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Abstract
The goal of this master’s thesis was to determine if the AutroLink prototype could
be further developed into a tool to aid in Autronica Fire and Security AS’ service
and commissioning procedures of their AutroSafe 4 fire detection system. The
thesis is a continuation of a specialization project were the AutroLink prototype
was designed, implemented and tested. This prototype would monitor the internal
bus communication in the AutroSafe 4 fire detection system, and transmitted the
information to an Internet-connected server.

Information about the AutroSafe system, as well as Autronica’s tools and routines
for service and commissioning, was gathered in a system description. A literature
study on subjects such as remote access technologies, software development and
real-time systems was conducted. Information from the literature study and sys-
tem description was analyzed in order to locate functionality that would benefit
Autronica’s service and commissioning routines. Here it was determined that the
ability to bring in expert help remotely, as well as the opportunity to run cer-
tain procedures automatically would be beneficial. The most fitting target was
the AutroSafe system’s module stack and detection loops. In order to facilitate
this, it was necessary to introduce two-way communication. New requirements
were therefore defined for the prototype. Furthermore, a structured analysis was
performed, modularizing the functionalities of the prototype, culminating in a new
specification. The prototype was modified according to the new specification.

The AutroLink prototype’s new functionalities were validated through testing. In
conclusion, we were able to verify that the prototype could be a useful service and
commissioning tool for the AutroSafe 4 fire detection system since it was able to
facilitate remote service and could perform certain procedures automatically.

i





Sammendrag
Målet med denne masteroppgaven var å avgjøre om AutroLink-prototypen kunne
videreutvikles til et verktøy til bruk under Autronica Fire and Security AS’ service-
og igangkjøringsprosedyrer på AutroSafe 4 branndeteksjonssystemet. Oppgaven er
en videreføring av et spesialiseringsprosjekt der AutroLink-prototypen ble designet,
implementert og testet. Denne prototypen kan overvåke den interne busskommu-
nikasjonen i AutroSafe 4 branndeteksjonssystemet og overføre informasjonen til en
Internett-tilkoblet server.

Informasjon om AutroSafe systemet, samt Autronicas verktøy og rutiner for ser-
vice og igangkjøring, ble samlet i en systembeskrivelse. En litteraturstudie om
ekstern tilgangsteknologi, programvareutvikling og sanntidssystemer ble gjennom-
ført. Informasjon fra litteraturstudien og systembeskrivelsen ble analysert for å
finne funksjonalitet som ville være til nytte for Autronicas service- og idriftset-
tingsrutiner. Her ble det bestemt at evnen til å hente inn eksperthjelp eksternt,
samt muligheten til å kjøre visse prosedyrer automatisk ville være nyttig. Det ble
valgt å koble prototypen mot AutroSafe-systemets modulstakk og detektorsløyfer.
Dette gjorde at det var nødvendig å innføre toveiskommunikasjon. Nye krav ble
derfor definert for prototypen. Videre ble det utført en strukturert analyse som
modulariserte funksjonene til prototypen, som endte i en ny spesifikasjon. Proto-
typen ble modifisert i henhold til den nye spesifikasjonen.

AutroLink-prototypens nye funksjoner ble validert gjennom testing. Det ble kon-
kludert med at prototypen var et nyttig service- og igangkjøringsverktøy for AutroSafe
4 branndeteksjonssystem, siden den tilrettela for fjernservice og kunne utføre visse
prosedyrer automatisk.
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Chapter 1

Introduction

1.1 Background and motivation

Autronica Fire and Security, from here on out referred to as Autronica, is a devel-
oper and manufacturer of fire-safety solutions. They deliver complete systems to
land, petrochemical oil and gas installations both onshore and offshore, as well as
systems for marine vessels.

During the spring semester of 2020, a report regarding wireless data-collection
from the AutroSafe 4 fire alarm system was written [1]. The data in question were
the AL_ Com+ messages passed between the loop drivers and controllers in the
system. These messages could further be analyzed to gain insight into the state of
the system.

A prototype based on Nordic Semiconductor’s nRF91 SiP was designed and con-
structed. The prototype monitored and captured the serial data exchanged between
the loop drivers and panels. This information was then sorted, filtered and sent
to a Internet-connected server via the LTE-M network. Additional clients could
connect to the MQTT broker through the Internet in order to receive the stream
of AL_ Com+ messages. The prototype was named AutroLink.

The prototype developed during the specialization project showed a lot of promise
in other use-cases. One of these were during commissioning and service of Autron-
ica’s fire safety systems. Access to the lower parts of the system, such as the
detectors, module stack, and insight into the communication between them could
prove useful. In the specialization project, re-purposing the AutroLink prototype
as a tool that could be used during commissioning was suggested as future work.

Since the new prototype will be based on the AutroLink prototype from the
project report, the prototype developed in this master’s thesis will be referred
to as AutroLink v2, while the original prototype will be referred to as AutroLink
v1.

1.2 Goals and tasks

The goal of this master’s thesis is to determine if a prototype, such as the AutroLink
v1, can be used as a tool to aid Autronica’s service and commissioning procedures.
This entails further developing the AutroLink v1 prototype as a tool, with added
functionality that can aid during the service and commissioning phases of Autron-
ica’s AutroSafe fire alarm system. In order to achieve this, the following list of
tasks were defined as part of the problem description.
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T1: Familiarize with and describe Autronica’s:

– Systems and components that are of relevance to this thesis

– Commissioning and service routines

T2: Conduct and document a literature study of relevant technologies and con-
cepts. In addition, examine to what extent commissioning and service with
remote access has been discussed in literature

T3: Based on the information from the system description and literature study;
propose a design for a prototype, including a structured analysis and specifi-
cations

T4: Implement and test the suggested design in a prototype

T5: Discuss the results against the specification

T6: Identify and suggest possible future work and opportunities

1.3 Research approach

In order to gain an understanding of the AutroSafe system, publicly available doc-
uments pertaining the system will be studied. Questions regarding the systems,
especially the finer details, will be discussed with the engineers of Autronica. They
will also likely be the source of the explanations of the service and commissioning
routines. Beyond this, internal documents detailing the system will be requested
in order to gain a greater understanding. The report written as part of the spe-
cialization project also contains information that could be relevant in this thesis.

When conducting the literature study, the focus will be to locate relevant docu-
ments, articles and other reputable publications. Search engines such as NTNU
Oria and Google Scholar will be the primary targets for inquiry. Search terms such
as “remote access”, “industrial safety system”, “legacy system”, “service”, “commis-
sioning”, “fire detection” and “gas detection” will be used. The literature study will
likely also contain information on other subjects that will be of relevance, such as
the technologies used in the design, implementation and testing of the prototype.

When working with the development of the new prototype, I want to employ an
existing, well documented and tested work method. This could be beneficial as it
could streamline the process. Especially when considering that it is highly likely
that new code will be written for the new prototype. It was chosen to take inspira-
tion from the waterfall and the v-model methods. This can be seen as the subjects
for the chapters four through six reflect the different phases of these models.
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1.4 Limitations

Information regarding the internal procedures and practices of Autronica’s equip-
ment will be kept to a minimum. Sensitive information will be withheld. In the
bibliography, certain references are marked as “Autronica [Internal document]”.
These documents are not available to the public.

Performing a cybersecurity analysis of the prototype and the AutroSafe system
would be beneficial as the introduction of remote access exposes the system to
potential cybersecurity risks. However, there are two reasons this is not within the
scope of this thesis. The first being that cybersecurity analyses represents a large
field of study, including it in the thesis would be too extensive. The second reason
being that Autronica requires a legal non-disclosure agreement in order to share
this information.

As this thesis and the problem description is a continuation of the specialization
project, the existing prototype and hardware will be reused to the extent that
it allows. Implementations, designs or solutions using other equipment than the
previous prototype will not be covered in this thesis.

Another limitation in this project is that the prototype should function with-
out having to make any software, firmware or hardware changes to the existing
AutroSafe equipment. This will ensure that the prototype is compatible with any
existing AutroSafe 4 installation.

The Covid-19 pandemic lead to some limitations on the project. This mainly man-
ifested in the form of limited access to equipment and Autronica’s documentation.
It also lead to there being no large scale testing of the prototype, in order to limit
the spread of infection.

1.5 Contributions

This thesis contributes with a prototype gateway that connects with the AutroSafe
system, and allows for service engineers to communicate wirelessly through the
cellular LTE-M network with AutroSafe equipment.

Parts of the system description in Chapter 2 was taken from the literature study
conducted as part of the specialization project preceding this thesis. These parts
were edited and revised to better fit with the themes of this thesis. The same is
true for parts of the literature study in Chapter 3, as some of the subjects were
relevant for both projects.

The part of the code written for the prototype called the “MQTT event handler”
is a continuation of the code from the specialization project, which was based on
the “simple_MQTT” sample from Nordic Semiconductor’s nRF Connect Source
Development Kit.

The rest of the work documented in this thesis are the author’s contributions.
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1.6 Disposition

Chapter 2 contains a description of Autronica’s AutroSafe 4 system. First an
overview of the system topology is presented. This is then followed by a
more detailed description of hardware and protocols that are relevant to this
project, along with a description of the tools and routines used during service
and commissioning. A summary of the AutroLink v1 prototype from the
specialization project is also a part of this chapter.

Chapter 3 is a literature study that covers other subjects that are relevant to the
design and implementation of the new prototype. Subjects such as remote
access and real-time systems are presented here.

Chapter 4 contains the analyses that led up to the new prototype’s requirements.
Furthermore, a structured analysis is conducted that separates the proto-
type’s functionality into modules and submodules, followed by a summary of
the design specifications.

Chapter 5 documents the design and implementation of the prototype. It also
mentions how the development environment was set up.

Chapter 6 contains descriptions of the tests that were conducted on the finished
prototype.

Chapter 7 consists of discussions regarding the results from the testing and other
aspects of this thesis.

Chapter 8 concludes the thesis and presents items for future work.



Chapter 2

System description
This chapter contains a description of the AutroSafe system and it’s components,
Autronica’s service and commissioning tools and routines, as well as a description
of the AutroLink v1 prototype. The description of the AutroSafe system and the
sections related to service and commissioning is based on both publicly available
documentation and internal documentation from Autronica. The information here
has also been expanded upon through dialogues with the engineers from Autronica’s
Research and Development (R&D) and service departments. The description of
the AutroLink v1 prototype is summarized from the specialization project report.
Some of the sections of this chapter were also covered in the specialization report,
they have however been altered and expanded upon to better fit the theme of this
thesis. New information has also been included where needed.

2.1 AutroSafe interactive fire detection system

The AutroSafe fire detection system, from here on referred to as AutroSafe, is a
high-end system designed for large and complex buildings and to meet the require-
ments for onshore, maritime and offshore installations. In order to meet the strict
requirements necessary on offshore facilities, the AutroSafe system has a SIL-2
certification [2]. SIL stands for safety Integrity Level, and is a standard for risk
reduction. SIL-4 being the most reliable, while SIL-1 being the least. In order to
have a system SIL approved, there are guidelines that need to be followed during
the development and the safety life cycle management of the system. One of the
most important requirements for continuously running systems such as a fire de-
tection system is an attribute called Probability of Failure on Demand (PFD). In
order to meet SIL-2, the system needs to have a PFD in the range 10−2 − 10−3.

A typical AutroSafe system consists of panels and controllers connected together via
Autronica’s Ethernet-based local network called AutroNet. One such unit that is
mandatory in all AutroSafe installations is a Fire Alarm Control Panel, displayed in
Figure 2.2. In some AutroSafe systems, a computer running AutroMaster ISEMS
software is connected to the local AutroNet network. This is a command and
control equipment that gathers information from all the panels connected to the
AutroNet network and displays it graphically.

The fire alarm control panels and controllers can be connected to a module stack.
The module stack is a set of equipment that expands upon the capabilities of the
system. It can consist of devices that control detection loops (loop drivers), that
control outputs (output modules) and detect inputs (input modules). The module
stack itself cannot be seen in Figure 2.1, as it is usually mounted inside the cabinet
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of a controller or panel.

Figure 2.1: Sample installation of AutroSafe system, illustration from Autronica
Fire & Security [2]

The detection loops consists of loop units such as smoke detectors, heat detectors
and manual call points. The devices connected to the detection loop are commonly
referred to as loop units. The detector loops can be connected to module stacks
using the loop driver module [3]. A detection loop can be seen in Figure 2.1
connected to the central controller. This controller has a module stack containing
a loop driver inside it’s cabinet.

Different overall topologies are possible to design to fit with the type of installation,
as seen in the AutroSafe 4 system description [2, p. 15-17].
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2.2 Panels and AutroNet

The panels in the AutroSafe system provide a user interface. They also function
as an access point into the settings of the system. The panels come in a variety
of designs, with fire alarm control panels, operator panels, repeater panels and
information panels. An image showing a fire alarm control panel can be seen
in Figure 2.2. These panels are usually rack-mounted, or mounted on a cabinet
which can house additional components, such as module stack units. Controllers
and controllers can utilize the AL_Com+ port on their motherboard, and have a
direct connection with a module stack, and subsequently a connection with loop
drivers and loop units.

Figure 2.2: Fire alarm control panel BS-420, illustration from Autronica Fire &
Security [2]

2.2.1 AutroNet
AutroNet is the communication protocol the panels in the AutroSafe system uses
to communicate with each other. It is implemented over a redundant Ethernet
connection, where switches connect the controllers together using Ethernet cables.
Autronica strongly advises against connecting the local AutroNet network to the
Internet, as this poses a potential cybersecurity threat [2, p. 14].
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2.3 The module stack

The module stack can be customized to meet the specific installation’s needs. The
modules connect together physically by stacking on top of each other, connecting
a set of female pins to male pins. This connects them together in a bus configura-
tion. The modules also have a Light Emitting Diode (LED) and a photoransistor
that are used for communication. The LED sits on top of each module, while the
phototransistor is located on the bottom, lined up with the LED. This means that
when a module stack unit activates its LED, the module located above it senses
it as this activates its phototransistor. This is used for an addressing procedure
described in Section 2.8.3. Two of the modules in the module stack are mandatory
for the stack to function properly. The first one is the power supply module. It
is connected to a 24V power supply and supplies the rest of the modules in the
stack with 24VDC and 5VDC. The second mandatory module is the communica-
tion module, which enables the controller to communicate with the units in the
module stack. It provides an access point in to the AL_Com+ bus through a
2x5 latch contact. Beyond this the module stack can be outfitted with loop driver
modules, input modules and output modules. According to the AutroSafe 4 system
description, a single module stack can have a maximum of 12 units as described in
the system description of the AutroSafe 4 system [2].

2.4 The detection loop and loop units

Figure 2.3: illustration of a detector loop, illustration from Autronica Fire & Se-
curity [2]

The detection loop is a series of detectors and other loop units connected to the
loop driver module of the module stack via two wires. The two wires, “plus wire”
and “minus wire”, serve two purposes. They supply the loop units with +24VDC
and are also used for the communication between loop units and the loop driver.
An illustration of a detection loop connected to a loop driver can be seen in Figure
2.3. A maximum of 127 loop units can be connected to a single loop driver, as
stated in the AutroSafe 4 system description [2]. Both ends of the two wires are
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connected with the loop driver resulting in a loop of detectors. Along this loop,
detectors can branch off from a node, as seen in Figure 2.4. This opens up for
easier installation in some cases, additionally it can reduce cable and installation
cost. However, the AutroSafe system only allows for a maximum of one branch-off
on each detector on the loop. No more than 32 loop units can be connected in
a single branch-off. This is in order to conform with EN-54 requirements of the
consequences of a single-point failure [2].

