
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Iver Osnes

Recurrent Neural Networks and
Nonlinear Model-based Predictive
Control of an Oil Well with ESP

Master’s thesis in Cybernetics and Robotics

Supervisor: Lars Struen Imsland

July 2020

Iver Osnes

Recurrent Neural Networks and
Nonlinear Model-based Predictive
Control of an Oil Well with ESP

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Process modeling and simulation is a crucial tool to gain a better understand-
ing of nonlinear systems. Accurate models can be used for control purposes, but
are often hard to obtain. In the field of petroleum engineering, parameters tend
to change over time and some components are unknown. This makes it hard to
both model and make prediction algorithms in order to yield optimal control. A
possibility can be to resort to data-driven models when accurate models are miss-
ing. Earlier studies have shown that Echo State Networks (ESNs) are suitable for
model recognition of complex dynamical systems with a black-box modeling ap-
proach. Such models are preferable since they have a built-in error term and are
able to adapt if a plant is changing its behavior as time goes on. This project aims
to create a data-driven model of an Electric Submersible Pump (ESP) based on
an ESN approach. Further, a Nonlinear Model Predictive Controller (NMPC) is
implemented to yield optimal control on the ESP using the obtained data-driven
model as a prediction model. Using an NMPC gives the ability to control future
behavior while satisfying a set of constraints. Results from this study showed that
an NMPC with an ESN as a prediction model can deliver a satisfactory operation
on the ESP. It also showed that ESNs are well suited for model identification of an
ESP.

iii

Sammendrag

Modellering og simulering er et avgjørende verktøy for å forstå komplekse ulineære
systemer. Nøyaktige modeller er ofte nyttige i reguleringssammenhenger, men kan
være vanskelige å anskaffe. Innenfor oljeindustrien har parametre en tendens til
å forandre seg over tid og noen komponenter blir sett på som ukjente parame-
tre. Dette skaper utfordringer både med tanke på modellering og å prediktere
fremtidig oppførsel. Det å kunne prediktere fremtidig oppførsel til en prosess kan
brukes til å optimalisere reguleringen. Å ty til datadrevne modeller kan være et
alternativ når nøyaktige modeller er vanskelige å anskaffe. Tidligere studier har
vist at echo state nettverk er godt egnet til å gjenkjenne komplekse dynamiske
systemer ved hjelp av store mengder data. Slike modeller er ofte fortrukne siden
de kan ta hensyn til at en prosess endrer seg over tid. Målet for dette prosjektet
er å lage en datadreven modell av en elektrisk nedsenkbar pumpe ved hjelp av
et echo state nettverk. Modellen skal videre bli brukt til å prediktere fremtidig
oppførsel i en ulineær modell-prediktiv regulator for å optimalisere reguleringen
til pumpen. Fordelen med en modell-prediktiv regulator er at den kan predikter
fremtidig oppførsel i tillegg til tilfredsstille et sett med begrensninger på systemet.
Dette prosjektet har vist at en modell-prediktiv regulator som bruker et echo state
nettverk som preiksjonsmodell kan levere tilfredsstillende regulering av en elek-
trisk nedsenkbar pumpe. Prosjektet har også vist at echo state nettverk er godt
egnet til å lage datadrevne modeller av pumpesystemet.

v

Preface

This master’s dissertation is submitted as the final part of the requirements for
the master’s degree at the Department of Engineering Cybernetics at the Norwe-
gian University of Science and Technology (NTNU). This work has partly been
conducted at Universidade Federal de Santa Catarina (UFSC) through a bilateral
agreement between NTNU and UFSC.

First of all, I want to thank prof. Eduardo Camponogara for his support, advising,
writing hints and for believing in me. It has been a challenging semester with
unpredicted circumstances, but his support has been extraordinary.

I would also like to thank prof. Eric Aislan Antonelo for his assistance, program-
ming help, and for sharing his great deal of knowledge inside the field of artificial
intelligence. Further, I am grateful for the help I received from Jean P. Jordanou
and Marco Aruélio de Aguiar.

I would also like to thank my supervisor at NTNU, prof. Lars Imsland for his as-
sistance and for making this project possible.

I want to thank Sondre Bø Hernes for all the great memories in Brazil. It was
sad that we had to leave Brazil way too soon, but I appreciate the time we had
down there. I would also like to thank him for our collaboration in parts of the
project.

Lastly, I would like to thank my family and friends. Their support has been a mo-
tivation throughout my years of study.

Iver Osnes

Ulsteinvik, July 2020

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
Acronyms . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 Objective . 3
1.3 Contribution . 3
1.4 Structure . 3

2 Theory . 5
2.1 Oil wells and artificial lifting . 5

2.1.1 ESPs . 6
2.2 System fundamentals . 7

2.2.1 Model identification . 8
2.3 Artificial Neural Networks / deep learning 9

2.3.1 RNN . 11
2.3.2 Reservoir Computing . 12

2.4 Echo State Network (ESN) . 12
2.4.1 Selection of global parameters 13
2.4.2 Training . 14

2.5 Model Predictive Control (MPC) . 16
2.5.1 Optimization . 16
2.5.2 Forming an NLP problem . 17
2.5.3 Building an MPC . 17

3 Implementation . 21
3.1 Software . 21
3.2 DAE modeling of wells with ESPs . 21

3.2.1 Model equations and parameters 22
3.2.2 Simulation and validation . 26
3.2.3 Discussion . 29

3.3 Data set . 31

ix

x CONTENTS

3.3.1 Sampling time . 31
3.3.2 Excitation signals . 33
3.3.3 Training set . 34

3.4 Building an Echo State Network (ESN) 35
3.5 NMPC implementation . 39

3.5.1 Optimal Control Problem . 39
3.5.2 Objective function . 40
3.5.3 Solving the OCP . 40
3.5.4 The MPC cycle . 41

4 Experiments and results . 43
4.1 ESN experiments . 43

4.1.1 Steady-state test . 43
4.1.2 Fast dynamics . 45

4.2 NMPC simulation . 48
4.2.1 Reaching a bottomhole pressure reference 48
4.2.2 Punishing change of control . 51
4.2.3 Control with multiple steps . 53

5 Discussion . 57
6 Conclusion . 59

6.1 Future work . 59
6.1.1 Echo State Network . 60
6.1.2 Nonlinear Model Predictive Control 60

Bibliography . 61

Figures

2.1 A simple SISO system, recreated from [14]. 7
2.2 The different modeling approaches. 9
2.3 A simple feedforward deep network representation. 10
2.4 Network architecture and notation, extracted from [3]. 10
2.5 Different types of activation functions. 11
2.6 The structure of an echo state network, inspired by [15]. 13
2.7 Difference between hard and soft constraints. 19
2.8 MPC principle, recreated from [29]. 20

3.1 ESP lifted well, recreated from [33]. 22
3.2 System response with constant input. 27
3.3 System response to a step response on the valve, starting at 50%

and increasing to 100%. 28
3.4 System response with an increasing frequency 30
3.5 Comparing pwh with different sampling rates. 32
3.6 Pseudo-Random Binary Signal (PRBS) 33
3.7 Amplitude-modulated Pseudo-Random Binary Signal (APRBS) . . . 34
3.8 Training set example . 35
3.9 Sum of normalized error compared to size of reservoir. 36
3.10 Sum of normalized error relative to leak rate α. 37
3.11 Sum of normalized error relative to leak rate α with smaller step

interval. 37
3.12 Model identification without a warm-up phase. 38
3.13 NMPC block diagram. 41

4.1 ESN trained with fast dynamics trying to reach a steady-state. Blue
is the true system while red is the ESN prediction. 44

4.2 Relative error between the true system and the ESN prediction in
Figure 4.1. 44

4.3 ESN trained with mixed dynamics trying to reach a steady-state.
Blue is the true system while red is the ESN prediction. 45

4.4 Relative error between the true system and the ESN prediction in
Figure 4.3. 45

xi

xii FIGURES

4.5 ESN trained with fast dynamics trying to imitate fast dynamics.
Blue is the true system while red is the ESN prediction. 46

4.6 Relative error between the true system and the ESN prediction in
Figure 4.5. 46

4.7 ESN trained with mixed dynamics trying to imitate fast dynamics.
Blue is the true system while red is the ESN prediction. 47

4.8 Relative error between the true system and the ESN prediction in
Figure 4.7. 47

4.9 NMPC reaching a setpoint without punishing change of control. . . 50
4.10 NMPC reaching a setpoint with punishing change of control. 52
4.11 NMPC reaching multiple setpoints with punishing change of con-

trol with a prediction horizon of N = 3. 54
4.12 NMPC reaching multiple setpoints with punishing change of con-

trol with a prediction horizon of N = 10. 55

Tables

3.1 Model variables . 23
3.2 Model parameters . 25
3.3 Input signal limits . 34
3.4 Global parameters for ESN . 38

4.1 Weighting values with their respective parameters for the first ex-
periment. 49

4.2 Weighting values with their respective parameters for the second
experiment. 51

4.3 Mean trajectory error, integral absolute error and control variation
metrics for Figure 4.9 and Figure 4.10. 52

4.4 Weighting values with their respective parameters for the third ex-
periment. 53

4.5 Mean trajectory error, integral absolute error and control variation
metrics for Figure 4.11 and Figure 4.12 53

xiii

Acronyms

ANN Artificial Neural Network.

DAE Differential Algebraic Equation.

ESN Echo State Network.

ESP Electric Submersible Pump.

LQR Linear Quadratic Regulator.

MBC Model-Based Control.

MPC Model Predictive Control.

NLP Nonlinear programming.

NMPC Nonlinear Model Predictive Control.

OCP Optimal Control Problem.

ODE Ordinary Differential Equation.

OLS Ordinary Least Square.

RNN Recurrent Neural Network.

SQP Sequential Quadratic Programming.

xv

Chapter 1

Introduction

1.1 Motivation

In this day and age, the world is going through a digital transformation where both
industries and processes tend to get smarter. Various industries are more likely to
have custom-made technology and equipment. Modeling based on first principles
is more demanding than ever before and controlling a plant using on-line data
can be excessively hard due to high complexity.

Model-Based Control (MBC) has been a powerful tool in systems where on-line
data is hard to obtain. A controller can use a model based on first principles and
prior knowledge to control a plant without the use of on-line data. However, the
use of MBC does not come without drawbacks. If an assumed model deviates from
the plant’s behavior it could lead to poor control. For this reason, it is necessary to
look for better alternatives since using MBC with an inaccurate model could lead
to either poor performance or an unstable closed-loop system [1].

The petroleum industry is one of many industries that has undergone a signifi-
cant technological transformation in recent years. Traditional MBC theory has in
many cases become impractical due to the level of complexity, besides the de-
manding process of obtaining a model based on first principles. Another problem
in this industry is that plants tend to change their behavior over time. Despite all
drawbacks, the digital transformation comes with a large set of benefits. Modern
processes generate huge amounts of data during its processing time. Data can be
stored and later used to design controllers where accurate models are missing. A
controller designed based on input/output data without involving physical infor-
mation serve as a data-driven controller.

