Magnus Hammer Zakariassen

Automatic pellet detection with
Computer Vision in aquaculture

August 2020

= 253528
Z - 095
«Q E22cty
> z;oa_‘a)c
c Y 20 o £
«» £ 2 Cc g
T Z gwoa
2 S—u 53
3 D5 cd
3 cc? 2
5] G0 © > ‘=
= mcugj @
~N o o 2 >
Y ECO c
= o c =
) 0'55 g’
g. Zwn g i}
[ —
9]
8 5 =
5]
=] = c
5 )
€ £
5 el
@©
c a
= A&
e
o
>
=
>
o
©
[y

\/

@NTNU @NTNU

Norwegian University of Norwegian University of
Science and Technology Science and Technology






@NTNU

Norwegian University of
Science and Technology

Automatic pellet detection with Computer
Vision in aquaculture

Magnus Hammer Zakariassen

Cybernetics and Robotics
Submission date: August 2020
Supervisor: Morten Alver

Norwegian University of Science and Technology
Department of Engineering Cybernetics






Abstract

The waste of fish food has is a serious problem in aquaculture. Any uneaten fish food
contributes to economic loss in the industry, as costs related to food accounts for roughly
40-50% of the total production costs in fish farming. This project researches the possibility
of aiding in the automation of the feeding process through automatically detecting pellets
leveraging computer vision and deep learning technology.

The solution utilizes a convolutional neural network, which is considerer to be state-of-
the-art within object detection. Models based on convolutional neural networks have de-
livered respectable results within classification and detection of object, and is therefore a
natural choice for this research.

The final model is currently not accurate enough for deployment in an industrial envi-
ronment. However, the model shows signs potential in certain scenarios, namely when the
pellets are in close proximity to the camera and has good visibility. From the end result it
is apparent that further research with a larger, more robust dataset is necessary to improve
the model’s performance.




Sammendrag

Matsvinn er et problem i oppdrettsn@ring. For som forblir uspist bidrar til store gkonomiske
tap i industrien, ettersom kostnader relatert til for utgjor 40-50% av totale produksjon-
skostnader. Denne oppgaven undersgker om maskinsyn basert pa dyp laring kan bidra til
a automatisere hele eller deler av féringsprosessen ved a automatisk detektere synkende
pellets.

Lgsningen benytter et konvolusjonelt nevralt nettverk, som regnes som state-of-the-art in-
nen objektdeteksjon. Modeller basert pa konvolusjonelle nevrale nettverk har levert gode
resultater pa klassifisering og detektering av objekter, og ses derfor pa som et naturlig valg.

Modellen er forelgpig ikke robust nok til & helautomatisere oppdrettsanlegg, men viser
lovende resultater i gitte situasjoner. Eksempelvis nar pelletsene er i nerheten av kamer-
aet og det er relativt uhindret sikt. Ut i fra resultatene er det tydelig at et stgrre og mer
robust datasett er ngdvendig for & forbedre modellens ytelse.

ii



Preface

This thesis concludes the two year Master’s program within Cybernetics and Robotics and
the Norwegian University of Science and Technology. It was written during the late spring
and summer of 2020 in collaboration with Piscada.

I wish to thank Piscada for giving me the opportunity to work on this project. I would
particularly like to thank Olav Jamtgy and Knut Drange from Piscada for granting me
access the video footage used to create the dataset. My supervisor from NTNU, Morten
Alver, also for guidance and constructive feedback during this process.

