
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Alexander Johansen

Fast Optical Flow Estimation for End-
Effector Stabilization

Completed at the Autnomous Systems Lab at ETH
Zürich.

Supervised by:
Karen Bodie
Michael Pantic
Roland Siegwart

Master’s thesis in Cybernetics and Robotics

Supervisor: Tor Arne Johansen

August 2020

Alexander Johansen

Fast Optical Flow Estimation for End-
Effector Stabilization

Completed at the Autnomous Systems Lab at ETH
Zürich.

Supervised by:
Karen Bodie
Michael Pantic
Roland Siegwart

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen
August 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Table of Contents

Table of Contents 2

List of Tables 3

List of Figures 6

1 Introduction 7
1.1 Motivation . 7
1.2 Problem description . 7
1.3 Project scope . 8

2 Literature review and existing solutions 11
2.1 Rovio . 11
2.2 Optical flow based estimation and control 12

2.2.1 Definition . 12
2.2.2 Methods of computation . 13
2.2.3 Issues with optical flow . 15
2.2.4 Navigation using OF . 15

3 Fundamentals 17
3.1 Coordinate Frames . 17
3.2 Description of Ouzel . 17
3.3 Visual inertial odometry . 18
3.4 Optical flow . 18

3.4.1 Lucas–Kanades method . 19
3.4.2 PCA-flow . 20
3.4.3 Coarse 2 fine optical flow . 20
3.4.4 Dense Inverse search . 21

3.5 Ego-motion estimation . 23
3.5.1 4-point algorithm . 23
3.5.2 Explicit velocity calculation with aiding measurements 24

1

3.6 Kalman filter . 25
3.6.1 Extended Kalman filter . 27
3.6.2 Error state Kalman filter . 27
3.6.3 Kinematics . 28
3.6.4 Error state transition . 29
3.6.5 Fusing external state measurements 30

4 Evaluation 31
4.1 Experimental setup . 31

4.1.1 Components . 31
4.1.2 Software . 32
4.1.3 Calibration . 32
4.1.4 Camera setup . 32
4.1.5 Data collection . 33

4.2 Optical flow . 33
4.2.1 PCA-flow . 34

4.3 Coarse 2 fine . 35
4.3.1 DIS flow . 35

4.4 Ego-motion estimation . 39
4.4.1 4-point algorithm . 39
4.4.2 RANSAC . 39
4.4.3 IMU rotation correction . 40

4.5 Estimating scene distance . 42
4.6 Kalman filter . 43
4.7 Existing error . 43
4.8 Final experiments . 44

4.8.1 Hovering . 45
4.8.2 Compound movement . 47
4.8.3 Tabletop movement . 50

5 Conclusion and future work 55

Bibliography 59

Appendix 63

2

List of Tables

3.1 Solutions for planar homography decomposition 24

3

4

List of Figures

1.1 An annotated sketch of the final system 8
1.2 An overview of the proposed solution, the green blocks are the main con-

tributions of this project. The white blocks are external inputs and the grey
blocks are worked on concurrently with this project. 9

2.1 Illustration of how translational and rotational velocity of an observer gen-
erate appearant motion in the scene, from Raudies (2013) 13

2.2 Illustration of how various movements impact the observed optical flow
from Raudies (2013) . 14

2.3 Illustration of the aperture problem. If the observer can only detect move-
ment inside the bold rectangle the motion of the lines will look identical. . 16

3.1 Ouzel the hardware necessary to preform contact inspection. 18
3.2 Selected principal components used for flow densification, image from

Wulff and Black (2015) . 21
3.3 Visual representation of image pyramid and initialization from previous

layers . 22
3.4 Block diagrams of an error state Kalman filter 28

4.1 Image without undistoring . 32
4.2 Image after undistoring . 33
4.3 Color wheel used to represent pixel movement 34
4.4 Flowfield of PCA-flow at full resolutio n 34
4.5 Feature points of a frame . 35
4.6 An example frame of the estimated flow during a pure translational move-

ment . 36
4.7 Initial testing with full resolution image 37
4.8 Flow output when average run time is 10ms 37
4.9 Optical flow results while individually varying parameters. Top left to

bottom right shows variation of: Finest scale in pyramid, gradient decent
iterations, patch size, patch overlap. Image from Kroeger et al. (2016) . . 38

5

4.10 Caption . 39
4.11 Image showing which regions are filtered using RANSAC with a reprojec-

tion error threshold of 1. The right image shows the original flow while the
in the left image shows the input image with the occluded regions marked
as outliers based on the flow. 40

4.12 Image showing which regions are filtered using RANSAC with a reprojec-
tion error threshold of 0.1. The right image shows the original flow while
the in the left image shows the input image with the occluded regions
marked as outliers based on the flow. 40

4.13 A comparison in IMU-noise between handheld and flight tests with the
resulting relative velocity estimate . 41

4.14 Estimated rotational estimate and resulting translation estimate. Observe
how the rotational noise is directly transferred to the estimated velocity . 42

4.15 The Kalman filter inputs and outputs . 43
4.16 Estimation results with motors switched off, the Y-axis is the displacement

in meters and the X-axis is time in seconds. 44
4.17 Estimation results where the platform is manually lifted off the ground and

held in a stable position, the Y-axis is the displacement in meters and the
X-axis is time in seconds. 44

4.18 Hover trajectory . 45
4.19 Hover velocity filtered . 46
4.20 Hover trajectory . 47
4.21 Floor trajectory . 48
4.22 Floor trajectory . 49
4.23 Hover trajectory . 49
4.24 The flow output while hovering in place above table 50
4.25 Flow output while preforming a rotation above table 50
4.26 Tabletop trajectory . 51
4.27 Tabletop trajectory . 52
4.28 Tabletop trajectory . 53

5.1 Rovio position compared to the ground truth during the hover test 64
5.2 Rovio position compared to the ground truth during the trajectory test in

the floor . 64
5.3 Rovio position compared to the ground truth during the trajectory test pre-

formed over the table . 65

6

Chapter 1
Introduction

1.1 Motivation

Unmanned aerial vehicles (UAV) have since their inception been used for aerial photogra-
phy introducing a new method to inspect industrial installations in hard-to-reach areas. As
technology has progressed, it has become possible to achieve more complicated maneu-
vers and the quality of service delivered using UAVs has drastically increased. The natural
next step in this process is to perform physical inspection as done in Bodie et al. (2019).
This inspection uses a rigid arm mounted on an omnidirectional miniaturized aerial ve-
hicle (OMAV) in order to perform contact based inspection of concrete infrastructure.
This method does not provide much flexibility as the entire system must move in order to
move the tool used to inspect the surface. The next iteration of this platform introduces
an independently controlled end-effector where the dynamics are significantly faster then
the OMAV allowing for better stabilization and more precise interaction with the target.
The addition of a precise end-effector pushes the capabilities of the system beyond only
inspection, and enables simple interaction such as manipulation and repair of the target.

In order to perform these types of operations, the position of the end-effector in ref-
erence to the surface it is interacting with, must be know to a very high degree of accu-
racy. For the end-effector to be maneuverable it is critical that the attached sensors are
lightweight and that the state estimation is at a similar frequency as that of the control
loop.

This thesis aims to go beyond the current state of the art by building a highly inte-
grated system that maximizes framerate and accuracy on sensor, firmware and front-end
algorithm levels.

1.2 Problem description

The OMAV used in this was initally introduced as the VoliroX in Kamel et al. (2018) and
was further improved in Bodie et al. (2018) and Bodie et al. (2019). The current iteration

7

Tiltable double rotor group (6x)

End-Effector

Arm Assembly (3x)
Arm Servo (3x)

Main Body w Computer
+ Cameras

Camera Sensor

Figure 1.1: An annotated sketch of the final system

of the platform is called Ouzel and comprises 6 independently tiltable arms with 2 motors
per arm capable of delivering 12.7N of force per motor. The over-actuation of the system
enables flight in any orientation.

The current odometry algorithm run on the platform is called Rovio, introduced in
Bloesch et al. (2015). While this odometry method provides global stability in 6-dof it
does not provide high enough estimation accuracy or rates to stabilize the end-effector to
the desired degree of precision.

The UAV has the capability of flying in any orientation and has a delta-arm that can
move translationally independent from the main body, which should be sufficient in or-
der to perform the intended operations. This means that the end-effector will be rigidly
mounted in regard to the rotation axes and free in the translational axes. A rendering of
the final system is shown in fig. 1.1

1.3 Project scope
While the physical specifications of the arm is of course critical for the performance of
the final system, another key aspect is the measurement and estimation of the end-effector
state. This project aims to research possible solutions to the state estimation problem, as
well as developing a sensor system that is capable of estimating the end-effector state with
mm precision.

The physical arm is being developed concurrently with this project and will therefore
not be available to perform tests on. However the development and testing of the state
estimation can be performed independently from the arm assembly.

The approach used in this project was using a camera and range sensor in order to

8

Figure 1.2: An overview of the proposed solution, the green blocks are the main contributions of
this project. The white blocks are external inputs and the grey blocks are worked on concurrently
with this project.

calculate the velocity of the end-effector. This can be done at very high frequencies and
fusing the measurement with odometry from the global estimator using forwards kinemat-
ics provides a full state estimate in the desired reference frame at high frequencies. A
diagram of a high level system overview is shown in fig. 1.2

9

10

Chapter 2
Literature review and existing
solutions

Solving the problem of egocentric positioning in 6-dof is a complex and computationally
intensive problem. Current state of the art visual-inertial odometry(VIO) algorithms have a
maximum frequency av approximately 40-60Hz and are the results of decades of research.
Though odometry methods provide a global reference position and work well at the large
scale navigation, they are not developed with the intention of stabilizing something locally
at very high speeds and accuracy.

This project seeks to implement a visual-inertial state estimation method that has a
high enough speed and precision to control an end-effector mounted on the UAV with mm
precision. The proposed solution does not attempt to implement another 6-dof estimator
and relies on external odometery to relate the current position to the world frame.

The following chapter will explore the existing solutions as well as various methods
that are currently used for aerial stabilization and navigation.

