
H
enrik B. N

orås Bergel
SLAM

 Applied to a U
G

V: design and realization

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Henrik B. Norås Bergel

Simultaneous Localization and Mapping
Applied to an Unmanned Ground Vehicle

Design and Realization

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl

December 2020

Henrik B. Norås Bergel

Simultaneous Localization and
Mapping Applied to an Unmanned
Ground Vehicle

Design and Realization

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
December 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

0BMSc thesis assignment

Name of the candidate: Henrik B. Norås Bergel
Subject: Engineering Cybernetics
Title: Simultaneous Localization and Mapping applied to an Unmanned

Ground Vehicle: design and realization

1BBackground:

This assignment is concerned with the design and building of a UGV and its use as a testbed for SLAM

Tasks:
1. Review necessary literature within the field of SLAM.
2. Design and build a UGV platform. The platform should be able to collect datasets based on IMU,

encoders and lidar.
3. Propose a SLAM system based on GMapping. The SLAM system should account for a terrain like

scenery and utilize the sensor data to produce a map for autonomous navigation.
4. Calibrate the odometry of the UGV and acquire two datasets: a benchmark dataset and a dataset from

a terrain like scenery.
5. Test the SLAM system on the datasets and tune the algorithm for optimal performance.
6. Evaluate the performance of the SLAM system by comparing the two resulting maps estimated on

the two different datasets and including the properties of the algorithm in the evaluation.
7. Investigate how the 2D output map estimates a slope.

To be handed in by: 20/12-2020
Co-supervisor: Joseph Piperakis. Kongsberg Defence & Aerospace

Jan Tommy Gravdahl
Professor, supervisor

Abstract

This Master’s thesis presents the work of designing and building the Unmanned
Ground Vehicle (UGV) platform, Phylax. It also investigates the possibility of us-
ing GMapping as the method in a Simultaneous Localization and Mapping (SLAM)
system that estimates maps based on sensor data from Phylax. The existing SLAM
methods all have di↵erent trade-o↵s in terms of complexity, cost and accuracy.
GMapping has previously shown promising results in cost and accuracy in SLAM
systems exploiting indoor environments. The contribution to the development of
autonomous capabilities of a UGV by utilizing SLAM was the motivational factor.

The contribution of this thesis is the Phylax platform and an investigation of the
performance of a developed SLAM system utilizing the SLAM method, GMapping.
Phylax can both be controlled externally by a user, or operate fully autonomously.
The UGV will acquire necessary Inertial Measurement Unit (IMU)-, odometry- and
lidar data, which the SLAM system will use to estimate a map of the surround-
ing scenery. The software for Phylax was implemented in the framework Robot
Operating System (ROS), using the programming languages C++ and Extensible
Markup Language (XML).

The SLAM system was tested on two datasets that Phylax collected in an in-
door environment. The first dataset was from a clean room only containing walls,
and worked as the ground truth. The second dataset was acquired in an obstacle
course built inside the same room. Prior to the experiment, the odometry in Phy-
lax was calibrated by comparing the values in the ROS odometry topic with the
actual traveled distance.

The results from the SLAM system are unambiguous. GMapping estimated ac-
curate maps on the benchmark dataset. However, the maps from the obstacle
course presented inadequate results. Relevant information was left out of the map,
which made autonomous navigation, in that scenery, di�cult. Phylax worked in
a satisfactory way and the data acquisition was successful. However, there are
possible errors in the middle motors that might a↵ect the odometry calculations.
Also, the transformation between coordinate frames may include inaccurate mea-
surements for the translation. These errors could propagate into the system and
cause GMapping to estimate a map based on erroneous data.

The thesis concluded that the UGV platform was successfully designed and built
with the ability to collect datasets based upon the sensors: IMU, encoders and
lidar. The SLAM system was also properly developed, but the use of GMapping
as the SLAM method contributed to a low score on the level of autonomy (LOA)
scale. Therefore, GMapping was concluded not to be suited as a SLAM method
for autonomous navigation in terrain for a UGV.

i

Sammendrag

Denne oppgaven presenterer arbeidet med å designe og bygge det Ubemannede
Kjøretøyet (UK), Phylax. Oppgaven undersøker ogs̊a muligheten for å bruke
GMapping som metode i et Simultan Lokalisering og Kartlegging’s (SLOK) sys-
tem. De eksisterende SLOK metodene har forskjellige kompromisser n̊ar det gjelder
kompleksitet, kostnad og nøyaktighet. GMapping har tidligere vist lovende resul-
tater i kostnad og nøyaktighet ved bruk i SLOK systemer som utforsker innendørs
omgivelser. Å bidra i utviklingen av den autonome evnen til en UK ved å utnytte
SLOK var en motiverende faktor for arbeidet.

Bidraget til denne oppgaven er Phylax-plattformen, samt en undersøkelse av ytelsen
til et utviklet SLOK system som drar nytte av SLOK metoden GMapping. Phylax
kan b̊ade bli kontrollert eksternt av en bruker, eller operere fullstendig autonomt.
UK vil anska↵e nødvendig Inertiell Målingsenhets (IM) data, odometridata og li-
dardata som SLOK systemet kan bruke til å estimere et kart av omgivelsene med.
Programvaren til Phylax ble implementert i rammeverket Robot Operativ System
(ROS), ved bruk av programmeringsspr̊akene C++ og XML.

SLOK systemet ble testet p̊a to datasett som Phylax samlet inn innendørs. Det
første datasettet var basert p̊a et rom kun best̊aende av vegger og et flatt gulv.
Dette datasettet ble fungerende som et referansesett. Det andre datasettet ble
samlet inn i det samme rommet, men n̊a ogs̊a med en hinderløype. Før eksper-
imentet ble gjennomført, ble odometrien til Phylax kalibrert ved a sammenligne
verdiene i et ROS emne med den faktiske kjørte distansen.

Resultatene fra SLOK systemet er entydige. GMapping estimerer nøyaktige kart
basert p̊a referansedatasettet. Kartene basert p̊a datasettet fra hinderløypen gav
imidlertid utilstrekkelige resultater. Relevant informasjon ble utelatt fra kartet,
noe som gjorde autonom navigasjon i det gitte miljøet vanskelig. Phylax fungerte
utmerket og datainnslamlingen var vellykket. Imidlertid er det mulige feil i de
midterste motorene som kan p̊avirke odometriutregningene. Transformasjonene
mellom koordinatsystemene kan ogs̊a inneholde unøyaktige målinger av distansen
mellom systemene. Disse feilene kan spre seg videre inn i systemet og føre til at
GMapping estimerer kart basert p̊a feil data.

Oppgaven konkluderte med at UK-plattformen ble designet og bygget med et suk-
sessfullt resultat med mulighet for å samle inn data basert p̊a sensorene: IM,
odometri og lidar. SLOK systemet ble ogs̊a riktig utviklet, men bruken av GMap-
ping som SLOK metode bidro til en lav score p̊a Autonomi Skalaen (AS). Derfor
ble GMapping sett p̊a som en utilstrekkelig SLOK metode for autonom navigering
i terreng for en UK.

ii

Preface

This thesis is the resulting report describing the work in TTK4900 Engineering
Cybernetics - Master’s Thesis and presents the final work of the Master of Science
in Cybernetics and Robotics. The project has been in cooperation with Kongsberg
Defence & Aerospace (KDA), which provided all the hardware components for the
project. However, it is necessary to specify that the assembling of the components,
the design of the platform and the software implementation for this project has been
conducted by the author in cooperation with the supervisor from KDA. The work
took place in the period from August 2020 to December 2020, and is based upon
the project thesis from Spring 2020 by (Bergel (2020)). A visual representation of
the resulting robot can be seen in the accompanying video.

iii

Acknowledgments

I would like to thank my main supervisor Professor Jan Tommy Gravdahl from the
Department of Engineering Cybernetics at NTNU for his assistance and support
throughout this project. He made sure I was on track at all time and provided
invaluable feedback for the project.

The work conducted in this thesis has been a cooperation between me and Joseph
Piperakis. Mr. Piperakis has been an excellent supervisor and partner throughout
this project. This project would not have been possible with out him. For this, I
thank him a lot.

I would also like to thank Kongsberg Defence & Aerospace for providing any hard-
ware necessary and an o�ce place. The great environment gave me inspiration for
learning and hard work.

Lastly, but not least, I would like to humbly thank my family and friends for
unconditional support during my time at the Norwegian University of Science and
Technology.

Henrik B. Nor̊as Bergel, December 11, 2020

iv

Contents

Abstract i

Sammendrag ii

Preface iii

Acknowledgments iv

Table of Contents vii

List of Tables viii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objective and Scope . 3
1.4 Levels of Autonomy - Military . 3
1.5 Literature review . 5
1.6 Contribution . 8
1.7 Outline of Report . 8

2 Theory 9
2.1 Rotation and Translation Between Coordinate Frames 9
2.2 Lidar . 10

2.2.1 Mathematical model of the VLP-16 11
2.2.2 Weather Influence . 14

2.3 Simultaneous Localization and Mapping 14
2.3.1 System architecture . 15
2.3.2 The two SLAM problems . 15

2.4 Rao-Blackwellized particle filter SLAM 16
2.4.1 Mapping with Rao-Blackwellized SIR filter 17

v

2.5 Modified Rao-Blackwellized particle filter SLAM 18
2.5.1 Improved proposals . 18
2.5.2 Adaptive resampling . 21
2.5.3 GMapping in pseudocode . 22

2.6 Occupancy Grid Map . 24
2.7 Robot Operating System . 24

2.7.1 ROS Communication . 24
2.7.2 ROS Launch . 25
2.7.3 ROS Topic . 26
2.7.4 Logging Data in ROS . 26
2.7.5 RVIZ . 26

3 Phylax 27
3.1 Chassis and Motors . 28

3.1.1 Assembling . 29
3.2 Microcontrollers . 29

3.2.1 Motor Controller . 30
3.2.2 Microcontroller for Odometry and IMU 30

3.3 Processing Unit . 32
3.3.1 Software . 33

4 Method 41
4.1 Phylax . 41

4.1.1 Design choices . 41
4.1.2 Debugging . 42

4.2 The Experiment . 45
4.2.1 System Architecture of the Phylax SLAM System 45
4.2.2 Obstacle Course Experiment 45
4.2.3 Environmental Setup . 46
4.2.4 Collecting the Datasets . 49

5 Results 51
5.1 Clean Room . 51

5.1.1 Default Parameters . 51
5.1.2 Tuned Parameters . 52

5.2 Obstacle Course . 53
5.2.1 Default Parameters . 53
5.2.2 Tuned Parameters . 54

6 Discussion 56
6.1 Phylax . 56
6.2 The Experiment . 58

6.2.1 Initial Remarks . 58
6.2.2 GMapping . 58
6.2.3 Closing Remarks . 59

vi

7 Conclusion 61
7.1 Further Work . 62

Bibliography 63

Appendices 67

A 3D Design 68

B Default Parameter Values for GMapping 69

C ESP32 Software 71
C.1 encoder.cpp . 71
C.2 odometer.cpp . 73

D phylax description 75
D.1 description.launch . 75
D.2 phylax.urdf.xacro . 76

E phylax control 79
E.1 teleop.launch . 79
E.2 control.launch . 80
E.3 teleop ps4.yaml . 81
E.4 control.yaml . 82
E.5 robot localization.yaml . 83
E.6 twist mux.yaml . 84

F phylax base 85
F.1 phylax.launch . 85
F.2 phylax simple.launch . 86
F.3 point2laser.launch . 87
F.4 phylax base.cpp . 88
F.5 phylax hardware.cpp . 89
F.6 simple joy node.cpp . 91

G phylax navigation 93
G.1 gmapping.launch . 93

vii

List of Tables

3.1 Definition of frames on Phylax. 34

4.1 Measurements of obstacles. 47

5.1 Tuned parameters and their value. 51
5.2 CPU load for GMapping with di↵erent numbers of particles. 53

viii

List of Figures

1.1 Level of autonomy scores for the di↵erent types of environments. . . 4

2.1 A representation of the scanner and laser frame with variables. . . . 11
2.2 Overview of the anatomy of a modern SLAM system. 15
2.3 Interval L(i) shows where the two functions are dominated by the

observation likelihood (Grisetti et al. (2007a)) © 2007 IEEE. 19
2.4 The Talking node publishing to the Listening node, while ROS Mas-

ter is registering the communication. 25

3.1 A primitive representation of how the Phylax platform is built up. . 27
3.2 Phylax viewed from the front and side. 28
3.3 The bottom side of Phylax when one of the motors is removed due

to reparations. 28
3.4 The top side of the bottom chassis including most of the electronics

and one battery. 29
3.5 A representation of the subsystem with both software and hardware

handling odometry and IMU data. 31
3.6 Nvidia Jetson AGX Xavier with antennas on the chassis. The gray

part underneath the Xavier is the 3D-printed housing. 32
3.7 A representation of description.launch 33
3.8 Visualization of the base link frame. 35
3.9 Visualization of the two odometer frames. 35
3.10 Visualization of the imu link frame. 36
3.11 Visualization of the velodyne frame. 36
3.12 A representation of teleop.launch . 37
3.13 A representation of control.launch 38
3.14 A representation of phylax.launch . 39
3.15 A representation of phylax simple.launch 39
3.16 A representation of gmapping.launch 40

4.1 Presentation of encoder counts for debugging purposes. 42
4.2 List of topics published. 43
4.3 Calibration test of odometry. 44
4.4 Screenshot of the message from the odometry topic. 44

ix

4.5 System architecture. 45
4.6 Overview of the clean room. 46
4.7 Overview of the obstacle course. 47
4.8 Actual obstacle course. 48
4.9 Trajectories for the two datasets taken starting in the upper right

corner of the trajectory. 48

5.1 Resulting map with default parameters for GMapping (30 particles). 52
5.2 Resulting map showing the di↵erence in number of particles used

in the particle filter in GMapping. All other parameters are set to
default value. 52

5.3 Resulting map with parameters tuned. 53
5.4 Resulting map with default parameters for GMapping. 54
5.5 Obstacle course with 10 particles where the remaining parameters

are tuned according to Table 5.1. 54
5.6 Obstacle course with 100 particles where the remaining parameters

are tuned according to Table 5.1. 55
5.7 Resulting map with parameters tuned. 55

B.1 Default values for the parameters used in GMapping ROS (2019). . . 70

x

Abbreviations

UGV = Unmanned Ground Vehicle
SLAM = Simultaneous Localization and Mapping
IMU = Inertial Measurement Unit
ROS = Robot Operating System
XML = Extensible Markup Language
LOA = Levels of Autonomy
KDA = Kongsberg Defence & Aerospace
GPS = Global Positioning System
ALFUS = Autonomy Levels for Unmanned Systems
ESI = External System Independence
MC = Mission Complexity
EC = Environmental Complexity
EKF = Extended Kalman Filter
PF = Particle Filter
CPU = Central Processing Unit
RBPF = Rao-Blackwellized Particle Filter
FOV = Field of View
SIR = Sampling Importance Resampling
WD = Wheel Drive
2S = Two Cell
DC = Direct Current
CPR = Counts Per Revolution
USB = Universal Serial Bus
DoF = Degrees of Freedom
DMP = Digital Motion Processor
WIFI = Wireless Fidelity
I2C = Inter-Integrated Circuit
HDMI = High Definition Multimedia Interface
4S = Four Cell
URDF = Unified Robot Description Format
PID = Proportional-Integral-Derivative
TCP = Transmission Control Protocol
SSH = Secure Shell
IP = Internet Protocol

xi

Chapter 1

Introduction

1.1 Background

The use of robotic autonomous systems in the military has increased dramatically
in modern time. Taking up more and more of the job for the human soldier, au-
tonomous military robotics may help decreasing war casualties and the economic
cost but also increase the e↵ectiveness of the military operations. As Lin et al.
(2008) writes, the distinct advantage that autonomous robots have on us, the Homo
Sapiens, is the great cognitive capability. Being able to process a conflict picture
that is getting both bigger and faster has been an important attribute for military
to have.

In the military industry, autonomous UGV is starting to be an extensively used
technology. The UGV works as a extension and replacement for the human sol-
dier as it makes it possible to carry out highly dangerous missions without risking
the soldiers life. The UGV will often face unknown environments and in order to
be autonomous it needs to gather and process information about its surroundings.
Another example is the potential of using autonomous UGVs for post-war demining
(Forsvarets-forskningsinstitutt). This is a highly dangerous job where autonomous
UGVs could extinguish this risk. However, a UGV has its limitations. Both the
environment and situation in which the vehicle has to negotiate might be extremely
complex. Huge datasets from the vehicle’s sensors need to be processed in order
to plan a path in the terrain the vehicle is facing.

Introducing highly advanced mapping and localization capabilities to the UGV
could contribute to solve the addressed limits above. Combining appropriate hard-
ware and software is necessary for the autonomous vehicles to perform well. One
need to have well functioning algorithms as well as powerful computing system
to perform complex perception functions in real time to have autonomous driving
(Shi et al. (2017)). Implementing these autonomous features could increase the
probability of mission success. An important waypoint on the path to autonomous

1

1.2 Motivation

UGV operating in terrain is generating highly accurate maps of the environment.

1.2 Motivation

The motivation for this Master’s thesis is to contribute to the development of the
autonomous capabilities of a UGV by utilizing SLAM. There are numerous di↵er-
ent SLAM methods that localize the agent and map the surrounding scenery. This
map can be used when planning a path for autonomous driving. Each of these
methods have di↵erent trade-o↵s in terms of complexity, accuracy of the map and
loss of relevant information. Di↵erent SLAM methods estimates either 2D or 3D
maps, where 3D maps includes more information of the environment but at the
expense of computational time.

In modern time, several cars have the ability to drive autonomously on roads in
civilized areas. Lidar, radar or computer vision are used for sensing the local envi-
ronment. Global Positioning System (GPS) localizes the car and provides roadway
maps (Jo et al. (2014)), but the GPS signals may not always be available and se-
cure when operating in terrain or in a military operation. SLAM both maps the
surroundings and localizes the agent within the map without the use of a GPS. A
possible future scenario is using a drone to collect data over a large terrain where
the UGV operates. This data can be transferred to the UGV, where a SLAM
method estimates a map and localizes itself within the map. This would increase
the capability of global path planning due to the comprehensive dataset. Hence,
a successful application of SLAM is expected to be very valuable for autonomous
navigation in terrain.

2

1.3 Objective and Scope

1.3 Objective and Scope

The goals in which this thesis was set to investigate was comprised into the following
objectives:

• Review necessary literature within the field of SLAM.

• Design and build a UGV platform. The platform should be able to collect
datasets based on IMU, encoders and lidar.

• Propose a SLAM system based on GMapping. The SLAM system should
account for a terrain like scenery and utilize the sensor data to produce a
map for autonomous navigation.

• Calibrate the odometry of the UGV and acquire two datasets: a benchmark
dataset and a dataset from a terrain like scenery.