When it comes down to obtaining a data-driven model based on large amounts
of data, different approaches are available. The studies in [1] suggest that artifi-
cial intelligence and machine learning is a good approach when it comes to pro-
viding accurate models without prior knowledge following a black-box modeling

1

2 CHAPTER 1. INTRODUCTION

approach. It is also stated in [2] that data-driven control is related to machine
learning since both utilize a form of black-box system identification.

The project preceding this dissertation, [3], conducted a case study on how MPC
could yield optimal control for a data-driven tank study. Results from this study
showed that the MPC had promising capabilities in yielding optimal control by
utilizing a data-driven model as a prediction model in the MPC. However, it also
showed that an Artificial Neural Network (ANN) fits simple systems such as a
SISO system, but tend to become too computational expensive when the process
complexity is increasing and/or several state variables are introduced.

A widely used tool regarding black-box model identification is the Recurrent Neu-
ral Network (RNN). An RNN is able to reproduce both linear and nonlinear be-
havior of a plant if a sufficient training set is provided. However, RNNs tend to be
hard to train because of nonlinearities in the training process and no guarantees of
finding a global optimum. This work will include a complex nonlinear plant. It is
therefore necessary to look at other more convenient ways to obtain a data-driven
model.

A more suitable approach for this problem is the Echo State Network (ESN). An
ESN is in theory an RNN where only output weights are adapted. This will make
the training process much faster than other neural networks since it can be trained
by means of linear regression. ESNs are widely known for their ability to recog-
nize complex dynamical systems with a black-box modeling approach. In [4] an
ESN was utilized to learn dynamical nonlinear behaviors for a downhole pres-
sure estimation. It was also successful to model increasingly complex behaviors
by showing examples of behaviors in [5].

Model Predictive Control (MPC) showed great potential in regards of performing
optimal control in [3], which used a data-driven model to predict and optimize
future process behavior in addition to handle constraints on both input and con-
trolled variables. It has proven to be convenient in systems where some of the
sections are data-driven, such as an autonomous system with forecasts as con-
straints in [6]. It has also shown its reliability in [7] when it delivered optimal
control for a real system with a partly inaccurate model. The proposition in this
dissertation will be to combine ESNs with Nonlinear Model Predictive Control
(NMPC) to perform optimal control of a plant.

The plant introduced in this work is the Electric Submersible Pump (ESP) which
is used to provide artificial lifting in an oil well. As much as 23% of all ESP failures
are due to operator mistakes [8]. Using different MPC strategies to avoid failures
on ESPs has been a prevalent field of study in recent years. A linear MPC strategy
was successfully applied to an ESP in [9]. Further, [10] managed to implement
an MPC based on linearized models of the ESP on a PLC. Different MPC strategies
showed sufficient robustness with respect to the ESP’s nonlinearities in [11]. This
work will look into how an ESN could be utilized to provide a data-driven model
of the ESP and then control it using an NMPC.

1.2. OBJECTIVE 3

1.2 Objective

This dissertation will explore how data-driven models obtained from Echo State
Networks could work as prediction models in an NMPC to control an electric sub-
mersible pump system. The work is divided into three main parts:

• A nonlinear system of the ESP is going to be implemented and simulated
from a set of differential-algebraic equations. A large set of data will then
be obtained from the simulation and later used as a training set for the ESN.

• An echo state network will be built and trained by the obtained data set.
The goal of the echo state network is to identify the nonlinear ESP model.

• The obtained data-driven ESP model will then be used as a prediction model
for an NMPC. The NMPC aims to perform optimal control of the ESP plant
by utilizing the data-driven ESP model to predict future behavior.

This work is carried out as a proof of concept. A conclusion would be whether or
not this approach could yield promising control for the electric submersible pump
system.

1.3 Contribution

This dissertation has led to the following contributions:

• A Python environment suitable for testing and simulating complex systems
on DAE form.

• A nonlinear model predictive controller that supports echo state networks
as prediction models.

1.4 Structure

This dissertation consists of 6 chapters.

• Chapter 2 will give an introduction to the relevant theory for this project.
This includes an introduction to the electric submersible pump, basic system
knowledge, system identification and model predictive control.

• Chapter 3 aims to give an overview of how every aspect is implemented in
this work. The chapter is covering modeling and simulation of ESPs, model
identification and model predictive control.

• Chapter 4 will carry out experiments and provide results.
• Chapter 5 provides a discussion of the obtained results.
• Chapter 6 presents the conclusion of this work and will also present propos-

als for future work.

Chapter 2

Theory

This chapter will give an introduction to the relevant theory used in this work.
Firstly, a brief introduction to artificial lifting and electric submersible pumps
(ESPs) will be given. Then, the relevant theory for both model identification and
control of the ESP will be provided. Section 2.1 is written together with Sondre
Bø Hernes as a part of our collaboration.

2.1 Oil wells and artificial lifting

In order to bring oil from a reservoir to the surface, enough pressure is essential.
If a well has enough pressure to push fluid to the surface, we call it a flowing well.
Flowing wells have a natural lift, which means that the pressure at the bottom of
the well is strong enough to overcome the pressure loss through the pipeline on
its way to the surface. However, most oil wells do not have enough pressure in
their reservoir to rely on natural lift alone. Some wells might have a natural lift in
their early years of production, but the pressure will decrease over the lifetime. A
well with insufficient pressure will leave valuable hydrocarbons deposited in the
reservoir.

To overcome the problem of non-flowing wells, it is common practice to resort to
artificial lifting. Artificial lifting is a method used to increase the pressure inside
the well to boost oil production and to increase the lifetime of the well. There are
mainly two different methods of artificial lifting: gas lift and pumping systems.
The choice of method depends on multiple variables such as the volume of the
well, depth, location (onshore or offshore), viscosity of the fluid, concentration
of gas, and the condition of the well [12]. A commonly used method for artificial
lifting is the Electric Submersible Pump (ESP), which will be presented in the next
section.

5

6 CHAPTER 2. THEORY

2.1.1 ESPs

An Electric Submersible Pump (ESP) is a multistage centrifugal pump installed
several hundred meters under the sea surface in an oil well [13]. ESPs will con-
tribute to a boost in production and increased recovery for a well. The pump inside
the ESP works on a dynamic principle. Firstly, the kinetic energy of the liquid is
increased. Then, it is partly converted into pressure energy which will move the
fluid through the pump [12].

It is primarily used in oil wells with high flow rates because of its high cost. They
are therefore limited to high volume applications either offshore or onshore where
the high cost can be justified.

ESPs have greater lifting abilities than most other artificial lifting methods. A set
of advantages and disadvantages for the ESP are discussed in [12].

Advantages:

• Suited for lifting high liquid volumes from medium depths.
• Efficient as long as the production is higher than 1000 bpd.
• Well working in deviated wells.
• Potentially low maintenance if properly designed and operated.
• Suited for offshore installations because of its low space requirements.

Disadvantages:

• Demand high electric power with high voltage.
• Low flexibility if it is run on a constant electrical frequency.
• Free gas at suction can harm the efficiency of the pump and even stop liquid

production.
• Abrasive material as e.g. sand will increase the equipment wear.
• Expensive to purchase, repair and operate.
• High velocity will increase power usage and reduce productivity.

Lifespan

The lifespan of ESPs depends on multiple factors. The length of service is an im-
portant factor, but would not cause a failure alone. ESPs do not normally wear
out, it is often a sudden catastrophic event that causes the failure. Temperature,
flow rate, vibration and power consumption can all affect the lifespan of an ESP.
It is therefore normal to set constraints on these variables to increase the lifespan.
A replacement of an ESP will cause a huge economic impact due to the cost of the
replacement pump and the loss of production [10].

Available statistics says that 23% of all ESP failures are due to operator mistakes.
When ESPs were first introduced, this number was as high as 80% [8]. A set of

2.2. SYSTEM FUNDAMENTALS 7

constraints has been introduced in later years to decrease the number of fail-
ures.

2.2 System fundamentals

A system is in general defined as the relationship between an input (excitation)
and an output (response), where different inputs will generate unique outputs
[14]. If a system has one input terminal and one output terminal it is called a
single-input single-output (SISO) system. In comparison, a multivariable system
has multiple input terminals and multiple output terminals, being referred to as a
multiple-input multiple-output (MIMO) system. A simple representation of a SISO
system can be seen in Figure 2.1.

A system that accepts continuous-time signals as input and generates continuous-
time signals as output is referred to as a continuous-time system. The input are
denoted as u(t) and the output as y(t). The time t has a range of −∞ to ∞.
Continuous-time dynamical models should be used if the signal involves spikes,
like in biological modeling [15].

In contrast, a discrete-time system is a system that accepts discrete-time signals
as input and generates discrete-time signals as output. Discrete-time signals are
assumed to have a sampling period T , and the input and output can be denoted
as u[k] and y[k] respectively, where k represents a discrete-time instant and has
a range of −∞ to∞.

Figure 2.1: A simple SISO system, recreated from [14].

A system dependent on both current and previous inputs is referred to as a dy-
namical system [14]. In theory, a dynamical system is dependent on all previous
inputs back to t = −∞. This is in general both difficult and disadvantageous to
trace. The idea of a state comes in handy regarding this problem. An initial state
x(t0) of a system holds all information up till the time t0. The state x(t0) com-
bined with the input u(t) for t > t0 can generate the unique output y(t) for all
t > t0 [14].

8 CHAPTER 2. THEORY

There are different ways to represent a dynamic system, one of the most com-
mon ways is the state-space representation. A state-space equation describes the
internal variables in addition to the relationship between input and output. They
are well suited for computer computation because it only consists of first-order
derivatives in the discretization [14]. The state-space representation for a dynam-
ical system can be expressed as:

ẋ(t) = f (x(t), u(t)) (2.1a)

y(t) = h(x(t), u(t)) (2.1b)

where Equation (2.1a) is the state equation and Equation (2.1b) is the output
equation. A dynamic system has a kind of memory since the current state is de-
pendent on previous states.

Similarly, if the continuous system is discretized with a discrete-time instant k, we
can express the model as a system composed of first-order equations:

x[k+ 1] = f (x[k], u[k]) (2.2a)

y[k] = h(x[k], u[k]) (2.2b)

This work will use Differential Algebraic Equations (DAEs) to model dynamical
systems. DAEs are Ordinary Differential Equations (ODEs) with additional alge-
braic constraints on the dynamic variables. The DAE standard form is given as
[16]:

ẋ(t) = f (x , y, t) (2.3a)

0= g(x , y, t) (2.3b)

2.2.1 Model identification

Models of real physical systems are essential in almost all disciplines. They can be
useful for analyses and gaining a better understanding of a real system. Further,
simulation can be run using a model that will be advantageous since simulat-
ing a real system can be both expensive and dangerous [17]. Such models can
also be used to analyze the system over time and predict behavior with various
inputs.

The process of building a mathematical model of dynamical systems from mea-
sured data is called model identification. It is common to divide different modeling
approaches based on complexity and available data [2]. The three approaches can
be seen in Figure 2.2 and are as follows:

• White box models are based on first principles such as physical, economical
or chemical laws. Extrapolation is appropriate for these models and they are
often both scalable and very reliable. A model is called a white box model
if its parameters possess an interpretation in first principles.

