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Abstract

This thesis presents a novel method of including a type of measurements with unique IDs,
transmitted from surrounding vessels, in a radar target tracker. The application of the
method is based in maritime target tracking, and Automatic Identification System (AIS)
messages are used in combination with radar measurements. The AIS measurements are
processed by the tracker as they arrive, which can be at any time, independently of when
the radar delivers measurements to the tracker. The possibility of using AIS measurements
is added to an already developed maneuvering multi target tracker. To accommodate
the AIS measurements, the tracker is derived from a general set of modeling assumptions.
When no AIS measurements are present, the tracker behaves exactly as the previously
developed maneuvering target tracker. The purely sequential way of handling the AIS
measurements differs from previously created radar-AIS target trackers.

Furthermore, the performance of the tracker is evaluated through a comparison between
when using the AIS measurements, and when only using radar. The tracker was tested
on both simulated data and real data. The analysis showed consistently better results
when AIS measurements were present, with no obvious drawbacks except for an increased
computational load.
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Sammendrag

Denne avhandlingen presenterer en ny metode for å bruke en type målinger med unike
IDer, sendt ut av omkringliggense fartøy, i en radar-basert målfølgingsalgoritme. Det
tiltenkte bruksomr̊adet er i maritim målfølging, og målinger fra systemet for automatisk
identifikasjon av skip (AIS) brukes for å representere den ovennevnte typen målinger.
AIS-målingene blir prosessert av målfølgingsalgoritmen med en gang de ankommer, som
kan være p̊a et hvilket som helst tidspunkt. De er uavhengige av n̊ar radaren returnerer et
nytt sett med m̊alinger. Muligheten for å bruke AIS-m̊alinger tillegges en allerede utviklet
radar-m̊alfølgingsalgoritme. Målfølginsalgortmen har blitt avledet fra et generelt sett med
antakelser for å muliggjøre bruken av AIS-m̊alingene. I fraværet av AIS-m̊alinger oppfører
målfølgingsalgoritmen seg akkurat slik som den tidligere utviklede algoritmen. Den rent
sekvensielle behandlingen av AIS-m̊alingene skiller seg fra tidligere utviklede metoder for
radar-AIS-fusjon.

Videre er målfølgingsalgoritmen evaluert gjennom en sammenligning av ytelsen med
og uten bruk av AIS-m̊alinger. Sammenlingingen ble gjort b̊ade p̊a simulert data og ekte
data. Analysen viste konsekvent bedre resultater ved bruk av AIS-målinger, med ingen
åpenbare ulemper bortsett at m̊alfølgingsalgoritmen blir mer regnekrevende.
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Nomenclature

The field of target tracking contains a lot of abbreviations, and a lot of symbols. This
thesis does the same, and to make it more manageable for the reader the most relevant
abbreviations and symbols are summarized here. The remaining symbols are explained
where they appear.

Abbreviations

Several abbreviations are used throughout this thesis, and they are summarized here.

AIS Automatic identification system
ANEES Average normalized estimation error squared
ANIS Average normalized innovation squared

CSTDMA Carrier sense time-division multiple access
CT Coordinated turn
CV Constant velocity

EKF Extended Kalman filter

FISST Finite set statistics

GLMB Generalized labeled multi-Bernoulli

HO-MHT Hypothesis oriented multiple hypothesis tracker

IMM Interacting multiple models
IPDA Integrated probabilistic data association

JIPDA Joint integrated probabilistic data association
JPDA Joint probabilistic data association

MBM Multi-Bernoulli mixture
MC Markov chain
MHT Multiple hypothesis tracker
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MMSI Maritime mobile service identity

NEES Normalized estimation error squared
NIS Normalized innovation squared

OSPA Optimal subpattern assignment

p.g.fl Probability generating functional
PDA Probabilistic data association
PDAF Probabilistic data association filter
pdf Probability density function
PHD Probability hypothesis density
PMBM Poisson multi-Bernoulli mixture
PPP Poisson point process

RFS Random finite set
RIB Rigid inflatable boat
RMSE Root mean squared error

SOTDMA Self-organizing time division multiple access

TFAR Track false alarm rate
TFR Track fragmentation rate
TLE Track localization error
TO-MHT Track oriented multiple hypothesis tracker
TPD Track probability of detection
TTP Total track probability

VIMMJIPDA Visibility interacting multiple models joint integrated probabilistic data
association

Symbols

The hybrid state

The symbols used to describe the different elements of the hybrid state, the probabilities of
the different states and the set of possible states.

x kinematic state
v visibility state
τ MMSI number
s kinematic model (mode)
y hybrid state
o visibility state probability

η probability of a target being visible
V the set of all MMSI numbers
ξ MMSI number probability
µ mode probability
M number of modes in the hybrid state
P state covariance matrix

Subscripts and superscripts

Sub- and superscripts are used quite heavily throuout the thesis, take for example µtτ s̃k|k−1.
Here, τ and s are described above, and the indicate that the variable is the mode probability
of mode s, when the target has MMSI number tau. The other symbols are described below.
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ˆ estimate
˜ marginalized variable
˙ time derivative
k time step

t track index
k|k − 1 conditional on the previous time
R considers radar measurements
A considers AIS measurements

Modeling symbols

These symbols are used to describe different aspects of the model.

b target birth rate
PC probability of the MMSI numbers not

being corrupted
w visibility transition matrix
q MMSI number transition matrix
π transition probability matrix
∆t time between the current and previous

time step
H measurement matrix
H∗ velocity matrix

PSc constant probability of survival
tk time at time step k
f state transition function
Q process noise covariance matrix
PD detection probability
λ clutter intensity
z measurement
p positional part of an AIS measurement
a association hypothesis
R measurement noise covariance matrix

Implementation specific symbols

Some of the symbols are used to describe the implementation of the tracker. These are
summarized here.

F state transition matrix
ν innovation
S innovation covariance
g validation gate scaling parameter
TTTP TTP threshold for when to initialize

new track

Td Track termination threshold

Tτ MMSI pruning threshold

α track fusion hypothesis significance
level

Tc track confirmation threshold

Data generation and result evaluation specific symbols

Symbols which have been introduced to specify different aspects of the data generation and
result evaluation process are described here.

PAIS probability of a generated target us-
ing AIS

PA probability of a generated target be-
ing of SOLAS class A

Pdropout probability of an AIS dropout for a
generated target

Tdropout mean for the AIS dropout time for
a generated target

Nk number of samples
c OSPA(2) cutoff value
p OSPA(2) order
N OSPA(2) window length

xv





CHAPTER 1

Introduction

1.1 Motivation

Replacing or expanding existing naval equipment with autonomous ships has the potential
to be economically advantageous [3] and can remove some of the risks associated with
work at sea [4]. This is reflected in the initiative the industry is showing regarding current
research projects undertaking the task of making autonomous ships a reality, for example,
the recently started Centre for Research and Innovation SFI Autoship at NTNU [5].

One of the many important puzzle pieces for increased degrees of autonomy in the
maritime sector is the ability for a ship to observe its surroundings. And to be able to avoid
collisions and safely navigate the waters, it is important to know where the surrounding
ships are situated. For this to work safely and robustly, target tracking algorithms that
provide good estimates of the position and direction of the surrounding ships, also known
as targets, have to be developed. For this task radar-based target tracking algorithms have
largely been the norm when navigating outside of close encounter harbor areas. There is,
however, also a system in place to help with collision avoidance at sea: the Automatic
identification system (AIS). This system provides messages with valuable information that
could help give better estimates than what could be done using only radar. Concerning
the use of AIS in modern target tracking algorithms, much is left to be decided, which
leaves a valuable source of information unused.

1.2 Previous work

This thesis builds upon an implementation of a multi-target tracker which was done
as a pre-master project in 2019. The tracker that was implemented in the pre-master
project was recently published in connection with the Global OCEANS 2020 conference
[1], and is currently in the review process for journal publication. The tracker is called
the VIMMJIPDA. The quite long abbreviation can be broken up to describe the different
characteristics of the tracker:

1



Chapter 1. Introduction

V stands for visibility and indicates that the tracker allows the targets to be in
a state where they are not visible to the tracker, but nevertheless exists.

IMM stands for Interacting Multiple Models. This is a framework that allows for
the use of several kinematic models to be used in parallel, to better account
for the movement of a target.

JIPDA stands for Joint Integrated Probabilistic Data Association and is a target
tracking algorithm. It accounts for the probability of existence for the
individual tracks, which is the estimate the tracker returns. It is also a
multi-target tracker, which means that it can consider several potential
targets when assigning measurements to targets. This process is what is
denoted as data association.

This multi-target tracker has shown good promise for radar tracking and is used here
as a basis. The VIMMJIPDA builds upon work done in the target tracking community
through the past several decades. It is an extension of the JIPDA, introduced by Darko
Musicki and Rob Evans in [6]. Here, the concept of visibility, as it is explained above, is
mentioned, but is not used. It has, however, been explored in relation to other trackers
and the problem of estimating target detectability, through e.g. [7]. The JIPDA can
be considered an extension of the Joint probabilistic data association (JPDA) method
developed by Yaakov Bar-Shalom [8], which again is an extension of Bar-Shalom’s own
Probablistic Data Association (PDA) method [9]. These methods are well established
in the target tracking community, and have been used for a range of different purposes,
such as collision avoidance for marine vessels [10] and autonomous navigation [11]. The
IMM method has also been in use for several decades, and was introduced by Henk A. P.
Blom and Yaakov Bar-Shalom in [12]. These methods are all more thoroughly described
in Chapter 2. Furthermore, a IMM-JIPDA algorithm was presented in [13] by Musicki
and Suvorova. Here, similar to what is done in the VIMMJIPDA, the concept of IMM
was integrated in a JIPDA. This was, however, done from a somewhat different point of
view as to what is done for the VIMMJIPDA.

Some work on the fusion of radar and AIS measurements has been done previously,
perhaps most notably by Gaglione et. al. [14]. This approach used a framework similar
to the JIPDA framework, but was formulated using probabilistic graphical models and
used loopy belief propagation. A similar algorithm was made by the author for the course
TK8102 at NTNU, but without using graphical models. For this, the VIMMJIPDA
was also used as a basis. Both methods processed the radar and AIS measurements
simultaneously each time the radar provided new measurements.

1.3 Problem formulation

This thesis is concerned with the problem of radar and AIS fusion for target tracking. The
main question posed is if it is possible to include the processing of AIS measurements in
the VIMMJIPDA sequentially. Here, sequential means that the AIS measurements are
processed as they arrive, as opposed to how it is done in the previously made algorithm,
where all AIS measurements are collected and processed only when new radar measurements
arrive. There are a couple of reasons why this way of doing it may be beneficial. Firstly,

2



1.4 Main contributions

it simply seems more intuitive to process the AIS measurements just as they arrive.
Furthermore, it can simplify or improve the initialization of targets. Lastly, it can provide
improved estimates for some tracks in between radar updates, which can be beneficial for
a collision avoidance system relying on the tracker.

Potential drawbacks of this method will also have to be considered. It is reasonable
to assume an increase in the computational complexity, and if this is of a magnitude
that creates the need for approximations that degrade the performance considerably the,
gain from including AIS measurements could be negligible. Furthermore, it has to be
examined if the inclusion of AIS measurements has the potential to cause problems in
specific situations, where the different nature of the AIS measurements, in comparison
with radar measurements, could create undesired behavior.

To summarize, the thesis considers

1. The construction of a tracker that handles AIS measurements as they arrive.

2. The performance of such a method as opposed to using only radar.

3. Whether the increase in computational complexity makes such an approach
infeasible.

1.4 Main contributions

This project presents a novel multi-target tracker utilizing both radar and AIS measure-
ments, built upon the framework of the VIMMJIPDA. The main difference from previous
methods is the ability to handle the AIS measurements as soon as they arrive. The mathe-
matical formulation of the tracker is presented, and simulation studies on both simulated
and real maritime data are used to evaluate the tracking performance in relation to a pure
radar tracker. In addition, a method for evaluating the probability of the existence of new
tracks is presented, called the Total track probability. This method is analyzed for use on
AIS measurements, both mathematically and through simulations.

1.5 Outline

Chapter 2 presents some background theory regarding the two different measurement
types, radar, and AIS, in addition to a walk through some of the most notable target
tracking methods. These ranges from simpler methods to the most complex, state of
the art methods available. Chapter 3 lays the mathematical foundation for the target
tracker, describing how the problem is modeled, before the method, i.e. the tracker itself,
is described in Chapter 4. Chapter 5 details the implementation details of the tracker,
describing how the tracker is realized.

In Chapter 6 the experimental setup is elaborated upon, both the physical setup
resulting in the real maritime data, and the program for generating simulated data. In
addition, the different metrics used to evaluate the tracking performance are explained.
The tracking results on both real and simulated data are presented in Chapter 7 before a
discussion follows in Chapter 8. Lastly, conclusions are drawn in Chapter 9.
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CHAPTER 2

Target tracking

2.1 Radar and AIS

2.1.1 Radar

The radar emerged as a useful tool for determining the position of surrounding targets in
the 1930s. It had previously been shown by Herbert Hertz in the late 1800s that radio
waves could be reflected off of metallic objects, and after some less successful attempts at
creating maritime radars the technology was ready to be used in practice at the onset of
the Second World War [15].

Basic working principle

The name radar comes from Radio detection and ranging and hints at the way a radar
works. A radar rotates continuously, emitting radio waves that are reflected from objects
within the range of the radar. The bearing of the object which reflects the radar wave is
found using the direction of the radio wave detecting the object. Roughly speaking, this
direction is determined by what direction the antenna is facing. There are also several
other factors determining the bearing, such as beamforming, but as the field of radar
technology is large with a multitude of different solutions a more in-depth analysis is
omitted. The range is in turn found by using the time the reflected signal uses to return to
the radar. As the speed of the radio waves is well known this is easily calculated. This is
done either by transmitting a short pulse and registering when it returns, or by sending a
longer pulse with increasing frequency and registering the frequency of the reflected signal.
The physical properties of the radar lead to some limitations and potential problems. The
radar will have a limited maximum range, and limited resolution both with regards to
range and bearing. The maximum range is the largest distance of which an object can be
detected. The bearing resolution is the number of times radar waves are emitted during
a single radar revolution, while the range resolution is determined by the finite number
of distances which can be quantified by the radar. Both the range and the resolution
will depend on the setup of the radar, in addition to the properties of the radar itself.
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Chapter 2. Target tracking

Figure 2.1: Illustration of a boat with radar.

In addition to the range and resolution limitations, the radar is far from guaranteed to
detect all surrounding objects. This can be due to the angle of the reflection, waves, or
a lot of other factors. In Figure 2.1, both the yellow and blue boat remain undetected.
The radar is also prone to creating false alarms, or clutter as it is usually called. Clutter
measurements are measurements which do not stem from an actual target, or ship in the
case of maritime surveillance, but rather environmental objects such as waves, birds, and
so forth [16]. This is exemplified by the bird in Figure 2.1.

Radar in a target tracking context

While the first radars used a real-time rendering of the surrounding object, the ability to
collect and process the radar measurements using computers has made more advanced
analysis possible. This involves a modeling framework for handling missed detections,
clutter measurements, and the measurement error of the detections. The measurement
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2.1 Radar and AIS

error in this context means the difference between the actual position of the target and the
measured position. By using a filtering method, such as a Kalman filter, with a prediction
and an update step the measurement errors are mitigated. A probabilistic framework
working on the received measurements can be used to decide which measurements come
from which target, whether a target has failed to be detected and whether a measurement
is a clutter measurement. A missed detection is when a target has failed to create a
radar measurement even though it exists, as represented by the blue boat in Figure 2.1.
Furthermore, the radar can give several measurements for each target, as can be seen for
the orange boat in Figure 2.1. Most trackers want only one measurement for each target,
so if a target has returned several measurements these have to be clustered before the
radar measurements are delivered to the tracker.

2.1.2 Automatic identification system (AIS)

The need for a ship to be able to identify surrounding ships arose as radio communication
between different ships became more prominent. Without the possibility of precise identi-
fication, establishing communication could be cumbersome and in the worst-case scenario
create dangerous situations as a result of this. This need for efficient communication led
to the creation of the Automatic identification system (AIS), which in 2004 became a
requirement for all ships covered by the Safety Of Life At Sea (SOLAS) convention [17].

Basic working principle

Ships that are using an AIS transmitter are sending AIS messages which are received by
the surrounding ships. The main protocol used to send and receive messages is called
self-organizing time division multiple access (SOTDMA). An AIS receiver can only receive
one AIS message at a time, and this protocol ensures that the different ships organize
their transmissions so they don’t interfere with other AIS messages. The transmission rate
for each ship varies with the speed and class of the ship. The AIS regulation differentiates
between SOLAS regulated ships, which are denoted Class A ships, and other ships, which
are denoted Class B ships. The transmission rates for positioning data for Class A ships
can be seen in Table 2.1, and for Class B ships they can be seen in Table 2.2. While
Class A ships mainly use the SOTDMA protocol, Class B ships also use the carrier sense
time-division multiple access (CSTDMA) protocol, where the AIS transmitter checks if a
message is being transmitted by other ships before transmitting. In crowded waters, as in
harbor areas, the transmitting schedule of AIS messages can also be controlled by onshore
controllers.

Each ship can transmit several different types of AIS messages. Firstly there are the
dynamic messages which inform of the current movement and navigational status of the
ship. These are transmitted according to Table 2.1 and Table 2.2. Furthermore static
and voyage-related information regarding the ship is transmitted every six minutes, or on
request from another ship. Safety-related manually entered messages can be transmitted
when needed, in addition to several other, less important message types. A thorough
explanation of all the different message types can be found in [18].
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Ship type Reporting interval

Ship at anchor or moored and not moving faster than 3 knots 3 min
Ship at anchor or moored and moving faster than 3 knots 10 s
Ship 0-14 knots 10 s
Ship 0-14 knots and changing course 3 1/3 s
Ship at 14-23 knots 6 s
Ship at 14-23 knots and changing course 2 s
Ship >23 knots 2 s
Ship >23 knots and changing course 2 s

Table 2.1: AIS transmitting frequency for SOLAS class A ships.

Ship type Reporting interval

Class B ”SOTDMA” not moving faster than 2 knots 3 min
Class B ”SOTDMA” 2-14 knots 30 s
Class B ”SOTDMA” 14-23 knots 15 s
Class B ”SOTDMA” >23 knots 5 s
Class B ”CSTDMA” not moving faster than 2 knots 3 min
Class B ”CSTDMA” moving faster than 2 knots 30 s

Table 2.2: AIS transmitting frequency for SOLAS class B ships.