2.1 Rovio
Rovio(RObust Visual Inertial Odometry) is the egocentric state estimation algorithm cur-
rently deployed on the platform developed in Bloesch et al. (2015). Rovio is a visual-
inertial state estimator based on an iterated EKF. Rovio uses FAST corner features Rosten
and Drummond (2005) parameterized in a robocentric view with a bearing vector and
distance associated with every feature. Multi level patches are extracted around each of
these features and warped according to the IMU-measured motion in order to minimize
the patch error between two frames. Extracting patches around each feature gives much
richer information about the environment and increases tracking robustness, and enables
tracking of linear features in order to gain information along the perpendicular axis.

The photometric error between a given patch and the next image is calculated by esti-
mating the position and warping of the patch in the image and calculating it, using equa-

11

tion 35 in Bloesch et al. (2017). This takes inter-frame illumination changes and the higher
level patch features increase robustness with respect to image blur or alignment issues into
account, while the lower level features ensure precise feature tracking. The FAST corner
detector provides a large amount of candidate features to be tracked and in order to reduce
computational burden a subset of these are chosen. The score of each feature is calculated
and coupled with a bucketing technique and the best features with a good distribution
within the camera frame are chosen.

In visual-inertial sensor setups IMU measurements are typically acquired between 5-
50 faster than images. Forster et al. (2017) solve this computational burden with IMU
preintegration. The proposed solution in Rovio is a simpler preintegration method in which
the Jacobian is evaluated based on the mean of the IMU measurements. This is in order
to only calculate the a-priori covariance once. It is stated that this method does not suffer
any performance loss compared to the regular method, and this might be the case for large
scale accuracy over time, but it needs to be examined more in detail for pinpoint accuracy
in low speed environments.

Various other Visual-Inertial-Odometry (VIO) algorithms exist and combining pro-
cessing methods from these might improve estimation results. Some open source methods
that achieve similar precision levels are VINS-Mono by Qin et al. (2018), Okvis Leuteneg-
ger et al. (2013) and methods suggested by Forster et al. (2017).

2.2 Optical flow based estimation and control

2.2.1 Definition

Optical flow is the apparent motion of objects, surfaces and edges caused by the 2d projec-
tion of a relative 3D motion between an observer and scene. The optical flow is formulated
as a 2D vector field of a size corresponding to the image input with vectors ∈ R2 where
each vector describes the direction and magnitude that each point has moved from one
frame to another.

Optical flow is created by the translation and rotation of a 3D point in the world
P(X,Y,Z) in the image frame x(x,y), the full definition of variables are illustrated in fig. 2.1
from Raudies (2013). The position of the point in the image frame can be expressed by P
and the focal length f as [

x
y

]
=
f

Z

[
X
Y

]
(2.1)

Note that optical flow occurs both if the observation frame or the point moves. The model
equation for instantaneous or differential motion disregarding the movement of the scene
is:

[
XOF

YOF

]
=

1

Z

[
−f 0 x
0 .− f y

]vxvy
vz


︸ ︷︷ ︸

translational flow

+
1

f

[
x · y −(f2 + x2) f · y

(f2 + y2) −x · y −f · x

]ωxωy
ωz


︸ ︷︷ ︸

rotational flow

(2.2)

12

Equation (2.2) shows some important characteristics, translational flow superimposes
linearly with rotational flow. The depth Z of the 3D point only influences the transla-
tional component while the rotational component is only dependent on the focal length.
Figure 2.2 illustrates optical flow generated from various types of motion.

Figure 2.1: Illustration of how translational and rotational velocity of an observer generate appearant
motion in the scene, from Raudies (2013)

2.2.2 Methods of computation
Determining optical flow can be classified into the following categories

• Patch based matching

• Feature matching

• Phase correlation

• Deep neural networks

Feature based techniques provide very good accuracy even when there are large dis-
placements. However, they are computationally expensive, less accurate in case of defor-
mation and sub pixel displacements are not detectable. This is essentially what most other
state of the art VIO algorithms try to optimize by reducing the amount of features to track
and only tracking the best features in an image rather than generating the full flow field.

Patch-based matching is very similar to feature based methods, only instead of select-
ing features to track between frames, a patch-based method solve an optimization problem

13

Figure 2.2: Illustration of how various movements impact the observed optical flow from Raudies
(2013)

to determine the displacement of an arbitrary region in the original image. This type of
method is also referred to as a differential method. The patch based method is gener-
ally faster then feature tracking as no feature selection is required, however feature based
methods are more robust to warping and regions that have featureless interiors. Patch-
or gradient-based methods suffer from sensitivity issues due to changing lighting and lin-
earization. They are generally quite precise when the inter-frame motion is small and are
fast to compute.

These methods might be usable in order to provide a high frequency pose estimation to
augment the existing state estimation when the MAV is trying to maintain a stable position
in space.

Recently there has been much development in developing neural networks for optical
flow estimation with some of them relatively lightweight and fast such as LiteFlowNet
Hui et al. (2018) inspired by FlowNet2 Ilg et al. (2016). FlowNet2 is capable of frame-

14

rates between 8-140fps, however most CNN methods are run on high-end GPUs and are
therfore not suited for on board aerial processing. Most CNNs are based on the block
and feature matching methods and are often trained on publicly available data-sets such
as SINTEL Butler et al. (2012), which is a good resource for comparing various methods.
Many of these algorithms are designed to perform extremely well on these datasets and
can be over-engineered for the task and accuracy that is required in this project providing
little customization and slow speeds.

If it proves hard to decide what method to use for this application, it is possible to use
one of the more advanced methods as a ground truth flow and quantitatively compare the
candidates to each other.

A more exhaustive survey of the existing methods of computing optical flow is done
in Fortun et al. (2015)

2.2.3 Issues with optical flow
Many flow methods are based on the assumption that the lighting is consistent from one
frame to another, while some robustness might be gained by normalizing frames or feature
areas, finding proper correspondents between frames will be harder with lighting vari-
ations. Challenging lighting conditions might occur in artificially lit scenes where the
flicker from one frame to the next or in situations where the observer is between the light
source in the scene causing moving shadows to appear in the image.

Another known problem that is shared between most vision based algorithms is that
texture is needed in order to calculate displacement from one frame to another. Dense
optical flow methods are particularly vulnerable as they do not use information gained
outside of these texture-less areas to estimate the internal flow. If for example a texture-less
square was moving across a textured scene a feature based method that uses all information
available in the image could interpolate the speed of the internal points of the square, while
a patch based method would provide ambiguous flow estimates in the texture-less regions.

A more complicated version of this problem is known as the aperture problem. This
occurs when the ends of an edge are not visible in the image, in this scenario it becomes
impossible to estimate the motion along this edge. This problem is demonstrated in fig. 2.3.

2.2.4 Navigation using OF
Zufferey and Floreano (2005) explore the use of optical flow to navigate with ultra lightweight
UAV. They demonstrate usage of optical flow for obstacle avoidance and altitude hold with
very limited weight and computation power.

Ruffier and Franceschini (2005) go more in depth on how optical flow can be used as
a control strategy.

There are many more optical flow experiments done using aircraft that are attempting
to maintain altitude or follow a physical path, commonly for these is the goal of maintain-
ing a constant optical flow or predetermined flow sequence. In the case of a stable hover
the goal is to minimize all flow.

15

Figure 2.3: Illustration of the aperture problem. If the observer can only detect movement inside
the bold rectangle the motion of the lines will look identical.

16

Chapter 3
Fundamentals

3.1 Coordinate Frames
The project mainly uses three different coordinate frames, frames with the same origin and
orientation are written together:

• Body/IMU

• World/Vicon

• Camera/End-Effector

During testing the external video capture system measures the position and orientation
of the body frame using ENU coordinates, while the internal state estimation is expressed
with NED coordinates.

In this report the transformation from body to camera frame is a rigid transformation.
However when the arm is mounted on the system the transformation from body to camera
frame can be estimated using the forward kinematics.

3.2 Description of Ouzel
Ouzel the OMAV used that the delta arm will be mounted on. It is a hexacopter with dual
KDE 885 motors on each arm, where each arm can rotate separately in order to preform
complex aerial maneuvers. The current system is controlled with a low level embedded
flight controller, a Pixhawk 4. The controller is custom written software that is capable of
determining the motor rates and arm angles in order to stabilize the system.

As a higher level controller a Intel NUC i7 running linux is used to interface with the
flight controller and preform higher level tasks. ROS is run on the NUC to preform high
level estimation of the system state and communicate with the ground station.

Ouzel was most recently used to inspect concrete surfaces with a fixed arm mounted
on the main body, this configuration is shown in fig. 3.1.

17

Figure 3.1: Ouzel the hardware necessary to preform contact inspection.

3.3 Visual inertial odometry
Visual inertial odometry (VIO) is the process of estimating the pose and velocity of a sys-
tem using only the input from on board cameras and IMUs. In GPS denied environments
VIO(along with lidar based navigation) is the only viable option for state estimation.

With the development of autonomous aerial platforms accurate VIO is an essential
element in the performance of these systems. Combining accurate VIO algorithms with
simultaneous localization and mapping (SLAM) enables long missions to be carried out
with minimal error.

While this project does not aim at developing an odometry method, it is important to
understand the existing odometry method on the platform, why it is not the correct solution
to the problem we are solving and what other methods exits and their strengths.

3.4 Optical flow
This project aims to select the most suited optical flow method and will not perform ex-
tensive tests of the state of the art of optical flow algorithms. In this section the underlying
theory of optical flow will be introduced as well as the workings of some select algorithms.

In order to find and select a well-suited algorithm for this project three main points
were considered:

• Run time for the full algorithm including image prepossessing

• Processing power needed to run the algorithm

• Accuracy

The goal of the project is to provide a high frequency velocity estimation, in order to do
this the underlying algorithm must also operate at a high speed. Many of the cutting edge
algorithms are evaluated on the end point error(EPE) with little or no regard for run time
with top performers such as RAFT Teed and Deng (2020) and STaRFlow Godet et al.

18

(2020) running at 5-10Hz on GPUs and high preforming CPU algorithms such as SfM-
PMMaurer et al. (2018) taking 32s per frame.

As processing-power onboard the drone is limited it is essential that the algorithm
performs well on a CPU and not run on dedicated hardware.

Finally it must be accurate in the environments where expected usage will occur. The
expected use case of the optical flow is to detect ego motion while observing planar sur-
faces. In this scenario the relative accuracy of the algorithms might vary significantly
compared to what the reported EPE indicates. In practice most modern algorithms should
provide sufficiently good results in order to determine the speed of the observer.

