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Abstract

Positioning of acoustic fish tags over an extent of time is desired for purposes such as
monitoring the migration of fish in fjords. The use of autonomous vehicles equipped with
acoustic receivers has in recent studies been shown to be promising candidates for obtain-
ing such data. This thesis describes the development of a multi-vessel system designed
to track individual fish over extended time periods. The concept is based on using the
time-difference-of-arrivals (TDOA) to provide an estimate of an acoustic fish tags posi-
tion. Because the tag is attached to the fish, this can be seen as the fish position. The
vessels can then follow the estimated position to track the fish over time.

To be able to operate autonomously, knowledge about vehicle surroundings is
paramount. To increase the situational awareness of the vessel, a system using electronic
navigational charts in combination with available depth soundings is developed. The sys-
tem is then implemented in the middleware DUNE that is running on-board the vessel.
Based on this system, two functions is implemented on the vessel: an anti-grounding
monitor and a path planning algorithm.

For communication between vessels, and from vessel to operator, a cellular modem and
a 5GHz wireless AirMax radio has been integrated to the vessel. The design is discussed
and completed in this thesis, along with the addition of a virtual private network (VPN).
This aims to simplify communication with the vessels over Internet.

The data collected by the Otters are made accessible by the development of an online
visualization system consisting of three parts: A time-series database, a database ingester,
and the Grafana online monitoring solution. Combined, they make near real-time moni-
toring of vessel telemetry available in a password protected online interface.

Lastly, the hydrophone software is improved upon, along with the upgrade to the new
Thelma Biotel TB Live hydrophone.
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Sammendrag

Posisjonering av akustiske fiskemerker (tags) over tid er ønsket til bruksområder som å
spore fiskers vandring gjennom fjorder. Bruken av autonome fartøy utstyrt med akustiske
mottakere har i de senere årene dukket opp i forskning som et lovende alternativ for å
samle inn slik data. Denne avhandlingen beskriver utviklingen av et system bestående av
flere små overflatefartøy som er designet for å kunne spore enkeltfisk over tid. Konseptet
er basert på å sammenligne tidspunktene hvert fartøy detekterer et signal sendt fra fiske-
merket, og ved det gi et estimat på dets posisjon. Ved å plassere fiskemerket på fisken blir
dette dermed et estimat av fiskens posisjon. Videre skal fartøygruppen i formasjon følge
estimatet for å spore fiskens vandring over tid.

For å kunne operere autonomt må fartøyet ha kunnskap om miljøet det opererer i. Dette
blir i denne avhandlingen løst ved implementasjonen av et system basert på elektroniske
sjøkart og offentlig tilgjengelige dybdemålinger. Videre blir dette systemet implementert i
middelvaren DUNE som kjører på fartøyet. Den tilgjengelige dataen brukes så i designet
av en global stifinner og et system for å unngå grunnstøting.

Kommunikasjon mellom fartøyene i gruppen og til systemets operatør skjer gjennom et
mobilt bredbåndmodem og en 5GHz AirMax radioløsning. Dette systemet blir ferdigstilt
og beskrevet i denne avhandlingen, sammen med oppsettet av et virtuelt privat nettverk
(VPN). Dette blir innført for å forenkle kommunikasjonen med fartøyene over Internett.

For å gjøre den innsamlede dataen lettere tilgjengelig for andre forskere, blir det så
designet et nettbasert visualiseringssystem. Dette består av tre hoveddeler:
En tidsseriedatabase, en applikasjon som fyller telemetri i databasen og
visualiseringsløsningen Grafana. Ved å kombinere dem kan systemet visualisere all
telemetri fra fartøyet i nesten sanntid gjennom et passordbeskyttet og brukervennlig grens-
esnitt.

Det blir også gjort forbedringer i programvareintegrasjonen til hydrofonen, sammen
med beskrivelsen av oppgraderingen til den nye akustiske mottakeren fra Thelma Biotel,
TB Live.
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Chapter 1
Introduction

In a country with as long a coastline as Norway, the ocean naturally becomes an important
resource. The fishing industry, and in more recent years, aquaculture, have for centuries
provided the Norwegian people with both food and valuable goods for export. To ensure
that the industry can thrive, while also minimizing the impact on wildlife, good manage-
ment is dependent on knowledge about life beneath the surface. One aspect of this is
observing the movement of individual fish over time, in order to gain insights into their
behavior and how human activities such as aquaculture affect it. The Fish Otter project
at NTNU aims to develop an autonomous platform for gathering spatiotemporal data re-
lating to individual fish by employing a fleet of autonomous surface vehicles (ASV). The
ASVs are equipped with acoustic fish telemetry receivers that can detect and distinguish
acoustical fish tags that has been attached to fish.

1.1 Background
At DEC NTNU1, there is a long tradition for doing research on acoustic fish telemetry.
This dates back to its founder, Jens Glad Balchen, and his experiments on tracking the
life and behavior of fish in Hopanvågen during the 1970s. In one of these experiments, he
developed what he called a fish spy. This was what is now called an unmanned surface
vehicle (USV), and its goal was to follow right above a fish that had been previously tagged
with an acoustic transmitter. The position of the vehicle would then be colocated with the
position of the tracked fish, with only vertical position differing. To position the fish,
directional hydrophones was used, with differences in signal strength being used to decide
in what direction the USV was to go. Lack of funding ultimately led to the project being
abandoned after several development iterations [3], but research on acoustic fish telemetry
have continued at DEC.

Developments in digital technology has been made since the fish spy project was aban-
doned, and mass production has also reduced the cost of components and equipment. This

1Department of Engineering Cybernetics, Norwegian University of Science and Technology.
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has lead to a significant increase in the available computing power, paving way for im-
provements both in the acoustic fish tags, and in hydrophones. Digital hydrophones now
have the ability to not only register sound waves, but also automatically detect tag registra-
tions in them. In addition, satellite based positioning systems like GPS has made accurate
global positioning available, meaning that location can be added as context for the tag
detections.

1.2 Goal and State of the Fish Otter Project

The main goal of this thesis, is to progress the NTNU Fish Otter Project on its ultimate
goal, which is providing an autonomous multi-agent system for search, localization and
persistent tracking of acoustic fish tags beneath the water surface. The information such
a system provides, can in collaboration with scientists from other research disciplines like
marine sciences or aquaculture potentially provide a better understanding of the spatiotem-
poral distribution and behaviour of fish and other aquatic animals.

1.2.1 Outline of a Fish Tracking Mission

With the help of the thesis supervisor Jo Arve Alfredsen, the author has created an overview
of how a fish tracking mission with the NTNU Fish Otter ASVs is to be conducted, which
has been divided into the phases shown in table 1.1. In section 3.1.2, the phases are then
used as the basis in a discussion about the system requirements.

1.2.2 Project State Before Thesis

Prior to the work described in this thesis, the NTNU Fish Otter ASV hardware had been
procured, and the controlling hardware specified and installed. During a project in the au-
tumn of 2019, the author integrated the basic hardware components, installed a GNU/Linux
based operating system, and made an integration of the vessel for use in the LSTS toolchain,
with the middleware DUNE running on the vessel. Using this setup, the vessel could suc-
cessfully perform basic maneuvers such as going to waypoints and remote operation in an
controlled manner. The tuning of the controllers were left as further work. Telemetry from
the vessel was made available to the operator through the console Neptus, and the payload
returned tag registrations. The synchronization of the hydrophone was implemented, but
not verified.

A more detailed summary is available in section A.2.

1.2.3 Thesis Contributions

This thesis contributes to the project by the implementation of an anti-grounding super-
visor, a global path planner to DUNE, a web based telemetry monitoring solution, and
improvements to the hydrophone integration.
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# Mission Phase Description
1 Transport Bring the equipment to the deployment area.
2 Deployment Assemble and prepare the vessel. Ensure

supporting systems (Server/Operator con-
sole) are running. Launch vessels.

3 Travel to search area Vessels travel from deployment area to
search area.

4 Collaborative search Search area is divided between vessels.
Ends after first tag detection. If first search
yields no result, perform predetermined
action, like searching again or extending
search area.

5 First tag contact First contact with acoustic tag. The detect-
ing vessel waits or tries single vessel tag
positioning. Other vessels congregate to its
vicinity, entering formation.

6 All vessel tag contact Enter tag formation to commence collabora-
tive fish tracking.

7 Collaborative fish tracking Keep formation around tag to estimate its
position.

8 Tracking end Mission finished or battery level low – wait
for pickup or return to predetermined point (
like deployment point ).

9 Berthing/ Dismantling equip-
ment

Removing the vessel from the water.

10 Transport Pack up equipment and leave deployment
area.

Table 1.1: Overview of the phases in a Fish Otter mission.