AIS in a target tracking context

Using AIS messages for target tracking requires a somewhat different mindset than when
using radar measurements. Perhaps most importantly a tracker cannot rely only on AIS
messages, as can be done when using radar measurements. There are no guarantees
that all surrounding ships will have an AIS transmitter, and as such secure collision
avoidance cannot be guaranteed. Thus, the AIS messages can be viewed as a supplement
to radar-based target tracking. The technical properties of the two signal types are also
completely different. AIS messages are transmitted from surrounding ships, with the
consequence that there will be no clutter measurements. This means that all received AIS
messages must come from a ship. In addition to this, modeling missed detections as part
of a probabilistic framework becomes difficult. This will require the establishment of a
timetable consisting of the expected transmission times for all surrounding ships at any
given time. This also gets increasingly difficult as the protocol changes time slots randomly
after some time to avoid interference issues. Because of this, it is difficult for a tracker to
extract any information from the fact that an AIS message hasn’t arrived at any given
time. The perhaps most intriguing information to be extracted from the AIS messages
is the Maritime mobile service identity (MMSI) number of the transmitting ship, which
is a unique identification number. This can greatly help with the data association, i.e.
connecting a measurement to a track. For radar measurements, there are naturally no such
IDs to help with the data association problem. However, a limitation in tracking using AIS
lies in the relatively high rate of incorrect messages. As described in [19], approximately
4.6% of all transmitted AIS messages with dynamic data have errors. If this error is in
form of a bit flip, it can result in wrong positional information or a wrong MMSI number.
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2.2 Single target tracking

While the first type of error is easily handled using standard target tracking techniques
the second will be harder to amend.

2.2 Single target tracking

The field of target tracking is concerned with detecting and estimating the position of
potential targets. In the context of maritime target tracking, these targets are other vessels
populating the waters surrounding the vessel conducting the target tracking, or the ownship
as it is often called. The ownship is equipped with one or several exteroceptive sensors.
An exteroceptive sensor gathers measurements from the surroundings, this in contrast to
interoceptive sensors which measure the state of the ownship itself. The problem of finding
the position of the ownship is called navigation, but in target tracking the position of the
ownship itself is often assumed known. The field of target tracking emerged in the wake of
the invention of the radar, and with the invention of the Kalman filter in 1960 by R.E.
Kalman [20] a foundation for many of the later advances was created. However, target
tracking is concerned with more than just filtering of incoming measurements. The fact
that several measurements can arrive at each time step, that not all measurements come
from a target, and that some targets are not detected creates the need for the application
of statistical decision theory. The term single target tracking is used for methods where
the data association between tracks and measurements is done one track at a time.

2.2.1 Probabilistic data association

The Probabilistic data association (PDA) method and the resulting Probabilistic data
association filter (PDAF) were introduced in 1975 [9]. The PDAF provided a minimum
mean square error (MMSE) approach for situations where the sources of the measurements
are uncertain. The data association problem arises from the fact that targets can remain
undetected and that measurements have an uncertain origin. The PDA approach solves
this problem by calculating the probability that the different measurements came from the
target in question, in addition to the probability of a missed detection. These probabilities
are then used to calculate the innovation to use in the filter, giving several distributions
which together represent the final estimate. To avoid that each of these distributions
have to be considered individually when the next set of measurements arrive, and thus
making the problem grow exponentially, they are merged to a final posterior estimate.
This is illustrated in Figure 2.2, where three potential measurements, the gray dots, have
resulted in an estimate consisting of three distributions, in blue. The track is shown in
orange, while the distribution resulting from the merging is shown in red. Previously the
standard method to solve the data association problem was to choose a measurement using
a nearest-neighbor type of decision, such as in [21] from 1971. The PDA introduced a
more robust method which is still an important part of many target tracking algorithms.

2.2.2 Integrated probabilistic data association

The PDA approach takes for granted that a target exists when it starts processing
measurements, and delegates the concerns regarding a target’s probability of existence to
other parts of the program. With the introduction of the Integrated probabilistic data
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Figure 2.2: An estimate consisting of several distributions, and the merged estimate of these.

association (IPDA) [22] the concept of existence became an integrated part of the tracking
method, hence the name. When combined with an initialization scheme and a termination
scheme utilizing the existence probability, it provides a good basis for a target tracking
framework.

2.2.3 Interacting multiple models

Even though the Interacting multiple models (IMM) method is not a tracker in it’s own
right, it is widely used in target tracking in combination with some other method, e.g. the
PDA. The IMM was presented by Henk A. P. Blom and Yaakov Bar-Shalom in 1988 [12],
and allows for use of several different kinematic models when estimating the state of a
target. Predictions and updates are done in parallel for each model and the probability of
each model being the correct one is calculated to merge the resulting distributions.

2.3 Multi-target tracking

The difference between single-target tracking and multi-target tracking lies in how the data
association is done. If only one target is present the two approaches will behave similarly,
but with several targets present using a multi-target tracker can give better results. Simply
put, single-target tracking methods perform data association independently of other targets,
calculating the probability of the association between target and measurements with no
regard for eventual other targets nearby. Multi-target trackers on the other hand include
other targets when calculating the association probabilities. This can be helpful when
targets are close to each other and are ”fighting” for the same measurements. Situations
like this can occur when many targets are present, but single-target trackers have also
shown to have good performance in many situations, for example in [23]. However, using
a multi target tracker in a multi-target environment can lead to some problems, such as
track coalescence [24].

Below, some of the most widely used approaches to the multi-target tracking problem
are presented. These include both some older methods which has been around for decades,
and some newer tracking methods which have appeared with the development of the
Random finite set framework.

2.3.1 Joint probabilistic data association

The Joint probabilistic data (JPDA) tracker was first presented by Fortman et. al. in
1980 [8] before it was expanded upon in 1983 by the same authors [25]. As indicated
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by its name, the method expands upon the previous PDA method but allows the data
association procedure to jointly process measurements for several tracks. To make this
computationally feasible only the measurements in the area around the predicted position
of each track are potential measurements for said track. This is known as validation gating,
and in practice, it means that measurements that have a very low probability of being
associated with a target are disregarded. This is also done in the PDA and IPDA methods.
Furthermore, tracks are clustered, and only the tracks and measurements in each cluster
are considered when performing the data association.

Such a cluster is shown in Figure 2.3. The tracks are in orange, the measurements are the
black dots and the validation gates are the blue ellipses. All tracks and measurements in the
surveillance area can potentially be included in a single cluster, but as the computational
complexity is exponential in the number of tracks the clustering process should ensure that
the clusters are of a manageable size. The joint computation of the data association for all
tracks in a cluster, which differentiates the JPDA from the PDA, creates the need for more
refined association hypothesis generation. An association hypothesis is a combination of
possible associations between tracks and measurements, which for example requires that
only one track can be associated with a measurement in the same hypothesis. The JPDA
method is a track-oriented approach, as the tracks are the focal point when creating the
association hypotheses, i.e. each track has a measurement associated with it and not vice
versa. Then, as in the PDA or IPDA, the probability for each association hypothesis
is calculated which again decides the innovation input in the filter. An approximation
method is often used to avoid calculating the probability of all association probabilities.
An example of such a method is the Murty method [26], which simplifies calculations by
returning only a number of the most likely association hypotheses.

Figure 2.3: Three tracks with overlapping measurements in their validation gates.
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2.3.2 Joint integrated probabilistic data association

In 2004 Musicki et. al. introduced the Joint integrated probabilistic data association
(JIPDA) tracker [6]. Similar to what the IPDA did for the PDA, the JIPDA did for
the JPDA by introducing track existence within the JPDA framework. The JIPDA is a
derivation of the JPDA without assuming initial track existence, making the probability of
existence an inherent part of the tracker. This simplifies the track management, making it
easier to initialize and terminate tracks.

2.3.3 Multiple hypothesis tracker

Whereas the JPDA is a target-oriented method the Multiple hypothesis tracker (MHT)
introduced by Donald B. Reid in 1979 [27], is a measurement-oriented method. This means
that each measurement is associated with an existing track, a new track, or no track. Then
the probability of each possible scenario is calculated. The concept of validation gates and
clustering is utilized here as well, in a manner similar to what is done in the JPDA. Even
with such measures to reduce the computational complexity the tracker will result in an
ever-growing tree of different hypotheses as time goes on. This is amended by removing
the hypotheses with negligible probability, a technique known as pruning.

The MHT presented by Reid is often further described as a Hypotheses Oriented MHT
(HO-MHT). An aspect of this approach is that the hypotheses, which are carried over
form one time step to the next, are far grater in number than the number of tracks, i.e.
feasible combinations of associations. This is an argument for a track-oriented approach,
called Track-Oriented MHT (TO-MHT) [28]. Here, only the tracks from the previous time
steps are maintained to the next time step, and not all the hypotheses.

2.3.4 On random finite sets

Around the turn of the millennium, the need to properly model the multi-target multi-
sensor problem became evident. To facilitate progress in the field of target tracking a
rigorous framework was needed, which arrived with the introduction of finite set statistics
(FISST) [29]. In short terms, FISST is a different formulation of point process theory
which is somewhat easily understandable for those already accustomed to the Bayesian
statistics used for single-target tracking. A random finite set (RFS) is a set-valued random
variable, with a finite number of elements. Each individual element is defined on a space,
which is the base space of the RFS. The set density describes the property of the RFS,
in that it specifies the cardinality and the behavior of the individual points in the set.
Cardinality is the term used for the number of elements in a set. As can be deducted from
this short description this is a mathematical framework that is well suited to describe an
uncertain number of targets with uncertain kinematic properties.

As this new way of modeling the multi-target tracking problem emerged it was desirable
to see how it connected with the previous multi-targe trackers, most notably JIPDA and
MHT. It was shown in [30] that through approximations and assumptions, variants of
JIPDA could be derived by using RFSs. Early on, a connection between MHT and the
RFS framework was also established, and this link was examined further in [31]. Results
like this established the connection between the well-established trackers from the past
several decades and the new RFS framework which is now driving much of the innovation
done in the field.
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2.3.5 Probability hypothesis density

Building upon the FISST framework, Ronald Mahler presented the Probability hypothesis
density (PHD) filter in 2003 [32]. The motivation behind the method was to use the
first-order moment of the multi-target distribution so that it can be propagated using
a filter instead of using the complete distribution. This is what is done in the Kalman
filter, where higher-order moments are neglected and only the first- and second-order
moments are propagated. For a Gaussian distribution, these are the mean and covariance,
respectively. For a Poisson point process, all information regarding the distribution can be
found in its first-order moment, the PHD. The PHD is a distribution which is characterized
by having its integral over a region of the state space being the expected number of
targets in the region. Thus, the use of the PHD method requires the approximation of the
multi-target distribution as a Poisson RFS. This is a reasonable approximation when the
targets are many and evenly distributed, as the binomial distribution tends toward the
Poisson distribution for a large outcome space. The approximation becomes questionable,
however, when the number of targets is small. To amend some of the issues with the
PHD method the cardinality PHD filter was introduced [33]. The cardinalized PHD filter
propagates the cardinality distribution in addition to the PHD, resulting in better results
in exchange for a more complex structure.

2.3.6 Poisson multi-bernoulli mixture

A different way of modeling the multi-target tracking problem is found in the Poisson
multi-Bernoulli mixture (PMBM) filter and subsequent trackers. The PMBM filter was
first introduced in [30], before two PMBM trackers were presented in [34]. In this context,
tracker refers to the estimation of trajectories while filter refers to the estimation of the
current states. One of the two trackers presented in [34] estimated the current track
trajectories, while the other estimated both current and previously terminated track
trajectories. The core of PMBM estimation lies in the PMBM density, which is the union
between a Poisson distribution and a multi-Bernoulli mixture. When representing tracks
as a PMBM density, the Poisson part represents unknown targets, i.e. undetected targets
which are hypothesized to exist. The multi-Bernoulli mixture part represents already
detected targets. By performing sufficient approximations this model is computationally
tractable for a Gaussian-linear model.

2.3.7 Generalized labeled multi-Bernoulli

The Generalized labeled multi-Bernoulli (GLMB) density is an RFS density with both
a state space and a label space. It was first presented in [35] and further detailed for
practical applications in [36]. The concept of a labeled RFS is introduced, which as the
name indicates essentially is an RFS with a distinct ID. Both the labeled Poisson RFS and
the labeled multi-Bernoulli RFS are special cases of the GLMB. A class of GLMBs, the
δ-GLMB is also introduced in [35], which is more easily applicable to multi-target tracking
problems and can be implemented using only simple approximation techniques, such as
Gaussian mixture matching. It has been shown, in [37], that the δ-GLMB filter can be
seen as a special case of the PMBM filter. There it is claimed that the δ-GLMB class is
a less efficient version of an MBM parametrization, regardless of whether the MBM is
labeled or not.
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2.3.8 Measurement-to-track and track-to-track fusion

The question of how to utilize measurements from different sensors is not new, and
has been studied extensively [38]. Many methods have been developed, and, roughly
speaking, they can be split into two groups: measurement-to-track and track-to-track
fusion. The difference between the two methods is in large part revealed by their names;
measurement-to-track fusion uses measurements from several sensors to create an estimate,
while track-to-track fusion creates estimates for each sensor before these are fused. The
methods have their advantages and disadvantages. When using track-to-track fusion the
tracks themselves also become an association problem, as these have to be associated
to the correct track from the other sensors before the estimates can be fused. This is
avoided in measurement-to-track fusion. Measurement-to-track fusion is, however, reliant
on some centralized processing unit. This is one of the big advantages of track-to-track
fusion, the fact that it works well in a decentralized system. The individual nodes in the
system perform calculations on their own measurements, and fuse this estimate with any
received estimates before the resulting final estimate is transmitted. Which method is best
depends on the problem at hand. For the case of fusion of radar and AIS measurements
for maritime tracking, a centralized processing unit is often available as both sensors are
placed on the ship. On the other hand, for a large tracking system consisting of a lot of
sensors at different locations a decentralized solution might be the best.

2.3.9 On track continuity

Track continuity can be described as the ability to follow the position of a specific target
across time steps. The counterpart would be a situation where estimates are presented
for each time step, but there is no mechanism to say how the current estimates relate
to the previous ones. For track-oriented methods such as the JIPDA, track continuity is
preserved through the origin measurement of each track. For MHT, track continuity is also
implicitly present as each measurement can be associated with a previous track. While
the first PMBM filter didn’t formally show track continuity this was nevertheless shown
through PMBM trajectory filters in [39]. The PHD filter does not inherit track continuity
in it’s original form, but it has later been extended to do so through the inclusion of
additional schemes [40]. In the GLMB filter, there is explicit track continuity through the
use of labels, which connects estimates between time steps. Here, the labels occur as part
of the labeled RFSs and are unknown random state variables, as opposed to the labels of
the aforementioned methods [41]. For single target tracking the concept of track continuity
loses its relevance, as only one track is present and any estimate must necessarily be a
continuation of the previous estimate.

The tracker presented in this thesis inhabits track continuity, as it is an extension of
a JIPDA tracker. The possibility of identifying targets through their MMSI numbers,
does, however, provide an additional layer to this. These MMSI numbers are not labels as
they are thought of in the context of most other filters, as they have an actual physical
meaning and are not a tool to ensure track continuity. They can, instead, be considered
as something to be estimated, and do not necessarily have a direct connection to what
track continuity means with regards to target tracking.
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CHAPTER 3

Model: Inclusion of asynchronous transponder measurements

3.1 The hybrid state

The track estimates, which in the tracker are propagated from one-time step to the next,
contain both continuous and discrete states. This is reflected in the state space which
can contain both continuous states x ∈ X ⊂ Rnx and discrete states l ∈ L ⊂ Nnl . nx
and nl are the dimensions of the continuous and discrete spaces, respectively. A hybrid
state is a state where the state space contains both discrete and continuous states, or
uncertainties as it is formulated in [42, p. 441]. This structure is useful in target tracking
as the kinematic state will be continuous, while for example, the choice of kinematic model
for the target will be discrete. A thorough analysis of the concept of the hybrid state
space can be found in [43].

For the tracker detailed here, the state space consists of four elements:

x is the kinematic state

v is the visibility state, indicating whether the target is visible to the sensor or not

τ is the MMSI number of the target

s is the kinematic model the target is following

Of these, only the kinematic state is continuous while the rest are discrete. The states are
summarized in the hybrid state

y = [x, v, τ, s]>. (3.1)

3.1.1 Visibility

When the IPDA was introduced in [44] two different models for target existence and
observability were presented. These were called Markov Chain 1 (MC1) and Markov Chain
2 (MC2). The MC1 model assumes that a target could exist and have a certain probability
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of being detected, or it could not exist. The MC2 model extended this by assuming
that a target could exist but be unobservable. Thus, for the first model observability
and existence were treated identically, while for the second a target could exist without
being observable. The second method, MC2, is used here. This is done by introducing
an observability variable, v, in the hybrid state. This is a discrete state with only two
possibilities, either the target is observable or it is not. It is defined as

v =

{
1 if the target is visible

0 otherwise
(3.2)

The probability of either state at time step k is in general denoted as otvk , and the
probability of the target being visible, i.e. ot1k is written as ηtk. The Markov chain
transition probabilities, i.e. the probabilities of changing between the different visibility
states, are represented by the matrix w. The transition probability from a previous state
to the current is denoted as wvk−1vk . These probabilities are user-defined parameters, and
do not have to be time-dependent as they only have an impact on the radar measurements,
which arrive at fixed intervals. The concept of visibility as it is used here does not impact
the AIS measurements.

3.1.2 MMSI numbers

The hybrid state contains information regarding the MMSI number of the target. The
MMSI numbers are denoted as τ , and the set of MMSI numbers is denoted as V . The set
contains all possible MMSI numbers, in addition to number 0, representing the absence
of an MMSI number. Each MMSI number τ ∈ V has probability ξtτk of being the correct
MMSI number for target t at time step k, with ξ0τ as the initial probability.

Whenever a new detection happens in the form of an AIS measurement, the MMSI
number probabilities evolve according to the transition matrix

qτk−1τk =


0 if τk−1 = 0 and τk = 0

1/(|V| − 1) if τk−1 = 0 and τk > 0

1 if τk−1 = τk > 0

0 otherwise

(3.3)

where |V| − 1 is the total number of possible MMSI numbers. Thus, the probability
of a track having no MMSI number becomes zero conditional on association with an
AIS measurement. Furthermore, all received MMSI numbers have a possibility of being
corrupted, and the probability PC denotes the confidence in the MMSI number being
correct.

3.1.3 Kinematic models

The initial probability for each kinematic model s, or mode, being the correct one is
denoted as µ0, while the corresponding probability for track t at time step k, conditional
on MMSI number τ , is µtτsk . These probabilities can also change between time steps, and
the probabilities of the mode staying the same and the mode changing are considered.
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3.2 Modeling assumptions

The mode transition probabilities can be represented as a matrix, denoted here as π. The
number of kinematic models in use is denoted M , and the π-matrix is of size M ×M .

π =

 π
11 . . . π1M

...
. . .

...
πM1 . . . πMM

 (3.4)

where πji is the probability that the correct mode at the current time step is i, given that
the previous mode was j, or

πji = Pr(stk = i|stk−1 = j) (3.5)

for track t. Due to the variable time intervals between time steps the π-matrix needs to be
time dependent. To translate (3.4) from a scheme where all time increments are constant
to one where they are not, the theory of continuous Markov Chains is used. As described
in [45], a generator matrix G takes over the role of the transition matrix for discrete time
Markov Chains. The generator matrix is defined as

G = lim
∆t→0+

P (h)− I
∆t

(3.6)

where P (h) is the transition matrix. Furthermore, we have that

pij ≈ gij∆t if i 6= j and pii ≈ 1 + gii∆t. (3.7)

This approximation is reasonable for relatively small ∆t. By translating (3.4) to a generator
matrix we get

G =

π
11 − 1 . . . π1M

...
. . .