2.3. ARTIFICIAL NEURAL NETWORKS / DEEP LEARNING 9

• Black box models are mainly based on experiments and data. In the building
of a black box model, no prior knowledge is needed. This model is only for
existing processes and the parameters have no relationship to first princi-
ples.

• Gray box models are a combination of white and black box models. Nor-
mally, the model structure relies on prior knowledge while the parameters
are obtained through measured data.

Figure 2.2: The different modeling approaches.

The quality of the model will usually determine the upper limit of the final solution
and are often looked at as the bottleneck in the development of a whole system
[2].

2.3 Artificial Neural Networks / deep learning

In the early days, artificial intelligence was a group of problems that was exces-
sively hard to solve for human brains but easy to solve for computers. These prob-
lems were often described by a list of mathematical rules [18]. Later, it became
clear that the real challenge was to make a computer perform tasks that were easy
for humans, but hard to describe mathematically. The type of problems could be
things that humans solved automatically or intuitively, like an image or speech
recognition [18].

One of the simplest examples of a deep learning model is the feedforward neural
network, also called a multilayer perceptron (MLP). It can be seen as a function
that will map a set of inputs to a set of outputs. The mathematical function is
composed of many simpler functions. A simple representation of a feedforward
deep network can be seen in Figure 2.3.

An input x flows from the input layer, through the computation layer (hidden
layer) defined by a function f , before reaching the output y. The network aims to

10 CHAPTER 2. THEORY

Figure 2.3: A simple feedforward deep network representation.

approximate a function f ∗ such that y = f ∗(x). To gain a better understanding
of the architecture in the network, a simple example of a SISO neuron is shown
in Figure 2.4.

Figure 2.4: Network architecture and notation, extracted from [3].

In the figure above, p represents a scalar input. The input p is multiplied by a
weight w before it enters a summation with a bias, b. Further, the net input n will
proceed into an activation function f . The output from the activation function f
is a scalar output a. This simple neuron can be described by:

a = f (n) = f (wp+ b) (2.4)

An activation function makes it possible to make sense of nonlinear complex map-
pings between input and output. The output would have been a simple linear func-
tion without the activation function. A linear function is of course easier to solve,
but it discards the possibilities of learning complex mappings between input and
output. A network without hidden layers and an activation function can be char-
acterized as a linear regression model with limited power [19]. Three frequently
used activation functions are expressed in Equation (2.5) with their following

2.3. ARTIFICIAL NEURAL NETWORKS / DEEP LEARNING 11

plots in Figure 2.5.

tanh(x) =
2

1+ e−2x
− 1 (2.5a)

sig(x) =
1

1+ e−x
(2.5b)

ReLU(x) =

¨

0, x < 0

x , x ≥ 0
(2.5c)

(a) Tanh function. (b) Sigmoid function.

(c) ReLU function.

Figure 2.5: Different types of activation functions.

2.3.1 RNN

If feedback is included in a neural network we call it a Recurrent Neural Network
(RNN) [18]. All RNNs have at least one cyclic path between its neurons. RNNs
are neural networks specialized in processing a sequence of values x(1), ...,x(τ).
Adding feedback from the previous step will give the network a kind of memory.
This will increase the network’s ability to learn systems with dynamical charac-
teristics [20]. An RNN on its general form can be written as:

x[k+ 1] = f (Wh x[k] +Wiu[k]), (2.6)

ỹ[k+ 1] =Wox[k+ 1], (2.7)

where x[k] is the state of the hidden neurons, ỹ[k] is the predicted output and
u[k] is the input. Further, f is the activation function and Wh,Wi and Wo are the
weighting matrices in the hidden layer, input layer and output layer respectively.
For traditional RNNs, during the training process, Back-Propagation Through Time
(BPTT) is used to adapt the weights to minimize a quadratic error over time [18].
It is harder to train an RNN compared to a static network because RNNs are time-
dependent. Besides, there is no guarantee for global convergence and it could
have problems with a vanishing gradient [21].

12 CHAPTER 2. THEORY

2.3.2 Reservoir Computing

Despite the fact that RNNs had the ability to learn systems with dynamical charac-
teristics, [22] showed that for the traditional training methods for RNNs, where
all weights were adapted, significant weight adaptions were only made in the
output layer. Reservoir Computing (RC) was introduced as an RNN-based frame-
work where input data are transformed into spatiotemporal patterns by an RNN
in a reservoir [23]. The main idea behind RC is that both input weights and the
weights inside the reservoir are randomly generated and not trained, while the
output weights are trained with a learning algorithm. This approach gives an ad-
vantage of a faster training process and less computational cost compared to tra-
ditional RNNs [15].

2.4 Echo State Network (ESN)

An Echo State Network (ESN) is a particular form of the RNN which goes under
the definition of reservoir computing. It is well suited for model identification
of complex dynamic systems. As previously mentioned, all RNNs have a kind of
memory, and this is crucial for modelling history dependent systems. An ESN is
built up by three components: an input layer, a reservoir (hidden layer) and a
readout output layer. The ESN can be described by the following discrete-time
dynamic equations:

x[k+ 1] = (1−α)x[k] +α f (Wr
r x[k] +Wr

i u[k] +Wr
b +Wr

o y[k]), (2.8)

y[k+ 1] =Wo
r x[k+ 1], (2.9)

where x[k] is the state of the reservoir neurons at time instant k. Further, u[k] and
y[k] are the current values of input and output neurons respectively. W represents
weighting matrices, and are given on the form Wto

f rom, where r is the reservoir, i is
the input layer, o is the output and b is the bias. α is the leak rate and f = tanh(·)
is the nonlinear activation function [24].

Unlike the RNN, both input weights and reservoir weights are randomly initialized
and will stay fixed throughout the whole process. The output weights are the
only adaptable weights and can be trained with e.g. linear regression [25]. A
representation of the ESN can be seen in Figure 2.6. Dotted arrows represent
fixed weights while solid arrows represent adaptable weights. The grey circles
represent neurons.

In order to understand how the ESN works, it is important to see its intuition. The
overall goal of the ESN is to learn an inverse model based on a black-box modeling
approach. A training sequence with input u[k] ∈ RNu and output y target[k] ∈ RNy

is given, where k = 1, ..., T is the discrete-time instant. The aim of the ESN is to
learn a model by predicting the output y[k] ∈ RNy such that the error between
y[k] and y target[k] is minimized.

2.4. ECHO STATE NETWORK (ESN) 13

Figure 2.6: The structure of an echo state network, inspired by [15].

The process of building an ESN in its simplest form can be divided into the fol-
lowing steps [15]:

1. Generate the weights W r
i and W r

r to form a large random RNN which will
function as a reservoir, and rescale its weights according to specific criteria;

2. Run the reservoir using a training input sequence u[k] and collect the cor-
responding states x[k];

3. Compute the output weights. This can be done using linear regression by
minimizing the mean square error (MSE) between y target[k] and y[k];

4. Test the network with a new set of input data u[k] and generate the output
y[k] by utilizing the trained output weights.

2.4.1 Selection of global parameters

There are no particular recipes when it comes to selecting global parameters of the
reservoir, a.k.a. hyperparameters, but there are a handful of precautions that must
be considered in the process. Parameters are usually found by a trial and error
approach. It also exists software packages with a grid search or other automated
search methods that will ease the process. The following parameters should be
considered when building an ESN.

Reservoir size

The first parameter is the reservoir size. The number of neurons N in the reservoir
is equal to the dimension of x[k]. It should be higher than the number of network
inputs and could be as big as computationally feasible. A big reservoir will have
more memory, be more likely to generate rich enough signals and perform better
as long as the learning is regularized. The drawback with a large reservoir is that
the training time increases quadratically [15].

14 CHAPTER 2. THEORY

Sparsity

The sparsity in the ESN narrates the distribution of non-zero elements in the reser-
voir. Introducing sparsity in the connection between weights will reduce the com-
putational cost. Sparsity has shown to be important regarding spiking neural net-
works such as Liquid State Machines but is in general not important for analog
networks such as the ESN other than for computational reasons [15].

Leak rate

The leak rate is a percentage of how much of the current state that will be transmit-
ted to the next state [15]. A low leak rate will slow down the reservoir dynamics
and increase memory. Since ESNs are lacking a time constant, leaky integrator
neurons are used to slow down dynamics in for instance a differential equation
[15].

Spectral radius

Adapting the spectral radius is equivalent to scaling the reservoir weights. Scaling
of the reservoir weights will influence the dynamical behavior. Setting the spectral
radius to ρ(W) < 1, with W =Wr

r , will guarantee the Echo State Property (ESP)
in most cases, which is a stability property of the ESN to be satisfied. High values
for ρ(W)will increase the reservoir memory and induce more non-linearity, while
low values will make the reservoir more responsive to recent inputs [15].

Input scaling

The input scaling of Win is another parameter that should be optimized for better
performance. A small input scaling should be used if the task is linear. This will
allow the reservoir to work in the linear region of the activation function. A large
input scaling will make the activation more nonlinear [15].

2.4.2 Training

In neural networks, training is referred to as the process of minimizing the error
between a given output y target[k] and the output produced by the network y[k].
While all weights are trained using backpropagation through time (BPTT) in clas-
sical RNNs, the only weights adapted in ESNs are the output weights Wo

r . This will
result in a linear optimization problem since the loss function can be expressed
as a sum of squares and the error between targeted output and model output is
linear [2].

A training sequence with input u[k] ∈ RNu and output y target[k] ∈ RNy for k =
1, ..., T is fed into the network. The input and output can be formulated as U ∈
RNu×T and Ytarget ∈ RNy×T . The input matrix U is iterated through Equation (2.8)
and the internal states x[k] are harvested into a new state-collection matrix X ∈

2.4. ECHO STATE NETWORK (ESN) 15

RNx×T . The state-collection matrix and the targeted output matrix is formulated
as:

X=















x11 x12 · · · · · · x1Nx

x21 x22 · · · · · · x2Nx
...

...
. . .

...
...

...
. . .

...
xT1 xT2 · · · · · · xT Nx















, Ytarget =















y11 y12 · · · · · · y1Nx

y21 y22 · · · · · · y2Nx
...

...
. . .

...
...

...
. . .

...
yT1 yT2 · · · · · · yT Nx















When the states from the training set are harvested into X, it is time to train
the readout. This is done by tuning the output weighting matrix Wo

r . Having a
linear optimization problem is highly desirable in a training process since it comes
with a set of features such as an analytic one-shot solution, a unique optimum,
and a recursive formulation [2]. Multiple powerful and efficient techniques are
available, such as the Ordinary Least Square (OLS) regression method and the
Ridge regression method [2].