iii



iv



Table of Contents

Abstract
Preface
Table of Contents

1 Introduction

.1 Motivation . . . . . . . . . . e
1.2 Introduction of the project . . . . . . . . .. ... ... ... ... ...
1.3 Project aim and objectives . . . . . . . .. ...
2 Theory
2.1 Neural Networks . . . .. ... ... .. ... .
2.1.1 Attificialneuron . . . . . ... L oL o
2.1.2 Fully connected network . . . . ... ... ... ... ..., .
2.13 Learning . . ... .. .. ...
2.2 Convolution Neural Networks [CNNs] . . . . ... ... ... ......
2.2.1 Convolutional layer . . . . . . . ... ... .. ... ... ....
222 Poolinglayer . . .. ... ... . ...
223  Fullyconnectedlayer . . . . . .. ... ... ... ........
3 Related work
3.1 Deeplearning . . . . . . . . ...
3.1.1 Computer viSion . . . . . . . . . ..o
3.1.2 Dataaugmentation . . . . . ... ... ... ...
4 Method
4.1 Data . . . ... e
4.1.1 Collecting . . . . . . . . o o e
412 Cleanup . . . . . v v vt e e e e e
4.13 Annotation . . . ... ...

11
11
11
12

13
13
13
13
13




4.1.4 Preprocessing . . . . . . . ..o e e
42 Training . . . . . . .. e e e e e e
43 Requirements . . . . . . ... ...
43.1 Hardware . . . . . . . . .. ..
432 Software . . . .. ...
433 Python . ... ... ...
Results
5.1 Statisticalresults . . . . . . ... oL
5.2 Empiricalresults . . . . . ... ... ..
Discussion
6.1 Furtherwork . . . ... . ... ...
6.1.1 Dataset . . . . ... ...
6.1.2 Improved performance . . . . .. ... ... ... ... .....
6.1.3 Added parameters . . . . ... ... ... .. ...
6.1.4 Added functionality . . . . .. ... ... ... ...

7 Conclusion

Bibliography

Appendix

17
17
18

21
21
21
22
22
22

23

23

29

vi



List of Figures

2.1
22

23
24
2.5
2.6
2.7
2.8
29

5.1
52
53
54

Single artificial neuron with components. . . . . . . ... ... ... .. 6
Neural network with L + 1 layers, m® hidden units, D inputs and C'

differentclasses . . . . . . . . . . .. ... 6
Sigmoid . . . . . .. 7
Rectified linear unit (ReLU) . . . ... ... ... ... ... ...... 7
Softmax . . . . . . . . 8
Backpropagation - the errors 5§L+1) can be propagated backwards. . . . . 9
Original CNN as describedbyLecun . . . . . . . . ... ... ... ... 9
Single convolutional layer. . . . . . .. ... .. ... ... . ..., 10
Illustration of a pooling and subsampling layer. . . . . . ... ... ... 10
Model performance on image with high visibility to pellets . . . . . . . . 18
Model performance on image with high visibility to pellets . . . . . . . . 19
Model performance on image with pellets faraway . . . ... ... ... 19
Model performance on image with pellets faraway . . . . ... ... .. 20

vii



viii



List of Tables

4.1
4.2

5.1
5.2

Hardware specifications . . . . . . .. . ... ... Lo oL 14
Package and library requirements . . . . . . . ... .. ... ... 15
Total accuracy onthetestset . . . . . . .. ... ... ... ... ..., 17
Total loss at the end of training . . . . . . . ... ... ... ....... 18




LIST OF TABLES




Chapter

Introduction

1.1 Motivation

Aquaculture and worldwide export of fish is Norways second largest export industry, only
beaten by the oil gas sector. In 2019 Norway exported 1.2 million tonnes of fish from
aquaculture for a total value of 76.5 billion NOK and further growth is expected in the
coming years [31, 32]. Feed represents about 40-50 % of the production cost [7, 33].

In the salmon fish farming industry the feeding process is controlled manually by an opera-
tor. From controlling and watching live underwater video, the operator makes experience-
based decisions on when to manually adjust the feeding. The decisions are based on a
combination of the behaviour of the fish and if a significant amount of fish feed sinks past
the first few meters below surface. Both of

The average fish per farm saw a rise from 450 000 to 600 000 individual fish per site
in the time frame from 2006-2009, which we can assume has grown since then given the
huge growth in fish from aquaculture[16]. As the industry continues to scale up it will
greatly benefit from the economics of scale, especially as sub-processes are partially or
fully automated. There are both economical and environmental interest in improving the
efficiency through automation of the feeding process in aquaculture.