...
πM1 . . . πMM − 1

 (3.8)

which, by using (3.7) for a given time interval ∆t, yields

π(∆t) ≈

1 + (π11 − 1)∆t . . . π1M∆t
...

. . .
...

πM1∆t . . . 1 + (πMM − 1)∆t

 (3.9)

Using this the probability of switching to a different mode increases linearly as ∆t increases.
If no time has passed the probability of switching mode becomes zero, and π becomes the
identity matrix. For large ∆t the approximation breaks down, as the probabilities can
become negative. The exact expressions reach a steady-state for large ∆t.

3.2 Modeling assumptions

Several assumptions are made to make the algorithm tractable. A slightly modified version
of the standard model for multi-target tracking [46, p. 129] is used to accommodate the
sequential AIS measurements. Firstly, the model assumes that a target can only generate
a single measurement, and that a measurement can only originate from a single target.
Furthermore
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Chapter 3. Model: Inclusion of asynchronous transponder measurements

M1 New targets are born according to a Poisson process with intensity µ(y).

M2 Existing targets survive from time tk−1 to time tk with probability PS(tk−1, tk).

M3 The MMSI numbers only change upon detection through a measurement.

M4 The evolution of a surviving target is given by fy(yk|yk−1).

M5 A target with state yk generates a measurement zk with probability PD(yk).

M6 Radar clutter measurements occur according to a Poisson process with intensity
λ(z).

M7 The radar measurement of a detected target is related to the state according to
fRz (zk|yk). The radar measurements of all detected targets are assumed to arrive
at a constant frequency, and are all synchronized to have the same time stamp.

M8 The AIS measurement of a transmitting target is related to the state according
to fAz (zk|yk), and the AIS measurement for any individual target can arrive at
any time.

Independence is assumed whenever it doesn’t contradict the above assumptions. An
explanation of the different assumptions follows.

M1

We assume that we have the unknown target intensity

v(y) = b1Ω(H(s)x)N (H∗(s)x; 0,P(s)
v )µ0sτo0vξ0τ (3.10)

where b is the overall rate of birth, µ0sτ is the initial mode probability for mode s, o0v

is the initial probability for visibility state v and ξ0τ is the initial label probability for
MMSI number τ . 1Ω(·) is the indicator function, which is zero everywhere except in the
surveillance area, where it is 1. H(s) is the measurement matrix for mode s while H∗(s) is
the matrix giving the other elements from the state for mode s. Thus,[

H
H∗

]
x = x (3.11)

Furthermore, P
(s)
v is the covariance matrix for the velocities of mode s, corresponding to

the reduced state H∗(s)x. Before the target is detected through an AIS measurement the
MMSI probabilities are defined as

ξ0τ =

{
1 if τ = 0

0 otherwise
(3.12)

Remark. This is only one of the possible ways of modeling the MMSI numbers. Concep-
tually, it can be explained as defining that the target has no MMSI number upon detection.
The probability of the target having no MMSI number is reduced as AIS measurements
are detected, while the probability of all MMSI numbers are increased. Another possibility
is to initialize the MMSI number probabilities with a uniform probability for all τ > 0,
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3.2 Modeling assumptions

with some constant as a probability for τ = 0. Then, no transitions are necessary either
between time steps or when new AIS measurements arrive. This may be more in touch
with how the MMSI numbers are thought of in real life, as these are static IDs belonging
to each target. However, when introducing a uniform prior across all MMSI numbers the
independence of the unknown targets is violated, because a detected target with high
probability for a given MMSI number reduces the probability of any of the unknown target
having the same MMSI. This is avoided with a method such as the one used here, where
transitions are used upon detection.

M2

The survival probability is modeled as a function of time since the last update. A constant
parameter PSc denotes the probability of survival after one second. Thus, the survival
probability of an interval between times tk−1 and tk, denoted as ∆t, becomes

PS(tk−1, tk) = P∆t
Sc
. (3.13)

M3

The MMSI numbers τ are assumed to remain unchanged between time steps, and only
change when any new measurements from the target are detected. The MMSI probabilities
ξtτ are assumed to change according to

Pr(τ |AIS detection) =
∑

τ ′ q
τ ′τkξtτ

′

k−1 (3.14)

whenever a new AIS measurement is detected. When there is no detection ξtτk|k−1 = ξtτk−1.

M4

From time step k − 1 to k the evolution of a target is given by

fy(yk|yk−1) = f sτx (xk|xk−1)πsk−1skwvk−1vk . (3.15)

The π-matrix, explained in Section 3.1.3 contains the Markov chain probabilities of
changing between different kinematic models. w, as explained in Section 3.1.1 contains
the Markov chain probabilities of the target switching between the visible and invisible
state. The MMSI numbers only change whenever a detection is made, and are therefore
not included in the prediction. The kinematic transition f sτx (xk|xk−1) is assumed to be on
the form of a Gaussian

f sτx (xk|xk−1) = N (xk|f (s)(xk−1),Q(s)). (3.16)

M5

For radar measurements, the detection probability PD(yk) varies based on the visibility
state v and is defined as

PD(y) =

{
PD if v = 1

0 if v = 0
(3.17)
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Chapter 3. Model: Inclusion of asynchronous transponder measurements

where PD is a constant describing the probability of a target being detected by the radar
at a given time step.

For AIS measurements, which are assumed to give no missed detections when a message
is transmitted, we have that

PD(y) =
Pr(τ |AIS detection) Pr(AIS detection)

Pr(τ)
(3.18)

where

Pr(AIS detection) =

{
1 if an AIS measurement is received

0 otherwise
(3.19)

independently of the visibility state. This, combined with (3.14), gives

PD(y) =


∑

τ ′ q
τ ′τkξtτ

′

k−1

ξtτk−1

if an AIS measurement is received

0 otherwise

(3.20)

M6

Radar clutter measurements are assumed to be uniformly distributed, with the number of
measurements following a Poisson distribution with intensity λ. The AIS measurements
do not generate clutter.

M7

The radar measurements are assumed to be synchronized, and to arrive simultaneously at
a fixed frequency. This means that when radar measurements arrive at time step k, the
set of radar measurements contain measurements from all detected targets at time step k,
in addition to clutter measurements. The radar measurement likelihood is

fRz (zk|yk) = N (zk|HRx,RR). (3.21)

M8

The AIS measurements can arrive whenever, and are not synchronized. This means that
an AIS measurement can be received at any time, from any target. It is not assumed that
all targets transmit AIS measurements simultaneously, in contrary to what is done for the
radar measurements. The measurement likelihood for the AIS measurements is

fAz (zk|yk) = fp(pk|yk)fτ (τ zk |τ) (3.22)

where zk is the whole AIS measurement and pk only contains the positional data of the
measurement. Furthermore

fτ (τ
zk |τ) =


PC if τk = τ zkk
1− PC
|V| − 1

if τk 6= τ zkk and τ > 0

0 if τ = 0

(3.23)
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3.3 Modeling framework

where PC is a fixed parameter describing the confidence in the MMSI number not being
corrupted, denoted as the confidence probability, and |V| − 1 is the number of MMSI
numbers. The likelihood for the positional data from the AIS measurements is

fp(pk|yk) = N (pk|HAx,RA). (3.24)

3.3 Modeling framework

For the purpose of deriving the tracker, the PMBM filter is used as a basis. This is the
same as was done in [1], with the same perspective as in [30]. This perspective involves
the use of probability generating functionals (p.g.fls) on random finite sets (RFSs). The
p.g.fl of a RFS density f is

G[h] =

∫
hXf(X)δX (3.25)

where X is a RFS, and hX is defined as

hX ,
∏
x∈X

h(x). (3.26)

The p.g.fl transforms a density to a form more suited for analytical evaluation. This is
similar to the use of more familiar transformations, such as the Fourier transform.

From [30], the form of the full multi-target distribution at time step k, conditioned on
the measurements up to and including time step k′ is

fk|k′ =
∑
Y⊂X

fpppk|k′(Y )fmbmk|k′ (X − Y ) (3.27)

which in its p.g.fl form is

Gk|k′ [h] = Gppp
k|k′ [h]Gmbm

k|k′ [h]. (3.28)

As the time step k′ can be both the current and previous time, the expression can represent
both the prediction and the update. Here, PPP stands for Poisson Point Process, while
MBM stands for Multi-Bernoulli Mixture. Furthermore

Gppp
k|k′ = exp(v[h− 1]) (3.29)

is the p.g.fl of a PPP representing the unknown targets. The expression v[h − 1] is a
functional. What differentiates a functional from a function, is that the functional has a
function as argument instead of a scalar. The brackets notation is used here to signify
that it is a linear functional

f [h] =

∫
h(x)f(x)dx. (3.30)

However, as described in assumption M1 and also pointed out in [1], the predicted unknown
target intensity is assumed known and stationary. This means that the PPPs posterior
has no impact on the MBMs, and it can be safely ignored when calculating these.
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Furthermore, Gmbm
k|k′ [h] represents the p.g.fl of a MBM, which is a linear combination of

multi-Bernoulli distributions

Gmbm
k|k′ [h] ∝

∑
a∈Ak|k′

nt
k|k′∏
i=1

wi,a
i

k|k′G
i,ai

k|k′ [h]. (3.31)

where Ak|k′ is the set of global association history hypotheses and ntk|k′ is the number of
tracks at time step k conditioned on the measurements up to and including time step k′.
The set of global association history hypotheses are in [30] defined as

Ak|k′ ={(a1, . . . , a
nt
k|k′ )|ai ∈ Hi

k|k′ ,∪
nt
k|k′

i=1 Mk′(i, ai) =Mk′ ,

Mk′(i, ai) ∪ Mk′(j, aj) = ∅ ∀ i 6= j} (3.32)

where Hi
k|k′ is the set of association history hypotheses for single tracks, and Mk′ is the

set of allowed track-to-measurement associations. An association history hypotheses for
a single track, at ∈ Hi

k|k′ , then contains one of the possible, legal, associations for all

time steps up to time k. Furthermore, this can be simplified to Ak for the set of global
association hypotheses for only time step k.

To make the expression in (3.31) somewhat more concrete, one can consider the set
density for a Bernoulli distribution:

f(X) =


1− p if X = ∅
pf(x) if X = {x}
0 otherwise

(3.33)

In a tracking context, at time step k the probability p becomes the probability of existence
rtk|k′ , and x is the hybrid state yk|k′ . Taking the p.g.fl of this yields

Gi,ai

k|k′ [h] = 1− rtk|k′ − rtk|k′f [h] (3.34)

This is how the targets are represented in their most general form. From this point of view
there are several methods of how to calculate the different values, and how to represent
the different entities. One of these methods is presented in the next chapter.
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CHAPTER 4

Method: Inclusion of asynchronous transponder measurements

The VIMMJIPDA, as presented in [1], has shown good promise for multi-target radar-
based tracking. In this chapter, a method for using both radar and AIS measurements in
the VIMMJIPDA is presented. The fusion of the two measurement types is done on a
measurement-to-measurement basis. The tracker handles radar measurements in batches,
which arrive at a fixed sampling interval. The AIS measurements are handled as they
arrive, which can be at any time. The overall structure of the tracker can be seen in
fig. 4.1.

4.1 The prior

The prior hybrid state of track t is

f tk−1(y) = f tτsk−1(x)otvk−1ξ
tτ
k−1µ

tτs
k−1. (4.1)

Here, otvk−1 is the prior probability for the visibility state v, ξtτk−1 is the prior probability for
MMSI number τ , and µtτsk−1 is the prior probability for mode s conditional on MMSI number
τ . f tτsk−1(x) is the prior kinematic density, conditional on mode s and MMSI number τ .

Remark. Some care has to be taken regarding what constitutes the previous time step
k − 1. As described in assumption M8, the AIS measurements can arrive at any time.
This means that the previous time step k− 1 can point to any time before time step k. To
avoid having to introduce a complicated notation describing all time steps in detail, k − 1
is used in general for the most recent time in the past where the track in question has
been updated. For situations where the time indices point to a radar update specifically,
this is denoted by the subscript R.

4.2 The prediction

Proposition 1. The existence probability is predicted using the probability of survival
for each target as a function of the time between time steps ∆t
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Figure 4.1: Diagram showing the work flow and structure of the tracker.
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4.2 The prediction

rtk|k−1 = PS(∆t)rtk−1. (4.2)

The predicted visibility probability is calculated as

ηtkR|(k−1)R
= (ω01)(1− ηt(k−1)R

) + (ω11)ηt(k−1)R
(4.3)

The prediction of the mode and kinematic state of the target is done according to

µtτsk|k−1 =
∑

s̃ π
s̃s(∆t)µtτ s̃k−1 (4.4)

f tτsk|k−1(x) =
∫
fx(x|x̃)f tτs,0k−1 (x̃)dx̃ (4.5)

where the mode- and MMSI-conditional prior is

f tτs,0k−1 (x̃) =
1∑

s̃ π
s̃s(∆t)µtτ s̃k−1

∑
s̃

πs̃s(∆t)µtτ s̃k−1f
tτ s̃
k−1(x̃) (4.6)

Lastly, the MMSI number probabilities remain unchanged, and

ξtτk|k−1 = ξtτk−1. (4.7)

Proof: From [30], the equations for the prediction are

rtk|k−1 = rtk−1f
t
k−1[PS(ỹ)] (4.8)

f tk|k−1(y) =

∫
fy(y|ỹ)PS(ỹ)f tk−1(ỹ)dỹ

f tk−1[PS(ỹ)]
(4.9)

Firstly, f tk−1[PS(ỹ)] = PS(∆t)f tk−1[1] = PS(∆t) because PS(∆t) is only dependent on
the times tk and tk−1 which are not part of the state y, and the linear functional f tk−1[1]
becomes 1. This gives (4.2). By using this for (4.9) as well results in

f tk|k−1(y) =

∫
fy(y|ỹ)f tk−1(ỹ)dỹ (4.10)

which can be written as

f tk|k−1(y) =
(∑

ṽ

wṽvotṽk−1

)
ξtτk−1

∑
s̃

πs̃s(∆t)µtτ s̃k−1

∫
fx(x|x̃)f tτ s̃k−1(x̃)dx̃ (4.11)

This gives the predicted visibility probability ηtk|k−1. Furthermore, the MMSI number

probabilities do not change between time steps, giving ξtτk|k−1 = ξtτk−1. This leaves

f tk|k−1(x, s) =
∑
s̃

πs̃s(∆t)µtτ s̃k−1

∫
fx(x|x̃)f tτ s̃k−1(x̃)dx̃

=
∑
s̃

πs̃s(∆t)µtτ s̃k−1

∫
fx(x|x̃)

∑
s̃ π

s̃s(∆t)µtτ s̃k−1f
tτ s̃
k−1(x̃)dx̃∑

s̃ π
s̃s(∆t)µtτ s̃k−1

(4.12)
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as is also shown in [1], which provides the resulting expressions µtτsk|k−1 and f tτs,0k−1 (x̃)

Remark. By assuming that both fx(x|x̃) and f tτs,0k−1 (x̃) are Gaussian-linear, f tτsk|k−1(x) can

be evaluated in a regular manner. However, the mode- and MMSI-conditional prior f tτs,0k−1

is, assuming the individual f tτsk−1 are Gaussian, a Gaussian mixture. This means that some
approximation technique is needed, due to the exponential nature of the mode histories.
This is done by using moment matching, as is described in [46] and [42]. In this way, the
prediction f tτsk|k−1(x) is approximated as a single Gaussian.

4.3 The posterior

4.3.1 AIS measurements

If the first measurement of a track is claimed by another track by being within the
validation gate of the other track, the track is empty, i.e. atk′ = 0 ∀ k′, and no initialization
will be performed.

Proposition 2. For a new target initialization on an AIS measurement, that is when
atk′ = 0 ∀ k′ < k and atk > 0, we have that

wjk ≈ b
∑

τ̃

∑
τ ′ q

τ ′τ̃ξ0τ ′fτ (τ
zk |τ) (4.13)

rjk = 1 (4.14)

µτsjk = µ0s (4.15)

ηjk = η0 (4.16)

ξtτjk = fτ (τ
zk |τ) (4.17)

f τsjk (x) ≈ N (x, x̂s0,P
s
0) (4.18)

where x̂s0 = [pjk; 0] and Ps
0 = diag(Rs

A,Pv).

Proof: From [30], with notation changed to the one used here, the general equations
for the initialization of a target on an AIS measurement are given as

wjk = λ+ v[fAz (za
t

k |ỹ)PD(ỹ)] (4.19)

rjk =
v[fAz (za

t

k |ỹ)PD(ỹ)]

λ+ v[fAz (za
t

k |ỹ)PD(ỹ)]
(4.20)

f tjk (y) =
fAz (za

t

k |y)PD(y)v(y)

v[fAz (za
t

k |ỹ)PD(ỹ)]
(4.21)

For a new target the expression fAz (za
t

k |y)PD(y)v(y) is given by

bo0vξ0τµ0s1Ω(Hsx)N (za
t

k |Hsx,Rs
A)N (H∗sx|0,Ps

v)PD(y)fτ (τ
zk |τ) (4.22)

The Gaussian distributions are combined into N (x|x̂s0,Ps
0). If the region Ω is large
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4.3 The posterior

enough 1Ω(Hsx) has no impact on the expression as a function of x. This means that
the integral over the latent variable x can be approximated as 1 for all s. In addition,
when summing over all possible MMSI numbers the product ξ0τPD(y)fτ (τ

zk |τ) is∑
τ̃ ξ

0τ̃PD(ỹ)fτ (τ
zk |τ̃) =

∑
τ̃

∑
τ ′ q

τ ′τ̃ξ0τ ′fτ (τ
zk |τ̃) (4.23)

The sum of the mode probabilities µ0s when summing over all modes becomes 1, and
the same is the case for o0v when summing over the visibility states. Thus

v[fz(z
at

k |ỹ)PD(ỹ)] ≈ b
∑

τ̃

∑
τ ′ q

τ ′τ̃ξ0τ ′fτ (τ
zk |τ̃) (4.24)

The AIS measurements generates no clutter measurements, i.e. λ = 0, which leads
to the existence probability rjk = 1. The rest of the expressions are found through
marginalization of (4.21), which is (4.22) divided by (4.23). The mode probabilities and
the visibility probability can be extracted directly from this expression. The MMSI
probabilities ξtτjk are found through

ξtτjk =
ξ0τPD(y)fτ (τ

zk |τ̃)∑
τ̃ ξ

0τ̃PD(ỹ)fτ (τ zk |τ̃)

=

∑
τ ′ q

τ ′τξ0τ ′fτ (τ
zk |τ)∑

τ̃

∑
τ ′ q

τ ′τ̃ξ0τ ′fτ (τ
zk |τ̃)

=


1/(|V| − 1)fτ (τ

zk |τ)∑
τ̃ 1/(|V| − 1)fτ (τ

zk |τ̃)
if τ > 0

0 if τ = 0

=


fτ (τ

zk |τ)∑
τ̃ fτ (τ

zk |τ̃)
if τ > 0

0 if τ = 0

= fτ (τ
zk |τ) (4.25)

by keeping in mind the definition of the q-matrix and fτ (τ
zk |τ), in addition to the fact

that
∑

τ̃ fτ (τ
zk |τ̃) = 1.