1.3 State of the Art

Multiple unmanned surface vehicles (USV) has been developed over the years in order to
satisfy an increasing demand by scientific, commercial and military interests. An overview
of some USVs, as well as a discussion of the enabling technologies making them a viable
solution for an increasing range of applications, is given in [4].

A more recent overview is given in [5], spanning from 1985 and to the publishing
year (2016). The paper also gives an introduction to most of the subjects that are relevant
in the development of an USV. On the subject of cooperative USV systems, which the
NTNU Fish Otter project is slated to become one of, it is noted that although there are
some systems that has been validated through experiments, most of the research is limited
to simulations.

Autonomous Surface Vehicle (ASV) is an often used synonym for USV. The name puts
more of an emphasis on the autonomous capabilities that has been developed for USVs.
In [6], a survey is presented on how marine surface vessels can achieve a higher degree of
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autonomy2. Among the topics, path planning is listed as important.

1.3.1 Global Path Planning for Marine Vessels
Path planners for marine vessels is often divided into global and local path planners, where
the global considers the overall goal, and the local takes care of aspects observed while
traveling. As an A* based global path planner is developed in this thesis, this will be the
focus in this section.

When designing a global path planner, having a priori environmental data is a prereq-
uisite. A grid-based map decomposition is often used to represent the operational area of
the vessel [7] [8], on which a path is generated by finding a sequence of nodes in the grid
that takes the vessel from a point towards it goal.

The heuristic A*-search algorithm is mentioned in both [5] and [6] as a popular ap-
proach for global path planners in marine vessels. In [9], electronic navigational charts
(ENC) are used to create a grid with an octree structure between grid nodes. Based on
this grid, the A*-algorithm creates a path between a starting point and the goal. Another
A* based implementation is given in [10], which also considers water current, traffic sep-
aration and berthing when planning a path. Other variations include: the Hybrid A* con-
sidering non-holonomic constraints in the algorithm [11], Theta* which is an any-angles
A* based algorithm that does not constrain movements along grid edges [8] and the ARC-
Theta*, which constrains the yaw angular rate allowed in the Theta* algorithm [12].

1.3.2 A Priori Situational Awareness for Unmanned Marine Vessels
A system for providing environmental data is a way to increase the a priori situational
awareness for a marine vessel, and can also be used as the basis for the global path plan-
ning. For the ocean, vector-based electronic navigational charts (ENCs) contain all data
deemed necessary for human navigation, and the International Hydrographic Organization
(IHO) has standardized the format for transferring such data in the S-57 standard [13].

In the S-57 format, spatial information is stored as vectors. To make use of the data
in a faster and more practical way for autonomous maritime vessels, the data is often
transformed before use. In prior works, various approaches have been taken:

Unpacking the data with an open-source ISO8211 library and creating a custom parser
is performed in [9], resulting in a grid of the operational area.

Grids are also discussed in [14], both regular and irregular. In the irregular grids, the
resolution is increased for certain areas where a higher detail level is required, such as
around obstacles.

In [15], the open-source GDAL3/OGR4 Python API is used to extract obstacle infor-
mation on a polygon based obstacle map. This is then used in combination with a collision
avoidance system in the ROS middleware.

For the MOOS middleware, [16] stores the processed ENC data in a database. This is
then used to increase sensor reliability in telling where obstacles are expected. Finally, the
information is used in a local path planner to avoid the obstacles.

2Increasing autonomy is defined as improving the intelligence in the article.
3Geospatial Data Abstraction Library
4The library in GDAL handling vector IO.
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1.3.3 Mobile Acoustic Fish Tracking

Static networks of acoustic receivers have for a long time been used to gather spatiotem-
poral data relating to aquatic animals. With the development of more capable vehicles for
use in water, placing the acoustic receivers on mobile platforms has many advantages, and
has therefore become a subject of research.

Downloading telemetry data from a fish tag is mentioned as one of the motivating
scenarios by the European GREX project for developing a heterogeneous vehicle system.
When discussing the impact of the project, [17] states that: Critical impacts include the
use of spatial behaviour in fisheries stock assessment and the design of Marine Protected
Areas.

[18] claims to be the first application of AUVs in collecting telemetry from fish at
large, and presents multiple methods that can be used to increase the usefulness of the
data.

In a more recent integration with an acoustic receiver in an AUV, [19] proposes to
use an extended Kalman filter or a particle filter as iterative estimators for position. In
an experiment with a stationary fish tag, the AUV travels about the estimated location, in
order to gather multiple tag detections. Localization errors below 20 m compared to a GPS
position is achieved after 20 transmissions from the fish tag. Using tags that transmitted
every seven seconds, that means it would take 140 seconds to locate the tag, so this method
is only suited for slower moving targets.

Using multiple vehicles results in multiple detections being made for a single tag sig-
nal, reducing the time and increasing the accuracy of tag positioning. This was proposed
in [20], and has been further developed in multiple experiments since. In [21], a proof-
of-concept is demonstrated through an experiment with a formation of unmanned vehicles
carrying hydrophones. The formation follows another vehicle with a acoustic tag mounted
below its waterline, estimating its position using the time difference of signal arrival. Com-
paring the estimated position with the GPS position of the tag carrying vehicle achieves a
median localization error of 4.7 m, and an average accuracy of 6.34 m.

Another experiment was performed in [22], with three USVs carrying acoustic re-
ceivers and a forth USV carrying a submerged acoustic fish tag. Using an eXogenous
Kalman filter, the location of the fourth USV is estimated and compared to other estima-
tors and the GPS position. After the Kalman filter has stabilized, it’s possible to locate the
fish tag. It also demonstrates the performance benefit of using an eXogenous Kalman filter
over an extended Kalman filter.

A more exotic experiment done tracking leopard sharks with an AUV is described by
[23]. The system is further extended in [24] to use multiple AUVs that collaborates to
position the tagged shark, using a Particle Filter. An important difference between these
AUVs, and the one described in [19], is that these use stereo hydrophones, while [19] used
a mono hydrophone. Using a stereo hydrophone had the advantage of making relative
bearing from the AUV to the acoustic tag available.
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1.4 Thesis Structure
The structure of this thesis is laid out as follows: Chapter 2 gives the reader an introduc-
tion to concepts used in the following chapters. Chapter 3 presents the NTNU Fish Otter
system and its purpose, which is the motivation and background for this thesis. Chap-
ter 4 covers the design and building of a database containing a priori environmental data
to be used onboard the vessel. Chapter 5 describes how the database is made available
in the onboard middleware of the vessel, as well as the design and implementation of
anti-grounding systems and a global path planner for the vessel. Chapter 6 details other
software development made for the middleware, mainly consisting of improving the hy-
drophone integration. Chapter 7 describes the design, implementation and deployment
of an online vessel monitoring system that facilitates sharing telemetry with collaborating
researchers. Chapter 8 concludes the thesis and suggests further work that could improve
and extend its results.

Further details and background theory for this thesis, such as developed code and con-
figuration files is available in the Appendices.
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Chapter 2
Background Theory

2.1 Acoustic Fish Telemetry

To do remote sensing on aquatic animals and their surroundings, the field of fish teleme-
try has emerged, often combined with acoustic data transmission. The main parts of an
acoustic fish telemetry system, is an acoustic transmitter (AT) attached to the animal, as
well as an acoustic receiver (AR) that reads the transmitted data. The AT is often called
a tag, because it identifies and give information about the subject it’s attached to. Vari-
ous sensors has been integrated in fish tags, measuring heartbeat, jaw movement, water
salinity or temperature1 to reveal either something about the fish or its environment. This
section aims to give a short introduction on the subjects most relevant to the NTNU Fish
Otter project. For a more detailed introduction about acoustic transmission and challenges
in fish telemetry, see [25]. A more recent discussion on the wider topic of aquatic animal
telemetry is given in [26].

2.1.1 Acoustic Transmission in Water

For wireless data transmission in water, acoustic transmission is often the preferred choice.
Additional substances in the H2O, like salts, plankton or air-bubbles, absorbs the high
frequency waves used in radio transmission, resulting in range issues. Although the range
of acoustic signals is also significantly reduced in saline water compared to fresh water,
transmission from higher-powered ATs can still achieve a range in the order of kilometers,
while for smaller, power constrained ATs, it can be as low as 200 meters2.

For detection of acoustic signals in water, the receivers achieve best reception when
submerged in the medium, because of the different impedance between air and water
causes most of the signal to reflect back into the water. This is also a problem between
water and the seabed, making multi-path propagation a major hurdle in acoustic water

1This list is not exhaustive. For more alternatives, see [25] or [26]
2In many cases lower, due to disturbances in the medium.
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transmission. For this reason, only the front of the transmitted signal can be timed pre-
cisely [25]. Another interesting phenomenon appears due to higher water density in deeper
water, making the acoustic signal bend as it propagates towards the surface.