OLS is a frequently used method when it comes to estimating parameters with
linear regression. This method is used to minimize the cost function:

J =
N
∑

k=0

y target[k]− y[k]

2
2 =

Ytarget −Wo
r X

2
2 (2.10)

where N is the number of samples in the training data. It is clear that this problem
would have a global minimum because of its linearity. An analytical solution to
this problem can be formulated by isolating Wo

r :

Wo
r = (X

T X)−1XT Ytarget (2.11)

A weakness of the OLS method is that the problem of poorly conditioned Hessians
becomes harsh if the number of regressors is large [2]. That is, a flexible model
will have a severe variance of the worst estimated parameters. Neural networks
are known for utilizing a large number of parameters, and this will introduce a
serious variance problem. This problem can be solved using regularization tech-
niques.

Ridge regression is one of the approaches that introduce a regularization param-
eter by multiplying a regularization parameter λ with the `2 norm of Wo

r . The
intuition behind this is simple, parameters that are negligible for solving the op-
timization problem are driven towards zero [2]. A λ → 0 will result in a stan-
dard least square problem, while λ →∞ will force all parameters to zero [2].
Equation (2.11) with a regularization parameter leads to the following parameter
estimate:

Wo
r = (X

T X+λI)−1XT Ytarget (2.12)

The training of the network is finished when the optimal Wo
r is found. The output

weights should then be implemented in the network, which is now ready to use
with Equation (2.8) and Equation (2.9).

16 CHAPTER 2. THEORY

2.5 Model Predictive Control (MPC)

This section will introduce the MPC and discuss its intuition. Firstly, a brief in-
troduction to optimization will be given. Some theory in this section is extracted
from the project preceding this dissertation [3].

2.5.1 Optimization

In control theory, optimization is the procedure of minimizing or maximizing an
objective function on a finite set of feasible solutions. In order to take advantage
of optimization, an objective must be defined. The objective should be a single
number which works as a quantitative number of the performance of the system
[26]. An objective should also be dependent on the system variables. Optimal
values of the variables must be found in order to optimize the objective. A general
notation of an optimization problem can be expressed as [26]:

• x is the variable vector;
• f is the objective function which is the function we want to maximize or

minimize;
• ci are functions containing constraints. Constraints are functions of x that

define equalities and inequalities which the vector x must satisfy.

By using the notation above, the optimization problem can be written as:

min f (x) subject to

¨

ci(x) = 0, i ∈ E
ci(x)≥ 0, i ∈ I

(2.13)

where E is a set of equality constraints and I is a set of inequality constraints. The
solving algorithm of an optimization problem depends on its objective function
and constraints. Optimization problems are divided into three general classes.
The classes with their respective solving algorithm are:

• Linear Programming (LP): Both constraints and the objective function are
linear. The linearity will result in a convex problem. The Simplex method is
a widely used algorithm for LP problems.

• Quadratic Programming (QP): This problem has a quadratic objective func-
tion while the constraints are linear. An active set method is suitable for
solving QP problems. This problem is also convex.

• Nonlinear Programming (NLP): NLP problems are known by their nonlinear
equality constraint functions. A Sequential Quadratic Programming (SQP)
algorithm is suitable for these problems. NLP problems are non-convex.

This work will focus on NLP problems since the ESP system is nonlinear.

2.5. MODEL PREDICTIVE CONTROL (MPC) 17

2.5.2 Forming an NLP problem

There exist multiple methods in how NMPC optimization problems are solved.
Most of them are, however, based on Sequential Quadratic Programming (SQP)
methods as aforementioned. The SQP methods are iterative, which means that it
makes a quadratic approximation to the objective function and a linear approxi-
mation to the constraints. Then it solves a QP problem at each iteration in order
to find the search direction. A line search is then used to solve the QP problem
and find the next iterate [27].

How the QP problem is formulated can play a big role regarding calculation cost.
The three primarily used methods are [27]:

• Single shooting: This method is also known as a sequential approach. Firstly,
the states are removed by forward simulation such that the optimization
variables only consists of discretized controls u0, u1, ..., uL . Then a reduced
QP problem is solved. The advantages of this method are that there are few
optimization variables and that the solution will be feasible with respect to
the model at each SQP iteration. It is also the most intuitive method.

• Simultaneous approach: This approach implements the model as explicit
equality constraints. It will result in a large number of optimization vari-
ables since both controls and states are optimized. This approach demand
high computational cost.

• Multiple shooting: This method is a composite of the two other approaches.
What makes this method special is that the control horizon is divided into
sub-horizons. Significantly faster than single shooting if the prediction hori-
zon is long.

This work will focus on single shooting because of its intuitiveness. Despite the
fact that multiple shooting is a faster method, only small prediction horizons will
be necessary in this project.

2.5.3 Building an MPC

Model Predictive Control (MPC) refers to a class of control algorithms which by
utilizing an explicitly formulated process model can predict and optimize future
behaviors of a process [28]. MPC controllers can handle constraints on both ma-
nipulated variables (input) and states/controlled variables. In general, an MPC
can be described as a controller which [27]:

• utilize a process model to predict future behavior;
• optimize future behavior by using a class of control algorithms;
• can handle constraints on both controlled and manipulated variables.

There are several variants of the MPC. The functionality depends on how the
objective function is defined and what kind of prediction model is used. This work

18 CHAPTER 2. THEORY

will look at how a data-driven model can be used as a prediction model.

Objective function

A general way to formulate an optimal control problem is by making a minimiza-
tion problem that punishes deviation in both states and controls. An objective
function can be formulated as:

J =
∞
∑

k=0

�

x[k]− x[k]re f

2
Q +

u[k]− u[k]re f

2
R

�

(2.14)

where x is a vector of future states and u is a vector of future inputs. x re f and
ure f is the desired values. Q and R are weighting matrices on states and control
respectively, which are typically symmetric and positive definite.

Equation (2.14) is an infinite horizon objective function since it takes all future
steps into account. This is a typical approach in controllers without constraints
such as the Linear Quadratic Regulator (LQR). An MPC utilizes constraints in the
optimization problem which means that a finite horizon formulation must be used.
This can be expressed as:

J =
N−1
∑

k=0

�

x[k]− x[k]re f

2
Q +

u[k]− u[k]re f

2
R

�

(2.15)

where N is the prediction horizon. The parameters Q, R and N are the main
parameters for tuning. An increase of Q will lead to more aggressive closed-loop
behavior, and an increase in R will lead to less aggressive behavior. The prediction
horizon N is related to both performance and computational complexity. A short
N will give a low complexity optimization problem with lacking performance,
while a large N will give better performance but also a higher computational
cost. N is normally selected as large as computational limitations permit, as this
will make the closed-loop behave close to an infinite horizon controller [27]. All
tuning parameters should be tuned by a trial-and-error approach.

This work will utilize a data-driven model as a prediction model. This can lead
to a model-plant mismatch (due to accuracy) and it is therefore important to not
choose a too long prediction horizon. That is because uncertainties tend to be
amplified as one predicts far into the future with an imperfect model.

Constraints

In practice, all processes are bounded by some kind of limits. In control theory,
control valves have a range of action, pressure in a tank is constrained for safety
and operational constraints can be introduced for economic or environmental rea-
sons.

2.5. MODEL PREDICTIVE CONTROL (MPC) 19

Output constraints must be considered in advance since the output variables are
affected by the process dynamics. Input constraints are often kept inside a window
limited by the manipulated variables properties (e.g., a valve or an actuator).
The constraints are formulated as functions of the control inputs (manipulated
variables) and the states (controlled variables):

umin ≤ u[k+ i]≤ umax , i = 0, 1, ..., N − 1 (2.16)

xmin ≤ x[k+ i]≤ xmax , i = 0,1, ..., N (2.17)

∆umin ≤∆u[k+ i]≤∆umax , i = 1, 2, ..., N − 1 (2.18)

where ∆u= u[k+ 1]− u[k]. That is, punishing the change of control.

Constraints are divided into two categories, soft and hard constraints. The differ-
ence between the two types is how they are treated by the MPC. An illustration
of the two constraints can be seen in Figure 2.7. The left figure represents a hard
constraint where a violation will cause infeasibility. On the left, a soft constraint
(dotted lines) is represented. A violation will not cause infeasibility but is penal-
ized in the cost function.

(a) Hard constraint. (b) Soft constraint.

Figure 2.7: Difference between hard and soft constraints.

Optimal control problem (OCP)

An Optimal Control Problem (OCP) can be obtained by combining the objective
function with the constraints. An OCP on its general form can be written as:

min
u

J(x0, u) subject to:



















x[k+ 1] = f (x[k], u[k])
x[0] = x0

u[k] ∈ U,∀k ∈ {0, ..., N − 1}
x[k] ∈ X,∀k ∈ {0, ..., N},

(2.19)

where J is the objective function. There is not much of a difference between a lin-
ear MPC and a nonlinear MPC (NMPC) other than the process model being a non-
linear model. The process model is implemented as a constraint in the MPC and
can be seen at the top of Equation (2.19). As aforementioned, having a nonlinear
equality constraint will result in a Nonlinear programming (NLP) problem.

20 CHAPTER 2. THEORY

The MPC principle

Future outputs are predicted at each discrete-time instant k for a horizon N using a
process model. An optimal future control sequence is obtained by solving an OCP
at every discrete-time instant k. The first control instant in the sequence (u[k],
u[k+1], ... ,u[k+N]) is then applied to the plant and the prediction model, while
the rest of the sequence is rejected. New future outputs are then predicted at k+1
where a new optimal future control sequence is obtained. The MPC principle is
illustrated in Figure 2.8.

Figure 2.8: MPC principle, recreated from [29].

An MPC is often a safe controller choice when future references are given. It is
an intuitive concept with a simple tuning process. For this reason, the MPC is an
attractive choice for staff with limited control understanding.

Chapter 3

Implementation

This chapter aims to give an overview over the implementation in this work. It is
divided into three parts. Firstly, a model of the ESP is implemented and tested.
Section 3.2 is a cooperation together with Sondre Bø Hernes. The next part will
discuss how the data-driven model is obtained from an ESN. At last, an NMPC is
implemented to control the ESP model by utilizing the data-driven ESN model as
a predictor.

3.1 Software

This work is primarily built in Python3. Python is great for prototyping and has
one of the best programming communities in the world. It is also an obvious choice
for machine learning tasks because of its well-developed libraries and simple ap-
proach.

Packages such as numpy and scipy were fundamental in all parts of the project. All
results are displayed with matplotlib. Further, the library esn_pnmpc developed in
[30] was used in the process of training and building the ESN. Lastly, the library
Oger [31] was applied for grid searching global parameters in the ESN.

For the NMPC, the open-source tool CasADi [32] was used. CasADi is a tool for
nonlinear optimization and algorithmic differentiation [32]. It is based on a sym-
bolic framework that gives the flexibility of a programming language and the per-
formance of a modeling language.

3.2 DAE modeling of wells with ESPs

The mathematical model of the system is based on a model developed by Statoil
(Equinor) in [13], and additional equations from [33] are added to include vis-
cosity. The system model consists of an Electric Submersible Pump (ESP) and a
production choke valve. Perfect system knowledge is assumed for the model. The

21

22 CHAPTER 3. IMPLEMENTATION

simulator is implemented in Python with CasADi as a tool for solving DAEs. This
dynamic model would work as a foundation for the development of further con-
trol and optimization strategies. A schematic picture of the model can be seen in
Figure 3.1 and a description of the associated variables in Table 3.1.