Lastly the kinematic probability distribution is approximated as N (x; x̂s0,P
s
0), as-

suming a large region Ω.

For an AIS missed detection, or more precisely a non-association, the posterior is simply
the prediction.

Remark. The concept of a missed detection, when considering AIS measurements, is not
readily translated from the way it is used for radar measurements. While it for radar
measurements is relatively easy to model when a hypothesized target should be detected,
the same is not the case for AIS measurements. This is due to how the AIS protocol works,
and to predict the time of the incoming AIS measurements is difficult. This problem is
avoided by assuming that no information can be gathered from the fact that a target does
not transmit an AIS measurement at any given time. In line the framework described
in section 3.3, it would be more precise to say that no association is made when an AIS
measurement is not received. To call every time k′ ∈ ((k − 1)R, kR) a target does not
associate with an AIS measurement a missed detection would be analogous to saying
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the same for radar measurements ∀ k′ ∈ ((k − 1)R, kR). However, due to how mixture
reduction is performed in a JIPDA, association hypotheses need to be created between
every track and measurement in the cluster. This creates the need for introducing the
concept of a missed detection also for AIS measurements.

Proposition 3. For a detection in the form of an AIS measurement, when atk > 0 and
atk′ > 0 ∃ k′ < k, we have that

wtjk = rtk|k−1

∑
τ̃

∑
τ ′(q

τ ′τ̃ξτ
′τ̃
k−1)ltτ̃ jA (4.26)

rtjk = 1 (4.27)

µtτsjk = µtτsjk|k−1l
tτsj
A /

∑
s̃ µ

tτ s̃
k|k−1l

tτ s̃j
A (4.28)

ξtτjk =
(∑

τ ′ q
τ ′τξτ

′

k−1

)
ltτjA /

∑
τ̃

(∑
τ ′ q

τ ′τ̃ξτ
′

k−1

)
ltτ̃ jA (4.29)

The kinematic state becomes

f tτsjk (x) =
fAz (zjk|x)f tτsk|k−1(x)

ltτsjA

. (4.30)

Furthermore, ltτsjA and ltτjA are defined as

ltτsjA = fτ (τ
zk |τ̃)

∫
f sp(pjk|x̃)f tτsk|k−1(x̃)dx̃ (4.31)

and

ltτjA =
∑
s̃

µtτ s̃jk|k−1l
tτ s̃j
A (4.32)

Proof: From [30], the PMBM expressions for an AIS measurement detection are

wtjk = rtk|k−1f
t
k|k−1[fAz (za

t

k |ỹ)PD(ỹ)] (4.33)

rtjk = 1 (4.34)

f tjk (y) =
fAz (za

t

k |y)PD(y)f tk|k−1(y)

f tk|k−1[fAz (za
t

k |ỹ)PD(ỹ)]
(4.35)

The existence probability follows directly from the above expression. The weight wtjk is
found by recognizing that

f tk|k−1[fAz (za
t

k |ỹ)PD(ỹ)] =
∑

τ̃ ξ
tτ̃
k−1PD(ỹ)ltτ̃ jA (4.36)

where the product ξtτ̃k−1PD(ỹ) can be written as

ξtτ̃k−1PD(ỹ) = ξtτ̃k−1

∑
τ ′ q

τ ′τ̃ξtτ
′

k−1

ξ τ̃k−1

=
∑

τ ′ q
τ ′τ̃ξtτ

′

k−1 (4.37)

Furthermore, (4.35) becomes

28



4.3 The posterior

otvk−1ξ
tτ
k−1µ

tτs
k|k−1f

A
z (za

t

k |x)PD(y)f tτsk|k−1(x)∑
τ̃ ξ

tτ̃
k−1PD(ỹ)

∑
s̃ µ

ts̃τ̃
k|k−1l

tτ̃ s̃j
A

=otvk−1

(∑
τ ′ q

τ ′τξτ
′

k−1

)∑
τ̃

(∑
τ ′ q

τ ′τ̃ξtτ̃k−1

)∑
s̃ µ

ts̃τ̃
k|k−1l

tτ̃ s̃j
A

µtτsk|k−1 f
A
z (za

t

k |x)f tτsk|k−1(x)

=otvk−1

(∑
τ ′ q

τ ′τξτ
′

k−1

)
ltτjA∑

τ̃

(∑
τ ′ q

τ ′τ̃ξτ
′

k−1

)
ltτ̃ jA

µtτsk|k−1l
tτsj
A

ltτjA

fAz (za
t

k |x)f tτsk|k−1(x)

ltτsjA

(4.38)

The visibility does not change, because the AIS measurements are independent on the
visibility. The mode probabilities are found through

µtτsjk =
µtτsk|k−1l

tτsj
A

ltτjA
=

µtτsk|k−1l
tτsj
A∑

s̃ µ
tτ s̃
k|k−1l

tτ s̃j
A

(4.39)

The MMSI probabilities are

ξtτjk =

(∑
τ ′ q

τ ′τξτ
′

k−1

)
ltτjA∑

τ̃

(∑
τ ′ q

τ ′τ̃ξτ
′

k−1

)
ltτ̃ jA

. (4.40)

Lastly the kinematic state is found from

f tτsjk (x) =
fAz (za

t

k |x)f tτsk|k−1(x)

ltτsjA

. (4.41)

4.3.2 Radar measurements

The following section contains the equations needed for a radar measurement update. Apart
from some modifications to accommodate the MMSI numbers it is mainly a reiteration of
the equations found in [1].

Identically to how it is for the AIS measurements, when the first measurement of a
track is claimed by another track the track is empty and no initialization will be performed.

Proposition 4. For a new target, that is when atk′ = 0 ∀ k′ < k, initialized on a radar
measurement we have that

wjk = λ+ bη0 (4.42)

rjk =
bη0

λ+ bη0
(4.43)

µτsjk = µ0s (4.44)

ηjk = 1 (4.45)

ξtτk = ξ0τ (4.46)

f tτsjk,R (x) = N (x, x̂s0,P
s
0) (4.47)

where x̂s0 = [zjk; 0] and Ps
0 = diag(Rs

R,Pv).
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Proof: To show this the expressions from [30] are used again.

wjk = λ+ v[fRz (za
t

k |ỹ)PD(ỹ)] (4.48)

rjk =
v[fRz (za

t

k |ỹ)PD(ỹ)]

λ+ v[fRz (za
t

k |ỹ)PD(ỹ)]
(4.49)

f tjk (y) =
fRz (za

t

k |y)PD(y)v(y)

v[fRz (za
t

k |ỹ)PD(ỹ)]
(4.50)

This is nearly identical to (4.19)-(4.21), except for the measurement likelihood. The
expression fz(z

at

k |y)PD(y)v(y) becomes

bη0ξ0τµ0sq0τ1Ω(Hsx)N (za
t

k |Hsx,Rs
R)N (H∗sx|0,P(s)

v )PD (4.51)

if v = 1, and otherwise it is 0. Furthermore, the expression v[fz(z
at

k |ỹ)PD(ỹ)] is found
with a similar reasoning as for the AIS measurements. The Gaussian distributions are
again combined, giving N (x; x̂s0,P

s
0). Also, assuming that Ω is large enough the integral

over x can be approximated as 1. The sum over both MMSI- and mode-probabilities
are also 1. This leaves

v[fz(z
at

k |ỹ)PD(ỹ)] ≈ bη0 (4.52)

which gives wjk and rjk. Inserting the above expressions in (4.50) provides the resulting
expressions. The initial mode probabilities and MMSI probabilities can be taken directly
from (4.51), while the visibility probability becomes 1, as η0 is present both in the
numerator and the denominator. As b is also present both in the numerator and the
denominator it has no impact, leaving the kinematic pdfs as N (x; x̂s0,P

s
0).

Proposition 5. For a missed detection, when atk = 0 and atk′ > 0 ∃ k′ < k, we have that

wt0k = 1− rtk|k−1η
t
k|k−1PD (4.53)

rt0k =
rtk|k−1(1− ηtk|k−1PD)

1− rtk|k−1η
t
k|k−1PD

(4.54)

µtτs0k = µtτsk|k−1 (4.55)

ξtτ0
k = ξtτk−1 (4.56)

ηt0k =
(1− PD)ηtk|k−1

1− PDηtk|k−1

(4.57)

f tτs0k (x) = f tτsk|k−1(x) (4.58)

Proof: From [30], the PMBM equations for a missed detection are
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wa
t

k = 1− rtk|k−1 + rtk|k−1f
t
k|k−1[1− PD(ỹ)] (4.59)

rtjk =
rtk|k−1f

t
k|k−1[1− PD(ỹ)]

1− rtk|k−1 + rtk|k−1f
t
k|k−1[1− PD(ỹ)]

(4.60)

f tjk (y) =
(1− PD(y))f tk|k−1(y)

f tk|k−1[1− PD(ỹ)]
(4.61)

Firstly, we have that

f tk|k−1[1− PD(ỹ)] =
∑

ṽ

otṽk|k−1(1− PD(ỹ)) = 1− ηtk|k−1PD (4.62)

which promptly gives wt0k and rt0k when inserting in (4.59) and (4.60), respectively.
Furthermore, inserting (4.62) in (4.61) yields

f tjk (y) =
(1− PD(y))otvk|k−1

1− ηtk|k−1PD
ξtτk−1µ

tτs
k|k−1f

tτs
k|k−1(x) (4.63)

which provides the remaining expressions by marginalization. The visibility probability
becomes

ηt0k =
(1− PD)ηtk|k−1

1− PDηtk|k−1

(4.64)

and ξtτk , µtτs0k and f tτsjk (y) follows from the remaining expression.

Proposition 6. Lastly, for a radar detection, which is when atk > 0 and atk′ > 0 ∃ k′ < k,
we have

wtjk = PDr
t
k|k−1η

t
k|k−1

∑
τ̃

ξtτ̃k−1l
tτ̃ j
R (4.65)

rtjk = 1 (4.66)

µtτsjk = µtτsjk|k−1l
tτsj
R /

∑
s̃ µ

tτ s̃
k|k−1l

tτ s̃j
R (4.67)

ξtτk = ξtτk−1l
tτj
R /

∑
τ̃ ξ

τ̃
k−1l

tτ̃ j
R (4.68)

ηtjk = 1 (4.69)

f tτsjk (x) = fRz (zjk|x)f tτsk|k−1(x)/ltτsjR (4.70)

Here, similarly as for the AIS measurements

ltτsjR =

∫
f sp(xjk|x̃)f tτsk|k−1(x̃)dx̃ (4.71)

and

ltτjR =
∑
s̃

µtτ s̃jk|k−1l
tτ s̃j
R (4.72)
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Proof: The proof for this is similar to its AIS measurement counterpart. From [30] we
have

wtjk = rtk|k−1f
t
k|k−1[fRz (za

t

k |ỹ)PD(ỹ)] (4.73)

rtjk = 1 (4.74)

f tjk (y) =
fRz (za

t

k |y)PD(y)f tk|k−1(y)

f tk|k−1[fRz (za
t

k |ỹ)PD(ỹ)]
(4.75)

which is the same as (4.33)-(4.35), except for the measurement likelihood. The existence
probability follows directly from (4.74). We also have that

f tk|k−1[fRz (za
t

k |ỹ)PD(ỹ)] = PDη
t
k|k−1

∑
τ̃ ξ

tτ̃
k−1l

tτ̃ j
R . (4.76)

which is used to find the weight wtjk . Furthermore, (4.35) becomes

PDη
t
k|k−1ξ

tτ
k−1µ

tτs
k|k−1f

R
z (za

t

k |x)f tτsk|k−1(x)

PDηtk|k−1

∑
τ̃ ξ

tτ̃
k−1l

tτ̃ j
R

=1
ξtτk−1l

tτj
R∑

τ̃ ξ
τ̃
k−1l

tτ̃ j
R

µtτsk|k−1l
tτsj
R

ltτjR

fz(z
at

k |x)f tτsk|k−1(x)

ltτsjR

(4.77)

when v = 1, and 0 otherwise. This provides the resulting expressions.

4.4 Mixture reduction

After having calculated the expressions for the individual measurements, as described in
Section 4.3, one ends up with an MBM on the form of

Gmbm
k [h] ∝

∑
ak∈Ak

nk∏
t=1

wt,a
t

k (1− rtatk − rta
t

k f ta
t

k [h]) (4.78)

which has to be reduced to a multi-Bernoulli on the form of

Gmb
k [h] =

nk∏
t=1

(1− rtk − rtkf tk[h]). (4.79)

The posterior hybrid state pdfs have to be on the same form as the priors, i.e.

f tk(y) = f tτsk (x)µtτsk otvk ξ
tτ
k . (4.80)

This is done here by performing a mixture reduction similar to the one used in a regular
JIPDA. The association probabilities are calculated as
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Pr(ak) ∝
∏
t

wta
t

k

∏
j s.t at 6=j ∀ t

λ

∝
∏

t s.t at=0

wta
t

k

∏
t s.t at>0

wta
t

k /λ (4.81)

where ∑
ak

Pr(ak) = 1 (4.82)

The marginal association probabilities are calculated as

Pr(at = j) =
∑

ak s.t. at=j

Pr(ak) = ptjk . (4.83)

These are then used to calculate the marginal existence probability

rtk =

mk∑
j=0

Pr(E, at = j) =

mk∑
j=0

Pr(E|at = j) Pr(at = j)

=

mk∑
j=0

rtjk p
tj (4.84)

where E denotes existence. The marginal visibility probability is found in a similar manner,
as

ηtk =

mk∑
j

Pr(v = 1, at = j|E) =

mk∑
j

Pr(v = 1|at = j, E) Pr(E|at = j) Pr(at = j)

Pr(E)

=
1

rtk

mk∑
j=0

ptjk r
tj
k η

tj
k . (4.85)

For calculation of the mode- and MMSI-conditional kinematic pdfs f tτsk the mode- and
MMSI-conditional marginal association probabilities are needed. These are given by

βtτsjk = Pr(at = j|st, τ t, E)

=
Pr(st|at = j, τ t, E) Pr(τ t|at = j, E) Pr(E|at = j) Pr(at = j)

Pr(st|τ t, E) Pr(τ t|E) Pr(E)
. (4.86)

through extensive use of Bayes rule. Here, st and τ t means the event that track t follows
mode s and has MMSI number τ , respectively. Firstly, Pr(at = j) is found from (4.83), and
Pr(E) from (4.84). The association-conditional MMSI probabilities Pr(τ t|at = j, E) = ξtτjk

follows from the previous section, and the MMSI- and association-conditional mode
probabilities Pr (st|at = j, τ, E) = µtτsjk do the same.

The posterior MMSI probabilities are found as
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Pr(τ t|E) =

mk∑
j=0

Pr(τ t, at = j|E)

=

mk∑
j=0

Pr(τ t|at = j, E) Pr(E|at = j) Pr(at = j)

Pr(E)

=
1

rtk

mk∑
j=0

ξtτjk rtjk p
tj
k = ξtτk (4.87)

and lastly, the marginal MMSI-conditional posterior mode probabilities are found as

Pr(st|τ t, E) =

mk∑
j=0

Pr(st, at = j|τ t, E)

=

mk∑
j=0

Pr(st|τ t, at = j, E) Pr(τ t|at = j, E) Pr(E|at = j) Pr(at = j)

Pr(τ t|E) Pr(E)

=
1

ξtτk r
t
k

mk∑
j=0

µtτsjk ξtτjk rtjk p
tj
k = µtτsk . (4.88)

Using this, the posterior kinematic state is calculated as

f tτsk (x) =
m∑
j=0

βtτsjf tτsjki
(x) =

m∑
j=0

µtτsjk ξtτjk rtjk p
tj
k

µtτsk ξtτk r
t
k

f tτsjki
(x) (4.89)

which can be done by standard moment-matching techniques, assuming each f tτsjk (x) is
Gaussian.

Remark. It can be valuable to compare the tracker described here, to the IMM-JIPDA
from [13]. The VIMMJIPDA should reduce to the IMM-JIPDA when the visibility is
forced to always be in a visible state, i.e. v = 1, when no AIS measurements are present
and the target is assumed to always have MMSI number 0. Then, both the expressions
calculating ξtτk and ηtk can be ignored, as can all conditionals on these. The output of
mixture reduction is in [13, eq. (32)] written as

rtk =

mk∑
j=0

Pr(at = j, E) =
M∑
s=1

Pr(st, E) (4.90)

βtsjk =
Pr(at = j, st, E)

Pr(st, E)
(4.91)

µtsk =
Pr(st, E)

Pr(E)
(4.92)

where the notation has been changed to the one used here. The existence probability is
identical to the expression in (4.84), which can be seen by the term after the first equality
in both (4.90) and (4.84). (4.91) can be written as
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βtsjk =
Pr(st|at = j, E) Pr(E|at = j) Pr(at = j)

Pr(st|E) Pr(E)
. (4.93)

When comparing this with (4.86), and assuming only MMSI number 0 is present with
unity probability, one can see that the expressions are identical. Furthermore, from [13,
eq. (31)]

Pr(st, E) =

mk∑
j=0

Pr(st, at = j, E) (4.94)

Pr(st, at = j > 0|E) =
µtsk|k−1l

tsj∑
s̃ µ

ts̃
k|k−1l

ts̃j
(4.95)

Pr(st, at = j = 0|E) = µtsk|k−1 (4.96)

The expression for the mode probabilities, (4.92), can be written as

µtsk =

∑mk

j=0 Pr(st, at = j, E)

Pr(E)
=

mk∑
j=0

Pr(st, at = j|E) (4.97)

which is identical to (4.88), again when assuming only MMSI number 0 is present.
The joint probability of existence and the marginal association probabilities are in [13,

eq. (30)] formulated as

Pr(at = 0, E) =
(1− PDPG)rtk|k−1

1− PDPGrtk|k−1

∑
ak s.t. at=0

Pr(ak) = rt0j p
t0
k (4.98)

Pr(at > 0, E) =
∑

ak s.t. at>0

Pr(ak) = ptjk , for j > 0 (4.99)

where PG is the probability that the measurement from a target falls within its validation
gate. Here, the joint probability of existence and the marginal association probability is
formulated as

Pr(at = j, E) = Pr(E|at = j) Pr(at = j) = rtjk
∑

ak s.t. at=j

Pr(ak) = rtjk p
tj
k (4.100)

where rtjk = 1 ∀ j > 0. This is equivalent to (4.98) if ηtk|k′ = 1 ∀ k′ and PG is assumed to be

equal to 1. Lastly, in [13, e. (29)] the probability of the individual association hypotheses
are written as

Pr(ak) ∝
∏

t s.t at=0

(1− PDPGrtk|k−1)
∏

t s.t at>0

PDPGr
t
k|k−1

∑
s̃

µts̃k|k−1l
ts̃j/λ (4.101)

When disregarding the visibility and MMSI numbers, this is the same as (4.81) when
ηtk|k′ = 1 ∀ k′ and PG = 1. This is seen by replacing wta

t

k with the expressions from (4.53)

and (4.65).
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CHAPTER 5

Implementation choices

To make the tracker described in Chapter 4 possible to implement, several approximations
have to be made, the surrounding framework has to be specified, and measurement and
kinematic models has to be chosen. These implementation-specific elements are presented
here.