The Speed of Sound in Water

The main components when deciding the speed of sound in water c, are salinity, pres-
sure3 and temperature. In the introduction of [27], multiple methods for estimating c are
discussed.

A simple equation is given by Leroy’s empirical formula for calculating the speed of
sound in water:

c = 1492.9+3·(T−10−6 · (T − 10)2

103
)+1.2·(S−35)− (T − 18) · (S − 35)

102
+
D

61
(2.1)

where

T = Water temperature in Celsius [C◦]

S = Water salinity in parts per thousands [ppt]

D = Water depth in meters[m]

Figure 2.1: Thelma Biotel
Acoustic tags (Source: [28]).

A newer equation is given by Leroy et al. in [27], in-
cluding also the effect of latitude in the equation. The ar-
ticle also contains a useful table of sound speeds at differ-
ent depths in various seas, showing values for c between
1455m/s and 1660m/s at extreme pressures/depths.

2.1.2 Acoustic tags

The acoustic tags consists of three main parts: power,
transceiver and instrumentation. Power, in the form of a
battery, is used to drive the sensors and data-conditioning
circuits of instrumentation, as well as the transceiver which
transmits the data.

The size of a tag has to be chosen according to the tar-
get it will be attached to, or implanted in [29]. For smolt,
a large tag would alter their behavior, while a whale or a
shark could carry larger tags. Advantages of larger tags are
higher battery capacity, larger transducers and more space for instrumentation.

The tags used for in the Fish Otter project are digital tags, using the DPPM modulation,
and only sends a message at regular intervals. Other options are continuously transmitting
tags, or fully analog tags.

3Sometimes exchanged with depth for convenience.
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2.1 Acoustic Fish Telemetry

Transducers

The transducers used are piezoelectric, and have a resonance frequency that is governed
by size, where larger size yields lower resonance frequency. The resonant frequency is
used in the tags to achieve maximum signal power at a smaller energy consumption. For
small tags, transducers have to be sized accordingly, and therefore, most often there is a
relationship where larger tags transmit at lower frequencies, while higher frequencies are
used on smaller tags. This in turn means that telemetry on smaller fish involves shorter
transmission ranges [30]. For the tags developed by Thelma Biotel which is used in the
Fish Otter project, the range of tag frequencies is between 63kHz and 77 kHz.

DPPM

One way of mitigating the multi-path propagation problems, is to modulate the signal into
a series of signal fronts/pulses. For the equipment used in the Fish Otter project, pulse-
position modulation (PPM) is used. This also goes by the extended name, differential
PPM (DPPM), because the information is encoded as the time-difference between two
pulse positions. The protocol used in the tags provided by Thelma Biotel4 use a similar
DPPM protocol as is described in [30]. The short transmitting time minimizes energy
consumption, which is an important aspect in tag design.

An example is given in figure 2.2, where a full-spectrum hydrophone was used to
record one of the tags5, and then the tags transmitting frequency was isolated through a
band-pass filter. The eight pulses can be seen as spikes in signal strength, and the informa-
tion can be extracted by measuring time differences between spikes. For the figure, they
are 0.36 - 0.38 - 0.50 - 0.40 - 0.46 - 0.42 - 0.52[seconds].

The first time difference specifies the code type, used to decide how the remainder is
to be interpreted. As an example of this, 360ms is the code type S256, and the data is
interpreted using the formula:

HexV alue =
D − [GT ]

[BT ]]
=
D − 0.38

0.02
(2.2)

whereD = Pulsetimedelta, [GT ] = GuardTime andBT = Bintime. Decoding the
pulse train from figure 2.2 gives the result: ”S256 - 0 - 6 - 1 - 4 - 2 - 7”.

Code Type R64K S256 R04K R256
Time between two first pulses 320 360 380 401

Guard Time 340 380 400 418
Bin time 20 20 20 22

Pings 8 8 7 6

Table 2.1: DPPM code types.

4Which are used in the Fish Otter project
5The data was collected in one of the sea trials with the Otter from [1] with an OceanSonics icListen HF

hydrophone.
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Figure 2.2: An example of DPPM S256 fish tag registration.

2.1.3 Acoustic Receivers
Acoustic receivers, called hydrophones, are in their simplest form just a microphone used
in water. Like microphones in the air, there are differences in how directional the hy-
drophone is, which can classify the hydrophone as directional or omnidirectional. Direc-
tional hydrophones detect signals coming from one direction, and because of this property,
can be used to find the direction of the tag. Omnidirectional hydrophones detects signals in
all directions, and gives information about tag presence in the vicinity of the AR. These are
more suited for use on buoys or where a wide detection area is needed. Combining multi-
ple readings from omnidirectional hydrophones has to be performed to get more accurate
tag localization.

Thelma Biotel Hydrophones

On the Fish Otter ASV, the hydrophones used are delivered by Thelma Biotel. The
TBR700RT and the TB Live hydrophones are omnidirectional and uses digital signal pro-
cessing (DSP) to analyze the acoustic waves, and detect tags transmitting using the DPPM
protocol. The messages are then decoded, and sent over a NMEA 0183 inspired format.
In addition to the tag detections, the signal-to-noise ratio is given, as well as an internal
temperature sensor reading.

The tag frequencies supported are between 63 kHz and 77 kHz.

2.1.4 Strategies for Acoustic Tags Positioning
Due to heavy attenuation of radio waves in saline water, satellite positioning does not work
in tags below the surface. For animals that surface at regular intervals, positioning at these
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2.1 Acoustic Fish Telemetry

moments might be an option, but for the rest of the time, other positioning strategies must
be developed.

There are multiple strategies for positioning acoustic tags below the surface, using both
omnidirectional and directional hydrophones.

Directional Hydrophone Tag Positioning

With directional hydrophones, a manual fish tracking method can be to have a human
operator that searches with the hydrophone in the water, and steers in the direction where
signal strength peeks. To accurately position a tag with this method, it’s necessary to hover
with the hydrophone right above the tag, which could affect the behavior of the animal,
due to noises made by the operator or his vessel. Another drawback of this method, is
that it’s labor intensive, making long duration series of data hard to gather. Yet another
drawback is that tags not transmitting continuously would be harder to locate. Tags that
continuously transmit needs more energy, and thus can be expected to deplete the battery
faster.

Extending the system to use multiple directional hydrophones, like the fish spy, is a
way to enhance the system, making automation feasible, but would still come with the
drawback of having to hover over the fish for precise positioning.

Omnidirectional Hydrophone Tag Positioning

For long term tag detection, a commonly used method is placing multiple omnidirectional
acoustic receivers at strategical locations, or at regular intervals in a grid [31]. The position
of the receivers are known, so its inferred that when a detection is done, the animal is in
the vicinity of the receiver. The data may also be processed, in order to estimate a more
accurate fish position from multiple sensor detections, through multilateration6. Some
drawbacks with these fixed arrays approach are; the area of interest has to be decided
ahead of time, and it’s expensive/impractical to have too large of a tracking field. Also, if
the tagged fish wanders outside the tracking field, the tag position is unknown.

2.1.5 Mobile Multi-Receiver Fish Tracking

To expand the operational area of a fish-tracking system with omnidirectional hydrophones,
mobile acoustic receivers are introduced. The mobility is achieved by having AUVs, USVs
or ROVs7 as platforms carrying the hydrophone. Through combining multiple readings
from receivers at strategic locations performed with collaborating vehicles, the accuracy
of the position estimates are improved.

Such a system would still require the vessels to follow the moving animal, but would
allow for them to keep a distance to avoid disturbing it.

6Described in section 2.1.5.
7UAVs could also be introduced, where a hydrophone beneath the body of the vehicle could be submerged at

strategic locations.
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Chapter 2. Background Theory

Multilateration

Multilateration is a localization method based on measuring the difference of the distances
between an entity with unknown location r and n entities with known location sn. Often,
the true range is unknown, so a pseudo-range has to be used. The pseudo-range between r
and sn∀n is found by sending a signal from r at tr, and then registering the time of arrival
tsn∀n. The pseudo-range is then calculated with dn = c(tsn − tr) where c is the signal
propagation speed.

If tr is unknown, but tsn∀n is known, the time difference of arrival (TDOA) can be
used to estimate location, by using n ≥ d + 1, where d is the number of dimensions
unknown in r. For positioning in three dimensions, n = 4 is required, and the time
difference of arrival can be calculated as τs1 = 0, τs2 = ts2 − ts1 , τs3 = ts3 − ts1 and
τs4 = ts4 − ts1 , as shown in figure 2.3.

tr

ts1
- tr

τs4

τs3

τs2

ts1
ts2

ts3
ts4

Figure 2.3: Time difference of arrival for n = 4.