• Test the SLAM system on the datasets and tune the algorithm for optimal
performance.

• Evaluate the performance of the SLAM system by comparing the two result-
ing maps estimated on the two di↵erent datasets, and including the properties
of the algorithm in the evaluation.

• Investigate how the 2D output map estimates a slope.

Limitations

The UGV was built with an open chassis which put the electronics in an exposed
position. Thus, to ensure that the risk of damaging critical components was limited
the terrain was limited to an indoor obstacle course.

1.4 Levels of Autonomy - Military

Autonomy is in general not a binary property, a robot is not either autonomous or
not. Therefore, we need to look into the levels of autonomy (LOA) for the military.
The LOA is based on the system’s capability to integrate sensing, communication,
planning and execution. Autonomy Levels for Unmanned Systems (ALFUS) is a
frame-work over three dimensions. The three dimensions for LOA in ALFUS are
the External System Independence (ESI), the Mission Complexity (MC) and the
Environmental Complexity (EC). Each of the axis has a set of metrics, and each of
the scores for the three axis are computed for the resulting autonomy level. There
are some options on how this final score is computed. Some options are weighted
average and weighted minimum/maximum (Huang (2007)). Depending on how you
calculate the score, you will get a result that tells you the LOA. The result will
be on a scale from 0 - 10, where (Huang (2007)) has mapped the required scores
and the di↵erent degrees of di�culty for the environments. Figure 1.1 presents this
distribution of the scores.

3

1.4 Levels of Autonomy - Military

The LOA in ALFUS is characterized through the missions that the UGV is re-
quired to perform or is capable of performing, in the kinds of environments, and
with the levels of human interaction (Huang (2007)). In general, the two extremes
on the LOA scale are fully manual or fully autonomous conditions (Vagia et al.
(2016)).

A common mistake is to mix up the use of the words autonomy and automa-
tion. According to (Vagia et al. (2016)), every engineering system has a certain
degree of autonomy associated with it. Autonomy in engineering is the ability to
make a choice without any influence of the outside world and to change its initially
programmed way of action. In (Parasuraman (2000)) automation is defined as ”...
the execution by machine, usually a computer, of a function previously carried out
by a human.”. The main di↵erence is that with automation the system ”only”
performs a pre-defined task. On the other hand, an autonomous system has, de-
pending on its LOA, the ability to make its own decisions without the supervision
of an external system or human.

Figure 1.1: Level of autonomy scores for the di↵erent types of environments.

4

1.5 Literature review

1.5 Literature review

In this section the concentration of literature will be around the implementations
of SLAM, more precisely the GMapping algorithm. This section is included from
the associated project thesis (Bergel (2020)), but with modifications.

In the early 1980’s SLAM seriously started to be developed. A definition be-
tween the position and the structure of the environment was introduced by (Smith
and Cheeseman (1986)). The period between 1986-2004 is known as the classical
age in the history of SLAM. In this period of time the probabilistic formulations
of SLAM were introduced, but also approaches based on extended Kalman filters
(EKF), particle filters (PF) and maximum likelihood estimation were developed
(Cadena et al. (2016)). A modern approach to SLAM is using nonlinear optimiza-
tion to estimate the map and to solve a sparse graph of constraints that you apply
to the optimization problem (Stachniss et al. (2016)).

The methods from the early stages had several constraints. The EKF method
was proposed in the year 1990 and presented the idea of a stochastic map (Girard
et al. (2019)). A state vector, computed by EKF, was used to comprise the position
of the points of interests. A big drawback with this method is the size of the state
vector as it linearly increases with the size of the map. Also, the computational
complexity increases quadratically (Girard et al. (2019)). In (Bailey et al. (2006)),
the authors examine the cause of the inconsistency of the EKF SLAM. By approx-
imating the mean and variance, EKF SLAM can represent the state uncertainty.
There are two problems with this. First, due to linearization the moments are ap-
proximated and may not match the true first and second moments. Second, EKF
SLAM assumes a Gaussian probability distribution, while the true probability dis-
tribution is non-Gaussian. These factors may propagate and accumulate big errors
when the SLAM probability distribution is projected in time. Inconsistency in the
vehicle’s heading may be one consequence (Bailey et al. (2006)).

These and other limitations led to other SLAM methods that were more advanced
and computationally e�cient. An algorithm that has emerged from this is the Fast-
SLAM algorithm proposed by (Montemerlo et al. (2002)). FastSLAM is a filtering
approach, where the map is estimated with EKF and the position is represented
by the distribution of particles. The accuracy of the position was reduced with
this approach, but the advantage with FastSLAM is the reduction of the algorithm
complexity (Girard et al. (2019)).

In (Grisetti et al. (2007b)) the authors discuss the drawback with basic Rao-
Blackwellized particle filter (RBPF) SLAM. The number of particles required to
learn an accurate map is one of the main problem with this approach. GMapping is
an algorithm that builds on this approach and it is based on (Grisetti et al. (2005))
and (Grisetti et al. (2007a)). From the observation likelihood of the most recent
sensor information, odometry and scan matching, GMapping computes a proposal
distribution. Having a more accurate proposal distribution leads to higher precision

5

1.5 Literature review

when drawing particles, which will result in a reduction in the number of required
samples and lower computational time. The adaptive resampling helps to reduce
the number of unnecessary resampling actions. Highly accurate maps are estimated
in (Grisetti et al. (2007a)). Also, it is opensource and can be implemented in ROS.
The output of GMapping is a 2D occupancy grid map.

Another SLAM method implemented in ROS is the Hector SLAM method. This
method, along with Karto SLAM, was tested against GMapping in (Duchoň et al.
(2019)). Hector SLAM seeks to find optimal alignment with the created map and
laser scan endpoints through scan matching. IMU and odometry data are not
needed in Hector SLAM, which decreases the complexity of the method. However,
with rapid movement and lack of odometry the resulting map may include large
errors. In the test between the algorithms, GMapping showed the best and most
robust results with its use of odometry and a stochastic model.

The e↵ect of tuning di↵erent parameters in the GMapping algorithm are exploited
in (Abdelrasoul et al. (2016)). By studying how the computational time and map
quality changes along with the parameters, they are able to present tuning guide-
lines. The algorithm runs on an pre-recorded dataset and is equal for all the runs.
The results they present show that the number of particles can be as small as 5 with
a resampling threshold at 0.5 at their dataset. It proves that GMapping manage
to reduce the required number of particles needed to produce a satisfactory map.
By only having 5 particles in the filter the Central Processing Unit (CPU) load
and memory consumption decreased.

The authors in (Wang et al. (2016)) examine the e↵ect the quality of the laser
scanner has on the loop closure correction in GMapping. Loop closing is detecting
if the robot has returned to a previous visited location (Ho and Newman (2006)).
They find that a less expensive laser gives a significantly lower loop closure perfor-
mance than a more sophisticated laser. To be able to use a cheap laser and still
perform well with loop closure, the authors present a Kalman filter based closure
correction algorithm that corrects the state estimation. This algorithm will again
help improve the loop closure performance.

GMapping shows not only promising results indoor but also outdoor. In (Weeras-
inghe et al. (2016)) they present a mapping and navigation procedure for long
distance navigation. The authors in (Balasuriya et al. (2016)) present the use of
GMapping in both an indoor and outdoor environment. ROS is used as platform
where GMapping runs as a node on a small robot running on belts. The particle
filter used is RBPF and the sensor is RPLIDAR 360. The outdoor terrain is sandy
and a little rough with barricades, but the experiment shows that the GMapping
works properly. Sensor fusion deals with the slippage of the tracks. Both of the
papers presents real-time and good quality maps.

In (Brand et al. (2014)) they use SLAM GMapping to obtain a drift-free loca-

6

1.5 Literature review

tion and orientation estimate as well as to get a 2D map of the environment. The
robot is supposed to operate in both indoor- and outdoor environment. By using
stereo-vision the robot can produce a local obstacle map based on depth informa-
tion from the cameras. This map is used for fast obstacle avoidance and local path
planning. The 2.5D obstacle map needs to be projected into a 2D plane to work as
an input for the GMapping algorithm. The combination of the depth information
from the stereo vision and the SLAM algorithm the robot manage to navigate both
indoor and outdoor. The RBPF SLAM algorithm performs loop closure in all cases.

The advantage of GMapping is twofold. First, GMapping shows promising re-
sults for both accuracy and complexity. The accurate calculation of the proposal
distribution reduces the computational time substantially compared to, for exam-
ple, EKF based methods. GMapping generates highly accurate and robust maps in
the environments it has been tested. Second, GMapping estimates a 2D map which
would struggle with mapping slopes and other 3D related features. If GMapping
manages to include all the relevant 2D features in a terrain like scenery, there are
other technologies that might supplement the SLAM system in creating a sense of
space and still retain the real-time computational time.

7

1.6 Contribution

1.6 Contribution

The contribution of this thesis is preliminary designing and constructing a robotic
UGV platform with the capabilities of conducting a robust dataset in a terrain
like environment. The contribution will also revolve around utilizing the existing
SLAM method GMapping for autonomous navigation. The contribution of the
Master’s thesis can be summarized as the following:

• A literature review mapping SLAM approaches.

• Designing and building a UGV platform for data acquisition with the purpose
of investigating autonomous navigation.

• A proposed SLAM system for mapping using lidar for perceiving the envi-
ronment.

• Testing the SLAM system with GMapping on the acquired datasets.

1.7 Outline of Report

This thesis is divided into seven chapters. The introduction in Chapter 1 presents
the thesis definition, the SLAM literature review and the military levels of auton-
omy. In Chapter 2 the theory behind the lidar and the theoretic foundation
in developing SLAM is explained. The UGV platform is thoroughly explained in
Chapter 3, before Chapter 4 presents the methodology for developing the SLAM
system. Chapter 5 displays the experimental results. Chapter 6 discusses the
UGV platform and experimental results, while Chapter 7 draws a thesis conclu-
sion and recommend further work.

8

Chapter 2

Theory

This chapter presents the most relevant theory used in this thesis. Section 2.1 ex-
plains the mathematics behind the transformation between two coordinate frames.
Section 2.2 describes the theory behind the lidar. Section 2.3 gives an introduction
to SLAM, Rao-Blackwellized particle filter SLAM and GMapping, while Section
2.6 presents occupancy grid map. Lastly, Section 2.7 describes the framework of
the implementation, ROS. Section 2.2 through 2.6, with the exception of Section
2.2.1, are included from the associated project thesis by (Bergel (2020)). There
are, however, modifications made.

2.1 Rotation and Translation Between Coordinate

Frames

A robot will contain several di↵erent joints where all of them have their own co-
ordinate frame. It is convenient to represent the di↵erent frames in the same
coordinate system. The notation for transforming a coordinate vector from one
coordinate frame to another used in this project is equal to the notation used in
(Fossen (2020)):

vto = Rto
fromvfrom. (2.1)

Here, Rto
from is the 3⇥ 3 rotation matrix that is applied on the original coordinate

vector vfrom 2 R3 to obtain the new reference frame vto 2 R3.

In (Euler (1776)), a theorem for relative orientation of two rigid bodies is stated.

Theorem 2.1.1 (Euler’s Theorem on Rotation). Every change in the relative
orientation of two rigid bodies or reference frames {A} and {B} can be produced
by means of a simple rotation of {B} in {A}.

A simple rotation is a rotation along only one axis, and by using the Euler angles

9

2.2 Lidar

(roll (�), pitch (✓) and yaw ()) the principal rotation matrices

Rx,� =

2

4
1 0 0
0 c� �s�
0 s� c�

3

5 ,Ry,✓ =

2

4
c✓ 0 s✓
0 1 0

�s✓ 0 c✓

3

5 ,Rz, =

2

4
c �s 0
s c 0
0 0 1

3

5

(2.2)
can be obtained, where c = cos and s = sin and the R�,� corresponds to a rotation
� about the � axis (Fossen (2020)). With zero rotation R = I. The rotation matrix
Rto

from is usually described using the three principal matrices in Equation 2.2 about
the z, y and x axis. According to (Fossen (2020)), this is because the rotation
sequence, with the Euler angles, is mathematical equivalent to

Rto
from := Rz, Ry,✓Rx,�. (2.3)

Along with the rotation, a physical distance between the frames might also be
present. This distance is represented in a translation vector

ttofrom =

2

4
xt

yt
zt

3

5 (2.4)

where x, y and z represents the physical distance between the two frames in meters.
By combining Equation 2.3 with 2.4 will yield a 4⇥ 4 transformation matrix

Tto
from =

Rto

from ttofrom
01⇥3 1

�
(2.5)

transforming from one frame to another.

2.2 Lidar

A common sensor used for collecting data for SLAM methods is the lidar. Lidar is
an acronym for ”light detection and ranging” and is used to measure the distance
to an object. The di↵erences in the distances can be used to create a map of the
object or the environment the lidar is scanning. A typical lidar emits a pulsed light
wave to the environment. When the wave hits an object it will reflect back and
return to the sensor. By knowing the time-of-flight, the distance the light wave has
traveled can be calculated. By repeating this process millions of times per second
a real-time map of the environment is created (VelodyneLidar). The calculation of
distance

d =
1

2
Ctwait (2.6)

are shown in Equation 2.6 where d = distance, C = speed of light and twait =
time-of-flight. The lidar that will be presented in this section is the VLP-16 lidar.

10

2.2 Lidar

2.2.1 Mathematical model of the VLP-16

The Velodyne VLP-16 lidar, also called scanner, has a total of 16 laser-detector
pairs. To be able to compose a point cloud of the surroundings based on the
scanners it is necessary to know the mathematical model of the lidar. Each laser-
detector pair has a 30� field of view (FOV) and increments 2� horizontally over the
FOV from �15� to 15� (Glennie et al. (2016)). Each scanner also scans vertically
to obtain a 3D dataset.

(a) Local lidar frame.
(b) Local lidar frame with lasers.

(c) Vertical plane.
(d) Horizontal frame.

Figure 2.1: A representation of the scanner and laser frame with variables.

Figure 2.1 shows the geometry and the parameters of the lasers in the lidar. The
coordinates (x, y, z) of a observed point in the frame of the scanner can be computed

11

2.2 Lidar

as

2

4
x
y
z

3

5 =

2

666666664

�
siRi +Di

o

�
· cos (�i) · [sin(") · cos (�i)� cos(") · sin (�i)]

�Hi
o · [cos(") · cos (�i) + sin(") · sin (�i)]

�
siRi +Di

o

�
· cos (�i) · [cos(") · cos (�i) + sin(") · sin (�i)]

+Hi
o · [sin(") · cos (�i)� cos(") · sin (�i)]

�
siRi +Di

o

�
· sin (�i) + Vi

o

3

777777775

(2.7)

based on the geometry, where

si distance scale factor for laser i
Di

o distance o↵set for laser i
�i vertical rotation correction for laser i
�i horizontal rotation correction for laser i
Hi

o horizontal o↵set from scanner frame origin for laser i
Vi

o vertical o↵set from scanner frame origin for laser i
Ri raw distance measurement from laser i
✏ encoder angle measurement

To present the points in a global frame, a planar-based approach is used where
the points are conditioned on a plane. A functional model describing this can be
expressed as

⌧
�!g k,

 �!r
1

��
= 0 (2.8)

where �!g k =
⇥
g1 g2 g3 g4

⇤T
are the unknown a priori parameters of plane k

and �!r is the vector of the lidar observations in a global coordinate frame (Glennie
and Lichti (2010)). The direction cosines of plane k’s normal vector are represented
by g1, g2 and g3 and need to satisfy the following unit length constraint

g21 + g22 + g23 � 1 = 0. (2.9)

g4 is the negative orthogonal distance between the origin of the coordinate system
and the plane k (Skaloud and Lichti (2006)). Equation 2.7 shows the coordinates in
the local frame of the scanner. Since the functional model in Equation 2.8 requires
the coordinates to be in the global frame a transformation from the local scanner
frame l to the global frame g is needed. Following, is the rigid body transformation

�!r g = Tg
l
�!r l

j (2.10)

of Equation 2.7. Here, the vector �!r l is given in Equation 2.7 for a point i. Each
point may be scanned from di↵erent scan locations. Therefore, the index j rep-
resents the given scan location that the point were scanned from. Furthermore,

12

2.2 Lidar

�!r g is the transformation matrix from a local scanner frame to the global lidar
frame. Due to the fact that one point may be scanned from multiple scan locations
and that the parameters and observations in Equation 2.8 are not separable, an
adjustment model is needed. Therefore, the Gauss-Helmert adjustment model is
applied to fit the parameters to the model (Skaloud and Lichti (2006)).

Gauss-Helmert Adjustment Model

The Gauss-Helmert adjustment model is usually applied to find the solution of
an overdetermined system of equations. An overdetermined system is a system
where there are more equations than unknowns. It is based on the combination
of two principles: least squares and observation residuals. As there are two sets
of unknown in the functional model (Equation 2.8), the boresight angles (seen in
Figure 2.1) and the plane parameters, a linearization of the system is needed and
will take the form

Adx+Bv +w0 = 0. (2.11)

A and B are the matrices containing the partial derivatives of the functional model
(Equation 2.8) with respect to boresight angles and the plane parameters, respec-
tively. dx, v and w0 are the correction vector for approximation of parameter
values, residual vector and misclosure vector, respectively. Furthermore, the con-
straint given in Equation 2.9 is linearized as

Acdp+wc = vc (2.12)

where Ac is the partial derivative of Equation 2.9 with respect to the plane param-
eters, dp is the correction vector for approximating the plane parameters and c is
the number of constraints (Bae and Lichti (2007)).

Solution of the Adjustment Model

To solve the Gauss-Helmert adjustment model a combined least-square method
is used. The method seeks to minimize the distance between points and their
corresponding planes with a constraint condition. (Bae and Lichti (2007) proposed
the cost function to be minimized as

' = vTPv + vT
c Pcvc + 2kT (Adx+Bv +w0)

+ 2kT
c (Acdp+wc � vc) .

(2.13)

where the function is a combination of weighted squares of the residuals which are
subject to constraints of the two models found in Equation 2.11 and Equation 2.12
(Skaloud and Lichti (2006)). k and kc are the Lagrange multiplier vector, while P
and PC are the weight matrices for the observations and the constraints, respec-
tively. From (Bae and Lichti (2007)), the abbreviated notation for the minimized
cost function is

Ndx+w = 0 (2.14)

13

2.3 Simultaneous Localization and Mapping

where

N = AT
�
BP�1BT

��1
A+

0 0
0 AT

c PcAc

�
(2.15)

and

w = AT
�
BP�1BT

��1
w0 +

0

AT
c Pcwc

�
. (2.16)

2.2.2 Weather Influence

When lidar is used outdoor di↵erent weather phenomena might influence the perfor-
mance of the scanning. As an example, foggy weather conditions will break down
the performance of state of the art lidars. The maximum viewing distance will
be limited to only a fraction compared to clear weather capabilities (Bijelic et al.
(2018)). Furthermore, rain may also influence the accuracy of the lidar were beams
will be e↵ected by rain drops in the air (Hasirlioglu et al. (2016)). Other weather
conditions like, snow or sunshine, may also a↵ect the accuracy of the information
the lidar provides.

