where p(t f |dn) is the arrival time a priori for destination dn. Since time is one dimensional, the

integral in eq. (3.6) can be approximated using numerical quadrature, e.g. Simpson’s rule quadra-

ture scheme or the trapezoidal rule. The approximation of the integral over t f = [t f 1, t f q] using

Simpson’s rule, is shown in eq. (3.7), with an odd number q of evenly spaced quadrature points.

Whereas, the trapezoidal rule is shown in eq. (3.8), where ∆t f is the time between the evenly

spaced quadrature points.

p(y1:k|dn)≈
t f q− t f 1

3(q−1)

[
p(y1:k|t f 1,dn)p(t f 1|dn)+ p(y1:k|t f q,dn)p(t f q|dn)

+ 4
(q−1)/2

∑
i=1

p(y1:k|t f (2i),dn)p(t f (2i)|dn)

+ 2
(q−1)/2−1

∑
i=1

p(y1:k|t f (2i+1),dn)p(t f (2i+1)|dn)
]

(3.7)

p(y1:k|dn)≈ ∆t f

[ 1
2

p(y1:k|t f 1,dn)p(t f 1|dn) +
1
2

p(y1:k|t f q,dn)p(t f q|dn)

+
q−1

∑
i=2

p(y1:k|t f i,dn)p(t f i|dn)
] (3.8)

The measurements-conditioned-destination distribution is found by using Bayes’ rule and is

given as

p(d|y1:k) =
p(y1:k|d)p(d)

p(y1:k)
∝ p(y1:k|d)p(d) (3.9)

The weight on a certain destination d = dn can then be expressed as its probability divided by the

sum of the probabilities of all destinations. A summation is used instead of an integration since

the destinations are discontinuous. This results in the distribution

p(dn|y1:k) =
p(y1:k|dn)p(dn)

∑d∈D p(y1:k|d)p(d)
(3.10)

where p(d) is the prior distribution of all destinations d ∈ D , which can be determined through

historical data, or by choice, e.g. letting all N destinations have the same probability, Pr(d) =

1/N ,∀d ∈D .

To prevent underflow during computations, due to low valued likelihoods, one must use a

logarithmic representation of these equations. Examples of this is given in Appendix A.I.
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3.2.3 Arrival time distribution at any destination

The posterior arrival time distribution at any destination d ∈ D can be found by integrating over

all destination points; or, in this case, summing over d ∈D since these are discontinuous. This is

shown in eq. (3.11) and can be approximated as weighted time points as shown in eq. (3.12)

p(t f |y1:k) = ∑
d∈D

p(t f ,d|y1:k)

∝ ∑
d∈D

p(y1:k|t f ,d)p(t f |d)p(d)
(3.11)

p(t f |y1:k)≈
q

∑
i=1

ṽiδ{t f i} (3.12)

with the weights defined as

ṽi =
∑d∈D p(y1:k|t f i,d)p(t f i|d)p(d)

∑
q
i=1 ∑d∈D p(y1:k|t f i,d)p(t f i|d)p(d)

(3.13)

Note that it is assumed that the arrival time interval is the same for all destinations.

3.3 Bridging model using joint state

The concept of bridging the current state with the final state was first introduced by Ahmad et al.

[5], where they used a joint state zk to filter for xk. This joint state includes both the current state

and the the final state, and is given by

zk =

[
xk

x f

]
(3.14)

Assuming both the destination dn and the arrival time t f are known, the joint distribution, using

Bayes’ rule, is given by

p(xk+1|xk,x f ) = p(x f |xk+1,xk)p(xk+1|xk) (3.15)

and the transition distribution of zk+1 conditioned on zk is given by

p(zk+1|zk,dn, t f ) = p(x f ,xk+1|xk,x f ,dn, t f ) (3.16a)

= p(x f |xk+1,x f ,dn, t f )p(xk+1|xk,x f ,dn, t f ) (3.16b)

∝ p(xk+1|xk,x f ,dn, t f ) (3.16c)

This follows from that the two terms in eq. (3.16b) are independent of one another allowing the

first term to be ignored. For a Gaussian distribution, eq. (3.16c) is given by

p(xk+1|xk,x f ,dn, t f ) ∝ p(x f |xk+1,dn, t f )p(xk+1|xk,dn, t f ) (3.17a)

= N (x f ;F f xk+1 +m f ,Q f )N (xk+1;FT xk +mT ,QT ) (3.17b)

∝ N (xk+1;ck,Ck) (3.17c)
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with the following parameters

Ck =
(

Q−1
T +FT

f Q−1
f F f

)−1

= QT −QT FT
f

(
Q f +F f QT FT

f

)
F f QT

(3.18a)

ck =Ck

(
Q−1

T (FT xk +mT )+FT
f Q−1

f (x f −m f )
)

=
[
CkQ−1

T FT , CkFT
f Q−1

f

][xk

x f

]
+Ck(Q−1

T mT −FT
f Q−1

f m f )
(3.18b)

ck := Gkzk +bk (3.18c)

where QT and Q f are the covariance matrices that are functions of the time step tk− tk−1 and the

time step t f − tk, respectively. Similarly, FT and F f are the transition matrices that are functions of

the time step tk− tk−1 and the time step t f − tk, respectively. Again, these parameters are provided

in table 3.1 above. This allows the discretization of the joint state zk to be written as

zk+1 = Skzk + b̃k + γk, γk ∼N (0,Uk) (3.19)

with

Sk =

[
Gk

0, I

]
, b̃k =

[
bk

0

]
, Uk =

[
Ck 0
0 0

]
(3.20)

The corresponding measurement model has the following form.

yk = [H, 0]zk +wk, wk ∼N (0,R) (3.21)

Since eqs. (3.19) and (3.21) make a linear Gaussian system, a KF can be applied to calculate

the posterior estimates. For the first measurement, a prior for computing z1 = [xT
1 ,xT

f ]
T is required.

The prior on x1 is the standard prior on the initial state, but the prior distribution on x f is assumed

to be p(x f |d) = N (x f ;xd ,Σd), and independent of the initial prior on x1. This allows the initial

extended prior distribution conditioned on t f to be written as

p(z1|t f ,dn) = N

([
x1

x f

]
;

[
µ1

xd

]
,

[
Σ1 0
0 Σd

])
(3.22)

Ahmad et al. [5] presented an algorithm for destination inference and is shown in algorithm 3

below. It finds the posterior distribution over all d ∈D after k measurements, p(d|y1:k). Then, the

intended destination conditioned on the measurements is determined using maximum a posteriori

(MAP) estimate:

d̂(tn) = argmax
d=1,2,...,N

p(d|y1:n) (3.23)

3.3.1 State estimate and trajectory

Posterior state estimate is found by integrating over all destinations and arrival times, shown in

eq. (3.24a). Furthermore, the distribution is Gaussian with mean ẑk and covariance Pk from al-

gorithm 3, multiplied with [I,0] to filter out xk from zk. The integral can be approximated to
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Algorithm 3 Destination inference [5]
1: procedure DI(y1:n)

2: Initialize Set initial likelihood L(d,i)
0 = 1 and ẑ(d,i)0 ,Σ

(d,i)
0 to the priors from eq. (3.22) for

all d ∈D and quadrature points i
3: for measurements k = 1, ...,n do
4: for destination d ∈D do
5: for quadrature point i ∈ 1, ...,q do
6: Compute S(d,i)

k and U(d,i)
k in eq. (3.19) for measurement at time tk, destination

d and arrival time t f i.

7: {ẑ(d,i)k ,P(d,i)
k , ŷk,Jk}← KF(x̂(d,i)k−1 ,P

(d,i)
k−1 ,yk|k−1) . Run KF iteration (al-

gorithm 1) to compute

posterior state estimate and

covariance, predicted mea-

surement, and innovation

covariance

8: `
(d,i)
k ←N (yk; ŷk,Jk) = p(yk|y1:k−1,d, t f i) . Prediction error

decomposition

9: L(d,i)
k ← L(d,i)

k−1 `
(d,i)
k . Update likelihood

10: end for
11: Φ

(d)
k ← quad(L(d,1)

k ,L(d,2)
k , ...,L(d,q)

k ) . Compute likelihood approx.,

where Φ
(d)
k ≈ p(y1:k|d), and

quad is a quadrature func-

tion, e.g. eq. (3.7) or (3.8)
12: end for
13: for destination d ∈D do
14: ud ←

p(d)Φ(d)
k

∑ j∈D p(d)Φ( j)
k

. The probability of any given

d ∈D
15: end for
16: return ud ≈ p(d|y1:k) . Destination posterior after

the kth measurement
17: end for
18: end procedure
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eq. (3.24b).

p(xk|y1:k) =
∫

t f∈T

(
∑

d∈D
p(xk|y1:k, t f ,d)p(t f |d)p(d)

)
dt f (3.24a)

≈
q

∑
i=1

∑
d∈D

ud,iN
(

xk; [I,0]ẑ(d,i)k , [I,0]P(d,i)
k [I,0]T

)
(3.24b)

with the weights

ud,i =
p(xk|t f i,d)p(t f i|d)p(d)

∑
q
i=1 ∑d∈D p(xk|t f i,d)p(t f i|d)p(d)

(3.25)

To predict future states of the tracked object, for a given destination d and arrival time t f i, the

predicting step in KF (step 2 and 3 in algorithm 1) can be used to calculate the predicted state and

covariance for tκ > tk; where tk is the current time and tκ is a future time. These are then given by

ẑ(d,i)
κ+1|k = S(d,i)

κ ẑ(d,i)
κ|k + b̃(d,i)

κ (3.26a)

P̂(d,i)
κ+1|k = S(d,i)

κ P̂(d,i)
κ|k

(
S(d,i)

κ

)T
+U(d,i)

κ (3.26b)

3.4 Bridging model using Bayesian filtering

Liang et al. [6] introduced a different approach to the bridging method described in section 3.3.