Figure 2.4: Illustration showing branches in the detector loop, illustration from
Autronica Fire & Security [2]

Loop units are the devices that are connected to the detection loop. These consist
of different kinds of detectors, manual call points, sounders and warning lights,
to mention only a few. However, this chapter does not go into detail about the
individual detectors as this is of little importance to the thesis. Autronica’s de-
tectors all have a socket which the detector is screwed into. In this socket, three
screw terminals are connected to the detection loop. The plus wire has both the
in-going and out-going wire connected to the same terminal, while the minus wire
is connected to two different terminals. The detectors have a switch that by default
is open, but can be used to close the circuit between the two terminals. The detec-
tors use this switch when instructed by the loop driver. This feature is used during
certain procedures, one of which is the loop raising procedure, which is described
in greater detail in Section 2.8.4. While performing this procedure, each detector is
also assigned a unique identificator called a “Loop ID”, which let’s the loop driver
communicate with the individual detectors on the detection loop. This is necessary
as the detection loop functions as a bus connection between all the detectors and
the loop driver.
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2.5 The AL_Com protocol

Autronica Loop Communication, or AL_Com for short, is both a hardware inter-
face and a proprietary data protocol developed by Autronica. It is used in the
communication between the loop driver and the units on the detection loop [4,
p. 2].

When communicating, the loop units as well as the loop driver makes use of
AL_Com. This protocol has a defined transmission rate of 1200 baud. When
units on the detector loop want to communicate they short circuit the two wires.
Logical 1 is represented by 0V on the detection loop, while logical 0 is represented
by the quiescent voltage [5, p. 3]. This means that only one unit on the detector
loop can transmit data at a time. This also goes for the loop driver, essentially
making the AL_Com protocol simplex. In order to not lose power during the com-
munication, each detector is outfitted with a capacitor that keeps the voltage in
the detector high as the AL_Com loop is shorted.

The messages that gets sent on the detection loop are called directives. They
are binary messages up to 16 bytes long. Each directive has a specific purpose.
There are directives that the controller uses to request information from loop units,
directives that are used to change settings and parameters in the detectors and
directives that the detectors use to tell the controller of detected events. The last
byte of an AL_Com directive is a checksum. This checksum allows the receiver
of the directive to check for bit-errors. In order for units on the loop to receive
the correct messages, all AL_Com messages contain a destination address and
an origin address. All units will read the messages sent on the detection loop,
since they are connected together via a bus. However, only the loop unit with the
correct address will care about the message. There is also an option to broadcast
messages. In this case, all loop units will care about the message. The loop driver
has a fixed address, while the individual units on the detection loop can have their
addresses changed. This is done through the use of a specific directive. There are
two methods of verification to know whether a directive has been received by a
loop unit. The first is when the loop unit sends an answer. One example of this is
when the controller sends a directive to a loop unit asking it to identify itself. The
loop unit will then respond with an identification directive. The other is by having
the loop unit send an acknowledgment. Acknowledgments are requested by setting
a specified bit in the directives to 1. Both the controllers and the loop units can
request acknowledgment for their directives. Failure to respond to a directive with
the acknowledge bit set high within 2 ms results in the directive being retransmitted
[4, p. 3].
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Figure 2.5: Structure of an AL_Com directive

If two loop units attempt to communicate at the same time collisions occur. The
first loop unit to detect the collision will stop transmitting immediately. The
collision gets detected when a unit attempts to send a logical 0, but reads that
a logical 1 gets sent during this transmission period [5]. Retransmission takes
place 100 ms after the previous message for most messages, but only 35 ms for
messages with higher priority. This is done so that more important messages
reach their destination faster. These are messages such as directives reporting on
alarm conditions, directives to control sounders and I/O, as well as answers and
acknowledgements to directives with priority. The loop driver has an even higher
priority than the loop units. It will retransmit regular messages after 90 ms and
high priority messages after 33 ms.

Figure 2.6: Difference between an AL_Com and an AL_Com+ directive
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2.6 The AL_Com+ protocol

AL_Com+ is an extension of the AL_Com protocol. It is used in the communica-
tion between a panel and the modules of its module stack. This enables messages
to pass back and forth between the panel and the loop units, through the loop
drivers.

The messages that get sent over AL_Com+ can be separated into two main cate-
gories, directives and flow control messages. As shown in Figure 2.6, the AL_Com+
directives have an added header byte, which contains information about which mod-
ule stack unit the directive is meant for. Additionally, the checksum that is part of
the AL_Com directive gets re-calculated with the header byte in mind. This al-
lows the controller to send messages to specific loop units through the loop drivers.
There are also some added directives that only get passed between the controller
and the units in the module stack. These directives are used for configuring of-
and information gathering from the units in the module stack. This is illustrated
in Figure 2.6, where each “X” represents a hexadecimal value, and “XX” makes up
one byte of data.

Figure 2.7: Structure of an AL_Com+ directive

The AL_Com+ protocol uses flow control messages to manage the transmission
of messages between the controller and the units in the module stack. These are
the remaining entries in the table below. As with the directives in Figure 2.7 and
Figure 2.6, XX represents one byte of data.
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Figure 2.8: Structure of a flow control message

NOP Nothing to transmit

ENTX Poll/request information

ACK Acknowledged

NACK Not Acknowledged

DIR Directive, followed by a payload

BUSY Used to signal that the unit is currently preoccupied

The AL_Com+ protocol is implemented using the RS-232 standard for commu-
nication with a symbol rate of 9600 baud. The transmit and receive lines behave
according to the standard. However, the control lines Request To Send (RTS) and
Clear To Send (CTS) do not. Instead of using these two signal lines for flow con-
trol, they are used for specific events in the system. From the controller’s point
of view, the RTS signal is used to initiate the addressing sequence of the module
stack. This is explained in greater detail in Section 2.8.3. The controller monitors
the CTS line, as this is used by the modules in the module stack when they have
an important directive they need to send that wasn’t requested. Some examples
of directives that utilize this feature are wake-up messages, restart messages and
alarm directives.

2.7 System configuration

In the AutroSafe system, a configuration file determines the valid topology of the
system. The configuration and the physical installation need to match fully for the
system to operate without fault. If an event that would alter the system occurs, the
system will report it as a warning. These events could be malfunctioning detectors,
loop-wire getting cut or shorted, detectors taken from their sockets getting put
back in the wrong socket, a branch-off being made for additional detectors. If
changes like these are not represented in the configuration file, it would result in
the controller raising it as a fault.
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2.8 Commissioning and service

This section contains information about the existing tools and routines Autronica
uses when performing commissioning and service on their AutroSafe systems. This
information will later be analyzed in order to identify aspects of the tools and
routines that a prototype such as the AutroLink v1 could improve.

The commissioning of the system usually happens at the very end of the installation
phase. However, in larger installations these two phases may overlap. After the
system has been installed, a set of procedures are performed on the system in order
to get it up and running. When the system is running, and up until the system is
decommissioned it will occasionally require service, expansion or changes. Service
in this context means to locate and eliminate errors, replace broken or worn out
equipment and perform checks on the system at regular intervals. This applies up
until the system’s end of life. The following sections describe the most common
tools and routines used during service and commissioning.

2.8.1 AS-2000 Loop Diagnostic Tool
The AS-2000 Loop Diagnostic Tool is a computer program used to analyze the
detection loops in an AutroSafe system. It is able to communicate with module
stacks and detection loops by deploying the same procedures performed by the
AutroSafe system [6]. Figure 2.9 shows a computer running AS-2000 connecting
with a detection loop through the module stack present in the control panel cabinet.

Figure 2.9: A computer running the AS-2000 Loop Diagnostic Tool software con-
necting with a detection loop through a panel, illustration from Autronica Fire &
Security [6]
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In this configuration, the panel is first disconnected from the communication mod-
ule of its module stack. A cable, as seen in Figure 2.10, is then used to connect the
one of the computer’s COM ports to the 2x5 latch connector of the communication
module.

Figure 2.10: Cable used to connect a computer with the AutroSafe system’s com-
munication module, image courtesy of Autronica Fire & Security

Before communicating with a detection loop, the AS-2000 software needs to know
which modules are present in the module stack. To achieve this, AS-2000 performs a
procedure that assigns addresses to the modules in the module stack. Through this
procedure, AS-2000 gathers information about the individual modules and is able to
tell which module is a loop driver. This also makes it possible to communicate with
the individual modules. This procedure is explained in greater detail in Section
2.8.3.

Once the module stack has been addressed and a loop driver has been selected as
the target module, it is possible to start the loop raising procedure. Through this
procedure, AS-2000 gathers information about the individual loop units connected
to the loop driver. As AS-2000 is performing the loop raising procedure, it will
consecutively display the discovered detection units and the topology of the loop
graphically. This procedure is explained in greater detail in Section 2.8.4. As stated
in Section 2.4, more than one branch off is not permitted in an AutroSafe system.
If this is the case with the detection loop being raised by AS-2000, an error will be
displayed.
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Figure 2.11: Screenshot from the AS-2000 Loop Diagnostic Tool showing the topol-
ogy of a detection loop, image from Autronica Fire & Security [6], edited for clarity

With the loop raised it is possible to retrieve information about the detectors,
such as loop unit type, production number, software version and condition. It also
allows service engineers to use AS-2000 to start various procedures.

One of these procedures is an LED test procedure. This allows service engineers to
verify the position and address of the loop units by lighting the LEDs and locating
them throughout the facility. Another procedure is one that is able to detect
breaks and short circuits along the detection loop. Additionally, measurements of
the detection loop, such as loop resistance, current consumption and voltage drop
can be performed through AS-2000.

2.8.2 WAS-2000 Service-suitcase
The WAS-2000 service-suitcase serves as a tool for service engineers used during
service and commissioning of the AutroSafe system. It contains a module stack
consisting of three modules. A power supply module, a communication module
and a loop driver. There is also a 24V battery connected with the module stack.
The WAS-2000 is used to be able to disconnect a single detection loop from an
AutroSafe system in order to perform service on it, without affecting the rest of
the AutroSafe system. This way, only one detection loop gets disconnected from
the system. The rest of the units on the AutroSafe’s module stack can function as
normal.
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Figure 2.12: A computer running the AS-2000 Loop Diagnostic Tool software con-
necting with a detection loop through WAS-2000, illustration from Autronica Fire
& Security [6]

2.8.3 Addressing the module stack
Module stack units are connected together via a bus. In order for the controller to
be able to communicate with the individual modules, the modules require unique
addresses. They receive these addresses through a specific procedure. This proce-
dure utilizes the RTS signal in AL_Com+, the LED on the top of the modules,
and the phototransistor on the bottom of the modules. While the RTS signal
is activated and before a module stack unit has received an address, it does not
respond to ENTX messages unless the phototransistor is activated by the LED
of the previous module. This is true for all modules except the first addressable
module in the stack, the communication module. Therefore, when activating RTS
and sending an ENTX message the communication module will be the only one to
respond. When this module receives its address it activates its LED, meaning the
next time the controller sends an ENTX message, the module above the communi-
cation module will be the one to receive an address and respond. However, during
this procedure the controller needs to assign unique addresses to each module. It
does this by keeping track of the number of modules that respond and changing
the address nibble of the flow control message each time. The address nibble of the
ENTX message can be seen as the final X in Figure 2.8. The following list shows
the addressing procedure as enumerated steps.

1. The RTS signal is activated

2. An ENTX + device_number message is sent from the controller to the
module stack

3. The i’th module takes device_number as its address

4. The module stack unit responds with NOP or DIR + device_number
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5. If the response was a DIR, this gets acknowledged by the controller with an
ACK + device_number

6. device_number is incremented

7. Steps 2 through 6 is repeated until no response is received after sending an
ENTX

8. The RTS signal is deactivated

The same procedure is shown graphically in Figure 2.13. The controller to the
left in the figure can be a panel in the AutroSafe system or the AS-2000 Loop
Diagnostic Tool. The stream of messages are chronologically ordered from top to
bottom. An arrow pointing from the controller to the module stack represents a
message sent from controller to module stack, and vice versa. The dotted parts
of the vertical arrows represents that the previous steps can be repeated as many
times as there are remaining module stack units. The second to last event in the
figure is a timeout event triggered by an internal timer in the controller.

Controller Module stack

ENTX + device_number First unit takes 
device_number 
as addressNOP + device_number

device_number++

ENTX + device_number Second unit takes 
device_number 
as addressNOP + device_number

device_number++

ENTX + device_number

timeout

RTS on

RTS off

Figure 2.13: Illustration of the communication between a controller and the module
stack during the module stack addressing procedure

2.8.4 Raising the detection loop
Initially, after powering up an AutroSafe system and addressing the module stack,
the detection loops are voltage free. This means that none of the detectors are
active, and the switch mentioned in Section 2.4is open, as seen in Figure 2.14. A



19 2.8. Commissioning and service

procedure called “raising the detection loop” powers the detection loop and assigns
unique loop ID’s to the detectors.

Out

In

Loop driver +

-

+

-

Figure 2.14: Illustration showing detectors connected to a loop driver

The procedure starts with the controller sending a directive to the loop driver
instructing it to apply power to the detector loop. This will in turn power the
first loop unit, making it transmit a start-up message. This message contains
information such as current loop ID, serial number and point type. The controller
can then send a message to the first loop unit instructing it to close its switch,
which will power the next loop unit on the detector loop. These steps are repeated
until the loop driver receives power in it’s second set of terminals. During this
procedure, the controller needs to keep track of which Loop ID’s are in use. If two
detectors have the same Loop ID the controller needs to assign a new Loop ID to
one of them.

1. Controller sends rise loop DIR to loop driver instructing it to apply voltage
to its OUT terminals

2. Next detector on loop receives power, sends restart DIR

3. Controller receives restartDIR, sendsACK, assigns new loop ID if necessary

4. Controller sends point switch DIR to the detector instructing it to close the
switch

5. Detector closes switch

6. Steps 2 though 5 are repeated until loop driver receives power on its IN
terminals

7. Loop driver sends loop closed DIR to controller

8. Controller sends loop output states DIR (normal loop) to loop driver

In the event of a branch-off, two detectors will send restart directives as part of step
2. The controller then needs to store both messages and perform the following steps
on both branches until one of them results in a closed loop and the other results
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in no new restart message after step 5, signifying the end of the branch. At this
point the loop is considered “raised”. It stays this way until the controller issues a
directive to power the loop down, the loop driver loses power, or an external event
breaks the loop.

2.8.5 Commissioning routine
The commissioning routines for the AutroSafe system is documented in the AutroSafe
Commissioning Handbook [7]. The standard commissioning routine is separated
into ten steps. [7, p.7-37]

Step 1

The first step during the commissioning of an AutroSafe installation is to verify
the detection loops. This is done through the use of the AS-2000 software and
performing the loop raising procedure explained in Section 2.8.4.

Step 2

In this step, the information gathered during the loop raise in step 1 is compared
to the system’s configuration file. The AutroSafe Configuration Tool software is
used to perform this task.

Steps 3 through 5

These steps all consist of assigning addresses and ID’s to the different components
of the system. AutroFieldBus units and power boards receive unique addresses by
the use of dip-switches. The panels and controllers throughout the system receive
both a network ID and a panel ID by the use of rotary switches located on the
back of the motherboard of the panels.

Step 6

This step is the second verification step. Here, all components and cables are
checked to verify that the system has been installed correctly.

Step 7

In step 7, power is applied to the system. The system then performs an automatic
initialization. During this initialization, the system detects whether the AutroNet
network has a star- or ring topology. Alternatively, if the topology is neither star
or ring, an error is raised which must be solved before continuing.

Step 8

After the system has been powered up, service engineers access the panel settings.
Here the panel’s IP address for the local AutroNet network is set. This is either
done through an automatic process or it can be done manually.
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Step 9

In this step, the finished configuration file is uploaded to the system. This can be
done from any of the panels in the system, as it will distribute the file to the other
panels connected to the same local AutroNet network. It can also be uploaded
through a web interface. A memory stick is connected to a USB port located on
the back of a panel. The service engineer can then log in to the panel with access
rights and upload the configuration file to the system from the memory stick.

Step 10

The last step is to perform the third and and most thorough verification of the
system. The system’s alarm transference functions are temporarily disabled, as to
not trigger emergency response from the fire-brigade during the testing. The panel’s
indicator lights, buzzer, operating keys and functions are tested. System alarms and
sounders are tested. Detecting loop units in each detection zone are tested. Fault
indication is tested by generating faults in the system, such as removing a detector
from it’s socket. The system’s different conditions are tested (test, disablement,
fault warning, fire warning and fire alarm conditions). Once the test are completed
the system is set to normal operation, and the alarm transference is enabled.