2.3 Simultaneous Localization and Mapping

According to (Cadena et al. (2016)), Simultaneous Localization and Mapping
(SLAM) is a simultaneous estimation of the state of the robot and the construction
of a model (map) of the surrounding environment. The basic instants of the robot’s
state are position and orientation, while the map represents the aspects of interest
describing the environment the robot is operating in. To be able to construct a
model of the environment the robot is equipped with sensors that perceives the
surroundings (Cadena et al. (2016)).

With other words, SLAM seeks to recover a model of the surroundings and the
robot state based on odometry and measurement data (Stachniss et al. (2016)).
Mathematically, SLAM is usually described in a probabilistic terminology. Let t
denote the time, while xt denotes the position of the robot represented as a three-
dimensional vector that includes a 2D coordinate and a single rotational value
(Stachniss et al. (2016)). Then the sequence of locations for the robot is given as

XT = {x0, x1, x2, . . . , xT } (2.17)

where T is terminal time and x0 is initial location (Stachniss et al. (2016)). Fur-
thermore, the relative information between t and t�1 is provided by the odometry,
for example data from the robot’s wheels. This relative motion of the robot can
be described as a sequence

UT = {u1, u2, u3 . . . , uT } (2.18)

14

2.3 Simultaneous Localization and Mapping

where ut is the odometry between two following locations (Stachniss et al. (2016)).
Lastly, the map of the environment will be denoted by m. The location of the land-
marks, objects and surfaces in the environment will be described bym. Information
between the features in the environment m and the location of the robot xt will be
provided through robot measurements. The sequence of these measurements will
be

ZT = {z1, z2, z3, . . . , zT } (2.19)

where zt is a measurement at a given time t (Stachniss et al. (2016)).

2.3.1 System architecture

According to (Cadena et al. (2016)), a modern SLAM system consists of two main
components: front-end and back-end (see Figure 2.2).

• Front-end: In this part of the system relevant data is extracted from the
raw measurements provided by the sensors. Furthermore, it also associates
each measurement to a specific landmark in the environment and builds the
optimization problem.

• Back-end: The back end performs inference on the data provided by the
front end and solves the optimization problem to estimate the map.

Figure 2.2: Overview of the anatomy of a modern SLAM system.

2.3.2 The two SLAM problems

The SLAM problem can be divided into two equally important problems; the online
SLAM problem and the full SLAM problem. The full SLAM problem can be
expressed as the joint posterior probability

p (XT ,m|ZT , UT) (2.20)

over the sequence in Equation 2.17 and m, from the data in the sequences in Equa-
tion 2.18 and Equation 2.19 (Stachniss et al. (2016)).

The online SLAM problem di↵ers from the previous problem by that it only seeks

15

2.4 Rao-Blackwellized particle filter SLAM

to recover the present robot location instead of the entire sequence (Equation 2.17).
This problem can be defined as

p (xt,m|Zt, Ut) . (2.21)

Comparing the two SLAM problems; the full SLAM problem algorithms are usu-
ally batch, which means they process all data at the same time. On the other side,
the algorithms for the online SLAM problem are usually incremental and can only
process one data item at a time. These kind of algorithms are referred to as filters
(Stachniss et al. (2016)).

There are three major paradigms of SLAM that are used to derive methods for solv-
ing the SLAM problem. The three methods are: Extended Kalman Filter(EKF),
Particle Filter(PF) and graph-based (Stachniss et al. (2016)). EKF SLAM seeks to
solve the online SLAM problem in Equation 2.21, while graph-based SLAM seeks
to solve the full SLAM problem in Equation 2.20. PF SLAM, on the other hand,
can be used to solve both full and online SLAM problems. This is because, for
example in some PF algorithms, each particle has a sample of an entire path but it
is only the recent pose that is used in the update equation (Stachniss et al. (2016)).
The properties and potential pros and cons of the various methods are discussed
in detail in Section 1.5.

The algorithms considered in this project are a version of the Rao-Blackwellized
Particle Filter SLAM method, GMapping. The following sections will therefore
only regard relevant theory based on this topic.

2.4 Rao-Blackwellized particle filter SLAM

Rao-Blackwellized particle filter (RBPF) SLAM is an online SLAM method (ex-
pressed in Equation 2.21) which seeks to estimate the joint posterior probability

p (x1:t,m|z1:t, u1:t�1) (2.22)

where x1:t is the potential trajectory of the robot, m is the potential map, z1:t is
the observations and u1:t�1 is the odometry measurements (Grisetti et al. (2007a)).
In general, a particle filter is used to estimate the internal state in the system based
on partial observations. In other words, the filter uses a set of particles, or samples,
to estimate the posterior distribution from some stochastic process with noise. In
the context of Equation 2.22, the particle filter seeks to estimate the trajectory
and map, based on the sensor observations and odometry data. To make it more
computationally e�cient, a factorization of Equation 2.22 is introduced

p (x1:t,m|z1:t, u1:t�1) = p (m|x1:t, z1:t) · p (x1:t|z1:t, u1:t�1) . (2.23)

This factorization provides the opportunity to first only estimate the trajectory of
the robot and then compute the map based on that trajectory. This may be referred

16

2.4 Rao-Blackwellized particle filter SLAM

to as the Rao-Blackwellization (Grisetti et al. (2007a)), and hence the name Rao-
Blackwellized particle filter. The first term in Equation 2.23, p (m|x1:t, z1:t), can
be computed analytically since the trajectory x1:t and z1:t is given (Grisetti et al.
(2005)). The second term , the posterior probability p (x1:t|z1:t, u0:t), is estimated
using a particle filter where each particle represents a potential trajectory of the
robot. An individual map is created for each sample and is updated based on the
observations and trajectory for each particle. The sampling importance resampling
(SIR) filter is one of the most common particle filters and is the filter that is used
in this project together with Rao-Blackwellization (Grisetti et al. (2007a)).

2.4.1 Mapping with Rao-Blackwellized SIR filter

According to (Grisetti et al. (2007a)), the SIR algorithm consists of three steps:
sampling step, importance step and resampling step. Mapping with a Rao-Blackwellized
SIR filter will have the following four steps:

1. Sampling - In this first step, the next generation of samples are drawn from
the so-called proposal distribution ⇡ (Stachniss et al. (2007)). In other words,

the goal is to obtain
n
x(i)
t

o
from

n
x(i)
t�1

o
by sampling from ⇡.

2. Importance Weighting - The proposal distribution is usually not equal
to the target distribution (Stachniss et al. (2007)). To make up for this

each particle is assigned an importance weight w(i)
t . The importance weight

principle that calculates each weight is given by

w(i)
t =

p
⇣
x(i)
1:t|z1:t, u1:t�1

⌘

⇡
⇣
x(i)
1:t|z1:t, u1:t�1

⌘ . (2.24)

3. Resampling - The goal for this step is to obtain the target distribution
from the weighted proposal from the previous step. Resampling is done to
avoid degeneracy (Koutsojannis and Sirmakessis (2009)). This is achieved by
drawing particles based on their weights. (Stachniss et al. (2007)). Typically,

particles with low w(i)
t get replaced by samples with high w(i)

t (Grisetti et al.
(2005)).

4. Map Estimating - The last step of the process, is estimating the corre-
sponding map

p
⇣
m(i)|x(i)

1:t, z1:t
⌘

(2.25)

for each particle.

Over time the trajectory sequence in Equation 2.17 will be become large, which
leads to an ine�cient algorithm. In (Grisetti et al. (2007a)), a recursive formulation
is obtained to deal with this problem. The proposal distribution ⇡ is restricted to
follow the assumption

⇡ (x1:t|z1:t, u1:t�1) = ⇡ (xt|x1:t�1, z1:t, u1:t�1) · ⇡ (x1:t�1|z1:t�1, u1:t�2) (2.26)

17

2.5 Modified Rao-Blackwellized particle filter SLAM

to calculate the importance weights.

By combining Equation 2.24 and 2.26 the modified weights are computed. Fol-
lowing,

w(i)
t =

p
⇣
x(i)
1:t|z1:t, u1:t�1

⌘

⇡
⇣
x(i)
1:t|z1:t, u1:t�1

⌘ (2.27)

=
⌘p

⇣
zt|x(i)

1:t, z1:t�1

⌘
p
⇣
x(i)
t |x(i)

t�1, ut�1

⌘

⇡
⇣
x(i)
t |x(i)

1:t�1, z1:t, u1:t�1

⌘ ·
p
⇣
x(i)
1:t�1|z1:t�1, u1:t�2

⌘

⇡
⇣
x(i)
1:t�1|z1:t�1, u1:t�2

⌘

| {z }
w(l)

t�1

(2.28)

/
p
⇣
zt|m(i)

t�1, x
(i)
t

⌘
p
⇣
x(i)
t |x(i)

t�1, ut�1

⌘

⇡
⇣
xt|x(i)

1:t�1, z1:t, u1:t�1

⌘ · w(i)
t�1 (2.29)

shows the mathematical representation of the importance weights, where the nor-
malization factor ⌘ = 1/p (zt|z1:t�1, u1:t�1) comes from the Bayes’ rule that is equal
for all particles (Grisetti et al. (2007a)).

The SLAM method this thesis investigates is based upon RBPF with improved
proposals and adaptive resampling. The next section will therefore consider the
modified version.

2.5 Modified Rao-Blackwellized particle filter SLAM

This section will consider a modified version of the Rao-Blackwellized particle filter.
The new version have an improved proposal distribution and an adaptive resampling.
The following two sections will explain first the improved proposal before addressing
the adaptive resampling.

2.5.1 Improved proposals

There is a close connection on how well the particle filters perform and how accu-
rate the proposal distribution approximates the target distribution. In a perfect
world drawing directly from the target distribution to obtain the next generation
of particles would be possible. This is not possible when solving a SLAM prob-
lem, therefore di↵erent proposal distributions have been considered (Grisetti et al.
(2007a)). In (Montemerlo et al. (2002)) a proposal distribution based on the odom-
etry motion model is proposed, where the importance weights are calculated based
on the observation model p (zt|m,xt). The advantage with this distribution is that
it is easy to compute for most robots, but it is only optimal if for instance the
sensor information is significantly more precise than the motion estimate (Grisetti
et al. (2007a)). Figure 2.3 shows the small area L(i) where the drawn samples

18

2.5 Modified Rao-Blackwellized particle filter SLAM

includes the state space regions that have a high likelihood under the observation
model. Because of this, the individual samples can di↵er a lot from each other.
To overcome this problem, a high number of samples are needed to cover the high
observation likelihood regions (Grisetti et al. (2007a)). Another approach is to use
a smoothed likelihood function but this may lead to information being discarded.
In a SLAM context this may result in less accurate maps (Grisetti et al. (2007a)).

Figure 2.3: Interval L(i)
shows where the two functions are dominated by the observation

likelihood (Grisetti et al. (2007a)) © 2007 IEEE.

According to (Doucet (1998)),

p
⇣
xt|m(i)

t�1, x
(i)
t�1, zt, ut�1

⌘
=

p
⇣
zt|m(i)

t�1, xt

⌘
p
⇣
xt|x(i)

t�1, ut�1

⌘

p
⇣
zt|m(i)

t�1x
(i)
t�1, ut�1

⌘ (2.30)

is said to be the optimal proposal distribution. The recent sensor observation
zt is integrated into the proposal. By using Equation 2.30 when computing the
importance weights the new weights will become the following

w(i)
t = w(i)

t�1

⌘p
⇣
zt|m(i)

t�1, x
(i)
t

⌘
p
⇣
x(i)
t |x(i)

t�1, ut�1

⌘

p
⇣
xt|m(i)

t�1, x
(i)
t�1, zt, ut�1

⌘ (2.31)

/ w(i)
t�1

p
⇣
zt|m(i)

t�1, x
(i)
t

⌘
p
⇣
x(i)
t |x(i)

t�1, ut�1

⌘

p
⇣
zt|m(i)

t�1,xt

⌘
p
⇣
xt|x(i)

t�1,ut�1

⌘

p
⇣
zt|m(i)

t�1,x
(i)
t�1,ut�1

⌘

(2.32)

= w(i)
t�1 · p

⇣
zt|m(i)

t�1, x
(i)
t�1, ut�1

⌘
(2.33)

= w(i)
t�1 ·

Z
p (zt|x0) p

⇣
x0|x(i)

t�1, ut�1

⌘
dx0 (2.34)

19

2.5 Modified Rao-Blackwellized particle filter SLAM

This improved proposal is convenient when the sensor is very accurate which may
cause a high peak at the likelihood function and makes one focus the sampling
on the important parts of the observation likelihood (Grisetti et al. (2007a)). As
mentioned before, when the likelihood function is peaked one needs a dense sam-
pling to capture the small areas of the likelihood. An observation made in (Grisetti
et al. (2007a)) is that the target distribution has a limited number of maxima, and
usually only one.

GMapping is based on the previous approaches with the proposal distribution in
Equation 2.30, the computation of the new importance weights and focusing the
sampling around the maxima of the likelihood function. The main di↵erence is
that a scan-matcher is used in the beginning to find the meaningful areas (peaks)
of the likelihood function so that the posterior in Equation 2.30 can be approx-
imated around the maximum of the likelihood function (Grisetti et al. (2007a)).
This reduces the number of required particles. However, the geometry and size of
the environment decides the number of particles needed to generate a high-quality
map (Abdelrasoul et al. (2016)). A Gaussian approximation N is computed to
e�ciently draw the next generation of samples. Furthermore, the meaningful ar-
eas are sampled and each sampled point is compared to the target distribution.

Two Gaussian parameters µ(i)
t and ⌃(i)

t are determined for each particle i. They
represent the mean and the variance, respectively. Following,

µ(i)
t =

1

⌘(i)
·

KX

j=1

xj · p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xj |x(i)

t�1, ut�1

⌘
(2.35)

⌃(i)
t =

1

⌘(i)
·

KX

j=1

p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xj |x(i)

t�1, ut�1

⌘
·
⇣
xj � µ(i)

t

⌘⇣
xj � µ(i)

t

⌘T

(2.36)

shows how they are computed. K represents the number of the sampled points xj

in the interval L(i) (Grisetti et al. (2007a)). In this approach the normalization
factor ⌘(i) is computed in the following way

⌘(i) =
KX

j=1

p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xj |x(i)

t�1, ut�1

⌘
. (2.37)

20

2.5 Modified Rao-Blackwellized particle filter SLAM

When the next generation particles are obtained, the importance weights are com-
puted based on the proposal distribution

w(i)
t = w(i)

t�1 · p
⇣
zt|m(i)

t�1, x
(i)
t�1, ut�1

⌘
(2.38)

= w(i)
t�1 ·

Z
p
⇣
zt|m(i)

t�1, x
0
⌘
· p

⇣
x0|x(i)

t�1, ut�1

⌘
dx (2.39)

' w(i)
t�1 ·

KX

j=1

p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xj |x(i)

t�1, ut�1

⌘
(2.40)

= w(i)
t�1 · ⌘(i). (2.41)

To sum up this section, the computations above helps determine the Gaussian
parameters of the proposal distribution for each particle individually. The pro-
posal distribution allows an e�cient sampling and takes both sensor observations
and odometry reading into account. This results in a more accurate estimation
(Grisetti et al. (2007a)).

2.5.2 Adaptive resampling

By looking back at subsection 2.4.1, the calculations above goes through the first 2
steps in the Rao-Blackwellized SIR filter algorithm: sampling and calculation of the
importance weights. The next step that is modified in GMapping is the resampling
step. As mentioned earlier; while resampling, particles with low importance weight
w(i) is replaced with particles with high w(i). This may discard good samples that
would have improved the performance. To deal with this problem a criterion is
needed to decide whether or not to do the resampling (Grisetti et al. (2007a)).
According to (Doucet (1998)), a quantity that can be used as a criterion for this
is

Ne↵ =
1

PN
i=1

�
w̃(i)

�2 (2.42)

where w̃(i) is the normalized weight of particle i. When Neff drops below the
threshold N/2, where N is number of particles, resampling will be done. Neff also
contributes to avoid ”particles depletion” when having a small number of particles
and frequently resampling (Abdelrasoul et al. (2016)).

21

2.5 Modified Rao-Blackwellized particle filter SLAM

2.5.3 GMapping in pseudocode

Algorithm 1 sums up GMapping in pseudocode according to (Grisetti et al. (2007a)).
The algorithm is based on the RBPF SLAM method but with an improved pro-
posal distribution and adaptive resampling, as explained in previous sections.

Algorithm 1 Improved RBPF for Map Learning

Require:
1: St�1, the sample set of the previous time step
2: zt, the most recent sensor scan
3: ut�1, the most recent odometry measurement
4:

Ensure:
5: St, the new sample set
6: St = {}
7:

8: for all s(1)t�1 2 St�1 do

9:

D
x(i)
t�1, w

(i)
t�1,m

(i)
t�1

E
= s(i)t�1

10: x0(i)
t = x(i)

t�1 � ut�1

11: x̂(i)
t = argmaxx p

⇣
x|m(i)

t�1, zt, x
0(i)
t

⌘

12: if x̂(i)
t = failure then

13: x(i)
t ⇠ p

⇣
xt|x(i)

t�1, ut�1

⌘

14: w(i)
t = w(i)

t�1 · p
⇣
zt|m(i)

t�1, x
(i)
t

⌘

15: else
16: for k = 1, ...,K do
17: xk ⇠

�
xj ||xj � x̂(i)| < �

18: end for

19: µ(i)
t = (0, 0, 0)T

20: ⌘(i) = 0

21: for all xj 2 {x1, ..., xK} do

22: µ(i)
t = µ(i)

t + xj · p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xt|x(i)

t�1, ut�1

⌘

23: ⌘(i) = ⌘(i) + p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xt|x(i)

t�1, ut�1

⌘

24: end for

22

2.5 Modified Rao-Blackwellized particle filter SLAM

25: µ(i)
t = µ(i)

t |⌘(i)

26: ⌃(i)
t = 0

27: for all xj 2 {x1, ..., xK} do

28: ⌃(i)
t = ⌃(i)

t +
�
xj � µ(i)

� �
xj � µ(i)

�T · p
⇣
zt|m(i)

t�1, xj

⌘
· p

⇣
xj |x(i)

t�1, ut�1

⌘

29: end for

30: ⌃(i)
t = ⌃(i)

t /⌘(i)

31: x(i)
t ⇠ N

⇣
µ(i)
t ,⌃(i)

t

⌘

32: w(i)
t = w(i)

t�1 · ⌘(i)

33: end if

34: m(i)
t = integrateScan(m(i)

t�1, x
(i)
t , zt)

35: St = St [
nD

x(i)
t , w(i)

t ,m(i)
t

Eo

36: end for

37: Ne↵ = 1/
PN

i=1

�
w̃(i)

�2

38: if Neff < T then
39: St = resample St

40: end if

23

2.6 Occupancy Grid Map

The worst case scenario, regarding computational time, may occur when resam-
pling. However, since the algorithm uses adaptive resampling only a few resampling
steps are necessary (Grisetti et al. (2007a)). Also, di↵erent parameters have di-
rect influence on the computational time. An example on parameters that can be
tuned, are how often new observations are processed. A low frequency may result
in a poor constructed map but decreases the CPU load (Abdelrasoul et al. (2016)).