Instead of using a joint state of the current and the final state, a pseudo-measurement ỹ{n}f is

introduced as the final measurement at destination dn and arrival time t f . The pseudo-measurement

is normal distributed and is given as

p(ỹ{n}f |x f ,dn) = N (ỹ{n}f ;H̃x f ,Σ
{n}
f ) (3.27)

where x f is the final state, and Σ
{n}
f is the pseudo-measurement covariance at destination dn. The

pseudo-measurement matrix H̃ might differ from the measurement matrix, and is determined by

the available information at dn. The pseudo-measurement introduces the conditioning on dn, e.g.

p(y1:k|dn) = p(y1:k|ỹ
{n}
f ). The measurements conditioned distribution can then be written with

respect to ỹ{n}f as

p(y1:k|dn, t f ) = p(y1|dn, t f )
k

∏
m=2

p(ym|y1:m−1,dn, t f )

= p(y1:k|ỹ
{n}
f , t f )

(3.28)

In the following, since the arrival time t f is assumed known, it will not be included in

the derivation where it does not play a role for the sake of brevity. Using Bayes’ rule, the

measurement-conditioned-state distribution can be written as

p(xk|y1:k−1,yk,dn) = p(yk|xk,y1:k−1,dn)p(xk|y1:k−1,dn) (3.29)

Furthermore, the prediction error decomposition (PED) in eq. (3.28), p(yk|y1:k−1,dn), can be found
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by integrating eq. (3.29) over xk, resulting in the following

p(yk|y1:k−1,dn) =
∫

p(yk|xk)p(xk|y1:k−1, ỹ
{n}
f )dxk (3.30a)

=
∫

p(yk|xk)
p(ỹ{n}f |xk)p(xk|y1:k−1)

p(ỹ{n}f |y1:k−1)
dxk (3.30b)

where dn is substituted with ỹ{n}f and the second term under the integral in eq. (3.30a) is rewritten

using the chain rule.1

As discussed in section 2.3.1, p(xk|y1:k−1) is the prediction step of the Bayes filter and for

the linear system in eq. (3.1) it can be written on the following form.

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

= N (xk; µk|k−1,Σk|k−1)
(3.31)

with the predicted mean and covariance as

µk|k−1 = FT xk−1 +mT

Σk|k−1 = FT Σk−1FT
T +QT

(3.32)

Similarly, the transition between the current state xk and the pseudo-measurement ỹ{n}f can be

written as
p(ỹ{n}f |xk) =

∫
p(ỹ{n}f |x f )p(x f |xk)dx f

= N (ỹ{n}f ; µỹ,Σỹ)
(3.33)

with the mean and covariance as
µỹ = H̃ [F f xk +m f ]

Σỹ = H̃Q f H̃T +Σ
{n}
f

(3.34)

The two subscripts, T and f are used to differentiate the transition functions, where T represents

that the transition matrix/vector is a function of the time step T = tk−tk−1 and f that it is a function

of the time step t f − tk.

The product of the two Gaussian distributions in eqs. (3.31) and (3.33) result in the following

distribution

p(xk|y1:k−1, ỹ
{n}
f ) ∝ p(xk|y1:k−1)p(ỹ{n}f |xk) (3.35a)

= N (xk; µk|k−1,Σk|k−1)N (ỹ{n}f ; µỹ,Σỹ) (3.35b)

= N

([
xk

ỹ{n}f − H̃m f

]
;

[
µk|k−1

H̃F f µk|k−1

]
,

[
Σk|k−1 Σk|k−1FT

f H̃T

H̃F f Σk|k−1 ξ∗

])
(3.35c)

∝ N (xk; µ∗,Σ∗) (3.35d)

1

p(A|B,C) =
p(A,B,C)

p(B,C)
=

p(C|A,B)p(A,B)
p(C,B)

=
p(C|A,B)p(A|B)p(B)

p(C|B)p(B)
=

p(C|A,B)p(A|B)
p(C|B)

20



with the mean and covariance given by

Σ∗ = Σk|k−1−Σk|k−1FT
f H̃T

ξ
−1
∗ H̃F f Σk|k−1 (3.36a)

µ∗ = µk|k−1 +Σk|k−1FT
f H̃T

ξ
−1
∗

(
ỹ{n}f − H̃m f − H̃F f µk|k−1

)
(3.36b)

ξ∗ := Σỹ + H̃F f Σk|k−1FT
f H̃T (3.36c)

Liang et al. [6] use the product identity in theorem 1 to compute the mean and covariance

values (µ∗ and Σ∗). Alternatively, one could use the product identity in theorem 2 which results in

slightly different values shown in eq. (3.37). The covariance remains the same, whereas the mean

becomes slightly different.

Σ
alt.
∗ = Σk|k−1−Σk|k−1FT

f H̃T
ξ
−1
∗ H̃F f Σk|k−1 (3.37a)

µ
alt.
∗ = Σ∗

(
Σ
−1
k|k−1µk|k−1 +FT

f H̃T
Σ
−1
ỹ

(
ỹ{n}f − H̃m f

))
(3.37b)

=
(
I−Σk|k−1FT

f H̃T
ξ
−1
∗ H̃F f

)(
µk|k−1 +Σk|k−1FT

f H̃T
Σ
−1
ỹ

(
ỹ{n}f − H̃m f

))
(3.37c)

Continuing the derivation, eq. (3.30) can now be written on the following form.

p(yk|y1:k−1,dn) ∝

∫
N (yk;Hxk,Rk)N (xk; µ∗,Σ∗)dxk

= N (yk; µy,Σy)
(3.38)

µy = Hµ∗

Σy = HΣ∗HT +Rk

(3.39)

Finally, this can then be used to find the likelihood of a measurement for a given destination and

an arrival time using eq. (3.28).

For a given destination d and an arrival time t f i, future states of a tracked object can be

predicted using the predicting step of KF with mean and covariance from the bridged state estimate

found in eq. (3.35d). For a future time tκ > tk the predicted state and covariance are given by

x̂(d,i)
κ+1|k = F(d,i)

κ x̂(d,i)
κ|k +m(d,i)

κ (3.40a)

P̂(d,i)
κ+1|k = F(d,i)

κ P̂(d,i)
κ|k

(
F(d,i)

κ

)T
+(Σ∗)

(d,i)
κ (3.40b)

where the transition functions with subscript κ are functions of the time step tκ+1−tκ . The a priori

state distribution is given by

x̂k|k ∼N (µ∗,Σ∗) (3.41)

computed at the current time tk.

3.5 Bridging model using Bayesian smoothing

Another approach of bridging the current state with the pseudo-measurement was also presented

in [6], which uses Bayesian smoothing. Firstly, the equation for the backward update step of the
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Bayesian smoother (eq. (2.26b) in section 2.3.2) is rewritten such that the transition goes from

xk−1 to x f instead of going to xk, i.e. in eq. (2.26b), xk is replaced with xk−1, and xk+1 with x f ,

resulting in the following

p(xk−1|y1: f ) = p(xk−1|y1:k−1)
∫ p(x f |xk−1)p(x f |y1: f )

p(x f |y1:k−1)
dx f (3.42a)

= p(xk−1|y1:k−1)
∫ p(x f |xk−1)

p(x f |y1:k−1)
p(x f |y1:k−1, ỹ

{n}
f )dx f (3.42b)

= p(xk−1|y1:k−1)
∫ p(x f |xk−1)

p(x f |y1:k−1)
p(ỹ{n}f |x f ,y1:k−1)p(x f |y1:k−1)dx f (3.42c)

= p(xk−1|y1:k−1)
∫

p(x f |xk−1)p(ỹ{n}f |x f )dx f (3.42d)

where eq. (3.42a) is the backward update step with substituted variables. The first term in

eq. (3.42d), p(xk−1|y1:k−1), is the output of a KF, and the integral is the transition between the

previous state xk−1 and the pseudo-measurement ỹ{n}f . The transitional distribution is found in

similar manner to eqs. (3.33) and (3.34), just with respect to time step tk−1 instead of tk, and is

given by

p(ỹ{n}f |xk−1) =
∫

p(x f |xk−1)p(ỹ{n}f |x f )dx f

= N (ỹ{n}f ; µỹ−1,Σỹ−1)
(3.43)

with the mean and covariance as

µỹ−1 = H̃ [F f−1xk−1 +m f−1]

Σỹ−1 = H̃Q f−1H̃T +Σ
{n}
f

(3.44)

where the f − 1 subscript represents the transition function with respect to the time step t f −
tk−1. Furthermore, writing the distribution p(xk−1|y1: f ) in eq. (3.42d) as p(xk−1|y1:k−1, ỹ

{n}
f ), the

distribution can be written as

p(xk−1|y1:k−1, ỹ
{n}
f ) = p(xk−1|y1:k−1)p(ỹ{n}f |xk−1)

= N (xk−1; µk−1,Σk−1)N (ỹ{n}f ; µỹ−1,Σỹ−1)

∝ N (xk−1; µ̃, Σ̃)

(3.45)

with the mean and covariance given as

Σ̃ = Σk−1−Σk−1FT
f−1H̃T

ξ̃
−1H̃F f−1Σk−1 (3.46a)

µ̃ = µk−1 +Σk−1FT
f−1H̃T

ξ̃
−1
(

ỹ{n}f − H̃m f−1− H̃F f−1µk−1

)
(3.46b)

µ̃
alt. = Σ̃

(
Σ
−1
k−1µk−1 +FT

f−1H̃T
Σ
−1
ỹ

(
ỹ{n}f − H̃m f−1

))
(3.46c)

ξ̃ = Σỹ−1 + H̃F f−1Σk−1FT
f−1H̃T (3.46d)

where the alternative mean, µ̃alt. is computed using theorem 2 and µ̃ is computed using theorem 1

as mentioned above. In the following the two mean values will be presented alongside each other

where the alternative mean will have the superscript alt.
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Secondly, the PED in eq. (3.30a) can be reformulated to include p(xk−1|y1:k−1, ỹ
{n}
f ) from

eq. (3.45). This leads to the following PED

p(yk|y1:k−1,dn) =
∫

p(yk|xk)p(xk|y1:k−1, ỹ
{n}
f )dxk (3.47a)

=
∫

p(yk|xk)
∫

p(xk|xk−1, ỹ
{n}
f )p(xk−1|y1:k−1, ỹ

{n}
f )dxk−1 dxk (3.47b)

=
∫

N (yk;Hxk,Rk)
∫

N (xk; µ†,Σ†)N (xk−1; µ̃, Σ̃)dxk−1 dxk (3.47c)

Where p(xk|xk−1, ỹ
{n}
f ) in eq. (3.47b) can be written as

p(xk|xk−1, ỹ
{n}
f ) ∝ p(xk|xk−1)p(ỹ{n}f |xk)

= N (xk; µk|k−1,QT )N (ỹ{n}f ; µỹ,Σỹ)

∝ N (xk; µ†,Σ†)

(3.48)

with the mean and covariance given as

Σ† = QT −QT FT
f H̃T

ξ
−1
† H̃F f QT (3.49a)

µ† = µk|k−1 +QT FT
f H̃T

ξ
−1
†

(
ỹ{n}f − H̃m f − H̃F f µk|k−1

)
(3.49b)

µ
alt.
† =

(
I−QT FT

f H̃T
ξ
−1
† H̃F f

)(
µk|k−1 +QT FT

f H̃T
Σ
−1
ỹ

(
ỹ{n}f −Hm f

))
(3.49c)

ξ† = Σỹ + H̃F f QT FT
f H̃T (3.49d)

Furthermore, by substituting µk|k−1 with FT xk−1 +mT in µ† in eq. (3.49), the inner integral in

eq. (3.47c) can be solved as shown in eq. (3.50).∫
N (xk; µ†,Σ†)N (xk−1; µ̃, Σ̃)dxk−1 = N (xk; µ‡,Σ‡) (3.50)

with mean and covariance given as

µ‡ = FT µ̃ +mT +QT FT
f H̃T

ξ
−1
†

(
ỹ{n}f − H̃m f − H̃F f (FT µ̃ + ∗ mT )

)
(3.51a)

µ
alt.
‡ =

(
I−QT FT

f H̃T
ξ
−1
† H̃F f

)(
FT µ̃ +mT +QT FT

f H̃T
Σ
−1
ỹ

(
ỹ{n}f − H̃m f

))
(3.51b)

Σ‡ = A‡Σ̃AT
‡ +Σ† (3.51c)

A‡ =
(
I−QT FT

f H̃T
ξ
−1
† H̃F f

)
FT (3.51d)

Finally, the PED (eq. (3.47)) using the smoothing approach is given as eq. (3.52).

p(yk|y1:k−1,dn) =
∫

N (yk;Hxk,Rk)N (xk; µ‡,Σ‡)dxk

= N (yk; µy,Σy)
(3.52)

with the mean and covariance given as

Σy = HΣ‡HT +Rk

µy = Hµ‡

(3.53)
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For an overview of the Σy and µy values, these have been written out in eq. (3.54) to exclude Σ and

µ values with subscript † and ‡.