The principles in this system is fairly simple. A mixture of liquid (oil, water and
possibly gas) is flowing into the well from the reservoir (qr). It will reach the ESP
pump which will generate additional pressure and then raise to the production
choke at the top of the well. An operator can control the ESP speed and pro-
duction choke opening to reach a desired production or optimization target. The
model assumes constant fluid properties to avoid an overly complex controller.
Additional constraints are added to increase the lifespan of the ESP [13].

Figure 3.1: ESP lifted well, recreated from [33].

3.2.1 Model equations and parameters

The model of the ESP is divided into reservoir inflow, production pipe volumes,
ESP and production choke. Despite excluding complexity such as effects due to
gas and change of viscosity, the model will still represent the well dynamics quite

3.2. DAE MODELING OF WELLS WITH ESPS 23

Table 3.1: Model variables

Control inputs
f ESP frequency
z Choke valve opening

ESP data
pm Production manifold pressure
pwh Wellhead pressure
pbh Bottomhole pressure
pp,in ESP intakepressure
pp,dis ESP discharge pressure

pr Reservoir pressure

Parameters from fluid analysis and well tests
q Average liquid flow rate
qr Flow rate from reservoir into the well
qc Flow rate through production choke

accurately [13]. The system has three states: bottomhole pressure pbh, wellhead
pressure pwh and average flow rate q. Their differential equations are as follows:

ṗbh =
β1

V1
(qr − q) (3.1a)

ṗwh =
β2

V2
(q− qc) (3.1b)

q̇ =
1
M
(pbh − pwh −ρghw −∆p f +∆Pp) (3.1c)

where ∆p f are the pressure loss due to friction and ∆Pp are pressure loss due
to the ESP dynamics. The differential equations comes with a set of constraints,
which can be described as the following algebraic equations:
Flow:

qr = PI(pr − pbh) (3.2a)

qc = Cc
p

pwh − pm z (3.2b)

Friction:

∆p f = F1 + F2 (3.3a)

Fi = 0.158
ρLiq

2

DiA
2
i

�

µ

ρDiq

�
1
4

(3.3b)

24 CHAPTER 3. IMPLEMENTATION

ESP:

∆pp = ρgH (3.4a)

H = CH(µ)

�

c0 + c1

�

q
CQ(µ)

f0
f

�

− c2

�

q
CQ(µ)

f0
f

�2�
f
f0

�2
�

(3.4b)

c0 = 9.5970 · 102 (3.4c)

c1 = 7.4959 · 103 (3.4d)

c2 = 1.2454 · 106 (3.4e)

The parameters used in this model are based on the parameters from [33]. Pa-
rameters are given in Table 3.2 and consist of fixed parameters such as well di-
mensions and ESP parameters, and parameters found from analysis of fluid such
as bulk modulus βi and density ρ [33]. Parameters such as the well productiv-
ity index PI, viscosity µ and manifold pressure pm are assumed constant in this
project.

3.2. DAE MODELING OF WELLS WITH ESPS 25

Table 3.2: Model parameters

Well dimensions and other known constants
g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 *
A1 Cross-section area of pipe below ESP 0.008107 m2

A2 Cross-section area of pipe above ESP 0.008107 m2

D1 Pipe diameter below ESP 0.1016 m
D2 Pipe diameter above ESP 0.1016 m
h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m
V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

ESP data
f0 ESP characteristics reference freq. 60 Hz
Inp ESP motor nameplate current 65 A
Pnp ESP motor nameplate power 1.625 · 105 W

Parameters from fluid analysis and well tests
β1 Bulk modulus below ESP 1.5 · 109 Pa
β2 Bulk modulus below ESP 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 950 kg/m3

Pr Reservoir pressure 1.26 · 107 Pa

Parameters assumed to be constant
PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 0.025 Pa · s
Pm Manifold pressure 20 Pa

26 CHAPTER 3. IMPLEMENTATION

3.2.2 Simulation and validation

In order to use the obtained model from Section 3.2.1 for further development, it
has to be verified. The verification process is based on comparing the model’s im-
plementation and its associated data with the description and specification given
by the developer. In this particular case, verifying the model means to carry out
simulation studies in order to see if it responds as intended.

Multiple tests with different input values are simulated in order to see the response
from the system. All simulations are using the same initial values:

Pbh0 = 70 bar

Pwh0 = 30 bar

q0 = 36 m3/h

Constant valve opening and pump frequency

The first simulation will look at how the ESP model responds to a constant valve
opening z and pump frequency f . A desirable behavior for this simulation is that
the system will reach a steady-state and remains stable. The input values are given
as:

z = 100 %

f = 53 Hz

Figure 3.2 shows how the system responded to the constant input. Notice how the
system reaches a steady-state in about two minutes. This is a desirable behavior
when the system is kept with constant inputs. The displayed simulation was also
used to find suitable initial values for the states, which further provided the basis
for further simulation.

Step response on valve opening

The second simulation disclosed how the system would respond to a step response
on the valve opening while the pump frequency was held constant. The initial
values were given as:

z = 50 %

f = 50 Hz

The valve opening z was then increased after 5 minutes, resulting in the following
input values:

z = 100 %

f = 50 Hz

3.2. DAE MODELING OF WELLS WITH ESPS 27

Figure 3.2: System response with constant input.

28 CHAPTER 3. IMPLEMENTATION

Figure 3.3: System response to a step response on the valve, starting at 50% and
increasing to 100%.

3.2. DAE MODELING OF WELLS WITH ESPS 29

The resulting plot can be seen in Figure 3.3. By the intuition of the system, it is
natural that the liquid flow q will increase when the opening of the production
choke valve is increased. Further, since more flow will lead to less pressure, it
is natural that both the bottomhole pressure pbh and the wellhead pressure pwh
will drop. The wellhead pressure will experience the highest drop rate since it is
coupled with the production choke valve.

Increasing pump frequency

The last simulation looked into how the system responded to a change in the
pump frequency. It is done by keeping the valve opening constant while the pump
frequency f is increasing with 2 Hz every 10 minutes. In other words, the input
values are:

z = 60 %

f = 50 Hz, increased by 2 Hz every 10 minutes.

This simulation looked at how the system would respond to a pump frequency
change. It is expected that a change of frequency will cause an increase in the
liquid flow q. Additionally, the wellhead pressure pwh will increase because it is
connected to the output of the pump. At last, the bottomhole pressure pbh will
decrease because it is connected to the input of the pump. As seen in Figure 3.4,
the system responded as expected to the increase of frequency.

3.2.3 Discussion

The aim of this section was first to give an introduction to the modeling pro-
cess of the electric submersible pump, then to verify the system model. Different
scenarios were simulated to verify the DAE model since small errors could cause
deviations. DAE models are often too complex to comprehend by equations alone,
but simulation gives the opportunity to isolate variables in order to get a better
system understanding. Since the model responded as expected for all simulations,
we consider the model implementation as validated. This model will be used for
further control and optimization in this dissertation.

30 CHAPTER 3. IMPLEMENTATION

Figure 3.4: System response with an increasing frequency

3.3. DATA SET 31

3.3 Data set

In order to build a data-driven model with an ESN, large amounts of data are
necessary. It is important to notice the fact that ESN is a black box modeling tech-
nique. This implies that the network would not give good results if the network
is operating in a range that was never visited during training [15]. How this data
set is created is crucial for both performance and accuracy.

3.3.1 Sampling time

Finding a suitable sampling time is the first step in the process of creating a data
set. The ESN accepts input/output mappings in discrete-time. Having a too large
sampling time (low sampling rate) can cause aliasing which would lead to loss of
information. On the other hand, a too small sampling time (high sampling rate)
would lead to increased computational cost since the number of data points is
higher than necessary. A balance between computational cost and performance
must be considered when selecting a sampling time.

A suitable sampling rate could be found by utilizing one of the simulations from
Section 3.2.2. By looking at how the wellhead pressure pwh is responding to dif-
ferent sampling rates could give valuable feedback. The system is simulated with
the following constant inputs:

z = 50 %

f = 53 Hz

From Figure 3.5 it is obvious that a sampling rate of 2 samples/minute will lead to
information loss, while both 12 samples/minute and 30 samples/minute are able
to represent the dynamics of the model well. It is decided to use a sampling rate
of 12 samples/minute since it represents the system dynamics well while being
computationally cheaper than 30 samples/minute.

32 CHAPTER 3. IMPLEMENTATION

(a) pwh with 2 samples/minute.

(b) pwh with 12 samples/minute.

(c) pwh with 30 samples/minute.

Figure 3.5: Comparing pwh with different sampling rates.

3.3. DATA SET 33

3.3.2 Excitation signals

The input (excitation) signal u plays an important role in system identification as
this is the only way to influence the process in order to gather information about
its behavior [2]. It is important to visit all working conditions that will later be
met when the trained model is used in a controller. This is easier said than done
with nonlinear systems.

A well-motivated approach for linear systems is to use white noise as input as
this will reveal most of the system’s behavior. However, this does not apply to
nonlinear systems. Typically, a white noise input will only visit a small region of
the nonlinear system’s working range [15]. This will cause problems when the
trained model is working with a slow changing input for instance. The model will
then be driven to a different working range which will deviate from the range
used in the training.

It is also important not to cover a working range wider than what will be met in the
testing or exploitation, as this will occupy the modeling capacity with irrelevant
information. Poor model accuracy in the actual working region will be a result of
a larger training region than necessary.

A ground rule is that the training input should reflect the inputs that would be used
in testing and exploitation, but it should be a bit more varied than the expected
input in the exploitation phase [15].

PRBS (Pseudo-Random Binary Signal) is a prevalent choice when it comes to ex-
citation signals. It imitates white noise in discrete-time and excites all frequencies
equally [2]. A PRBS can be seen in Figure 3.6.

Figure 3.6: Pseudo-Random Binary Signal (PRBS)

Although PRBS is suitable for linear systems, no information about the system
behavior is given for amplitudes other than 0 and 1. There are, however, a simple
solution to this problem. Giving the PRBS signal a random amplitude will result
in an APRBS (Amplitude-modulated Pseudo-Random Binary Signal). The APRBS
will give a rich input data distribution which can be seen in Figure 3.7.

34 CHAPTER 3. IMPLEMENTATION

Figure 3.7: Amplitude-modulated Pseudo-Random Binary Signal (APRBS)

APRBS was selected as the excitation signal for this work. The minimum and
maximum values for the excitation signal can be found in Table 3.3.

Table 3.3: Input signal limits

min max
z 0 % 100 %
f 35 Hz 65 Hz

3.3.3 Training set

When the MPC will be used for control later, it will send a new input to the ESN
every sampling instant k. In other words, the ESN will receive a new input every
5 seconds. The ESN must also be able to respond to receiving the same input for
a larger period of time, making the ESN converge to a steady-state. It is therefore
smart to involve both fast and slow input changes in the data set. In this way,
the ESN would be accurate for both fast and slow dynamics. An example of the
training set can be seen in Figure 3.8. The red graphs z and f are labeled as input
and the blue graphs pbh, pwh and q are labeled output. This set is simulated for
1000 minutes which gives a total of 12000 data points. It is evident to see that
holding an input for a longer period of time will visit more working conditions of
the outputs pbh, pwh and q than fast input changes alone.