3.4.1 Lucas–Kanades method
Many of the modern algorithms are in some way based on the Lucas-Kanade algorithm
introduced in Lucas and Kanade (1981). The method describes the general method of
computing optical flow and it will briefly be summarised here.

Optical flow can be simplified as solving a registration problem characterized by hav-
ing two functions F(x) and G(x) which give the pixel value of the location x in two images.
The goal of the optical flow estimation is to find a vector h that minimises the difference
between F(x + h) and G(x) in some region (R) around x. A metric typically used to calcu-
late the disparity is the L2 norm as a cheap and accurate measurement of disparity.

L2 =
∑
x∈R

[F (x + h)−G(x)]
2 (3.1)

By minimizing L2 h is the resulting flow of the pixel x. This is done by Gauss-Newton
gradient decent of a non-linear optimization problem.

Applying this notation to a more practical example; consider two consecutive images
in a image stream It, It+1 one can extract a region centered around a pixel x from It and
call this region T(x). The optimization problem using the L2 norm eq. (3.1) then becomes

h = argminh
∑
x

[It+1(x + h)− T (x)]
2 (3.2)

Minimizing this is a non-linear optimization task as pixel intensity is not correlated
with position. The Lucas-Kanade method solves this by assuming h is known, and iterably
solves for increments to the parameter ∆h

∆h = argmin∆h
∑
x

[It+1(x + h + ∆h)− T (x)]
2 (3.3)

Assuming that the image is linear in an area around x, eq. (3.3) is linearized by pre-
forming a first order Taylor expansion

∆h = argmin∆h
∑
x

[
It+1(x + h) +∇It+1

∂(h + ∆h)

∂h
∆h− T (x)

]2

(3.4)

Where the gradient ∆It+1 is evaluated at x + h + ∆h. The steepest decent direction is
calculated by taking the partial derivative

19

∑
x

[
∇It+1

∂(h + ∆h)

∂h

]T [
It+1(x + h) +∇It+1

∂(h + ∆h)

∂h
∆h− T (x)

]2

(3.5)

From this expression the closed form formula for ∆h is is given as:

∆h = H−1
∑
x

[
∇It+1

∂(h + ∆h)

∂h

]T [
It+1(x + h) +∇It+1

∂(h + ∆h)

∂h
∆h− T (x)

]2

(3.6)
where H is the hessian matrix evaluated at x+h.
Using this expression h is updated until ∆h reaches sufficiently small values.

3.4.2 PCA-flow
Principal component analyses flow is an optical flow algorithm introduced by Wulff and
Black (2015). It utilizes a sparse to dense approach where K feature points between two
images are matched. The correspondence of these feature points {pk,t,pk,t+1} induce
a displacement vector h = pk,t+1 − pk,t. This provides a sparse flow estimate from
one frame to the next, this is beneficial as using fewer points to calculate flow results in
a cheaper algorithm. In addition feature matching is a robust method of tracking large
displacements where the linearization around a pixel is no longer a good approximation.

Feature detection

Various methods to track features from frame to frame have been developed; such as SIFT
Lindeberg (2012), SURF Bay et al. (2006) and FAST Rosten and Drummond (2005).
PCA-flow utilizes a separate feature detection from Geiger et al. (2011) which is designed
for visual odometry applications, while this choice is effective, more optimal solutions
are evaluated in Otsu et al. (2013). While the results in Otsu et al. (2013) indicats that
FAST features might be a better choice for this application note that the current odometry
algorithm on the platform uses FAST features, so in order to increase robustness it might
be beneficial to utilize a separate algorithm.

Densification

Computing a dense flow field using the sparse is done using a linear combination of a set
of basis vectors. In order to compute the basis vectors GPUFlow Werlberger et al. (2009)
is used to calculate the flow of four Hollywood movies. 500 principal components of the
resulting flow are calculated using the robust PCA method from Hauberg et al. (2014). A
selection of the resulting basis is shown in fig. 3.2

3.4.3 Coarse 2 fine optical flow
In Liu (2009) a method based on the Lucas-Kanade algorithm is implemented. However
it differs from Lucas-Kanade in that the conjugate gradient method is used to iteratively

20

Figure 3.2: Selected principal components used for flow densification, image from Wulff and Black
(2015)

compute the pixel flow values, which should increase the speed of the algorithm. This
method utilizes a coarse to fine approach which computes the image flow at coarser res-
olutions and uses this to initialize flow at higher resolution. This helps avoid poor local
minima and improve estimation for large movements.

3.4.4 Dense Inverse search
Fast optical flow using dense inverse search proposed by Kroeger et al. (2016) is an algo-
rithm that achieves average results on both the KITTI Geiger et al. (2013) and SINTEL
Butler et al. (2012) data-sets in terms of accuracy. This performance is very impressive
considering that it runs orders of magnitude faster than other algorithms with accuracy in
this category. According to the original paper it can achieve run speeds of up to 300Hz
while maintaining high image quality. However this does not include image preprocessing
which, when included, significantly reduces the speed of the algorithm.

DIS is a patch based, multi-layered optical flow algorithm. The underlying patch
matching is done using the Lucas-Kanade method. However it uses methods introduced in
Baker and Matthews (2004) to optimize the search. The main takeaway is how it utilizes
a inverse search function instead of eq. (3.3)

∆h =
∑

x

[T (x−∆h)− It+1(x + h)]
2 (3.7)

This removes the need to recompute the Hessian and Jacobian of the images every iteration
which significantly speeds up the minimization problem.

21

Explanation of the algorithm

An image pyramide is created by down-scaling the original image by a factor of 2 until
the desired height h is reached. In order to complete the variational refinement step the
gradients of the image at each scale must be calculated. For each scale s a dense flow
field Us is created starting from the coarsest scale. The resolution of Us is equal to the
resolution of the image at the scale s.

Creating grid: A patch size and patch overlap coefficient are selected and a grid is
generated uniformly over the image domain and the overlap is floored to an integer pixel
value. The number of patches Ns needed to be matched between frames is determined by
the density of the patches and image size.

Initializing flow: At the coarsest scale the flow is initialized to 0 and for each con-
secutive scale s the flow is initialized from the previous scale s-1 as visualized in fig. 3.3.

Figure 3.3: Visual representation of image pyramid and initialization from previous layers

Inverse search: The optimal displacement is calculated for each patch in Ns. If the
flow of a patch is found to be larger than the patch size it is reset to the initial flow in order
to increase robustness.

Flow densification: The central pixel x in every patch i has now been assigned a
displacement vector ui, the surrounding pixels displacement vectors are decided by the
weighted average of the surrounding patches:

Us(x) =
1

Z

Ns∑
i

λi,x
max(ε, di(x)

ui (3.8)

Where λi,x is 1 when the pixel x is in the patch i and 0 otherwise, di(x) is the intensity
difference of the two images being compared di(x) = It+1(x+ui)−It(x), ε is the smallest
possible intensity difference and Z is the aggregated weight used to normalize the flow.

Variational refinement might be not be necessary for the scope of the project since it
is not expected to be large motion boundaries, hence this step is optional. The variational
refinement is an iterative process in which the energy in the image is minimized, it is
defined as a weighted sum of intensity, gradient and smoothness terms. The magnitude
of the intensity and gradient terms relate how similar the variation of the displacement
vector is to the intensity and gradient image, while the smoothness term penalizes the total
gradient of displacements.

22

3.5 Ego-motion estimation
Calculating the ego-motion of the observer from optical flow is a non-trivial problem with
research being done on many possible options Chhaniyara et al. (2008); Ho et al. (2017);
Honegger et al. (2012). This section will briefly review the methods implemented in this
project.

3.5.1 4-point algorithm
In Ma et al. (2003) the 4-point algorithm is introduced. This section will give a brief
introduction to the algorithm. It is quite technical so for proofs or further explanation
please refer to chapter 5 of Ma et al. (2003). Here the continues homography matrix H is
given as a simplification of eq. (2.2) which assumes that points in the scene are located on
a common plane such that nTX = d where n is the unit normal vector to the plane and X
is the position of a point in 3D space and d is the distance to the plane.

H = [ω]× +
1

d
vnT (3.9)

such that
Ẋ = HX (3.10)

here [ω]× is the skew symmetric matrix associated with ω. The continues homography
constraint is given below

[x]×Hx = [x]×u (3.11)

Which involves a set of N image pairs (xi,hi) where h is the displacement from one image
to the next. In order to retrieve the elements of H it is re-stacked into a vector Hs such that
it can be solved as a linear set of equations.

aTi H = [xi]×ui (3.12)

Where ai = xi⊗ [xi]× and⊗ is the Kroneker product operator and i ∈ N . By stacking all
the equations into one equation the result is

χHs = B (3.13)

Where χ = [a1, ..., aN]T ∈ R3n×9 and B = [[x1]×u1, ..., [xN]×uN]TR3n in order to
solve this system uniquely rank(χ) = 8. Since each pair of image points and flow values
impose two constraints at least four optical flow pairs that are not colinnear are necessary.

Since χ has a one dimensional null space, the resulting matrix is not a perfect repre-
sentation of H and will therefore be denoted HL. In order to normalize this matrix the
eigenvalues [λ1, λ2, λ3], in ascending value, of HT

L + HL are computed and the final H
matrix is given by

H = HL −
1

2
λ2I (3.14)

Finally in order to extract the velocity and surface information from H the 4 possible
solutions are given in table 3.1. Where [λ1, λ2, λ3] are the sorted eigenvalues of H +HT

and [u1,u2,u3] are the corresponding eigenvectors.

23

Solution 1

1

d
v1 =

√
αṽ1

n1 =
1√
α

ñ1

ω = H− ṽ1ñT1

Solution 3

v3 = −v1

n3 = −n1

ω3 = ω1

Solution 2

1

d
v2 =

√
αṽ2

n2 =
1√
α

ñ2

ω = H− ṽ2ñT2

Solution 4

v4 = −v2

n4 = −n2

ω4 = ω2

Table 3.1: Solutions for planar homography decomposition

Where

α =
1

2
(λ1 − λ3) (3.15)

ṽ1 =
1

2
(
√

2λ1u1 +
√
−2λ3u3) (3.16)

ṽ2 =
1

2
(
√

2λ1u1 −
√
−2λ3u3) (3.17)

ñ1 =
1

2
(
√

2λ1u1 −
√
−2λ3u3) (3.18)

ñ2 =
1

2
(
√

2λ1u1 +
√
−2λ3u3) (3.19)

Of the four possible solutions show in table 3.1 two can be easily be removed by
imposing the positive depth constraint nT > 0 as the camera can only see points infront of
it. However there is still ambiguity in deciding the final solution which might be decided
using additional measurements.