Σy = H
[
A‡Σ̃AT

‡ +QT −QT FT
f H̃T

ξ
−1
† H̃F f QT

]
HT +Rk (3.54a)

µy = H
[
FT µ̃ +mT +QT FT

f H̃T
ξ
−1
†

(
ỹ{n}f − H̃m f − H̃F f (FT µ̃ + ∗ mT )

)]
(3.54b)

µ
alt.
y = H

(
I−QT FT

f H̃T
ξ
−1
† H̃F f

)[
FT µ̃ +mT +QT FT

f H̃T
Σ
−1
ỹ

(
ỹ{n}f − H̃m f

)]
(3.54c)

A‡ =
(
I−QT FT

f H̃T
ξ
−1
† H̃F f

)
FT (3.54d)

ξ† = Σỹ + H̃F f Q(T )FT
f H̃T (3.54e)

Σỹ = H̃Q f H̃T +Σ
{n}
f (3.54f)

An algorithm for destination inference for both the filtering approach, described in sec-

tion 3.4, and the smoothing approach from this section, is given in algorithm 4.

∗In [6], this sign was given out to be a minus, which seems to be a misprint where it should have been a plus

sign. However, after testing, there was no visible difference by using plus or minus here. This is likely because mT is

substantially smaller than FT µ̃ and these are then multiplied with high valued matrices, leading to a negligible vector.
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Algorithm 4 Destination inference with Pseudo-Measurements, filtering and smoothing approach

[6]

1: procedure DIPSEUDO(y1:k, {ỹ{n}f , ∀dn = d1, ...,dN} )

2: Initialize Set the mean and covariance a priori. Set initial likelihood L(d,i)
0 = 1

3: for measurements k = 1, ...,K do
4: for destination d ∈D do
5: for quadrature point i ∈ 1, ...,q do
6: {µk|k−1,Σk|k−1,µk,Σk}

← KF(µk−1,Σk−1,yk)

. Run KF iteration (algo-

rithm 1) to compute pre-

dicted and corrected state

and covariance
7: Compute µ∗ and Σ∗ in eq. (3.36) . Filtering approach

Compute µ̃ and Σ̃ in eq. (3.46) . Smoothing approach
8: Compute `

(d,i)
k ← p(yk|y1:k−1,d, t f i) in eq. (3.38) . Filtering approach

Compute `
(d,i)
k ← p(yk|y1:k−1,d, t f i) in eq. (3.52) . Smoothing approach

9: L(d,i)
k ← L(d,i)

k−1 `
(d,i)
k . Update likelihood

10: end for
11: Φ

(d)
k ← quad(L(d,1)

k ,L(d,2)
k , ...,L(d,q)

k ) . Compute likeli-

hood approx., where

Φ
(d)
k ≈ p(y1:k|d), and

quad is a quadrature

function, e.g. eq. (3.7) or

(3.8)
12: end for
13: for destination d ∈D do
14: ud ←

p(d)Φ(d)
k

∑ j∈D p(d)Φ( j)
k

. The probability of any

given d ∈D
15: end for
16: return ud ≈ p(d|y1:k) . Destination posterior after

the kth measurement
17: end for
18: end procedure
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Chapter4
Motion models

This chapter presents the thee motion models that were used for the simulations. These are the con-

stant velocity (CV) model, equilibrium reverting velocity (ERV) model, and Ornstein-Uhlenbeck

(OU) model.

4.1 Constant velocity model

A commonly used model for estimating the motion of an object is the (nearly) constant velocity

(CV) model. The object moves at a nearly constant velocity where the acceleration is modelled

as white Gaussian noise with zero mean [12, pp. 269-270]. The stochastic differential equation

(SDE) of the model, for a two dimensional case, is given in eq. (4.1) and the state vector is given

by x = [pT , vT ]T , where p is the position vector and v the velocity vector. Considering the two

dimensional north-east coordinate system, the state vector in this case becomes x = [x y vx vy]
T .

ẋ = Ax+Gn, n∼N (0,qδ (t− τ)) (4.1a)

with matrices given as

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G =


0 0

0 0

1 0

0 1

 , q =

[
σ2

a 0

0 σ2
a

]
(4.1b)

The elements in q, σa, are the process noise variance that can be describe as the expected

velocity change, i.e. the systems acceleration. Since the acceleration should be small compared to

the actual velocity, a relatively small value of σa should be chosen. Discretization of the system

with time step T is shown in eq. (4.2) [12, pp. 269-270].

xk = Fxk−1 +vk, vk ∼N (0,Qδ (t− τ)) (4.2a)
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with matrices given as

F = eAT =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , Q =


T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

σ
2
a (4.2b)

4.2 Equilibrium reverting velocity

For an object in a motion where the final state is known, its motion can be modelled such that

the object will revert towards its final state. Ahmad et al. [13] introduced a variation of the CV

model, based on Ornstein-Uhlenbeck (OU) model, called equilibrium reverting velocity (ERV),

for tracking and destination inference. The motion of a tracked object with a known destination

can be described as it is being pulled by the destination xd with a strength proportional to the

distance between them, i.e. similar to a spring with a natural length of zero, connecting the two,

and pulling them together. The SDE is given by

ẋ = A(xd−x)+Gn, n∼N (0,qδ (t− τ)) (4.3a)

where

A =


0 0 −1 0

0 0 0 −1

ηx 0 ρx 0

0 ηy 0 ρy

 (4.3b)

and xd = [xd , yd , 0, 0] is the position of the final destination with zero velocity. Drag coefficients

η ∈ {0,1} and mean reversion strengths ρ ∈ {0,1} are introduced to the system matrix A to each

spacial dimension for managing the “pulling” force. The process noise, q, remains the same as for

the CV model.

Integrating over the time interval T results in the following discretization

xk+1 = FT xk +mT +vk, vk ∼N (0,QT δ (t− τ)) (4.4a)

with parameters given as

FT = e−AT , (4.4b)

mT = (I− e−AT )xd , (4.4c)

QT =
∫ T

0
e−A(T−τ)GqGT e−AT (T−τ)dτ (4.4d)

The covariance matrix QT can be found by using Van Loan’s method [14]. Using this for the

system shown in eq. (4.4d), the (partial) relationship between its matrices can be described as

exp

([
A GqGT

0 −AT

]
T

)
=

[
... F−1

T QT

0 FT
T

]
:=

[
... V2

0 V1

]
(4.5)
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From which, the covariance matrix Q can be found by first extracting V1 and V2, and then multiply

these such that Q = VT
1 V2.

For a scenario where the drag and reversion strength coefficients are set to zero, the F matrix

in eq. (4.4) becomes the same as for the CV model and the vector m becomes

mT = (I−FT )xd =


0 0 −T 0

0 0 0 −T

0 0 0 0

0 0 0 0

xd (4.6)

Additionally, if the final state at destination d, xd , is said to have zero velocity, the model becomes

the same as the CV model. In this thesis, only the movement of watercraft are considered and since

its movement do not behave similar to a spring, the drag and reversion coefficients are assumed

zero.

4.3 Ornstein-Uhlenbeck model

Similarly to the ERV model, an OU process can be used to describe the motion of an object.

Instead of assuming that an object in motion reverts towards a destination, the velocity will revert

towards a mean velocity. The OU model was presented in [15], and its SDE is given as

ẋ = Ax+Bv+Gn, n∼N (0,qδ (t− τ)) (4.7a)

where v is the mean velocity vector and the matrices are given as

A =

[
0 I
0 −Θ

]
, B =

[
0
Θ

]
, G =

[
0
I

]
(4.7b)

The Θ matrix quantifies the mean reversion effect, i.e. at which rate the velocity will revert to the

desired value. Θ is assumed to have positive and distinct eigenvalues such that it can be written as

Θ = EΓE−1 (4.8)

where E contains the eigenvectors, and Γ contains the eigenvalues on the diagonal. For simplicity

E is assumed to be the identity matrix such that Θ = Γ = diag(γ). Integrating eq. (4.7) over the

time interval T results in the following discretization

xk+1 = F(T,γ)xk +M(T,γ)vk +vk, vk ∼N (0,QT δ (t− τ)) (4.9a)

with matrices given as

F(T,γ) =

[
I (I− e−Γ T )Γ−1

0 e−Γ T

]
, M(T,γ) =

[
tI− (I− e−Γ T )Γ−1

I− e−Γ T

]
(4.9b)
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where F is the state transition matrix and M is the control input, both being a function of the time

step and reversion values. The prediction covariance is given by

Pk+1 = F(T,γ) Pk F(T,γ)T +Σ1 ◦Σ2(Tk) (4.10)

where the ◦ operator is the Hadamard product 1 and the Σ-covariance matrices are given by

Σ1 =



σ2
x

γ3
x

σxy
γxγy

σ2
x

2γ2
x

2σxy
γx

σxy
γxγy

σ2
y

γ3
y

2σxy
γy

σ2
y

2γ2
y

σ2
x

2γ2
x

2σxy
γy

σ2
x

γx

2σxy
γx+γy

2σxy
γx

σ2
y

2γ2
y

2σxy
γx+γy

σ2
y

γy

 (4.11a)

Σ2(Tk) =


f (Tkγx) h(Tk,γ) k(Tkγx) g∗1(Tk,γ)

h(Tk,γ) f (Tkγy) g∗2(Tk,γ) k(Tkγy)

k(Tkγx) g∗2(Tk,γ) g(Tkγx) g((γx + γy)Tk/2)

g∗1(Tk,γ) k(Tkγy) g((γx + γy)Tk/2) g(Tkγy)

 (4.11b)

with functions defined as

f (t) :=
1
2
(
2t +4e−t − e−2t −3

)
(4.12a)

g(t) :=
1
2
(
1− e−2t) (4.12b)

k(t) := e−2t (1− e−t)2 (4.12c)

h(t,γ) := t−1− e−tγx

γx
− 1− e−tγy

γy
+

1− e−t(γx+γy)

γx + γy
(4.12d)

g∗1(t,γ) :=
g(γyTk/2)

γy
−

g((γx + γy)Tk/2)
γx + γy

(4.12e)

g∗2(t,γ) :=
g(γxTk/2)

γx
−

g((γx + γy)Tk/2)
γx + γy

(4.12f)

To predict the motion of an object where the mean velocity is unknown, a dynamic mean

velocity can be estimated using the n last measurements. In this thesis the average velocity of the

last 10 measurements are used as the mean velocity, vk, for the simulations.