2.9 AutroLink v1

During the specialization project, the AutroLink v1 prototype was designed, imple-
mented and tested. The goal of this project was to gather data from the AutroSafe
system during normal operation and send this wirelessly to an Internet-connected
server [1].

As the prototype was to be based on the nRF9160 development kit from Nordic
Semiconductor, it natively supported the Long-Term Evolution Machine Type
Communication (LTE-M) and Narrowband Internet of Things (NB-IoT) cellular
networks. By comparing the two networks it was found that the LTE-M was more
fitting for the prototype due to the availability, bandwidth and roaming capabili-
ties.

The possible points of data extraction in the AutroSafe system were analyzed. In
the end, the prototype connected with a listener port located on the motherboard
of the panels in the AutroSafe system. The port provided access to the AL_Com+
communication passed between the panel and its module stack. The listener port
had two pins, one being ground and the other being both the transmit and receive
signal of the RS-232 line between the panel and the module stack. These were
connected through diodes, meaning that by connecting to the port the prototype
would receive both the messages sent to and from the module stack. It also meant
that the prototype was physically limited to only receive messages from the port,
unable to inject AL_Com+ messages and other data into the system.
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Figure 2.15: TTL to RS-232 conversion using a MAX3232 integrated circuit,
schematic made using KiCAD EDA [1]

The finished AutroLink v1 consisted of the nRF9160 DK connected to an exter-
nal PCB containing a MAX3232 circuit. This circuit converted back and forth
between RS-232 and Transistor-Transistor Logic (TTL) voltage levels and com-
munication. The connections were made using jumper wires from the PCA-10090
board’s General-Purpose Input/Output (GPIO) over to the MAX3232 board. The
MAX3232 was powered by two jumper wires from the nRF9160 DK GPIO’s 3V
and GND GPIO pins, seen in Figure 2.16 as the red and black wires respectively.
The Transmit (TX) and Receive (RX) signals were carried by the blue and purple
wires, although only the RX signal lines was tested and used. These were the
minimum hardware components for the prototype to function and interface with
the AutroSafe system. The prototype connects with the AutroSafe system’s mod-
ule stack by connecting an RS-232 DB9 to 2x5 latch connector cable, as seen in
Figure 2.10, to the COM port located on the uppermost PCB marked MAX3232
in Figure 2.16. It was supplied with 5VDC from an external power supply.
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nRD9160 DK

MAX3232

Figure 2.16: Illustration of the PCA-10090 board connected to the MAX3232 cir-
cuit board

The finished prototype was tested by connecting it to an existing AutroSafe test
station at Autronica’s R&D department. A Mosquitto Message Queuing Telemetry
Transport (MQTT) client was set up on a computer [8]. Both the AutroLink
v1 and this client connected with a MQTT server, as seen in Figure 2.17. The
AL_Com+ messages transmitted from and to the module stack were picked up
and sent to a specified topic. Using another topic, a Mosquitto client was used to
send configuration changes to the AutroLink v1 prototype.
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Figure 2.17: An overview of the AutroLink v1 prototype connected with the
AutroSafe and the MQTT server
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Chapter 3

Literature study
This chapter summarizes the topics that were studied that are not related to the
AutroSafe system. The first section contains information about remote access
solutions with a focus on solutions regarding remote service and commissioning.
The following sections contain information on real-time system design, the MQTT
protocol and Nordic Semiconductor’s software development kit.

3.1 Remote access

Remote access is a term closely related to computer systems, wherein an authorized
user is able to access a centralized system through a network. Traditionally, this
has been used to control or configure computers or servers, but in the wake of
Industry 4.0 the range of applications has been broadened. One such application
is what is being explored in this master’s thesis, namely adding remote service
and commissioning solutions to existing systems. Through the literature study on
service and commissioning with remote access, few sources that were of relevant
technical detail to this project were found.

In 2017, Riccardo Masoni et al. wrote a research paper exploring the use of Aug-
mented Reality (AR) in remote maintenance. The paper describes a previous pro-
totype that was built and documents the work that went into improving it based
on feedback from the initial testing. The prototype consisted of off-the-shelf mo-
bile and AR technologies, making it accessible and cost effective [9]. An advanced
tool like this can convey information in a way that makes it more accessible, and
bring in expert knowledge to assist during the service and commissioning routines.
In essence, remote access allows an expert to access necessary parts of the system
without having to travel to the actual location of the facility. This can expedite the
service routines, which in turn can be more cost effective than alternative solutions.
The technical details present in this research paper are of little relevance to this
thesis.

The search terms that were used produced several hits on advertisements for pro-
prietary remote access and remote maintenance solutions. An interesting detail
was that several of them were announced recently due to the Covid-19 pandemic.
These sources consisted of product descriptions from manufacturers, descriptions
of services from various providers and blog posts. Schenck Process introduced re-
mote commissioning of their industrial machines [10]. Coperion modernized their
service routines by developing their “Coperion ServiceBox” which connects with
their industrial plastic extruders [11]. The aforementioned examples were however
primarily proprietary solutions that are not described in technical detail. They are
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not considered as viable sources, but they do prove that proprietary remote access
solutions are prevalent in the industry.

One industry that has adapted the use of remote access technology is the oil and
gas industry. This was done with the aim of making the monitoring, operation
and service of the on-board systems cheaper and more efficient. With oil rigs
and platforms located at sea, transport costs are at a premium. However, by
introducing remote access to a system, the system also becomes exposed to possible
cybersecurity attacks. Therefore, it is necessary to integrate remote access solutions
in a way that is secure. Sintef and DNVGL have written reports on this specific
subject. However, these sources are abstracted away from technical solutions, and
instead describe concepts and best practices.

3.1.1 SeSa method
The report from Sintef documents a method for assessing remote access in Safety
Instrumented System (SIS), called the SecureSafety (SeSa) method. It describes
a systematic approach to assess whether a given technological solution for remote
access to the SIS implies an unacceptable risk, in terms of jeopardizing the Safety
Integrity Level (SIL) of the SIS. The report is based on the security standards IEC
61508, IEC 61511, ISO 15408 and ISO/IEC 27001.

Figure 3.1: Onion model depicting a layered network architecture, illustration from
Sintef [12]
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The workflow when following the SeSa method is described in the flow chart in
Figure 3.2. If a suggested remote access solution does not have an impact on the
SIL of the related system it is deemed “ready” for implementation. If it does impact
the SIL, new functions are suggested where necessary, and new requirements are
specified for the security functions. If the revised solution still results in an impact
in the SIL, security functions in the SIS are analyzed. A Hazard and Operability
study (HAZOP) is then performed to check whether the SIS’s security functions
are sufficient. If not, the proposed remote access solution is discarded all together.

Figure 3.2: Flow chart of the SeSa method, illustration from Sintef [12]

3.1.2 DNVGL RP-108
The report from DNVGL is thematically similar, but is aimed at Industrial Au-
tomation and Control System (IACS). It contains guidelines for how to apply the
IEC 62443 standard with the strict requirements in the oil and gas industry. Af-
ter a read-through, the most relevant sections were selected and are summarized
below.

The report has a section pertaining temporary connected devices. These are devices
such as engineering tools, configuration tools and diagnostic tools. Some of these
may be necessary to operate the systems while others are just used during main-
tenance of the system. The report also separates the considerations that should
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be made regarding this equipment into two categories based on the criticality of
the particular system. For highly critical systems, the report recommends includ-
ing these tools as permanent equipment. However, if the criticality of the systems
are low, the tools may be connected as temporary devices. Procedures should be
created for when it is external suppliers that need to use temporary devices to
verify the safety of the equipment. One should ensure that the equipment is using
the latest patches, is sufficiently hardened and has the latest antivirus if possible.
External suppliers should always need permission from the site owner before they
connect temporary devices, and the connection should be handled as a deviation
from normal operation [13, p. 21].

The report goes into detail about how solutions for remote access should be im-
plemented. Due to large distances, costly transport and safety requirements, it
is practical to allow remote online access for maintenance. By doing this, one by-
passes physical security and authentication and a large cybersecurity attack surface
is exposed. It is therefore vital to design and build a secure solution for this remote
access. The remote access solution should also have some form of identification and
authentication control. Multi-factor authentication is recommended, as well as a
timeout for inactivity. In order to protect the information that gets sent along the
remote access path, encryption should be used. A recommendation for symmetric
encryption is AES 128 or better [13, p. 32].

3.2 MQTT communication protocol

MQTT is a messaging protocol for use on top of Transmission Control Protocol
(TCP)/Internet Protocol (IP). This is the communication protocol that was im-
plemented in the AutroLink v1 prototype in order for it to communicate with an
online server, and through it reach other MQTT clients. It is widely used in Ma-
chine to Machine (M2M) and Internet of Things (IoT) communication since it is
lightweight and easy to implement. It uses a publish-subscribe messaging pattern
where clients connected to a central broker can publish and subscribe to topics
[14]. Whenever a message gets published to a specific topic, the broker passes this
message to every client who is subscribed to said topic. An illustration of this
principle can be seen in Figure 3.3, where three clients are subscribed to the same
topic. A fourth client publishes a message to said topic and the broker handles the
distribution of the message.
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Figure 3.3: MQTT messaging pattern

The protocol have been implemented by different groups, such as Zephyr [15] and
Mosquitto [8], who have libraries that support it.

3.2.1 Topics
MQTT has a channel based structure, with the communication divided into self-
defined topics. A topic is made up of one or more topic levels. These levels are
separated by a forward slash (/), a topic level separator. Each level can be named
to describe what kind of information gets published on it. Below are three sample
topics that are used on the the same MQTT broker.

1. Location_A/System_A/Sensor_A

2. Location_A/System_B/Sensor_A

3. Location_A/System_B/Sensor_C

If an MQTT client is subscribed to the first topic, it will receive all published
messages on this topic. The MQTT topic structure supports wildcards. The single-
level wildcard (+) can be used to substitute one level. As an example; a client
subscribing to: Location_A/+/Sensor_A would receive the messages published on
both the first and the second topic. The multi-level wildcard (#) can be used as a
substitute for more than one level. It can only be used at the end of the topic string.
A client subscribed to: Location_A/# would receive the messages published to all
the aforementioned topics. A single client can publish and subscribe to different
topics. This makes the messaging pattern of MQTT highly versatile.
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3.2.2 QoS
The MQTT protocol provides three different Quality of Service (QoS) levels [14].

QoS 0 ”At most once”, the message gets published once with no guarantee that
the message arrives. This may result in lost messages, and is most com-
monly used in sensor readings where one lost message has little to no
impact on the functionality of the system.

QoS 1 ”At least once”, the message gets published repeatedly until the publisher
receives an acknowledgment from the subscriber that the message has
arrived. This may result in duplicated messages.

QoS 2 ”Exactly once”, the message arrives exactly once through a series of steps.
This is however also the slowest form of MQTT communication due to
the amount of handshakes involved.

3.2.3 TLS
Transport Layer Security (TLS) is a cryptographic protocol designed to provide
security in the application layer of the Internet protocol suite. It supports ex-
changing keys, data encryption, and message authentication [16]. As such, this
protocol can help with data confidentiality, and help prevent certain attacks, such
as man-in-the-middle attacks [17]. It is possible to implement TLS in MQTT.
Nordic Semiconductor have, among others, support for it in their MQTT applica-
tions [18].

3.2.4 Mutual authentication
Another layer of protection that is common in other communication protocols is
mutual authentication. In mutual authentication, both the server and the client
exchange certificates. This lets the server verify the identity of the client, and the
client the identity of the server. Although not as usual as TLS, mutual authentica-
tion has also been implemented in MQTT communication. A publically available
example of this is freeRTOS’ demo [19].

3.3 Real-time systems

A real-time system has fixed constraints where processes must be done within their
limitations or the system will fail. This means that the response of the system needs
to meet a specific time restraint, or need to meet some form of deadline. In other
words, the system not only needs to produce the right solution, it also needs to
provide it at the correct time. The AutroLink v2 prototype needs to interface
with the AutroSafe system, giving it constraints in form of time-dependencies. It
can therefore be viewed as a real-time system itself, and there are certain aspects
of real-time programming that is necessary to keep in mind then designing and
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implementing such a system. Real-time systems are commonly divided into two
categories, by the consequences of missing the deadline [20].

Hard real-time system In hard real-time systems, the consequences of missing
deadlines can range from bad to disastrous. It is characterized by that the value
of the output from the system drops from needed to worthless. An example of this
is the brake-system of a car, where it is of little use that the brakes activate if the
delay already have caused a collision [21].

Soft real-time system Soft real-time systems are characterized by the decreasing
value of the system output. This means that the output is of less relevance after the
deadline, but still have some use depending on the amount of delay. An example
of this could be a GPS system, where a delayed output does not give your current
location, but can be used to determine where you have been, and if your general
direction of movement is correct [21].

Types of tasks

In real-time system’s theory, tasks are usually organized into three categories:

Periodic: Tasks that are repeated at a regular interval.

Aperiodic: Tasks that have no defined interval, and can thus appear at any time.

Sporadic: Tasks that also have no defined interval, but there is a minimum time
between each occurrence.

3.3.1 Priority
If a system only has one output to produce, it can dedicate all of its resources to
that task. However, real-time systems often has to perform multiple tasks where
each has a deadline. To complicate things further, each task may have a different
grade of consequence if the deadline is missed. An example of this can be that it
is more important to ensure that the breaks of the car activate in time than that
the breaking lights are turned on.

A way of solving this problem, is to assign a priority to the tasks a system has to
perform. This can be a static priority where some tasks are designated as more
important than other tasks, and therefore has to be done first. It is also possible to
implement dynamic priority, where priorities can shift after some property of the
tasks, such as what task has the shortest time to deadline. However, implementing
priority can also lead to additional complexity and problems. A problem with
prioritized tasks is that starvation of processes can occur. This is when the amount
of higher priority tasks causes the system to ignore the lower priority tasks, as there
is simply not enough time or resources to handle all the tasks.
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3.3.2 Multi-threaded systems
As the amount of tasks to be done increases, a traditional sequential program
may grow exponentially complex in order to handle the timing requirements of the
different tasks. A way to solve this is by defining each task as a thread, and use
an operating system to manage the execution of these threads. A simple version
of this is a round robin implementation that does a bit of work on a thread before
shifting to another thread in a loop. This allows tasks to be done concurrently and
independent of each other, which simplifies the program structure.

However, when the complexity of the interwoven tasks are removed, another prob-
lem takes its place. When tasks are done concurrently, they may interfere with each
other in a way that causes unwanted behavior. An example of this can be that one
thread updates a value that is in use by another thread that is in the middle of an
calculation. This may result in a wrong output. In addition, these kind of errors
may occur seemingly at random, as they are dependent on when tasks are done.
This particular problem are an example of a race condition, where the outcome is
affected by the sequence the tasks are done in.

3.3.3 Inter-thread synchronization
In systems where there are multiple threads running, some processes may need to
finish before others. There may also be other cases where two threads need to
use the same resource in a system. Inter-thread synchronization is used in these
cases. The most commonly used tools to achieve this are the variable types called
semaphores and mutexes. Conceptualized by Edsger Dijkstra in the early ’60s, the
semaphore is an abstract data type used by threads to signal the scheduler. It can
have any positive integer value. When a thread decrements a semaphore its value
is decreased by one. If the value is zero as a thread attempts to decrement it, the
thread blocks itself and cannot resume execution until another thread increments
the semaphore. The mutex is essentially a special type of semaphore where its
value can only be 1 or 0. It is normally used to ensure mutual exclusion, which is
where the name comes from [22].

It is however possible to misuse semaphores. A semaphore may be requested, but
not released. It may be released without ever having been requested. Additionally,
situations such as deadlocks and livelocks can occur.

Deadlocks

Deadlocks are the therm for when two or more tasks are dependent on a progress
of the other task in order to be able to progress itself. A common example of this
is two tasks that both require two resources, A and B, before they can be executed.
If one task has locked the resource A, while the other task has locked resource
B, they will both wait forever on each other as no resource will become available
before one of the tasks are executed.
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Livelocks

A livelock differs from a deadlock in that the threads can change states or do some
work, but no progress is done. A common example of this may be two persons
meeting in a hallway, where both move to the side to allow the other to pass. In
this way, they continually block each other but are still active.