1.2 Introduction of the project

Piscada, in collaboration with Norwegian Fish Farms, seeks to automate parts of the feed-
ing process in aquatic farming of salmon. An important role of the operator is to determine
whether the fish is being under- or overfed, and adjust the feeding supply accordingly.
From a control theory perspective, the operator is estimating the state, error and providing
the feedback manually to adjust the input. The first step in improving the efficiency of this
process is to aid the decision making for the operator judging whether the fish is being

3



Chapter 1. Introduction

under- or overfed. The intention is to use an object detection algorithm, utilizing the same
camera technology operators are using, for detecting pellets.

1.3 Project aim and objectives

One of the major obstacles for using computer vision in a fish farming enviroment are the
multiple, continuously changing noise factors such as sunlight and chlorophyll from algae
[15, 40]. Over the span of a year the visibility will have significant fluctuations. There are
also factors that affects how much the fish will eat such as water temperature, but they are
not part of the project scope.

The project aims to:
e Research if a model based on deep learning learning can detect pellets in a fish farm

o Identify if certain data augmentation techniques significantly enhances model per-
formance




Chapter

Theory

2.1 Neural Networks

Neural networks are the most common form of applying supervised deep learning. The
network consist of several components and mathematical principles that will be explained
in this section.

2.1.1 Artificial neuron

An artificial neuron is a mathematical function mimicking biological neurons in the hu-
man brain. It was first described in 1943 [26], and has since laid the foundation for neural
networks.

The simplest form of an artificial neuron is a perceptron [5]

0, ifw-z+b<0

f(x) :{ @2.1)

1, ifw-z+b>0

The neruons used in modern nerual networks are more sophisticated and works by sum-
ming up all weighted inputs wa™ !, adding bias b and passing it through an activation
function f with output a™, where n is the layer

gt = (> wyt o) 2.2)

Equation (2.2) is on vectorized form, and is explained on a single neuron in figure 2.1,
where the activation function f(explained later) is applied on the input z to get output
y = f(2). 1,...,xp represent input from other units within the networ,; by is the bias
and represents an external input to the unit [38].




Chapter 2. Theory

Z1

\/

D

Figure 2.1: Single artificial neuron with components.

2.1.2 Fully connected network

1" hidden layer L™ hidden layer

input layer output layer

Figure 2.2: Neural network with L + 1 layers, m® hidden units, D inputs and C' different classes

Figure 2.2 shows a fully connected neural network. The size of the input layer depends on
the shape of the data, for example a network taking 1002100 sized images as input will
have 10 000 input units. The hidden units in each layer are a series of perceptrons or more
sophisticated artifial neruons, taking a weighted input from all the nodes in the previous
layer as explained earlier in this section. The amount of layers and hidden units affects
the networks complexity, and although a network with more units can approximate more
complex data, it also requires more data to train and has higher risk of overfitting [35].

2.1.3 Learning

The learning is composed of several processes. An input passes through a network of
neurons as described earlier in figure 2.2. After passing through. The output is then
compared to the label and the network is updated accordingly using backpropagation. The
elements of the nework are explained in higher detail.

6



2.1 Neural Networks

Activation function

The purpose of an activation functions in the context neural networks is to introduce non-
linearity between layers and for prediction at the output layer. A standard multilayer feed-
forward network with a locally bounded piecewise continuous activation function can ap-
proximate any continuous function to any degree of accuracy if and only if the network’s
activation function is not a polynomial [22]. Some common activation functions will be
described.

Figure 2.3: Sigmoid

f(l’):l_'_%

The sigmoid function, described by equation (2.3), was used to numerically describe bi-
ological neurons’ response to various stimulus in 1972 [36]. It has been utilized both in
classic approaches to machine learning, such as SVM, and later in neural networks mainly
as an activation function [23, 39].