For more details about the equations the reader is referred to [15].

1Example of Hadamard product: [
a1 a2

a3 a4

]
◦

[
b1 b2

b3 b4

]
=

[
a1b1 a2b2

a3b3 a4b4

]
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Chapter5
Test scheme

This chapter describes the details about the test scheme. It provides information about the different

scenarios tested and how AIS data was used as measurements. Thereafter, a description of how

the system’s parameters were tuned is presented.

5.1 Scenarios

The map area considered for all test runs was chosen to be the Trondheim fjord in Norway. The

area in question is illustrated in fig. 5.1, along with the destinations considered. These are rep-

resented as covariance ellipses of possible final destinations for a tracked object. These ellipses

were manually chosen such that their size and form felt natural for each destination. Some are

destinations where the final velocity is expected to be zero, e.g. ports and harbours. Other desti-

nations are places where the object is expected to pass through with velocity greater than zero, i.e.

places where the object can leave the area, or exits.
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Figure 5.1: Map of the Trondheim fjord with the possible final destinations, represented as ellipses

The destination names and the centre of their location are listed in table 5.1. The destination

S1, the area outside Trondheim, is a special case where it is considered as one area, but in reality
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it contains several possible destinations. Furthermore, there is relatively high activity within the

area, and therefore it would be practical to consider the area on its own for destination inference

and future trajectory prediction. To test the algorithm performance, five scenario examples were

extracted from a collection of real-world AIS data. This collection is the same as was used in

the study by Dalsnes et al. [16] provided by DNV GL. The scenarios are listed in table 5.2 along

with the ship’s name and type. The scenarios are labelled as their starting position and their final

destination, e.g. NE-S1 is the scenario where the tracked object is travelling from NE towards

S1. The trajectory for each scenario is provided in chapter 6, where the results from the tests are

presented.

Table 5.1: List of possible final destinations

Code Name
Centre of ellipse

Type
[lat, lon]

S1 Trondheim [63.4446,10.3820] Port area

S2 Flakk [63.4524,10.2038] Port

SW South-West exit [63.4400,10.0751] Exit

W1 West exit [63.4648,9.9873] Exit

W2 Sandbakken [63.4864,9.9991] Mariana

N2 Rorvik [63.5075,10.1427] Port

N1 Vanvikan [63.5496,10.2300] Marina

NE North-East exit [63.5759,10.5153] Exit

E1 East exit [63.5210,10.7014] Exit

E2 Muruvik [63.4404,10.8366] Marina

E3 Malvik [63.4342,10.7851] Port area

Table 5.2: List of scenarios of ships travelling in the Trondheim fjord, along with the ships information.
The ship types were retrieved from [17] using the code from the AIS

No. Scenarios Ship’s name Length [m] Width [m] Type {code}
1 NE-S1 Fosna Triton 15 5 Diving ops {34}
2 W1-S1 Kong Harald 122 20 Passenger {60}
3 W1-E2 Vestland 88 13 Cargo {70}
4 N2-S2 Lagatun 108 18 Passenger {69}
5 NE-W1 Ro Chief 53 12 Cargo {70}

5.2 Using AIS measurements

AIS is a worldwide system, extensively used to identify and track maritime vessels. A signal is

transmitted from a vessel, using a small transponder fitted on the vessel, to coastal authorities

and other ships automatically. The signal includes both static and dynamic information about the
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vessel, e.g. identification number, type of vessel, position, course over ground (COG), speed over

ground (SOG), heading, etc. It is required, by international maritime law, for all international

voyaging ships weighing 300 tonnes or more, and all passenger ships, to be fitted with AIS. [18]

AIS data was used as measurements for tracking a ship. Normally, position is from GNSS-

measurements, and velocity comes from both COG and SOG measurements, which are usually

derived from the position. Depending on sensors on board, these can be noisy and/or with large

variance. Moreover, COG could oscillate when sailing over waves, but for some vessels these

oscillations can be filtered out, which results on more stable COG measurements but at the cost

of having larger variance. Additionally, COG is very unstable at low velocities, but SOG can be

accurate also at low velocities. This is because when a vessel is almost stationary its positional

measurements jump around the true position and the COG will follow. This does not affect the

SOG as much since the measured position is random within a certain area which zeros out the

speed. Typical heading measurements come from a different sensor, a gyroscope, that measures

the change in orientation.

The measured position is given in latitude and longitude ([λ ,ϕ]) and is converted to Cartesian

coordinates using the MATLAB’s built-in function latlon2local [19]. The velocity is computed

from the SOG and COG measurements using trigonometry, as shown in eq. (5.2). The last mea-

surement used in this thesis is the heading angle, denoted as ψ , is used directly. The measurement

vector in geographic coordinates is shown in eq. (5.1a) and the corresponding Cartesian vector is

shown in eq. (5.1b), where x and y are the positions in east and north direction, respectively.

yg =
[
λ , ϕ, ψ, SOG, COG

]T
(5.1a)

yc =
[
x, y, ψ, ẋ, ẏ

]T
(5.1b)

ẋ = SOG sin(COG) (5.2a)

ẏ = SOG cos(COG) (5.2b)

In the following, a measurement vector will always refer to a measurement vector in the Cartesian

coordinate system.

5.3 State and measurement vectors

Two different state and measurement vectors were considered. The first containing the position and

their derivatives, and the second containing the position, the course angle, and their derivatives. In

the following, these will have the superscript a and b to represent the first and second, respectively.
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The state vectors (x) and their corresponding measurement vectors (y) are shown in eq. (5.3).

xa =
[
x, y, ẋ, ẏ

]T
(5.3a)

ya =
[
x, y, ẋ, ẏ

]T
(5.3b)

xb =
[
x, y, ψ, ẋ, ẏ, ψ̇

]T
(5.3c)

yb =
[
x, y, ψ, ẋ, ẏ

]T
(5.3d)

This leads to the following measurement and covariance matrices

Ha = I4 (5.4a)

Hb = [I5, 01×5] (5.4b)

Ra =


σ2

p 0 0 0

0 σ2
p 0 0

0 0 σ2
v 0

0 0 0 σ2
v

+ 1
720


v2

x 0 0 0

0 v2
y 0 0

0 0 0 0

0 0 0 0

 (5.5a)

Rb =



σ2
p 0 0 0 0

0 σ2
p 0 0 0

0 0 σ2
h 0 0

0 0 0 σ2
v 0

0 0 0 0 σ2
v


+

1
720



v2
x 0 0 0 0

0 v2
y 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(5.5b)

where σp, σv and σh are the variances for position, velocity and heading angle, respectively. The

covariance matrix R is a combination of two matrices, the first being the covariance matrix con-

taining the variance on the diagonal. The variance is assumed to be the same in both x and y

directions. The second matrix is the added error of the measured position which is proportional

to the velocity (vx and vy), scaled with a suitable variance. In [20] the quantization error of the

measurement is said to be uniform in ±0.5 s, leading to the choice of a moment-matched zero

mean Gaussian distribution with a standard deviation σ = 1/
√

12. Using minutes as the unit of

time measurement results in σ = 1/
√

720, which is the scaling factor shown in eq. (5.5), i.e. σ2.

In this thesis the unit used for time was chosen to be minutes instead of seconds. This was

needed for computational stability. The possible arrival times were relatively large, up to 7 hours,

and some transition matrices are a function of the time step between the current and the arrival

time. This leads to very high valued matrices. Moreover, MATLAB was used for the computations

and when it tried to work with these matrices it deemed it unable to work within a reasonable

precision, which lead to singular matrices. This issue was solved by simply using minutes as the

unit of time.
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5.3.1 Tuning of covariance

For a filter to be considered consistent, its errors, on average, should be unbiased and have magni-

tude corresponding to the covariance calculated by the filter. This leads to the consistency analysis

with the following criteria [12, pp. 234-236]

1. The state errors should have zero mean

2. The state errors should have magnitudes corresponding to the state covariance calculated by

the filter

3. The innovation should have zero mean

4. The innovation should have magnitudes corresponding to the innovation covariance calcu-

lated by the filter

5. The innovation should be acceptable as white

Checking if criteria 2 and/or 4 holds is a typical test for consistency. To check if criteria 2 holds

the normalised estimation error squared (NEES) is calculated at each iteration k.

ε
x
k = (x̂k−xk)

T P−1
k (x̂k−xk) (5.6)

Where x is the true state, and x̂ and P are the filters state estimate and covariance, respectively. To

check if criteria 4 holds the normalised innovation squared (NIS) is calculated at each iteration.

ε
y
k = (ŷk−yk)

T J−1
k (ŷk−yk) (5.7)

This can be used to tune the process and measurement covariance, such that the error fits within

a certain confidence interval, e.g. the average of NEES or NIS after N Monte Carlo simulations

should fit within a 95% confidence interval. For a system where the true state x is unknown, one

could check if criteria 4 holds [12, pp. 234-236]. In the following, only criteria 4 is considered

since the true states are unknown.

The process variance (σa and σψ ) and the measurement variance (σp, σv and σh) were tuned

for the different scenarios (ships). The tuning was perfomed by running the measurements through

a KF using CV model for the two different state vectors, xa and xb, and using OU model (with

xa). The measurement covariance was assumed to be the same for all ships except NE-S1, since

these were all large ships with similar velocity profile. Whereas, NE-S1 was a smaller boat with

higher accelerations and more noisier measurements. The parameters used for the tests are shown

in table 5.3, along with the NIS limits and its computed average for each case. The limits were

computed with the build-in MATLAB function chi2inv [21], using 95% confidence.
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Table 5.3: The parameters used for the tests with the resulting average NIS. It is desired to have the average
NIS between the NIS limits.