3.3.4 Time complexity
Time complexity is a term in computer science that describes the computational
complexity of an algorithm. This is usually done through analyzing the amount of
elementary operations the algorithm has to perform for a given input. This analysis
is abstracted from time, since different hardware can perform the same elementary
operations at different speeds. This is affected by properties such as the type and
the frequency of the processor. Since real-time systems need to guarantee response
within specified time constraints, knowing the time complexity of the system’s tasks
is important.

Big O notation is commonly used to express the time complexity of an algorithm,
given an input n [23]. Here, n represents the size of the input, e.g. the length of an
array or the size of a matrix. The algorithm will then perform a set of tasks on the
input. The types of tasks performed will have an impact on the execution time of
the algorithm. The resulting growth of the execution time can then be expressed
using the following expressions:

o(g(n)) denotes fewer than (<) f(n) iterations

O(g(n)) denotes fewer than or equal to (<=) f(n) iterations

Θ(g(n)) denotes equal to (=) f(n) iterations

Ω(g(n)) denotes greater than or equal to (>=) f(n) iterations

ω(g(n)) denotes greater than (>) f(n) iterations

In computer science O(g(n)) is most commonly used. The reason for this is that
it provides an upper bound. In other words, it expresses the worst case execution
time. g(n) expresses the tail behavior of the algorithm, and is usually simplified to
only consist of the largest factor of the expression.

When evaluating the time complexity of an algorithm, one usually looks at the
number of elemental operations and loop structures. An elemental operation is
a task that has a constant execution time, such as evaluating if two number are
equal. For an instance, imagine a function takes an array as input and iterates
through the elements using a loop. These operations lead to the function having
O(n) execution time, since the operations have to be performed on each element
of the input array. The longer the input array is, the longer the function will take
to complete. This demonstrates a linear growth rate. If the function would iterate
through the array once per element of the array, it would have an execution time
of O(n2), which is an example of an exponential growth rate. If a function takes
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advantage of a “divide and conquer” approach, it usually has an execution time of
O(n log n), which is called a logarithmic growth rate [23].

3.3.5 Crash-only software
When designing real-time systems, there are many different possible design method-
ologies to follow. Fault-tolerant systems are designed so that if it experiences a
fault, there are certain safeguards in place that allow it to keep running. Fail-safe
systems are designed in a way where most conceivable problems are accounted for.
On the other end of the spectrum exists crash-only systems. These systems are de-
signed to crash as soon as it enters an unknown state or encounters an unexpected
result. At first glance this may seem counter-intuitive. However, in a system that
itself is not safety critical, this is a form of fault handling. As long as the system is
able to restart itself and enter a known state, normal operation can be resumed. By
designing a system according to this mentality, even problems that are unforeseen
can be handled [24].

3.4 Software Testing

Software testing is a method of checking if the software product is behaving as
expected or according to specifications. The purpose is to try to find errors, miss-
ing requirements or unintended behavior by execution of the actual software and
comparing the results against the expected outcome. IEEE has defined a standard
for software testing. The following sections contain a summary of some relevant
concepts and terminologies [25].

3.4.1 Test methods
Testing can be split into different methods depending on the amount of information
and access one has to the system.

Black box testing

Black box testing is when testing is done without knowledge about the internals of a
program and focuses purely on the functionality of the software. The tester provides
an input and observes the output generated by the software, and no consideration
is given to the internals of the software. In simple terms, it is testing as a user of
the software [25, p. 46].

White box testing

White box testing is the testing of the inner functionality of a software. It requires
information about the internal structure of the software, and focuses on design,
usability and security. It is used to find internal security holes, verify error han-
dling, test the flow of inputs though the code and the functionality of conditional
structures. In simple terms, it is testing as a developer of the software [25, p. 46].
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Gray box testing

Gray box testing is a combination of white and black box testing, where some
limited information about the software is known. It is used to find errors that
occur by improper use of the software. In simple terms, it is testing as a user with
access to the internals of the software.

3.4.2 Test Levels
Testing can also be separated into different levels depending on how much of the
software is tested at the same time. The amount of testing done is illustrated in
figure 3.4, where automated testing is mostly done at the lower levels (unit tests)
and user-driven testing is more common at the higher levels (system tests).

Software

Module Module

Function Function Function Function Unit
testing

Integration
testing

System
testing

Figure 3.4: Caption

The main reason for separating the tests into different levels is to make sure that
the individual functions work as intended before testing a module, and that the
individual modules work as intended before testing the system as a whole. By
proceeding directly to full scale system tests, the chances of errors occurring are
higher. These errors would also by nature be harder to detect during large scale
testing.

Unit testing

Unit testing, also called component testing, is the basic testing of some blocks of
code or a specific function, referred to as an unit, to see if it functions correctly
when run independently. This ensures the basic functionality of the unit is in place,
and is the simplest form for testing. This can be done as automated testing, as unit
testing is ideally done for each individual unit or function of code written [25, p. 8].
Unit testing is usually performed without any external dependencies, meaning that
inputs and special cases are mocked up.
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Integration testing

Integration testing is a step above unit testing, as this tests the functionality of
modules. This differs from unit testing in that it test the functionality of the
software when the units of code are combined. This is important, as functions can
be functional individually, but the flow from outputs to inputs of different functions
also need to be compatible [25, p. 9].

System testing

System testing is the end-to-end testing of the software, and is done to test the
completeness of the software system. These tests focus on the key requirements and
functionality, which differs from the code-focus of the unit and integration tests.
System testing is used to verify that the software is functioning as expected and
therefore are built after specifications [25, p. 10].

One way to perform system testing is by conducting acceptance tests. Acceptance
testing is closely related to system testing, but is usually done in cooperation with
the customer of the software before final delivery. This is a user-driven testing that
verifies that the software is functioning as requested, and that it is sufficiently user
friendly [25, p. 11].

3.5 nRF Connect SDK

The nRF Connect SDK (NCS) is a software development kit for Nordic Semi-
conductor’s cellular IoT devices. It focuses on providing support for Nordic’s key
features which are Bluetooth Low Energy, Thread, Zigbee and Bluetooth Mesh
stacks. It also provides various sample applications, reference implementations
and drivers for Nordic’s devices and Development Kits (DKs).

3.5.1 Development kit nRF9160
The basis of the AutroLink v1 prototype was the nRF9160 development kit from
Nordic Semiconductor. As the AutroLink v2 is to be a continuation of the previous
iteration, it too will be based on this development kit. The DK contains two
microcontrollers made by Nordic Semiconductor. The main microcontroller is the
nRF91 System in Package (SiP). It contains an ARM Cortex M33 processor and
an integrated modem capable of connecting with the LTE-M and NB-IoT cellular
networks. There is also a nRF52840 System on Chip (SoC) on the DK. This
microcontroller functions as a board controller. Beyond this, the development kit
has exposed GPIO enabling it to connect with external hardware modules. These
can be controlled and communicated with through widely used protocols such as
Universal Asynchronous Receiver/Transmitter (UART), Serial Peripheral Interface
(SPI) and Inter-Integrated Circuit (I2C).



37 3.5. nRF Connect SDK

Figure 3.5: The nRF9160 DK PCA-10090 PCB

3.5.2 Zephyr Real-time operating system
Zephyr is an open source micro-kernel Real-Time Operating System (RTOS) de-
signed to be run on Microcontroller Units (MCUs) and embedded hardware. The
operating system is developed and maintained by WindRiver, and it is based on
their micro-kernel profile for VxWorks. The main focus of Zephyr is IoT appli-
cations. To aid with this it has native support for many relevant protocols and
standards such as Bluetooth LE, Wi-Fi, MQTT. It supports many different plat-
forms, one of which is the nRF9160 [26].

The Zephyr OS supports kernel-services such as [27]:

• Multi-threading

• Interrupt-services

• Inter-thread synchronization

• Inter-thread communication

• Priority and scheduling

3.5.3 Managing multiple repositories with West
NCS is a multiple repository environment, consisting of the following repositories:

• nrf: A repository containing source-code additions, making Nordic Semicon-
ductor’s cellular IoT devices compatible with the Zephyr RTOS and MCU-
boot

• nrfxlib: A repository that contains RTOS-independent libraries and modules
to be used with Nordic Semiconductor SoCs

• MCUboot: A secure and versatile bootloader for 32-bit microcontrollers
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• Zephyr project: A scalable RTOS built with security in mind, suitable for
MCUs and embedded hardware

In order to keep track of which versions of the different repositories are compatible
with each other, Nordic recommends using Zephyr’s meta-tool West [28]. At certain
points during the developments, the compatible commits are assigned a unique
identifier called a “tag”. How West keeps track of the different commits in the
three repositories is visualized in Figure 3.6. In this figure, the gray dots represent
a commit, a version of the code in the repository. The tags can be seen as the
commits along the top row. Each of these point to a specific commit in each of
the three repositories. When working with NCS it is possible to use West to jump
between the different tags.

Figure 3.6: Multiple repository management using West, illustration courtesy of
Nordic Semiconductor, edited for readability

3.5.4 Version control with Github
NCS, as well as the software development performed as part of this thesis, utilizes
Github for version control. Github is a web-based versioning tool built upon Git,
an open-source version control system. It allows the project-code to be available
anywhere, and provide a backup if data is lost. It also allows for collaboration by
tracking overlapping code changes from different developers, and giving the option
to merge these changes before adding them to the main project. If one wants to test
different ways of designing a feature, it’s possible to split the project development
into separate tracks, branches, and later choose which to keep and merge back into
the main project [29].



Chapter 4

Development of specification
In this chapter, the information that has been gathered so far will be analyzed
in order to arrive at a specification for the AutroLink v2 prototype. The start-
ing point of the analysis is the AutroLink v1 prototype that was designed, built
and tested during the specialization project preceding this master’s thesis. The
analysis focuses on what kind of functionality that needs to introduced in order
for the prototype to be helpful during service and commissioning. The goal of the
preliminary analysis is to locate the opportunities and restrictions of the AutroSafe
system, and propose functionality. This leads up to the requirements for the new
prototype. From here, a structured analysis will be performed for modularizing the
system and arrive at a specification.

4.1 Opportunities for functionality

During the commissioning routine the AS-2000 software is used to verify the de-
tection loops. A computer running the software is then either connected directly
to the module stack of the corresponding panel or to the detection loop utilizing
the WAS-2000. An important part of this verification process is to check if the
detectors have been mounted correctly and in the correct location. This is usually
done by turning on the LED of a detector and locating them within the facility.
Plans and drawings can then be consulted to check if the detector is in the cor-
rect location. Since turning on more than one LED can lead to confusion, only
one is turned on at a time. This means that the service engineer has to move to
it’s location in the installation and back again to the computer for each detector.
This either involves a lot of unnecessary walking or more service engineers present
attending this one task.

By introducing a wireless gateway, the detection loop verification procedure can
be separated into two parts. The first part is where AS-2000 is used to verify
that the topology of the detection loop is correct. The second part is where the
AutroLink v2 is used to allow the service engineer to move around while controlling
the LED’s remotely, using a smartphone, a tablet or a portable computer of some
kind. This would simplify the process by reducing the number of people present
and/or reducing the time required to perform these checks. For this to be possible,
the AutroLink v2 needs to support two-way communication with the AutroSafe
system.

During service there is one point where remote access could be helpful. That is
mainly the ability to bring in expert knowledge in situations where the standard
service routines are unable to unveil the problems. An expert having the opportu-
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nity to communicate directly with the module stack, and through it, the individual
detection loops and loop units, could identify errors that are otherwise hard to de-
tect. Here, the communication’s level of abstraction matters. The less abstracted
the communication is, the more information it contains. During service it would be
most beneficial if the messages sent to and from the additional MQTT clients were
on the lowest level possible, which in this context is sending AL_Com+ messages
directly. This way, the operator will be able to see the flow control messages and
the directives passed between the AutroLink v2 prototype and the units in the
module stack. Additionally, since the AL_Com+ messages are usually interpreted
as hexadecimal numbers, they should be converted to readable characters in order
to make them easier to read.

4.2 Autronica’s requested functionality

Through discussing with the engineers of Autronica’s R&D department, it was de-
cided to add certain functionalities in the AutroLink v2 prototype. The operator
should be able to not only use AL_Com+, but also AL_Com to communicate with
the module stack through the AutroLink v2. This will enable the AutroLink v2 pro-
totype to be tested in conjunction with prototype software that is being developed.
The software in question is able to simulate different parts of the AutroSafe system.
R&D will use the software to simulate a panel with a module stack containing a
loop driver. Furthermore, it will be able to connect with AutroMaster ISEMS.
This means that the software will send AL_Com messages to the AutroLink v2,
as if it was communicating directly with a detection loop. The AutroLink v2 pro-
totype should therefore be able to convert the messages coming from the MQTT
server from AL_Com to AL_Com+ before conveying the messages to the physical
module stack and loop driver. The software module also expects regular AL_Com
messages in return, so the AutroLink v2 should be able to convert the AL_Com+
messages coming from the physical AutroSafe system back to AL_Com messages
before sending them to the MQTT server. This way the prototype and the physical
module stack would be transparent. A thing to note is that the software, as well
as the MQTT broker hosted by Autronica does not support TLS nor any form of
mutual authentication.

The ability to convert back and forth between AL_Com and AL_Com+ could be
useful in other situations. In some cases the extra information in AL_Com+ might
be unnecessary. One example of this is if the maintenance is to be performed at a
detection loop and not the module stack. There could also be other cases where
the flow control messages present in AL_Com+, as well as the information from
the header byte of the AL_Com+ message are unnecessary. Therefore, MQTT
clients should have the opportunity to communicate using AL_Com.
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4.3 Interfacing with the AutroSafe system

Following the analysis of the AutroSafe system and the requirements of the new
prototype, it is seen that the method of system integration of the AutroLink v1
prototype cannot be used for the AutroLink v2 prototype. The new functionalities
all necessitate two-way communication with the AutroSafe system. Looking back
at the report written during the specialization project, four methods of integra-
tion were discussed. While the focus during the specialization project was data
extraction, some of the methods allowed for two-way communication [1]. The fol-
lowing paragraphs re-evaluate a selection of these taking the new requirements and
information into account.

The first suggestion was to connect the prototype directly to the detection loop,
as illustrated in Figure 4.1. This would allow the AutroLink to connect with
every loop unit on the detection loop. It would also allow the prototype to be
connected anywhere along the loop, not only next to a panel. However, a major
downside to this solution is that the detection loop needs to be raised in order for
the communication to be able to take place. Another downside is the fact that
the prototype would not be able to communicate with the modules in the module
stack.

FIRE ALARM
CONTROL

PANEL

Detector loop

AutroLink

Detector loop

Power
Comm.
Loop d.

...
Module stack

Figure 4.1: The first implementation mentioned in the specialization project report
[1]
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The second suggestion was to disconnect the panel from the module stack, and
have the prototype connect with the module stack instead. This would connect
the prototype with the module stack through the communication module, making
it able to communicate with every unit in the module stack and subsequently
every detection unit in the connected detection loops. If disconnecting the entire
module stackmodule stack is undesirable, a spare module stack consisting of a
power supply module, communication module and loop driver could be brought
along the AutroLink. A single detection loop could the be disconnected from the
AutroSafe system, connecting it with the AutroLink v2 through the spare module
stack. The WAS-2000 service suitcase could also be used for this task.

AUTROLINK
PROTOTYPE

Detector loopDetector loop

Power
Comm.
Loop d.

...
Module stack

Figure 4.2: The second implementation mentioned in the specialization project
report [1]

Therefore, it seems that by connecting the AutroLink v2 prototype with the com-
munication module of the module stack we get most of the upsides and few of the
downsides. From a both a safety and security standpoint, this implementation is
better than letting the gateway access the entire system. With regards to safety,
only one module stack is disconnected from the system. The rest of the system can
function as normal, albeit with errors and faults present until the service is finished.
With regards to security, only one module stack is exposed to the Internet. The
module stack that gets disconnected from the AutroSafe system will not function
as normal during the service. This means that eventual fires will not be detected
and no alarms will be raised. However, the same is true when AS-2000 is used to
communicate with the loop, as is routine during service and commissioning.
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4.4 Requirements

To summarize; the AutroLink prototype can benefit Autronica’s service and com-
missioning routines by allowing operators to remotely connect with the AutroSafe
system’s module stack. Two-way communication between the AutroLink v2 and
the module stack opens up for the opportunity for operators to work remotely and
communicate with the module stack units and detection loops. The ability to chose
between communicating with AL_Com and AL_Com+ opens up certain possibil-
ities, one of them being interfacing with Autronica’s prototype simulation software
and AutroMaster. This has been condensed into the requirements listed below.