As opposed to the primitive perceptron, which uses a simple step-function, the sigmoid
has a smooth curve as seen in figure 2.3.

(2.3)

6, |

4, |

Figure 2.4: Rectified linear unit (ReLU)

f(z) = maz(0, ) (2.4)

The Rectified Linear Unit (ReLU) described by equation(2.4), resembles the perceptron in
terms of having a threshold for activation as seen in figure 2.4. ReLU has several qualities
and outperforms the Sigmoid both in terms of convergence accuracy and convergence rate
[11] become the most popular activation function for use between layers [1].




Chapter 2. Theory

1 [ |
0.5 N
0L ! L
-5 0 5
Figure 2.5: Softmax
e
f(2); 2.5

- Zi{:l ek

The softmax function (2.5) looks strikingly similar to the sigmoid as seen in figure 2.5.
However, it has a different purpose in a neural network. The softmax squeezes the values
of a K dimentional vector z into a K dimentional vector with real values between 0 and 1.
The sum of these values are equal to 1. This is used in the last layer to classify objects, and
each element j of the vector represents the model’s output probability of the corresponding
class [17].

For example if we have a model that classifies the animals dog, cat and horse, feed it with
an input image and get the output vector [0.3,0.65,0.05]7 after the softmax, the model
predicted that it is a 65% chance of being a cat.

Backpropagation

In the field of deep learning, backpropagation is an algorithm used in training neural net-
works for supervised learning [29]. When optimizing a neural network to training data,
often referred to as firting, backpropagation computes the gradient of the loss function
with respect to the weights of the network for every input—output example posed in the
dataset. Unlike a direct method for computing the gradient with respect to each weight
individually, which is slow and computationally expensive. Backpropagation computes
the gradient of the loss function by utilizing the chain rule, thus iteratively computes the
gradient backwards in the network, one layer at the time as seen in figure 2.6. This effec-
tively avoids reduntant calculations, and as a result tremendously reduces computational
cost, especially for larger network structures [13].

This computational efficiency makes it feasible to use gradient methods for updating
weights to minimize loss when training multilayer networks. gradient descent, or vari-
ants such as stochastic gradient descent, are commonly used [6].




2.2 Convolution Neural Networks [CNNs]

5§l+1)

5U+D

m(l+1)

Figure 2.6: Backpropagation - the errors 65“‘1) can be propagated backwards.

2.2 Convolution Neural Networks [CNNs]

A convolutional neural network learns and extracts features by utilizing convolutional fil-
ters and non-linear layers. This composition is referred to as a feature exctraction subnet,
and as the name suggest detects features later used for classification. The feature extrac-
tion subnet can contain several convolution layers, each with multiple filters [18, 20, 21].

Figure 2.7 shows the arcitechture of the original CNN introduced by LeCun [21].

convolutional layer convolutional layer
. . i . . i fully connected layer
with non-linearities with non-linearities laver [ — 7
layerl =1 layerl = 4 yert =
input image subsampling layer subsampling layer fully connected laye:
layer [ =0 layerl = 3 layer [ = 6 output layer [ = 8

Figure 2.7: Original CNN as described by Lecun




Chapter 2. Theory

2.2.1 Convolutional layer

input image
or input feature map

output feature maps

HWFK

Figure 2.8: Single convolutional layer.

Figure 2.8 shows how a single convultional layer works, the original input is sent into
the first convulutional layer, and subsequent layers uses the output feature map from the
previous layer as its input [21].

2.2.2 Pooling layer

feature maps feature maps
layer (I — 1) layer [

F

Figure 2.9: Illustration of a pooling and subsampling layer.

Figure 2.9 Shows how subsampling and pooling works in-between convolutional layers.
The most common pooling type is max pooling, which takes the highest value of each 2x2
sub-matrix as a single value in the output feature map.