3.4. BUILDING AN ECHO STATE NETWORK (ESN) 35

Figure 3.8: Training set example

3.4 Building an Echo State Network (ESN)

Building an ESN is referred to as selecting parameters described in Section 2.4.
Before starting the selection process, it is important to have a measure on per-
formance. This is normally done by looking at the error between the ESN output
and the real system output. Since the ESN is working with normalized values, it is
natural to also use normalized values in the error calculation such that each state
is equally weighted in the error function. The normalized values can be extracted
from Equation (3.11).

ŷ =
y − ymin

ymax − ymin
, (3.11)

where ŷ is the normalized value. The normalized value ŷ will have a range be-
tween 0 and 1. An error function can then be defined as:

Error=
M
∑

k=0

|p̂bh − p̂ESN
bh |+ |p̂wh − p̂ESN

wh |+ |q̂− q̂ESN |, (3.12)

where M is the number of data points.

The network was firstly initialized with a set of nominal values. These values were
selected with a quick trial-and-error approach where gaining an understanding of
how each variable influenced the network was essential. A more in-depth search
was later done when nominal values were obtained. The in-depth search consisted
of a search in one parameter while the other parameters were kept fixed.

A data set consisting of 12000 data points were used for each test. The data set was
divided into 10 folds and a 10-fold cross-validation method was performed. The
average of five different reservoirs was used in order to exclude any deviations.
Using multiple reservoirs is important since the ESN is randomly initialized and
performance can vary for each reservoir.

36 CHAPTER 3. IMPLEMENTATION

Ridge regression was used to train the ESN. The regularization parameter λ was
found by performing 10-fold cross-validation with a trial and error approach. Val-
ues on a logarithmic scale were tested, and λ= 1× 10−8 yielded the best perfor-
mance.

For the spectral radius ρ a value close to one is desirable in order to have a large
range of dynamics in the reservoir. It is also important to keep it inside the unit
circle of the complex plane in order to ensure stability. Hence, ρ = 0.99 was
selected as spectral radius.

A reservoir size of N = 200 was chosen based on a line search method and visual
inspection. An error plot from the search can be seen in Figure 3.9. The training
time was fast for all reservoir sizes and was neglected in the decision. It was later
revealed that the reservoir size played a huge role in the calculation time for the
NMPC.

Figure 3.9: Sum of normalized error compared to size of reservoir.

As for the reservoir size, the same search method was utilized to find an optimal
leak rate α. Firstly, a search for 0.1 ≤ α ≤ 1 with a step interval of 0.1 was con-
ducted. The results from this search can be seen in Figure 3.10. A leak rate of
0.1 ≤ α ≤ 0.3 gives the best error. This implies that the ESN will have a focus on
slowing down the reservoir dynamics and increase the memory. A new line search
for 0.1≤ α≤ 0.3 with a step interval of 0.02 was then performed. The results can
be seen in Figure 3.11 and α = 0.12 seems to give the best error. This value was
therefore selected as the leak rate.

For the input scaling f r
i a small value is desirable since the influence of the input

on the network becomes small. This will make a controller work less aggressively.
A search for 0≤ f r

i ≤ 0.2 with a step interval of 0.02 resulted in f r
i = 0.1.

3.4. BUILDING AN ECHO STATE NETWORK (ESN) 37

Figure 3.10: Sum of normalized error relative to leak rate α.

Figure 3.11: Sum of normalized error relative to leak rate α with smaller step
interval.

38 CHAPTER 3. IMPLEMENTATION

Sparsity was neglected from this work. A strong sparsity was needed to see a major
difference in computational cost, but this led to poorer performance.

To sum up, all selected parameters can be seen in Table 3.4.

Table 3.4: Global parameters for ESN

Global Parameters
N Reservoir Size 200
α Leak Rate 0.12
ρ Spectral Radius 0.99
ψ Sparsity 0
Ts Sampling Time 5 s
f r
i Input Scaling 0.1

An important note for the ESN is to run a warm-up phase before the states are
harvested during training and before the ESN is used in a controller. Since dynam-
ical systems are history-dependent, it is important for the ESN and the system to
have an equivalent origin. The problem can be seen in Figure 3.12. Having these
deviations in addition to negative values will cause issues on the control part. This
is simply solved by sending the same input to both the ESN and the system for
e.g. 200 samples before it is used for control purposes.

Figure 3.12: Model identification without a warm-up phase.

3.5. NMPC IMPLEMENTATION 39

3.5 NMPC implementation

The final step in the implementation is to build an NMPC. The NMPC is aim-
ing to perform optimal control on the plant by utilizing the ESN as a prediction
model.

3.5.1 Optimal Control Problem

Finding a suitable Optimal Control Problem (OCP) is the initial step in implement-
ing an NMPC. That is, finding a control law for the ESP system in order to obtain
optimal control. The optimal control target is typically specified for each output
variable. In this case, the output variables are bottomhole pressure pbh, wellhead
pressure pwh and liquid flow q. The controller made in this work can handle both
lower and higher limits in addition to a setpoint at each output variable. For the in-
put variables z and f (manipulated variables), hard constraints are implemented
both for high and low limits.

The constraints were considered according to [10]:

0≤ z ≤ 100 [%] (3.13)

35≤ f ≤ 45 [Hz] (3.14)

1≤ pwh ≤ 60 [bar] (3.15)

0≤ q [m3/s] (3.16)

The constraints will stay fixed throughout this work. A general OCP with con-
straints can therefore be defined as:

min J(xo, u) subject to:



















x[k+ 1] = f (x[k], u[k])
x(0) = x0

u[k]≤ u[k]≤ u[k]
x[k]≤ x[k]≤ x[k]

(3.17)

where

x =





pbh
pwh
q



and u=

�

z
f

�

Further, the upper and lower limits are defined as:

x =





0 bar
1 bar

30 m3/h



 , x =





∞
60 bar

80 m3/h



 , u=

�

0 %
35 Hz

�

and u=

�

100 %
65 Hz

�

The lower bound on the production choke valve z was later set to 10% because
the model was imprecise at low values of z.

40 CHAPTER 3. IMPLEMENTATION

3.5.2 Objective function

The control objective in this work is to maintain the bottomhole pressure pbh at a
desirable setpoint. Further, the liquid flow q should be maximized inside an oper-
ating window. Different control approaches can be provided by selecting various
objective functions.

Firstly, a standard approach where only soft constraints on the controlled variables
are included in the objective function. The objective function will punish deviation
between a setpoint pre f

bh and pbh. Maximizing the liquid flow q can be done by
adding a high unreachable setpoint as qre f and punish the controller for deviation.
This is often referred to as setpoint chasing in industrial applications. The objective
function can be written as:

J(x0, u) =
N−1
∑

k=0

x[k]− x[k]re f

2
Q (3.18)

where the weighting matrix Q will be used for tuning.

The second approach that will be tested is an objective function that introduce
change of control in the calculation. This will prevent the controller from making
big leaps on the manipulated variables. Big leaps in manipulated variables can
often lead to more wear and tear on equipment. This approach can be described
with the following cost function:

J(x0, u) =
N−1
∑

k=0

�

x[k]− x[k]re f

2
Q + ‖∆u[k]‖2R

�

(3.19)

where Q would be used to tune the controlled variables and R would be used to
tune the manipulated variables.

3.5.3 Solving the OCP

The OCP must be transformed into a nonlinear programming (NLP) problem in
order to be solved numerically. Single shooting is selected as the shooting method
because of its intuitiveness. The computational cost between single shooting and
multiple shooting showed to be roughly the same for the experiments in this work
because of the short prediction horizon. Anyhow, single shooting is unfavorable if
the prediction horizon is large since the function tends to become highly nonlin-
ear.

CasADi [32] is used to formulate the NLP problems. The problems are then solved
using an Interior Point Optimizer (IPOPT). IPOPT is an open-source software pack-
age widely used for nonlinear optimization. Further, the sampling time for the
MPC is equal to the sampling time used in the ESN, 5 seconds.

3.5. NMPC IMPLEMENTATION 41

3.5.4 The MPC cycle

The ESN obtained from Section 3.4 is predicting future states for a prediction
horizon N . A rule of thumb is to select a horizon as long as it takes the system
to reach a steady-state without control. However, as mentioned earlier, a system-
model mismatch will be amplified when the prediction horizon grows larger. For
this reason, a trial-and-error approach will be used to find an optimal prediction
horizon. The prediction horizon plays an important role regarding the computa-
tional cost as well.

The NMPC is made inside a for loop where IPOPT is solving a new NLP for each
iteration. The solution of the NLP gives an optimal input u which is applied to both
the plant and the ESN. A new NLP problem is then defined at the next iteration.
A figure of the NMPC cycle can be seen in Figure 3.13.

Figure 3.13: NMPC block diagram.

Chapter 4

Experiments and results

This chapter explains how simulations were conducted to obtain the results, which
are then presented and discussed. It is divided into two parts; one where the
ESN is used for model identification and another where the ESN based NMPC is
tested.

4.1 ESN experiments

This section will initially look at how the ESN with parameters from Table 3.4 will
identify the plant. After the ESN is trained and the warm-up phase is executed,
the obtained data-driven model is verified with 400 random input values and
compared to the real system. A warm-up phase consisting of a constant input
where z = 50% and f = 40 Hz for 200 samples will be used in order to reach an
equivalent starting condition for the plant and the ESN model.

A prediction error from the ESN is measured on test data with respect to the
desired output. This is done by calculating the Relative Error:

epre,%[k] = 100×
�

�

�

�

ym[k]− yesn[k]
ym[k]

�

�

�

�

(4.1)

where yesn is the predicted output and ym is the measured output from the plant.

Multiple experiments are attempted in order to ascertain that the ESN is suitable
for the NMPC. Two different data sets will be utilized, one with only fast dynamics
and one with a mix of fast and slow dynamics as in Figure 3.8. All data sets consist
of 24000 data points, which is equal to the plant running for 2000 minutes.

4.1.1 Steady-state test

The first experiment will look at the trained ESN’s ability to reach a steady-state.
This is an important trait for the network to have as the NMPC will try to reach

43

44 CHAPTER 4. EXPERIMENTS AND RESULTS

several steady-states. The input values are given as:

z = 71 %

f = 63 Hz

Firstly, the ESN is trained with only fast dynamics. Its results can be seen in Fig-
ure 4.1. The relative error is shown in Figure 4.2. It is clear to see that the ESN can
handle the first quick movements, but the ESN is struggling with some deviation
when it is supposed to reach a steady-state reference.

Figure 4.1: ESN trained with fast dynamics trying to reach a steady-state. Blue
is the true system while red is the ESN prediction.

Figure 4.2: Relative error between the true system and the ESN prediction in
Figure 4.1.