• Remote connection to the AutroSafe system

• Operator must receive directives in the form of readable text from the AutroSafe
system

• Operator must be able to write directives using readable text and send it to
the AutroSafe system

• Operator can choose between using AL_Com and AL_Com+ directives re-
motely

4.5 Structured analysis of AutroLink v2

In order to get a better understanding of the requirements for the prototype and
how they affect the design, performing a structured analysis was part of the tasks
described in the problem description. This can help visualize how the prototype’s
functionality, hardware and software can be separated into modules, as well as
which module ensures which requirement can be met.

The analysis is conducted in the following manner:

• The system and it’s environment is described, often using a context diagram
as a visual aid. The context diagram shows how the system is connected with
other systems and which information they exchange.

• The system’s functionality can then be separated into individual modules.
This is shown using a diagram called an inner analysis of the system. These
modules can represent hardware, software or a combination of the two. The
diagram also shows how the internal modules are interconnected. For this
particular project the inner analysis shows how the prototype’s software was
modularized. An analysis that addresses hardware or a combination of hard-
ware and software would differentiate greatly.

• The individual internal modules can be separated into smaller modules, like
the inner analysis showed the modularization of the system from the context
diagram. This process can be repeated until it is feasible to conclude with
a specification. For this project, the analysis stops at the second level of
modularization.
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AUTROLINK V2
PROTOTYPE

AUTROSAFE
SYSTEM MQTT SERVER

MQTT
messages

AL_Com+ 
messages

Figure 4.3: Context diagram

The starting point of the analysis conducted here is the AutroLink v1 prototype
from the specialization project, with some slight modifications. Temporary installa-
tion while there are service engineers or other trained personnel nearby. Prototype
can be placed inside cabinet to shield from potential dust and moisture exposure.
Through the initial analysis conducted in Section 4.1, it was found that the new
prototype would need two-way communication with the AutroSafe system in order
to fulfill the needed service functionality. The AutroLink v2 prototype needs to be
able to interface with two separate systems. These external systems provide certain
limitations that the prototype needs to be built around. In particular, the kind of
information that gets exchanged, timing restrictions and how it gets transported.

The first external system is the AutroSafe system, or more specifically, a module
stack in the AutroSafe system. This is visualized in Figure 4.3 as the yellow box to
the left. It needs to support both transmitting and receiving AL_Com+ messages
at a transfer rate of 9600 baud. From the AutroSafe system’s side, these messages
get converted from TTL to RS-232. On the AutroLink’s side the messages need to
be converted back from RS-232 to a TTL-level suitable for the nRF9160 DK. The
AL_Com+ communication imposes certain timing and sequencing restrictions on
the prototype, as to make the communication function as normal. Additionally,
the modules of the module stack will not initiate the AL_Com+ communication,
but rather respond when necessary.

The second external system it needs to interface with is the MQTT server and the
additional clients, which can be seen as the yellow box to the right in Figure 4.3. In
order to communicate with this server the prototype needs a functional implemen-
tation of the MQTT protocol and it needs to run an MQTT client. Furthermore,
it needs to establish and maintain a connection with the server over the Internet.
This external system does not impose any particular timing restrictions on the
prototype. However, the messages from the MQTT server can arrive at any time.
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4.5.1 Inner analysis
Following the context diagram in Figure 4.3, it is seen that the AutroLink v2
prototype needs to communicate with two separate external systems. Since the
messages from coming from the MQTT broker can arrive at any given moment,
they can be regarded as aperiodic events that need to be handled. On the other
side, the communication with the AutroSafe equipment is generally in the form of
responses to requests from the prototype during service. One way to modularize
the program is to separate these two distinct tasks into separate two modules, as
seen in Figure 4.4.

Another requirement for the system is to convert the AL_Com+ messages into
readable characters. This functionality was assigned to the AutroSafe interface
module. This means that the information exchanged between it and the MQTT
client module are the readable AL_Com+ messages.

AUTROSAFE
INTERFACE

MODULE
AL_Com+
messages

MQTT CLIENT
MODULE

MQTT
messages,

configurations

AUTROLINK V2 PROTOTYPE

ASCII
encoded
AL_Com+
messages

Figure 4.4: Inner analysis of the AutroLink v2’s software
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4.5.2 AutroSafe interface

UART
WRITER

AUTROSAFE INTERFACE MODULE

MESSAGE
DECODER

ASCII
encoded
AL_Com+
messages

AL_Com+
messages

UART
READER

MESSAGE
ENCODER

MESSAGE
HANDLER

Figure 4.5: The AutroSafe interface module

In:

• AL_Com+ responses from the AutroSafe system

• Readable AL_Com+ messages from the MQTT client module

Out:

• AL_Com+ messages to the AutroSafe system

• Readable AL_Com+ messages to the MQTT client module

The functionalities of the AutroSafe interface module is further separated into
submodules, as seen in Figure 4.5. The message decoder and encoder modules
are responsible for converting the messages between readable characters for the
operator and hexadecimal values for the AutroSafe system. The message decoder
is responsible for converting the AL_Com+ messages before these get passed to the
message handler. The message encoder will convert the raw AL_Com+ message
to a readable format before passing it to the MQTT client module. The message
handler controls the communication with the AutroSafe system and is responsible
for deciding when to send the AL_Com+ messages to to the AutroSafe system and
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when to listen for responses, as well as which responses get passed to the message
encoder. In addition to these tasks, these three sub-modules should check the local
configuration of the prototype to determine whether the prototype is operating in
“service mode” or “transparent mode”.

If it is operating in “transparent mode”, the messages coming from the MQTT
client module will be readable AL_Com messages, as opposed to AL_Com+ mes-
sages. The message decoder then also needs to convert the AL_Com messages
to AL_Com+ before these get passed along to be sent to the module stack. Fol-
lowing the lines of the decoder, the encoder will have to be able to convert the
AL_Com+ messages coming from the AutroSafe system into AL_Com messages
before passing them on.

The UART writer and reader are responsible for reading and writing the messages
to the AutroSafe system. In case the AutroSafe system responds while the proto-
type is preoccupied with something else, the AL_Com+ message should get stored
in a buffer for incoming messages.

4.5.3 MQTT client

EVENT
HANDLER

MQTT CLIENT MODULE

MESSAGE
PUBLISHER

MQTT
messages,

configurations

Readable
AL_Com+/
AL_Com

messages

Figure 4.6: The MQTT client module
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In:

• MQTT messages from the MQTT server

• Readable AL_Com+ messages from the AutroSafe interface module

Out:

• MQTT publish messages to the MQTT server

• Readable AL_Com+ messages to the AutroSafe interface module

The “event handler”, as seen in Figure 4.6, submodule has the main responsibility
of handling MQTT events. Upon startup it should establish a connection with
the specified MQTT server. In order to do this, it needs to send and receive
messages to handle the necessary handshakes and procedures. Upon a successful
connection, it should subscribe to the specified topics. If a message arrives on
a topic the AutroLink v2 prototype is subscribed to, the event handler should
route the message accordingly. Messages requesting changes to local configuration
should result in the relevant global variables being changed correctly. Messages
meant for communicating with the AutroSafe equipment should be routed to the
AutroSafe interface module. Some messages sent by the operator might necessitate
an answer from the AutroLink v2 prototype. The event handler should therefore
have the possibility of offloading certain message publishing tasks to the “message
publisher” submodule.

The “message publisher” has the main responsibility of publishing MQTT messages
that do not originate from an MQTT event, such as the messages coming from the
AutroSafe system. The message publisher should receive information from the
event handler and the AutroSafe interface module. These should be published to
the specified topic as an MQTT message.

4.6 System specifications

When summarizing the functionalities of the modules in the previous sections the
following specifications are found.

1. Connect to and communicate with a specified MQTT server

2. Subscribe to given topics and send/receive information through these topics

3. Process the received messages

4. Be able to translate between binary values and readable text, and between
Autronica’s proprietary protocols

5. Physically interface with the 10 pin latch contact on the BSL-310 Communi-
cation module

6. Be able to read and write UART signals with a minimum speed of 9600 bps
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Design and implementation
This chapter documents the proposed design to meet the requirements for the
AutroLink v2 prototype. How this design was implemented is also documented.

5.1 Development environment

During the project report, the chosen development environment was a laptop run-
ning Ubuntu 18.04. For this thesis the development was moved to another computer
running Windows 10. In broad strokes, setting up the development environment
for the two projects is similar.

The nRF Connect Software Development Kit (SDK) was set up using the nRF
Connect application [30]. This guides you through installing the necessary tools
and programs in order to work with the SDK, as well as compiling, building and
flashing applications for the DK.

Since the AutroLink v1 prototype was developed using NCS tag v1.2.0, the same
tag was used for the development of the updated prototype’s firmware. A Github
repository was created as a fork of this tag. This made it so that the prototype’s
firmware being developed within Nordic Semiconductor’s SDK also had version
control.

Unlike Linux, Windows does not have a built in terminal command that enables
the reading of serial data. There are software tools available such as PuTTY [31],
which are commonly used used to perform this task. However, for this project it
was opted to write a Powershell script that performed this task in a terminal. The
script can be found as part of Appendix A. In the cases where it was necessary to
write serial data from the computer, PuTTY was used.

5.1.1 Programming practices
The code was written using the case style snake_case, where function and variable
names use lower case letters separated by underscore. An effort was made to
ensure that the code was readable. Descriptive names were given to variables
and functions, so that comments in the code were generally unnecessary. A code
formatter for C was used to keep the code tidy.

49
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5.2 System overview

The proposed design for the prototype is to make it interface with the module stack
through the communication module. This means it will connect to the 10-pin latch
contact to both transmit and receive AL_Com+ messages. As with the AutroLink
v1 prototype, the nRF9160’s Low Power Wide Area Network (LPWAN) modem
will be used to establish an Internet connection through the LTE-M network. An
MQTT server will be used to allow clients to connect with the prototype in order
to perform service and commissioning routines on the connected AutroSafe system.
It should be possible to communicate with the connected AutroSafe system using
AL_Com+ and AL_Com. An overview of the proposed design can be seen in
Figure 5.1.

FIRE ALARM
CONTROL

PANEL

BS-420

Module stack

AUTROLINK V2
PROTOTYPE

BSD-310

BSS-310

BSD-310

BSL-310

Detector loop

MQTT
BROKER

MQTT
CLIENT

MQTT
CLIENT

LTE-MX

Figure 5.1: Concept illustration of the proposed solution for the AutroLink v2

Here, it is possible to use the same MAX3232 circuit that was used in the AutroLink
v1 prototype. However, changes must be made so that the TX, RTS and CTS
signals are also usable, since the only signal line that was tested in the previous
prototype was the RX signal. The proposed solution is therefore to use most of
the AutroLink prototype’s hardware as is, and only make minor changes in order
to meet the requirements of the new prototype.

5.2.1 Changes to the hardware
Few hardware changes were necessary in order for the AutroLink v2 to be able
to meet the new requirements. Two additional wires were connected from the
nRF9160 DK board’s GPIO to the MAX3232 circuit’s CTS and RTS lines. The
wires were added added to the construction by selecting two free GPIO pins, and
are represented by the green and yellow wires.
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nRD9160 DK

MAX3232

Figure 5.2: Illustration of the nRF9160 PCA-10090 connected with the MAX3232
circuit

5.2.2 System design choices
In order for the operator to be able to start the service work as soon as possible after
connecting, the AutroLink v2 should perform the addressing of the module stack.
This should happen automatically after the prototype is connected to the system
and powered on. The operator can then either send identification directives to each
module in the module stack or base the communication on existing schematics and
drawings of the system. If there is something wrong with the module stack, e.g.
this is the reason for the service, this automatic addressing should terminate in a
way that still makes it possible for the operator to communicate with the AutroLink
v2 prototype and the AutroSafe system.

In order for the operator to be able to send directives to the individual detection
units along the detection loop, the loop has to have been raised beforehand. If
the required service work was to send directives to a specific detector, it would
be practical if the AutroLink v2 prototype performed the loop raising procedure
automatically upon connecting to the system. There are however arguments for
why this procedure should be done manually instead. Raising the detection loop
requires handling of several special cases and can be time-consuming in larger
installations. The prototype would also need to continuously send messages about
which AL_Com+ messages it sends to the AutroSafe system, and which messages
it receives. The loop raising feature is already a part of the AS-2000 software,
which logically should already have been attempted before using the AutroLink
v2 prototype. Additionally, performing this task manually inherently enables the
operator to see every step of the communication. Therefore this procedure will be
done manually in this version of the firmware. Moreover, if a loop driver already
has a raised loop, the loop will stay raised when connecting the AutroLink v2 to
the module stack and performing the module stack addressing procedure, as stated
in Section 2.8.4.

Adequate fault detection and handling is necessary when building a robust applica-
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tion. For the AutroLink v2 prototype it was opted to go for a crash-only approach.
As soon as the software enters an unknown state or discovers an unexpected re-
sult, it should crash and restart. This was chosen as the prototype does not need
to store any important information, and only is to be used in service situations.
Implementing this behavior is also a way of allowing the device to restart without
the help of a user.

5.2.3 Terminologies
In order to create a better overview, certain terminologies were defined during
development. Some of these are illustrated in Figure 5.3. Both AL_Com and
AL_Com+ will be sent between the AutroLink v2 and the operator of the remote
MQTT client. In order to not create confusion in which way a message is headed,
the terms “upstream” and “downstream” were created. An upstream message is
a message that originates either from the AutroSafe system or the AutroLink v2
prototype and is headed towards the operator. A downstream message is a message
that is sent from the operators MQTT client, and is meant either for the AutroSafe
system or the AutroLink v2. There are multiple MQTT clients connected to the
MQTT server. One of the clients is specified to be a module of the AutroLink
v2 functionality, which will be referred to as the “MQTT client module”, as in
Section 4.5. Another significant MQTT client is the one used by the operator to
send downstream messages to the AutroLink v2 and AutroSafe system. This will
be referred to as the “operators MQTT client”. The operator is a person who is
knowledgeable about the AutroSafe system, the service and commissioning routines
and is able to read and understand both AL_Com and AL_Com+ messages.

Operator's MQTT
client

MQTT server

AutroLink v2
prototype

AutroSafe system
Upstream

Downstream

Figure 5.3: Figure illustrating some of the terminology defined during development
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5.3 MQTT client and message handler

The MQTT module of the software is a continuation of the module used during the
specialization project [1], which in turn is based off of Nordic Semiconductor’s code
sample [32]. This sample provides an MQTT client built using Zephyr’s MQTT
library [15], that is able to run on the nRF9160 SiP. The sample code has the client
subscribe and listen to one MQTT topic. If it receives a message on this topic,
the client publishes the same message to another topic. The code was altered to
not echo the incoming messages to another MQTT topic, but rather process them
consecutively. The subscribe function is set up to subscribe to what it perceives
as a list of topic names. As default, the sample only specifies a single topic. New
topics were therefore added to the subscribe function as new elements. These were
specified and named in the prj.conf file as seen below, along with the rest of the
necessary changes to the MQTT client.