3.5.2 Explicit velocity calculation with aiding measurements

From eq. (2.2) the following equations can be extracted

Xof =
vzx− vxf

Z
− ωyf + ωzy +

ωxxy − ωyx2

f
(3.20)

Yof =
vzy − vyf

Z
− ωxf + ωzx+

ωxy
2 − ωyxy
f

(3.21)

Solving for velocity leads to

24

vx =
1

f
(vzx+ Z(−XOF + ωzy +

ωxxy − ωyx2

f
)− ωyZ (3.22)

vy =
1

f
(vzy + Z(−YOF + ωzx+

ωxy
2 − ωyxy
f

)− ωxZ (3.23)

(3.24)

This equation must be preformed individually for each pixel in the the image, however
using the assumption that the camera is perpendicular to the surface of interaction the terms
that include the pixel location will cancel out by symmetry due to the distance Z distance
being equal for opposing pixels. This leads to the following equation for velocity:

vx = Z(XOF /f − ωy) (3.25)
vy = Z(YOF /f − ωx) (3.26)

Using this expression it is only necessary to use the average flow value of the flow field.
When using a feature based algorithm the feature is normally pinpointed at a exact

pixel location. However using a camera with a focal distance of 2.8mm and pixel size of
6.9um at a distance of 1m from the scene means that moving one pixel in the image is
equivalent of a 2.4mm movement in the scene. The nature of the optical flow calculation
allows for a movement to be detected in the sub pixel region meaning that even intensity
changes in the target pixel should result in estimated motion.

3.6 Kalman filter
Throughout the project various filters were developed in order to use the provided sensor
data to estimate the camera frame state. The classic Kalman filter in Kalman (1960) relies
on the assumptions that:

• Linearity of process and observation models

• Disturbances are modeled as Gaussian noise

The Kalman filter state update is a recursive state estimate, meaning that the state esti-
mation is only derived from the previous state and the new measurement. The estimation
process is divided into two steps: prediction and update. The state of the filter is repre-
sented by the following two variables.

• x̂ is the filter state estimate with dimension n equal to the number of states

• P, the filter estimate covariance matrix. With the dimension n x n. This is a measure
of the accuracy of the current state estimate.

In order to properly estimate a process with measurement noise and unmodeled process
noise the following matrices are specified:

25

• A The state-transition matrix

• H The observation model

• Q The process noise covariance

• R The observation noise covariance

The observation of the system true state is therefore according to

z = Hx + v (3.27)

where v is the noise vector with covariance R.
Note that additional information of the control input can be included, but is omitted

here as this was not the case in this project.

Prediction

The prediction step is a propagation of the filter state from the previous to the current time.
This is done according to the state transition matrix as follows, note subscript k indicates
the current time step.

xk = Akx̂k−1 (3.28)

Every time the state is updated, the corresponding covariance matrix is updated accord-
ingly.

Pk = AkPk−1Ak + Qk (3.29)

Update

The update step incorporates the measurement into the current estimate. First the innova-
tion y and the innovation covariance S are calculated as follow

yk = zk −Hx̂k (3.30)

Sk = R + HPHT (3.31)

The innovation measures the difference between the measured state and the estimated state.
Since S and P give accurate measures of the respective accuracy the optimal Kalman gain
is calculated by

Kk = PHTS−1 (3.32)

Intuitively the Kalman gain is larger if the confidence in the measurement is larger than
the estimated state. Finally the state and state covariance are updated.

x̂k = x̂k + Kkyk (3.33)

26

3.6.1 Extended Kalman filter
Usage of the Kalman filter can be extended to encompass non-linear systems by use of
the aptly named Extended Kalman Filter (EKF). The EKF is based on the same equations
as the KF, however the state prediction is completed directly using the model non-linear
function f, while the state covariance is estimated using the Jacobian of f :

x̂k = f(x̂k−1) (3.34)

Pk = APAT + QT (3.35)

Similarly the updated equations become

yk = zk − h(x̂k) (3.36)

S = R + HPHT (3.37)

Here A is the Jacobian of f evaluated at state x and H the Jacobian of h at state x.

A =
∂f

∂x̂

∣∣∣∣
x̂k

(3.38)

H =
∂h

∂x̂

∣∣∣∣
x̂k

(3.39)

The rest of the equations are identical to the linear Kalman filter.
As the state covariance can only be approximated the filter loses its optimality, the

performance of the filter is therefore highly dependant on if the linearization is a good
approximation of the underlying model.

3.6.2 Error state Kalman filter
A large portion of the time spent during this project was spent developing an Error State
Kalman Filter (ESKF). While this filter was not used during the evaluation of the system
due to large noise in the IMU and lack of time for validation, the theory is still included for
reference and the implementation is included in the digital attachments. For more in depth
reading on error state Kalman filters and the quaternions kinematics see Solà (2017).

In an error state filter one must consider three different values: the true-, nominal- and
error-state of the system. The true value is a composition of the nominal and error state.
The idea of the ESKF is to integrate the high rate IMU data using strapdown equations
into a nominal state x. Due to inaccuracies due to noise and biases this integration will
accumulate small errors summarised by the filters error state δx. This error state incorpo-
rates all errors, noise and perturbations, and is estimated in parallel with the nominal state
integration. When additional sensor data is available (such as Rovio or Optical flow) the
error state is corrected and a posterior Gaussian estimate is injected into the nominal state
and reset to zero.

The benefits of such an estimator is that since the error state is always small and oper-
ating close to the origin we can use a minimal set of parameters to represent it and avoid

27

Figure 3.4: Block diagrams of an error state Kalman filter

issues related to singularities. In addition as the system dynamics are generally captured
by the nominal state the error state dynamics are slow and can be updated at a lower fre-
quency.

Another benefit is that the error state can be updated at the time the measurement
occurred and propagated forward to the current state, allowing a mathematically consistent
way of fusing measurements with different time delays, while still maintaining a high
frequency estimation of the current state. This feature is very useful when dealing with
images that have a processing delay.

3.6.3 Kinematics

The true state is a composition of the nominal state and error state such that xt = x + δx.
The true state kinematics are as follows

ṗt = vt (3.40a)
v̇t = Rt(am − abt − an) + g (3.40b)

q̇t =
1

2
qt ⊗ (ωm − ωbt − ωn) (3.40c)

ȧt = aw (3.40d)
ω̇t = ωw (3.40e)

(3.40f)

where the subscript t indicates the true state value, m are values measured by the IMU and
bt and n indicate the true bias and noise respectively. Rt is the rotation matrix between the
body frame and earth frame.

The nominal state kinematics are derived from the modeled system by removing the

28

noises,

ṗ = v (3.41a)
v̇ = R(am − ab) + g (3.41b)

q̇ =
1

2
q⊗ (ωm − ωb) (3.41c)

ȧ = 0 (3.41d)
ω̇ = 0 (3.41e)

(3.41f)

The error state kinematics can then be derived from the true- and nominal state,

δṗ = δv (3.42a)
δv̇ = −R[am − ab]×δθ − Rδab − Ran (3.42b)
δq̇ = −[ωm − ωb]×δθ − δωb − ωn (3.42c)
δȧ = aw (3.42d)
δω̇ = ωw (3.42e)

(3.42f)

where [x]× represents the skew symmetric operator. Here equations eq. (3.42b) and
eq. (3.42c) require some none trivial manipulations of the non-linear equations eq. (3.41b)
and eq. (3.41c) to obtain the linearized dynamics, for a full proof refer to Solà (2017).

In order to implement the state kinematics they are converted to discrete time and the
nominal state kinematics become

pk+1 = pk + vk∆t+
1

2
(Rk(am,k − ab,k) + g)∆t2 (3.43a)

vk+1 = vk + (Rk(am,k − ab,k)− g)∆t (3.43b)
qk+1 = qk ⊗ q{(ωm,k − ωb,k)∆t} (3.43c)

ab,k+1 = ab,k (3.43d)
ωb,k+1 = ωb,k (3.43e)

Here the notation q{x} represents the rotation vector to quaternion formula.

q{v} = φu =

[
cos(φ/2)

usin(φ/2)

]
(3.44)

Where v represents a rotation of φ rad around the axis u

3.6.4 Error state transition
The prediction step carried out for the error state is similar to a normal EKF and are written
as,

δx̂k = f(xk−1,uk) · δx̂ (3.45)

Pk = FkPk−1FTk + Qk (3.46)

29

Fk is the Jacobian of f() with respect to the error, and Q is the covariance of the IMU.

Fk =
∂f

∂δx

∣∣∣∣
xkuk

(3.47)

Of course as the error state is not observable by the IMU measurements, eq. (3.45) will
always return zero as the Jacobian is linearized around the nominal state and the mean of
the error is zero. While the predicted error state is zero, the associated covariance increase
with every prediction step.

3.6.5 Fusing external state measurements
Three stages.

• Observation of the error state

• Inject error state into nominal state

• Reset error state

Observation of the error state

Sensor data is observed following:

y = h(xt) + v (3.48)

where h() is a differentiable function and v is noise.
In order to calculate the correction equations the observation model Jacbian H must be

defined with respect to the error state. However, as the error state has not been observed
yet the true state estimate is simply the nominal state, x̂t = x.

Hk =
∂f

∂δx

∣∣∣∣
xk

(3.49)

For most measurements H is trivially calculated as standard Jacobian of h(). However
if the measurement is of the state attitude q the measurement must be converted to delta
angles in order to integrate into the error state.

Injection of the observed error and reset

This is easily done by using the appropriate composition

x = x⊕ δx̂ (3.50)

After injection the observed error state is reset to 0.

30

Chapter 4
Evaluation

4.1 Experimental setup

During the development phase of the project the lab was closed due to coronavirus. This
led to the need to have a test platform that was usable in a home office environment. For
this purpose the camera, IMU and versavis board were removed from the MAV and rigidly
mounted to a testing board. Tests with this board was done with the full camera resolution
at 40Hz.