5.1 The extended Kalman filter

The tracker is implemented using an extended Kalman filter (EKF). An EKF, as opposed
to a regular Kalman filter, is able to handle nonlinearities by use of linearization. When
predicting, the EKF linearizes around the most recent update, while when updating it
linearizes around the most recent prediction. To further clarify the procedure, and to
contextualize the different mathematical entities of this chapter, the EKF algorithm is
shown in Table 5.1. The notation and structure of the algorithm is largely borrowed
from [46, p.71]. However, it is altered to more precisely represent what is done with the
expressions arising from the previous chapter. τ and s denotes the MMSI number and
mode, and τs, 0 denotes the mode- and MMSI-conditional prior from (4.6).

5.2 Measurement models

The general equations for the measurement likelihoods for the AIS and radar measurements
are presented in Section 3.2. These likelihoods do, however, have to be further specified.
The positional data of both measurement types are 2-dimensional, and can in general be
written as

zk = Hxk + wk, wk ∼ N (0,R) (5.1)
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In x̂τs,0k−1 and Pτs,0
k−1 from f tτs,0k−1 (x), Zk = {z1

k . . . z
mk
k }

1 x̂τsk|k−1 = f (s)(x̂τs,0k−1) Predicted state estimate

2 Fs =
∂

∂xk−1

f (s)(xk−1) Prediction Jacobian

3 Pτs
k|k−1 = FsPτs

k−1(Fs)> + Q(s) Predicted covariance

4 ẑτsk|k−1 = h(x̂τsk|k−1) Predicted measurement

5 ντsk =
∑mk

j=1 β
τsj
k (zjk − ẑτsk|k−1) Innovation

6 H =
∂

∂xk
h(xk) Measurement Jacobian

7 Sτsk = HPτs
k|k−1H

> + R Innovation covariance

8 Wτs
k = Pτs

k|k−1H
>(Sτsk )−1 Kalman gain

9 x̂τsk = x̂τsk|k−1 + Wτs
k ντsk Posterior state estimate

10 Pτs
k = (I−Wτs

k H)Pτs
k|k−1 Posterior covariance

Out
x̂τsk and Pτs

k from f tτsk (x),
x̂τsk|k−1 and Pτs

k|k−1 from f tτsk|k−1(x),
Sτsk

Table 5.1: A single run-through of the extended Kalman filter.

5.2.1 Radar measurements

The radar measurement noise matrix have both a Cartesian and polar element. This
reflects the physical properties of the sensor, in that the radar measurements located
further away from the ownship becomes noisier than the ones closer to it. With this in
mind, the measurement noise matrix for the radar measurement becomes

RR = Rc + JRpJ
> (5.2)

Here Rc is the Cartesian noise component, while Rp is the polar noise component. J is
the Jacobian of the mapping from polar to Cartesian coordinates.

5.2.2 AIS measurements

The AIS measurements do not inherit the same physical properties as the radar measure-
ments, and their measurement noise is only dependent on the error in the GPS data used
to find the position of the transmitting ship. Thus, the AIS measurement noise matrix
RA only has a Cartesian component.

5.3 Kinematic models

The kinematic modeling of the targets is relevant for the prediction of the motion of a
target from one time step to the next. Two popular models for movement in the target
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tracking community are the constant velocity (CV) model and the coordinated turn (CT)
model, and these are the ones used in this implementation. Both are quite simple but
reasonable approximations for shorter time intervals. The models are thoroughly described
in [42]. For a target with MMSI number τ following model s, the target is hypothesized
to evolve according to

xk|k−1 = f (s)(xk−1) + vk, vk ∼ N (0,Q(s)) (5.3)

where vk is zero-mean white noise. The covariance of vk is Q. This is a different way of
writing

f sτx (xk|xk−1) = N (xk|f (s)(xk−1),Q(s)). (5.4)

from assumption M4.

5.3.1 Constant velocity

The constant velocity model, also called the discrete white noise acceleration model,
assumes that the target moves in a nearly constant straight-line motion. As presented in
[42] there are two ways to model this nearly constant straight-line motion, either through
the discretization of a continuous model or through a direct discrete-time model. The first
version is chosen here, as it is suited for situations where the time intervals between time
steps are not constant. For a target following the CV model, f (s)(xk−1) and Q in (5.3) are

f (s)(xk−1) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk−1 (5.5)

and

Q(s) =


1
3
T 3 1

2
T 3 0 0

1
2
T 2 T 0 0
0 0 1

3
T 3 1

2
T 3

0 0 1
2
T 3 T

 qa (5.6)

where qa is the acceleration process noise intensity. When using multiple models it is
possible to use several CV models with different qa to account for different movement. For
a CV model modeling a target with nearly constant velocity the value of qa should be low,
at a magnitude of ≈ 0.05. To model a target with more varying velocity it should be set
higher, at a magnitude of ≈ 0.5 [47].

5.3.2 Coordinated turn

The coordinated turn (CT) model introduces angular velocity, ωk, as a new state in xk.
The CT model is, as the CV model, described in [42]. Again, a discretizisation of the
continuous model is used and f (s)(xk−1) and Q(s) from (5.3) become
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f (s)(xk−1) =


1 sin(ωk−1T )

ωk−1
0 −1−cos(ωk−1T )

ωk−1
0

0 cos(ωk−1T ) 0 − sin(ωk−1T ) 0

0 1−cos(ωk−1T )

ωk−1
1 sin(ωk−1T )

ωk−1
0

0 sin(ωk−1T ) 0 cos(ωk−1T ) 0
0 0 0 0 1

xk−1 (5.7)

and

Q(s) =


T 3

3
qa

T 2

2
qa 0 0 0

T 2

2
qa Tqa 0 0 0

0 0 T 3

3
qa

T 2

2
qa 0

0 0 T 2

2
qa Tqa 0

0 0 0 0 Tqω

 . (5.8)

where qa again is the acceleration process noise intensity, while qω is the angular velocity
process noise intensity. As this model is nonlinear, the Jacobian is needed for it to be used
in an EKF. Using the expressions from [42, p. 469], the Jacobian of f (s)(xk−1) is

F =


1 sin(ωk−1T )

ωk−1
0 −1−cos(ωk−1T )

ωk−1
F1,5

0 cos(ωk−1T ) 0 − sin(ωk−1T ) F2,5

0 1−cos(ωk−1T )

ωk−1
1 sin(ωk−1T )

ωk−1
F3,5

0 sin(ωk−1T ) 0 cos(ωk−1T ) F4,5

0 0 0 0 F5,5

 (5.9)

where

F:,5 =



ẏ − (Tωk−1ẏ + ẋ) sin(ωk−1T ) + (Tωk−1ẋ− ẏ) cos(ωk−1T )

ω2
k−1

−T (ẋ sin(ωk−1T + ẏ cos(ωk−1T ))

−ẋ+ (Tωk−1ẋ− ẏ) sin(ωk−1T ) + (Tωk−1ẏ + ẋ) cos(ωk−1T )

ω2
k−1

T (ẋ cos(ωk−1T − ẏ sin(ωk−1T ))

1


(5.10)

Here, ˙ and ẏ denote the velocities in the x- and y-direction, respectively.

5.4 Clustering and validation gating

To avoid having to consider all tracks simultaneously when performing data association,
tracks with shared measurements within their validation gates are clustered and data
association is performed on each cluster. A measurement zk falls inside the validation gate
if

(zk − zsτk|k−1)>(Ssτk )−1(zk − zsτk|k−1) < g2 (5.11)

for any of the modes and MMSI numbers in the track’s state. zk|k−1 is the predicted
measurement and Sk is the innovation covariance, both from Table 5.1. g is the number of
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standard deviations from the predicted measurement a measurement must be within to be
included, and defines the size of the validation gate.

When all measurements have been gated, i.e. associated to any tracks which they fall
inside the validation gates of, the tracks are clustered. This is done simply by placing any
tracks which share measurements after the gating procedure in the same cluster. Data
association is then done only between the tracks in the cluster, and not between all tracks
in the surveillance area. This clustering is mainly to avoid a sharp increase in the number
of computations needed when more tracks are present.

5.5 Data association hypotheses construction

Data association has to be performed between tracks and the measurements which fall
inside their validation gates. For this, association hypotheses have to be constructed.
These are then used for the calculation of the association probabilities in Chapter 4. The
association hypotheses are track-oriented.

When considering associating hypotheses involving radar measurements each track is
either associated with a measurement or it is not, which means that a missed detection has
taken place. Within a single hypothesis each track can only be assigned one measurement,
and each measurement can only be assigned to one track. A single association hypothesis

at time step k for ntk tracks is denoted as ak = [a1
k, a

2
k, . . . , a

nt
k
k ] where

atk =

{
j if measurement j is assigned to track t

0 if no measurement is assigned to track t
(5.12)

Such an association hypothesis is only valid if it is part of the set Ak from (3.32).

For association hypotheses involving AIS measurements, the assumption that there are
no clutter measurements has to be considered. This means that all mk AIS measurements
at time k have to be assigned to a track. If there are more tracks than measurements in a
cluster there will nevertheless be missed detections. With this in mind, an AIS association
hypothesis is only valid if it is part of the set Ak, and ∀ j ∈ {1, . . . ,mk} ∃ atk = j.

For large clusters, the number of valid association hypotheses can become compu-
tationally intractable. While there for nk = 2 and mk = 2 are 7 possible association
hypotheses, when nk = 6 and mk = 6 there are 13327 possible association hypotheses.
Thus, calculating the probabilities for all association hypotheses regardless of cluster size
is infeasible. To mitigate this issue an approximation can be made by use of Murty’s
algorithm [26]. In combination with the auction algorithm [46, p. 137], a version of the
Hungarian algorithm [48], this results in a fixed number of the most likely association
hypotheses. These are selected by arranging the assignments in a matrix, with the cost
of assigning each measurement to each track. The auction algorithm chooses the least
costly assignment, which becomes the first association hypotheses. Murty’s algorithm
manipulates the reward matrix so the next run of the auction algorithm returns the second
least costly assignment, and so forth. The assignment matrix is of size ntk × (ntk + mk),
and is constructed as follows:
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Mt,j =


ln(wtjk /λ)

for j ≤ mk, and when measurement j is within the validation
gate of track t

ln(wt0k ) for j = t+mk

−∞ otherwise

(5.13)
In this implementation the algorithm returns the eight most likely association hypotheses,
but this number is easily changed.

For AIS measurements the data association problem becomes a lot less computationally
expensive. As an AIS receiver is unable to receive more than one AIS message at a time,
as evident from the protocol used for AIS communication [17], there will usually be only
one measurement present in a cluster. This will keep the number of association hypotheses
at a manageable level without approximations. However, approximations may nevertheless
be necessary if a lot of AIS-transmitting targets are present.

5.6 Track initiation and termination

5.6.1 Initialization based on validation gating

The unknown target intensity (3.10) hypothesizes that there are undetected targets present,
and defines the way they are to be initialized. The mathematical details surrounding the
initialization were described in Section 4.3. To mitigate computational complexity, tracks
are only initialized on radar measurements that are not within any track’s validation
gate, i.e. unclaimed measurements. To avoid a large amount of false tracks, the existence
probability of the newly initialized tracks have to reach above a threshold before they are
confirmed. However, once initialized the tracks contest for the same measurements as the
already existing tracks even though they have not been confirmed.

For the AIS measurements, the initialization is done in a slightly different manner. As
for the radar measurements, new tracks are initialized on all AIS measurements which
fall outside any validation gate. There is, however, a necessity to be able to initialize new
tracks on measurements which fall within another track’s validation gate. The phenomenon
necessitating this is shown in Figure 5.1. The figure depicts a scenario with two targets,
both transmitting AIS measurements. For the sake of simplicity we assume that no radar
measurements are present. A track is initialized on the first AIS measurement, z1 in the
figure, which causes the next measurement, z2 to fall within the validation gate of the
newly initialized track. However, z2 is in fact a measurement from a different target,
but if the tracker only initializes new tracks on unclaimed measurements this will not be
discovered by the tracker. As the AIS measurements cannot be false alarms the tracker is
sure that measurement z2 originates from the same target which transmitted z1, resulting
in the behavior in Figure 5.1. For radar measurements this problem is somewhat mitigated
by the fact that the radar measurements can be considered clutter measurements, thus
giving the tracker the possibility of ignoring them to a larger degree.

42



5.6 Track initiation and termination

z1 z3

z2
z4

z5

z6

Figure 5.1: Behavior after failure to initialize track.

5.6.2 Initialization based on Total track probability

Initialization of tracks based on a concept called Total track probability (TTP) can help
to solve this problem. The TTP is defined as a track’s existence probability times the sum
of hypotheses probabilities containing the track. For track t the TTP becomes

TTPt = rtk
∑

ak s.t. at>0

Pr(ak) (5.14)

To be able to examine this the association probabilities are calculated for the scenario
where a hypothesized target is present. This is done by creating a new set of association
hypotheses which include a new track, initialized as described in Section 4.3.1, before
calculating the association probabilities. The TTP of the new track becomes the basis for
the decision of whether to let the new track be initialized. If the TTP of the new track is
larger than some threshold TTTP it is initialized.

Remark. In the current implementation TTP is only used on AIS measurement with
not previously encountered MMSI numbers, which arrive inside the validation gates of
tracks that have already encountered an AIS measurement. It can nevertheless be used
for other measurements as a tool to create more refined initialization schemes than the
one described here. All measurements are, strictly speaking, potential new targets, and
using TTP will conceptually be closer to this mindset than the somewhat coarse validation
gate approach. However, to avoid making large structural changes to the underlying radar
tracker TTP is not used on the radar measurements.

5.6.3 Track termination

Track termination is performed as it is done in [47]. Firstly, tracks are always terminated
whenever their existence probability rtk falls below a threshold Td. Tracks are also fused
whenever they are in too close proximity of each other. This is decided by evaluating the
hypothesis H0, stating that the two tracks are the same. As described in [47], for two
targets x1

k and x2
k the hypothesis is that d = x1

k−x2
k = 0. The estimated distance between

the two targets is
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d̂ = x̂1
k − x̂2

k (5.15)

while the covariance of the estimated distance is

T = P1
k + P1

k −P12
k −P21

k . (5.16)

The covariance between two tracks can be estimated with methods found in e.g. [49].
Using these values, Mahalanobis distance is used to measure the dissimilarity of the two
tracks, as

γ = d̂>T−1d̂ (5.17)

This value is then used to evaluate the hypothesis, leading to the fusing of the tracks if

P (γ < γα|H0) = 1− α (5.18)

for some γα. Here, α is the significance level of H0. If the two tracks are fused, the
youngest track, i.e. the one initialized most recently, is terminated.

Furthermore, tracks are terminated whenever they have gone five radar time steps
without associating to a measurement, as a method of terminating tracks outside the
surveillance area.

5.7 Handling of MMSI numbers

In theory, there are over a billion different MMSI numbers [18], and to calculate all the
expressions in the previous chapter for all these would be infeasible. Luckily, this is not
necessary. As the large majority of MMSI numbers are not going to be present in a given
scenario these can be considered as a single number. The number −1 is used here to
represent all the MMSI numbers not encountered by a target, as −1 is outside the range of
actual MMSI numbers. All numbers which have not been observed will result in the same
behavior for the tracker. They will all have the same probability of being correct, and
they will give the same estimates for the modes, visibility, existence and kinematic pdfs.
This also means that even though they are not calculated individually, one can always
know all the relevant previous values in the case where a new MMSI number arrives. The
probability for an unencountered MMSI number τnew being correct at the previous time
k − 1 is

ξτnewk−1 =
1−

∑
τ 6=−1 ξ

tτ
k−1

|V| −
∑

τ 6=−1 1
. (5.19)

The rest of the relevant values are found by keeping in mind that

f tτnews
k−1 (x) = f

tτ−1s
k−1 (x) (5.20)

µtτnews
k−1 = µ

tτ−1s
k−1 (5.21)

while the visibility probability is independent of the MMSI number.
The influx of corrupt MMSI numbers lead to an ever-growing list of encountered MMSI

numbers. As the algorithm performs calculations for each encountered MMSI number this
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is unfortunate with regards to computational complexity. In addition, the probabilities
of MMSI numbers can become very low, and cause numerical underflow. The problem
is mitigated by removing the most unlikely MMSI numbers for each track. To do this
the MMSI number probability ξtτk for MMSI number τ at time k, is compared with a
predefined threshold Tτ . All MMSI numbers with a lower probability of being correct than
Tτ are removed. This ensures that only the relevant MMSI numbers are considered for each
track and that corrupted MMSI numbers that show up only once don’t accumulate. MMSI
number −1, however, cannot be removed, as it represents all possible MMSI numbers, also
ones which could later appear to the target. To avoid numerical underflow, the probability
of MMSI number −1 is denied to go beneath 1× 10−10.

All tracks have a dynamic list of encountered MMSI numbers, which grows as the track
encounters AIS measurements with new MMSI numbers, and shrinks as low-probability
numbers are pruned away. Because all possible MMSI numbers, either unencountered or
previously pruned away ones, are represented by MMSI number −1, one can nevertheless
argue that the state is calculated for all possible MMSI numbers at all times.
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CHAPTER 6

Experimental setup

6.1 Technical implementation

The tracker was implemented in Python. The implementation was built upon an already
existing target tracking library created as part of the Autosea project at NTNU[23],
the code from the pre-master project and the work from TK8102. The code follows a
modular structure, shown in a simplified form in Figure 6.1. In Figure 6.1, the green
box represents the supporting infrastructure, while the red box represents the part of
the program conducting the tracking. The supporting infrastructure, here represented
by run.py, creates or imports measurements and provides these as input to the tracking
manager. Estimates from the tracker are then returned to run.py and processed to
evaluate the results. These are then output through a visualizing module.

6.2 Data simulation scheme

The simulated data is created in line with the assumptions in Section 3.2. The ownship is
situated at the origin, and is stationary. The surveillance area is circular with a radius
dependent on the preset range for the radar and AIS receiver. The simulated data consists
of true target positions, radar measurements from both targets and clutter, and AIS
measurements.

6.2.1 Target trajectory generation

The targets are born according to a Poisson process which is only non-zero at the edge of
the surveillance area. Targets are terminated when they move outside the surveillance
area. The direction of the initial movement of each target is defined to be within 45◦ of
the line between where the target was born and the origin. The magnitude of the initial
velocity is a randomized percentage of a preset maximum initial velocity parameter. A
visualization of this can be seen in Figure 6.2.
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run.py Tracking manager

Track initiator

Tracker

Track terminator

Data generator

Result evaluator

Visualizer

Measurements

Estimates

Figure 6.1: Simplified code structure and program flow.