2.6 Occupancy Grid Map

The output of GMapping is a 2D occupancy grid map. The idea is to have an
evenly spaced field where binary variables represent if an obstacle is present or not
at that location. Depending on the resolution of the map there is a fixed number
of grid cells hx, yi. Each grid cell has an occupancy value attached. These values
measure the subjective belief if the robot can be moved to the center of that cell
or not (Thrun and Bücken (1996)). The discrete grid values can be estimated

di↵erently but in GMapping it is estimated from p
⇣
m(i)|x(i)

1:t, z1:t
⌘
(also found in

Equation 2.25).

2.7 Robot Operating System

Robot Operating System (ROS)1 is used for robotic software development and
contains di↵erent software frameworks to help achieve complex and robust robot
behavior. Some of the useful functionalities ROS provides when building a robot
application is message-passing, device drivers and hardware abstraction. When
creating a network with ROS, the way to go is to use the message-passing func-
tionality where you have publisher/subscriber connections between the di↵erent
processes, also called nodes. These nodes perform a specific task e.g. lidar driver
or navigation. ROS helps solving complex problems by connecting many di↵erent
already existing nodes.

The following sections will explain the communication, logging capabilities, how
to use it and other relevant tools that the experiment of this thesis will take ad-
vantage of.

2.7.1 ROS Communication

ROS organizes the internal communication by using a graph structure. Each pro-
cess is represented by one node in the graph, while the edges between the nodes,
termed topics, handles the information that needs to be exchanged between the
nodes. In ROS terms, this is called message-passing. A node is set to both receive
an input and distribute an output to the system. When a node receives information
from a topic, it subscribes to that topic. On the other hand, if a node advertises
information to a topic it publishes to that topic. A system may contain a number

1https://www.ros.org/

24

https://www.ros.org/

2.7 Robot Operating System

of shared static or semi-static parameters. ROS handles these parameters through
a parameter server which is a database consisting of those parameters. An example
of a message is found in Listing 2.1.

1 # This is a message to hold data from an IMU
2

3 Header header
4

5 geometry_msgs/Quaternion orientation
6 float64 [9] orientation_covariance
7

8 geometry_msgs/Vector3 angular_velocity
9 float64 [9] angular_velocity_covariance

10

11 geometry_msgs/Vector3 linear_acceleration
12 float64 [9] linear_acceleration_covariance

Listing 2.1: ROS Message for IMU

The main role for the ROS Master is to help the nodes in the system locate each
other so they can start communicating peer-to-peer. The Master keeps track of
every published and subscribed topic and by using this register the Master sets up
the nodes that need to communicate. Newly initialized nodes register itself to the
ROS Master with information about its publish and subscribe topics. ROS has a
decentralized architecture which is shown in Figure 2.4.

Figure 2.4: The Talking node publishing to the Listening node, while ROS Master is

registering the communication.

2.7.2 ROS Launch

To easily launch multiple nodes at the same time ROS provides the package roslaunch.
By gathering the nodes that is to be launched in a configuration file, or launch file,
the launch package helps launching every specified node at the same time with
one command. Additionally, it is possible to also set parameters in the parame-
ter server for the ROS system by defining them in the launch file. The following
command shows how launch files can be initiated.

1 $ roslaunch package_name file.launch

Listing 2.2: Launch command

25

2.7 Robot Operating System

2.7.3 ROS Topic

The ROS package rostopic is a useful tool to obtain control of the topics available
and the data that the topic contains. This package o↵ers di↵erent commands but
the two functions this thesis uses is rostopic list and rostopic echo, which
shows all the available topics and displays the messages on a specific topic, respec-
tively. Following, are the two commands for initiating the tools

1 $ rostopic list

Listing 2.3: View published topics

and

1 $ rostopic echo /topic_name

Listing 2.4: Echo a published topic

2.7.4 Logging Data in ROS

A feature ROS provides is that ROS message data can be recorded and played back
by using the ROS package rosbag. When a ROS system publishes topics, rosbag
can log data from the topics into a file format called bags. This file can be played
back in a manner that replicates the original data from the topic. To log data from
a topic the following command is executed.

1 $ rosbag record /topic

By replacing /topic with -a, one can log every topic in the system. The below
command plays back the file.

1 $ rosbag play file_name.bag

2.7.5 RVIZ

RVIZ is a 3D visualization tool in ROS. Here, topics can be visualized or the robot
can be controlled. The following command lets the user view a specific topic

1 $ rosrun rviz rviz -f /topic_name

26

Chapter 3

Phylax

This chapter presents all the hardware and software of the robot. The robot will
be referred to as Phylax and the whole platform as the Phylax platform or ROS
system, from now on. Section 3.1 presents the chassis and motors used on Phylax.
Section 3.2 provides the specifications of the motor controller and microcontroller,
their functionality and the software implementation of the microcontroller. Finally,
Section 3.3 describes the processing unit and the implemented software.

The work of building the Phylax platform, including both software and hardware,
has been a project in cooperation between the author of this thesis and one of the
supervisors, Joseph Piperakis. By looking at Figure 3.1, the reader will get an
introduction to the architecture of the Phylax platform and Figure 3.2 shows the
finished robot.

Figure 3.1: A primitive representation of how the Phylax platform is built up.

27

3.1 Chassis and Motors

Figure 3.2: Phylax viewed from the front and side.

3.1 Chassis and Motors

The chassis, wheels and four of the motors are from DAGU Electronics and are
easy to assemble. Phylax runs on a 6 Wheel Drive (WD) di↵erential drive system
where all the motors share the same power supply. The power supply is a two
cell (2S) battery with 7.4V and is connected to a main discrete switch where the
user can choose if the power should either be on or o↵. The switch also isolates the
battery from the rest of the electronics to prevent damage. Each wheel has a rugged
torsion suspension with rubber mounts that provides a flexible joint which makes it
capable of driving on rough ground. Every wheel is attached to a motor shaft, that
is connected to its corresponding gearmotor consisting of a high-power 6V brushed
Direct Current (DC) motor combined with a 34:1 gearbox. In addition, each of the
two middle motors are equipped with an integrated encoder embedded in the motor,
which provides 1632.67 counts per revolution (CPR). Originally, the encoders only
had a CPR of 48, but the gear ratio increases the CPR to approximately 1632
(48⇥34 = 1632). Since these two motors replace the original middle motors, a hut
that encapsulates the new motors needed to be designed and 3D-printed in order
to connect the motors to the chassis and suspension (see the design in Appendix
A). The chassis is made of steel and two compartments for battery housing. There
are numerous holes where the necessary hardware can be fastened by screws both
on the top and lower deck.

Figure 3.3: The bottom side of Phylax when one of the motors is removed due to

reparations.

28

3.2 Microcontrollers

3.1.1 Assembling

First, the 6 motors were attached to the chassis at their correct places and the
wheels were mounted on the output shafts of the motors. Each motor has at least
two wires; one for battery voltage and one for grounding (+/- wires). In the middle
of the chassis these wires were connected in a serial connection with the battery and
the power switch (see Figure 3.4). In addition, the two motors with the encoders
have four extra wires, where two wires supply the encoder with power and the
other two provide the encoder output. These four wires were all connected to a
microcontroller that both supplies power and reads the encoder output. For the
wheels to behave as the user commands all six motors were connected to motor
controllers that control the motors. These motor controllers are located in the
back of Phylax, and control three motors each. In other words, one microcontroller
controls the motors on the left side and the other one the right side. One motor
controller includes a microcontroller, a filter and power controller. A detailed
explanation of the microcontrollers can be found in Section 3.2.

Figure 3.4: The top side of the bottom chassis including most of the electronics and one

battery.

3.2 Microcontrollers

Phylax has two motor controllers that control the wheels on each side of the vehi-
cle, and one microcontroller that distributes odometry and IMU data to the ROS
system. This section will provide the specifications of the motor controller and
microcontroller, their functionality and the software implementation of the micro-
controller.

29

3.2 Microcontrollers

3.2.1 Motor Controller

As mentioned in the previous section, there are two motor controllers that control
the motors on each side of the vehicle. These motor controllers are Pololu SMC
G2 and are pre-programmed from the factory. However, in order to integrate the
controllers into the Phylax platform the interface between the given commands and
the motor controllers needed to be implemented. The motor controllers receive
their commands through a Universal Serial Bus (USB) connection wired to the
processing unit. Here, a running ROS node sends commands straight to the motor
controllers. The software for the processing unit will be presented in Section 3.3.1.

3.2.2 Microcontroller for Odometry and IMU

To calculate and distribute the odometry and IMU data to the rest of the ROS
system a Sparkfun ESP32 microcontroller is installed and will be referred to as
ESP32 from now on. The IMU data is retrieved from the Sparkfun 9DoF IMU
Breakout - ICM-20948 which is wired straight into the microcontroller. This is an
IMU with 9 Degrees of Freedom (DoF); 3-axis gyroscope, 3-axis accelerometer and
3-axis magnetometer. In addition to the 9DoF the IMU also includes a Digital
Motion Processor (DMP) that o✏oads the computation of motion sensing and
calculates the quaternions. The IMU is placed in the center of Phylax to obtain
minimum transformations to avoid potential errors that might propagate. The
ESP32 is also wired to the encoders on both of the middle motors.

Software

The ESP32 is compatible with the Arduino platform which provides board defini-
tion and libraries. The software on the ESP32 is managed through the Arduino
interface on a laptop and uploaded to the board through a USB cable. All the
software is programmed in C++. Before any coding is done the correct library
environment needs to be set. To make the IMU talk to the ESP32 the Sparkfun
9DoF IMU Breakout library is required. Figure 3.5 presents the subsystem that
handles IMU and odometry data.

30

3.2 Microcontrollers

Figure 3.5: A representation of the subsystem with both software and hardware handling

odometry and IMU data.

The DMP on the IMU processes the measurements and calculates the quaternions
before the raw IMU data is o✏oaded to the ESP32. Here, the data is retrieved
and processed in PhylaxSensorController.ino where the IMU data is packed
in ROS messages and distributed to the ROS system under the topic /imu/data.
The file contains specific ROS implementations, WIFI setup and quaternion cal-
culation implemented specific for this project. However, a few libraries from the
sensor manufacturer are utilized and PhylaxSensorController.ino is therefore
not included in the Appendices. It is important to state that the file is still unique
for this project.

PhylaxSensorController.ino also initializes the sensors and sets up an Inter-
Integrated Circuit (I2C) connection between the ESP32 and the IMU. In addition,
a Wireless Fidelity (WIFI) connection to the local network is created. This is due

31

3.3 Processing Unit

to the rosserial library implementation used on the ESP32 that does not support
a USB connection, hence a WIFI connection is needed to be able to publish di↵er-
ent ROS topics. Furthermore, the encoder.cpp, found in Appendix C.1, extracts
the raw encoder data from the encoders, so that the algorithm in odometer.cpp

can calculate the correct odometry, pack it in ROS messages and publish it to the
ROS system under the /odom topic. The odometer file also computes the trans-
formation between the coordinate frame of the encoders and the coordinate from
of Phylax, called base link. This transformation is published under the /tf topic.
odometer.cpp is presented in Appendix C.2.

3.3 Processing Unit

The processing unit on Phylax is the Nvidia Jetson AGX Xavier and is mounted on
the top of the chassis. The Xavier is equipped with a 512-core GPU and an 8-core
ARM v8.2 64-bit CPU. The developer also possesses numerous module interfaces,
but the interfaces used in this thesis is the Gigabit Ethernet, USB and High Defi-
nition Multimedia Interface (HDMI). It also supports neural network. The power
source to provide the Xavier and other accessory with power is a four cell (4S) LiPO
battery at 14.8V. To mount the Xavier on the chassis, a processing unit housing
was designed and 3D-printed (see Appendix A) for optimal and robust installa-
tion. The width, length and height of the Xavier is 105mm ⇥ 105mm ⇥ 65mm,
respectively. Figure 3.6 shows the Xavier and housing.

Figure 3.6: Nvidia Jetson AGX Xavier with antennas on the chassis. The gray part

underneath the Xavier is the 3D-printed housing.

The processing unit is responsible for the majority of the ROS software through
the Phylax repository. It also runs the software for the motor controllers, which is
a ROS node running PololuController. This section will thoroughly explain the
contribution of the processing unit to the Phylax platform by analyzing its software.
To specify, the Phylax repository is implemented by the author and supervisor
with inspiration from opensource examples and will therefore be explained, while

32

3.3 Processing Unit

PololuController is purely Mr. Piperakis work and will therefore not be described
in detail. The ROS opensource examples were used as a basis for writing the
software.

3.3.1 Software

An analysis of the Phylax repository will now be presented to highlight the influ-
ence of this software on the Phylax platform. The implemented ROS packages
phylax_description, phylax_control, phylax_base and phylax_navigation

will be the center of attention during this section.

Description of Phylax

The algorithms for obtaining autonomous driving, for example SLAM, needs in-
formation about the state of the robot and the environment that the robot op-
erates in. Therefore, a model of the robot with the necessary parameters was
constructed in Unified Robot Description Format (URDF) (see Appendix D.2,
phylax.urdf.xacro), which is located in the phylax_description package. The
URDF is an XML format for representing the robot model in ROS. An XML macro
language, called xacro, was utilized to make the XML files more generic.

Figure 3.7: A representation of description.launch

By executing the description launch file, the URDF model of the robot is parsed
and its definitions are uploaded to the ROS parameter server. The launch file
also initializes a ROS node called robot state publisher, which publishes the state
of the robot to a transformation library. The robot state publisher constructs a
kinematic model of the robot internally, and by using the position of the joints it
computes and publishes the forward kinematics of the robot under the ros topic
tf. The joint states are retrieved from a separate node called joint states. Here, all
the di↵erent coordinate frames of Phylax and the relationship between them are
stored and become available for all the ROS components at any time. The di↵erent
frames are defined in Table 3.1.

33

3.3 Processing Unit

Name of frame Symbol Description
base link b main frame located at the bottom of the chassis
odom right or local odometer frame for right center wheel
odom left ol local odometer frame for left center wheel
imu link i local IMU frame
velodyne v local lidar frame

Table 3.1: Definition of frames on Phylax.

To visualize the di↵erent frames on the robot model, ROS Rviz is used. By creating
the model of the robot and retrieving the robot model from the description files
the di↵erent links can be presented and viewed in the following figures. The red
axis represents the x-axis, the green axis represents the y-axis and the blue axis
represents the z-axis. All the frames follow the right-hand rule (see Figure 3.8 to
3.11). The relationships between the frames are calculated in the tf node by using
the transformation matrix 2.5 given in Section 2.1. In this project every frame
needs to be transformed to frame b, see Figure 3.8. The two frames i (Figure 3.10)
and v (Figure 3.11) only need to be translated with no rotation. Hence, Rto

from = I
which yields

Tto
from =

I ttofrom
0 1

�
=

2

664

1 0 0 xt

0 1 0 yt
0 0 1 zt
0 0 0 1

3

775 (3.1)

where xt, yt and zt are replaced with the actual distance between the two frames.
As an example, the transformation matrix from v to b would become

Tb
v =

I tbv
0 1

�
=

2

664

1 0 0 0
0 1 0 0
0 0 1 �0.2
0 0 0 1

3

775 . (3.2)

where the translation is �0.2 meters on the z-axis.

The two remaining frames or and ol, however, need to be both translated and
rotated. The frames are found in Figure 3.9. The rotation is a simple rotation
around the the y-axis. Hence, Equation 2.3 from Section 2.1 becomes

Rto
from = IRy,✓I = Ry,✓ (3.3)

which yields

Tto
from =

2

664

c✓ 0 s✓ xt

0 1 0 yt
�s✓ 0 c✓ zt
0 0 0 1

3

775 (3.4)

34

3.3 Processing Unit

where xt, yt and zt are replaced with the actual distance between the two frames
and ✓ is the rotation angle.

(a) The b-system viewed from the top.

(b) The b-system viewed from the side.

Figure 3.8: Visualization of the base link frame.

(a) The or-system and the ol-system viewed
from the top.

(b) The or-system and the ol-system viewed
from the side.

Figure 3.9: Visualization of the two odometer frames.

35

3.3 Processing Unit

(a) The i-system viewed from the top.

(b) The i-system viewed from the side.

Figure 3.10: Visualization of the imu link frame.

(a) The v -system viewed from the top.

(b) The v -system viewed from the side.

Figure 3.11: Visualization of the velodyne frame.

36

3.3 Processing Unit

Control of Phylax

The software for controlling Phylax is implemented in the ROS package
phylax_control. The main launch files in this package, teleop.launch and
control.launch, can be found in Appendix E.1 and E.2, respectively. They have
two di↵erent areas of responsibility, where the first one abstracts the joystick or key-
board control and the other one implements a di↵erential drive with a Proportinal-
Integral-Derivative (PID) controller. The teleop.launch reads the profile of the
joystick from the teleop_ps4.yaml, found in Appendix section E.3. The joy node
abstracts the driver of the joystick and publishes the states of the various con-
trols found on the joystick and distributes it to the ROS system. Furthermore,
the teleop twist joy node is responsible for converting the joystick messages into
twist messages which can be fed straight into the di↵erential drive node. The twist
message contains linear and angular velocity commands based on the joystick com-
mands. In addition, the interactive marker twist server node is included in the
launch file in order to allow the user to control Phylax through rviz. The teleop
launch file, visualized in Figure 3.12, is only used when manual driving is required.
For example, when gathering data.

Figure 3.12: A representation of teleop.launch

A multiplexer is further implemented in the phylax_control package for all input
controllers, which is visualized in Figure 3.13. The multiplexer node twist mux
takes in several inputs and prioritizes and selects the correct output to the mo-
tor controllers when needed in autonomous driving. This node retrieves multi-
plexer parameters from the twist_mux.yaml (see Appendix E.6) and uploads it
to the parameter server. The PID controllers are started through the node con-
troller manager. The chosen controllers, which in this case are the joint state con-
troller and the di↵erential drive controller, including their parameters are defined
in control.yaml (see Appendix E.4). In addition, the robot localization node is
initialized to provide nonlinear state estimation through sensor fusion (EKF). The
parameters for this node can be found in robot_localization.yaml, Appendix
E.5.

37

3.3 Processing Unit

Figure 3.13: A representation of control.launch

Base of Phylax

The phylax_base package contains the control of the hardware and is implemented
with two launch files for the user to choose. For a fully autonomous drive one should
use phylax.launch, while phylax_simple.launch is a more basic implementation
that does not include any controllers for the robot. These are located in Appendix
section F.1 and section F.2, respectively. This section will present the two launch
files and their area of use.