When mounted on the MAV the same camera that was used for Rovio was used for
optical flow measurements. This camera is mounted at a 45 degree angle to the drone body
frame. As applications in the future intend to have the camera pointing perpendicular to the
ground the MAV was flown at a 45 degree angle in order to compensate for its mounting
offset. Tests in this configuration was done at 120hz and with a region of interest of
256x256 set in the center of the image.

For ground truth (GT) measurements an external motion capture system was used,
dubbed vicon by which the measurements are received using a vrpn client (Virtual-Reality
Peripheral Network). The notation in the plots uses the notation vrpn client, vicon and GT
interchangeably.

4.1.1 Components

The critical components that are needed for the estimation to be viable are a camera and
IMU. This project used a versavis board in order to hardware synchronize the camera and
IMU measurements. The IMU used is the ADIS16448 and the camera is the FLIR Firefly
S FFY-U3-04S2M. In addition some method of measuring the scene distance is necessary,
here tis was accomplished using the height measurement from vicon.

31

4.1.2 Software
ROS was used as a middle ware layer in order to facilitate communication between various
modules and over the network. The FLIR firefly is provided with a ROS driver called the
spinnaker SDK which was used to set the region of interest of 256x256 pixels and setup
such that it could be manually triggered with the versavis board.

4.1.3 Calibration
For each setup an initial calibration of the platform was performed in order to determine
the exact transformation matrix between the IMU and camera, the distortion parameters
and intrinsic matrix of the camera. The tool used to complete this was kalibr developed
in Furgale et al. (2013), and a new calibration was preformed each time the testing con-
figuration was adjusted. Rovio will rapidly diverge with even small errors in calibration.
Additionally, in order to properly compensate angular flow as discussed in section 3.5 the
precise transformation matrix between camera and IMU is necessary in order to transform
the measured angular velocity to the camera frame.

4.1.4 Camera setup
The camera is capable of capturing frames at 720x540 @ 120Hz. However this is with
a significant amount of distortion at the edges of the frame. This distortion complicates
the calculation of optical flow and can be compensated using the distortion parameters
calculated by kalibr as seen in fig. 4.1 and fig. 4.2 The rectified image was tested in

Figure 4.1: Image without undistoring

various environments and in lower light, the corners in the image appear very dark and
cause a significant amount of noise. In order to both reduce the run-time of the optical
flow algorithm and eliminate the large distortion and dimming effects at the edges of the
frame it was decided to create a region of interest(ROI) in the center of the image. The
DIS-flow algorithm requires a resolution that is a power of two, if this is not done it will
pad the image which sometimes leads to artifacts at the image edges. Therefore, a natural
choice for the ROI was a 256x256 area in the center of each frame, here the distortion is
negligible and an even amount of light is hitting the sensor.

32

Figure 4.2: Image after undistoring

4.1.5 Data collection
As the camera mounted on the drone is angled 45 degrees, data collection was collected in
three main ways

• Handheld movement

• Takeoff to landing with the drone flying horizontally

• Takeoff to landing where the drone is flying at a 45 degree angle such that the camera
is perpendicular to the ground

The handheld tests give a good indication of the algorithm performance, however the flight
tests give a more realistic example including vibrations and oscillations. The data sets
where the camera is mainly facing perpendicular to a surface are the most realistic for the
intended usage of the system, and these are the results that will be presented in this section.

4.2 Optical flow
In this section the three main options: DiSFlow, PCA-flow and coarse2fine, will be eval-
uated in order to decide which should be used as the underlying flow calculation method.
In order to evaluate the accuracy of the methods a combination of the reported accuracy
and a qualitative assessment were considered. Coarse2fine was not evaluated on any stan-
dardized data set and will only be evaluated qualitatively. In order to visualize the flow, a
color image is used where the intensity of the color is related to the magnitude of the flow
while the color indicates the direction according to the color wheel in fig. 4.3.

The accuracy of an optical flow method is described by the Endpoint Error (EPE).
This is calculated by comparing the estimated displacement vector he with the ground
truth optical flow vector hgt where the endpoint error is the Euclidian distance between
the two. Typically the most prominent metric is the frame average EPE, however, some
specialized algorithms might be better suited for large or small displacements in which
case the EPE for the pixels that have moved more or less than some benchmark value are
evaluated.

33

Figure 4.3: Color wheel used to represent pixel movement

4.2.1 PCA-flow
PCA-flow has an average EPE of 8.6 according to Butler et al. (2012) and despite using
a feature based method does not seem to have any particular advantage at large displace-
ments.

PCA flow was evaluated on the handheld test rig, meaning that the testing process was
done with the full camera resolution of 720x540. At this resolution it was able to achieve
an average speed of 1.5Hz with a flow as seen in fig. 4.4.

Figure 4.4: Flowfield of PCA-flow at full resolutio n

As can be seen in the flow output there is a slight oscillation to the flow. This occurs due
to the interpolation using biases between matched feature points, showing that principal
components used to segment motion in media is not a great fit for this application.

34

Figure 4.5: Feature points of a frame

In an attempt to give the algorithm the best possible run time, various parameters were
adjusted. The highest speed was achieved by halving the image resolution and changing
the feature detector to use FAST features. After tuning the mean frequency it was 4.5Hz
and due to this still not being sufficient for the intended application the algorithm was
disregarded from further tests.

4.3 Coarse 2 fine
Coarse2fine produced high quality results when tested on stock footage taken from a high
altitude drone seen in fig. 4.6. However, the rendering time per image was 22s. As this
method uses many of the same concepts as DISflow but at a much slower speed it was not
explored further in this report.

4.3.1 DIS flow

Dense inverse search has an EPE of 10.13, which is more then double the error of the
highest preforming algorithms and almost 20% worse than PCA-flow. The main attribute
of DISflow was that it was developed with minimizing time complexity in mind.

When discussing the speed of the algorithm it is important to mention preprocessing
times. While the paper lays out that the frequency of the algorithm can reach 600Hz this
excludes the preprocessing time needed to access the disc and calculate the gradients of
the image. When this is included the frequency decreases to a maximum of 46Hz.

In a scenario where a video must be processed in real time, these preprocessing steps
are essential to the overall performance of the algorithm. Using the ROS image transport
library, the disc access time can be eliminated, some overhead still persists due to the
need to serialize the image. However, this can be further improved by setting up the flow
calculation node and the camera driver to be managed by the same nodlet manager.The
image gradients must be calculated for each incoming image, but by ensuring that this
is only done once for each image the preprocessing time can be further reduced by half.
Finally rescaling images before the flow calculation is necessary in order to build the multi
scale pyramid as discussed in section 3.4.4. The algorithm also must pad the image in order

35

Figure 4.6: An example frame of the estimated flow during a pure translational movement

to ensure that it restlessly divisible on all scales of the pyramid, by carefully selecting a
region of interest in the camera driver that corresponds to this resolution, initial padding
and removal of padding is not needed. The final preprocessing for each new image frame
using the final 256x256 resolution was thereby reduced to approximately 2ms from 20ms.
While this is a significant improvement the entire flow calculation must take less than
8ms in order to run at the cameras frame rate limit of 120Hz. When conducting tests the
processing times of a single frame could sometimes spike to 12-15ms causing a dropped
frame. These spikes are most likely due to a preemption of the process, however these
dropped frames did not significantly cause any loss in accuracy so it was decided to keep
the quality at this level and have a frequency of around 110Hz on the 120Hz stream.

The initial tests of the algorithm were performed on the test rig so parameter explo-
ration would only provide approximate results of what would be seen on the final system,
particularly in regard to timing. The laptop that carried out these tests completed the pre-
processing at approximately 10ms for the full resolution image after the optimization steps
were implemented. The system was almost able to keep up with the camera at full resolu-
tion running at 40Hz, dropping frames occasionally but with an average calculation time
of 30ms. An example of the produced flow at this stage is shown in fig. 4.7.

To see what the result would look like when running at very high frequencies the input
resolution was reduced by half and patch overlap lowered to 0.3. Using this setup the
average calculation time was reduced to 10ms at a significant cost to the quality as seen in
fig. 4.8.

These initial results were promising and provided significantly better overall results
than any other method. Moving forward this method would become foundation for further
results.

36

Figure 4.7: Initial testing with full resolution image

Figure 4.8: Flow output when average run time is 10ms

37

Figure 4.9: Optical flow results while individually varying parameters. Top left to bottom right
shows variation of: Finest scale in pyramid, gradient decent iterations, patch size, patch overlap.
Image from Kroeger et al. (2016)

Parameter exploration

In Kroeger et al. (2016) various parameters are explored in order to optimize run speed
accuracy trade off show in fig. 4.9.

These results were verified on the target system and the final parameters used were:

Parameter Value
Finest scale in pyramid 1 (0 indexed)
Number of iterations 12
Patch size 8x8
Patch overlap 0.4
Intensity weight 10
Gradient weight 10
Smoothness weight 20

Note that the finest scale in the image pyramid is by far the factor that has the largest in-

38

Figure 4.10: Caption

fluence on the speed of the algorithm. During testing this was the main parameter that was
tuned in order to achieve speeds in the desired range, and was what was most rigorously
explored.

4.4 Ego-motion estimation

4.4.1 4-point algorithm
Testing was done using the 4-point algorithm in order to determine the camera velocity and
plane orientation, however it became apparent that without including further information
such as in Grabe et al. (2015) this method is not a viable option for ego-motion calculation.
Typical velocity estimations can be seen in fig. 4.10

It is an interesting option to explore in the future as the scene normal vector should
become observable when two frames are captured from different locations, with further
development this method should be able to provide usable results.

4.4.2 RANSAC
In the OpenCV library an option is available to filter outlying points when using various
integrated 3D reconstruction methods using RANSAC.

RANSAC is short for RAndom SAmple Consensus and is an iterative method for fil-
tering outliers. In areas with very few features, such as over- and underexposed surfaces,
optical flow methods suffer from ambiguous flow values. In some cases it might be de-
sirable to not consider these values at all when calculating the ego-motion of the MAV.
Unfortunately these integrated methods proved too slow as they are applied within other
functions, running at an average of 65ms per 128x128 image and slower the more outliers

39

there are in the image. The produced results are quite promising, and if the flow calcula-
tion allows, this should be integrated in the future. Some qualitative results are displayed
in fig. 4.11 and fig. 4.12 where the MAV was flying above a featureless white table with
a piece of wood mounted on top, the wood allowed for good flow results, while the table
produced very noisy results.