The location r can then be found by calculating ‖r − sn‖ = c(τn + ts1 − tr)∀n =
1, 2, 3, 4. Defining the locations as r = [xr, yr, zr]

T and sn = [xsn , ysn , zsn ]T∀n gives
these four equations to solve for xr, yr, zr and tr:√

(xr − xs1)2 + (yr − ys1)2 + (zr − zs1)2 = c(ts1 − tr) (2.3a)√
(xr − xs2)2 + (yr − ys2)2 + (zr − zs2)2 = c(τs2 + ts1 − tr) (2.3b)√
(xr − xs3)2 + (yr − ys3)2 + (zr − zs3)2 = c(τs3 + ts1 − tr) (2.3c)√
(xr − xs4)2 + (yr − ys4)2 + (zr − zs4)2 = c(τs4 + ts1 − tr) (2.3d)

To remove the unknown emission time tr, equation 2.3a is applied to to 2.3b, 2.3c and
2.3d, giving the three TDOA hyperboloid equations:√

(xr − xsn)2 + (yr − ysn)2 + (zr − zsn)2−√
(xr − xs1)2 + (yr − ys1)2 + (zr − zs1)2 = c(τsn) ∀n = 2, 3, 4

(2.4)

Or written in vector form:

‖r− sn‖ − ‖r− s1‖ = c(τn) (2.5)

A solution for xr, yr, zr lies at the intersection of the three hyperboloids of equation
2.4.
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Geometric Dilution of Precision

The Geometric Dilution of Precision (GDOP) characterizes how the geometry of the re-
ceivers8 influence the accuracy of the position estimate, as described by [32]. Minimizing
GDOP should therefore be part of the strategy for choosing the receiver positions. A thor-
ough description of the position Configurations with the Lowest GDOP is given in [33],
with an example of buoys used for underwater positioning. The problem of high GDOP in
coplanar geometries, caused by only having receivers at the surface is discussed, which is
relevant for systems with only surface vessels like the Fish Otter project.

Estimators for Multilateration on Acoustic Transmitters in Water

In the scenario where multilateration is performed by mobile watercrafts, there are multi-
ple challenges to overcome, such as:

• Uncertainty in receiver position (from GPS).
• Unknown and non-homogeneous medium where signal propagation speed varies,

making the measured pseudo-range different from the true range.
• GDOP makes directly solving the TDOA equations have poor accuracy and preci-

sion.
• Intermittent signal loss from causes such as other sound sources leading to low

signal-to-noise ratios.

To improve the performance of the position estimate, some filtering can be introduced.
Due to the non-linearity in the equations, as shown in equation 2.4, the design of the
estimator is further complicated.

The Kalman filter can be used for this purpose. The filter utilizes a linear model of the
system, discrete in time, that estimates the internal system parameters through received
measurements. To be able work on non-linear problems, the extended Kalman filter is
used, which creates a linear model around the current state at iterations. An example of
use in fish tracking is found in [19], where an AUV is utilized to localize an acoustic
transmitter. As is mentioned in that text, this linearization makes the estimator less robust,
with the possibility of incorrect convergence. This problem can be solved by using an
eXogenous Kalman filter, as described in [34]. In [22], this was demonstrated for collabo-
rative fish-tracking, where three USVs with acoustic receivers tries to locate a fourth USV
carrying an acoustic tag.

Another possible estimator is a Particle Filter, used for fish tracking in [19] and [23].
This filter works by assuming multiple possible states, called particles, and spreading them
through a pre-defined state-space. Iteratively, the particles are weighted according to their
probability as new measurements become available.

2.2 Robotic Middleware
In the field of applied robotics and autonomous systems, an abstraction layer between the
operating system and the software applications controlling different aspects of the robot

8For the case of acoustic fish tracking. In GNSS systems, the transmitter position is used for GDOP.
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Chapter 2. Background Theory

called robotic middleware is often used. This is motivated by reducing the complexity of
developing software for robots, as well as allowing the same code to be used in different
settings. This reusability is commonly achieved through the separation of software into
multiple user-defined components. By limiting the purpose of each component to per-
forming a single task, the developer needs only to consider one task at a time, resulting in
a divide and conquer manner of developing. The communication between components is
transparent to the developer, which makes it possible to analyze how a component affects
the system.

Another benefit is that many of these middlewares are open-source, making inspecting
the code possible for anyone, as well as implementing new features and fixing faults in the
existing code base.

Among the available middlewares, ROS is probably the most popular judging by the
number of components available [35]. In addition, a multitude of other options has been
developed with different design philosophies or intended use. A literature study comparing
multiple middlewares is available in [36], but does not include DUNE from the LSTS
toolchain. A brief comparison between ROS and DUNE is available in [37].

At NTNU, the DUNE middleware has already been deployed in a number of vehicles,
such as the NTNU AutoNaut [38] ASV, the AUVs of the AUR Lab9 and the UAVs of the
UAV lab10. Because interoperability with these vehicles was a desired property for the fish
Otter ASV, the LSTS toolchain with DUNE was selected, and is described in some detail
in section 2.3.

2.3 The LSTS Toolchain

The software used to control the NTNU fish Otters is based on the LSTS11 toolchain, which
was developed as a system for operating networked vehicles. It is designed in a modular
manner, in order to be used in heterogeneous vehicles with different configurations. The
common software base is written in a manner that lets multiple vehicles communicate,
making multi-vehicle operations possible, as well as multiple human operators through
consoles. The Otter is an autonomous surface vehicle (ASV), but the toolchain also sup-
port autonomous underwater vehicles (AUV), unmanned aerial vehicles (UAV), remotely
operated vehicles (ROV) and more, as described in [39].

The components of the toolchain being used by the Otter ASV are called DUNE, Nep-
tus, IMC, IMCProxy and GLUED. IMC is the communication protocol used by all other
components, Neptus is the operators console and DUNE is the software running onboard
the vehicles. IMCProxy is used to bridge IMC networks and GLUED is a lightweight
GNU/Linux distribution. For the Otter, only the cross-compilation tools supplied with
GLUED is used, not the GNU/Linux distribution.

9AUR lab homepage: https://www.ntnu.edu/aur-lab/
10UAV lab homepage: https://www.itk.ntnu.no/english/lab/unmanned
11”Laboratório de Sistemas e Tecnologia Subaquática”, or Underwater Systems and Technology Laboratory

at the University in Porto.
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2.3 The LSTS Toolchain

2.3.1 IMC
Inter-Module Communications is the message protocol used throughout the LSTS toolchain
for communications, as described in [40]. It is a transport-agnostic protocol, meaning that
it can be carried over Ethernet, as well as acoustic transmission, satellite based transmis-
sion, cellular, and between threads running in an executable.

The protocol is message oriented, meaning that every concept of the language is split
into one or more types of messages. An example of this is information about a battery,
which is split into multiple messages, one for charge, one for voltage, one for current and
so on. The same also applies to control signals between threads, so the high level path
controller communicate with the lower level course, speed and depth controllers through
IMC messages, who also send messages to the actuator controllers.

The IMC protocol also contains mechanisms for broadcasting the existence of a device
supporting IMC, as well as discovering other devices. During this process, an Announce
message is sent, containing device state and its capabilities. For the Otter, this means that
as long as both the console and the vehicle is on the same network, a connection will be
established automatically.

All IMC messages are divided into a header and a body part. The header has meta-
data such as protocol version, sender, type of message and a timestamp. The senders are
distinguished by two address fields, one for the program instance, and one for the sending
entity. The standard comes with a list of pre-known addresses that is to be stored along
with the software.

The body part contains the actual data, as defined by one of the message types sup-
ported by IMC. The messages of the IMC protocol is defined and documented in a single
XML12 file. Multiple tools are then used to create software bindings for the messages, like
IMCJava13 creating bindings for Java. An example of a message in the XML file named
IMC.xml is given in code listing 2.1. When messages are sent over the network, it is seri-
alized to consume less resources. Some IMC messages can also contain nested messages,
like the message for sending a plan consisting of multiple maneuvers to a vehicle.

Code 2.1: Example of how IMC messages are defined in IMC.xml.

1 <message id="251" name="Voltage" abbrev="Voltage" source="
vehicle" flags="periodic">

2 <description>
3 Report of electrical voltage.
4 </description>
5 <field name="Measured Voltage Value" abbrev="value" type="

fp32_t" unit="V">
6 <description>
7 The value of the internal electrical voltage as

measured by
8 the sensor.
9 </description>

10 </field>
11 </message>

12eXtensible Markup Language. Used for describing and storing data. Human readable and machine readable.
13IMCJava GitHub repository: https://github.com/LSTS/imcjava
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Chapter 2. Background Theory

To interface IMC messages, a publish–subscribe pattern is used, where messages are
not sent directly between entities, but are classified by content. The middleware then dis-
tributes the published messages to subscribing entities. The seven main content categories,
as defined by [40] are:

1. Mission control: Defines a mission through plans. The plans are the mission lan-
guage in the toolchain.

2. Vehicle control: Vehicle interfaces allowing commands to be issued, information to
be requested or state to be monitored.