Parameter NIS

σp σv σh σa σψ γ lower upper
average

unit m m/min deg m/min2
deg/min min−1 limit limit

N
E

-S
1 xa 5 24 - 28 - - 3.76 4.25 3.92

xb 5 24 3 28 1.2 - 5.70 6.30 6.07
OU 5 24 - 28 - 0.05 3.76 4.25 3.94

W
1-

S1

xa 2 3 - 9 - - 3.79 4.21 4.05
xb 2 3 1 9 0.7 - 5.75 6.26 5.97

OU 2 3 - 9 - 0.05 3.79 4.21 4.06

W
1-

E
2 xa 2 3 - 11 - - 3.82 4.19 3.98

xb 2 3 1 11 1.4 - 5.78 6.23 5.97
OU 2 3 - 11 - 0.05 3.82 4.19 3.97

N
2-

S2

xa 2 3 - 14 - - 3.54 4.49 3.73
xb 2 3 1 14 1.5 - 5.43 6.60 6.17

OU 2 3 - 14 - 0.05 3.54 4.49 3.88

N
E

-W
1 xa 2 3 - 3 - - 3.72 4.29 3.75

xb 2 3 1 3 0.025 - 5.66 6.35 5.76
OU 2 3 - 3 - 0.05 3.72 4.29 3.81
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Chapter6
Results

This chapter presents the results from testing the bridging methods described in chapter 3 using

real measurements. Firstly, a short description is provided of the different combinations of bridg-

ing models and motion models (presented in chapter 4) considered in this thesis. Secondly, the

results from the destination inference are presented for each scenario. Lastly, the results from the

future prediction computations are presented.

6.1 Model cases

The bridging models described in sections 3.3 to 3.5 were used for the destination intent estima-

tions. These are

1. (BF1) - Bayesian filtering using only the current state (section 3.4)

2. (BF2) - Bayesian filtering using the joint state zk = [xk;x f ] (section 3.3)

3. (BS) - Bayesian smoothing using only the current state (section 3.5)

In the following, these models will be referred as BF1, BF2 and BS as indicated in the parenthesis

above. Additionally, to study the effect of including the heading angle as a state variable, both

xa and xb were used in the ERV model. These were then compared, along with the OU model

(with xa). The Bayesian bridging model along with the motion model, will be referred to as model

cases, or simply just as cases. The combinations of these model cases are given in table 6.1.

Note that, for the setting in this thesis, the ERV model is strictly speaking a bridged CV

model, since the drag and reversion strength coefficients are set to zero (see section 4.2).

6.2 Destination inference

For estimating the destination intent, a destination likelihood is computed at each time step, i.e.

the destination weights, where the sum of the weights of all destinations are equal to one. How

these weights develop over time are then compared for each model case.
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Table 6.1: The different model cases tested and compared

Abbr. Description

BF1-ERVa BF1 bridging using ERV model with xa

BF2-ERVa BF2 bridging using ERV model with xa

BS-ERVa BS bridging using ERV model with xa

BF1-ERVb BF1 bridging using ERV model with xb

BF2-ERVb BF2 bridging using ERV model with xb

BS-ERVb BS bridging using ERV model with xb

BF1-OU BF1 bridging using OU model with xa

BF2-OU BF2 bridging using OU model with xa

BS-OU BS bridging using OU model with xa

Regarding the use of the mean µ given in [6], compared with the use of the alternative mean

µalt., as discussed in sections 3.4 and 3.5. The use of these two produced the same results for all

model cases (or at least with insignificant difference) except for BS-OU. Using OU model with

the given Bayesian smoothing equations resulted in unexpected destination weights development.

This is further discussed in section 6.2.6, where a comparison is presented. That being said, in

sections 6.2.1 to 6.2.5 only the alternative mean will be considered.

In the following, for notational brevity, for cases where the use of either ERVa or ERVb

produced the same results, the notation ERVa&b will be used to represent both ERVa and ERVb.

6.2.1 NE-S1: Destination inference for a boat travelling from NE to S1

The boat travelling from NE to S1, with trajectory shown in fig. 6.1, is a smaller vessel compared

with the other ships discussed below. Hence, it’s position, SOG and COG is more affected by

waves and other external forces, leading to noisier measurements. Additionally, smaller boats

tend to have higher directional and angular acceleration.
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Figure 6.1: Measured trajectory of Fosna Triton, a diving ops. boat, travelling from NE to S1.

The computed weights for each destination over time is illustrated in fig. 6.2. The weights for

the true destination, S1, is illustrated as a bold line for easier distinction. Many cases resulted in the
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Figure 6.2: Computed destination weights (y-axis) at each time step, tk, over the travelling time for the boat
travelling from NE to S1. The destination weights for the true destination is illustrated as a bold line.
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Figure 6.3: Computed NIS at each time step for
NE-S1 using BF1-ERVa. The red lines represent
the desired values of the average NIS.

same, or very similar, results. There was insignif-

icant difference in using either BF1 or BS, but us-

ing different motion models with these resulted in

different destination weight development. For in-

stance, using OU model resulted in much higher

confidence for the true destination. Additionally,

with BF2 the computed weights were the same

when combined with ERVa and ERVb.

Regarding the measured trajectory, after about

2.5 minutes the boat changed its heading and starts

heading towards S1. In fig. 6.1, this heading change

might be hard to see because of the vast map area,

but this is however a significant change. At that time a spike in the destination weights occurred

for S1 and the E-destinations. A similar phenomenon happened after 15 minutes, where the boat

changes its heading slightly away from S1 and the weights on S1 dropped. This latter change in

heading is most likely due to an island, Munkholmen, that is located north of S1 (not shown on
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Arrival time distribution for location E2

5 10 15 20

t
k
 [min]

50

100

150

200

250

300

350

400

t f [
m

in
]

0

0.05

0.1

0.15

0.2

0.25

(d) BF2-ERVa towards E2

Figure 6.4: Arrival time (t f ) probability distribution development over the travelling time (tk) for the boat
travelling from NE to S1. Computed for the possible destinations S1 and E2, using the model cases BF1-OU
and BF2-ERVa. The values on the bar going from light to dark represent the probability values.
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the map). At these two events the NIS values increased dramatically and consequently the model

gets overconfident and trusts its estimates much more than the measurements. Initially, BF2-ERVa

was most affected by this change but decreased its S1-weight over time, towards similar values as

BF1-ERVa after the initial spike at tk ∼2.5 min. An example of the computed NIS for BF1-ERVa

at each time step is illustrated in fig. 6.3.

Comparing figs. 6.2a and 6.2b the effect of using ERVa and ERVb with BF1 (and BS) can

be seen. Both had a very similar trend where the destination MAP estimate was the same at most

time instances, i.e. S1. However, by including the heading angle as a state variable (ERVb), the

model got more confident the longer the heading was kept towards S1.

Using OU the destination weights for S1 increased rapidly after the initial heading change

and got extremely confident, arguably too confident, in its estimates. This shows how the model,

using OU, will consider the object’s heading towards a certain destination with high degree.

Furthermore, since the destination distribution is computed from the integration of the arrival

time distribution, it is of interest to take a look on how the arrival time distribution develops

over time. Figure 6.4 shows examples of how the arrival time distribution develops over time

for the destinations S1 and E2 using BF1-OU and BF2-ERVa. It shows that both models had a

good estimates of the arrival time at S1 early on, but with different certainty. BF1-OU has a high

certainty of its arrival time estimation, whereas BF2-ERVa has a decreasing certainty and becomes

relatively uncertain between tk=15 and 20 min.

6.2.2 W1-S1: Destination inference for a ship travelling from W1 to S1

The ship travelling from W1 to S1, with trajectory shown in fig. 6.5, is a large passenger ship called

Kong Harald. It had a relatively constant velocity profile for the majority of its travel.
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Figure 6.5: Measured trajectory of Kong Harald, a passenger ship, travelling from W1 to S1.

The computed destination weights are shown in fig. 6.2. It shows that for the first∼7 minutes,

the destination estimates go towards N1, NE and then E1, which are unexpected destinations when

looking at the heading direction. A possible explanation for this behaviour is that during the first
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Figure 6.6: Computed destination weights (y-axis) at each time step, tk, over the travelling time for the ship
travelling from W1 to S1. The destination weights for the true destination is illustrated as a bold line.
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Figure 6.7: Computed NIS at each time step for
W1-S1 using BF1-ERVa. The red lines represent
the desired values of the average NIS.

few measurements the model has not developed a

good arrival time distribution and can choose des-

tinations that appear random. This initial progress

was observed to generally take somewhere between

20 and 50 measurements. For W1-S1 this was about

5 minutes after the initial measurement, then the

weights on E2 and E3 began to increase. This in-

crement was observed for all cases until the ship

changed its heading towards S1. Moreover, if a

straight line were to be drawn along the initial head-

ing, it would first go through the north-part of the

S1-ellipse and then continue towards E3, closely

passing south of its ellipse. Even though the ship is heading inside the S1-ellipse, it is not heading

towards its centre. Furthermore, the model seemed to favour destinations that are positioned fur-

ther away if the ship is not heading towards the centre of a destination that is closer to the current

position.
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(a) BF1-ERVa towards S1 (b) BS-OU towards S1
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Figure 6.8: Arrival time (t f ) probability distribution development over the travelling time (tk) for the ship
travelling from W1 to S1. Computed for the possible destinations S1 and E2, using the model cases BF1-
ERVa and BS-OU. The values on the bar going from light to dark represent the probability values.
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After about 37 minutes the ship began to change its heading towards S1, at that time, much

like with the previous scenario, the computed NIS spiked and consequently allowed the model to

become overconfident in its estimates. Even though this led to correct estimations, this might not

be a desirable trait since it is possible that a wrong destination could be chosen for similar reason.

All cases using BF2, and all cases using OU, were substantially affected by this, where almost

100% of the weight was assigned to S1 during the heading change. An example of the computed

NIS for BF1-ERVa at each time step is illustrated in fig. 6.7.

Considering the last few minutes, the ship passed the S1-centre after about 46 minutes and

began to slow down while continuing east for a few minutes. This can be seen in fig. 6.6 (for most

cases), where the S1 weights drop and the model starts to consider other destinations again.

On the subject of the arrival time distribution, the distribution development for two cases

and two destinations are illustrated in fig. 6.8. It shows that BS-OU was more consistent in its

arrival time estimations in addition to having narrower distribution compared to BF1-ERVa. BS-

OU had a somewhat expected arrival time estimations, where the time it takes to travel to E2 is

approximately double the time it takes to travel to S1.

6.2.3 W1-E2: Destination inference for a ship travelling from W1 to E2

The ship travelling from W1 to E2, with trajectory shown in fig. 6.9, is a cargo ship which travelled

with almost constant velocity the duration of the travel.
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Figure 6.9: Measured trajectory of Vestland, a cargo ship, travelling from W1 to E2.

The destination weights development are shown in fig. 6.10. For the most cases the model

estimated the ship was sailing towards NE, then E1, and for the rest of the travel, E2. There were

no significant differences between the assigned destination weights of the OU models (fig. 6.10d).

There was, however, observed a slightly different trend for BF2-ERVa and ERVb contrary to pre-

vious scenarios, shown in figs. 6.10b and 6.10c. As the ship got closer to S2 and then S1, their

assigned weights increase before then decreasing again after passing them. This effect was more

abundant when using ERVb compared with ERVa.