Figure 4.11: Image showing which regions are filtered using RANSAC with a reprojection error
threshold of 1. The right image shows the original flow while the in the left image shows the input
image with the occluded regions marked as outliers based on the flow.

Figure 4.12: Image showing which regions are filtered using RANSAC with a reprojection error
threshold of 0.1. The right image shows the original flow while the in the left image shows the input
image with the occluded regions marked as outliers based on the flow.

4.4.3 IMU rotation correction
The optical flow is received as a matrix of pixel displacements from one frame to another.
In order to calculate the relative velocity of the observer it is first necessary to calculate

40

the flow speed. This is done by calculating the focal length in pixels according to

fpix = fmm/(si/sf ∗ d) (4.1)

Here fmm is the camera focal length in mm, si is the original image size and sf is the
size of the optical flow field and d is the pixel size in mm. Note that this assumes the flow
has been scaled equally in the x and y axis, if this is not the case the focal length must be
computed individually in the x and y axis. Dividing the average flow rate by the integration
period results in the flow velocity. Applying eq. (3.25) the relative velocity v

Z is found.

IMU noise

Rejection of angular flow was first tested on the handheld system. This provided a good
metric in order to compare the average flow with the measured angular velocity. However
when the same tests were run on the system during flight, the IMU noise had increased
dramatically from a standard deviation of approximately 0.005 rad/s to 0.15 rad/s as seen
in fig. 4.13.

Figure 4.13: A comparison in IMU-noise between handheld and flight tests with the resulting rela-
tive velocity estimate

As the estimated relative velocity is a sum of the measured angular velocity, noisy IMU
measurements directly result in noisy estimations. In fig. 4.14 this problem is illustrated.
T

During the project, tests were conducted to see if increasing the IMU trigger speed
from the versavis board had any effect. The default frequency of the IMU was 200Hz,
but the ADIS IMU supports speeds of up to 700Hz. When attempting to run the camera at
120Hz and the IMU at 700Hz bandwidth became a large issue and messages were throttled.
After reducing the IMU to 400Hz everything worked as expected, however the test done
to determine if this change caused any improvement was carried out using handheld tests.
This caused the trajectory to be inconsistent between tests making them hard to compare
and more importantly the noise present during flight was not detected. This test should

41

Figure 4.14: Estimated rotational estimate and resulting translation estimate. Observe how the
rotational noise is directly transferred to the estimated velocity

be redone in the future to better determine if an increase in IMU speed could be used
to filter more effectively the measured rotation as the handheld showed no improvement
when running the IMU at higher frequencies and the IMU-rate was kept at 200Hz.

4.5 Estimating scene distance
If a flow field is captured while the MAV is moving while the camera is not perpendicu-
lar to the ground the assumption that the difference between the Z-distance between the
central pixel and the the pixel at the edges of the frame is negligible might break. In order
to account for scenarios with large amounts of parallax the average distance distance from
the camera to the scene can be calculated. As the range sensor was not mounted yet the
vicon ground truth measurement was used as the Z parameter to estimate the scene depth.

The average distance to the scene can be calculated as

Ẑi = Z
1

(θi − α
2)− (θi + α

2)

∫ θi−α2

θi+
α
2

cos(x)dx (4.2)

= Z
1

α
(sin(θi +

α

2
)− sin(θi −

α

2
)) (4.3)

= Z
2

α
cos(θi)sin(

α

2
) (4.4)

As velocity is calculated separately for x and y, θi is the rotation about the major axis that
the Z measurement was taken i ∈ [x, y]. α is the angle of view the camera calculated by

α = 2arctan
d

2f
(4.5)

Here d is the size of the sensor and f is the camera focal length.

42

When the range sensor is employed, the above equations still hold, however note that
these equations require the orientation of the drone with respect to the surface it is measur-
ing. In order to get an accurate estimate of an arbitrarily angled surface it would require
either additional depth information or flight in a linearizable region perpendicular to the
surface.

4.6 Kalman filter

The Kalman filter used in the final evaluation was a standard EKF. As outlined in sec-
tion 3.6.2 the ESKF uses the IMU value in order to propagate the filter however to keep
the final results as unbiased as possible and showcase purely the accuracy the calculated
flow the EKF was selected. The implementation of the ESKF is given as an attachment to
this report, however it has not been rigorously validated.

The basic block diagram of the the filter is shown in fig. 4.15

Figure 4.15: The Kalman filter inputs and outputs

Note here that the quaternion associated with the MAVs orientation is used as an input
to the Kalman filter. This is done in order to integrate the velocity of the camera over time
in order to get an accurate position in world frame. However if the only goal is to stabilize
the end effector with reference to a planar surface this is not necessary and the end effector
system can function independently of the external odometry.

4.7 Existing error

A few test data-sets were gathered in order to assess the current accuracy of Rovio in
various situations where we would like to increase estimation precision.

In fig. 4.16 the platform is stationary on the ground with the motors switched off. In
fig. 4.17 the platform is lifted manually and held motionless above the ground.

43

Figure 4.16: Estimation results with motors switched off, the Y-axis is the displacement in meters
and the X-axis is time in seconds.

Figure 4.17: Estimation results where the platform is manually lifted off the ground and held in a
stable position, the Y-axis is the displacement in meters and the X-axis is time in seconds.

From the figures it is evident that the estimation error is already quite small in these
relevant cases indicating a challenging project. After the initial drift where Rovio estimates
the depth of the tracked features the drift is typically in the sub-cm range.

4.8 Final experiments
Data was collected from various experiments where the OMAV was flown at an angle such
that the camera was facing perpendicular to the floor. Unlike experiments done handheld
these results include a large amount of noise both from the IMU due to air frame vibration
and the OMAV tends to oscillate around the x-axis as some control authority is lost when
doing non-level flights. As such, these experiments show how effective the algorithm is at
rejecting rotational flow when computing velocity in a realistic setting.

During these tests Rovio was run concurrently with the flow calculation in order to

44

provide a comparison between the suggested method and the already existing odometry
algorithm. However, when analyzing the results it was found that Rovio performed terri-
bly under the conditions presented and would not provide a fair benchmark comparison.
Typically Rovio will very quickly diverge when the features provided are insufficient or
the provided camera calibration is bad. However during many of these tests Rovio often
was able to track the movement for a while before diverging or be off by some scalar fac-
tor. While this was frustrating, it further showed the importance of an algorithm that is
able to perform well in regions very close to surfaces when a feature may very quickly
come in and out of frame. The plots of Rovio can be found in appendix B.

4.8.1 Hovering

This experiment represents the nominal use-case of the system where the main body at-
tempts to hold a single position in the air. Here the MAV is hovering half a meter above the
ground and attempting to stay centered at the origin. The filter state is initialized mid flight
at the position estimated by vicon, after the initialization only the quaternion is used as an
input in order to integrate the velocity over time to view the error over time in reference to
vicon.

Figure 4.18 shows the general trajectory of the MAV over time. At approximately 6s
there was a significant dip in the Z axis, as this is an unmodeled disturbance it is expected
that some error is accumulated which can be seen in the Y-axis.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.05
0.04
0.03
0.02
0.01
0.00
0.01
0.02
0.03

po
sit

io
n[

m
]

x postion
oflow
vrpn_client

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

po
sit

io
n[

m
]

y postion

oflow
vrpn_client

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time

4

2

0

2

4

6

8

10

an
gl

e[
de

g]

Euler angles
x
y
z

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time

0.48

0.49

0.50

0.51

0.52

0.53

He
ig

ht
[m

]

Estimated cam height

Hover trajectory

Figure 4.18: Hover trajectory

45

The measured velocity is measured in the camera frame so in order to compare the
ground truth velocity to the measurement, both velocities are transformed to the world
frame velocities. The resulting velocity is then an average over a 10 frame time period or
approximately 0.1s for visualization purposes, as the raw velocity measurements is very
noisy. The resulting velocity is shown in fig. 4.19.

From fig. 4.19 it seems like the main error source occurs during velocity peaks where
the flow consistently overshoots the estimated absolute velocity. It is hard to pinpoint
the origin of the error, but this is most likely due to noise generated in the image output.
However, looking at the position in fig. 4.18 the absolute position error is quite similar
during large and small displacements suggesting that the error is zero mean. The velocity
error over time is shown in fig. 4.20.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time [s]

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

ve
lo

cit
y

[m
/s

]

X velocity
OF velocity
GT velocity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time [s]

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

ve
lo

cit
y

[m
/s

]

Y velocity
OF velocity
GT velocity

Filtered velocity Hover

Figure 4.19: Hover velocity filtered

In order to show a clear plot when evaluating velocities the average velocity over a 10
frame period(approximately 0.1s) is shown as the raw data is quite noisy.

46

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time [s]

0.0004

0.0002

0.0000

0.0002

0.0004

er
ro

r [
m

/s
]

X velocity error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time [s]

0.0004

0.0003

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

er
ro

r [
m

/s
]

Y velocity error

Velocity error Hover standard deviation

Figure 4.20: Hover trajectory

In fig. 4.20 it is clear that the error frequency is much higher than the velocity oscilla-
tion indicating that the error is not correlated with the current velocity of the drone. Much
of the error is likely due to the camera not being perfectly aligned with the ground and
oscillations drone attitude. In general the measured error is very small with a standard
deviation of around 0.2mm/s.

4.8.2 Compound movement
After the nominal use-case was tested it was desired to see how well the velocity estimation
performed during a more complicated use-case with translational motion. Rotation around
the Z-axis and a combination of these movements, the full mission including way points
for the trajectory is given appendix A.

The motivation preforming these tests was to be evaluate the possibility of giving the
end-effector velocity commands and use the velocity measured using optical flow to enable
high speed velocity tracking in reference to the surface being interacted with. This enables
the arm to perform movements with high precision with respect to the surface and not the
body.

Again the filter state is initialized to the currently estimated position of the system
and from there is only updated with the body quaternion and optical flow measurement.
Figure 4.21 shows how the position drifts over time. This shows that the current velocity
has a tendency to drift quite significantly during angular velocities around the Z-axis. This
is a string indication that the assumption of the camera being perpendicular to the ground
can cause significant drift during rotations. The reason that the y position is affected more
by this rotation is due to the MAV being more off axis around the X-axis than the Y-axis.

47

Otherwise the poorly translational movements are tracked quite well, again the y-position
has drifted due to the offset axis.