3. Maneuver: The vehicle primitives, used to define what movements a vehicle is to
perform, and how.

4. Guidance: Describes the desired state of the vehicle, like heading and velocity.

5. Navigation: Describes the vehicles navigational state.

6. Sensor: Reported sensor readings.

7. Actuator: An interface to the vehicle hardware.

2.3.2 Neptus
Neptus is the user interface in the LSTS toolchain, used through the complete life-cycle of
a mission. This begins with visually planing and then simulating the mission. During the
mission, it allows for changes on the fly, as well as vehicle monitoring. When the mission
is completed, the MRA (Mission Review and Analysis) tool can read the vehicles log,
and either export it to a commonly readable format, or display visualizations facilitating
further analysis. A more thorough description is given in [41].

Neptus is developed in Java, and compiled with the Apache Ant system. This makes it
compatible with both Linux based operating systems, and with Windows14.

For operators, documentation is available at [42], while developers are directed to the
GitHub repository with its wiki at [43].

The Console

To address the needs of the different types of vehicles, the Neptus console is customizable
through XML files that tells what plugins to load, with the filename ending in .ncon. Start-
ing from scratch, the console is just a solid gray window, but after adding a map and some
more plugins, it turns into something like figure 2.4.

Mission Review and Analysis

In the Mission Review and Analysis (MRA) interface, mission data can be inspected and
analyzed. The file format used for this purpose is suffixed by .lst, often compressed with
Gzip with suffix .lsf.gz.

14And potentially other operating systems like macOS or BSD
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Figure 2.4: The console window of Neptus.

A screenshot of the MRA is provided in figure 2.5. In addition to the listing messages,
graphing and other visualizations of messages are available.

2.3.3 DUNE
DUNE is the software running onboard the vehicle. It is written in C++, and is compatible
with multiple operating systems, including Microsoft Windows and GNU/Linux systems.
To facilitate the building process, CMake15 is used. In addition to running onboard the
vehicle, it can also be used to simulate the vehicle, where for most tasks the exact code
can be used in both hardware and simulations.

DUNE is designed as a single process with multiple threads, where each thread con-
tains a single logical operation, such as interacting with vehicle hardware, running con-
trollers, navigation, maneuvers as well as supervisors and system monitors. All inter-
thread communication is done through a bus where the tasks can publish or subscribe to
IMC messages. Using standard IMC messages for all communication makes modularity
possible. As an example of this, selecting which path controller to use is as simple as
changing what task is activated in a running DUNE instance.

Configuration Files

Configuring what tasks will be running in an instance is done through a configuration file,
containing information about what tasks are to be active, as well as what parameters to run
them with. An example of this is given in figure 2.2, showing how the task written for the
Thelma Biotel TBR 700 RT hydrophone is configured, as well as comments describing the

15Creates the makefile that is used when compiling DUNE. It makes cross-compiling and adding source files
to the project easier. CMake homepage: https://cmake.org/
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Figure 2.5: The Neptus MRA.
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role of each line. The profiles gives the flexibility of using a single configuration file for a
vehicle through many scenarios, such as simulation, hardware, developing using hardware-
in-the-loop or other custom profiles, like the StratoPi profile. The configuration files can
be exported to Neptus, which allows for them to be changed while a mission is in progress,
handy for tuning controller parameters.

Code 2.2: Dune configuration file example.

1 [Sensors.TBR700RT]
2 # Common parameters for all task
3 Enabled = Hardware, StratoPi # Profiles
4 Debug Level = Spew # Level printed to console
5 Entity Label = Hydrophone # Task instance name
6 # Task specific parameters
7 Serial Port - Device = /dev/ttyAMA0
8 Serial Port - Baud Rate = 115200

Line 3 of code listing 2.2 shows how profiles are used in configuration files. The
catch-all statement Always makes a task active for all profiles, while specifying the profile
names makes it only enable when DUNE is run with the parameter.

Configurations spanning multiple files is supported by the include and require

statements.

Tasks

The life cycle of a task is defined in a set of methods that it inherits from a base class, see
[44] and [45]. There are two types of base classes: one for continually running tasks, and
another for periodically running tasks. Both provide a common set of functions;
onUpdateParameters(), onEntityReservation(), onEntityResolution(),
onResourceAquisition(), onResourceInitialization(), onResourceRelease
(),
onActivation(), onDeactivation(), as well as onMain() in continually running
tasks, and task() running on periodically running tasks.

2.3.4 IMCProxy
IMC networks are able to automatically discover and connect to nodes through using
broadcasted announce and discovery messages. When using IMC over UDP, these broad-
casted messages are often not routed to other networks, and thus they are limited to a local
network. In solutions where traffic across different networks is necessary, a proxy solution
is necessary to bridge IMC networks, with bridging over the Internet being one example.
The IMCProxy has been created for this purpose. Its based on a WebSocket16 server/client
architecture written in Java, where the server has a separate connection for each connected
client. The proxy server receives all IMC messages from connected clients, and relay them
to all other clients. An example is given in figure 2.6, showing how DUNE instances and
a Neptus console can be connected across different local networks.

16WebSocket: Standardized in RFC 6455. TCP based, HTTP compatible protocol.
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Figure 2.6: IMCProxy network overview.

2.3.5 GLUED
GLUED is a minimal GNU/Linux distribution targeted at embedded systems, developed
as a part of the LSTS toolchain. It’s not currently used by the NTNU Otters, but contains
a cross-compiling tool that is used to compile DUNE for the ARM-processor in the RPI4.

2.4 Geoinformatics and Cartography
In this section, a selection of concepts from the field of geoinformatics and cartography
that are used later on in this thesis are presented.

2.4.1 Geodetic Datums and Projections
A geodetic datum is a reference surface for the earth, on which points of reference are
defined. Relative to these points, coordinates can be used to describe any position on
the surface. Multiple reference systems have been created over time, with newer being
created as better measurements become available. For small areas, using a plane surface is
possible, but to increase precision over large areas, a surface more similar to the ellipsoidal
shape of the earth is used [46].

Maps by Kartverket

Kartverket, the Norwegian mapping authorities (NMAP), often use Gauss-Krüger projec-
tions17 and coordinate systems in its available datasets. These projects the earth surface to

17Also named Transverse Mercator Projection.
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a cylindrical surface. This surface can then be folded to a two-dimensional plane, resulting
in a Cartesian coordinate system. A consequence of using the cylindrical surface is that
there is a large deviation for the areas farthest away from the middle meridian. To solve
this problem, the earth surface is divided into multiple smaller zones [47].

The standard used by NMAP is called the Universal Transverse Mercator (UTM), and
divides the surface into zones in latitude and longitude. In latitude, the zones are divided
into 20 letters [c-x], spanning from 84◦ south to 80◦ north where x is the northern extreme.
In longtitude, there are 60 numbered zones where most are spanning at most 3◦ longitude
on either side the zones central meridian. The only exceptions on the entire earth is over the
areas of Norway, where zone 32V is extended to cover the entire southern Norway, as well
as the zones 31X, 33X, 35X and 37X spanning areas around Svalbard [48]. The UTM
projection achieves a worst case deviation of 4cm/100m or 400 parts per million (ppm)
between the actual terrain measurements and the map [49]. The worst case accuracy is
achieved in the areas farthest away from the central meridian.

Inside a zone, the coordinates are given as Cartesian coordinates with (easting, nor-
thing) pairs, with the origin set in the intersection between the numbered zone central
meridian and equator. Both are measures of distance, contrary to the angles used in lati-
tudes and longitudes.

The reference system used by NMAP to position the zones is called EUREF89/ETRS89.
According to NMAP, this is a regional reference frame fixed to the stable parts of the
Eurasian tectonic plate, with 11000 points of reference in Norway [50]. This comes with
the benefit that the coordinates are fixed to the surface, and not drifting.

WGS84

The LSTS software used by the NTNU Fish Otter uses the World Geodetic System (WGS84)
with coordinates for latitude, longitude and height. WGS84 is widely adopted, due to its
use in geo-positioning devices. It is also the horizontal datum used in S-57 electronic
navigational chart [13]. In contrast with ETRS89, WGS84 is not fixed to the earths sur-
face. Due to changes on the earths surface such as continental drift, there is an error of
± 40 cm[51].

EPSG Identifiers

EPSG is an abbreviation for the European Petroleum Survey Group which has released,
and maintains a geodetic parameter database with standard codes. EPSG codes are given
for coordinate systems, datums, spheroids, units and such. In this thesis, three identifiers
will be used: EPSG:4326 is the identifier for WGS84 datum, EPSG:3857 is a projected
coordinate system often used in online maps and EPSG:25833 is the EUREF89 UTM zone
33 coordinate system.