Similarly to the above scenarios, when using OU the model became very confident in its

estimates and chose destinations that were straight ahead to be the most likely destination.
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S1 S2 SW W2 N2 N1 NE E1 E2 E3

(a) BF1-ERVa&b (b) BF2-ERVa

(c) BF2-ERVb
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(d) BF1-, BF2- & BS-OU

Figure 6.10: Computed destination weights (y-axis) at each time step, tk, over the travelling time for the
ship travelling from W1 to E2. The destination weights for the true destination is illustrated as a bold line.
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6.2.4 N2-S2: Destination inference for a ship travelling from N2 to S2
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Figure 6.11: Measured trajectory of Lagatun, a passenger ship, travelling from N2 to S2.

The ship travelling from N2 to S2 is a passenger ship, a ferry, and its trajectory is illustrated

in fig. 6.11. This route was included as one of the scenarios to test if a destination could be

effectively estimated for a relative short distance with few measurements. All cases estimated the

correct destination immediately and were almost 100% certain the duration of the travel. This does

not come to as a surprise since the boat sailed in an almost straight line towards its destination.

Examples of the destination weights are shown in fig. 6.12 .
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(b) BF1-OU

Figure 6.12: Computed destination weights (y-axis) at each time step, tk, over the travelling time for the
ship travelling from N2 to S2. The true destination is illustrated as a bold line.

6.2.5 NE-W1: Destination inference for a ship travelling from NE to W1

The trajectory of a cargo ship travelling from NE to W1 is shown in fig. 6.13. The destination

weights are shown in fig. 6.15. BF1 and BS had the same result both with ERVa and ERVb. Its

weights are illustrated in fig. 6.15a, which shows how the model usually chooses the destination
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Figure 6.13: Measured trajectory of Ro Chief, a cargo ship, travelling from NE to W1.

that is straight ahead but changes the weights when the heading changes slightly. A similar trend

was observed for BF2-ERVa (and BF2-ERVb) but with lower destination weights. The assigned

weights for these cases were rather low for the first ∼60 minutes. Moreover, using OU resulted

in high destination weights that were in the direction of the heading. The BF1-OU and BS-OU

performed better compared with BF2-OU in regard of estimating the correct destination earlier.

Consider the arrival time distributions, two examples are illustrated in fig. 6.14. All cases

had relatively good arrival time estimations for W1 (the true destination) with its confidence in-

creasing over time, fig. 6.14a shows the distribution for BF1-ERVa. To illustrate how the model

handles destinations that the tracked object is moving away from, the arrival time distribution for

S2 is shown in fig. 6.14b. When the tracked object has passed a destination, or simply when it is

travelling away from it, the arrival time for the said destination will be estimated to be the highest

possible arrival time available. This follows from the mathematics, where the model would con-

tinue to increase the arrival time estimates if the arrival time interval considered would go towards

infinity. However, in this thesis the highest arrival time considered is 7 hrs; or 420 min.

(a) BF1-ERVa towards W1 (b) BF1-ERVa towards S2

Figure 6.14: Arrival time (t f ) probability distribution development over the travelling time (tk) for the ship
travelling from NE to W1. Computed for the destination W1, using the model case BF1-ERVa. The values
on the bar going from light to dark represent the probability values.
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(a) BF1-ERVa&b, BS-ERVa&b (b) BF2-ERVa&b
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(d) BF2-OU

Figure 6.15: Computed destination weights (y-axis) at each time step, tk, over the travelling time for the
ship travelling from NE to W1. The destination weights for the destination weights for the true destination
is illustrated as a bold line.

6.2.6 The difference between using the alternative mean and the given mean

As mentioned above, the presented results in the previous sections are computed with the alter-

native mean µalt.. The alternative mean and the given mean gave the same results for all model

cases with one exception, namely BS-OU. Using the smoothing approach with the mean given in

[6], along with the OU motion model, the destination inference computation produced peculiar

results. For the short travel of N2-S2 the two mean variations produced the same results. However,

only one of the other four scenarios produced a reasonable destination weights using the given

mean, namely NE-S1, while for the remaining scenarios, the results were far from expected. The

different results of the two variations are illustrated in fig. 6.16 for NE-S1, and another example,

of W1-E2, is illustrated in fig. 6.17, showing how the given mean produced very different results.

A comparison for all scenarios is given in Appendix A.II.

Consider the motion models, the major difference between them is the added vector, m; the

general tracking model is shown again in eq. (6.1) for convenience. Where, for the ERV model
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Figure 6.16: Destination weights over time for NE-S1 using BS-OU with, (left:) the alternative mean µalt.

and, (right:) the mean given in the article.
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Figure 6.17: Destination weights over time for W1-E2 using BS-OU with, (left:) the alternative mean µalt.

and, (right:) the mean given in the article.

with zero drag and zero reversion strength, m becomes small, and if the final velocity is assumed

to be zero, m also becomes zero. On the other hand, for the OU model, m will never be zero as

long as the mean velocity is nonzero. Hence, it seems as the added vector m is the determining

factor of whether using the given mean will result in meaningful destination weights or not.

xk+1 = Fxk +m+vk, vk ∼N (0,Q) (6.1)

Now, for the bridging models presented in [6] (BF1 and BS), the product identity in theorem 1

was used for the derivations opposed to theorem 2. It is possible that due to the complexity of the

probability distributions, theorem 1 is not suited for the derivations, and a small portion of infor-

mation might be lost. Additionally, since the smoothing equations has an added layer of equations,

and by using equations with missing information many times will increase the inaccuracy. Hence,

it will affect the smoothing equations more compared to the filtering equations.

To test the hypothesis that the added vector m is the determining factor of the performances of

BS, opposed to BS-OU simply being a bad combination. The BS-ERVa model case was run with
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drag and reversion coefficients resulting in a nonzero m. Note that this is not a good representation

of the ship’s motion that is travelling with a relatively constant velocity. Figure 6.18 illustrates the

computed destination weights for W1-E2 using BS-ERVa with drag and reversion coefficients. It

shows how the two variations no longer produce the same results, where using the alternative mean

gave similar result as BS-ERVa without drag and reversion coefficients, but using the given mean

had very different results. However, not as severe as for the BS-OU case.
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Figure 6.18: Destination weights over time for W1-E2 using BS-ERVa including reversion strength and
drag force. (Left:) the alternative mean µalt. and, (right:) the mean given in the article.

6.2.7 The importance of correctly tuned model

As mentioned earlier, the computed destination weights are highly affected by the NIS. With

too high NIS values, the model will get overconfident and will assign destinations with large

weights. Whereas, too low NIS values will let the model be too indecisive and the assigned

destination weights will change very slowly over time and remain similar for multiple destinations.

To illustrate the affect of poorly tuned covariance, the process variance, σa, was varied for W1-S2

using BF1-ERVa case model, while keeping all other parameters constant (given in table 5.3). The

computed NIS at each iteration, along with the corresponding destination weights, are illustrated in

fig. 6.19a, where the lower and upper NIS limits are represented as red lines on the NIS graph.1 It is

desirable to keep the average NIS between those limits. As shown in fig. 6.19a, when the ship was

travelling at a nearly constant velocity (tk ∈ [0,35] min), the NIS values were fluctuating around

the desired values; perhaps slightly below. Then, as mentioned above, the ship changed its heading

and consequently the NIS values spiked. When σa was reduced this spike was amplified and the

destination weights were much higher, this is shown in fig. 6.19b.Figure 6.19c shows the results

from increasing the value of σa, it shows how the NIS spike was reduced greatly. However, the

average NIS was pushed far below the desired values, and consequently, the assigned destination

weights had little change over time and was kept around 0.1 for most destinations.

1Remark: the NIS is relatively noisy, this could have been reduced to some extent with better tuning, but due to the

time frame of this thesis, this was not considered a significant factor for its purpose.
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(a) NIS and destination weights where σa = 9
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(b) NIS and destination weights where σa = 5
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Figure 6.19: (Left:) computed NIS at each time step and, (right:) computed destination weights for W1-S1

using BF1-ERVa. Two red lines on the NIS graphs mark the upper and lower limits, where it is desirable to
keep the average NIS between.
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6.2.8 Discussion, destination inference

In the tested scenarios with the model cases shown in table 6.1, a trend of how the different models

behaved was observed. It did not make a significant difference if BF1 or BS was used since these

produced the same, or nearly the same, destination weights when using the alternative mean µalt..

However, when using the mean given in [6] for BS, where the tracking model had a nonzero m,

the resulting destination weights were poor, or unacceptable in some scenarios. For BF1, on the

other hand, it did not matter if the given mean or the alternative mean was used, applicable for both

nonzero and zero valued m. Therefore, it would be preferable to use BF1 over BS for tracking

maritime vessels since it is not only less complex, it is also not affected by the use of either the

alternative or the given mean.

Often when there is a change in the heading angle, a sudden increase in the NIS values was

observed. This leads to the model becoming overconfident and it will assign high weights for

certain destinations. At these events it was observed that BF2 was more subjected to this change

compared with BF1, where it had more severe jumps in the destination weights. Furthermore,

when using the OU motion model, the model also became overconfident, not only when NIS was

high but rather over the whole travel. This is not necessarily a bad thing as the model seemingly

had a decent destination estimates. This could be due to the OU model considers the previous

velocities as one of the variables in its destination estimates. However, this relatively good esti-

mation was usually true when combined with BF1 (BF1-OU) or BS, but not as good with BF2

(BF2-OU).

The difference between ERVa and ERVb was often insignificant, where both produced were

similar trends with slightly different values. Hence, it does not have a significant affect to including

the course angle as one of the state variables.

6.3 Future predictions

Using the model cases in table 6.1 a future trajectory for each destination can be predicted, where

the predicted trajectory should in theory revert towards its destination because of its bridging

property. A few examples will be presented in this section, and if the reader is interested more are

provided in Appendix A.III.

Regarding the future prediction illustrations presented below. The true measured trajectory is

represented by a blue line, on which there are two other symbols, a blue circle and a blue star. The

blue circle represents the position at the current time, tk, and the blue star represents the measured

position t∗ minutes after the current time, i.e. at time tk+∗. The predicted trajectory for a tracked

object travelling towards the destination MAP estimate (the highest destination weight at tk), is

illustrated with a red line going from the current position to the predicted position at time tk+∗,

marked by a red star. The area of uncertainty, the covariance, is illustrated as a grey area around

the predicted trajectory. Additionally, all destinations that have assigned weights over 0.1 at the

current position will be considered. The predicted positions at time tk+∗ for these are illustrated

with a red dot. Their trajectories are, however, not drawn on the map, but rather only the area of
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uncertainty. This was done for easier distinction between the destination MAP estimate and the

other considered destinations. The symbols are summarised in table 6.2.