2.2.3 Fully connected layer

A fully connected layer has every node connected to every node of the previous layer. In
convolution neural networks it is often the last layer used for classification[21].

10



Chapter

Related work

3.1 Deep learning

Machine learning and especially supervised learning, have made significant advancements
the past decade. In 2012 when the first neural network based model won the ImageNet
competition [19]. Research on supervised learning have since increased after it’s proven
potential, and in 2015 a neural network model beat human performance in the same
competition[30].

3.1.1 Computer vision

Traditionally, the field of computer vision have used hand crafted features for object detec-
tion and classification. The main approaches have been Scale-invariant feature transform
(SIFT) [25] and textures [12], along with statistical classifiers such as Support Vector Ma-
chines (SVM) [8] and Nearest Neighbour (NN) [3].

t

During recent years, more specifically since 2012 [18], deep learning methods have proven
they can obtain higher accuracy compared to more traditional methods [28]. This trend
have been enabled mainly by the improvement in hardware, such as GPUs, resulting in
a significant increase in available computational power, leading to a surge in deep learn-
ing related technology [2]. Another important factor is the availability of large, labeled
datasets such as Microsoft Common Objects in Context (MS Coco) [24] and ImageNet [9]
containing more than 2.5 and 14 million images respectively.

The deep learning approach that have achieved the best results within computer vision,
namely classification and object detection, is the Convolutional Neural Network (CNN)

11



Chapter 3. Related work

3.1.2 Data augmentation

A rough rule of thumb is that supervised deep learning methods, such as SSD-MobileNet
and Faster-RCNN, generally requires 5000 labeled images for every class to achieve ac-
ceptable performance [4, 10].

Has showed that by using images of the object you want to classify, performing transofor-
mations on the object and applying random background, it is possible to create a synthetic
dataset that delivers good results [27]

12



Chapter

Method

4.1 Data

4.1.1 Collecting

The raw data is gathered from footage of various Norwegian fish farms using underwa-
ter cameras during the feeding process. Furthermore the images used in the dataset are
sampled at a 3 second interval.

4.1.2 Cleanup

The dataset is cleaned up by manually removing outliers from the sampled data. Outliers
are defined as images without fish feed.

4.1.3 Annotation

Data annotation is the process of labelling the data. The combination of a data point
and a label makes up an input-output pair in the data set, essentially meaning that for a
given input we expect the output from the model to be equal to the label. There are many
different labelling tools available for annotation, both open source and closed source. For
this project makesence.ai is used for annotating images. It is open source and runs locally
through a browser. The software, along with other available open source software, has
support for semi-automating the annotation process. However, it predominantly suggested
annotation for the fish in the picture and struggled to identify the fish feed as objects. It
therefore added more problems than it solved and was used.

13



Chapter 4. Method

4.1.4 Preprocessing

4.2 Training

The training uses several different types of data augmentation. Each training uses 120 000
epochs, referred to as steps, in the APL.

4.3 Requirements

4.3.1 Hardware

The minimum requirement for running any form of machine/deep learning project is a
computer with a CPU. As deep learning is computationally expensive, it is recommended
to either use a GPU or a Tensor Processing unit (7PU) as they will significantly increase
the training speed compared to a CPU [34]. Note that even though the GPU/TPU will
significantly speed up the process, a weak or low-core CPU can similary be a bottleneck.
It is desired to use a powerful multi-core CPU, as it is utilized in the pre-processing and
communication with the GPU/TPU [37]. The exact specifications used in this project are
stated in table 4.1.