The phylax.launch includes description.launch
and control.launch which are described previously in this section (Section 3.3.1).
The former launch file publishes transformations between the various coordinate
frames found on the robot, while the latter launch file introduces a di↵erential drive
controller (PID) on the left wheels and right wheels. This becomes a closed loop sys-
tem where the motor sensors are read and compensated for accordingly. Also found
in phylax.launch are VLP16_points.launch (supplied by the lidar manufacturer)
and point2laser.launch. The latter launch file is in the phylax description pack-
age and was primarily implemented to do the conversion between 3D and 2D scans
and publish the lidar transformation (see Appendix section F.3).

Furthermore, the node phylax node is initialized with the purpose of publishing and
updating the states of the robot (see phylax_base.cpp and phylax_hardware.cpp,
found in section F.4 and section F.5 respectively). The former spawns a thread
that reads the position values from the robot joints position. The latter file defines
the joints present on the vehicle and the way that they are read and updated. Two
more ROS nodes, rosserial server and rosserial python, are introduced. These
nodes contain an implementation of a host-side rosserial connection, which is a
protocol for wrapping standard ROS serialized messages and multiplexing multiple
topics over a serial port or network socket. The rosserial server contains the imple-
mentation and handles setup, publishing and subscribing for a connected rosserial
device, where rosserial python node works as an aid for handling subscriptions. In
order to be able to send messages between boards connected through a serial inter-
face one needs to serialize and deserialize the messages. The pololu driver package
receives drive messages and converts them into a form required by the motor con-
trollers. Figure 3.14 shows the architecture of phylax.launch. It is important to
mention this launch file was not finished, due to the fact that the di↵erential drive

38

3.3 Processing Unit

controller was not debugged yet.

Figure 3.14: A representation of phylax.launch

An alternative is the simpler launch file phylax_simple.launch, which only imple-
ments di↵erential drive. Similarly to phylax.launch the two nodes rosserial server
and rosserial python are initialized and VLP16_points.launch and point2laser.launch
are launched. The simple joy node takes joy messages from the joystick, imple-
ments the di↵erential drive and produces messages suitable for the motor controller
(see Appendix section F.6).

Figure 3.15: A representation of phylax simple.launch

39

3.3 Processing Unit

Navigation of Phylax

Navigation in Phylax is implemented using the standard ROS navigation package,
hereby called phylax_navigation. A ROS implementation of GMapping with a
custom configuration is utilized, see Appendix section G.1. The launch file takes
in the already processed and transformed lidar and odometry data and estimates
a map of the surroundings, see Figure 3.16. The theory behind GMapping is
presented in Section 2.5.

Figure 3.16: A representation of gmapping.launch

40

Chapter 4

Method

This chapter establishes the methodology for developing Phylax and the SLAM
system. Section 4.1 describes di↵erent design choices and the debugging of the
software. Section 4.2 gives an introduction to the SLAM system and the experiment
where the datasets were conducted.

4.1 Phylax

This section presents di↵erent design choices and the debugging of the software.

4.1.1 Design choices

In both the hardware and software part of the Phylax platform di↵erent design
choices were made to increase the performance of the platform and avoid non-
technical problems during the process. The factors that were heaviest weighted
were price, delivery time and documentation. Choices made for both hardware
and software are discussed below.

Hardware

The ESP32, motor controllers, IMU and motors/encoders chosen for this project
are all o↵-shelf products that are not designed for rugged use. These products were
selected due to low price, fast delivery, comprehensive documentation and ready
made software examples. In addition, the ESP32 was chosen due to the fact that
the rosserial implementation on the ESP32 only supports Transmission Control
Protocol (TCP) and it was the smallest available board with an extremely fast
processor. An important part of the microcontrollers job is to publish data from
the encoders and IMU to the rest of the system. Hence, a WIFI connection is
needed. The ESP32 also worked as a power supply for the encoders. In theory
the IMU could get its power from the same battery as the rest of the motor. The
motors require significant and rapid changes of current from the battery. This
would have created a lot of noise and spikes in the encoder counting and would

41

4.1 Phylax

have resulted in significant errors.

On the other side of the price scale is the VLP16 lidar and the Xavier. These
are two very sophisticated components. Using the VLP16 lidar ensured a proper
quality on the dataset. With correct use this lidar can gather a trustful and robust
dataset. The Xavier provides large computational power that will be important
for the future development of the platform. In this project the generous amount
of computational power has not been in focus or needed, but the fact that it also
supports neural network is considered very relevant for having the opportunity to
add advanced features.

Software

The foundation of the software platform is built upon the first version of ROS. The
reason ROS was chosen as the framework for this thesis was its already existing
SLAM implementations and use-case area of real-time application. Besides the fact
that ROS is meant for robotic software, having access to informative documentation
and tutorials was considered valuable. ROS also provides numerous opensource
tools and packages for the user to include in the software. Another strong argument
for using ROS is the support for debugging. ROS topic o↵ers necessary support
for debugging the system.

4.1.2 Debugging

Debugging on the Arduino platform is mainly done by print-statements which
appear on a monitor. The most challenging part of the implementation on the
ESP32 was getting the odometry correct. Having print statements that present
the left and right encoder count was useful for debugging the commands from
the joystick and making sure the encoders behaved as expected. When driving
on a straight line the encoder counts were expected to count the same number on
both the left and right side. Figure 4.1 presents the print statements in the Arduino
monitor. In addition, the calculation of odometry was implemented on the Arduino
platform. To be able to trust the odometry calculations the path distance, seen at
line 68 in Appendix section C.2, was printed (see line 70). The path distance takes
into account the movement along the x-axis, y-axis and the orientation.

Figure 4.1: Presentation of encoder counts for debugging purposes.

The odometry topic, like all other ROS topics, can be echoed by taking advantage
of the rostopic package, explained in Section 2.7.3. By executing the command
in Listing 2.3, a list of all the available topics in the system is presented. This is
useful when testing if nodes being implemented actually publish the topics they are

42

4.1 Phylax

expected to publish. Figure 4.2 presents a list of topics published on the Phylax
platform using the phylax_simple.launch.

Figure 4.2: List of topics published.

Furthermore, running the command in Listing 2.4 will echo the data on a specific
topic. Again using odometry as an example, echoing the topic will both help
for debugging and calibration of the odometry. To confirm that the odometry
implementation and the encoders work properly so the odometry message published
to the system is correct a final calibration test needs to be conducted. The first
part of the test is putting a measuring scale on the ground next to Phylax and
driving the vehicle a certain distance on the scale, see Figure 4.3.

43

4.1 Phylax

Figure 4.3: Calibration test of odometry.

If the traveled distance align with the output on the odometry topic the test is
successful and the odometry can be concluded to be correct. Figure 4.4 shows the
final odometry message when the vehicle was located 2 meters in front of and 0.09
meter to the left of the original start point.

Figure 4.4: Screenshot of the message from the odometry topic.

The joystick commands and the vehicle’s behavior are expected to be in analogy.
The method used for debugging this part is comparing the physical behavior with
the joystick input. In Appendix E.3 each button on the joystick was given a variable
name based on the what happened when the particular button was pressed. The
same method was used when confirming that the data in the messages sent to
the motor controller driver were correct. Comparing line 52 and 53 in Appendix
section F.6, line 52 includes a negative sign in the equation. By systematically
tracking the response of Phylax while giving certain commands from the joystick
this bug was discovered. By not having a negative sign the vehicle would drive in
circle. This is because from the motors perspective they were going in the same
direction but when operating on opposite sides this was not the actual result.

44

4.2 The Experiment

4.2 The Experiment

This section describes the SLAM system and the conducted experiment, which is
purely the work of the author.

4.2.1 System Architecture of the Phylax SLAM System

The Phylax SLAM system is designed to be used in conjunction with the lidar and
encoders of Phylax. The system generates a 2D map of the surrounding scenery.
The architecture of the system is presented in Figure 4.5 comprising of: the li-
dar and the encoders, Phylax that includes the Xavier and ESP32 that process
and publish data, an external laptop where the topics are logged and played and
GMapping node that generates a 2D obstacle map as an outcome. Note that the
system only utilizes odometry and lidar, while IMU is not needed for this exper-
iment. The laptop used for the experiment runs on Ubuntu 18.04. The software
and hardware used in this system are explained in Chapter 3.

Figure 4.5: System architecture.

4.2.2 Obstacle Course Experiment

The obstacle course experiment was conducted in order to test the capabilities of the
Phylax SLAM system in estimating a map to be used for autonomous navigation in
terrain. The testing was performed on two di↵erent courses: one clean room inside

45

4.2 The Experiment

with nothing but walls and a self-made obstacle course in the same room. The
lighting conditions were daylight and no direct sunlight pointing directly at Phylax
or the lidar. The test data was collected in ROS bags on the external laptop, while
the runs of the Phylax SLAM system were conducted playing back the rosbags.
The setup for the two environments are further explained in the next section.

4.2.3 Environmental Setup

The dataset from the clean room represented the ground truth for the estimated
map and were used for tuning the algorithm, while the second dataset from the
obstacle course were used as the test for GMapping’s capabilities. The two next
sections will present the surroundings Phylax operated in.

Clean Room

The ground truth dataset was conducted in a square room with a smooth and
straight ground. The source of light was a window that provided su�cient daylight.
Figure 4.6 shows the outlook of the room with corresponding dimensions. It is
worth noticing that the bottom long wall was made out of sheets which did not
act as a straight and smooth wall, like the other three walls. The simplicity of the
environment was chosen due to the fact that GMapping works well in that kind of
environment so the ground truth would be trustworthy. Also, tuning the algorithm
on a known working dataset is a big advantage.

Figure 4.6: Overview of the clean room.

46

4.2 The Experiment

Obstacle Course Room

Before the main dataset could be collected an obstacle course in the same room
needed to be designed. To represent di↵erent shapes that may occur in the terrain
a box, plants, a candlestick and an incline was placed inside the room. The obstacle
course is represented in Figure 4.7, the sizes of the obstacles are listed in Table 4.1
and actual figures of the course are found in Figure 4.8.

Figure 4.7: Overview of the obstacle course.

The idea behind the course is to include arbitrary shapes and sizes to detect how
GMapping responds to a more complex environment. Since GMapping generates
a 2D map it was of interest to investigate how GMapping would handle some sort
of slope or incline. Therefore, a slope was included in the course with an incline of
65�.

Obstacle Size [m] (what is measured)
Big plant 0.5 (diameter)
Candlestick 0.01 (diameter)
Cube 0.27 x 0.27 x 0.27 (height x width x length)
Ceramic tree 0.2 (diameter)
Cylinder 0.2 (diameter)
Small plants 0.2 (diameter)
Incline 1.15 x 0.5 (width x length)

Table 4.1: Measurements of obstacles.

47

4.2 The Experiment

Figure 4.8: Actual obstacle course.

Trajectories

There were two guidelines that dictated where the trajectory of the vehicle should
be. First of all, making sure every part of the course was scanned was the num-
ber one priority. Including loop closures, or making sure the vehicle returns to a
previously visited location, was important due to testing GMappings capabilities
when scanning surroundings twice. For each of the courses the vehicle drove about
1 meter before stopping for 2 seconds to make sure the environment was prop-
erly scanned. Below are the trajectories in their corresponding surroundings, see
Figure 4.9.

(a) Clean room. (b) Obstacle course.

Figure 4.9: Trajectories for the two datasets taken starting in the upper right corner of

the trajectory.

48

4.2 The Experiment

4.2.4 Collecting the Datasets

The next step is gathering the datasets for the SLAM system to use for generat-
ing maps. To begin with, the joystick needs to be wired to the external laptop,
while Phylax and the router need to be powered up. It is important to make sure
every device is connected to the same network: Lone Wolf Local. As mentioned,
there are two phylax_base launch files that are for the user to choose. In this
experiment the phylax_simple.launch is used. The biggest argument for this is
that phylax.launch is unfinished and the extra performance is not needed in this
experiment.

Since all the devices are on the same local network Phylax can be accessed through
the external laptop using Secure Shell (SSH) using the following command

1 $ ssh joseppi@arthur

where joseppi is the username used on the Xavier and arthur is the Internet
Protocol (IP) hostname used for simplicity instead of the actual IP address. All
the software on Phylax and the laptop are located in a catkin workspace which
is used for building and modifying catkin packages, also known as ROS packages
in this project. Therefore, every time a bash terminal is opened, either on the
external laptop or Xavier, the catkin workspace should be entered and made sure
it is overlayed with the setup script. Given that the software is built, this is done
by executing the two following commands

1 $ cd catkin_workspace

and

1 $ source devel/setup.bash

The next step is launching the phylax_simple.launch file on Phylax. This hap-
pens in the terminal that has access to Phylax by running

1 $ roslaunch phylax_base phylax_simple.launch

In the .bashrc file, which is a file that gets executed every time a bash terminal is
opened where variables and scripts the user want executed is put, Phylax is defined
as the ROS master. So when phylax_simple.launch is launched, the Xavier also
initializes and becomes the ROS master for the entire system. Furthermore, on the
external laptop the launch file for controlling Phylax is executed.

1 $ roslaunch phylax_control teleop.launch

On the external laptop navigate to the directory where the rosbags should be saved
and execute the command

1 $ rosbag record -a

Now, Phylax is ready to collect data. After the necessary data is collected the
processes are terminated and Phylax is powered o↵. In this project the rosbags are

49

4.2 The Experiment

played back and mapped afterwards to easily tune GMapping, but the mapping
could also be happening simultaneously when scanning the environment. To play
back the bags and estimate the map the three following commands are needed.
First, since the ROS master on Phylax is terminated the .bashrc file needs to be
updated so the external laptop works as the master. Then the GMapping node is
launched which also starts the laptop as the ROS master by running

1 $ roslaunch phylax_navigation gmapping.launch

Second,

1 $ rosbag play <your bag >

plays back the rosbags and publishes the topics, so the GMapping node can estimate
the map. When the bag is done playing and the map is estimated

1 $ rosrun map_server map_saver -f <name of map >

saves the map in a .png file. This process can be repeated as the algorithm gets
tuned by the user. The rosbags contains all the topics in the system but GMapping
only uses odometry, transformations and lidar data to generate the map. The
theory behind the estimation is explained in detail in Section 2.3 through 2.5.

Tuning of GMapping

In Appendix B all the parameters available for tuning along with their representa-
tive default values are found. The first map will be generated based on the default
values before the two parameters: particles and resamplingThreshold will be
tuned for optimized performance. After optimizing those two parameters the rest
of the parameters are tuned based on systematic trying and failing. For every map
generated the parameter values are registered and a comment on the quality of
the map is written down. Some experimental tuning will also be conducted on the
obstacle course dataset.

50

Chapter 5

Results

This chapter presents the estimated maps from the two datasets. Section 5.1
and Section 5.2 presents the maps from the clean room and the obstacle course,
respectively. The default parameters are defined in Appendix B, while the tuned
parameters are defined in Table 5.1.

Parameter Value
Value
map_update_interval 0.5
resampleThreshold 0.1
lsigma 0.0075
linearUpdate 0.1
srr 0.01
srt 0.02
str 0.01
stt 0.02
delta 0.04

Table 5.1: Tuned parameters and their value.

5.1 Clean Room

This section presents the maps from the clean room. All the maps are estimated
on the same dataset.

5.1.1 Default Parameters

In Figure 5.1, the map generated from the first trial test is shown. One can see
how the default parameters yield relatively good results although clearly with some
possibilities for increasing the resolution which is set to 0.05[m] per grid cell. The
uneven features on the right hand side show how the curtain, which in fact does
represent an uneven wall, is captured by the mapping algorithm.

51

5.1 Clean Room

Figure 5.1: Resulting map with default parameters for GMapping (30 particles).

5.1.2 Tuned Parameters

Di↵erence in Number of Particles

Figure 5.2a and 5.2b shows the maps generated where the number of particles are
set to 10 and 100, respectively. One can see that the number of particles yield no
significant impact on the map. However, the CPU load increases more than 100%.

(a) Clean room with 10 particles in the filter. (b) Clean room with 100 particles in the filter.

Figure 5.2: Resulting map showing the di↵erence in number of particles used in the

particle filter in GMapping. All other parameters are set to default value.

52

5.2 Obstacle Course

Number of Particles CPU load (%)
10 15
100 36

Table 5.2: CPU load for GMapping with di↵erent numbers of particles.

Optimized Tuning of Parameters

In Figure 5.3 the estimated map with tuned parameters is presented. The number
of particles parameter was set to default value (30 particles), where the parameters
that were tuned are shown in Table 5.1. One can see that the parameter for
resolution (delta) is decreased to 0.04[m] per grid cell which a↵ect the resulting
map positively. All relevant information are correct and accurate rendered.

Figure 5.3: Resulting map with parameters tuned.

5.2 Obstacle Course

This section presents the maps from the obstacle course. All the maps are estimated
on the same dataset.

5.2.1 Default Parameters

As shown in Figure 5.4, the default parameters yield a relatively inadequate result.
The walls on the left- and right hand side are duplicated. The curtain is still
captured in the bottom wall but the wall is more arbitrary compared to the maps

53

5.2 Obstacle Course

from the clean room. Also, relevant information is missing. The box, candlestick
and the small plants are almost or completely left out of the map.

Figure 5.4: Resulting map with default parameters for GMapping.

5.2.2 Tuned Parameters

Low Number of Particles

In Figure 5.5, the resulting tuned map with only 10 particles is presented. One can
see that the wall on the right hand side with the incline is presented in a better,
but inadequate way. The wall on the left hand side is still duplicated and the same
information is left out and poorly reconstructed.

Figure 5.5: Obstacle course with 10 particles where the remaining parameters are tuned

according to Table 5.1.

High Number of Particles

In Figure 5.6, the estimated map from the obstacle course with a high number of
particles is presented. The parameter was tuned to 100 particles to include more
information in the estimation process. One can see that the wall on the left hand
side has improved significantly from Figure 5.5, while the wall on the right hand
side remain inadequate for autonomous navigation. There are less information
about obstacles included in the map with 100 particles.

54

5.2 Obstacle Course

Figure 5.6: Obstacle course with 100 particles where the remaining parameters are

tuned according to Table 5.1.

Optimized Tuning of Parameters

Figure 5.7 shows the final estimated map from the obstacle course with the tuned
parameters. The parameters are tuned in the way so the map is updated and
the scans are processed frequently to contain and collect all information from the
dataset. The resampling is done relatively rare compared to when using the default
parameter. As one can see, the walls and corners are both straight and correctly
represented. The wall on the left hand side is no longer duplicated. The right hand
side wall is still duplicated, but this might be the algorithms way of representing 3D
features (the slope). The bottom wall is also more proper represented. However,
most of the features are left out of the map. Only the big plant and ceramic tree
are included.

Figure 5.7: Resulting map with parameters tuned.