2.4.2 The S-57 ENC format

The International Hydrographic Organization, which is an intergovernmental organiza-
tion that works to ensure all the world’s seas, oceans and navigable waters are sur-
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veyed and charted18 has through its Hydrographic Services and Standards Programme
(HSSC) provided a series of technical standards for managing electronic navigational
charts (ENC)[53]. The S-57 standard defines the IHO Transfer Standard for Digital Hydro-
graphic Data, which is applied by all hydrographic offices world-wide for the production
of corresponding electronic navigational charts for their waters[54].

The data is stored in objects, as described in figure 2.7. As is seen, spatial information
is stored separated from the descriptive features, with relations connecting the feature with
spatial objects used to describe where the feature is valid. Combinations of the vector
object types is used to describe three two-dimensional geometric primitives: Points, lines
or areas. When a third dimension needs to be described, this is stored as a feature.

The naming convention for objects are acronyms. An example of this is DEPARE,
which is a feature object that contains depth bounds for areas. The depth range limits
are defined by the attributes DRVAL1 and DRVAL2, where DRVAL1 is the shallowest
depth found in the area, and DRVAL2 is the deepest water found in the area. A complete
catalogue of the objects is given in [55], while a small subset is included in table A.1 of
this text.

I H O O B J E C T C A T A L O G U E
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Figure 2.7: IHO S-57 theoretical data model (Source: Figure 1.1 and 2.1 from [13] combined).

18Cited from [52]
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The files of the S-57 standard

S-57 files are suffixed with .xxx, where xxx is three digits with values from 0 to 9. The
.000 files are the initial file for a section of land, while .001 and up stores updates to the
initial .000 ENC. The different sections of the earth are stored in a folder structure, with
a separate folder for each section. On the upper level, there is a catalogue file, which has
the suffix .030.

The objects stored in the files are encapsulated in accordance with the ISO 8211 spec-
ification to allow transferring between computer systems.

The Norwegian Mapping Authorities Organization of the S-57 data

Upon request, NMAP provided S-57 ENCs for Trøndelag (Norway) for this thesis. The
received data is placed in a root folder named ENC ROOT, which contains the catalogue
file, a readme file and a folder named NO. This structure is part of the S-57 standard [13],
where the NO is a code for the mapping authority releasing the ENC. Opening this folder
reveals the actual data of the ENC, as multiple folders giving information about different
areas. NMAP has named these folders in a format like NO[p][s][xx][yy], which is further
described in table 2.2.

Country Code Purpose Size Position
[cc] [p] [s] [xx] [yy]

Two capitalized
letters given
according to
IHO Codes for
Producing
Agencies

Purpose
enumeration,
formatted like
the DSID INTU
(Intended
Usage) S-57
object. Possible
values:

Single
capitalized
letter where ’A’
is the largest
area, and ’Z’ is
smallest

Specifies the latitude and
longitude position of the south
west corner of the ENC. The cell
representation has its origin at
(55◦ N, 0◦ E.), and increments in
a 0.5◦ resolution.

1 = Overview
2 = general
3 = coastal
4 = approach
5 = harbour
6 = berthing

Table 2.2: S-57 naming convention used by Kartverket.

2.4.3 Grid-based Decomposition
In grid-based decomposition, a continuous surface is discretized to a grid of points. The
information about a point is valid in an area around the point, which for some cases may
be overlapping. There are many possible shapes that can be used, but squares will be used
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in this thesis. To save storage space, only the points over the ocean is stored in the later
works of this thesis. An example is shown in figure 2.8.

Figure 2.8: Grid-based decomposition with squares.

2.4.4 Visualizing Spatial Data in QGIS

When working with spatial information, visualizing is a helpful aid in understanding the
results. For this purpose, the free and open source Geographic Information System (GIS)
QGIS has been used throughout this thesis to create figures with maps that describe the
results. As a base map, the free OpenStreetMap is used. Because the base map uses the
EPSG:3857 projection of the WGS84 datum, and some of the data used in this thesis is
based on ETRS89 referenced features, some small deviations (below 1m) between the base
map and the drawn points is expected19.

A screenshot of a S-57 ENC opened in QGIS is shown in figure 2.9.

19A datum-transformation would mitigate this.
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Figure 2.9: QGIS main window showing a S-57 ENC on top of the OpenStreetMap.

2.4.5 Manipulating Spatial Data in FME Desktop

The FME software suite by Safe Software is used for data integration, with support for
spatial data manipulation. FME is an acronym for Feature Manipulation Engine, where a
feature describes a spatial object.

The part of the FME suite used for data extraction/transformation is named the FME
Desktop Workbench. The interface works by setting up a workspace with reader, writer
and transformer nodes that each have inputs and outputs that have connections routed in
between them. Examples of workbenches can be seen in figure B.1, B.2, B.3 and B.4. A
description the nodes relevant for this thesis is given in table 2.3.

Batch Deployment

The FME workspaces can be applied to multiple datasets at a time by using batch deploy-
ment. This is practical, because extracting data from multiple S-57 files can be done all at
once. When selecting Run->Batch Deploy, whole folders can be scoured for relevant
files. As an example, /dataset location/ENC_ROOT/NO/NO4**/**/*.000 is used
in this thesis. This selects all S-57 base files in the selected folders. The NO4** restricts
the deployment to only folders starting with NO4.
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Node Name Purpose Purpose in this thesis
Reader The data source in a work-

bench. Numerous formats are
available.

Read S-57 and CSV files.

Writer The data sink in a workbench.
Numerous formats are avail-
able.

Write SQLite3 files.

AngleConverter Converts a field with angles to
another format for angles.

Used for converting de-
grees to radians for use
with the LSTS toolchain.

AttributteFilter Filter objects based on at-
tributes.

Used in figure B.4 to re-
move areas with no DR-
VAL1, which means re-
moving areas that are not
in DEPARE.

AttributeRenamer Gives a feature attribute a new
name.

Give coordinates the
names lat and lon.

CoordinateExtractor Adds spatial coordinates as
attributes to a feature.

Makes it possible to store
spatial data and fea-
ture data together in the
database.

Densifier Adds vertices by interpolating
at given intervals.

Used in figure B.3 to en-
sure a lower bound on
distance between vertices.

Reprojector Changes projection from one
to another.

EUREF89 UMT 33 to
WGS84

SpatialRelator Performs a join operation on
spatial relationships.

Used in figure B.4 to add
DRVAL1 and DRVAL2 to
the grid.

VertexExtractor Extracts the vertices of an ob-
ject.

Make a table of the ver-
tices defining DEPARE in
figure B.3.

2DGridAccumulator Creates a square two-
dimensional grid in the size
of a given object. Resolution is
given as parameters.

Used in figure B.4 to cre-
ate a two-dimensional grid
over DEPARE area.

Table 2.3: Description of the FME Workbench nodes used in this thesis.

2.5 Path Planning for Marine Vessels

An important sub-system of an ASV, is the path planning implemented to provide the
vessel with the ability to make decisions autonomously. The task of a path planner, is
to find a safe and valid sequence of states for bringing the vessel from a state towards
its desired state. An additional goal is to find an acceptable balance between optimizing
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energy consumption, path length and processing time.
The general path planning framework for intelligent marine vessels is given in figure

2.10, as drawn out in [6].

Sensors
Controlled Vessel Motion Control

Communication

Path
PlanningStatic

Environment
Offline global
path planning

Dynamic
Environment

Online local
Path Planning

Other 
vessels Channel

Path 
generation &
smoothing(Position, Heading, Speed)

Figure 2.10: The basic path planning framework of an intelligent marine surface vessel (Based on
figure 1 from [6]).

As is laid out in the figure, offline path planning tries to find a global solution based on
only information about static parts of an environment. Based on this global plan, it’s left
to the local path planner to manage dynamic elements such as path deviations caused be
currents, waves or wind or adapting to unexpected hazards like other moving objects.

For the NTNU Fish Otter, the environmental sensors part of the system is limited to the
Hemisphere GNSS V104s, the communication is with the operator and the other vessels in
the system, and the motion control is the DUNE pathController task in combination with
the CourseAndSpeed controller.

In this thesis, a system for offline global path planning is developed, so some related
topics are given in the next sections.

2.5.1 Complexity Measures for Algorithms

To give a measure of the efficiency of an algorithm, two methods will be used: Benchmarks
and the O() asymptotic analysis, both which are described in [2]. The concept behind
benchmarks is simple, measure an aspect of the algorithm by running it, like execution
time or states searched. This is ultimately what matters, but has the drawback that the
results are influenced by the hardware used to achieve them.

To be able to say something about an algorithms complexity no matter what system it
is uses, an asymptotic analysis is performed, describing how many operations have to be
performed, or how many elements have to be stored. It is also useful for analyzing how the
size of the search domain is reflected in resource usage. To make this relationship clear,
the O()-measure abstracts over constant factors, so if say an algorithm runs for a maximum
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of n + 100 operations, the measure for it is O(n), where n is the number of nodes in the
searched graph/tree.