The continuing movement of each target is modeled according to the CV model
described in Section 5.3. At each time step the target evolves according to

xk|k−1 = F(xk−1) + vk, vk ∼ N (0,Q) (6.1)

where F is the matrix from (5.5), and Q is the matrix from (5.6). Noise is added to the
state vector at each time step. The magnitude of the noise depends on the preset process
noise intensity qa, which determines the covariance of vk. The times at which the true
position of a target is generated depends on the radar sampling rate and times when AIS
measurements are generated. The position is generated at the time of each new batch of
radar measurements, and at times when a new AIS measurement can arrive. To avoid
having to generate the position three times a second the reporting interval for a Class A
ship moving at 0-14 knots and changing course, in table Table 2.1, is rounded down to
three seconds.
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Figure 6.2: Initial velocity for a new generated target.

6.2.2 Radar measurements

When a target trajectory, which represents the true position of the target, has been
generated, radar measurements are created for the target at each time step according to
the radar model in Section 5.2. That is

zk = HRxk + vk, vk ∼ N (0,RR) (6.2)

Each target has PD probability of generating a measurement. Only targets that are within
the predefined radar range generate radar measurements. After all targets and radar
measurements have been created the radar measurements generated on targets that are
hidden behind other targets are removed. Clutter measurements are generated according to
a Poisson process with a predefined intensity, and the measurements are placed uniformly
within the radar surveillance area.

6.2.3 AIS measurements

The first AIS measurements arrive according to Table 2.1 or Table 2.2. The first AIS
measurement from each target is created at a random time after target birth, with the
maximum time being decided by the aforementioned tables and the velocity of the target.
The frequency of the measurements depends on the movement of the simulated target and
whether it is a Class A or Class B ship. The probability of a ship having the ability to
send AIS messages, denoted as PAIS, can be set, such that only some of the simulated
targets transmit messages. The probability of a generated target being of Class A, PA, or
Class B, 1− PA, can also be set.

Measurement noise is added to the true position to create the measurement, according
to the AIS measurement model in Section 5.2, i.e.

zk = Hxk + vk, vk ∼ N (0,RA) (6.3)

An MMSI number is also assigned to each target, and when creating the AIS measurements
these MMSI numbers have a predefined probability, PC , of being corrupted. At each time
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step there is also a probability Pdropout of the AIS transmitter going offline. This leads
to the target not transmitting AIS measurements for some time. The duration of the
dropout, in seconds, is determined by a random sampling from a log-normal-distribution
with mean Tdropout.

An example of a complete generated scenario, with the resulting tracks plotted, can
be seen in Figure 6.3. The black and gray dots are the radar measurements, and the
green dots are the AIS measurements. The measurement colors fade as time passes in the
scenario, so the darkest measurements arrived most recently, and the lightest arrived at the
start of the scenario. The red lines are the track trajectories output by the tracker, while
the orange lines are the true target trajectories. The gray circles represent the distance
from the origin where the ownship is situated, and are drawn every 250 meters.
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Figure 6.3: Example of a generated scenario.

6.3 Experimental data

The experimental data used for testing were collected during the final demonstration of
the Autosea project at NTNU [23]. The experiment took place in the fjord outside of
Trondheim. The ownship used during the demonstration was a rigid inflatable boat (RIB)
named Telemetron [50], which was equipped with a radar. AIS messages were also collected
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from the surrounding ships, which together with the radar measurements constitute the
data set. A picture from the demonstration can be seen in Figure 6.4, where Telemetron
is the small ship headed towards the camera.

The radar which was used in the demonstration was a Simrad Broadband 4GTM radar
[51]. To be convenient for use in a tracker the data was processed through a data extraction
process which is described in [47]. It consists of four steps:

1. The detection of objects is handled by the radar. The built-in detection method
is optimized for use at sea. The detections are delivered in polar coordinates.

2. The detections are converted to a world fixed reference frame.

3. Detections from land are removed by land masking, which means that the
detections in the world fixed frame are compared with a map and removed if
they fall within an area marked as land.

4. The detections are clustered to fulfill the assumption of only one measurement
being received per target.

Unfortunately, no ground truth is available from the experiment, and the AIS measurements
have been interpolated such that they arrive at the same time as the radar measurements.
It is nevertheless a relevant real data set for the problem.

Figure 6.4: Drone view of the Autosea final demonstration. Screenshot from [2].

6.4 Evaluation metrics

In the following sections the different evaluation metrics, used to evaluate the performance
of the tracker, are presented. These involve well established methods to evaluate the filter
consistency, several methods to evaluate different properties of the tracker, and a metric
which aims to give an overall view of the performance of a tracker.
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6.4.1 Filter consistency

A static estimator is consistent if it converges to the true value of the parameter to be
estimated. For state estimators, the consistency has to be decided some other way, as the
states change with time. Consistency checks are important, as they tell if a state estimator,
or filter, is optimal, and a badly conditioned estimator can also diverge from the true value.
As described in [42, p. 233], a filter is consistent within the Gaussian-Linear framework if

E[xk − x̂k] , E[x̄k] = 0 (6.4)

and

E[[xk − x̂k][xk − x̂k]
>] , E[x̃kx̃

>
k ] = Pk|k. (6.5)

These equations leads to three consistency criteria, which checks if a finite set of samples
have the same estimation error as their theoretical properties entail. As written in [42]
they are:

The state errors should be acceptable as zero mean and have magnitude
commensurate with the state covariance as yielded by the filter.

The innovations should also have the same property.

The innovations should be acceptable as white. [42, p. 234]

The first of the criteria is evaluated by calculating the Normalized estimation error squared
(NEES), which is defined as

εk = x̄>k P−1
k|kx̄k. (6.6)

Under Gaussian-Linear assumptions, and assuming that the filter is in fact consistent, the
NEES is χ2-distributed with nx degrees of freedom. nx is the dimension of the state x.
This means that, for an optimal filter

E[εk] = nxk
. (6.7)

When considering several samples, the average NEES (ANEES) ε̄ can be considered. It is
simply the sample mean of the individual NEES values

ε̄ =
1

Nk

Nk∑
k=1

εk (6.8)

where Nk is the number of samples. The ANEES is distributed according to a χ2-
distribution with Nknx degrees of freedom, which is then used to investigate the filter
consistency. The resulting ANEES for the filter is compared to a given confidence interval
of the χ2-distribution, giving an indication of the filter’s consistency.

However, the NEES can only be calculated when the true state value is known, and that
is only the case for simulations and in some cases monitored experiments. In other cases,
the Normalized innovations squared (NIS) can be used to evaluate the filter consistency.
It is defined as

εν,k = ν>k S−1
k νk. (6.9)
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Similarly to the NEES, the NIS is also χ2-distributed. However, the χ2-distribution has
nz degrees of freedom, where nz is the dimension of the measurement space. As with the
ANEES, the average NIS (ANIS) can be calculated as the sample mean of several NIS
values. The ANIS has a χ2-distribution with Nnz degrees of freedom and is evaluated in
the same way as the ANEES.

6.4.2 Evaluating different properties of the tracker

While filter consistency always should be preserved in a tracker, some metrics to evaluate
its performance are also needed. One of the more obvious metrics is the root mean squared
error (RMSE). The RMSE will for a target tracker, when ground truth is available, give
the square root of average squared error between the true state and the estimated state.
For Nk samples it is defined as

RMSE =

√√√√ 1

Nk

Nk∑
i=1

(x̂i − xi)2. (6.10)

The RMSE can be calculated for the whole state, but can also be calculated for just the
position or velocity, for example. As the error of the position and velocity can have a
different impact and are not always comparable this division can be advantageous.

In [52] some additional metrics for evaluating target trackers are presented. Firstly,
some of the terms should be defined:

True tracks: Tracks following an actual target. Whether a track is a true track is
determined by the percentage of measurements the track has associated
with that actually comes from a target. If this is above 50%, the track
is deemed a true track.

False tracks: Tracks not following a target, thus usually originating from clutter.
Whether a track is a false track is decided in the same way as for true
tracks, i.e. the number of associated measurements that do not come
from a target.

Tracks: All created tracks, both true tracks and false tracks.

The first output metric is the Track probability of detection (TPD), which is defined as

TPD =
1

Ttot

NTT∑
i=1

Ti (6.11)

where Ttot is the combined duration of the targets in the scenario, NTT is the number
of true tracks in the scenario and Ti is the duration of the individual true tracks. The
duration of individual tracks is defined as the time between the first and last time the
true track associated with a measurement. Any overlaps of true tracks on the same target
are removed. This results in the ratio of the sum of the duration of all true tracks and the
sum of the duration of all targets.

Furthermore the Track false alarm rate (TFAR) is defined as
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TFAR =
NFT

Ttot
(6.12)

where NFT is the total number of false tracks. This metric gives the number of initialized
false tracks divided by the sum of the duration of all targets.

The Track localization error (TLE) gives the total average localization error for all true
tracks at all time steps. This is done by taking the euclidean norm ‖·‖ of the difference
between the estimated position x̂pos and the corresponding true position xpos at each time
step

TLE =
1

NTT

NTT∑
t=1

‖x̂tpos,1:Kt
− xtpos,1:Kt

‖
Kt

(6.13)

where Kt is the number of time steps over which track i has been estimated.

The Track fragmentation rate (TFR) is defined as

TFR =
NTT −NT

Ttot
(6.14)

where NT is the number of targets. This shows the number of track fragmentations per
second a target is being tracked. A track fragmentation is when a track is terminated
prematurely or deviates from the target, and has to be re-initialized on the same target.

While the expressions for calculating these metrics are quite simple, the task of
actually evaluating them can be more challenging. In [52] some general issues with tracker-
performance evaluation are discussed. Firstly, the times at which to evaluate the tracker
has to be considered. When only using radar the obvious choice is to evaluate after each
radar update. When including AIS this choice becomes more difficult. One possibility is to
only evaluate at the times when a new batch of radar measurements has arrived, as would
be done when only using radar. It is also possible to evaluate at all times when either
radar measurements or AIS messages have arrived. However, as only one AIS message
usually arrives at a time this would create the need to evaluate tracks at times when
only a prediction is available for most tracks, and no update based on a measurement. A
third option would be to evaluate tracks that have had an AIS measurement update, in
addition to evaluating after each radar measurement update. This brings with it some of
the problems of the aforementioned case, as in the case where several tracks in a cluster
share a single AIS measurement. Due to these potential problems the first method is used,
where the tracks are evaluated after each new batch of radar measurements. As the main
comparison will be between the tracker with and without AIS measurements this also
seems like the most intuitive method.
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(a) Track switch. (b) Splitting of tracks.

Figure 6.5: Estimates (in orange) and the true target they follow (in black).

Another challenge when evaluating a tracker lies in how to assign a track to the ground
truth. For example, if a track is assigned to its true target based only on what measurement
it was initialized on, a track swap, as pictured in Figure 6.5a, would make the TLE very
large. This is a situation that commonly occurs when multiple targets are present and
thus needs to be addressed. The chosen solution is to split the tracks when they deviate
from the true target, as depicted in Figure 6.5b. This way the effect of a track switch
will not impact the TLE to such a large degree, in exchange for a higher TFR. Which
true target a track is following at a given time step can be determined by looking at the
measurements they have associated with. This scheme does, however, require labeling of
the measurements which originate from each target. Thus, such an evaluation becomes
difficult when using real data.

6.4.3 Overall performance evaluation

The Optimal subpattern assignment (OSPA) metric was first presented in [53] before it
was further expanded upon in [54]. It is a metric that accounts for both spatial errors and
cardinality errors, and as such it catches both errors where the estimates are imprecise and
errors where a target has not been detected. For a closed and bounded space W ⊂ RN the
individual track positions at a given time are elements of W . The track estimates at time
k are contained in the finite subset Xk = {x1

k, . . . ,x
m
k } ⊂ W , with the true target states in

Yk = {ynk , . . . ,ynk} ⊂ W . A metric d(x,y) on the space RN has to fulfill certain criteria:

• d(x,y) ≥ 0 ∀ x,y ∈ RN

• d(x,y) = 0 ⇐⇒ x = y

• d(x,y) = d(y,x) ∀ x,y ∈ RN

• d(x,y) ≤ d(x, z) + d(z,y) ∀ x,y, z ∈ RN

The OSPA metric is defined as

d̄(c)
p (Xk, Yk) =

(
1

n

(
min
π∈∏n

m∑
i=1

d(c)(xik,y
π(i)
k )p + cp(n−m)

))1/p

(6.15)
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if m ≤ n, otherwise d̄
(c)
p (Xk, Yk) , d̄

(c)
p (Yk, Xk). Here, d(c)(xik,y

π(i)
k ) = min(c, d(xik,y

π(i)
k ))

where the base distance d(xik,y
π(i)
k ) is the Euclidean distance between xik and y

π(i)
k , and

c > 0 is a design parameter called the cutoff. The fact that this is a metric is shown in
[54]. Πn is the set of all possible permutations for {1, . . . , n}. p is also a design parameter,
called the order. The cutoff c can be interpreted as a way to choose how heavily cardinality
errors should be punished, while the order p can be interpreted as a way to decide how
heavily outliers should be punished.

The OSPA metric as defined in (6.15) only provides an evaluation for a single point
in time, and as such is not able to penalize situations such as track switches. For that
reason, an OSPA-like metric for tracks, called OSPA(2) was presented in [55]. One would
often want to evaluate performance as a function of time throughout the scenario. Then,
at each time instant a time window has to be considered. This can be achieved by only
considering the tracks for the previous N time steps in a sliding window fashion. It can
be summarized as an OSPA metric on an OSPA base distance. The base distance can be
defined as

d̃(c)
p (xik:k−N ,y

π(i)
k:k−N) =


∑

k′∈Dx∪Dy

d̄(c)(xik′ ,y
π(i)
k′ )

|Dx ∪ Dy|
if Dx ∪ Dy 6= ∅

0 if Dx ∪ Dy = ∅
(6.16)

where Dt are the times at which track t exists within the time window. Then, for two sets
of tracks X = {x1, . . . ,xm} and Y = {y1, . . . ,yn} an OSPA metric on the sets for m ≤ n
is

ď(c)
p (Xk|k−N , Yk|k−N) =

(
1

n

(
min
π∈∏n

m∑
i=1

d̃(c)(xik|k−N ,x
π(i)
k|k−N)p + cp(n−m)

))1/p

(6.17)

This metric is the OSPA(2). As for the OSPA, if m > n we have that ď
(c)
p (Xk|k−N , Yk|k−N ) ,

ď
(c)
p (Yk|k−N , Xk|k−N) It is also defined that ď

(c)
p (∅, Xk|k−N) = c and ď

(c)
p (∅, ∅) = 0. If N = 0

the OSPA(2) metric simplifies to the OSPA metric. To evaluate both (6.15) and (6.17) a
2-D assignment problem has to be solved. This can for example be done with the Auction
algorithm [46, p. 137], similarly to what is done for efficient data association, as explained
in Section 5.5.

Remark. In addition to the OSPA(2) metric, another version of the regular OSPA metric
has been presented, the Generalized optimal subpattern assignment metric (GOSPA) [56].
It is defined as

d(c,α)
p (Xk, Yk) =

(
min
π∈∏n

m∑
i=1

d(c)(xik,y
π(i)
k )p +

cp

α
(n−m)

)1/p

(6.18)

It has also been extended for use on sets of tracks, and differs from the OSPA metric
through the removal of the normalization, and the addition of the α parameter.
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CHAPTER 7

Results

In this chapter an evaluation of the tracker described in Chapter 4 and is performed,
using an implementation as described in Chapter 5. The performance is evaluated on
both simulated data and experimental data, using the metrics presented in Section 6.4.2
and Section 6.4.3. For the simulated data both a general analysis of the tracker and a
closer look at specific scenarios which can cause problems were performed. These include
scenarios involving corrupted MMSI numbers, track switches, and initialization of close
targets. For the experimental data the comparisons are done between tracking using
AIS and radar measurements, and tracking using only radar measurements. An analysis
of the consistency of the tracker is also performed. The tracker parameters used for all
the scenarios can be seen in Table 7.1, which were found after tuning the tracker on the
experimental data.

7.1 Simulated data

The simulated data is created mainly in accordance with parts of the scheme detailed in
Section 6.2, with some alterations to fit specific scenarios. The parameter values used for
creating the targets and measurements were chosen to mirror the tuning parameters in
Table 7.1. However, as only the CV model was used for simulating the movement of the
generated targets, this was set to a different value. The parameters used to create the
simulated data can be seen in Table 7.2.
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Parameter Symbol/Units Value
Radar sample interval T [s] 2.5
CV 1 process noise qa,1 [m/s2] 0.1
CV 2 process noise qa,2 [m/s2] 1.5
Turn rate process noise qω [1/s2] 0.05
Cartesian range std. radar σcR [m] 6.6
Cartesian range std. AIS σcA [m] 3
Polar range std. σr [m] 5
Polar bearing std. σθ [deg] 1
Detection probability PD [–] 0.92
Survival probability PS [–] 0.99

Visibility transition probabilities w [–]

[
0.9 0.1
0.52 0.48

]
Gate size g [–] 3
Track fusion hypothesis significance level α [–] 0.01
Clutter intensity λ [1/m2] 2× 10−7

Initial new target intensity b [1/s2] 1× 10−8

Initial velocity std. σinit [m/s] 15
Initial mode probabilities µ0 [–] [0.8, 0.1, 0.1]>

Mode transition probabilities πss [–] [0.99, 0.99, 0.99]
Existence confirmation threshold Tc [–] 0.999
TTP initialization threshold TTTP [–] 0.5
Existence termination threshold Td [–] 0.01
MMSI termination threshold Tτ [–] 1× 10−15

Label confidence PC [–] 0.99

Table 7.1: Tracker parameters.

Parameter Symbol/Units Value
Radar sample interval T [s] 2.5
CV process noise qa [m/s2] 0.4
Cartesian range std. radar σcR [m] 6.6
Cartesian range std. AIS σcA [m] 3
Polar range std. σr [m] 3
Polar bearing std. σθ [deg] 1
Detection probability PD [–] 0.92
Clutter intensity λ [1/m2] 2× 10−7

Max initial velocity Vinit [m/s] 5
Label confidence PC [–] 0.99
AIS dropout probability Pdropout [–] 0.01
Mean AIS dropout time Tdropout [s] 30
Class A probability PA [s] 0.5

Table 7.2: Simulated data parameters.
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7.1.1 Filter consistency

Introducing a different type of sensor, and updating the estimates sequentially, changes
the original VIMMJIPDA tracker quite substantially, and it is necessary to examine the
consistency of the tracker when using AIS measurements. 2000 Monte Carlo runs were
performed and the ANEES was calculated when tracking both with and without using
AIS measurements. The scenarios for the consistency evaluation were created according to
Table 7.2, with the following specification:

• One target is born at time T = 0, and none after.

• The scenario ends at time T = 1000.

The resulting ANEES, in addition to the 95% confidence intervals can be seen in Table 7.3.

95% confidence interval [3.99, 4.01]
ANEES without AIS 4.00
ANEES with AIS 4.12

Table 7.3: ANEES values when using only radar measurements, and when using both radar
and AIS measurements.