1 CONFIG_MQTT_PUB_TOPIC = "ALK_v2/panel−1/Upstream"
2 CONFIG_MQTT_SUB_TOPIC = "ALK_v2/panel−1/Downstream"
3 CONFIG_MQTT_SUB_TOPIC_2 = "ALK_v2/panel−1/ con f i g "
4 CONFIG_MQTT_CLIENT_ID = "AutroLink_v2"
5 CONFIG_MQTT_BROKER_HOSTNAME = "mqtt . e c l i p s e . org "
6 CONFIG_MQTT_BROKER_PORT = 1883

Listing 5.1: Contents from the prj.conf file

5.3.1 Handling incoming messages
The incoming messages get analyzed to see whether it is a message containing
configuration changes. If this is the case, the changes to the local configuration
are made. If not, the message gets passed to the AutroSafe interface module
through a First-in First-out (FIFO) queue. Here each element that gets passed
contains a pointer to the message stored in memory and an 8-bit integer value of the
message length. The longest AL_Com+ messages are 17 bytes. When converted
to readable symbols they take up twice as much storage space, since American
Standard Code for Information Interchange (ASCII) uses one byte to encode each
character. This results in the largest possible readable AL_Com+ message being
34 bytes large. This adds up to 37 bytes per message when including the the 8-bit
integer for length and a 2-byte pointer used by the kernel to reference the FIFO
element [33]. Calculating the the exact number of messages that can be stored in
this queue is insignificant, as the queue is dynamically allocated from the calling
threads resource pool. The event of the queue becoming “full” would likely be an
indication of something not working as intended. In this case the nRF9160 would
perform a restart as the code that allocates space for the FIFO queue would run out
of available memory, adhering to the crash-only mentality. Outgoing (upstream)
messages get stored in a message buffer until they have been transmitted. In the
case of the message having a QoS of 1 or 2, it stays in the message buffer until
the message gets acknowledged by the server. The outgoing message buffer of the
MQTT client is by default set to 128 bytes. This means that that the worst-case
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number of possible stored messages in this buffer is b 128byte35byte c = 3, and the best case
is b 128byte3byte c = 42. If necessary, the buffer size can be increased.

While writing and evaluating this module it was discovered that it could in some
cases lose connection to the MQTT server, in which case the thread would terminate
without causing the prototype to restart. This was due to how the MQTT event
handler responded to certain return codes from the MQTT CONNACK messages
(Connection acknowledged), where the return code “0” means the connection was
accepted and any other return code signifies some sort of error [14]. The event
handler was changed in order to adhere to the crash-only mentality, by including
the sys_reboot() function in the case where the return code was not 0. This
function reboots the nRF9160 DK, causing it to automatically start up again.

5.3.2 Message publishing
The MQTT client module needs to be able to publish messages at other times
than only at an MQTT event. One way to achieve this is to handle it outside
of the MQTT event handler. This was solved by offloading the publishing of the
messages to a workqueue thread. Zephyr provides workqueues, which are kernel
objects consisting of a queue of work items and a thread that executes the work
[34]. As part of the initialization of the MQTT client module, 16 work items
get initialized. This leads to Zephyr starting up it’s system workqueue [35]. The
worqueue thread functions as the message publisher submodule in Figure 4.6.

A function for putting the upstream messages into the workqueue was written.
As with the FIFO queue that passes the downstream messages to the AutroSafe
interface module, this function takes in both a pointer to an array and an integer
for the message length. Once a work item has been submitted it’s important
that the contents are not altered until the work item has been processed by the
workqueue thread. This function therefore cycles through the 16 work items, giving
the workqueue thread time to finish processing. This was mostly done as a safety
feature, as the workqueue thread’s priority is higher than the other threads in
this application. This function used a static integer to keep track of which of the
workqueue threads should receive the next message.
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5.4 AutroSafe interface module

The thread that runs the AutroSafe interface module is responsible for conveying
messages to and from the AutroSafe system. The code from the specialization
project that handled the reading of AL_Com+ messages differed greatly from
the needed functionality. This code was therefore scrapped and written from the
ground up.

When analyzing the kind of tasks this software module needs to handle it is seen
that they largely consist of aperiodic tasks. This is when the MQTT client module
sends a message to this module to be sent to the module stack. From the other
system that the prototype is interfacing with, the AutroSafe’s module stack, the
messages will be in the form of a response. This means that while the AutroLink
v2 is being used, the same sequence of events will be repeated until the mainte-
nance work is over. First, the remote client will send an AL_Com+ directive to
the AutroLink v2. Then, this message will be converted from readable characters
to hexadecimal values before being sent to the module stack. The AutroLink v2
prototype will then wait for a response from the module stack. This response will
be converted from hexadecimal values to readable characters, and get sent to the
MQTT server. When the AutroLink v2 prototype is to operate in transparent
mode, the operator sends AL_Com directive instead. In this case, the encoder
and decoder also need to convert the downstream message to an AL_Com+ di-
rective, and the upstream message to an AL_Com directive. Additionally, since
the flow control messages present in the AL_Com+ protocol is not part of the
AL_Com protocol, the AuttroSafe interface module also needs to handle this low
level communication automatically akin to how they are treated in Section 2.8.4.
Certain messages, such as directives, need to be acknowledged using the ACK flow
control message. Sometimes it is necessary to use an ENTX flow control message
to request the information a unit has prepared. By using what’s called a “big while
loop” we’re able to handle these events in a sequential manner, as visualized in
Figure 5.4.

UART
read

Start Message
conversion 1

Wait for
FIFO

UART send

Timeout

Send to
workqueue

Response
Message

conversion 2

Figure 5.4: Flow chart depicting the main loop of the AutroSafe interface module
thread
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As the AutroSafe system is to respond to flow control messages and directives, the
main loop of the AutroSafe interface module should wait for a message coming
from the FIFO queue from the MQTT client thread, as shown in Figure 5.4. Once
a message appears in the queue, it should be converted from readable characters
to binary before getting sent to the module stack. The main loop should then wait
for a response from the module stack. This can result in one of two events. The
first event is that the module stack responds, in which case the message should
be converted from binary to readable characters before getting offloaded to the
workqueue threads. The second possible event is that the module stack does not
respond. This case can be detected through the use of a timeout timer. Both
events result in the AutroSafe interface module waiting on the FIFO queue from
the MQTT client thread again.

Both the messages coming from and being sent to the MQTT client module requires
a pointer to a character array and information about the length of the message.
The same is true for the messages being picked up and sent out on the UART. In
order to keep the message flow tidy as the messages get passed from function to
function certain variable and structures were defined using specific names. This was
done using a keyword in C called typedef [36]. The following types were defined:

1 typede f unsigned char bin_data_t ;
2 typede f bin_data_t ∗bin_str_t ;
3 typede f s t r u c t bin_msg_t {
4 s i ze_t l en ;
5 bin_str_t data ;
6 }bin_msg_t ;
7

8 typede f char hex_data_t ;
9 typede f hex_data_t ∗hex_str_t ;

10 typede f s t r u c t hex_msg_t {
11 s i ze_t l en ;
12 hex_str_t data ;
13 }hex_msg_t ;

Listing 5.2: Custom types for the datastructures used in the firmware

The naming convention used here is as follows. “Data” refers to a single byte from
a message, “str” is a pointer to the first byte of a message without any information
of the length, while “msg” signifies a structure containing both the aforementioned
pointer and information about the message length. All references to “hex” refer
to the readable versions of the AL_Com and AL_Com+ messages, while “bin”
signifies the messages that are strictly hexadecimal. This naming convention was
specifically requested by the engineers at Autronica’s R&D department.
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5.4.1 Addressing the module stack
As stated in Section 5.2.2, this module should first perform the module stack ad-
dressing procedure. Following the descriptions in Section 2.8.3, a loop performing
this procedure after the thread initialization was made. This was executed before
entering the main loop of the module.

Count = 0

UART send
ENTX + Count

UART
read

End

Timeout

NOP DIR
Count++ UART send

ACK + Count Count++

Start

Count variable keeps track of the number of
module stack units that have responded

RTS ON

RTS OFF

Figure 5.5: Flow chart portraying the algorithm for addressing the module stack

After the prototype powers up and finishes initializing, the thread housing the
AutroSafe interface module starts communicating with the module stack. It first
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activates the RTS signal line, initiating the module stack’s addressing. By sending
ENTX flow control messages and handling the responses from the module stack
accordingly, as can be seen in Figure 5.5, the modules gain individual addresses,
making it possible to communicate with each individual module. The algorithm
finishes after it has sent an ENTX without receiving a response within 100ms. At
this point the “count” variable will represent the number of modules in the module
stack given that no messages were lost during communication.

5.4.2 Message conversion
In order to make writing and reading the AL_Com+ messages easier for the opera-
tors connecting with the AutroLink v2, the hexadecimal values should be changed
to readable symbols. Using an ASCII-table, it is possible to find the numerical
values for the hexadecimal numbers represented by ASCII symbols. Since the
AL_Com and AL_Com+ directives are documented and represented by the hex-
adecimal numbering system, we need access to the numbers 0-9 and the letters a-f
and/or A-F. As seen in Table 5.1, the numbers 0-9 are represented by the hexadec-
imal values 30-39, the upper case symbols A-f by 41-46 and the lower case symbols
a-f by 61-66. This also means that when the directives are written using read-
able symbols, they take up twice as much space as when written with hexadecimal
values.

24 47 6E 21 ...

2 4 4 7 6 E ...

# G n !

Hex
value

ASCII
symbol

2 1ASCII
symbol

Hex
value 32 34 34 37 36 45 32 31

Figure 5.6: Above is an example of a message written in hexadecimal values con-
verted to readable symbols. Below is the same message written with readable
symbols converted to hexadecimal values
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Symbol Hex Dec Symbol Hex Dec Symbol Hex Dec
0 30 48 A 41 65 a 61 97
1 31 49 B 42 66 b 62 98
2 32 50 C 43 67 c 63 99
3 33 51 D 44 68 d 64 100
4 34 52 E 45 69 e 65 101
5 35 53 F 46 70 f 66 102
6 36 54
7 37 55
8 38 56
9 39 57

Table 5.1: Readable symbols of the hexadecimal numbers 0-F and their correspond-
ing hexadecimal and decimal values

Two functions were written to handle the conversion of messages. The first function
converts the upstream AL_Com+ messages from hexadecimal values to ASCII,
and was called bin_to_hex(). The second function does the opposite for the
downstream messages, and was called hex_to_bin(). Both functions make use of
the defined types mentioned in Section 5.4.

Downstream conversion

The function that converts the downstream messages takes a structure of the type
hex_msg_t as an argument. This argument contains both a pointer to the first
byte of the message array and an integer value of the message length. This way,
the function is able to locate where the message is stored in memory and read
the correct number of bytes. Since these messages consist of readable characters,
each symbol takes up a whole byte as opposed to a nibble, such as a hexadecimal
character does. The function iterates through the array and converts the readable
characters to hexadecimal values using the same information as in Table 5.1. Af-
terwards, it performs bit-shifting operations in order to compress the information
from every two bytes into one byte, as shown in Figure 5.7. The top row labeled
“Symbol” represents the readable symbols of the downstream message before con-
version. The line below are the hexadecimal values of these readable symbols. The
hexadecimal number A corresponds to the number 10 in the decimal number sys-
tem. By subtracting 55 we have successfully converted this specific byte. Moving
downwards to the second half of the figure, the now hexadecimal A gets bit-shifted
four bit spaces to the left and added together with the following byte. The func-
tion then returns the converted message using a pointer to a structure of the type
bin_msg_t.
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A 4 B 8 ...Symbol

0x 41 34 42 38

...0x 0A 04 0B 08

Conversion

A4 B8 ...
Compression

Figure 5.7: The individual bytes of a downstream message getting converted and
compressed

Since this function has to iterate through the message as it is performing the
conversion it will have an execution time of O(n), where n is the number of symbols
in the message.

Theoretically, any of the symbols seen in a complete ASCII could be sent to the
AutroLink v2. This means that there are 256− 22 = 236 invalid characters. There
is no logical way of converting any other symbols than 0-9, A-F or a-f. A check is
therefore performed as the function iterates through the hex_str_t, to see if any
other symbols than the valid ones are used.

The longest possible valid AL_Com+ message is 17 bytes long, as stated in Sec-
tion 5.3.1. Checks could be implemented in both the upstream and downstream
conversion functions in order to detect messages that are longer than 17 bytes and
34 bytes respectively. Failing the checks could either crash the system or simply
refrain from conveying the message to the module stack. However, sending and
receiving messages that are too long might be useful during debugging in order
to detect or reproduce erroneous behavior. The checks for message length were
therefore not implemented.

Upstream conversion

The function for the conversion of the upstream messages need to do the oppo-
site of the downstream conversion function, converting from hexadecimal values to
readable symbols. As input, the function takes the upstream message in the form
of a bin_msg_t struct. The first and second nibble of each byte of the input array
needs to be analyzed, and it’s contents converted to readable symbols. This was
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done using a for-loop that iterated through the array twice. On the even-numbered
iterations it would look at the first nibble of the current byte, and on odd-numbered
iterations it would look at the second nibble. As the array gets analyzed the in-
formation gets stored in a new array twice the length of the input array. If the
current element had a value between 0 and 9, 48 gets added. With a value between
10 and 15, 55 gets added. Since this function iterates through the message twice it
has an execution time of O(2n). When keeping the largest factor of the expression
we are left with O(n).

bin_to_hex()

bin_msg_t

hex_msg_t

hex_to_bin()

bin_msg_t

hex_msg_t

In len = n

Out len = 2n

Out len = n/2

In len = n

Figure 5.8: Visualization of the two functions that convert between readable sym-
bols and hexadecimals

5.4.3 AL_Com and AL_Com+ conversion
As stated in Section 4.2, the AutroLink v2 should be able to convert AL_Com+ di-
rectives to AL_Com directives and vice versa. Following the information gathered
in Section 2.6, we see that the AL_Com+ directives are similar to the AL_Com
directives, save for one extra header byte and a different checksum.

For the upstream messages, the conversion entails removing the header byte and
recalculating the checksum. The details of the checksum calculation is regarded as
proprietary information, and will thus not be explained. The downstream messages
need to be padded with a header byte that signifies it is a directive along with the
address of a module. This poses a small problem. The AL_Com message sent from
the client does not contain any information about which module in the module stack
it should be sent to. One way to handle this is to have two topics per module stack
unit, where one topic is meant for the upstream messages from that module, while
the other is for the downstream messages to that module. However, during this
project this was not implemented. The messages were rather consequently sent to
the address of the loop driver in the testing setup.
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alcomp_to_alcom()

bin_msg_t

bin_msg_t

alcom_to_alcomp()

bin_msg_t

bin_msg_t

In len = n

Out len = n-1

Out len = n+1

In len = n

Figure 5.9: Visualization of the two functions that convert between AL_Com and
AL_Com+

Two functions were made, one for the upstreammessages called alcomp_to_alcom()
and one for the downstream messages called alcom_to_alcomp(). These are illus-
trated in Figure 5.9. For these algorithms, the length of the output array is known
as it is part of the input structure. Checks were therefore implemented to see if
the output length matched the expectations.

5.4.4 UART handling
Similar to the implementation in the specialization project [1], the UART handling
was set up using with an Interrupt Service Routine (ISR) using Zephyr’s UART
library [37]. In order to map the UART device’s signal lines to the nRF9160 DK’s
GPIO a .overlay boardfile was created, specifying which GPIO pins were to be
used for the UART communication and the baud rate of the communication. Since
the module stack communicates at a signal rate of 9600 baud, this was reflected in
the boardfile. This file is located at the root of the project folder and its contents
can be seen below.

&uart0 {
current−speed = <9600>;
s t a tu s = "ok " ;
tx−pin = <29>;
rx−pin = <28>;

} ;

Zephyr’s UART library has a function for manipulating the line control called
uart_line_ctrl_set. This function can be used to control the RTS signal of the
UART. However, due to some unexpected behavior when using this function it was
opted to seek another solution. Two GPIO pins were used for the RTS and CTS
signal lines instead. These were controlled using Zephyr’s standard GPIO library
functions. A function called gpio_pin_write() can set the state of GPIOs defined
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as outputs either high or low. Another function, called gpio_pin_read() can read
the state of GPIO defined as inputs [37].

Sending UART messages

A function to send the AL_Com+ messages to the AutroSafe system was writ-
ten. It was modeled after the flow chart in Figure 5.10. This function takes the
bin_msg_t structure as input. Zephyr’s GPIO library function uart_poll_out()
was then used to write the message byte for byte to the UART TX pin. This iter-
ates through the message using a for-loop and the information about the message
length from the input structure. This function makes up the “UART send” block
in Figure 5.4.

int n = 0

n++

n > len?