Secondly, an ESN trained with a mix of fast and slow dynamics is tested. The
results can be seen in Figure 4.3 and the following error can be seen in Figure 4.4.
It is obvious that the ESN trained with mixed dynamics is able to reach the steady-
state in a better manner than the one trained purely on fast dynamics. It is also

4.1. ESN EXPERIMENTS 45

worth noticing how pwh is deviating after 5 minutes but is able to catch up over
time.

Figure 4.3: ESN trained with mixed dynamics trying to reach a steady-state. Blue
is the true system while red is the ESN prediction.

Figure 4.4: Relative error between the true system and the ESN prediction in
Figure 4.3.

4.1.2 Fast dynamics

The ESN should react to a new input from the NMPC every 5 seconds. It is there-
fore crucial that the network is able to respond correctly to fast dynamics. This
experiment will also give an indication of how much the mixed ESN will suffer
from having both fast and slow dynamics in the data set.

Firstly, the ESN trained purely on fast dynamics is tested. The result can be seen
in Figure 4.5 and its corresponding error in Figure 4.6. There is no doubt that
the ESN catches the plant’s dynamics well and manages to imitate its dynamics
properly. The ESN trained solely on fast dynamics will work as a reference for the
ESN trained with mixed dynamics in this experiment.

46 CHAPTER 4. EXPERIMENTS AND RESULTS

It is made clear in Figure 4.7 that using a mixed training set would not cause a
big impact on how the ESN responds to fast dynamics. This is also confirmed in
Figure 4.8 where the error plot is shown.

Figure 4.5: ESN trained with fast dynamics trying to imitate fast dynamics. Blue
is the true system while red is the ESN prediction.

Figure 4.6: Relative error between the true system and the ESN prediction in
Figure 4.5.

4.1. ESN EXPERIMENTS 47

Figure 4.7: ESN trained with mixed dynamics trying to imitate fast dynamics.
Blue is the true system while red is the ESN prediction.

Figure 4.8: Relative error between the true system and the ESN prediction in
Figure 4.7.

48 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2 NMPC simulation

The obtained ESN trained with mixed dynamics yielded the most promising per-
formance. It will therefore be implemented as a prediction model in the NMPC.
That is, the ESN is going to predict future behavior of the plant in order to yield
optimal control.

The experiments in this section will be assessed based on visual inspection and
error metrics. Regarding the error metrics, a mean trajectory error eT is viable for
these experiments. It is defined as:

eT =
1
N

N
∑

k=0

pref
bh − pbh

1 , (4.3)

where N is the number of steps in the simulation. An Integral Absolute Error (IAE)
will also be presented, since it is a widely applied metric in similar studies. The
IAE is directly related to the eT and is obtained by multiplying the eT with the
number of steps in the simulation N :

IAE = N × eT . (4.4)

Neither eT nor IAE will capture any behavior of the controller, such as oscillatory
behavior. A metric that looks at control action is therefore presented as an alter-
native metric. The metric ∆z and ∆ f is implemented to present the total control
variation of the production choke valve z and ESP frequency f . The total control
variations is defined as:

∆z =
N−1
∑

k=0

‖z[k+ 1]− z[k]‖1 , (4.5)

∆ f =
N−1
∑

k=0

‖ f [k+ 1]− f [k]‖1 . (4.6)

This metric will increase if the control variation changes between consecutive
steps in the simulation. It is desirable to keep∆z and∆ f as low as possible.

4.2.1 Reaching a bottomhole pressure reference

The first experiment will look at the NMPC’s ability to reach a reference point
for the bottomhole pressure pbh while maximizing the liquid flow q. A suitable
objective function must be defined in order to reach a desirable control target.
Since this experiment is going to both reach pre f

bh in addition to maximizing q, both
these targets must be included in the objective function that will be minimized by
the optimizer. Reaching the bottomhole pressure reference is done by punishing
deviation between pbh and pre f

bh . Further, maximizing liquid flow q can be done in
several ways. This experiment will introduce a soft constraint on the liquid flow

4.2. NMPC SIMULATION 49

q. That is, implementing an unreachable high value as the reference for q. This
approach is known as a setpoint chasing and is common to use in many industrial
applications.

The objective function J for this experiment is defined as:

J=
N−1
∑

k=0

x[k]− x[k]re f

2
Q , where Q =





q1 0 0
0 q2 0
0 0 q3



 (4.7)

Tuning Q is done with a trial-and-error approach where a balance between ac-
curacy on pbh and flow maximization must be considered. The obtained tuning
parameters can be seen in Table 4.1.

Table 4.1: Weighting values with their respective parameters for the first experi-
ment.

Variable Weight
q1 pbh 1× 10−8

q2 pwh 0
q3 q 100

The high unreachable setpoint for q is chosen equal to the upper limit of q defined
in the OCP in Equation (3.17):

qre f = 80 m3/h

A fairly short prediction horizon is tested in this experiment. One motivation for
selecting a short horizon is that the calculation time is rather short. N = 3 means
that the NMPC will predict 15 seconds forward in time since the sampling time is
5 seconds.

The plant’s response and the optimal control can be seen in Figure 4.9. The ref-
erence value for pbh is marked in yellow, which is performing a step from 75 bar
down to 68 bar. By inspecting the bottomhole pressure at the top of the figure
it is clear that the NMPC is able to reach the reference fairly well. However, the
control is changing excessively and would not be convenient for either the pro-
duction choke valve or the pump. It is also worth noticing how excessive control
will make pbh deviate from its reference right after the start.

This experiment was also conducted with a prediction horizon of N = 10. This
performed significantly worse than N = 3 with big oscillations on both the pump
frequency and control valve. Large oscillations on the manipulated variables are
most likely due to the optimizer focusing too hard on maximizing the liquid flow
q.

50 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.9: NMPC reaching a setpoint without punishing change of control.

4.2. NMPC SIMULATION 51

4.2.2 Punishing change of control

The experiment conducted in Section 4.2.1 showed that the manipulated variables
had big leaps when they ran freely. It is therefore necessary to implement some
form of constraint where control variation is punished in the objective function.
This is done by including both the production choke valve z and the ESP frequency
f with a weighting matrix R. The objective function is therefore defined as:

J =
N−1
∑

k=0

x[k]− x[k]ref

2
Q + ‖∆u[k]‖2R (4.8)

where the weighting matrices Q and R are given as:

Q =





q1 0 0
0 q2 0
0 0 q3



 and R=

�

r1 0
0 r2

�

This experiment will focus on keeping the production choke valve as steady as
possible and let the ESP frequency run more freely. The tuning parameters ob-
tained from testing are given in Table 4.2. As for the previous experiment, this

Table 4.2: Weighting values with their respective parameters for the second ex-
periment.

Variable Weight
q1 pbh 1× 10−8

q2 pwh 0
q3 q 1× 103

r1 z 1× 105

r2 f 1

experiment will also utilize a prediction horizon of N = 3. It becomes clear in
Figure 4.10 that implementing soft constraints on the manipulated variables will
lead to a smoother control. This controller will focus on keeping the manipulated
variables constant and give maximization of the liquid flow less priority. It is also
worth noticing how pbh reaches its reference at the same pace as in Figure 4.9
with far less control variation. This also comes clear in Table 4.3 where the error
metrics for Figure 4.9 and Figure 4.10 is displayed.

52 CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.3: Mean trajectory error, integral absolute error and control variation
metrics for Figure 4.9 and Figure 4.10.

Figure 4.9 Figure 4.10
eT 0.873 0.528
IAE 104.7 63.3
∆z 286.0 20.2
∆ f 25.0 22.8

Figure 4.10: NMPC reaching a setpoint with punishing change of control.

4.2. NMPC SIMULATION 53

4.2.3 Control with multiple steps

The last experiment will look at how the controller obtained in Section 4.2.2 will
respond to a bottomhole reference with multiple steps. There is no doubt that
including a constraint on control variation will improve the overall performance
of the controller. This experiment will have the same objective function as in Sec-
tion 4.2.2, but two different prediction horizons will be examined. The weighting
values for this experiment can be seen in Table 4.4.

Table 4.4: Weighting values with their respective parameters for the third exper-
iment.

Variable Weight
q1 pbh 1× 10−8

q2 pwh 0
q3 q 1
r1 z 1× 104

r2 f 1

Using multiple steps could give important information on how the controller would
react to different reference values. This experiment will simulate a drop from 82
bar down to 68 bar divided into 4 steps. Firstly, a prediction horizon of N = 3 is
tested. The results of this experiment are shown in Figure 4.11.

Lastly, a prediction horizon of N = 10, which will predict 50 seconds of the future
behavior before it calculates an optimal control sequence. Increasing the predic-
tion horizon can in many cases lead to more soft control because the controller
is able to predict further into the future. Figure 4.12 shows how the controller
responds to a larger prediction horizon.

It becomes clear that the two different horizons will produce quite similar optimal
control. However, by inspecting ∆ f in Table 4.5 it is clear that using a larger
prediction horizon will get rid of some excessive frequency change. The increased
prediction horizon manages to lower the IAE in addition to reducing the change
of control.

Table 4.5: Mean trajectory error, integral absolute error and control variation
metrics for Figure 4.11 and Figure 4.12

Figure 4.11 Figure 4.12
eT 0.423 0.410
IAE 121.9 118.1
∆z 7.40 6.12
∆ f 142.36 105.52

54 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.11: NMPC reaching multiple setpoints with punishing change of control
with a prediction horizon of N = 3.

4.2. NMPC SIMULATION 55

Figure 4.12: NMPC reaching multiple setpoints with punishing change of control
with a prediction horizon of N = 10.

Chapter 5

Discussion

This work started with an implementation of the nonlinear Electric Submersible
Pump (ESP) system in Python. The ESP system was initially given as a set of
Differential Algebraic Equations (DAEs). Simulations of the system made it easier
to gain a better understanding of the dependent variables and the system as a
whole.

Python was an ideal choice of programming language for this work. Further, the
CasADi framework made it easy to implement and simulate the ESP system. How-
ever, a drawback with CasADi is that troubleshooting is complicated because of
the symbolic framework. Accessing future states in the ESN was a complicated
operation and hard to troubleshoot.

Regarding the data set, a mixture of fast and slow dynamics yielded best perfor-
mance. This mixture of dynamics covered a wider working range and performed
significantly better in cases where the ESN received a constant input over a large
period of time. However, the steady-state test for the ESN could have yielded even
better performance. Increasing the length of the data set for the slow dynamics
could have solved this problem. Increasing the data set will increase the compu-
tational cost, but would hardly affect the computational cost in the long run. One
motivation for keeping the data set small is that real plants could have limited
amounts of data available.

Using 200 nodes in the reservoir had a significantly better performance than us-
ing 100 nodes. It does, however, increase the computational cost in the NMPC
considerably. The computational cost in the NMPC increased quadratically with
respect to the number of nodes in the ESN. Using 100 nodes with a larger data
set could have made a significant improvement regarding the computational cost
in the NMPC.