0 10 20 30 40 50 60 70
time

0.3

0.2

0.1

0.0

0.1

0.2

po
sit

io
n[

m
]

x postion

oflow
vrpn_client

0 10 20 30 40 50 60 70
time

0.2

0.1

0.0

0.1

0.2

0.3

po
sit

io
n[

m
]

y postion
oflow
vrpn_client

0 10 20 30 40 50 60
time

100

75

50

25

0

25

50

75

an
gl

e[
de

g]

Euler angles
x
y
z

0 10 20 30 40 50 60
time

0.46

0.48

0.50

0.52

0.54

0.56

0.58

He
ig

ht
[m

]

Estimated cam height

Floor trajectory

Figure 4.21: Floor trajectory

When inspecting the velocity in fig. 4.22 and fig. 4.23 the tracked velocity looks very
accurate, the main drifts occur during the translational motion, as was expected. The
standard deviation of the error is in the same range as earlier at 0.2mm/s and should provide
sufficient accuracy to stabilize the end-effector.

48

0 10 20 30 40 50 60
time [s]

0.003

0.002

0.001

0.000

0.001

0.002

ve
lo

cit
y

[m
/s

]
X velocity

OF velocity
GT velocity

0 10 20 30 40 50 60
time [s]

0.003

0.002

0.001

0.000

0.001

ve
lo

cit
y

[m
/s

]

Y velocity
OF velocity
GT velocity

Filtered velocity Floor

Figure 4.22: Floor trajectory

0 10 20 30 40 50 60
time [s]

0.0008

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

er
ro

r [
m

/s
]

X velocity error

0 10 20 30 40 50 60
time [s]

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

er
ro

r [
m

/s
]

Y velocity error

Velocity error Floor standard deviation

Figure 4.23: Hover trajectory

These small drifts could be minimized by fusing the velocity measurement with the
forward kinematics from the on-board state estimation algorithm.

49

4.8.3 Tabletop movement
This demonstrates the ability of the optical flow to measure the velocity during the same
compound movements described in the previous section. This test however was conducted
while hovering over a table that was extremely featureless. This environment proved ex-
ceptionally difficult for Rovio which diverged almost immediately, some examples of flow
output is shown in fig. 4.24 and fig. 4.25. Testing showed that the noise generated on
texture-less surfaces was mainly zero mean, which should not affect the results during
translation significantly, however during rotation this will cause one part of the image to
become zero mean which will therefore cause the assumption used in section 3.5 - that
pixels on opposing sides of the image will cancel out - to fail.

Figure 4.24: The flow output while hovering in place above table

Figure 4.25: Flow output while preforming a rotation above table

While flying, the camera was alternating between observing the table, a wooden board
mounted on top of the table and occasionally the floor. The wooden board was placed at
the origin with the table and floor mainly entering around the edges of the frame. The
Z-value used to disambiguate the velocity was the height above the table, this means that

50

in frames where the floor was also observable, the estimated velocity would be slightly
smaller than the actual velocity.

It is clear from this test how part of the frame being featureless causes drift during
rotations. At 35s the table is obscuring the edge of the frame as seen in fig. 4.25 causing a
drift of up to 10 cm compared to the the vicon measurement.

In this test the high reflection of the table occasionally also caused the vicon measure-
ment to be extra noisy which shows up as spikes in the velocity estimate.

0 10 20 30 40 50 60 70
time

0.3

0.2

0.1

0.0

0.1

0.2

po
sit

io
n[

m
]

x postion

oflow
vrpn_client

0 10 20 30 40 50 60 70
time

0.2

0.1

0.0

0.1

0.2

po
sit

io
n[

m
]

y postion
oflow
vrpn_client

0 10 20 30 40 50 60 70
time

100

75

50

25

0

25

50

75

100

an
gl

e[
de

g]

Euler angles
x
y
z

0 10 20 30 40 50 60 70
time

0.50

0.55

0.60

0.65

He
ig

ht
[m

]

Estimated cam height

Tabletop trajectory

Figure 4.26: Tabletop trajectory

51

0 10 20 30 40 50 60 70
time [s]

0.004

0.003

0.002

0.001

0.000

0.001

0.002

ve
lo

cit
y

[m
/s

]

X velocity

OF velocity
GT velocity

0 10 20 30 40 50 60 70
time [s]

0.004

0.002

0.000

0.002

ve
lo

cit
y

[m
/s

]

Y velocity
OF velocity
GT velocity

Filtered velocity Tabletop

Figure 4.27: Tabletop trajectory

52

0 10 20 30 40 50 60 70
time [s]

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

er
ro

r [
m

/s
]

X velocity error

0 10 20 30 40 50 60 70
time [s]

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

er
ro

r [
m

/s
]

Y velocity error

Velocity error Tabletop standard deviation

Figure 4.28: Tabletop trajectory

In this test it is clear that the estimation is not accurate during large rotations, this
can be solved using a more robust mathematical model combined with outlier rejection.
The mathematical should be easily implementable and only incur slight computational
overhead. The outlier rejection is a more complicated problem as it must identify outliers
very fast.

53

54

Chapter 5
Conclusion and future work

As seen in the results, the overall error of the optical flow is very small when compared
with the ground truth. Having a standard deviation of only 0.2mm/s in operation during the
expected use case achieved the project goals of high accuracy, high speed estimation. This
is very promising moving forward and shows the capabilities of this contribution. How-
ever the overall assumption that the camera is facing perpendicular to the surface and the
following simplifications to the movement model removes a significant degree of robust-
ness from the system. This assumption can be easily remedied provided that the surface
normal is aligned with the gravity vector. The gravity vector can then be estimated in the
filter model and the offset between the camera axis and the surface normal can be calcu-
lated. However for a more general solution it would be necessary to estimate the surface
normal given the optical flow. This should be possible to do using a recursive filter and
the homographic constraint, while this was attempted during the project it was not finished
due to time restraints. During the project, implementation of structure from motion was
discussed, which would provide the ability to handle more complicated surfaces and cir-
cumvent the problem of estimating the surface vector all together, as this would estimate
the depth of each pixel. However as the intended use case of the system is primarily on
surfaces, this would cause unnecessary complications, calculating structure from motion
would preform much of the same calculation as Rovio and the robustness of having an
independent measurement would decrease if it is handled the same way as the existing
odometry method.

A method to estimate the surface normal would be to use a distance sensor that can
measure more than one dimension. In theory it would be sufficient to implement three
measurements of the distance to the surface in order to estimate the normal, a more accu-
rate solution is using ToF cameras capable of densely measuring distance in 2D. These 3D
sensors are becoming increasingly lightweight and easy to use and would most be use full
sensor for other reasons than just optical flow. If it were possible to mount and calibrate
a depth sensor parallel to the camera and map the the depth pixel by pixel to the image
frame it would provide the ability to very precisely estimate the velocity on an individual
pixel basis. Regardless of the method used to estimate pixel distance, whether it is us-

55

ing the surface normal or individually measuring the distance to each pixel, using the full
equation of motion is easily implementable once the distance is known.

Using outlier filtering on the resulting velocity would provide an additional degree of
robustness. Filtering outlier velocities would be simpler than directly filtering the flow
field. During rotations the estimated flow has values pointing in every direction while
the estimated velocity for each pixel should be distributed around the true velocity of the
drone. By calculating a standard deviation of the estimated velocities outliers can simply
be omitted in one pass without the need for iterative solution.

To summarize the following steps should be taken to improve the velocity estimation:

• Estimate the distance to each pixel in the frame by:

– Estimating the surface normal

– Using a 3D sensor to measure the approximate pixel distance

• Calculate the velocity individually per pixel

• Filter outlier velocities and calculate mean

While the implementation of the optical flow in the system does not need much revision
the ego motion estimation has several points that can still be improved. Overall the method
showed great promise and performing tests on the system after the delta arm has been
mounted and uses the optical flow estimation as a control input will be very exciting.

56

First and foremost I would like to thank my supervisors Karen Bodie and Michael Pantic,
both for giving me the opportunity to work on this fascinating project and for their

supervision and support throughout the whole project. I would also like to express my
gratitude to the Autonomous Systems Lab for allowing me to complete my thesis at such

an esteemed lab.
Lastly, I would like to express a special gratitude to Linnea Gidner for her support and

understanding during the long days of home office during the project.

57

58

Bibliography

Baker, S., Matthews, I., 2004. Lucas-kanade 20 years on: A unifying framework. Interna-
tional journal of computer vision 56, 221–255.

Bay, H., Tuytelaars, T., Van Gool, L., 2006. Surf: Speeded up robust features, in: European
conference on computer vision, Springer. pp. 404–417.

Bloesch, M., Burri, M., Omari, S., Hutter, M., Siegwart, R., 2017. Iterated extended
kalman filter based visual-inertial odometry using direct photometric feedback. The
International Journal of Robotics Research 36, 1053–1072. URL: https://doi.
org/10.1177/0278364917728574, doi:10.1177/0278364917728574,
arXiv:https://doi.org/10.1177/0278364917728574.

Bloesch, M., Omari, S., Hutter, M., Siegwart, R., 2015. Robust visual inertial odome-
try using a direct ekf-based approach, in: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 298–304. doi:10.1109/IROS.2015.
7353389.

Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Siegwart, R., Nieto,
J., 2019. An omnidirectional aerial manipulation platform for contact-based inspection.
arXiv:1905.03502.

Bodie, K., Taylor, Z., Kamel, M., Siegwart, R., 2018. Towards efficient full pose omnidi-
rectionality with overactuated mavs. arXiv:1810.06258.

Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J., 2012. A naturalistic open source movie
for optical flow evaluation, in: ECCV.

Chhaniyara, S., Bunnun, P., Seneviratne, L., Althoefer, K., 2008. Optical flow algorithm
for velocity estimation of ground vehicles: A feasibility study. International Journal on
Smart Sensing and Intelligent Systems 1. doi:10.21307/ijssis-2017-289.

Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D., 2017. On-manifold preintegra-
tion for real-time visual–inertial odometry. IEEE Transactions on Robotics 33, 1–21.
URL: http://dx.doi.org/10.1109/TRO.2016.2597321, doi:10.1109/
tro.2016.2597321.