As can be seen, the ANEES when not using AIS measurements is exactly as one would
hope, and within the confidence interval. When using the AIS measurements the ANEES
is slightly too high, i.e. the tracker is slightly overconfident. This can be due to the lower
measurement noise of the AIS measurements, and the certainty the tracker has on the
AIS measurements belonging to the target. This lowers the covariance of the estimate
whenever they appear, which possibly makes the tracker too confident in the subsequent
radar measurements. It can, however, also be due to the tuning. Nevertheless, the ANEES
values do not show any particularly large consistency issues.

Furthermore, the consistency of the course estimates were evaluated. To do this, the
course estimates from the scenario were extracted, and their standard deviations were
calculated by linearizing the covariance matrices. The percentage of estimates with a
course error larger than their standard deviation was also calculated. The results can be
seen in Table 7.4.

With AIS Without AIS
Average course RMSE [deg] 3.20 3.60
Average course std. dev. [deg] 29.19 36.48
Percentage outside 1σ-bounds 27.99 28.36
Percentage outside 2σ-bounds 10.63 11.58

Table 7.4: Comparison of course estimate consistency with and without the use of AIS
measurements.

For the course estimates the tracker is more consistent when using AIS, but the
differences are small. The course estimates achieved when using the AIS measurements
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are more accurate, and also have lower standard deviations. When comparing the number
of estimates with a larger course RMSE than their standard deviations, these numbers are
lower when using AIS measurements. The same is the case for the number of estimates
with a larger course RMSE than twice their standard deviations. This contrasts the results
from Table 7.3, where the tracker was more confident when using AIS measurements. Here
the opposite seems to be the case. Nevertheless, none of these results hints towards any
large consistency issues with the tracker.

7.1.2 Using AIS and radar versus using only radar

For the inclusion of AIS measurements in the VIMMJIPDA to be meaningful it should
show some performance improvement upon its regular usage when it only uses radar
measurements. To evaluate this, the tracker performance was evaluated on the same data
set over a range of probabilities for a given track to generate AIS measurements, PAIS.
For each probability 2000 Monte Carlo simulations were performed.

The scenarios were created according to Table 7.2, with the following specification:

• Four targets are born at time T = 0, while four targets are born at time T = 100.

• The scenario ends at time T = 400.

The mean of the OSPA(2)-values across all time steps and simulations, for each PAIS, are
shown in Figure 7.1. These were calculated with N = 10, c = 100, and p = 2. As N = 10,
track jumps and track losses are penalized across 10 time steps, while any cardinality
errors are penalized with a value of 100. The OSPA(2) decreases linearly as more targets
transmit AIS measurements, resulting in a 32% combined decrease. In Figure 7.2 the
OSPA(2)-values for the scenarios with PAIS = 0 and PAIS = 1 are shown for different N ,
with p = 2 and c = 100. When N = 1, track jumps and track losses are not penalized,
while for N = 40 they are penalized for the last 40 time steps, which amount to a large
part of the scenario. Not surprisingly, the OSPA(2) increases as N increases. The difference
in performance between when using AIS and not, does however remain nearly constant.

The OSPA(2) values for different orders, p, are shown in Figure 7.3. As mentioned
in Section 6.4.3, a high order will penalize outliers more than a lower order. As can be
seen, the error increases with increasing p, with the difference between when using AIS
and using only radar also increasing slightly. This indicates that the tracker outputs
more outliers when not using AIS, but the difference is not large. In Figure 7.4, the
OSPA(2) values for different values of the cutoff, c, is shown. The most obvious effect of
changing the value of c is that cardinality errors are punished more, or less, severely. It
also determines the point where an outlier estimate is discarded in favor of a cardinality
error. If c = 1, the inherent optimization problem in the OSPA(2) metric will disregard all
estimates with a base distance larger than 1 from the ground truth. With c = 500, only the
most obvious outliers will be discarded. Nevertheless, the errors seem to increase linearly
with the increasing c, indicating that only the first effect have much of an impact. That
is, the higher value of c results in a higher OSPA(2) value due to more severely punished
cardinality errors. Furthermore, the difference between using AIS and not increases with
increasing c, indicating that there are fewer cardinality errors when using AIS.
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Figure 7.1: OSPA(2) with N = 10, c = 100, and p = 2.
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Figure 7.2: OSPA(2) for varying N , c = 100, and p = 2.
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Figure 7.3: OSPA(2) for varying p, c = 100, and N = 10.
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Figure 7.4: OSPA(2) for varying c, N = 10, and p = 2.

The average TLE values across the time steps and simulations for different PAIS are
shown in the uppermost plot in Figure 7.5. As for OSPA(2), the error decreases linearly as
PAIS increases. The performance gain is a bit larger than for the OSPA(2), with a total
decrease of 35%.

The TPD is shown in the second plot from the top in Figure 7.5. Also here, a clear
linear trend can be seen as PAIS increases. The gains are, however quite small, with the
TPD increasing by 1.1% between PAIS = 0 and PAIS = 1.

In the second plot from the bottom in Figure 7.5, the TFR can be seen for the different
PAIS values. The value remains almost constant, regardless of the amount of tracks
transmitting AIS measurements. The fragmentation rate is already quite low when using
only radar, but the addition of AIS measurements seems unable to prevent fragmentation
occurring when using radar.

The TFAR is shown in the bottom plot in Figure 7.5, and is also seemingly unaffected
by the addition of AIS measurements. This makes sense, by keeping in mind how the false
alarms are defined. The false alarms are not associated to any target, and as such they
must come as a result of clutter. Then, the addition of AIS measurements shouldn’t have
any noticeable impact. Nevertheless, the TFAR is generally very low.

By examining these metrics, one can assume that much of the improvement found
from the OSPA(2) metric comes from improved individual track estimates. Some of it also
comes from faster initialization of tracks, as reflected by the TPD. This is likely why the
OSPA(2) increases faster with increasing c when only using radar, as depicted in Figure 7.4.
The cardinality errors resulting from track fragmentation and false alarms, do however
stay mostly the same regardless of the availability of AIS measurements. This fits nicely
with what was discovered when looking at the OSPA(2) values for varying time windows.
If the differences in false alarms and track fragmentation were large this would result in a
proportionally larger increase for large N when using only radar. The cardinality errors as
a result of a worse TPD, however, would occur at the start or end of the life span of the
tracks, and will as such not result in a large change with increasing window length.
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Figure 7.5: Track localization error (TLE), Track probability of detection (TPD), Track
fragmentation rate (TFR) and Track false alarm rate (TFAR) for PAIS ∈ [0, 1].
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7.1.3 Dynamics of the Total track probability

As explained in Section 5.6 the regular scheme of initializing tracks only on measurements
outside the validation gates of the tracks can cause problems when dealing with AIS mea-
surements. For that reason a new mechanism was added, initializing on all measurements
with a previously undetected MMSI number if the Total track probability (TTP) of the
new target is large enough. Here the effect of this addition is evaluated.

To examine the dynamics of the TTP parameter a simple test environment was
created. This environment calculates the TTP when a measurement with a different MMSI
number than what has previously been observed arrives. It consists of a single track, and
then evaluates if a new track should be initialized on the new measurement. The test
environment is setup as follows:

• The covariance of the track position and the measurement covariance are user-
defined parameters. These are needed to create the innovation covariance matrix
for the measurement likelihood. A Cartesian measurement model is used, with
the same covariance in the x- and y-directions.

• The track uses only one kinematic model to simplify calculations and avoid the
consideration of too many parameters.

• The track has three MMSI numbers in its state vector, −1, 0, 1. These are the
probability of having an unknown MMSI number, no MMSI number and MMSI
number 1, respectively. The probabilities of any of these being the correct MMSI
number is user-defined.

• The confidence in the MMSI number of the new measurement not being corrupted,
PC , is also user-defined.

• The existence probability of the track, and the birth intensity are also user-
defined.

• The new measurement arrives a user-defined number of meters away from the
track.

With this setup the impact of the different parameters used to calculate the TTP can
be evaluated. The default parameters used can be found in Table 7.5.

Parameter Value

Existence probability rt 0.99
MMSI number probabilities ξt [1× 10−10, 1− 1× 10−10]>

Positional covariance Pxy I2×252

Measurement covariance R I2×242

MMSI confidence PC 0.99
Birth intensity b 1× 10−8

Table 7.5: Default TTP parameters.

Figure 7.6 shows the TTP as a function of distance from the estimated position of
the target to the measurement, or the innovation. The dotted lines represent the point
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Figure 7.6: TTP value as a function of the distance to a new measurement for different
positional standard deviations.

where the TTP is above 0.5, which means that a new target is to be initialized. The TTP
increases as the innovation increases, as this makes the measurement less likely to belong
to the track. Also, as the uncertainty of the position of the target increases the distance
needed before a new target is initialized also increases. This is because this impacts the
likelihood of the measurement belonging to the track, and is also the intuitive behavior. If
the tracker is uncertain of where a target is located a measurement has to be further away
before it is certain that it does not belong to the target. The same dynamic is seen when
changing R, which follows from how the S matrix is computed, see Table 5.1.

The TTP is also impacted by the existence probability and MMSI probabilities of the
track. Figure 7.7 shows how far apart the track and the measurement has to be for a track
to be initialized on the measurement, as a function of these values. The single MMSI
probability which mainly impacts this is the probability of the MMSI being unknown, ξtτ−1 .
This is because the new measurement has a previously unencountered MMSI number, with
a probability of being correct proportional to ξtτ−1 . The measurement likelihood, and thus
also the distance needed for an initialization, increases as ξtτ−1 increases. Furthermore,
the distance needed for an initialization increases with increasing existence probability.
If the existence probability of the track is small the weight in (4.26) also becomes small,
resulting in a lower TTP. In addition, the existence probability is present in (5.14) itself.
This is in line with what is expected, as a target with very low probability of existence
should have a smaller probability of being the origin of a new measurement. This should
then lead to a new target being initialized. It can also be seen that the needed distance
for a new initialization increases quickly as the existence probability increases.

The pre-defined MMSI confidence probability PC and birth intensity b also impact the
TTP. In Figure 7.8 it is shown how far apart the target and the new AIS measurement
has to be for an initialization, for different values of b and PC .
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Figure 7.7: The distance between the target and the measurement needed for a new target to
be initialized, as a function of the unknown MMSI probability ξtτ−1 , and the existence probability,
rt.
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Figure 7.8: The distance between the target and the measurement needed for a new target to
be initialized, as a function of the birth intensity b, and the MMSI confidence, PC .
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The birth intensity dictates the weight of the new target hypothesis in (5.14). As can
be seen, if the birth intensity is much higher than 10−5 a new track is initialized on the
AIS measurement no matter what. A high birth intensity would indicate that many of
the measurements comes from new targets, which is reflected in the TTP. Furthermore,
as the new measurement has a previously unencountered MMSI number the probability
of the MMSI number being corrupt has quite a large impact on the TTP. With a large
certainty in the MMSI number of the new measurement being correct a new target will be
initialized even if the distance between the target and the measurement is small. This is
because a high PC leads to a lower measurement likelihood for the already existing targets.

7.1.4 Initialization on AIS measurements for closely spaced tar-
gets

To show how initialization using TTP is used in practice a simple scenario has been
constructed. The scenario consists of two targets moving in the same direction with the
same velocity. They are born at the same time, but one target starts transmitting AIS
messages before the other. Firstly the scenario is considered using only AIS measurements,
to provide a clearer explanation of the core problem. In Figure 7.9a the tracking results
when using TTP are shown. A single validation gate is shown, as a orange circle. As can
be seen, the validation gate encompasses the measurements from both targets. Because
track 1 is initialized first, the track on target 2 would be left uninitialized when only
initializing on measurements not claimed by any validation gates.

−200 −100 0 100 200
East [m]

−600

−500

−400

−300

−200

−100

0

No
rth

 [m
]

1 2

(a) Tracking result when using TTP, with the val-
idation gate of track 1 plotted when the first mea-
surement of target 2 arrives.
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(b) Tracking result when not using TTP.

Figure 7.9: Tracking results for two closely spaced targets with and without the use of TTP,
when using only AIS measurements.
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(a) Tracking result when using TTP.
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(b) Tracking result when not using TTP.

Figure 7.10: Tracking results for two closely spaced targets with and without the use of TTP,
with both radar and AIS measurements present.

However, due to the additional initialization logic both tracks are initialized, in line with
the wanted behavior. The results when not using TTP are shown in Figure 7.9b. Here, no
new track is initialized on the other target, which leads to the track jumping between the
measurements from the two targets. This is similar to the situation sketched in Figure 5.1.

This works well also when considering both radar and AIS measurements. As can be seen
in Figure 7.10a a new track is initialized on target 2 as soon as the first AIS measurement
from it is received. The track for target 1 is initialized on a radar measurement, and the
first radar measurements originating from target 2 then falls within the validation gate of
track 1. However, these can be ”ignored” by the track, and the tracker is able to follow the
correct target either way. However, no new track is initialized until the AIS measurements
from target 2 arrives. Then, a new track is created, giving a result similar to the one in
Figure 7.9a. In Figure 7.10b the results are again shown when the tracker does not use
TTP. The result is similar to when only using the AIS measurements. For the first couple
of time steps the tracker is able to stick to a single target, but no initialization is made on
the radar measurements from the other target. When the AIS measurements from target
2 starts appearing, the track starts jumping from target to target.

7.1.5 Corrupted MMSI numbers

As mentioned in Section 2.1.2, one cannot completely trust the received AIS measurements.
This problem can be mitigated with pre-processing, some methods are mentioned in [19],
but one would have to assume that incorrect information can be received by the tracker.
The case of corrupted kinematic data would not cause too much of a problem, as this
would be analogous to a noisy measurement which any tracker is designed to handle. If
the MMSI number is wrong, however, this could cause problems, and how these corrupted
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(a) Tracker result when a target is initialized on the
corrupt AIS measurement.
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(b) Tracker result when a target is not initialized
on the corrupt AIS measurement.

Figure 7.11: Impact of a corrupt AIS measurement for a single track.

MMSI numbers impact the tracker should therefore be examined.
Firstly, a situation where an AIS measurement with a corrupted MMSI number appears

from a target with an already established track is considered. As there is only one track
present there are two possible outcomes: either the AIS measurement is associated to the
already existing track or it is deemed to be a new track due to the previously unencountered
MMSI number. This will depend on the TTP from (5.14). The two possible outcomes
are pictured in Figure 7.11a and Figure 7.11b. The AIS measurement arriving at time
T = 97.48 has the corrupted MMSI number 9999 while all the others have the correct
MMSI number 0. In the first plot the PC parameter is set to 1 − 10−6, leading to the
initialization of a new track with the corrupted MMSI number 9999. In the other plot,
with PC = 0.99, the AIS measurement with corrupted MMSI number is deemed to come
from the same target as the previous AIS measurements.

The label probabilities for track 0 for the two scenarios are shown in Figure 7.12a and
Figure 7.12b. Notice the logarithmic scale on the y-axis. As can be seen from the graphs
the corrupted AIS measurement does not make a large impact. The track is initialized
on a radar measurement, and thus has probability equal to one of having MMSI number
0. However, when the AIS measurements starts appearing it quickly acquires a high
probability of having MMSI number 1. As mentioned in Section 5.7, the probability of
having an unencountered MMSI number cannot go below 1× 10−10, as it would otherwise
eventually cause numerical underflow. The prior probability a of corrupted MMSI number
is small, due to the small probability of the target having a unencountered MMSI number.
In the case where a new target is initialized on the corrupted MMSI measurement the
probability is even smaller than when a new target is not initialized. This is because
the introduction of a new target lowers the association probability between track 0 and
the measurement, which then propagates to the label probability, as seen from (4.87).
As MMSI number 9999 only appears once, the probability of it being the correct MMSI
number plummets quickly. The MMSI number is removed from the hybrid state when the
probability falls below Tτ .
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(a) MMSI probabilities when a target is initialized on the corrupt AIS measurement.

25 50 75 100 125 150 175 200
Time [s]

100

10−5

10−10

10−15

Pr
ob

ab
ilit

y

-1
0
1
9999

(b) MMSI probabilities when a target is not initialized on the corrupt AIS measurement.

Figure 7.12: Impact of a corrupt AIS measurement on the MMSI probabilities.
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7.1 Simulated data
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Figure 7.13: Plot when the first measurement of a track is a corrupt AIS measurement.
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Figure 7.14: MMSI probabilities when the first measurement of a track is a corrupt AIS
measurement.
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Another scenario that can be suspected to cause problems, is when a new track is
initialized on a corrupt AIS measurement. This is examined by using the same scenario as
above. To make sure that the track is indeed initialized on an AIS measurement, all radar
measurements that appear before the first AIS measurement are removed. The first AIS
measurement has the corrupt MMSI number 9999 while the rest has the correct MMSI
number 1. Figure 7.13 shows the tracking result, and as can be seen the tracker has no
problems following the track without erroneous termination and re-initialization. The
label probabilities, shown in Figure 7.14, shows how the track initially has high confidence
in 9999 being the correct MMSI number, and it is initialized with with probability PC of
being correct. However, as soon as the AIS measurements with the correct MMSI number
start appearing the probability for MMSI number 9999 being correct becomes lower, and
the MMSI number is eventually removed from the state vector.

7.1.6 Crossing targets

A situation which could possibly cause problems when corrupted targets appear is the
one where two targets cross paths. The scenario in question consists of two targets which
both pass the center of the surveillance area, (0, 0), depicted in Figure 7.15. They do not
cross at exactly the same time, as that would amount to a collision, but target 2 crosses
shortly after target 1. Just as target 1 crosses (0, 0) it transmits an AIS measurement with
corrupted MMSI number, which is the only measurement in purple. As can be seen from
Figure 7.15 this scenario does not pose any difficulties for the tracker, and both targets
are followed correctly.
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Figure 7.15: Tracking result for two crossing targets encountering a corrupt AIS measurement.
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(a) Track 1.
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(b) Track 2.

Figure 7.16: MMSI probabilities for two crossing targets encountering a corrupt AIS measure-
ment.

73



Chapter 7. Results

Figure 7.16a and Figure 7.16b shows MMSI probabilities of track 1 and 2. Both
tracks are initialized on radar measurements, as can be seen by the fact that the only
initial MMSI number is 0. Shortly after, both tracks encounter an AIS measurement,
giving a high probability for the MMSI numbers in the measurements, while a smaller
probability for all other MMSI numbers. When further AIS measurements arrive, the
tracker becomes even more certain in the encountered MMSI numbers being correct. When
the corrupted AIS measurement appears (9999), it only attains a low probability for both
tracks. The corrupted MMSI number is quickly removed from the state. As can be seen
from Figure 7.16a, track 1 also encounters an AIS measurement originating from target 2,
but this has little impact. While most of the changes in the MMSI number probabilities
occur upon encountering AIS measurements, there are some changes also during radar
updates, but these are small.