Table 6.2: Legends for future prediction illustrations

Symbol Description

◦ The current position at time tk from which future trajectories are computed from

− True measured trajectory

? True position t∗ minutes after the current time

? Predicted position t∗ minutes after the current time, for the destination MAP estimate

− Predicted trajectory for the destination MAP estimate

• Predicted position t∗ minutes after the current time, for destination with weights over

0.1

Area of covariance

6.3.1 NE-S1: Future predictions for a boat travelling from NE to S1

For the NE-S1 scenario, the destination MAP estimate was S1 for all cases for the majority of the

travel time, but with different weights. Therefore, only S1 is considered here for future predictions.

Figure 6.20 illustrates the predicted position and trajectory 10 min after the current time, tk = 10

min.

The effect of using ERVb instead of ERVa was insignificant, as these predicted almost identi-

cal future states. In fact, this was the case for all scenarios tested. Furthermore, when paired with

BF1, OU motion model resulted in almost the same predictions as BF1-ERVa&b. BF1 had a decent

predictions up to about 5 min, but started to slow down after that as it got nearer its destination.

The model assumed the boat would start to slow down earlier than in reality. BF2-ERVa&b had

similar results but where the velocity started to decrease both earlier and faster (higher negative

acceleration). Similar behaviour was observed with BF2-OU, but much more severe, where the

predicted velocity was much lower than in reality. Lastly, BS had similar trend as BF2-ERVa&b,

where it started to slow down early as it approached the destination. Additionally, its covariance

was kept very small at all times, meaning that the model was highly overconfident in its predic-

tions, which is very unrealistic.

6.3.2 W1-S1: Future predictions for a ship travelling from W1 to S1

For the remaining examples, all destinations that had assigned weight, at tk, higher than 0.1 (the

average) were considered. The predicted position t∗ minutes after tk for the destination MAP

estimate is represented by a red star, whereas the position for the other considered destinations are

represented by a red dot. Additionally, only the trajectory for the destination MAP estimate has its

trajectory drawn (a red line). Note that the area of uncertainty is illustrated as a grey transparent

area, and when multiple such areas are drawn on top of each other they appear darker.
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(a) BF1-ERVa&b & -OU (b) BF2-ERVa&b

(c) BF2-OU (d) BS-ERVa&b & -OU

Figure 6.20: Predicted future trajectory from tk = 10 min (blue circle), t∗ = 10 min forward in time for the
scenario NE-S1. The symbols are described in table 6.2.

Figure 6.21 illustrates the predicted trajectories from the current time tk = 20 min towards

tk+∗ = 40 min (20 min forward in time). The destination MAP estimate for all model cases was

either E2 or E3 at the current time, and only BF2-ERVa&b assigned S1 (the true destination) with

a weight higher than 0.1. BF1-ERVa&b and BF1-OU had very similar predictions, with the ex-

ception of BF1-ERVa&b considering one more destination, i.e. very good predictions while the

velocity and heading remained nearly constant considering the long-term prediction of 20 min.

BF2-ERVa&b also had a similar results for the destinations further away, where the predicted trav-

elling distance was similar to the true distance travelled after the same amount of time. However,

for the destination S1 the predicted velocity began to decrease early on, which follows from the

ship getting near the destination.
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(a) BF1-ERVa&b

(b) BF1-OU

(c) BF2-ERVa&b

(d) BF2-OU

(e) BS-ERVa&b

(f) BS-OU

Figure 6.21: Predicted future trajectory from tk = 20 min (blue circle), t∗ = 20 min forward in time for the
scenario W1-S1. All destinations with weights over 0.1 at tk are considered. The symbols are described in
table 6.2.
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Furthermore, the same trend was observed for BF2-OU and the BS model cases as for the

previous scenario. BF2-OU predicted very low velocities at all times, and BS had a very small

area of uncertainty. Additionally for BS, when the considered destination was not in a straight

line of the current heading, the trajectory had the following trends. (1) For BS-ERVa&b the ship

was predicted to have a constant turn rate until its heading was towards its destination. (2) For

BS-OU the ship was predicted to change its trajectory towards a position where it could continue

in a straight line towards its destination while remaining the same heading as was at tk. Since

the resulting predictions were this poor for these models, the predicting trajectories will not be

presented in the following sections. However, they are given in Appendix A.III

6.3.3 W1-E2: Future predictions for a ship travelling from W1 to E2

For the scenario W1-E2, predictions further into the future, compared with previous examples,

were evaluated. Examples of the predicted positions and trajectories are illustrated in figs. 6.22

and 6.23. Figure 6.22 shows the predicted trajectories computed from the current time tk = 40 min,

predicting 25 min forward in time, and fig. 6.23 shows the computed trajectories from the current

time tk = 70 min, predicting 40 min forward in time. At tk = 40 min, the estimated destinations

were still far away, and the velocity decrement observed for the previous examples, was not ob-

served here. However, the contrary was observed, where the predicted velocity increased slightly

before then decreasing again as it started to approach the destination. As shown in fig. 6.23, BF2-

ERVa&b began to decrease the velocity very early, and both BF1-ERVa&b and BF1-OU behaved

very similarly. However, as the prediction was expanded further in time, their predicted states

started to slightly deviate from each other, here BF1-OU restricted its velocity to be kept closer to

a constant value.

(a) BF1-ERVa&b

(b) BF1-OU

(c) BF2-ERVa&b

Figure 6.22: Predicted future trajectory from tk = 40 min (blue circle), t∗ = 25 min forward in time for
the scenario W1-E2 (E2 is positioned in the south-east corner, slightly out of frame). All destinations with
weights over 0.1 at tk are considered. The symbols are described in table 6.2.
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(a) BF1-ERVa&b

(b) BF1-OU

(c) BF2-ERVa&b

Figure 6.23: Predicted future trajectory from tk = 70 min (blue circle), t∗ = 40 min forward in time for
the scenario W1-E2 (E2 is positioned in the south-east corner, slightly out of frame). All destinations with
weights over 0.1 at tk are considered. The symbols are described in table 6.2.

6.3.4 NE-W1: Future predictions for a ship travelling from NE to W1

The scenario NE-W1 had a rather indecisive destination weights for the most model cases, where

multiple destinations had assigned weights over 0.1. Figure 6.24 shows an example of how the

model will predict the future trajectories for multiple destinations that are in different directions.

The positions and trajectories are computed from tk = 125 min, and ending at tk+∗ = 185 (1 hour

after the current time). For the most part, the model predicted the distance travelled after 60 min

to be substantially further than for the true measurements. With the model cases BF1-ERVa&b

and -OU the predictions were decent up to about t∗ = 30 min into the future, but started to slowly

deviate from the true measurements after that. On the other hand, for BF2-ERVa&b the predictions

were decent up to about t∗ = 25 min, but after that it started to increase the velocity. In some

situations, this increase in velocity is related to too low arrival time estimates, and the model has

a desire to rush towards a destination. But in others, this seems to come from the fact that the

destination is simply far away.

6.3.5 Discussion, future predictions

The model cases shown in table 6.1 were not only used for destination inference but for future

predictions as well. There was no significant difference in using the alternative mean and the mean

given in [6] when computing the predictions. How well the model cases performed in predicting

future states, varied dramatically between cases. Those that had reasonable predictions for at least

15 min into the future were BF1-ERVa&b, BF1-OU, and BF2-ERVa&b. Depending on the scenario,

these models usually had good predictions up to about 15-30 min of future predictions, where the

true measured positions landed within the area of uncertainty. After that the predicted positions

started to diverge from the measured values.
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(a) BF1-ERVa&b

(b) BF1-OU

(c) BF2-ERVa&b

Figure 6.24: Predicted future trajectory from tk = 125 min (blue circle), t∗ = 60 min forward in time for
the scenario NE-W1. All destinations with weights over 0.1 at tk are considered. The symbols are described
in table 6.2.

The predicted velocity profile seemed to be mainly determined by two factors, the distance

to the destination and the arrival time estimates. The arrival time MAP estimate, computed at time

tk, was used to compute the future predictions. For a case where the arrival time was overesti-

mated, the model predicted lower velocities, whereas, for underestimated arrival time, the model

predicted high velocities. Additionally, if the predicted position was substantially far away from

the destination a higher velocity was predicted, and as it got nearer the velocity was predicted to

decrease. Whereas, in reality, the tracking object travelled with nearly constant velocity for much

longer, and only started to slow down a few hundred meters before arriving at its destination.

This behaviour was most exaggerated for BF2-ERVa&b, where it started to slow down very early,

or about 15-20 km from the destination. Furthermore, The difference between BF1-ERVa&b and

BF1-OU was often insignificant with few exceptions.

Concerning the model cases that had poor future predictions. With BF2-OU, the predicted
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trajectory had a similar form to BF1-OU. However, the predicted velocity started to decrease

shortly after the current time, and the it was kept at low values for the whole prediction. For

the BS cases, the area of uncertainty was unrealistically small for the predicted trajectory, and

when the trajectory was not in a straight line, its form was usually unrealistic as well. Normally,

Bayesian smoothing is used to smooth out previous state estimates, for instance RTS smoother

starts from the current state and smooths out previous state estimates backward in time. However,

the smoothing equations used in this thesis are structure such that the next step predictions esti-

mates the state and smooths it out with respect to the pseudo-measurement in one step. At first the

covariance might be adequately large, then, since the model assumes the pseudo-measurement to

be the next true measurement, it “corrects” the state estimates via smoothing and becomes more

confident, reducing the covariance in the process.
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Chapter7
Conclusion

Three bridging models for predicting a tracked object’s intent, presented in [5, 6], have been

studied in detail. These are, (1) (BF2) a Bayesian filtering approach bridging the current state with

the final destination via a joint state of the current and the final state, (2) (BF1) a Bayesian filtering

approach bridging the current state with the final destination via a pseudo-measurement, and (3)

(BS) a Bayesian smoothing approach also bridging the current state with the the final destination

via a pseudo-measurement.

The mathematical derivation of the two latter models was found to have an alternative method

from the one used in the article. These are two different methods, or product identities, for finding

the mean and covariance of the product of two Gaussian distributions. Using these two methods

for the derivations resulted in two slightly different equations for the mean, while the covariance

remained the same for both methods. The derivation of the filtering approach (BF1) uses the

product identity once, whereas the smoothing approach (BS) uses it thrice. Consequently, the

smoothing mean given in the article differs more from the alternative mean, compared with the fil-

tering mean. The two variations were compared with respect to how they performed in destination

inference and future predictions, using real measurements. The general tracking model used in

this thesis includes an added vector that encourages the model to revert towards a desirable value.

It was observed that for models where the added vector is zero, the two variations had no signifi-

cant difference in their computed values. However, for models where the added vector is nonzero,

the smoothing approach resulted in peculiar destination estimates when using the article’s mean,

whereas using the alternative mean resulted in more reasonable destination estimates. Moreover,

only the smoothing approach was affected by this, and the filtering approach resulted in the same

destination estimates for both means. To conclude, the product identity used in the article is not

suited for smoothing derivations, and it is possible that some information might be lost when using

for the probability distributions in the article.