End

Write byte n
to UART

Start

No

Yes

Figure 5.10: Flow chart depicting the process of transmitting a message byte for
byte through UART
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Reading UART messages

The function that read the incoming AL_Com+ messages from UART from the
specialization project code differs from the method employed here. The AutroLink
v1 instead analyzed the information in the AL_Com+ directives to determine
the length of the current message, and also checked the checksum. The reason this
function was not reused is because the nature of this approach may make it difficult
to detect erroneous behavior. Instead, it was implemented based on information
about the AL_Com+ protocol’s timing restrictions.

In order to read the messages that have been picked up by the UART ISR, it is
possible to wait on the FIFO queue from the ISR. This was implemented using
a do-while-loop, which ensures that the thread waits on the queue at least once.
Once the thread is waiting on the queue, one of two things can happen. Either
a byte from the message gets picked up or the waiting expires due to a timeout.
When waiting for the first byte of a response from the module stack, the function
waits on the ISR FIFO queue for 100 ms. If a byte of data arrives before or within
this time, the timeout timer is set to 10 ms. This is done in order to not pick up two
AL_Com+ messages being sent after one another. Looking back at Section 2.6,
the AL_Com+ transmission rate is 9600 baud. This gives the individual bits
in the transmission a time of 1

9600 ≈ 1.04−4s, 104 microseconds between them.
Consequently, one byte of data requires roughly 824 microseconds. Since waiting
for 10 ms is longer than the time between bytes, yet shorter than the shortest
retransmission time of 33 ms, it is deemed appropriate. Once waiting on the FIFO
times out, information the byte array along with the message length are returned
in the form of a pointer to a bin_msg_t structure. This function along with the
ISR makes up the “UART read” block in Figure 5.4.

5.5 Main file

The main file is a necessary part of any C-based program. However, since all of
the prototype’s functionality has been modularized, written their own .c and .h
files, and designed for a thread implementation, the responsibilities of the main
loop are minimal. At startup it sets the values of the global variables that control
whether the AutroLink v2 should process the downstream and upstream messages
as AL_Com or AL_Com+. By default this is set to AL_Com+. The two threads,
the MQTT client and the AutroSafe interface module, were declared at compile
time using the macro K_THREAD_DEFINE [38]. Beyond this the main file has no
other obligations.
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5.6 Scheduling and priority

In order to schedule the different tasks, flat priority was used between the MQTT
client module and the AutroSafe interface module, due to them both yielding often.
The ISRs are given a higher priority than the aforementioned modules, while the
system workqueue thread has a lower priority.

The scheduling strategy that was used to handle the prototype’s tasks is called
“longest wait first”, which chooses the task in the queue that has been waiting the
longest. This can also be viewed as a FIFO queue. This scheduling strategy has
no preemption, meaning that tasks are not put on hold in favor of a higher priority
task that appears. This means that a higher priority task may have to wait for
a lower priority task to finish. This is, however, not deemed as a problem since
most of the system’s tasks are relatively short. The end goal here is to transmit the
upstream messages in a timely manner, meaning that the processing and processing
delay introduced by the prototype should be as small as possible. With this setup,
there is a possibility for starvation to occur. This is however only if either the
module stack were to continuously transmit AL_Com+ messages, or either of the
software modules halting. These are situations that are not meant to happen, nor
are they likely to happen. This implementation is therefore deemed adequate.

5.7 Firmware structure

The finished firmware’s memory requirements are shown in Table 5.2. These num-
bers are provided when flashing the application using West. They also show that
there is more space left in both SRAM and flash memory if changes or additions
to the prototype’s firmware is necessary in the future.

Memory region Used Size Region Size %age Used
FLASH: 88712 B 976 KB 8.88%
SRAM: 43996 B 128 KB 33.57%

Table 5.2: The AutroLink v2 memory after flashing the latest firmware

In order for the modules to interact with each other, certain functionality had to
be inherited. The main file needed to be able to call the main loops from both the
MQTT client module and the AutroSafe interface module module in order to spawn
their threads. Additionally, in order to access the downstream FIFO queue and the
function for adding tasks to the workqueue, the AutroSafe interface module . The
necessary functionality was made available from each module in their respective
header file, which can be seen as the files marked with “.h” in Figure 5.11. The
dotted lines show which header file belongs to which source file. The arrows show
which header files are included in the source files.
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main.c mqtt_client.c alcomp_msg_handler.c

mqtt_client.h alcomp_msg_handler.h

.c .c .c

.h.h

Figure 5.11: The AutroLink v2’s code separation into different files with corre-
sponding headers. The arrows show which file includes which header.

These header files were given include guards, since the main file includes the mqtt
message handler’s header file twice. Once directly through inclusion and once
indirectly by including the header file of the AutroSafe interface module.

5.7.1 Module startup sequence
As explained in Section 5.5, the main file spawns the MQTT client thread and
the AutroSafe interface module thread. Beyond this, it is necessary to ensure that
some initialization and routines run before others. As the prototype is powered
up, logically, one of the threads are bound to finish its initialization before the
other. There are two possible scenarios of partial functionality before the two main
modules are ready. The MQTT client can start first, in which case the operator is
able to communicate with the AutroLink prototype, but not the AutroSafe system.
Regardless, the prototype will not be ready for use before all modules have started
up, so this argument is moot. Instead, it was opted to look at a startup sequence
that ensured could ensure stability.

The MQTT client thread is the one that spawns the system workqueue thread by
initializing the work items. This should be done before the AutroSafe interface
module thread is initialized, since calling the function to put information into a
work item before it is initialized would cause a crash. In normal circumstances this
would not happen, as the modules in the module stack only respond to messages
and will not send messages of its own volition. The MQTT client also initializes the
FIFO queue used to pass information to the AutroSafe interface module. Attempt-
ing to wait on an uninitialized queue would also cause a crash. On the other hand,
passing a downstream message into the FIFO queue before the AutroSafe interface
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module is initalized will not cause any problems. A semaphore is therefore used to
let the MQTT client thread perform its initialization first. Before the AutroSafe
interface module performs its initialization it requests the init-semaphore. This
semaphore is initialized witha value of zero, making the AutroSafe interface thread
block. The MQTT client module will then be the only thread that is not blocked,
and it will perform its initialization. First the system workqueue thread will be
started, then the MQTT client will attempt to establish a connection with the
MQTT server. As the MQTT event handler receives a successfull CONNACK mes-
sage upon achieving connection to the MQTT server, it will release the semaphore
to the AutroSafe interface module, allowing it to continue execution. This was
implemented in a way that ensured it would not end up in a deadlock.
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Chapter 6

Tests and results
The testing methods used are inspired by IEEE829, with separation into unit,
integration and system testing. The purpose of splitting up the testing this way is
to be able to perform and document the tests in an orderly manner. It will also give
a clear indication if any submodule or module is unable to meet its specifications.
Additionally, the higher-level tests may overlap multiple of the specifications.

In order to preserve Autronica’s intellectual property, no actual input or output
data will be described in detail in this section, only the general setup of the tests.
As a consequence of this, information from the unit testing in Section 6.1 and the
integration testing in Section 6.2 will be limited. The system tests are however
more detailed. If a test uncovered erroneous behavior, the appropriate code was
corrected before running the test again. The tests documented in this chapter are
the final tests and results.

6.1 Unit testing

In this testing level, individual hardware and software components were tested.
The tests were chosen based on engineering judgment based on the source code
and knowledge of the protocol.

The tests that were performed were a mix of automated testing and user driven
testing. This was because of the dependency on hardware I/O on a lot of the
software. No time was invested into creating a simulator as this was out of scope.

6.1.1 Automated testing of software components
The conversion functions from Section 5.4.2 were tested using automated testing.
The method used was black box testing, where the tests where designed from the
specifications of the functions to be tested. This is depicted as a flow chart in
Figure 6.1. After manually calculating the expected output based on a valid input,
the valid input is fed into the corresponding function. If the function produces an
output, this is compared to the expected output. If they are equal, the function is
performing as expected by the specification.

69
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Expected output Valid input

Function

Produced based on
specification

Unit Test

Output

Comparison

Result

Figure 6.1: Flow chart of the unit testing procedure

Several valid inputs were tested on each corresponding function. However, these
tests only uncovered if the functions produced the correct output. It was also
necessary to test if the functions failed correctly. Therefore, both fail criteria and
pass criteria were defined for these tests.

Pass criteria:

• The function produces the expected output given a valid input

Fail criteria:

• The function produces unexpected output given valid input

• The function does not stop execution when receiving invalid input

• The function stops execution when receiving valid input

The first and last fail criteria were triggered a few times during the early stages of
development. Information from these were used to rectify the functions. In order
to test the second fail criteria, the functions were given inputs that either based
on the specifications or based on engineering knowledge of the programming would
be invalid. The hex_to_bin() function had some additional tests performed on
it. One of the tests were to set the length field of the input structure to an odd
number. Another test used invalid characters in the input array.
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Results

The four conversion functions passed the tests that were conducted, which signifies
that they their required functionality was achieved.

6.1.2 Manual testing of hardware specific functions
The AutroLink v2’s UART reading and writing capabilities were tested. Instead
of connecting with the AutroSafe system, the prototype was connected to the de-
velopment computer. The equipment necessary for these tests were the AutroLink
v2 prototype, a RS-232 to Universal Serial Bus (USB) cable and a computer with
the PuTTY software. The AutroLink v2’s debug output was connected with the
development computer using a micro-usb cable.

Reading UART messages

To test the prototype’s ability to read UART at 9600 baud, PuTTy was set up
with these attributes. A small script was written for the prototype that would
echo the received UART messages to the debug output. The Powershell script was
used to read this output. When using PuTTY to send messages to the prototype,
these were echoed in the debug output. The results of this test showed that the
prototype was able to read UART at 9600 baud.

Writing UART messages

To test the prototype’s ability to transmit UART messages at 9600 baud, a script
was written that caused the prototype to send a UART message every 5 seconds.
This time interval was chosen arbitrarily. Here, PuTTy was used to read the mes-
sages that the prototype sent. The AutroLink v2 performed this task as expected,
being able to send messages over UART at a symbol rate of 9600 baud.

6.2 Integration testing

At this testing level, groups of related units are tested together. The goal of the
tests are to verify that the units interact with each other correctly.

6.2.1 Message decoder
The message decoder submodule of the AutroSafe interface module was tested.
This module consists of the two downstream conversion functions from Section 5.4.2,
which can be seen to the left in Figure 6.2. For this test, a script was written in order
to input a AL_Com directive consisting of readable symbols into the hex_to_bin()
function, which then passed it’s output to the function that converts AL_Com di-
rectives to AL_Com+ directives. This signifies that this submodule was able to
meet specification 4.
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alcomp_to_alcom()

bin_msg_t

alcom_to_alcomp()

bin_msg_t

In len = n

len = n-1

Out len = (n/2)+1

bin_to_hex()

bin_msg_t

hex_msg_t

hex_to_bin

bin_msg_t

hex_msg_t

Out len = 2(n-1)

len = n/2

In len = n

Figure 6.2: From left to right: Message encoder, message decoder

6.2.2 Message encoder
This submodule was tested much in the same manner as the message decoder
submodule. An AL_Com+ directive was fed into the upstream directive converter,
which then fed it’s output into the bin_to_hex() conversion function, converting
the hexadecimals to readable symbols. This was written in a script, much like
in the message decoder test. This signifies that this submodule was able to meet
specification 4.

6.2.3 MQTT event handler
When testing the MQTT event handler, a version of the firmware where only the
MQTT client module’s thread was started was flashed onto the development kit.
Changes were also made so that the MQTT event handler would not attempt to
pass information to the AutroSafe interface module, as its thread was not running.
Instead it would publish a MQTT message to the upstream topic upon receiving
something on the downstream topic. After initialization, the MQTT client would
attempt to connect to the specified broker and subscribe to the specified topic. The
module succeeded in doing this, meaning that it met specification 1: Connecting
and communicating with the specified MQTT server. From the AutroLink v2’s
debug output it was possible to see the MQTT client’s interactions with the MQTT
server.

Two additional MQTT clients were set up using Mosquitto [8]. One of the clients
subscribed to the topic for upstream messages, while the other was ready to publish
a message to the downstream topic. After the AutroLink v2 had connected with
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the MQTT server, the second Mosquitto client sent a message via the downstream
topic, causing the MQTT event handler to respond. The debug output showed the
MQTT traffic, which can be seen in Listing 6.1. The configuration topic was also
tested in a similar manner. This signifies that the MQTT event handler was able
to meet the requirements in specification 2 and 3.

1 [ mqtt_evt_handler : 2 0 7 ] MQTT CONNACK 0
2 Subsc r ib ing to : ALK_v2/panel−1/Downstream
3 [ mqtt_evt_handler : 3 1 5 ] SUBACK packet id : 1234
4 [ mqtt_evt_handler : 2 2 6 ] MQTT PUBLISH
5 Received : XX
6 Publ i sh ing : YY
7 to t op i c : ALK_v2/panel−1/Upstream
8 [ mqtt_evt_handler : 3 0 5 ] PUBACK packet id : 61043

Listing 6.1: MQTT traffic from the AutroLink v2’s debug output

6.2.4 MQTT publisher module
In order to test that the workqueue implementation of the MQTT publisher mod-
ule functioned according to the specification, a message publishing test was set
up. A script was written, that was executed after the MQTT client module had
established a connection to the MQTT broker and the workqueue items had been
initialized. The script was hardcoded to put an item into the workqueue every 100
ms. This number was chosen arbitrarily.

The same client as in the previous test was still subscribed to the upstream topic.
Here, it was observed that the messages arrived, meaning that the MQTT publisher
submodule also met the requirement in specification 2.

6.3 System testing

After conducting the integration tests, the next level of verifications are the system
tests. These tests are conducted on the complete, integrated system in order to
evaluate the system’s compliance with its specified requirements.

The following tests all had the same test setup and equipment. The testing equip-
ment is listed below.

• AutroLink v2 prototype

• DB9 to 10-pin latch contact cable

• BSS-310A Power supply module [39]

• BSL-310 Communication module [40]

• BSD-310 Loop driver module [3]

• BPS-410 Power supply unit [41]

• BHH-300 Optical smoke detector [42]
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The test setup consisted of a module stack, a detection loop and a power supply.
The module stack contained the minimum modules in order to have a functioning
detection loop, with a power supply module, a communication module and a single
loop driver module. The detection loop contained a single loop unit, which was an
optical smoke detector. The AutroLink v2 prototype could connect with this test
setup using the DB9 to 10-pin latch contact cable, which is depicted in Figure 2.10.
The prototype’s debug output is connected to a computer running the Powershell
script mentioned in Section 5.1.

6.3.1 AutroLink v2 startup test
The first system test that was performed on the AutroLink v2 was the startup test.
In this test, the AutroLink v2 was connected to the communication module of the
module stack with the DB9 to 10-pin latch contact cable as seen in Figure 2.10. Ad-
ditionally, the AutroLink v2’s debug output was connected to a computer running
the Powershell script mentioned in Section 5.1.

First the module stack was supplied with power. Then the AutroLink v2 was turned
on. Here it was possible to read from the debug output that the prototype was
running its startup procedures. It connected with the MQTT server and subscribed
to the specified topic. Afterwards it started communicating with the module stack.
As it started the module stack addressing procedure it enabled the RTS signal line.
This was indicated by the LEDs of the communication module visibly lighting up.
The prototype then started sending ENTX flow control messages to the module
stack and receiving responses from the modules. Once the modules received an
ENTX along with their assigned address, they either responded with a NOP flow
control message, or a directive. This was observed both through the debug output
as well as visibly observed by the LEDs of the modules turning on one after another.

In order to test that it now was possible to communicate with the individual mod-
ules, messages were sent from the Mosquitto MQTT client running on the com-
puter. When sending an ENTX to the individual modules, they either responded
with a NOP flow control message or a DIR. The upstream and downstream mes-
sages were visible both in the debug output as well as appearing as messages in
the Mosquitto MQTT client. This concluded the AutroLink v2 startup test. The
results show that the prototype was able to communicate with the module stack,
control the RTS signal line, and assign unique addresses to the modules. It was
also able to receive MQTT messages from the Mosquitto MQTT client through the
MQTT server, convert the downstream messages and convey them to the module
stack. It was able to pick up responses from the module stack, convert them and
send them to the Mosquitto MQTT client.