2.5.2 The A* Graph Search Algorithm

When searching in a graph in order to a find path from one state to another, not having
to consider all states in each operation is very much a desired property in an algorithm.
The best-first search algorithm variation called A* achieves this by calculating the total
estimated solution cost for each node f(n) = g(n) + h(n), where g(n) is the calculated
path cost from start to n, and h(n) is an heuristic function estimating the path cost from
node n to the goal.

By expanding the node which has lowest value f(n) value at each iteration, the nodes
needed to be searched is often dramatically decreased[2] because the iterations finish when
a goal condition is met. The pseudocode for the algorithm is given in code listing 2.3, while
the pseudocode function for expanding a node is given in 2.4.

Code 2.3: Pseudocode for the graph searching A*-algorithm (Source: [2]).

1 function A-STAR-SEARCH(problem) returns a solution, or failure
2 node ← a node with STATE= problem.INITIAL-STATE, PATH-COST = 0
3 frontier ← a priority queue ordered by PATH-COST, with node as

the only element
4 explored ← an empty set
5 loop do
6 if EMPTY?(frontier) then return failure
7 node ← POP( frontier ) /* chooses the lowest-cost node in

frontier */
8 if problem.GOAL-TEST (node.STATE) then return SOLUTION(node)
9 add node.STATE to explored

10 for each action in problem.ACTIONS(node.STATE) do
11 child ← CHILD-NODE(problem, node, action)
12 if child.STATE is not in explored or frontier then
13 frontier ← INSERT(child, frontier)
14 else if child.STATE is in frontier with higher PATH-COST

then
15 replace that frontier node with child

Code 2.4: Pseudocode for the function expanding a child (Source: [2]).

1 function CHILD-NODE(problem, parent , action) /*returns a node*/
2 return a node with
3 STATE ← problem.RESULT(parent.STATE, action),
4 PARENT ← parent, ACTION ← action,
5 PATH-COST ← parent.PATH-COST + problem.STEP-COST(parent.

STATE ,action) + HEURISTIC-COST(STATE)
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Heuristics

The heuristic function in the A* algorithm is responsible for estimating the cost from one
node to the end node. Multiple heuristics have been developed that are optimized for
different graphs. A small selection, based on [56] is mentioned below, with examples of
grid movement in figure 2.11:

• Manhattan distance: The distance between two points measured along axes at right
angles. Suited for grids with four directions of movement.

• Diagonal distance: The diagonal distance measure is used when there are eight
directions of movement allowed. The cost of each these directions is calculated by
the formula: h(node, end) = straightCost ·max(| node.x− end.x |, | node.y −
end.y |) + (diagonalCost− straightCost) ·min(| node.x− end.x |, | node.y−
end.y |)

• Euclidean distance: The distance of a straight line between two points. Used on
non-regular search graphs. Calculated with the formula: h(node, end) = weight ∗√
| node.x− end.x |2 + | node.y − end.y |2. The formula in some cases need to

be modified, such as when the distance is on the earths surface.

Four Eight Non-regular

Figure 2.11: Grid movement examples for searching algorithm.

In addition to the choice of heuristic, the scaling weight used in the heuristic plays
an important part in optimizing the A* algorithm. The scale of the heuristic function h()
should be equal to the scale of the path cost function g().

Optimality Condition

The paths produced by the A* algorithm on graphs are optimal under the condition that
the heuristic path cost estimator is consistent. In [2], this is defined as:

h(n) ≤ c(n, a, n′) + h(n′) (2.6)

where n is the node representing the current state, h(n) is the heuristics function,
c(n, a, n′) is the step cost from taking action a resulting in changing current state from n
to the next state node n′.
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Balancing Performance at the Cost Of Optimality

By slight increases in the heuristic scaling weights, some of the accuracy of the algorithm
can be sacrificed for performance gains. This results in a more greedy approach, where
fewer nodes have to be evaluated.

It may also be a benefit to slightly increase weighting to handle tie breaking when mul-
tiple paths of same length is expected. This leads to only one of the paths being expanded,
leading to a solution being returned faster, possibly at the expense of optimality[56].

2.6 Online Services
This section gives background information about software services used for distributing
information from the Otter server.

2.6.1 Wiki
To document the NTNU Fish Otter project, a wiki has been created created. According to
[57], a Wiki is a simple web authoring tool. A wiki page is edited using a plain text format,
which can be automatically translated to formatted HTML.

Often, wikis are editable by all, while the Otter wiki only allows personnel involved
with the project to edit. Most of the wiki is available to the public, while some sections
have been locked off.

The wiki can be found by accessing http://otter.itk.ntnu.no/doku.php
on the web, and a screenshot of the front page is shown in Figure 2.12.

DokuWiki

The software used to run the Otter wiki is called DokuWiki, and allows for easy creation
and editing of wiki-pages through an online content management system. The layout and
look of the wiki is the only setting changed from a default installation by using a layout
template named ”Bootstrap”, adding a sidebar and putting the NTNU logo in the header.

The DokuWiki stores content in files, rather than in a database, making it easy to set
up, and easy to backup (by just copying the data folder).

Apache Webserver

To serve the php20 scripts used in DokuWiki on the web, the Apache HTTP server has
been configured. It’s released as free and open-source software, and is currently licensed
under the Apache 2.0 License.

2.6.2 Grafana
Grafana is an open source analytics and monitoring solution that provides a web based
interface that lets users create multiple dashboards containing data visualizations21. The

20PHP: Hypertext Preprocessor
21Live demo available at: https://play.grafana.org.
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2.6 Online Services

Figure 2.12: A screenshot of the DokuWiki made for the Otter, accessed 09/07/2020.

31



Chapter 2. Background Theory

Figure 2.13: A screenshot of the Grafana querying interface.

time range, visualizations and appearance is entirely up to the user, and is configured in
the web interface.[58]

Grafana supports multiple data sources, such as InfluxDB, Prometheus, MySQL and
PostgreSQL, which are queried through an online interface, as shown in figure 2.13. The
result can then be be presented in visualizations such as graphs, maps, gauges, tables etc.
As the platform is open source, custom visualizations can also be implemented. Exporting
the queried data is available in CSV format for further analysis.

Once the dashboards are configured, users can browse through the data without need-
ing any knowledge of the underlying database or querying happening in the background.
Grafana can therefore also be described as an online visual querying solution.

Examples of dashboards are given in figure 7.4 and figure 7.5.

2.7 Database Systems

To store large large amounts of data, like the results of grid-based decomposition, in a way
that balances searching performance and overhead storage, databases are used. Through
a Database Management System (DBMS), a database is created by defining its structure,
constructed by filling it with data, and stored in some fitting data-structure. After creation,
an application program can access the DBMS to manipulate the data, or run queries to
receive the constructed data. An important aspect is that the DBMS allows multiple-users
to access the database simultaneously in a way that maintains the database in an atomic
state [59].

2.7.1 Relational Databases

In relational databases, the content is modelled as tables having attributes stored in tuples.
Each row of the table is a tuple, and contains related data. The structure description of
such a database is called a schema, and also includes the datatype of the attributes.
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· Attribute1 Attribute2 Attribute3
Tuple1 Value11 Value12 Value13
Tuple2 Value21 Value22 Value23

Table 2.4: Relational database schema example with values.

2.7.2 Indexing and Keys
For each database, there is a key that uniquely identifies every tuple [59]. To be able to
efficiently search a database on keys, auxiliary data structures called indexes are used.
How these are implemented varies between database systems, but hash-tables and some
binary-heap implementations are widely used. For some types of data, like spatial data
or time-varying data, specialized indexes exist. Additional indexes can also be created to
increase searching performance on the other attributes of the table.

2.7.3 SQL
The main interface to access the data stored in a database is through writing queries that
precisely describe what portion of the data is wanted. For this purpose, multiple languages
have been invented. A desirable characteristic of such a language is that it provides inde-
pendence from the underlying data structure.

The structured querying language (SQL) is a standard language for relational DBMSs
that provides a high-level declarative way of querying [59].

2.7.4 SQLite
SQLite is a light weight DBMS that stores its database in a single self-contained file. This
makes it widely used for storing data in applications22, and also as the base for a lot of file
formats[60]. Unlike many other DMBSes, no server is required to use SQLite, everything
is done from a single library written in the C programming language.

SQLite in the LSTS toolchain

Both DUNE and Neptus use SQLite to store data, like the vehicle plans stored in DUNE.
This means that the library is already integrated in both software packages, making it a
natural choice when developing extensions for the LSTS toolchain.