Part Specification

Processor Intel Core 17-8700

GPU ASUS GeForce GTX 1080
RAM Ballistix Sport LT DDR4 16GB
Storage Seagate Barracuda 1TB

PSU Corsair TX550M, 550W

Table 4.1: Hardware specifications

4.3.2 Software
4.3.3 Python

Python is a high-level programming language commonly used for deep learning projects.
This project uses version 3.7.
Tensorflow Object Detection API

Tensorflow’s Object Detection API is an open source framework for training and using
deep learning architecture. The project uses version 1.15, as it at the time of this is the latest

14



4.3 Requirements

version which support for training. The entire repository can be downloaded with git from
https://github.com/tensorflow/models/tree/master/research/objectyetection[14].To functionproperlythe A

Package Function Version
Tensorflow-gpu ML platform 1.15
Cudnn GPU acceleration 7.6.5
Cudatoolkit GPU acceleration 10.0.130
Pillow Image manipulation 1.0
Lxml Processing xml files 45.0
Protobuf Serializing structured data 3.0.0
Cython Python utilizing C/C++ -
contextlib2 Context manager -
Matplotlib Plotting/visualisation -

Table 4.2: Package and library requirements

15



Chapter 4. Method

16



Chapter

Results

5.1 Statistical results

The statistical results are the average output from every trained model. The accuracy seen
in table 5.1, we observe that the models using data augmented with flipping, jitter boxes
and black patches all produce similar results. The models trained on data augmented by
adjusting brigtness or HUE performed significantly worse.

Augmentation type Accuracy
Only flipped 0.312
Jitter boxes 0.323
Black patches 0.314
Adjust brightness 0.181
Adjust HUE 0.156

Table 5.1: Total accuracy on the test set

The loss on the training set is not used for determining actual model performance, but to
indicate convergence of the models. The total loss at the end of training can be seen in
table 5.2

17



Chapter 5. Results

Augmentation type Total loss
Only flipped 2.800
Jitter boxes 2.992
Black patches 3.028
Adjust brightness 8.542
Adjust HUE 8.517

Table 5.2: Total loss at the end of training

5.2 Empirical results

To give more context to the statistical performance metrics, there picked out a a few im-
ages from the test dataset to observe the model performance. As the accuracy is fairly
similar on all the best performing models, the best model was used for the tested images.

From figure 5.1 and 5.2, we observe that the model detects the pellets with certainty in
both images. Both images has a relatively unrestricted view with good visibility. Note that
there is also a clear background behind the pellets and fairly little overlap with fish.

pellet:‘g?lgé"et: 89%

o

Figure 5.1: Model performance on image with high visibility to pellets

18



5.2 Empirical results

200 300 400 500 600

Figure 5.2: Model performance on image with high visibility to pellets

From figure 5.3 and 5.4, we observe that the model struggles to detect the pellets. In both
images it is only able to detect 1, and also with significantly lower certainty compared to
the detection from the images in figure 5.1 and 5.2. The pellets are much farther away from
the camera, and while still being visible they are noticeably harder to see for the human
eye.

DESSIIEOET « T6HB) NS 2 i Ea o &

W

0 100 200 300 00 500 £00 700

Figure 5.3: Model performance on image with pellets far away

19



Chapter 5. Results

0 100 200 300 100 500 £00

Figure 5.4: Model performance on image with pellets far away

700

20



Chapter

Discussion

From the empirical results we can observe that the model predicts pellets accurately and
with high certainty on the images in figure 5.1 and 5.2. On these, and similar, pictures the
fish feed takes up a relatively large portion of the picture and the camera has unrestricted
view of the detected objects. Even though the images used for the empirical results are
hand picked, and thus subject to some level of bias, the model indicated that it already have
sufficiently high performance in some situations, which implies that the a convolutional
neural network has potential to detect pellets.

However, the model struggles when the pellets further away as seen in figure 5.3 and 5.2.
The overall accuracy of the model is therefore suffering and is currently not performing
at a desired level to be used in production. There can be many reasons to the model not
performing at a desired level. The model can be underfit due to training on a small dataset,
or the model can be either too complex or lack complexity. As the SSD-Mobilenet have
performed at high levels in other object detection tasks, it is likely not an issue related to
model arcitechture. Considering that the data threshold for achieving high performance is
roughly 5000 images [4, 10], the dataset used for this study can be considered fairly small.