55

Chapter 6

Discussion

6.1 Phylax

This section discusses the design and building process of Phylax. In addition, the
e↵ect of the di↵erent parameters in GMapping will be discussed.

Hardware

As mentioned in Chapter 4, the design choices were based on performance, deliv-
ery time and cost. Throughout the project hardware like the encoders, ESP32 and
cables all broke at least one time each because it got burnt or took a hit. It would
have been a big risk if delivery time was not investigated before choosing o↵-shelf
hardware, but due to fast delivery the broken hardware did not slow down the
project.

In this thesis the processing unit on Phylax only ran a few ROS nodes. The map-
ping was done on the external laptop so the need for the Xavier for this project
was close to zero. This is because the ROS software that the Xavier ran could
have been executed directly on the ESP32 and distributed to the ROS system
through its WIFI connection. Since phylax_simple.launch was preferred over
phylax.launch the di↵erent controllers were not in use. Controlling the vehicle
using the joystick was therefore harder because it was super responsive and the
velocity acted discrete; almost full speed or no speed. Carrying the weight from
the Xavier and lidar made the vehicle unbalanced when there were several starts
and stops collecting data. Hence, removing the Xavier and running the software
from the ESP32 in this project would have created more balance in the driving
performance and ensure that the lidar operated in a more steady environment.
When all of this is said, the Nvidia Xavier was chosen due to its high performance
level and its compatibility to new and powerful technology, like neural networks,
and creates robustness and potential for the Phylax platform to achieve a higher
score on the level of autonomy scale.

56

6.1 Phylax

The two middle motors were replaced with two new ones with encoders for reg-
istering odometry. When debugging the odometry it was registered that the two
motors operated with a slightly di↵erent speed when given the same command
from the joystick. This was discovered when the vehicle took a slight turn when
it was set to go on a straight line. This is most likely due to di↵erent friction in
the two motors. The cumulative distance in x-direction was always correct, while
the cumulative distance in the y-direction was less reliable. The majority of the
times the y-value was correct, but once in a while it contained small errors. Also,
there is an uncertainty in the accuracy of the transformation, due to the fact that
distances for translations might include small errors. These errors might propagate
to the estimation of the map.

The use of WIFI to connect the di↵erent parts of the Phylax platform sets a range
limit on the system. The joystick is wired to the external laptop and the joystick
commands travel over the WIFI to the vehicle, so the range of the system equals
the range of the network. For this project the range has not been of any trouble
but for future use, if the user wants to take datasets outside and in real terrain
this might cause some problems. A quick solution to this is to wire the joystick
straight into the Xavier, as the Xavier does not supports bluetooth. However, this
solution is only compatible in a limited academic environment, so an alternative
solution to increase range and secure communication should be investigated.

Software

Designing the software platform using ROS turned out to be convenient. The
numerous documentation, tutorials and examples were of great help for both de-
signing and debugging the system. An example for debugging was the use of the
rostopic package where topics could be listed and echoed. Also, tools for handling
the description and transformations of the robot simplified the implementation and
made it more robust. Line 4 in Appendix F.3 is an example of how short and com-
pact a static transformation can be implemented.

In this project, version one of ROS is used even though ROS2 has been launched.
The reason for choosing the first version of ROS was, as described in Section 4.1.1,
the good access to documentation and examples that ROS2 could not provide on
the same level. Apart from this, ROS2 o↵ers features and modifications that might
have increased the performance of Phylax. ROS2 is, di↵erent from ROS, a decen-
tralized system where the ROS master is no longer needed. Each node has the
ability to discover each other and distribute information to the system them self.
In other words, the system becomes fully distributed which is more convenient. In
addition, the first version of ROS can not guarantee real-time performance which
ROS2 would have been able to do.

57

6.2 The Experiment

6.2 The Experiment

In this section utilizing GMapping as the SLAM method in the SLAM system will
be discussed.

6.2.1 Initial Remarks

Before addressing the experiment results, the problems with one of the long walls
in all of the resulting maps needs to be mentioned. As pointed out in Section 4.2.2,
one wall is made out of sheets that represents a rough surface. Hence, the resulting
maps only have three out of four straight walls. It is important to emphasize that
this is not an algorithm problem but a direct e↵ect of the surrounding scenery.
The algorithm performed loop closure on both of the datasets which gives a good
indication that the pose estimation is reliable.

6.2.2 GMapping

The estimated maps from the clean room, or benchmark dataset, shows good and
reliable maps for autonomous navigation. All the di↵erent maps are generated on
the same dataset with di↵erent algorithm parameters. Analyzing Figure 5.2a and
5.2b shows the di↵erences in using a low and high number of particles for this
scenery. The di↵erence is negligible which implies that the scan matching tech-
nique in the GMapping algorithm for that scenery is properly reducing the number
of particles required for maintaining an accurate map. With a lower number of
particles, less information is processed in the algorithm, and hence less computa-
tional power is needed (see Table 5.2). This is an important factor to consider
in autonomous navigation since the map of the surrounding scenery is needed in
real-time.

The geometry of the environment is extremely simple so the need of particles
would most likely be higher in a more complex world. However, Figure 5.5 and 5.6
shows a change in the estimated map when increasing the number of particles. The
geometry of the room became more accurate by increasing the number of particles,
with an exception of the right hand side. Normally, an increase in the number of
particles would include more information in the mapping process, and hence esti-
mate features more accurate. There might be several reasons this is not the case
in this project, but the discussed error in odometry and the rapid response of the
robot while collecting data may impact the resulting map. Comparing Figure 5.5
and 5.7 from the obstacle course presents a decrease in accuracy with a lower num-
ber of particles. The algorithm had, most likely, too few particles in the filter for
reduction by scan matching.

Furthermore, the resampling threshold is tightly linked to the number of particles.
If resampling is performed frequently with a small number of particles, particle de-
pletion will occur. This results in highly erroneous maps where walls and corners
tend to duplicate. Analyzing Figure 5.4 and 5.7, shows a duplicated short wall on

58

6.2 The Experiment

the left side. In addition, the short wall on the right side tends to be duplicated but
the slope is also a factor for this error and will be discussed later. In Figure 5.4 the
resampling threshold is 0.5 compared to 0.1 in Figure 5.7, with the same number
of particles. It is likely to assume that the resampling happened too frequently
in the prior case, so the particles available were not su�cient to represent all the
di↵erent robot poses.

As Phylax moves around in the environment new scans are processed. Linear up-
date decides how far Phylax translates before a new scan is processed. Decreasing
the linear update parameter, a larger amount of information from the environ-
ment is processed by the algorithm, but the downside is an increase of CPU load.
Figure 5.7 with linear update at 0.1 shows a better result estimating the relevant
features compared to Figure 5.4 with linear update at 1. The features that are es-
timated in the maps are more accurate presented with a low value for linear update.

The process of running back the rosbags and mapping simultaneously was con-
venient. The rosbag played its content and published the data on di↵erent topics,
while the GMapping node subscribed the topics needed for mapping. If the rosbag
contained data from a 180 second long experiment, it took 180 second to play back
the bag and map it. This shows a close to real-time property of GMapping which is
important for a military UGV. In this project the collection of data and mapping
happened in two steps, but the mapping could have been conducted in parallel
with the data acquisition due to its fast computational time.

6.2.3 Closing Remarks

The implementation of GMapping in this thesis is built on the existing ROS pack-
age. The performance of the ROS package has been shown in several studies, and
the correctness of the implementation in this work is verified through the ability to
estimate the clean room correctly. Based on this it was expected that the results
for the obstacle course should be more satisfactory. However, there are elements
in the conduction of the experiment that should be considered being altered to
improve the results. First, a possible user error when driving Phylax may have oc-
curred by driving inconsistently, causing rapid changes for the lidar when acquiring
data. Second, the lidar contains several parameters that may be tuned for better
performance. A structured approach should be applied to see which e↵ect each of
these parameters may have on the estimation of the environment.

It is fair to say that GMapping would have contributed to a low score on the
LOA scale for navigating in terrain. The quality of the final map contains too little
information about the environment. All of the features, except the big plant, are
almost or completely left out. GMapping has di�culties deciding whether the slope
on the right side in Figure 5.7 is accessible or not, which results in a duplication
of the wall. Since the output of GMapping is a 2D map, a possible solution could
be to supplement the SLAM system with an object detection method for detecting
slopes, but this will be di�cult due to the large uncertainty in how GMapping

59

6.2 The Experiment

responds to slopes. In addition, the parameters discussed are tuned in a way that
increases the CPU load, with an exception of the number of particles that remained
with the default value. With a bigger and more complex dataset a more selective
approach to the CPU load might be needed, which may a↵ect the results negatively.

60

Chapter 7

Conclusion

In this thesis, the UGV platform Phylax has been designed and built. Phylax is
capable of conducting datasets through its three sensors: IMU, encoders and lidar.
In addition, a GMapping based SLAM system utilizing the datasets has been de-
veloped to map the surrounding environment of the UGV. Phylax can operate in
fully autonomous mode with di↵erential drive controllers and a multiplexer. The
di↵erential drive controller had a bug so the simpler version was used in this thesis.
The platform consists of the vehicle, a local network, an external laptop and a joy-
stick. The joystick sends commands through the network to Phylax, which exploits
the environment and perceives through sensors. The sensor data are recorded on
the external laptop. When the data acquisition is completed the SLAM system
estimates a map of the environment based on the recorded dataset.

The performance of the SLAM system was tested indoor in two environments:
clean room and obstacle course. The dataset from the clean room was used for
tuning the algorithm and worked as a ground truth for GMapping. The obstacle
course was designed to include terrain features. The results from the benchmark
dataset verifies that GMapping is properly implemented and tuned. The estimated
maps are adequate and usable for autonomous navigation, in that scenery. The
results from the obstacle course, however, raises a concern for the use of GMapping
as a SLAM method for autonomous navigation in terrain. The algorithm struggles
to map several objects, and does not decide whether the slope is accessible or not in
the resulting occupancy grid map. Even though the algorithm was tried tuned for
the specific dataset, the resulting map did not provide all information needed for
autonomous navigation in the given scenery. Also, the tuning resulted in param-
eters e↵ecting the CPU load negatively. However, there are possible errors from
the odometry and transformations that may propagate into the estimation of the
maps. Also, the user error and the uncertainty if the parameters for the lidar was
properly tuned are elements that could have had an impact on the final result.

To conclude this Master’s thesis, the UGV platform is successfully designed and
built with the ability to acquire datasets based on the sensors: IMU, encoders and

61

7.1 Further Work

lidar. The SLAM system was also properly developed, but GMapping estimated 2D
maps of poor quality from the obstacle course. The GMapping method would have
contributed to a low score on the LOA scale in the given scenery and undoubtedly
in terrain. Although several potential improvements to the experiment have been
identified, the results indicate that GMapping can be rejected as a SLAM method
for autonomous navigation in terrain for a UGV.

7.1 Further Work

The following is the proposed further work for improving the Phylax platform and
the SLAM system:

First, the possible odometry and transformation o↵sets should be corrected to ex-
clude the induced insecurity. This would lead to a more robust and correct dataset
for GMapping to estimate on. Second, the di↵erential drive controller should be
debugged so Phylax can operate in full autonomous mode. This would be an addi-
tional way of testing the SLAM system to see if Phylax can autonomously navigate
based on the estimated map. Final, and perhaps the most important, investigate
alternative SLAM methods. The Google Cartographer SLAM method that esti-
mates both 2D and 3D maps could be a promising method. Google Cartographer
has shown promising results in indoor environments, and the fact that it estimates
3D maps and is an opensource implementation makes the algorithm interesting.

62

Bibliography

Abdelrasoul, Y., Saman, A.B.S.H., Sebastian, P., 2016. A quantitative study of tun-
ing ROS gmapping parameters and their e↵ect on performing indoor 2D SLAM,
in: 2016 2nd IEEE International Symposium on Robotics and Manufacturing Au-
tomation (ROMA), Ipoh, Malaysia. pp. 1–6. doi:10.1109/ROMA.2016.7847825.

Bae, K.H., Lichti, D.D., 2007. On-Site Self-Calibration Using Planar Features For
Terrestrial Laser Scanners, in: ISPRS Workshop on Laser Scanning 2007 and
SilviLaser 2007, Espoo, Finland. pp. 14–19. URL: https://foto.aalto.fi/
ls2007/final_papers/Bae_2007.pdf.

Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E., 2006. Consistency of
the EKF-SLAM Algorithm, in: 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China. pp. 3562–3568. doi:10.1109/
IROS.2006.281644.

Balasuriya, B., Chathuranga, B., Jayasundara, B., Napagoda, N., Kumarawadu,
S., Chandima, D., Jayasekara, A., 2016. Outdoor robot navigation using Gmap-
ping based SLAM algorithm, in: 2016 Moratuwa Engineering Research Con-
ference (MERCon), Moratuwa, Sri Lanka. pp. 403–408. doi:10.1109/MERCon.
2016.7480175.

Bergel, H.B.N., 2020. Simultaneous Localization and Mapping applied on UGV.
Technical Report. Norwegian University of Science and Technology.

Bijelic, M., Gruber, T., Ritter, W., 2018. A Benchmark for Lidar Sensors in Fog: Is
Detection Breaking Down?, in: 2018 IEEE Intelligent Vehicles Symposium (IV),
Changsu, China. pp. 760–767. doi:10.1109/IVS.2018.8500543.

Brand, C., Schuster, M.J., Hirschmüller, H., Suppa, M., 2014. Stereo-vision based
obstacle mapping for indoor/outdoor SLAM, in: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, USA. pp. 1846–1853.
doi:10.1109/IROS.2014.6942805.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,
Leonard, J.J., 2016. Past, Present, and Future of Simultaneous Localization and
Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics
32, 1309–1332. doi:10.1109/TRO.2016.2624754.

63

http://dx.doi.org/10.1109/ROMA.2016.7847825
https://foto.aalto.fi/ls2007/final_papers/Bae_2007.pdf
https://foto.aalto.fi/ls2007/final_papers/Bae_2007.pdf
http://dx.doi.org/10.1109/IROS.2006.281644
http://dx.doi.org/10.1109/IROS.2006.281644
http://dx.doi.org/10.1109/MERCon.2016.7480175
http://dx.doi.org/10.1109/MERCon.2016.7480175
http://dx.doi.org/10.1109/IVS.2018.8500543
http://dx.doi.org/10.1109/IROS.2014.6942805
http://dx.doi.org/10.1109/TRO.2016.2624754

Doucet, A., 1998. On sequential simulation-based methods for bayesian filtering.
Technical Report. University of Cambridge.

Duchoň, F., Haž́ık, J., Rodina, J., Tölgyessy, M., Dekan, M., Sojka, A., 2019.
Verification of SLAM Methods Implemented in ROS 6, 10579–10584. URL:
http://www.jmest.org/wp-content/uploads/JMESTN42353033.pdf.

Euler, L., 1776. Novi Commentarii Academiae Scientairum Imperialis Petropolitan.
volume XX.

Forsvarets-forskningsinstitutt, . Autonom minerydding. URL: https://www.ffi.
no/forskning/prosjekter/autonom-minerydding.

Fossen, T.I., 2020. Handbook of Marine Craft Hydrodynamics And Motion Control.
2 ed., John Wiley & Sons Ltd., Chichester.

Girard, R., Mavromatis, S., Sequeira, J., Belanger, N., Anoufa, G., 2019. A
Vision-Based Assistance Key Di↵erenciator for Helicopters Automonous Scal-
able Missions, in: Althoefer, K., Konstantinova, J., Zhang, K. (Eds.), Towards
Autonomous Robotic Systems, Springer International Publishing, Cham. pp.
202–210. doi:10.1007/978-3-030-25332-5_18.

Glennie, C., Lichti, D.D., 2010. Static Calibration and Analysis of the Velodyne
HDL-64E S2 for High Accuracy Mobile Scanning. Remote Sensing 2, 1610–1624.
doi:10.3390/rs2061610. number: 6 Publisher: Molecular Diversity Preservation
International.

Glennie, C.L., Kusari, A., Facchin, A., 2016. Calibration And Stability Analy-
sis Of The VLP-16 Laser Scanner, in: ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, Lausanne,
Switzerland. pp. 55–60. doi:10.5194/isprs-archives-XL-3-W4-55-2016.

Grisetti, G., Stachniss, C., Burgard, W., 2005. Improving Grid-based SLAM with
Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resam-
pling, in: Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, Barcelona, Spain. pp. 2432–2437. doi:10.1109/ROBOT.2005.
1570477.

Grisetti, G., Stachniss, C., Burgard, W., 2007a. Improved Techniques for
Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on
Robotics 23, 34–46. doi:10.1109/TRO.2006.889486.

Grisetti, G., Tipaldi, G.D., Stachniss, C., Burgard, W., Nardi, D., 2007b. Fast
and accurate SLAM with Rao–Blackwellized particle filters. Robotics and Au-
tonomous Systems 55, 30–38. doi:10.1016/j.robot.2006.06.007.

Hasirlioglu, S., Kamann, A., Doric, I., Brandmeier, T., 2016. Test methodology for
rain influence on automotive surround sensors, in: 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil.
pp. 2242–2247. doi:10.1109/ITSC.2016.7795918.

64

http://www.jmest.org/wp-content/uploads/JMESTN42353033.pdf
https://www.ffi.no/forskning/prosjekter/autonom-minerydding
https://www.ffi.no/forskning/prosjekter/autonom-minerydding
http://dx.doi.org/10.1007/978-3-030-25332-5_18
http://dx.doi.org/10.3390/rs2061610
http://dx.doi.org/10.5194/isprs-archives-XL-3-W4-55-2016
http://dx.doi.org/10.1109/ROBOT.2005.1570477
http://dx.doi.org/10.1109/ROBOT.2005.1570477
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1016/j.robot.2006.06.007
http://dx.doi.org/10.1109/ITSC.2016.7795918

Ho, K.L., Newman, P., 2006. Loop closure detection in SLAM by combining visual
and spatial appearance. Robotics and Autonomous Systems 54, 740–749. doi:10.
1016/j.robot.2006.04.016.

Huang, H.M., 2007. Autonomy levels for unmanned systems (ALFUS) framework:
safety and application issues, in: PerMIS ’07: Proceedings of the 2007 Workshop
on Performance Metrics for Intelligent Systems, Washington D.C., USA. pp.
48–53. doi:10.1145/1660877.1660883.

Jo, K., Kim, J., Kim, D., Jang, C., Sunwoo, M., 2014. Development of Autonomous
Car—Part I: Distributed System Architecture and Development Process. IEEE
Transactions on Industrial Electronics 61, 7131–7140. doi:10.1109/TIE.2014.
2321342.

Koutsojannis, C., Sirmakessis, S., 2009. Tools and Applications with Artificial
Intelligence. Springer Science & Business Media, Berlin.