7.1.7 Track jumps

A more difficult, and perhaps more interesting case is shown in Figure 7.17. Here there
are two targets, both headed towards point (0, 0) before they make sharp 90◦ turns.
This confuses the tracker, which believes that the targets behave in the same way as in
Figure 7.15. It is no surprise that a track jump occurs here. The AIS measurements arrive
with quite a low frequency, and as the targets are quite close when they turn. The radar
measurements are too noisy to provide much help. When the next AIS measurements
arrive they are outside the validation gates of the tracks which originally tracked the
respective targets, and thus the tracker isn’t able to recover. Even though a track jump
isn’t critical in itself, it is important that the MMSI number probabilities are able to adapt
in such a situation.
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Figure 7.17: Tracking result for two targets making sharp turns.

74



7.1 Simulated data
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Figure 7.18: MMSI probabilities for two targets making sharp turns.
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The MMSI probabilities can be seen in Figure 7.18a and Figure 7.18b, and both
tracks are able quickly to adapt to the track switch. Both tracks are initialized on radar
measurements, and thus they initially have MMSI number 0. However, they quickly
encounter AIS measurements, and as both tracks are in separate clusters with only one
AIS measurement each, the AIS measurements are associated to the tracks with absolute
certainty. This leads to the MMSI number of the AIS measurements being assigned to
the targets with PC certainty, with the rest of the MMSI numbers, represented by −1,
have a combined probability of 1− PC . Both tracks become more certain in their MMSI
number, until the track switch occurs. Due to the association to AIS measurements with
new MMSI numbers, the probability of the new MMSI numbers are calculated, each with
a prior probability determined by the probability of MMSI number −1. After a few time
steps, the tracks have changed MMSI number, reflecting the MMSI number of the target
they follow.

7.1.8 Computational performance

To evaluate the computational performance of the tracker, a scenario able to accommodate
a lot of targets at the same time was created. It was created according to the specification
detailed in Section 6.2, except for the following changes:

• The scenario starts at T = 0 and ends at T = 300.

• All targets are born at a random time between T = 0 and T = 100. They are
uniformly distributed within an area around the origin with radius r = 2000.

• The surveillance area has a large radius of r = 4000 to avoid that targets move
out of the area during the scenario.

• Only Cartesian noise is added to the radar measurements.

The performance was evaluated by timing the tracker both when using the AIS
measurements and when only using radar. The timing started when all targets had been
born, at T = 100, and ended at T = 300. This was done for an increasing number of
targets, from NT = 5 to NT = 50. For each number of targets 100 Monte Carlo simulations
were performed, and the mean time used to track the scenario was found. This value was
then divided by the duration of the scenario, giving the time the tracker used to track the
targets relative to the time passed in the scenario. The results can be seen in Figure 7.19.

As can be seen, the inclusion of AIS measurements increases the computing time
considerably. The time the tracker uses to track the targets for 1 second of the scenario
should be below 1 second, so the tracker doesn’t lag behind the scenario. This is achieved
up to and including when 50 targets are present, but for 50 targets the running time is
close the 1 second limit. This large increase is, however, not surprising. As more and more
targets are born, the tracker has to perform a prediction for all tracks at more times. All
the AIS measurements have different timestamps, and are therefore handled one at a time.
If 50 tracks all transmit an AIS measurements between two radar updates, the tracker has
to do this 50 times. In addition, more tracks means more MMSI numbers, which lead to
more calculations for each update.
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Figure 7.19: Computing time for scenarios with an increasing number of targets.

7.2 Experimental data

The source of the experimental data, as well as the pre-processing used to make the data
suitable for the tracker model, is described in Section 6.3. The scenario can be summarized
as follows:

• The scenario lasts for 1550 seconds, or 25 minutes and 50 seconds.

• As the scenario starts, a larger ship, Gunnerus, moves northwards. After
some time it makes a u-turn and continues southwards until the scenario ends.
Gunnerus transmits AIS measurements of good quality.

• Three RIBs appear shortly after the start of the scenario. These move fast,
and are quite close to each other. Of these, only one of the boats have an AIS
transponder, which transmits a single AIS measurement throughout the scenario
duration.

• Approximately halfway in the scenario another larger ship appears, Munkholmen
II. This travels eastwards, before making a turn. Munkholmen II also transmits
high quality AIS measurements.

• The gray line is Telemetron, the ownship.

To make the plots less cluttered, the first 500 seconds of the scenario, the part involving
the RIBs, is displayed in separate figures. The tracking results for the first part, with
and without the use of AIS measurements, can be seen in Figure 7.20 and Figure 7.21,
while the last part is displayed in Figure 7.22 and Figure 7.23. Firstly the impact the use
of AIS measurements has on the tracking of Gunnerus and Munkholmen II is discussed,
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and then the impact the AIS measurements have on the three fast-moving RIBs. The
tracking parameters are the same as the ones used for the simulated data, and can be seen
in Table 7.1.

7.2.1 Gunnerus and Munkholmen II

Both Gunnerus and Munkholmen II provide high quality AIS measurements which help
the tracking noticeably. The radar measurements for both boats are often very noisy,
which can be seen at the point where the tracking of Gunnerus starts, in the bottom part
of Figure 7.20 and Figure 7.21, and where Munkholmen II enters the area on the left in
Figure 7.22 and Figure 7.23. Even without ground truth, when considering both the AIS
measurements and the nature of the boats, it is reasonable to assume that they move
with nearly constant heading when not maneuvering. Thus, the estimates achieved when
using AIS measurements are a noticeable improvement when the radar measurements are
noisy. While the radar measurements become noisier as the distance between the ownship
and detected target increases, this is not the case with the AIS measurements, giving
comparatively better estimates for long range targets.

When using the AIS measurements, the tracker is also able to avoid some of the abrupt
turns which occur when tracking using only radar. This is most noticeable for the u-turn
being undertaken at the top of Figure 7.22 and Figure 7.23. Here, the radar measurements
are very noisy, while the AIS measurements are not. When using AIS, the noisy radar
measurements lead to the initialization of a new track, while when using radar the track
makes a sharp turn.

Course estimates for Gunnerus are shown in Figure 7.24, both when using AIS mea-
surements and when using only radar, for some time before the u-turn, during the u-turn
and after the u-turn. Not surprisingly, the tracker is better able to estimate the course
when utilizing the AIS measurements. When using only radar, the noisy measurements
makes the course estimate fluctuate considerably. At one point during the turn, after
approximately 800 seconds, the course estimate changes by over 180◦ from one time step
to the next. This shows one of the main strengths when using AIS measurements; if they
are available, and in good quality relative to the radar measurements, they can improve
the estimates by a large margin.

7.2.2 The three RIBs

The three RIBs show a different side of tracking with AIS. Of the three, only one transmits
AIS measurements, and that is done quite infrequently. In fact, only a single AIS
measurement arrives during the span of the scenario, and the tracker thus has to rely
mainly on the radar measurements. As can be seen, when comparing Figure 7.20 and
Figure 7.21, the three RIBs are tracked almost identically whether the tracker uses the AIS
measurements or not. The main difference is that the tracker using AIS is able to identify
one of the three RIBs, Crazy Raven. This highlights the importance of a well-performing
radar tracker as a basis, while AIS can be thought of as an enhancement to the underlying
radar tracker. In some cases, as for Gunnerus and Munkholmen II, the AIS measurements
are able to make a large difference, while they have little to no impact in other cases.
It also highlights the importance of the AIS capabilities not interfering with the radar
tracking performance.
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Figure 7.20: Tracking result for the first 500 seconds of the final demonstration data when
using the AIS measurements.
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Figure 7.21: Tracking result for the first 500 seconds of the final demonstration data when
using only radar.
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Figure 7.22: Tracking result for the last 1050 seconds of the final demonstration data when
using the AIS measurements.
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Figure 7.23: Tracking result for the last 1050 seconds of the final demonstration data when
using only radar.
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Figure 7.24: Course estimates for Gunnerus, with 1 σ bounds. Tracking results with AIS
measurements on the left, without on the right.
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CHAPTER 8

Discussion

When creating a target tracker several choices have to be made. Even though one would
want to explore all possible ways of solving a problem, that is rarely possible. Throughout
the thesis there has been some hints towards other potential methods for solving certain
problems, and these are discussed in more detail here. Firstly, however, the tracking results
are discussed on a more general level than what was done in Chapter 7.

8.1 Performance gains

When it comes to the tracking performance, using the AIS measurements generally results
in better estimates. This is seen both through the Monte Carlo simulations in Section 7.1.2
and the comparison in Section 7.2. The improvement can be large when a target transmits
high quality, frequent AIS measurements. There are also no obvious drawbacks with
regards to the results, when using AIS.

These performance gains are, however, achieved only through the use of a small part
of the AIS measurement. In addition to the position and the MMSI number, the AIS
measurements contain information on heading, velocity, ship size and much more. The
heading and velocity information can, relatively easily, be used to improve the estimates
even further. Information regarding the ship size and ship type, which can either be found
from the AIS measurement or by looking up the MMSI number, can be used to improve
the kinematic models.

Furthermore, AIS measurements can serve a role in other parts of the software needed
in an autonomous ship. Then, it will likely be useful to make a connection between the
radar and AIS measurements in the tracker, before the AIS measurements are used in
other parts of the system.

8.2 Undesirable behavior

Not much undesirable behavior was observed. The ANEES is slightly too high when using
the AIS measurements. This can have several different reasons. It may be a result of the
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tuning. It can also be that the tracker becomes too certain of the estimates due to the low
measurement noise of the AIS measurements, in combination with a high certainty in the
data association. This can reduce the covariance of the estimates too much whenever AIS
measurements appear. That would be a difficult problem to solve, as it is a result of the
tracking model itself.

Also, in relation to this, the AIS measurement model could be more refined than the
one which is used here. In [47], such a model is described, which could improve results
for real world data. In addition, some kind of bias compensation could be useful. This is
because the clustering methods used for the radar measurements, and the position of the
GPS signal resulting in the AIS measurement, have no guarantee of being the same point.
Especially for large ships, this may become a problem.

8.3 Computational complexity

The computational complexity is significantly larger when utilizing the AIS measure-
ments, in comparison to when using only radar. However, pruning of MMSI numbers
and clustering of tracks keep the complexity to a manageable level. In addition, more
efficient implementations are definitely possible. In the current implementation the AIS
measurements were handled as they arrived, all with different timestamps. In a real
life implementation it would be more convenient to handle all measurements which have
arrived since the last run of the tracker. This facilitates a reduction in the time resolution,
resulting in fewer steps between radar measurements. This could solve the problem with
the computational complexity, at the expense of a small reduction in accuracy. Pruning of
MMSI numbers from the hybrid state could also become more aggressive to reduce the
number of computations. The computations of probabilities and updates for the different
MMSI numbers are also well suited for parallelization, something which has not been
utilized here. Furthermore, a more effective implementation should be able to speed up
the tracker considerably, as that has not been the focus of the current one.

8.4 MMSI numbers

Much of the increased complexity of this tracker comes as a result of the MMSI numbers.
These are introduced as a new state in the hybrid state space, giving both more complex
mathematics and the need for more computations. The MMSI numbers introduce a
new aspect to the data association, which can, when handled properly, enhance it. In
Section 3.2, two methods of incorporating the MMSI numbers in the model are outlined,
of which only one is explored. The other method, to give all MMSI numbers a small
initial probability, is discarded because it would break the independence assumption for
the undetected targets. Questions about how labels relate to the unknown target intensity
in a PMBM has been raised in [41], and it seems as though there are possibilities in using
such a framework. Solutions to the problem are sketched out, which could perhaps remove
the need for the somewhat artificial change in MMSI probabilities upon detection. After
all, in the real world the MMSI number of a target is static. Using labeled RFSs, as is
done in the GLMB, could also be a possibility.

Furthermore, it is worth to reflect on how these MMSI numbers relate to labels as they
are thought of in the GLMB and versions of PMBM. Here, the labels are in many ways a
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method of ensuring track continuity, with the labels themselves having no direct connection
to the real world. In a JIPDA, track continuity arises from the first measurement each track
associated to, so even though labels are normally not used, this first measurement can be
seen as the track label. The MMSI numbers, however, arrive as part of the measurements,
and have a physical meaning in the same way the coordinates in the measurements have.
They can be thought of as labels describing the targets, instead of labels describing the
tracks, which one can argue is the case for how they are used in the aforementioned
methods. As such, a track can change MMSI number if a track jump occurs, which would
not be the case for a track label. There is nevertheless a question of whether the labels,
as they are used in e.g. GLMB, can be ”translated” to work with MMSI numbers, and
measurements with IDs in general.

8.5 Choice of tracking method

The discussion regarding the handling of the MMSI numbers hints toward the use of
different target tracking methods than a JIPDA. The JIPDA has several advantages; it is
well-known, and it is fairly simple to implement with a feasible computational complexity.
This is often not the case for other methods, where a range of approximation techniques
need to be used to avoid the naturally exponential complexity of the problem. However,
other methods based on the RFS framework are quickly becoming more established, and
these may fit the problem better. In the remark regarding missed detections in Section 4.3.1,
it was explained how the mixture reduction in a JIPDA is not flexible enough to be able
to avoid the concept of missed detections for AIS measurements. This could, however, be
solved by use of a different tracking method. A measurement-oriented tracker such as the
HO-MHT could work, as could a PMBM. The slight consistency discrepancies between
when using AIS measurements and when not, may also be caused by the way the JIPDA
performs mixture reduction. Even though the JIPDA works well for the problem, the
increased flexibility of e.g. a PMBM may be even better suited.

8.6 Initialization method

The Total track probability (TTP) is presented in Section 5.6, and is used for AIS
measurements with MMSI numbers which have not previously been encountered by the
target. Otherwise, new tracks are initialized on all measurements outside any tracks’
validation gates. However, as also mentioned in Section 5.6, it could be beneficial to extend
the use of TTP to all measurements. As it must be used for AIS measurements to avoid
undesired behavior, to extend the use to all measurements seems natural. This would
necessitate some approximation method for calculating the TTP. However, this is not
done in this thesis to make the AIS an extension of the VIMMJIPDA without changing
the underlying radar tracker. When having a familiar and well-tested tracker as a basis it
is easier to evaluate the effects of the AIS measurements, and changing the initialization
scheme of the underlying tracker would add a new dimension to the evaluation.
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8.7 Security concerns

Something that has not been touched upon in previous chapters, but which nevertheless
hold some relevance, is how AIS measurements can introduce security concerns in an
autonomous system.

The current AIS protocol is simple, and has no method for authentication of the source,
or checking the integrity of the transmitted information. In addition to the problems this
causes with regards to the core algorithm, through e.g. the transmitting of corrupted
MMSI numbers, it can also be exploited for the benefit of malicious actors. A system
believing in all AIS measurements could be fooled by ”false” targets created to cause
harm, for example if a large number of targets are placed around the autonomous ship.
This suggests that tracks created based on the AIS measurements received by the ownship
should have some dependence on radar measurements confirming the existence of the
target. Changes to the AIS protocol would also solve many of the potential problems. An
extension of the AIS protocol, the VHF Data Exchange System (VDES), is already on it’s
way to becoming a new international standard [57].
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CHAPTER 9

Conclusions and further work

9.1 Conclusion

In Chapter 1, three points were proposed, which this thesis was to consider. These were

• The construction of a tracker that handles AIS measurements as they arrive.

• The performance of such a method as opposed to using only radar.

• Whether the increase in computational complexity makes such an approach
infeasible.

The first point is thoroughly covered in Chapter 3, Chapter 4, and Chapter 5, where it is
shown how such a tracker can be designed. The tracker is an extension of the VIMMJIPDA
[1], which again is an extension of the JIPDA. The JIPDA is well-known, and used for many
different applications. This is one of the advantages of such an approach, especially since
the VIMMJIPDA can be reduced to a regular JIPDA by choosing parameters a specific
way (e.g. by using a single kinematic model, and only allowing the target to be in a visible
state). With that in mind, the methods described in this thesis are possible to apply to a
regular JIPDA as well. Similarly, when not using AIS measurements the tracker described
in this thesis is simply a VIMMJIPDA. The addition of AIS measurements is no substitute
for good radar tracking performance, and this ensures that the AIS functionality can be
built around an already tested radar-tracker without interfering with its performance.

The second point considers the performance gain in using the AIS measurements.
The performance gain is noticeable, and most prominent for targets with frequent AIS
measurements. Course estimates, especially, are drastically improved when frequent AIS
measurements are available. The help of the AIS measurements is also prominent when
the radar measurements are of low quality, which often happens when the target is far
away from the ownship. Furthermore, the synergy effects the AIS measurements can have
with other parts of the tracker are many. They can provide the opportunity for tailoring
the kinematic modeling to each target, and the data association performed in the tracker
can be used in other parts of the system which uses AIS information.
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The third point raises the question of computational complexity, and whether the
tracker will be practical to use in real-time applications. Even though the addition of AIS
measurements increases the computing time considerably, it is manageable, and can be
further reduced if needed.

Furthermore, the methods described in this thesis do not only apply to AIS measure-
ments. Even though AIS measurements are the most immediate use-case, the measurements
can be any type of measurement being transmitted from surrounding targets. As such,
when the next iteration of the AIS protocol arrives no major changes have to be made. The
exact type of measurement will only become relevant when other parts of the measurement
is used, in any potential extensions. As the current AIS protocol is somewhat lacking in
integrity and security, it is good that a new framework for communication at sea is on the
way. A better protocol also hints to a more important role for AIS, or similar, in tracking
at sea. Then it is important to have methods for these measurements to be utilized.

9.2 Further work

Even though a functioning tracker for AIS and radar fusion is presented here, much work
is needed both for the specific problem, and related problems. Some of this is to be
conducted as part of the author’s PhD project.

Firstly, the method described in [14], and the similar method implemented by the
author in an earlier assignment, should be benchmarked against the method described
here. This is already planned as part of an article. Testing on more real data would also
be valuable, in addition to field tests, as performance in the real world is an important
aspect of a robust and secure system.

Furthermore, other tracking methods should be investigated in relation to inclusion of
AIS measurements, or similar measurements. The mixture reduction in the JIPDA can
be a fundamental obstacle when including measurements transmitted from surrounding
vessels, and other methods, e.g. PMBM, could be a better option. In addition, using
labeled RFSs to model the problem could also be an interesting opportunity, considering
the nature of the MMSI numbers.

The additional information contained in the AIS measurements should also be consid-
ered. While this thesis doesn’t delve into the filtering aspect of the algorithm, there is
definitely potential in using the velocity, heading, and ship type to achieve better estimates.

Initialization of new targets with the use of TTP is also an untapped opportunity. This
can avoid the use of validation gates, and will bring the tracker described here conceptually
even closer to a PMBM. Other initialization methods can also be investigated, as it is
evident that using only validation gating is not sufficient for the problem. After all, a
method such as TTP has to be used for AIS measurements either way.

The security of a system using AIS measurements is worthy of further investigation,
and should be considered in tandem with the new protocols which are currently being
developed. To directly use an algorithm such as the one described here in a safety-critical
system would be unwise, considering how easy it is to manipulate and transmit false AIS
measurements.

Lastly, the visibility state in the hybrid state, and how it relates to the other states is
still a topic of further research. The possibility of using a more advanced scheme, similar
to the one used in [7], is also a possibility.
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