6.3.2 Loop raising test
The purpose of this test is to see if it is possible to perform specific procedures on the
module stack and connected detection loop. The loop raising procedure is one such
procedure that will be performed both during service and during commissioning.
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This test was performed after the AutroLink v2 startup test. At this point, the
AutroLink v2 had already assigned addresses to the modules in the module stack,
and the communication between the Mosquitto MQTT clients and the modules in
the module stack had already been verified.

This test was performed by manually sending the necessary directives and flow
control messages from the Mosquitto MQTT client in order to perform the loop
raising procedure explained in Section 2.8.4.

The results from this test shows that it is possible to manually perform procedures
on the module stack and connected detection loops. Doing it manually let the
operator observe each response as messages got sent.

6.3.3 Detection unit parameter change test
With the detection loop raised after performing the previous test, it is possible to
test that routines can be performed on a raised loop. These procedures involve
communicating with the individual loop units on the detection loop. One way
to test the communication is to perform a parameter change. This test was set
up to change the state of the BHH-300 optical smoke detector’s LED by sending
directives requesting the change of specific parameters. This is how it is also done
when using the AS-2000 software to perform the LED test procedure, described in
Section 2.8.1.

Directives were sent from the Mosquitto MQTT client instructing the detector to
switch it’s LED on and off. The parameter change was visually confirmed as the
state of the detector’s LED was changed.

6.3.4 AL_Com+ abstraction test
In order to test the prototype’s ability to function as a transparent link between
Autronica’s prototype software, mentioned in Section 4.2, and the physical detec-
tion loop, a test was set up in collaboration with an engineer from Autronica’s
R&D department. Unfortunately, as this software was still under development, the
integration towards AutroMaster ISEMS was not completed in time of this test.

The software was set to mimic a panel and loop driver, and would perform the loop
raise procedure automatically. The software sent AL_Com directives consisting of
readable symbols, which the AutroLink v2 then converted to hexadecimal values
before converting the directive to AL_Com+. Before the test started, the software
and the AutroLink v2 prototype was connected to the same MQTT server, and the
AutroLink v2 had performed the module stack addressing procedure.

The software and the prototype was able to communicate with each other through
the MQTT server, successfully raising the loop. This test verified that the AutroLink
v2 could be used as a transparent link form the testing software to a physical de-
tection loop. It also showed that the AutroLink v2 was able to convert AL_Com
directives to AL_Com+ and vice versa.
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This test did uncover an error done in the programming. One of the directives
used in the loop raising procedure made the loop driver respond with an ACK flow
control message, which made the AutroLink v2 expect a following directive that
never came. This made the communication halt, causing the prototype to crash
and restart. This error was quickly corrected. The rest of the test went as planned
with no unexpected behavior.

6.4 Summary of results

The unit tests verified that individual functions did as planned. The integration
tests showed that the individual functions and hardware modules were able to
interact with each other. The system testing tied it all together and showed that
the system as a whole was able to meet the specification listed in Section 4.6, and
also the requirements in Section 4.4.



Chapter 7

Discussion

7.1 The tests

The testing performed on the AutroLink v2 prototype verifies that it was designed
according to the specifications, including that the modules that were defined in Sec-
tion 4.5 had the correct functionality. However, validating the requirements that
were defined for the new prototype proved more challenging. In the end this is par-
tially based subjective experiences working with the testing equipment, partially
based on the documentation available on the service and commissioning routines,
and partially based on feedback received through conversations with Autronica’s
employees. A service engineer was able to evaluate the requirements. They pro-
vided feedback stating that the proposed functionality, as well as the requirements
seemed appropriate. They were unfortunately not able to attend the testing of
the prototype. On the other hand, the abstraction test that is documented in
Section 6.3.4, was conducted together with the engineer from Autronica’s R&D de-
partment, and was deemed successful. This test encompassed many of the previous
test’s specifications, which by proxy gives a pointer towards the validation of the
requirements.

Another point to address is the minimal test setup that was used when conduct-
ing the tests on the AutroLink v2 prototype. Although it was a fully functioning
AutroSafe setup, it would be interesting to test the AutroLink prototype on a full
scale industrial installation. This could be done in combination with a commis-
sioning project. By doing this, valuable information about how the AutroLink v2
would have been used could have been gathered. In addition to the large scale
testing, tests should also be performed in different environments. The tests were
performed in the author’s one room student housing condo in Trondheim, where
cellular coverage was no issue. This is not a downside, as having a relatively con-
trolled environment during the initial testing Some of Autronica’s installations are
located ships, floating rigs and oil rigs. At these locations, cellular coverage may
vary greatly.

Normally, both the tests and the code written for a project as peer reviewed at
Autronica. The main reason for this is that AutroSafe system is safety critical.
This should also have applied to both the testing done in this thesis, as well as the
firmware code written for the AutroLink v2 prototype. This was unfortunately not
possible during the duration of this thesis.
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7.2 The prototype

This section contains discussions about the prototype, the functionality, the devel-
opment and the implementation.

Working with the NCS release tag v1.2.0
When starting the practical part of this master’s thesis, namely coding the firmware
for the new prototype, it was decided to work on the same tag of NCS as was used in
the specialization project. This decision was made based on the safety of knowing
that the firmware from the specialization project worked just fine on this tag.
Additionally, it was motivated by the fact that moving the project to a new tag
would incur additional work. At the time, it seemed like the best choice, but later
on in the development it did have certain consequences. The most prevalent issue
was the library functions to use the RTS signal line of the UART. This problem was
circumvented by not using the functions, and rather use functions from Zephyr’s
GPIO library to manually control the RTS signal. As both NCS and the Zephyr
project are still under development, using an outdated tag could introduce issues
with stability and functionality. These issues were, however, not experienced.

Wireless connection
Tying back to Section 7.1, where the topic of cellular coverage was brought up. One
of the reasons the LTE-M was chosen as the way to connect with the Internet is the
fact that this network provides good coverage over Norway’s landmass. Another
reason is that this IoT oriented network in particular supports roaming, something
that was deemed necessary for moving AutroSafe installations, such as the ones on
ships. However, such environments have a tendency to not be especially penetrable
with regards to signals, as the hull and sections of the ship have a tendency to be
made out of thick steel. A limitation that appears because of this is that the
AutroLink v2, and AutroLink v1 for that matter, require stable cellular coverage.
It may therefore not be fit for use on ships, in basements, or industrial buildings
for that matter. Therefore, for the prototype to be useful in these situations,
alternative connectivity methods to LTE-M should be explored. This project is able
to display the prototype’s proof of concept regardless. Additionally, the nRF9160’s
modem firmware has different certifications depending on the version. The one used
during this thesis is certified for use in Norway, as most version of the firmware are.
It is, however, important to note that some versions are not supported in different
regions of the world.

Automatic procedures
The prototype was able to perform the module stack addressing automatically at
startup. The main reason for this arose when Autronica requested the possibility
of communicating with the prototype using AL_Com. It was also practical when
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using AL_Com+ to communicate, especially in terms of being able to start com-
municating straight away. It could instead have been implemented in a way where
the operator wold have to instruct the AutroLink v2 to perform the module stack
addressing. As such, this procedure could have been implemented as a function
that the operator could call via the configuration topic or a similarly defined topic
for these kinds of tasks. Other routines and procedures such as loop raising could
also have been implemented so that they could be run automatically or by the
operators request.

Security concerns
The AutroLink v1 had some inherent security features in that it was connected
to a port that only allowed reading of the AL_Com+ messages. As such, the
introduction of this prototype into an AutroSafe system did not put the system at
any risk. The AutroLink v2 on the other hand, connects directly into a module
stack’s communication module, and reads and writes messages at the operator’s
will. When such a prototype is introduced into a system, the prototype should
have built in security features that ensure the safety of the connected system, as
stated by the SeSa method [12]. For the AutroLink v2, this would entail having
knowledge of the valid directives and flow control messages, as well as when each of
them are safe to use. As such, the prototype could even protect the system against
human error from the operator. It would, however, have been a more difficult
job to implement such functionality compared to what was achieved during this
project. As part of the literature study, security in MQTT was studied, such as
the use of TLS and mutual authentication. This could help protect a tool such
as the AutroLink v2 from malicious cybersecurity attacks. Implementing this was
however not prioritized in this thesis, and would not have been used during the
testing conducted in collaboration with Autronica either way due to their prototype
software not supporting it, as stated in Section 4.2. Instead, this prototype stands
more like a proof of concept for the idea of introducing remote connections to a
AutroSafe system, with the intention of using it to aid in service and commissioning.
and has it’s intended use limited to during service and commissioning situations.
This is somewhat supported by the information in DNVGL’s report RP-108 [13],
where it is stated that temporarily connected equipment do not have to abide by
the same strict requirements as equipment that is connected permanently.

The utility of this prototype
Future fire detection systems from Autronica are likely offer remote service in-
herently. This raises the question if there is much utility in a solution like the
AutroLink v2. Another viewpoint is that Autronica should be able to provide re-
mote services to customers of the old fire detection systems as time passes. In this
case, a prototype like the AutroLink v2 may be a more viable option.
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7.3 Achievement of goals

In this section, it will be discussed if the tasks presented in Section 1.2 were achieved
to an adequate degree. Task 5 is omitted from this discussion as it pertains the
discussion covered in Section 7.1 and Section 7.2, and to an extent this chapter as
a whole. Task 6 is also omitted as it is covered by Section 8.2.

Task 1 - Equipment research
The first task was to get familiar with and describe the relevant equipment from
Autronica, as well as the service and commissioning routines. The work to achieve
this task resulted in Chapter 2, the system description. Documentation from
Autronica, both publicly available and internal, was used to get an overview of
the AutroSafe system. Their proprietary information was used to a greater extent
when going into detail about the protocols, module stack and detection loops. The
same applies for the sections written about their tools and service routines. The
relevant parts of the system and the routines were researched and documented to
such a degree that it was possible to define new requirements for the AutroLink v2
prototype. This task is therefore deemed successful.

A challenge that presented itself when working on this task was that much of
the necessary information regarding Autronica’s components, routines and the
AutroSafe system is proprietary. It was therefore necessary to strike a balance
between describing the system in enough detail for the readers of this rapport,
while not leaking any of Autronica’s proprietary information. However, in spite of
this challenge, the system was described in broad strokes, with protected informa-
tion abstracted to give a description of purpose/functionality without describing
the inner workings. If this report was meant for internal use within Autronica, the
descriptions, samples and illustrations could have been more detailed. This would
be more valuable for Autronica.

Task 2 - Literature study
The second task was to conduct a literature study on relevant subjects, as well
as to examine whether commissioning and service with remote access had been
discussed in literature. As stated in Section 1.3, specific search terms were used
to try and locate reports and articles of relevance through search engines such as
Google Scholar and NTNU Oria. Here, many of the search results were articles
from tech magazines describing up-and-coming products and solutions for remote
service and streamlining thereof. These results did not go into a meaningful degree
of technical detail. The rest of the results were standards, technical reports and
research documents pertaining remote access to safety critical systems for the oil
and gas industry. These search results mainly had a great focus on cybersecurity,
which was outside the scope definition of this thesis. A few sources from each end
of this spectrum was chosen and documented as part of Chapter 3. Information
regarding the other subjects of the literature study were readily available. Although
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there still is a wish to find more relevant sources to the subjects, this task is deemed
completed to an adequate degree.

Task 3 - Prototype
The third task was to propose a design for the prototype, perform a structured
analysis and present specifications. The structured analysis and presentation of
the specifications were performed as part of Chapter 4. The proposed design was
presented in Section 5.2. The work performed during this thesis mainly focused on
the functionality and firmware of the prototype. The hardware of the prototype
is a minimal implementation that facilitates the defined functionality. This task is
therefore deemed completed.

It also means that since a lot of the ground work has been done and documented,
reworking the specifications won’t necessarily have to be done from the ground up.
And again, as stated in Section 7.1, performing an acceptance test in a large scale
system could help point out weakly defined requirements and specifications.

Task 4 - Testing to design
The fourth task was to implement and test the proposed prototype design. The
implementation is documented throughout Chapter 5 while the testing is docu-
mented in Chapter 6. Both of these tasks were completed to an adequate degree
as the prototype has been documented and met its specification through testing.
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Chapter 8

Conclusion and future work
In this final chapter of the thesis, the findings and results are concluded. Certain
opportunities and tasks outside the scope of the thesis are presented as proposals
for future work.

8.1 Conclusions

In this project we were able to verify that the AutroLink prototype could be use-
ful as a tool for service and commissioning. This was done by introducing new
functionality that was located through an analysis of the AutroSafe system and
Autronica’s service and commissioning routines.

By connecting directly with the communication module in the module stack the
prototype can perform certain routines automatically, while it facilitates others
through two-way communication. Service engineers and other trained personnel
can connect to the prototype wirelessly in order to gain access to communication
that reaches the units in the module stack, as well as the units of the detection
loops. This can benefit the service and commissioning routines as it may reduce
the number of people necessary on site to perform certain routines, as well as
simplifying the process of providing expert competence from a remote location.

8.2 Future work

The following subjects were located throughout the work on this thesis. They were
either outside the scope of the thesis, or were alternatives to methods used. They
are presented as possibilities for future work.

Further testing
Due to a limited test setup and restrictions due to the Covid-19 pandemic, the test-
ing performed on the AutroLink v2 prototype was limited. The prototype should
receive further testing by trained personnel and service engineers in a large scale
system. This could help determine the usefulness of the AutroLink v2 prototype
in remote service situations, as well as during parts of the commissioning of the
AutroSafe system.
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Message translation
The messages were converted from hexadecimals to ASCII encoded symbols for
readability purposes. However, to most service engineers and trained personnel,
these messages are hard to read unless they are fluent in AL_Com. Using infor-
mation about the directives, the messages could translated in a manner that better
convey their meaning, making them inherently “human-readable”.

Extended automatic functionality
The module stack addressing procedure was implemented to be run automatically.
This was to expedite the service so that if the operator was to communicate using
AL_Com instead of AL_Com+, it could be done right away. Other routines could
also be implemented to run automatically. Alternatively, other routines could
be made into functions that can be called by sending the AutroLink v2 specific
configuration messages.

AS-2000 compatibility
The AS-2000 software is used throughout many of the service procedures and rou-
tines that are employed on the AutroSafe system today. By augmenting this soft-
ware with an MQTT client it could be used remotely through the AutroLink v2
prototype. This could prove useful as trained personnel and service engineers al-
ready are familiar with the GUI of the software.

Alternatives to LTE-M
The AutroLink v2 relies on cellular coverage in order to be able to connect with the
Internet connected MQTT server. More specifically, it relies on LTE-M coverage.
There is, however, not necessarily coverage at every location Autronica has an
AutroSafe installation. Examples of this are ships at sea, floating rigs and oil rigs.
Alternative wireless communication methods should be explored for testing on such
locations. The nRF9160 DK supports NB-IoT, which could be a starting point for
this task, considering no hardware changes are necessary in order to test it.

Custom PCB
The prototype was conceptualized, implemented and tested on a nRF9160 DK
from Nordic Semiconductor. For future work and testing, a custom PCB should
be designed for the prototype.

Temporary fire detection
Sometimes, the AutroSafe fire detection system gets installed in onshore, offshore
and marine vessels while the facilities are still under construction. Tools that are a
fire-hazard in and of themselves, such as blow torches, welding-apparatus and angle
grinders are often used in these situations. Here, temporary fire detection could
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prove useful. A literature study could be conducted on systems for temporary fire
detection. Furthermore, it would be interesting to see if a basic cause and effect
algorithm could be implemented on the AutroLink prototype for testing purposes.
This way, the AutroLink could function as a temporary controller for the module
stack and detection loop, and thus provide rudimentary fire detection.
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Appendix A

Contents of zip-file
The zip-file contains:

• The latest source code of the project

• The Powershell script used for reading serial data

• The report from the specialization project
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