Lin, P., Bekey, G., Abney, K., 2008. Autonomous Military Robotics: Risk, Ethics,
and Design. Technical Report. US Department of Navy, O�ce of Naval Research.
URL: https://apps.dtic.mil/sti/pdfs/ADA534697.pdf.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., 2002. FastSLAM: A Factored
Solution to the Simultaneous Localization and Mapping Problem, in: AAAI-02,
Edmonton, Canada. pp. 593–598. URL: https://www.aaai.org/Papers/AAAI/
2002/AAAI02-089.pdf.

Parasuraman, R., 2000. Designing automation for human use: empirical studies and
quantitative models. Ergonomics 43, 931–951. doi:10.1080/001401300409125.

ROS, 2019. gmapping - ROS Wiki. URL: http://wiki.ros.org/gmapping.

Shi, W., Alawieh, M.B., Li, X., Yu, H., 2017. Algorithm and hardware implemen-
tation for visual perception system in autonomous vehicle: A survey. Integration
59, 148–156. doi:10.1016/j.vlsi.2017.07.007.

Skaloud, J., Lichti, D., 2006. Rigorous approach to bore-sight self-calibration in
airborne laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing
61, 47–59. doi:10.1016/j.isprsjprs.2006.07.003.

Smith, R.C., Cheeseman, P., 1986. On the Representation and Estimation of
Spatial Uncertainty. The International Journal of Robotics Research 5, 56–68.
doi:10.1177/027836498600500404.

Stachniss, C., Grisetti, G., Burgard, W., Roy, N., 2007. Analyzing gaussian pro-
posal distributions for mapping with rao-blackwellized particle filters, in: 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Diego, USA. pp. 3485–3490. doi:10.1109/IROS.2007.4399005.

65

http://dx.doi.org/10.1016/j.robot.2006.04.016
http://dx.doi.org/10.1016/j.robot.2006.04.016
http://dx.doi.org/10.1145/1660877.1660883
http://dx.doi.org/10.1109/TIE.2014.2321342
http://dx.doi.org/10.1109/TIE.2014.2321342
https://apps.dtic.mil/sti/pdfs/ADA534697.pdf
https://www.aaai.org/Papers/AAAI/2002/AAAI02-089.pdf
https://www.aaai.org/Papers/AAAI/2002/AAAI02-089.pdf
http://dx.doi.org/10.1080/001401300409125
http://wiki.ros.org/gmapping
http://dx.doi.org/10.1016/j.vlsi.2017.07.007
http://dx.doi.org/10.1016/j.isprsjprs.2006.07.003
http://dx.doi.org/10.1177/027836498600500404
http://dx.doi.org/10.1109/IROS.2007.4399005

Stachniss, C., Leonard, J.J., Thrun, S., 2016. Simultaneous Localization and
Mapping, in: Siciliano, B., Khatib, O. (Eds.), Springer Handbook of Robotics.
Springer International Publishing, Cham, Switzerland. Springer Handbooks, pp.
1153–1175. URL: https://doi.org/10.1007/978-3-319-32552-1_46.

Thrun, S., Bücken, A., 1996. Integrating Grid-Based and Topological Maps
for Mobile Robot Navigation, in: Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence AAAI, Portland, USA. URL:
https://roboticsclub.org/redmine/projects/colony/repository/

revisions/1945/raw/branches/scout/SLAM/Integrating%20Grid%20Based%

20Approach.pdf.

Vagia, M., Transeth, A.A., Fjerdingen, S.A., 2016. A literature review on the
levels of automation during the years. What are the di↵erent taxonomies that
have been proposed? Applied Ergonomics 53, 190–202. doi:10.1016/j.apergo.
2015.09.013.

VelodyneLidar, . What is Lidar? URL: https://velodynelidar.com/

what-is-lidar/.

Wang, P., Chen, Z., Zhang, Q., Sun, J., 2016. A loop closure improvement method
of Gmapping for low cost and resolution laser scanner. IFAC-PapersOnLine 49,
168–173. doi:10.1016/j.ifacol.2016.07.569.

Weerasinghe, K.K.D.K.U., Silva, L.C.J., Basnayake, B.M.S.S., Sandanayaka,
S.D.M., Kumarawadu, S.P., Chandima, D.P., Jayasekara, A.G.B.P., 2016. Map-
ping and path planning for long distance autonomous navigation using multisen-
sory data, in: 2016 Electrical Engineering Conference (EECon), Colombo, Sri
Lanka. pp. 1–6. doi:10.1109/EECon.2016.7830926.

66

https://doi.org/10.1007/978-3-319-32552-1_46
https://roboticsclub.org/redmine/projects/colony/repository/revisions/1945/raw/branches/scout/SLAM/Integrating%20Grid%20Based%20Approach.pdf
https://roboticsclub.org/redmine/projects/colony/repository/revisions/1945/raw/branches/scout/SLAM/Integrating%20Grid%20Based%20Approach.pdf
https://roboticsclub.org/redmine/projects/colony/repository/revisions/1945/raw/branches/scout/SLAM/Integrating%20Grid%20Based%20Approach.pdf
http://dx.doi.org/10.1016/j.apergo.2015.09.013
http://dx.doi.org/10.1016/j.apergo.2015.09.013
https://velodynelidar.com/what-is-lidar/
https://velodynelidar.com/what-is-lidar/
http://dx.doi.org/10.1016/j.ifacol.2016.07.569
http://dx.doi.org/10.1109/EECon.2016.7830926

Appendices

67

Appendix A

3D Design

(a) Design of the 3D printed
motor hot.

(b) Design of the 3D printed
Xavier mounting.

68

69

Appendix B

Default Parameter Values

for GMapping

Figure B.1: Default values for the parameters used in GMapping ROS (2019).

70

Appendix C

ESP32 Software

C.1 encoder.cpp

1 #include "encoder.h"
2

3 // Set encoder variables
4 PololuEncoder :: PololuEncoder(int gearing , int cpr , float radius):
5 _gears(gearing),
6 _cpr(cpr),
7 _wheelRadius(radius),
8 _dPhiL (0),
9 _dPhiR (0),

10 _th (0),
11 _x(0),
12 _y(0),
13 _encoder1CountPrev (0),
14 _encoder2CountPrev (0),
15 _pathDistance (0)
16 {
17 _left_encoder = new ESP32Encoder ();
18 _right_encoder = new ESP32Encoder ();
19 }
20

21 void PololuEncoder ::init()
22 {
23 // Enable the weak pull up resistors
24 ESP32Encoder :: useInternalWeakPullResistors=UP;
25

26 _left_encoder ->attachFullQuad (19, 18);
27 _right_encoder ->attachFullQuad (17, 16);
28

29 //Clear encoder count
30 _left_encoder ->clearCount ();
31 _right_encoder ->clearCount ();
32

33 _enc2rev = 1.0/1632.0;
34 _enc2rad = _enc2rev * 2 * PI;
35 _enc2wheel = _enc2rad * _wheelRadius;

71

36 }
37

38 // Get count from encoders
39 void PololuEncoder :: update(uint32_t &encoder1Count , uint32_t&

encoder2Count)
40 {
41 encoder1Count = _left_encoder ->getCount ();
42 encoder2Count = _right_encoder ->getCount ();
43 }

72

C.2 odometer.cpp

1

2 #include "odometer.h"
3 #include <tf/transform_broadcaster.h>
4 #include <tf/tf.h>
5 #include <std_msgs/Int32.h>
6 #include <sensor_msgs/Imu.h>
7 #include <sensor_msgs/Temperature.h>
8 #include <nav_msgs/Odometry.h>
9 #include <geometry_msgs/TransformStamped.h>

10

11 char base_link [] = "base_link";
12 char odom[] = "odom";
13

14 nav_msgs :: Odometry odom_msg;
15 ros:: Publisher odometry_pub("/odom", &odom_msg);
16

17 geometry_msgs :: TransformStamped t;
18 tf:: TransformBroadcaster odom_broadcaster;
19

20 Odometer :: Odometer(PololuEncoder *encoder):_encoder(encoder){}
21

22 void Odometer ::init(ros:: NodeHandle &nh , float track)
23 {
24 _track = track;
25 // Initialize pololu encoder(s)
26 _encoder ->init();
27

28 // Advertise topics
29 nh.advertise(odometry_pub);
30 odom_broadcaster.init(nh);
31 }
32

33 void Odometer :: updateEncoder ()
34 {
35 uint32_t encoder1Count;
36 uint32_t encoder2Count;
37

38 _encoder ->update(encoder1Count , encoder2Count);
39

40 int32_t dEncoder1 = (encoder1Count - _encoder1CountPrev);
41 int32_t dEncoder2 = (encoder2Count - _encoder2CountPrev);
42

43 // Update the angle increment in radians
44 float dphi1 = ((float)dEncoder1 * _encoder ->_enc2rad);
45 float dphi2 = ((float)dEncoder2 * _encoder ->_enc2rad);
46

47 // For encoder index and motor position switching (Right is 1, Left
is 2)

48 _dPhiR = dphi1;
49 _dPhiL = dphi2;
50

51 _encoder1CountPrev = encoder1Count;
52 _encoder2CountPrev = encoder2Count;
53 }
54

73

55 void Odometer :: evaluateRobotPose(unsigned long diff_time)
56 {
57 float dTh = _encoder ->_wheelRadius /(_track) *(_dPhiR - _dPhiL);
58 float dist = _encoder ->_wheelRadius *(_dPhiR + _dPhiL) / 2;
59 float dx = _encoder ->_wheelRadius /2 * (cos(_th)*_dPhiR + cos(_th)*

_dPhiL);
60 float dy = _encoder ->_wheelRadius /2 * (sin(_th)*_dPhiR + sin(_th)*

_dPhiL);
61 long dt = float(diff_time)/1000;
62

63 _th+= dTh;
64 _x+=dx;
65 _y+=dy;
66 _vx = dist/dt;
67 _vTh = dTh/dt;
68 _pathDistance = _pathDistance + sqrt(dx*dx + dy*dy);
69

70 Serial.println("Math stuff = "+String ((int32_t)_pathDistance));
71 }
72

73 void Odometer :: publish_odom(ros::Time current_time)
74 {
75 odom_msg.header.stamp = current_time;
76 odom_msg.header.frame_id = odom;
77 odom_msg.child_frame_id = base_link;
78

79 odom_msg.pose.pose.position.x = _x;
80 odom_msg.pose.pose.position.y = _y;
81 odom_msg.pose.pose.position.z = 0.0;
82 odom_msg.pose.pose.orientation = tf:: createQuaternionFromYaw(_th);
83

84 odom_msg.twist.twist.linear.x = _vx;
85 odom_msg.twist.twist.linear.y = 0;
86 odom_msg.twist.twist.angular.z = _vTh;
87

88 odometry_pub.publish (& odom_msg);
89 }
90

91 void Odometer :: broadcastTf(ros::Time current_time)
92 {
93 t.header.stamp = current_time;
94 t.header.frame_id = odom;
95 t.child_frame_id = base_link;
96

97 t.transform.translation.x = _x;
98 t.transform.translation.y = _y;
99 t.transform.translation.z = 0.0;

100 t.transform.rotation = tf:: createQuaternionFromYaw(-_th);
101

102 odom_broadcaster.sendTransform(t);
103 }

74

Appendix D

phylax description

D.1 description.launch

1 <?xml version="1.0"?>
2 <launch >
3 <arg name="config" default="front_laser" />
4

5 <param name="robot_description"
6 command="$(find phylax_description)/urdf/configs /$(arg config

)
7 $(find xacro)/xacro $(find phylax_description)/urdf/

phylax.urdf.xacro
8 --inorder" />
9 <node name="robot_state_publisher" pkg="robot_state_publisher" type=

"robot_state_publisher" />
10 </launch >

75

D.2 phylax.urdf.xacro

1 <?xml version="1.0"?>
2 <robot name="phylax" xmlns:xacro="http://www.ros.org/wiki/xacro">
3

4 <!--Setting parameters for the robot model -->
5 <xacro:property name="deg_to_rad" value="0.017453"/>
6 <xacro:property name="PI" value="3.14"/>
7

8 <xacro:property name="chassis_len" value=".380"/>
9 <xacro:property name="chassis_width" value="0.165"/>

10 <xacro:property name="chassis_height" value="0.070"/>
11

12 <xacro:property name="wheel_radius" value="0.065"/>
13 <xacro:property name="wheel_width" value="0.06"/>
14 <xacro:property name="wheel_height" value="0.13"/>
15 <xacro:property name="wheel_mass" value=".480"/>
16

17 <xacro:property name="dummy_inertia" value="1e-09"/>
18

19 <xacro:macro name="cylinder_inertia" params ="m r h">
20 <inertial >
21 <mass value="${m}"/>
22 <inertia ixx="${m*(3*r*r+h*h)/12}" ixy="0.0" ixz="0.0"
23 iyy="${m*(3*r*r+h*h)/12}" iyz= "0.0"
24 izz="${m*r*r/2}"/>
25 </inertial >
26 </xacro:macro >
27

28 <!--Describe the relationship between the actuator and joint -->
29 <xacro:macro name="Transmission_block" params="joint_name">
30 <transmission name="${ joint_name}_trans">
31 <type>transmission_interface/SimpleTransmission </type>
32 <joint name="${ joint_name}">
33 <hardwareInterface >PositionJointInterface </hardwareInterface >
34 </joint >
35 <actuator name="${ joint_name}_motor">
36 <mechanicalReduction >1</mechanicalReduction >
37 </actuator >
38 </transmission >
39 </xacro:macro >
40

41 <!--Defining the different frames for the robot -->
42 <link name="base_link">
43 <visual >
44 <geometry >
45 <box size="0.42 0.290 0.000001"/>
46 </geometry >
47 <material name="saffron">
48 <color rgba="0.95 0.81 0.24 1"/>
49 </material >
50 </visual >
51 <collision >
52 <geometry >
53 <box size="0.42 0.290 0.000001"/>
54 </geometry >
55 </collision >

76

56 </link>
57

58

59 <link name="imu_link">
60 <inertial >
61 <mass value="0.001"/>
62 <origin="0 0 -0.12" rpy="0 0 0"/>
63 <inertia="ixx="${ dummy_inertia}" ixy="0.0" ixz="0.0" iyy="${

dummy_inertia}" iyz="0.0" izz="${ dummy_inertia}"/>
64 </inertial >
65 </link >
66 <joint name="imu_joint" type="fixed">
67 <parent link="base_link"/>
68 <child link="imu_link"/>
69 </joint >
70

71

72 <xacro:macro name="wheel" params="pos side xyz xyzi cy">
73 <link name="${pos}_${side}_wheel">
74 <visual >
75 <origin xyz="${xyz}" rpy="${-PI/2} 0 0"/>
76 <geometry >
77 <mesh filename="package: // phylax_description/meshes /${ side}

_wheel.stl" scale="0.001 0.001 0.001"/>
78 </geometry >
79 </visual >
80 <collision >
81 <origin xyz="0 ${cy} 0" rpy="${PI/2} 0 0"/>
82 <geometry >
83 <cylinder radius="0.06" length="0.062"/>
84 </geometry >
85 </collision >
86 <xacro:cylinder_inertia m="${ wheel_mass}" r="${ wheel_radius}" h="

${ wheel_width}"/>
87 </link >
88

89 <joint name="${pos}_${side}_wheel_joint" type="continuous">
90 <parent link="base_link"/>
91 <child link="${pos}_${side}_wheel"/>
92 <axis xyz="0 1 0"/>
93 <origin xyz="${xyzi}" rpy="0 0 0"/>
94 <limit effort= "100" velocity="100"/>
95 <dynamics damping="0.0" friction="0.0"/>
96 </joint >
97

98 <transmission name="${pos}_${side}_wheel_trans" type="
SimpleTransmission">

99 <type >transmission_interface/SimpleTransmission </type >
100 <joint name="${pos}_${side}_wheel_joint">
101 <hardwareInterface >hardware_interface/VelocityJointInterface </

hardwareInterface >
102 </joint >
103 <actuator name="{pos}_${side}_wheel_motor">
104 <hardwareInterface >hardware_interface/VelocityJointInterface </

hardwareInterface >
105 <mechanicalReduction >1</ mechanicalReduction >
106 </actuator >

77

107 </transmission >
108 </xacro:macro >
109

110 <xacro:wheel pos="front" side="left" xyz=" -0.023 -${ chassis_width
/2 -0.01} 0.068" xyzi="0.150 ${ chassis_width /2} 0" cy="0.036"/>

111 <xacro:wheel pos="front" side="right" xyz=" -0.023 -${chassis_width
-0.02} 0.068" xyzi="0.150 -${ chassis_width /2} 0" cy=" -0.036"/>

112 <xacro:wheel pos="center" side="left" xyz=" -0.023 -${ chassis_width
/2 -0.01} 0.068" xyzi="0 ${ chassis_width /2} 0" cy="0.036"/>

113 <xacro:wheel pos="center" side="right" xyz=" -0.023 -${chassis_width
-0.02} 0.068" xyzi="0 -${ chassis_width /2} 0" cy=" -0.036"/>

114 <xacro:wheel pos="rear" side="left" xyz=" -0.023 -${ chassis_width
/2 -0.01} 0.068" xyzi=" -0.150 ${ chassis_width /2} 0" cy="0.036"/>

115 <xacro:wheel pos="rear" side="right" xyz=" -0.023 -${chassis_width
-0.02} 0.068" xyzi=" -0.150 -${ chassis_width /2} 0" cy=" -0.036"/>

116

117

118 </robot >

78

Appendix E

phylax control

E.1 teleop.launch

1 <launch >
2 <!--Set control unit -->
3 <arg name="joy_dev" default="/dev/input/js0" />
4 <arg name="joystick" default="true" />
5 <arg name="keyboard" default="false" />
6

7 <!--Necessary nodes are initialized and config files are uploaded -->
8 <group ns="keyboard_teleop" if="$(arg keyboard)">
9 <node pkg="teleop_twist_keyboard" type="teleop_twist_keyboard.py"

name="teleop_kbd" output="screen"/>
10 </group>
11 <group ns="joystick_teleop" if="$(arg joystick)">
12 <rosparam command="load" file="$(find phylax_control)/config/

teleop_ps4.yaml" />
13 <node pkg="joy" type="joy_node" name="joy_node" />
14 <node pkg="teleop_twist_joy" type="teleop_node" name="

teleop_twist_joy"/>
15 </group>
16 <node pkg="interactive_marker_twist_server" type="marker_server"

name="twist_marker_server">
17 <param name="marker_size_scale" value="2" />
18 </node>
19 </launch >

79

E.2 control.launch

1 <launch >
2 <!--Upload config file -->
3 <rosparam command="load" file="$(find phylax_control)/config/control

.yaml" />
4

5 <!--State the needed PID controllers and initialize node -->
6 <node name="controller_spawner" pkg="controller_manager" type="

spawner"
7 respawn="true" output="screen"
8 args="joint_state_controller
9 diff_drive_controller