The bridging models were tested in how they perform in predicting the intended destination,

as well as predicting future states, using AIS measurement of maritime vessels as real time mea-

surement. Two motion models were considered, ERV model and OU model, additionally, two

different state vectors were used in the ERV model. One state vector contains the position and
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their derivatives, where the other contains the course angle in addition to the position. All pairs of

a bridging model and a motion model were tested, nine in total.

Considering the destination inference, the computed destination weights are highly affected

by the NIS values. For low NIS values the destination weights are kept low, whereas high NIS

values lead to high destination weights. This is because for high NIS the model gets overconfident

in its estimates. When a vessel was travelling with a constant heading, the NIS remained relatively

low, but when the vessel started to turn the NIS values spiked. At these high NIS events the model

increased the confident level of a certain destination, this destination often being the one that was

either closest to the vessel at that time, or the one in a straight line of the heading. The BF2

approach was most acceptable to this NIS change and had the largest jumps in the destination

weights. It did not make much of a difference whether BF1 or BS was used as these resulted in

very similar destination weights. Additionally, the same can be said about the two different state

vectors. By including the course angle as one of the state variables did not make a significant

difference. Furthermore, using the OU model resulted in a very confident model, regardless of

the NIS values. However, by pairing the OU model with either BF1 or BS resulted in a better

prediction compared with BF2. These two usually had a good intent predictions where it tented to

favour destinations that were in a straight line of the heading.

For the future state predictions, the performance of the different models varied with great

extent. The smoothing approach is inadequate for the use of predicting future states as it is unre-

alistically confident. With BF2 the predicted velocity profile was proportional to the distance to

the destination, where it started to decrease the velocity very early when it got nearer the desti-

nation. The best bridging model for future predictions was BF1. It did not matter if the course

angle was included in the state vector or not, since both resulted in the same predictions. Both the

ERV model and the OU model produced reasonable predictions, where OU was perhaps slightly

better at keeping the predicted velocity constant when getting nearer the destination, where ERV

had started to reduce the predicted velocity too as it got nearer the destination.
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Chapter8
Suggestions for future work

The following future work is suggested:

• Use a dynamic variance for the destination inference. In this thesis the tuning of the co-

variance parameters was made manually and they were kept constant for the duration of the

travel. However, a more realistic approach would be to use different variance during dif-

ferent events to be able to keep the NIS values at a more desirable level. This would allow

for the intent computations to be less bias. For instance, letting the variance be a dynamic

variable that could be determined by the means of an optimisation problem.

• Develop a reworked algorithm that can take into account stationary obstacles for destination

inference. As of now the algorithm assumes clear path from its current position towards

all possible destinations. A simple solution to this is to divide the considered map area into

multiple smaller areas where stationary obstacles mark their margins, e.g. islands, headlands

etc.

• Use guidance model to simulate future states. The velocity profile of the predicted future

states was not always realistic, especially for long-term predictions over 15 min. The veloc-

ity profile was both affected by the distance to a destination and the estimated arrival time.

However, the predicted trajectory usually represented a realistic route towards a destination.

Therefore, using the trajectory as setpoints, a more realistic prediction could be achieved by

simulating the movement of a vessel using a guidance model, e.g. line of sight model.
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Appendices

A.I Examples of logarithmic representation

An example of logarithmic representation for some of the equations in section 3.2. As more

measurements are sampled the likelihood values decreases, and to prevent underflow a natural

logarithm is taken of the equations. For instance, taking the logarithm of the normal distribution

is given by

ln(N (yk; ŷk,Jk)) =−
1
2
[
(yk− ŷk)

T J−1(yk− ŷk))+nln(2π)+ ln(|Jk|)
]

(8.1)

The logarithm of the numerical integral in eq. (3.8) is shown in eq. (8.2a). The terms

p(y1:k|t f i,dn) p(t f i|dn) are replaced with g(t f i) for notational simplicity (eq. (8.3)). Also, the

values inside the sum are written as the exponential of the logarithm, i.e. eln(a) = a. To compute

the exponential of the logarithms inside the brackets, without getting an underflow, a sufficiently

large (or small) value c is chosen and each term is multiplied with ec−c = 1, resulting in eq. (8.2c).

The value of c could for instance be equal to the largest absolute value of ln(g(t f i)).

ln(p(y1:k|dn))≈ ln∆t f + ln
[1

2
eln(g(t f 1)) +

1
2

eln(g(t f q)) +
q−1

∑
i=2

eln(g(t f i))
]

(8.2a)

= ln∆t f + ln
[1

2
eln(g(t f 1))ec−c +

1
2

eln(g(t f q))ec−c +
q−1

∑
i=2

eln(g(t f i))ec−c
]

(8.2b)

= ln∆t f + c + ln
[1

2
eln(g(t f 1))e−c +

1
2

eln(g(t f q))e−c +
q−1

∑
i=2

eln(g(t f i))e−c
]

(8.2c)

g(t f i) := p(y1:k|t f i,dn)p(t f i|dn) (8.3)

Lastly, using this in eq. (3.10) where p(y1:k|d) is replaced with exp(ln(p(y1:k|d))), the weight

on destination dn can be written as eq. (8.4). Similarly as above, the equation is multiplied with

ec−c to prevent underflow.

p(dn|y1:k) =
exp(ln(p(y1:k|dn)))p(dn)

∑d∈D exp(ln(p(y1:k|d)))p(d)
exp(−c)
exp(−c)

=
exp(ln(p(y1:k|dn))− c)p(dn)

∑d∈D exp(ln(p(y1:k|d))− c)p(d)

(8.4)
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A.II Article’s vs. Alternative mean: Destinations weights

The following graphs illustrate the difference of the destination weights estimation for BS-OU

using the alternative mean and the equations given in [6].
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Figure A.1: Destination weights over time for NE-S1 using BS-OU with, (left:) alternative mean and
(right:) mean given in the article.
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Figure A.2: Destination weights over time for W1-S1 using BS-OU with, (left:) alternative mean and
(right:) mean given in the article.
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Figure A.3: Destination weights over time for W1-E2 using BS-OU with, (left:) alternative mean and
(right:) mean given in the article.

S1 S2 SW W1 W2 N2 N1 E1 E2 E3

Figure A.4: Destination weights over time for NE-W1 using BS-OU with, (left:) alternative mean and
(right:) mean given in the article.
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A.III Predicted trajectory

Additional illustrations of the predicted trajectories that were not shown in the main part of the

thesis. Predictions are computed t∗ minutes into the future from the current time tk. The symbols

used in the illustrations are given in the following table. Note that some illustrations have been

rotated anticlockwise 90◦ to fit better on the page.

Symbol Description

◦ The current position at time tk from which future trajectories are computed from

− True measured trajectory

? True position t∗ minutes after the current time

? Predicted position t∗ minutes after the current time, for the destination MAP estimate

− Predicted trajectory for the destination MAP estimate

• Predicted position t∗ minutes after the current time, for destination with weights over

0.1

Area of covariance
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NE-S1

(a) BF1-ERVa&b & -OU (b) BF2-ERVa&b

(c) BF2-OU (d) BS-ERVa&b & -OU

Figure A.5: NE-S1: tk = 10 min, t∗ = 5 min
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W1-S1

(a) tk = 10 min, t∗ =
10 min

(b) tk = 10 min, t∗ =
20 min

(c) tk = 20 min, t∗ =
10 min

(d) tk = 20 min, t∗ =
20 min

Figure A.6: W1-S1: BF1-ERVa&b

(a) tk = 10 min, t∗ =
10 min

(b) tk = 10 min, t∗ =
20 min

(c) tk = 20 min, t∗ =
10 min

(d) tk = 20 min, t∗ =
20 min

Figure A.7: W1-S1: BF2-ERVa&b
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(a) tk = 10 min, t∗ =
10 min

(b) tk = 10 min, t∗ =
20 min

(c) tk = 20 min, t∗ =
10 min

(d) tk = 20 min, t∗ =
20 min

Figure A.8: W1-S1: BF2-OU

(a) tk = 10 min, t∗ =
10 min

(b) tk = 10 min, t∗ =
20 min

(c) tk = 20 min, t∗ =
10 min

(d) tk = 20 min, t∗ =
20 min

Figure A.9: W1-S1: BF1-OU
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(a) tk = 10 min, t∗ = 10
min

(b) tk = 10 min, t∗ = 20
min

(c) tk = 20 min, t∗ = 10 min (d) tk = 20 min, t∗ = 20
min

Figure A.10: W1-S1: BS-ERVa&b

(a) tk = 10 min, t∗ = 10
min

(b) tk = 10 min, t∗ = 20
min

(c) tk = 20 min, t∗ = 10 min (d) tk = 20 min, t∗ = 20
min

Figure A.11: W1-S1: BS-OU
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W1-E2

(a) tk = 40 min, t∗ = 25 min

(b) tk = 70 min, t∗ = 40 min

Figure A.12: W1-E2: BF2-ERVa

(a) tk = 40 min, t∗ = 25 min

(b) tk = 70 min, t∗ = 40 min

Figure A.13: W1-E2: BF1-ERVa

(a) tk = 40 min, t∗ = 25 min

(b) tk = 70 min, t∗ = 40 min

Figure A.14: W1-E2: BF2-OU
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(a) tk = 40 min, t∗ = 25 min

(b) tk = 70 min, t∗ = 40 min

Figure A.15: W1-E2: BF1-OU

(a) tk = 40 min, t∗ = 25 min

(b) tk = 70 min, t∗ = 40 min

Figure A.16: W1-E2: BS-ERVa

(a) tk = 40 min, t∗ = 25 min

(b) tk = 70 min, t∗ = 40 min

Figure A.17: W1-E2: BS-OU

73



NE-W1

(a) tk = 125 min, t∗ = 30 min

(b) tk = 125 min, t∗ = 60 min

Figure A.18: NE-W1: BF2-ERVa

(a) tk = 125 min, t∗ = 30 min

(b) tk = 125 min, t∗ = 60 min

Figure A.19: NE-W1: BF1-ERVa
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(a) tk = 125 min, t∗ = 30 min

(b) tk = 125 min, t∗ = 60 min

Figure A.20: NE-W1: BF2-OU

(a) tk = 125 min, t∗ = 30 min

(b) tk = 125 min, t∗ = 60 min

Figure A.21: NE-W1: BF1-OU
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(a) tk = 125 min, t∗ = 30 min

(b) tk = 125 min, t∗ = 60 min

Figure A.22: NE-W1: BS-ERVa

(a) tk = 125 min, t∗ = 30 min

(b) tk = 125 min, t∗ = 60 min

Figure A.23: NE-W1: BS-OU
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