For the NMPC, single shooting was utilized to form a Nonlinear Programming
(NLP) problem for the Optimal Control Problem (OCP). This method was intuitive

57

58 CHAPTER 5. DISCUSSION

to implement and troubleshoot, but will be more computationally expensive than
multiple shooting if the prediction horizon is long. For this work, a short prediction
horizon yielded promising control. For a prediction horizon N = 3 the algorithm
took around 1 second to solve the NLP problem in each iteration, while for N = 10
it needed around 20 seconds to reach a solution in each iteration.

With regards to objective functions in the NMPC, using only state deviation yielded
poor control. Big leaps in the manipulated variables will increase wear on equip-
ment and could cause a shorter lifespan. To maximize the liquid flow q is an im-
portant control target but would cause oscillatory control if it is highly priori-
tized.

Including a punishment for control change in the objective function resulted in
a huge control improvement. For this objective, the production choke valve z
was heavily punished with regards to changes, while the ESP frequency f ran
more freely. Using this objective yielded more steady control with less excessive
changes. In this objective function, only a soft constraint was implemented for
the change of control. Normally, production choke valves have limitations on how
quickly they can open and close. An interesting approach would have been to use
hard constraints on the change of control to get a more realistic simulation. It
would also be natural to minimize the power consumption for the pump, how-
ever, that will most likely force the production choke valve to be fully open at all
times for this system.

Chapter 6

Conclusion

This work investigated how an Echo State Network (ESN) could work as a pre-
diction model for an NMPC. The motivation was to utilize data-driven control in
complex real-world problems where physics-based models are excessively hard
to obtain. That is, building a model for a system without prior knowledge with a
black-box modeling approach. A key point in this work was to look into how this
approach could deliver a satisfactory operation for the Electric Submersible Pump
(ESP) system.

The ESN managed to identify the ESP system satisfactorily. High accuracy is needed
since the network lacks feedback from the plant. Using an ESN lowered the com-
putational cost significantly compared to other Recurrent Neural Networks (RNNs)
since ESNs have a linear training method.

The NMPC with the data-driven ESN model as a predictor managed to yield op-
timal control for the experiments conducted in this work. Punishing change of
control in the objective function was a key factor in order to avoid excessive con-
trol usage.

This work was carried out as a proof of concept. The approach delivered a satis-
factory operation and is promising for further development. The next section will
discuss recommendations for future work.

6.1 Future work

This section will present proposals and recommendations for future work in order
to increase the quality and achieve more realistic results. This work has been es-
tablished on assumptions and simplifications in order to narrow the scope of the
task.

59

60 CHAPTER 6. CONCLUSION

6.1.1 Echo State Network

The ESN used in this work managed to identify the ESP satisfactorily, but it is
necessary to reduce the size of the network to acquire a faster controller. It should
also be developed a better method to access future states in the ESN, a task which
was performed in a manual manner for this project.

6.1.2 Nonlinear Model Predictive Control

There are multiple areas that can be improved in the NMPC. Firstly, multiple shoot-
ing should be implemented for more speed and the opportunity to look further into
future behavior.

A more suitable objective function is necessary in order to achieve more realistic
results. Controlling the ESP intake pressure to a setpoint would be a better control
target since the intake pressure directly affects the flow-rate from the reservoir.
This target would allow the operator to control the production flow-rate. It is also
natural to minimize the ESP frequency to minimize the power usage in the ESP.
The change of ESP frequency is usually constrained in order to avoid fast changes
in suction, while the change of the production choke valve opening is constrained
by limits from the choke characteristics. These changes should be implemented as
hard constraints established by the operators.

Lastly, there is no feedback implemented in the ESN. This will not cause any huge
problems for a noiseless simulation, but once noise is introduced in the plant, a
correction filter must be implemented. A correction filter is a low-pass filter that
corrects the error between the predicted output and the current measured output.
The filter will also play a part in correcting modeling errors.

Bibliography

[1] Z.-S. Hou and Z. Wang, “From model-based control to data-driven con-
trol: Survey, classification and perspective,” Information Sciences, vol. 235,
pp. 3–35, 2013.

[2] O. Nelles, Nonlinear System Identification From Classical Approaches to Neu-
ral Networks and Fuzzy Models. Springer, 2001.

[3] I. Osnes, “Model Predictive Control using data-driven models obtained from
Artificial Neural Networks,” Department of Engineering Cybernetics, NTNU
– Norwegian University of Science and Technology, Specialization Project
in TTK4551, 2019.

[4] E. Antonelo, E. Camponogara, and B. Foss, “Echo State Networks for data-
driven downhole pressure estimation in gas-lift oil wells,” Neural Networks,
vol. 85, 2017.

[5] E. A. Antonelo and B. Schrauwen, “On Learning Navigation Behaviors for
Small Mobile Robots With Reservoir Computing Architectures,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 763–
780, 2015.

[6] U. Rosolia, X. Zhang, and F. Borrelli, “Data-Driven Predictive Control for
Autonomous Systems,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 1, no. 1, pp. 259–286, 2018.

[7] S. Gros and M. Zanon, “Data-driven Economic NMPC using Reinforcement
Learning,” IEEE Transactions on Automatic Control, 2019. DOI: 10.1109/
tac.2019.2913768.

[8] Centrilift Europe and Africa ESP Failures 1999-2008, Centrilift, 2008.

[9] P. Delou, J. Azevedo, D. Krishnamoorthy, M. de Souza Jr, and A. Secchi,
“Model predictive control with adaptive strategy applied to an electric sub-
mersible pump in a subsea environment,” IFAC-PapersOnLine, vol. 52, pp. 784–
789, 2019.

[10] B. J. Binder, K. M. Kufoalor, A. Pavlov, and T. A. Johansen, “Embedded
Model Predictive Control for an Electric Submersible Pump on a Programmable
Logic Controller,” in 2014 IEEE Conference on Control Applications (CCA),
IEEE, 2014, pp. 579–585.

61

https://doi.org/10.1109/tac.2019.2913768
https://doi.org/10.1109/tac.2019.2913768

62 BIBLIOGRAPHY

[11] D. Krishnamoorthy, E. Bergheim, A. Pavlov, M. Fredriksen, and K. Fjalestad,
“Modelling and robustness analysis of model predictive control for electri-
cal submersible pump lifted heavy oil wells,” IFAC-PapersOnLine, vol. 49,
pp. 544–549, 2016.

[12] G. Takacs, Electrical Submersible Pumps Manual: Design, Operations, and
Maintenance. San Diego: Elsevier Science, 2017.

[13] A. Pavlov, D. Krishnamoorthy, K. Fjalestad, E. Aske, and M. Fredriksen,
“Modelling and Model Predictive Control of Oil Wells with Electric Sub-
mersible Pumps,” in 2014 IEEE Conference on Control Applications (CCA),
2014, pp. 586–592.

[14] C. Chen, Linear System Theory and Design. Oxford University Press, 1999.

[15] H. Jaeger, “Tutorial on training Recurrent Neural Networks, covering BPPT,
RTRL, EKF and the Echo State Network approach,” GMD-Forschungszentrum
Informationstechnik, vol. 5, 2002.

[16] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations, Analysis and
Numerical Solution. European Mathematical Society, 2006.

[17] I. Matei and C. Bock, “Modeling methodologies and simulation for dynam-
ical systems,” 2012.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[19] A. S. Walia, Activation functions and it’s types-which is better? 2017. [On-
line]. Available: https://towardsdatascience.com/activation-functions-
and-its-types-which-is-better-a9a5310cc8.

[20] Jing Dai, Pinjia Zhang, J. Mazumdar, R. G. Harley, and G. K. Venayagamoor-
thy, “A comparison of MLP, RNN and ESN in determining harmonic con-
tributions from nonlinear loads,” in 2008 34th Annual Conference of IEEE
Industrial Electronics, 2008, pp. 3025–3032.

[21] S. Hochreiter, “The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, pp. 107–116, 1998.

[22] U. Schiller and J. Steil, “Analyzing the weight dynamics of recurrent learn-
ing algorithms,” Neurocomputing, vol. 63, pp. 5–23, 2005.

[23] G. Tanaka, T. Yamane, J. Heroux, R. Nakane, N. Kanazawa, S. Takeda, H.
Numata, D. Nakano, and A. Hirose, “Recent advances in physical reservoir
computing: A review,” 2018.

[24] M. Lukosevicius, “A Practical Guide to Applying Echo State Networks,” in
Neural Networks: Tricks of the Trade, 2012.

http://www.deeplearningbook.org
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8

BIBLIOGRAPHY 63

[25] Q. Ma, L. Shen, E. Chen, S. Tian, J. Wang, and G. W. Cottrell, “WALKING
WALKing walking: Action recognition from action echoes,” in Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 2457–2463.

[26] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.

[27] L. Imsland, Introduction to Model Predictive Control, 2007.

[28] K. R. Muske and J. B. Rawlings, “Model Predictive Control with Linear Mod-
els,” 1993.

[29] B. Foss and T. A. N. Heirung, “Merging Optimization and Control,” 2016.

[30] J. Jordanou, E. Camponogara, E. Antonelo, and M. A. Aguiar, “Nonlinear
Model Predictive Control of an Oil Well with Echo State Networks,” vol. 51,
pp. 13–18, 2018.

[31] D. Verstraeten, B. Schrauwen, S. Dieleman, P. Brakel, P. Buteneers, and
D. Pecevski, “Oger: Modular Learning Architectures For Large-Scale Se-
quential Processing,” The Journal of Machine Learning Research, vol. 13,
pp. 2995–2998, 2012.

[32] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi
– A software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, pp. 1–36, 2019.

[33] B. J. Binder, A. Pavlov, and T. A. Johansen, “Estimation of Flow Rate and
Viscosity in a Well with an Electric Submersible Pump using Moving Hori-
zon Estimation,” IFAC-PapersOnLine, 2015, pp. 140–146.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Iver Osnes

Recurrent Neural Networks and
Nonlinear Model-based Predictive
Control of an Oil Well with ESP

Master’s thesis in Cybernetics and Robotics

Supervisor: Lars Struen Imsland

July 2020

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Objective
	Contribution
	Structure

	Theory
	Oil wells and artificial lifting
	ESPs

	System fundamentals
	Model identification

	Artificial Neural Networks / deep learning
	RNN
	Reservoir Computing

	Echo State Network (ESN)
	Selection of global parameters
	Training

	Model Predictive Control (MPC)
	Optimization
	Forming an NLP problem
	Building an MPC

	Implementation
	Software
	DAE modeling of wells with ESPs
	Model equations and parameters
	Simulation and validation
	Discussion

	Data set
	Sampling time
	Excitation signals
	Training set

	Building an Echo State Network (ESN)
	NMPC implementation
	Optimal Control Problem
	Objective function
	Solving the OCP
	The MPC cycle

	Experiments and results
	ESN experiments
	Steady-state test
	Fast dynamics

	NMPC simulation
	Reaching a bottomhole pressure reference
	Punishing change of control
	Control with multiple steps

	Discussion
	Conclusion
	Future work
	Echo State Network
	Nonlinear Model Predictive Control

	Bibliography