6.1 Further work

6.1.1 Dataset

It is generally recommended to have a data set containing 5000 labeled images for every
class the model should be able to detect. Given that the model used in production would
operate in noisy environment with both short-term and long-term variance, it is also re-
quired to build a dataset that represents the noisy environment. Increasing the amount of
available, labeled data would likely be the most important factor for improving the overall
performance of the model. There are two main strategies to address this problem.

21



Chapter 6. Discussion

There are two main strategies to build a sufficiently large and diverse dataset. The trivial
solution is to gather and label more data from video or pictures take, but it is not without
downsides. Gathering and labelling data is both time/labour intensive and costly as well
as prone to human error during the labelling process.

The second strategy is to expand the dataset artificially either through creating completely
artificial data or through extensive augmentation of the current dataset. One method that
have the potential to yield a large and diverse dataset, without requiring large amounts of
raw data, is to create a two sub-datasets. One subset contains the object we want to detect,
namely fish feed. The other subset consists of backgrounds. A large dataset can be cre-
ated by picking one or more random samples from the first subset and inserting them with
random size, orientation and position on a background from the second subset. To further
enhance the diversity of the dataset, we can apply random data augmentation on both of
the subsets before combining them.

6.1.2 Improved performance

Further studies on this topic should investigate if more advanced region proposal algo-
rithms, such as state-of-the-art RCNN-based models, could improve performance for this
task. Other network architectures, namely VGG and YOLO, can also be subject to further
research.

6.1.3 Added parameters

By adding additional parameters to the model, such as weather, visibility in the water or
other relevant information, it can aid in solving the problem of high variance noise.

6.1.4 Added functionality

If a model performs at a sufficiently high level to be deployed in production, it has many
use cases. Adding extra functionality to aid in furhter autmation can be feasible.

Pellet density

Rather than detecting and counting pellets in the entire image, a system that calculates the
pellet density over a given volume can be useful.

Mathematical model of biomass

Using an underlying mathematical model of the biomass in the farm, which for example
describes the consumption rate of the fish and total amount of pellets already fed. This
allows the input from the computer vision model to be weigthed, and prevents it from
stopping or reducing the the

22



Chapter

Conclusion

In this study the possibility of using a object detection model based on deep learning for
use in aquaculture was researched. The overall accuracy of the model is currently not at a
desirable level, but from the empirical analysis it was observed that the model shows high
promise under certain circumstances, namely when the pellets is close to the camera and
the visibility is high. With a limited raw dataset of 294 images. This suggests that a com-
puter vision model based on deep learning have the potential to be a viable option in the
aid of further automation in aquaculture. The study also looked at different data augmen-
tation techniques, but has no significant findings or recommendations on using any type in
particular. The author recommend that future research should focus on growing the dataset
through collecting more raw data and using extensive data augmentation techniques.

23



24



Bibliography

(1]

(2]
(3]

[4]

(10]

(1]

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Charu C Aggarwal et al. Neural networks and deep learning. Springer, 2018.

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175-185, 1992.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798-1828, 2013.

H. D. Block. The perceptron: A model for brain functioning. i. Rev. Mod. Phys.,
34:123-135, Jan 1962.

Rich Caruana, Steve Lawrence, and C Lee Giles. Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping. In Advances in neural informa-
tion processing systems, pages 402—408, 2001.

CM Chang, W Fang, RC Jao, CZ Shyu, and IC Liao. Development of an intelligent
feeding controller for indoor intensive culturing of eel. Aquacultural engineering,
32(2):343-353, 2005.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273-297, 1995.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248-255. Ieee, 2009.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.orgq.

Kazuyuki Hara, Daisuke Saito, and Hayaru Shouno. Analysis of function of rectified
linear unit used in deep learning. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1-8. IEEE, 2015.

25


http://www.deeplearningbook.org

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein. Textural fea-
tures for image classification. IEEE Transactions on systems, man, and cybernetics,
(6):610-621, 1973.

Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
networks for perception, pages 65-93. Elsevier, 1992.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.
Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7310-
7311, 2017.

Daniel M Jamu, Zhimin Lu, and Raul H Piedrahita. Relationship between secchi disk
visibility and chlorophyll a in aquaculture ponds. Aquaculture, 170(3-4):205-214,
1999.

@sten Jensen, T Dempster, EB Thorstad, I Uglem, and A Fredheim. Escapes of
fishes from norwegian sea-cage aquaculture: causes, consequences and prevention.
Aquaculture Environment Interactions, 1(1):71-83, 2010.

AbdulWahab Kabani and Mahmoud R El-Sakka. Object detection and localization
using deep convolutional networks with softmax activation and multi-class log loss.
In International Conference on Image Analysis and Recognition, pages 358-366.
Springer, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1097-1105. Curran Associates, Inc., 2012.

Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recogni-
tion: A convolutional neural-network approach. IEEE transactions on neural net-
works, 8(1):98-113, 1997.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks, 3361(10):1995,
1995.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural networks, 6(6):861-867, 1993.

Hsuan-Tien Lin and Chih-Jen Lin. A study on sigmoid kernels for svm and the
training of non-psd kernels by smo-type methods. submitted to Neural Computation,
3(1-32):16, 2003.

26



[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740-755. Springer,
2014.

[25] David G Lowe. Object recognition from local scale-invariant features. In Proceed-
ings of the seventh IEEE international conference on computer vision, volume 2,
pages 1150-1157. Ieee, 1999.

[26] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

[27] Daniel Mas Montserrat, Qian Lin, Jan Allebach, and Edward J Delp. Training object
detection and recognition cnn models using data augmentation. Electronic Imaging,
2017(10):27-36, 2017.

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91-99, 2015.

[29] Martin Riedmiller. Advanced supervised learning in multi-layer perceptrons—from
backpropagation to adaptive learning algorithms. Computer Standards & Interfaces,
16(3):265-278, 1994.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211-252, Dec 2015.

[31] Statistisk sentralbyra. Akvakultur. 2019.

[32] Dag Sgrli, Paul T Aandahl, and Ingrid Kristine Pettersen. Sjgmateksport for 107,3
milliarder kroner i 2019. 2020.

[33] Ole Torrissen, Rolf Erik Olsen, Reidar Toresen, Gro Ingunn Hemre, Albert GJ Tacon,
Frank Asche, Ronald W Hardy, and Santosh Lall. Atlantic salmon (salmo salar): the
“super-chicken” of the sea? Reviews in Fisheries Science, 19(3):257-278, 2011.

[34] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and cpu
platforms for deep learning. arXiv preprint arXiv:1907.10701, 2019.

[35] Andreas Weigend. On overfitting and the effective number of hidden units. In Pro-
ceedings of the 1993 connectionist models summer school, volume 1, pages 335-342,
1994.

[36] Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized
populations of model neurons. Biophysical journal, 12(1):1-24, 1972.

[37] Wencong Xiao, Zhenhua Han, Hanyu Zhao, Xuan Peng, Quanlu Zhang, Fan Yang,
and Lidong Zhou. Scheduling cpu for gpu-based deep learning jobs. In Proceedings
of the ACM Symposium on Cloud Computing, pages 503-503, 2018.

27



[38] RN Yadav, V Singh, and PK Kalra. Classification using single neuron. In /EEE In-
ternational Conference on Industrial Informatics, 2003. INDIN 2003. Proceedings.,
pages 124-129. IEEE, 2003.

[39] Mehdi Rezaeian Zadeh, Seifollah Amin, Davar Khalili, and Vijay P Singh. Daily out-
flow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid
activation functions. Water resources management, 24(11):2673-2688, 2010.

[40] Boaz Zion. The use of computer vision technologies in aquaculture—a review. Com-
puters and electronics in agriculture, 88:125-132, 2012.

28



Appendix

29