59

https://doi.org/10.1177/0278364917728574
https://doi.org/10.1177/0278364917728574
http://dx.doi.org/10.1177/0278364917728574
http://arxiv.org/abs/https://doi.org/10.1177/0278364917728574
http://dx.doi.org/10.1109/IROS.2015.7353389
http://dx.doi.org/10.1109/IROS.2015.7353389
http://arxiv.org/abs/1905.03502
http://arxiv.org/abs/1810.06258
http://dx.doi.org/10.21307/ijssis-2017-289
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/tro.2016.2597321
http://dx.doi.org/10.1109/tro.2016.2597321

Fortun, D., Bouthemy, P., Kervrann, C., 2015. Optical flow modeling and computation:
A survey. Computer Vision and Image Understanding 134. doi:10.1016/j.cviu.
2015.02.008.

Furgale, P., Rehder, J., Siegwart, R., 2013. Unified temporal and spatial calibration
for multi-sensor systems, in: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1280–1286.

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets robotics: The kitti dataset.
The International Journal of Robotics Research 32, 1231–1237.

Geiger, A., Ziegler, J., Stiller, C., 2011. Stereoscan: Dense 3d reconstruction in real-time,
in: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 963–968.

Godet, P., Boulch, A., Plyer, A., Besnerais, G.L., 2020. Starflow: A spatiotemporal recur-
rent cell for lightweight multi-frame optical flow estimation. arXiv:2007.05481.

Grabe, V., Bülthoff, H.H., Scaramuzza, D., Giordano, P.R., 2015. Nonlinear ego-motion
estimation from optical flow for online control of a quadrotor uav. The International
Journal of Robotics Research 34, 1114–1135.

Hauberg, S., Feragen, A., Black, M.J., 2014. Grassmann averages for scalable robust pca,
in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3810–
3817.

Ho, H.W., de Croon, G.C., Chu, Q., 2017. Distance and velocity esti-
mation using optical flow from a monocular camera. International Jour-
nal of Micro Air Vehicles 9, 198–208. URL: https://doi.org/
10.1177/1756829317695566, doi:10.1177/1756829317695566,
arXiv:https://doi.org/10.1177/1756829317695566.

Honegger, D., Greisen, P., Meier, L., Tanskanen, P., Pollefeys, M., 2012. Real-time ve-
locity estimation based on optical flow and disparity matching, in: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5177–5182.

Hui, T.W., Tang, X., Loy, C.C., 2018. Liteflownet: A lightweight convolutional neural
network for optical flow estimation. arXiv:1805.07036.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T., 2016. Flownet 2.0:
Evolution of optical flow estimation with deep networks. arXiv:1612.01925.

Kalman, R.E., 1960. A new approach to linear filtering and prediction problems .

Kamel, M., Verling, S., Elkhatib, O., Sprecher, C., Wulkop, P., Taylor, Z., Sieg-
wart, R., Gilitschenski, I., 2018. The voliro omniorientational hexacopter: An agile
and maneuverable tiltable-rotor aerial vehicle. IEEE Robotics & Automation Maga-
zine 25, 34–44. URL: http://dx.doi.org/10.1109/MRA.2018.2866758,
doi:10.1109/mra.2018.2866758.

Kroeger, T., Timofte, R., Dai, D., Gool, L.V., 2016. Fast optical flow using dense inverse
search. arXiv:1603.03590.

60

http://dx.doi.org/10.1016/j.cviu.2015.02.008
http://dx.doi.org/10.1016/j.cviu.2015.02.008
http://arxiv.org/abs/2007.05481
https://doi.org/10.1177/1756829317695566
https://doi.org/10.1177/1756829317695566
http://dx.doi.org/10.1177/1756829317695566
http://arxiv.org/abs/https://doi.org/10.1177/1756829317695566
http://arxiv.org/abs/1805.07036
http://arxiv.org/abs/1612.01925
http://dx.doi.org/10.1109/MRA.2018.2866758
http://dx.doi.org/10.1109/mra.2018.2866758
http://arxiv.org/abs/1603.03590

Leutenegger, S., Furgale, P., Rabaud, V., Chli, M., Konolige, K., Siegwart, R., 2013.
Keyframe-based visual-inertial slam using nonlinear optimization. doi:10.15607/
RSS.2013.IX.037.

Lindeberg, T., 2012. Scale invariant feature transform .

Liu, C., 2009. Beyond Pixels: Exploring New Representations and Applications for Mo-
tion Analysis. Ph.D. thesis. Massachusetts Institute of Technology.

Lucas, B., Kanade, T., 1981. An iterative image registration technique with an application
to stereo vision (ijcai).

Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S., 2003. An Invitation to 3-D Vision: From
Images to Geometric Models. SpringerVerlag.

Maurer, D., Marniok, N., Goldluecke, B., Bruhn, A., 2018. Structure-from-motion-aware
patchmatch for adaptive optical flow estimation, in: Proceedings of the European Con-
ference on Computer Vision (ECCV), pp. 565–581.

Otsu, K., Otsuki, M., Ishigami, G., Kubota, T., 2013. An Examination of Feature Detection
for Real-Time Visual Odometry in Untextured Natural Terrain. volume 208. pp. 405–
414. doi:10.1007/978-3-642-37374-9_39.

Qin, T., Li, P., Shen, S., 2018. Vins-mono: A robust and versatile monocular visual-inertial
state estimator. IEEE Transactions on Robotics 34, 1004–1020. doi:10.1109/TRO.
2018.2853729.

Raudies, F., 2013. Optic flow. Scholarpedia 8, 30724. doi:10.4249/scholarpedia.
30724. revision #149632.

Rosten, E., Drummond, T., 2005. Fusing points and lines for high performance tracking,
in: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, pp.
1508–1515 Vol. 2.

Ruffier, F., Franceschini, N., 2005. Optic flow regulation: The key to aircraft auto-
matic guidance. Robotics and Autonomous Systems 50, 177–194. doi:10.1016/
j.robot.2004.09.016.

Solà, J., 2017. Quaternion kinematics for the error-state kalman filter.
arXiv:1711.02508.

Teed, Z., Deng, J., 2020. Raft: Recurrent all-pairs field transforms for optical flow .

Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H., 2009.
Anisotropic huber-l1 optical flow. doi:10.5244/C.23.108.

Wulff, J., Black, M.J., 2015. Efficient sparse-to-dense optical flow estimation using a
learned basis and layers, in: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR 2015), pp. 120–130.

61

http://dx.doi.org/10.15607/RSS.2013.IX.037
http://dx.doi.org/10.15607/RSS.2013.IX.037
http://dx.doi.org/10.1007/978-3-642-37374-9_39
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.4249/scholarpedia.30724
http://dx.doi.org/10.4249/scholarpedia.30724
http://dx.doi.org/10.1016/j.robot.2004.09.016
http://dx.doi.org/10.1016/j.robot.2004.09.016
http://arxiv.org/abs/1711.02508
http://dx.doi.org/10.5244/C.23.108

Zufferey, J.., Floreano, D., 2005. Toward 30-gram autonomous indoor aircraft: Vision-
based obstacle avoidance and altitude control, in: Proceedings of the 2005 IEEE In-
ternational Conference on Robotics and Automation, pp. 2594–2599. doi:10.1109/
ROBOT.2005.1570504.

62

http://dx.doi.org/10.1109/ROBOT.2005.1570504
http://dx.doi.org/10.1109/ROBOT.2005.1570504

Appendix

Appendix A
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.2, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [-0.2, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.2, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, -0.2, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [1.57, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [-1.57, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.2, 0.2, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [-0.2, -0.2, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [0.2, 0.2, 0.6], att: [-1.57, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: False, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0
- pos: [-0.2, -0.2, 0.6], att: [1.57, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: False, time: 4.0
- pos: [0.0, 0.0, 0.6], att: [0.0, 0.785, 0.0], force: [0.0, 0.0, 0.0], stop: True, time: 4.0

Appendix B

63

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time [s]

0.20

0.15

0.10

0.05

0.00

0.05
po

sit
io

n
[m

]
X position

Rovio pos
GT pos

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time [s]

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

po
sit

io
n

[m
]

Y postion

Rovio pos
GT pos

Rovio position Hover

Figure 5.1: Rovio position compared to the ground truth during the hover test

0 10 20 30 40 50 60
time [s]

5

4

3

2

1

0

1

2

po
sit

io
n

[m
]

X position
Rovio pos
GT pos

0 10 20 30 40 50 60
time [s]

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

po
sit

io
n

[m
]

Y postion

Rovio pos
GT pos

Rovio position Floor

Figure 5.2: Rovio position compared to the ground truth during the trajectory test in the floor

64

0 10 20 30 40 50 60 70
time [s]

400

300

200

100

0
po

sit
io

n
[m

]
X position

Rovio pos
GT pos

0 10 20 30 40 50 60 70
time [s]

0

50

100

150

200

250

po
sit

io
n

[m
]

Y postion
Rovio pos
GT pos

Rovio position Tabletop

Figure 5.3: Rovio position compared to the ground truth during the trajectory test preformed over
the table

65

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Alexander Johansen

Fast Optical Flow Estimation for End-
Effector Stabilization

Completed at the Autnomous Systems Lab at ETH
Zürich.

Supervised by:
Karen Bodie
Michael Pantic
Roland Siegwart

Master’s thesis in Cybernetics and Robotics

Supervisor: Tor Arne Johansen

August 2020

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem description
	Project scope

	Literature review and existing solutions
	Rovio
	Optical flow based estimation and control
	Definition
	Methods of computation
	Issues with optical flow
	Navigation using OF

	Fundamentals
	Coordinate Frames
	Description of Ouzel
	Visual inertial odometry
	Optical flow
	Lucas–Kanades method
	PCA-flow
	Coarse 2 fine optical flow
	Dense Inverse search

	Ego-motion estimation
	4-point algorithm
	Explicit velocity calculation with aiding measurements

	Kalman filter
	Extended Kalman filter
	Error state Kalman filter
	Kinematics
	Error state transition
	Fusing external state measurements

	Evaluation
	Experimental setup
	Components
	Software
	Calibration
	Camera setup
	Data collection

	Optical flow
	PCA-flow

	Coarse 2 fine
	DIS flow

	Ego-motion estimation
	4-point algorithm
	RANSAC
	IMU rotation correction

	Estimating scene distance
	Kalman filter
	Existing error
	Final experiments
	Hovering
	Compound movement
	Tabletop movement

	Conclusion and future work
	Bibliography
	Appendix