10 --shutdown -timeout 3"/>
11

12 <!--Initialize localisation and multiplexer node -->
13 <node pkg="robot_localization" type="ekf_localization_node" name="

ekf_localization">
14 <rosparam command="load" file="$(find phylax_control)/config/

robot_localization.yaml" />
15 </node>
16

17 <node pkg="twist_mux" type="twist_mux" name="twist_mux">
18 <rosparam command="load" file="$(find phylax_control)/config/

twist_mux.yaml" />
19 <rosparam param="locks">[]</rosparam >
20 <remap from="cmd_vel_out" to="/diff_drive_controller/cmd_vel"/>
21 </node>
22

23 </launch >

80

E.3 teleop ps4.yaml

1 # Teleop configuration for PS4 joystick(s)
2 teleop_twist_joy:
3 axis_linear: 1
4 scale_linear: 1
5 scale_linear_turbo: 2.0
6 axis_angular: 5
7 scale_angular: 1
8 enable_button: 4
9 enable_turbo_button: 5

10 joy_node:
11 deadzone: 0.1
12 autorepeat_rate: 20
13 dev: /dev/input/js0

81

E.4 control.yaml

1 joint_state_controller:
2 type: "joint_state_controller/JointStateController"
3 publish_rate: 50
4

5 diff_drive_controller:
6 type: "diff_drive_controller/DiffDriveController"
7 publish_rate: 50
8

9 left_wheel: ['front_left_wheel_joint ','center_left_wheel_joint ','
rear_left_wheel_joint ']

10 right_wheel: ['front_right_wheel_joint ','center_right_wheel_joint ','
rear_right_wheel_joint ']

11

12 pose_covariance_diagonal: [0.001 , 0.001 , 1000000.0 , 1000000.0 ,
1000000.0 , 0.03]

13 twist_covariance_diagonal: [0.001 , 0.001 , 0.001, 1000000.0 ,
1000000.0 , 0.03]

14 cmd_vel_timeout: 0.25
15

16 k_l: 0.1
17 k_r: 0.1
18

19 # Odometry fused with IMU is published by robot_localization
20 enable_odom_tf: false
21

22 # Wheel separation and radius multipliers
23 wheel_separation_multiplier: 1.5 # default: 1.0
24 wheel_radius_multiplier : 1.0 # default: 1.0
25

26 # Velocity and acceleration limits
27 linear:
28 x:
29 has_velocity_limits : true
30 max_velocity : 2.0 # m/s
31 has_acceleration_limits: true
32 max_acceleration : 20.0 # m/s^2
33 angular:
34 z:
35 has_velocity_limits : true
36 max_velocity : 4.0 # rad/s
37 has_acceleration_limits: true
38 max_acceleration : 25.0 # rad/s^2

82

E.5 robot localization.yaml

1 #Configuation for robot odometry EKF
2 #
3 frequency: 50
4

5 odom0: /diff_drive_controller/odom
6 odom0_config: [false , false , false ,
7 false , false , false ,
8 true , true , true ,
9 false , false , true ,

10 false , false , false]
11 odom0_differential: false
12

13 imu0: /imu/data
14 imu0_config: [false , false , false ,
15 true , true , true ,
16 false , false , false ,
17 true , true , true ,
18 false , false , false]
19 imu0_differential: false
20

21 odom_frame: odom
22 base_link_frame: base_link
23 world_frame: odom

83

E.6 twist mux.yaml

1 topics:
2 - name : keyboard
3 topic : keyboard_teleop/cmd_vel
4 timeout : 0.5
5 priority: 9
6 - name : joystick_teleop
7 topic : joystick_teleop/cmd_vel
8 timeout : 0.5
9 priority: 10

10 - name : interactive_marker
11 topic : twist_marker_server/cmd_vel
12 timeout : 0.5
13 priority: 8
14 - name : autonav
15 topic : cmd_vel
16 timeout : 0.5
17 priority: 1
18 locks:
19 - name : e_stop
20 topic : e_stop
21 timeout : 0.0
22 priority: 255

84

Appendix F

phylax base

F.1 phylax.launch

1 <launch >
2

3 <!--Upload robot model -->
4 <include file="$(find phylax_description)/launch/description.launch"

/>
5

6 <!--Initialize node -->
7 <node pkg="phylax_base" type="phylax_node" name="phylax_node" output

="screen">
8 <remap from="/phylax_node/feedback" to="feedback" />
9 </node>

10

11

12 <node pkg="rosserial_server" type="socket_node" name="
rosserial_server" />

13 <node pkg="rosserial_python" type="message_info_service.py" name="
rosserial_message_info" />

14 <node pkg="pololu_driver" type"=pololu_driver_node" name="
pololu_driver_node" />

15

16

17 <!--Launch -->
18 <include file="$(find phylax_control)/launch/control.launch" />
19 <include file="$(find velodyne_pointcloud/launch/VLP_16points.launch

"/>
20 <include file="$(find phylax_description/launch/point2laser.launch"/

>
21

22 </launch >

85

F.2 phylax simple.launch

1 <launch >
2

3 <!--Launch -->
4 <include file="$(find phylax_description)/launch/description.launch"

>
5 <include file="$(find velodyne_pointcloud/launch/VLP_16points.launch

"/>
6 <include file="$(find phylax_description/launch/point2laser.launch"/

>
7

8 <!--Initalize nodes -->
9 <node pkg="phylax_base" type="simple_joy_node" name="simple_joy_node

" output="screen">
10 <remap from="/cmd_drive" to="/phylax_node/cmd_drive" />
11 </node>
12

13 <node pkg="rosserial_server" type="socket_node" name="
rosserial_server" />

14 <node pkg="rosserial_python" type="message_info_service.py" name="
rosserial_message_info" />

15 <node pkg="pololu_driver" type="pololu_driver_node" name="
pololu_driver_node" />

16

17 </launch >

86

F.3 point2laser.launch

1 <launch >
2

3 <!--Static transformation from veldoyne frame to base_link -->
4 <node pkg="tf" type="static_transform_publisher" name="

velodyne_to_base_link" args="0 0 -0.2 0 0 0 base_link velodyne 100
" />

5

6 <!--Initialize node and set parameters -->
7 <node pkg="pointcloud_to_laserscan" type="

pointcloud_to_laserscan_node" name="pointcloud_to_laserscan">
8

9 <remap from="cloud_in" to="/velodyne_points"/>
10 <remap from="scan" to="/front/scan"/>
11 <rosparam >
12 transform_tolerance: 0.01
13 min_height: 0.25
14 max_height: 0.75
15

16 angle_min: -3.1415
17 angle_max: 3.1415
18 angle_increment: 0.01
19 scan_time: 0.1
20 range_min: 0.9
21 range_max: 130
22 use_inf: true
23 concurrency_level: 0
24 </rosparam >
25

26 </node>
27 </launch >

87

F.4 phylax base.cpp

1 #include <boost/thread.hpp > //C++ library for managing threads
2 #include <controller_manager/controller_manager.h> // ROS library for

handling controllers
3 #include "phylax_base/phylax_hardware.h"
4

5 typedef std:: chrono :: system_clock time_source;
6

7 // Spawns a thread that reads the value from the robot joints position
8 void controlLoopThread(phylax_base :: PhylaxHardware *pb ,

controller_manager :: ControllerManager* cm , ros::Rate rate)
9 {

10 time_source :: time_point last_time = time_source ::now();
11

12 while (1)
13 {
14 std:: chrono :: system_clock :: time_point current_time = time_source ::

now();
15 std:: chrono ::duration <double > elapsed_time = current_time -

last_time;
16 ros:: Duration elapsed(elapsed_time.count ());
17 last_time = current_time;
18

19 pb->read();
20 cm->update(ros::Time::now(), elapsed);
21 pb->write ();
22 rate.sleep();
23 }
24 }
25

26 int main(int argc , char **argv)
27 {
28 ros::init(argc , argv , "phylax_node");
29 ros:: NodeHandle controller_nh("");
30

31 ROS_INFO("Phylax is active!");
32

33 phylax_base :: PhylaxHardware phylax;
34 controller_manager :: ControllerManager cm(&phylax , controller_nh);
35

36 boost:: thread(boost::bind(controlLoopThread , &phylax , &cm, ros::Rate
(50)));

37

38 ros::spin();
39

40 ROS_INFO("Phylax is going for a nap!");
41

42 return 0;
43 }

88

F.5 phylax hardware.cpp

1 #include <boost/assign.hpp >
2 #include "phylax_base/phylax_hardware.h"
3

4 namespace phylax_base
5 {
6

7 // Defining joints were states can be read from
8 PhylaxHardware :: PhylaxHardware ():nh_("~"){
9 ros:: V_string joint_names = {"front_left_wheel_joint", "

front_right_wheel_joint", "center_left_wheel_joint", "
center_right_wheel_joint", "rear_left_wheel_joint", "
rear_right_wheel_joint"};

10

11 for (unsigned int i = 0; i < joint_names.size(); i++)
12 {
13 hardware_interface :: JointStateHandle joint_state_handle(

joint_names[i],
14 &joints_[i].position , &joints_[i].velocity , &joints_[i]. effort

);
15 joint_state_interface_.registerHandle(joint_state_handle);
16

17 hardware_interface :: JointHandle joint_handle(
18 joint_state_handle , &joints_[i]. velocity_command);
19 velocity_joint_interface_.registerHandle(joint_handle);
20 }
21

22 registerInterface (& joint_state_interface_);
23 registerInterface (& velocity_joint_interface_);
24

25 feedback_sub_ = nh_.subscribe("feedback", 1, &PhylaxHardware ::
feedbackCallback , this);

26 cmd_pub_.init(nh_ , "cmd_drive", 1);
27

28 }
29

30 void PhylaxHardware :: feedbackCallback(const phylax_msgs :: Feedback ::
ConstPtr& msg)

31 {
32 boost:: mutex:: scoped_lock lock(feedback_mutex_);
33 feedback_msg_ = msg;
34 }
35

36 // Read method
37 void PhylaxHardware ::read()
38 {
39 boost:: mutex:: scoped_lock feedback_lock(feedback_mutex_ , boost::

try_to_lock);
40 if (feedback_msg_ && feedback_lock)
41 {
42 for (int i = 0; i < 6; i++)
43 {
44 joints_[i]. position = feedback_msg_ ->drivers[i % 2].

measured_travel;
45 joints_[i]. velocity = feedback_msg_ ->drivers[i % 2].

measured_velocity;

89

46 }
47 }
48 }
49

50 // Write method
51 void PhylaxHardware ::write () {
52 if (cmd_pub_.trylock ())
53 {
54 cmd_pub_.msg_.mode = phylax_msgs :: Drive :: MODE_VELOCITY;
55 cmd_pub_.msg_.drivers[phylax_msgs :: Drive ::LEFT] = joints_ [0].

velocity_command;
56 cmd_pub_.msg_.drivers[phylax_msgs :: Drive :: RIGHT] = joints_ [1].

velocity_command;
57 cmd_pub_.unlockAndPublish ();
58 }
59 }
60

61 }

90

F.6 simple joy node.cpp

1 #include "ros/ros.h"
2 #include "phylax_msgs/Drive.h"
3 #include "sensor_msgs/Joy.h"
4

5 #include "boost/algorithm/clamp.hpp"
6

7 class SimpleJoy
8 {
9 public:

10 explicit SimpleJoy(ros:: NodeHandle* nh);
11

12 private:
13 void joyCallback(const sensor_msgs ::Joy:: ConstPtr& joy);
14

15 ros:: NodeHandle* nh_;
16 ros:: Subscriber joy_sub_;
17 ros:: Publisher drive_pub_;
18

19 int deadman_button_;
20 int axis_linear_;
21 int axis_angular_;
22 float scale_linear_;
23 float scale_angular_;
24

25 bool sent_deadman_msg_;
26 };
27

28 SimpleJoy :: SimpleJoy(ros:: NodeHandle* nh) : nh_(nh)
29 {
30 joy_sub_ = nh_ ->subscribe <sensor_msgs ::Joy >("/joystick_teleop/joy",

1, &SimpleJoy :: joyCallback , this);
31 drive_pub_ = nh_ ->advertise <phylax_msgs ::Drive >("cmd_drive", 1, true

);
32

33 ros::param::param("~deadman_button", deadman_button_ , 4);
34 ros::param::param("~axis_linear", axis_linear_ , 1);
35 ros::param::param("~axis_angular", axis_angular_ , 5);
36 ros::param::param("~scale_linear", scale_linear_ , 1.0f);
37 ros::param::param("~scale_angular", scale_angular_ , 1.0f);
38

39 sent_deadman_msg_ = false;
40 }
41

42 void SimpleJoy :: joyCallback(const sensor_msgs ::Joy:: ConstPtr& joy_msg)
43 {
44 phylax_msgs ::Drive drive_msg;
45

46 // When deadman button is pressed , set the message for motor
controllers

47 if (joy_msg ->buttons[deadman_button_])
48 {
49 drive_msg.mode = phylax_msgs :: Drive:: MODE_PWM;
50 float linear = joy_msg ->axes[axis_linear_] * scale_linear_;
51 float angular = joy_msg ->axes[axis_angular_] * scale_angular_;

91

52 drive_msg.drivers[phylax_msgs :: Drive::LEFT] = -boost:: algorithm ::
clamp(linear - angular , -1.0, 1.0);

53 drive_msg.drivers[phylax_msgs :: Drive::RIGHT] = boost:: algorithm ::
clamp(linear + angular , -1.0, 1.0);

54 drive_pub_.publish(drive_msg);
55 sent_deadman_msg_ = false;
56 }
57 else
58 {
59 // When deadman button is released , immediately send a single no -

motion command
60 // in order to stop the robot.
61 if (! sent_deadman_msg_)
62 {
63 drive_msg.mode = phylax_msgs :: Drive:: MODE_NONE;
64 drive_pub_.publish(drive_msg);
65 sent_deadman_msg_ = true;
66 }
67 }
68 }
69

70

71 int main(int argc , char *argv [])
72 {
73 ros::init(argc , argv , "phylax_teleop_joy_pwm");
74

75 ros:: NodeHandle nh;
76 SimpleJoy simple_joy (&nh);
77

78 ros::spin();
79 }

92

Appendix G

phylax navigation

G.1 gmapping.launch

1 <launch >
2

3 <arg name="scan_topic" default="front/scan" />
4

5 <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping"
output="screen">

6

7 <param name="odom_frame" value="odom"/>
8 <param name="base_frame" value="base_link"/>
9 <param name="map_frame" value="map"/>

10

11 <!-- Process 1 out of every this many scans (set it to a higher
number to skip more scans) -->

12 <param name="throttle_scans" value="1"/>
13

14 <param name="map_update_interval" value="0.5"/> <!-- default: 5.0
-->

15

16 <!-- The maximum usable range of the laser. A beam is cropped to
this value. -->

17 <param name="maxUrange" value="5.0"/>
18

19 <!-- The maximum range of the sensor. If regions with no obstacles
within the range of the sensor should appear as free space in the
map , set maxUrange < maximum range of the real sensor <= maxRange
-->

20 <param name="maxRange" value="10.0"/>
21

22 <param name="sigma" value="0.05"/>
23 <param name="kernelSize" value="1"/>
24 <param name="lstep" value="0.05"/>
25 <param name="astep" value="0.05"/>
26 <param name="iterations" value="5"/>
27 <param name="lsigma" value="0.0075"/>
28 <param name="ogain" value="3.0"/>

93

29 <param name="minimumScore" value="0.0"/>
30 <!-- Number of beams to skip in each scan. -->
31 <param name="lskip" value="0"/>
32

33 <param name="srr" value="0.01"/>
34 <param name="srt" value="0.02"/>
35 <param name="str" value="0.01"/>
36 <param name="stt" value="0.02"/>
37

38 <!-- Process a scan each time the robot translates this far -->
39 <param name="linearUpdate" value="0.1"/>
40

41 <!-- Process a scan each time the robot rotates this far -->
42 <param name="angularUpdate" value="0.05"/>
43

44 <param name="temporalUpdate" value=" -1.0"/>
45 <param name="resampleThreshold" value="0.1"/>
46

47 <!-- Number of particles in the filter. default 30 -->
48 <param name="particles" value="30"/>
49

50 <!-- Initial map size -->
51 <param name="xmin" value=" -10.0"/>
52 <param name="ymin" value=" -10.0"/>
53 <param name="xmax" value="10.0"/>
54 <param name="ymax" value="10.0"/>
55

56 <!-- Processing parameters (resolution of the map) -->
57 <param name="delta" value="0.045"/>
58

59 <param name="llsamplerange" value="0.01"/>
60 <param name="llsamplestep" value="0.01"/>
61 <param name="lasamplerange" value="0.005"/>
62 <param name="lasamplestep" value="0.005"/>
63

64 <remap from="scan" to="$(arg scan_topic)"/>
65 </node>
66 </launch >

94

H
enrik B. N

orås Bergel
SLAM

 Applied to a U
G

V: design and realization

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Henrik B. Norås Bergel

Simultaneous Localization and Mapping
Applied to an Unmanned Ground Vehicle

Design and Realization

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl

December 2020

	Abstract
	Sammendrag
	Preface
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation
	Objective and Scope
	Levels of Autonomy - Military
	Literature review
	Contribution
	Outline of Report

	Theory
	Rotation and Translation Between Coordinate Frames
	Lidar
	Mathematical model of the VLP-16
	Weather Influence

	Simultaneous Localization and Mapping
	System architecture
	The two SLAM problems

	Rao-Blackwellized particle filter SLAM
	Mapping with Rao-Blackwellized SIR filter

	Modified Rao-Blackwellized particle filter SLAM
	Improved proposals
	Adaptive resampling
	GMapping in pseudocode

	Occupancy Grid Map
	Robot Operating System
	ROS Communication
	ROS Launch
	ROS Topic
	Logging Data in ROS
	RVIZ

	Phylax
	Chassis and Motors
	Assembling

	Microcontrollers
	Motor Controller
	Microcontroller for Odometry and IMU

	Processing Unit
	Software

	Method
	Phylax
	Design choices
	Debugging

	The Experiment
	System Architecture of the Phylax SLAM System
	Obstacle Course Experiment
	Environmental Setup
	Collecting the Datasets

	Results
	Clean Room
	Default Parameters
	Tuned Parameters

	Obstacle Course
	Default Parameters
	Tuned Parameters

	Discussion
	Phylax
	The Experiment
	Initial Remarks
	GMapping
	Closing Remarks

	Conclusion
	Further Work

	Bibliography
	Appendices
	3D Design
	Default Parameter Values for GMapping
	ESP32 Software
	encoder.cpp
	odometer.cpp

	phylax_description
	description.launch
	phylax.urdf.xacro

	phylax_control
	teleop.launch
	control.launch
	teleop_ps4.yaml
	control.yaml
	robot_localization.yaml
	twist_mux.yaml

	phylax_base
	phylax.launch
	phylax_simple.launch
	point2laser.launch
	phylax_base.cpp
	phylax_hardware.cpp
	simple_joy_node.cpp

	phylax_navigation
	gmapping.launch