2.7.5 Time-Series Database Management Systems
A time-series database management system (TSDBMS), is a DBMS that is optimized
for time-stamped or time series data [61]. The primary key of a TSDBMS is always a
measure of time, with performance optimization for features such as time-aggregation,
down-sampling and data monitoring.

22High-profile examples of users: Apple, Microsoft, Google, etc. See https://www.sqlite.org/
famous.html (accessed 25/06/2020).
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2.7.6 InfluxDB
InfluxDB is an open-source time-series DBMS, and has been optimized for storing and
serving time series through associative pairs between time(s) and value(s). InfluxDB fur-
ther divides the values into tags and fields. The difference between them, is that tags are
automatically indexed, while fields are not being indexed at all. Choosing between them is
a part of the database design, and is done by considering which queries will be performed
most frequently.

In this thesis, it will be used for storing converted IMC messages. Examples of how the
fields and tags are implemented for this, is having the message source entity and vehicle
as tags, while temperature, position23, current and voltage is examples of fields. This is
based on that most often, the the queries will be restricted to a single entity.

Accessing InfluxDB can be done through a SQL based language called InfluxQL, or
through a HTTP based API. The documentation for both is available at Influxdatas web
pages at [62] and [63]. Because parts of the HTTP API is used in section 7.2.2, a short
introduction is given below:

The HTTP POST request method for ingesting data to the database, has the URL
format:

1 http://[server]:[port]/write?db=[dbname]&u=[user]&p=[password]&
precision=[time_precision]

The [dbname] variable is the only required variable, while the others are optional.
The contents of the HTTP POST request is then added according to the Influxdata line

protocol [64], with the syntax:

1 <measurement>[,<tag_key>=<tag_value>[,<tag_key>=<tag_value>]] <
field_key>=<field_value>[,<field_key>=<field_value>] [<
timestamp>]

The <measurement> is the InfluxDB equivalent to tables in general DBMSes.

23There is experimental support for geo-temporal data, but as this was still in beta testing at the time of writing,
it is not used
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Chapter 3
Design of a Robotic Fish Tracking
Vehicle System

In this chapter, the concept design of a Robotic Fish Tracking Vehicle System called the
NTNU Fish Otter System is presented. Along with the concept description in chapter 3.1,
the current design is described, with hardware in section 3.2 and software in section 3.3.

3.1 The NTNU Fish Otter System for Fish Tracking

The motivation behind the NTNU Otter Project is the research presented in [21] and
[22], where the concept of having multiple surface vessels with acoustic receivers track
an acoustic transmitter was showed to be viable. The prior masters thesis by Ekanger [65]
and Kristiansen [66] are directly relevant to the fish tracking aspects of the project, while
Steindal in [67] creates a model for the Maritime Robotics Otter along with a bumpless
linear-quadratic-controller that changes linearizations based on velocity.

In Ekanger [65], the initial design of the NTNU Fish Otter project is laid out. Since
this was written, major hardware changes has been done to the ASV, like the decision to
have the hydrophone fixed instead of mounting it to a flexible cable.

On a different note, Kristiansen [66] presents strategies for searching after acoustic
transmitters using an unmanned surface vehicle, with the NTNU Fish Otter as the intended
user.

3.1.1 Design Problem Definition

To aid in the design process of the NTNU Fish Otter Project, the scenario presented in
table 1.1 has been used as a base. A further definition of the conditions surrounding a
mission based on the scenario is given in table 3.1. These should be considered as initial
values, and may be subject to change as more experience with the system is gained.
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A visual representation of the most important phase of the scenario, the fish tracking,
is shown in figure 3.1. Here, the three Fish Otters have gained contact with a tagged fish,
and is using multilateration to estimate its position. Based on the estimate, decisions are
then made regarding the next position of the formation. The formation also has to try to
minimize GDOP, while at the same time avoiding surrounding hazards and reducing the
thruster usage. Reducing motor usage is beneficial because it conserves the stored energy
and reduces noise in the medium (water). Increased noise makes it harder for the acoustic
receiver to discern tag transmissions and may also influence the fish behavior.

The communication between the operator and the vessels, can, as shown in figure 3.1
go through two channels: the public cellular network, and the private Ubiquiti AirMax
network. Either one, or both at once is to be used, with the expectation that bandwidth
and increased network control will be benefits of the AirMax channel, while range is the
benefit of the cellular communications.

Positioning of the vessels is based on GNSS systems, which also is a multilateration
system. The GNSS can be used as an inverted analogy for the fish tracking performed by
the Otters. In the GNSS, the satellites transmit signals, with the Otters receiving them.
In the fish tracking scenario, the Otters have the same role as the satellites, but instead
receives the message sent from the acoustic tag for surveillance purposes.

Acoustic
Wired
Cellular
Wireless/AirMax
GNSS

Figure 3.1: Fish Tracking Scenario (The additional satellites needed in a GNSS is omitted for
simplicity).

3.1.2 System Requirements for the NTNU Otter Project
Based on the design problem definition given in section 3.1.1, concrete requirements have
to be developed, along with ways of fulfilling them. This list has been created based
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Description Value
Maximum operational workspace 10km · 10km, resulting in

an area of 100Km2.
Minimum navigable depth 1m
Minimum depth limit during autonomous operation 5m
Maximum wave height 0.5m
Maximum sea current Not defined, less than

maximum operational
speed.

Maximum wind Not defined

Table 3.1: Operational Limits of the Fish Tracking System.

on the experience gained in the TTK4550 specialization project [1], as well as through
discussions with the supervisor Jo Arve Alfredsen.

Creating an Equipment List

To ensures that all necessary equipment is transported to the deployment area and that
no equipment is left behind afterwards, a list should be specified. This is not a technical
problem, but rather an organizational part of the project.

Specify and Procure Necessary Hardware and Accessories

The specifying and procurement of hardware has in large part been completed, with the
exception of cellular equipment for both the operator and vessels.

Spare parts and tools may also be beneficial on missions, to solve problems where
a component may break or need to be modified. For this purpose the tools needed to
perform rudimentary tasks on the hardware has to be brought. From sea trials in [1], a set
of screwdrivers and socket wrenches for opening and closing the control box was identified
as needed. In addition to this, a rope and a boat hook simplified deploying the vessel.

Deployment Procedures

In aviation, checklists are used to ensure that all systems are working as intended before
the ensuing flight. A similar concept should be employed before deployment on missions
for the Otters. Important aspects to check would be communication with the vessel, being
able to its thrusters and ensuring that vessel position is obtained. Further checklist items
should be added as more experience is gained.

Hardware Integration

All the vessel hardware needs be integrated to the DUNE system, and external components
need to be configured. This was in large part completed in [1], with the remaining cellular
communications system and hydrophone synchronization being subjects treated in this
thesis.
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Guidance, Navigation and Control

Guidance, Navigation and Control is in large part handled by DUNE, but the parameters
of the controller functions need to be tuned according to the vessels behavior. A kinematic
model with known constants fitting the vessel should be developed, which can be used in
finding initial controller parameters.

Communication

Communication between vessels and the operator has to be available, at least in the vicin-
ity of the deployment area. This is to be accomplished by a locally controlled Ubiquiti
AirMax 5GHz network and through the public cellular infrastructure. Both these subjects
are threated in chapter 7.

Anti-Collision

A system shall be developed that monitors the vessels locations, and prevents collisions.
As the Otter has no external sensors to detect other vessels, accessing an online AIS data
source is desired. This subject has not been explored further in this thesis.

Anti-Grounding and Hazard Avoidance

A system for avoiding entering areas deemed to shallow shall be implemented. This sys-
tem shall also be able to verify the depths of paths. As the Otter has sensors for detecting
external hazards and depths, this system will be based on a priori spatial information. This
is the subject of chapter 4 and section 5.3.

Formation Control

To minimize GDOP when tracking a fish, a formation controller shall be implemented.
This has not been explored in this thesis, but a possible design is presented in [21]. A
non-functional requirement is that the acoustic disturbance should be minimized, to avoid
affection the fish. This is accomplished by minimizing thruster usage, and locating the
vessels at a reasonable distance from the estimated tag position.

To make traveling from the deployment area to the search area simpler, a formation
control for this purpose may also be implemented. An option would be the application
developed for the LSTS toolchain in [68].

Searching Strategy

For the phase when the vessels are trying to make initial contact with a tagged animal,
a search strategy is needed. [66] explores multiple strategies that can be used for this
purpose. Other options include using a multi-robot coverage path planer algorithm. The
algorithm introduced in [69] accomplishes this goal, and has the benefit of (under rea-
sonable restrictions on the configuration space), returning the paths with lowest distance
possible.
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Mission Coordination Task

When the vessel is performing autonomous fish tracking, a DUNE task that changes op-
eration mode according to the scenario phases must be implemented. This topic has not
been further explored in this thesis.

Hydrophone Integration

An integration of a hydrophone from Thelma Biotel shall be made, including time syn-
chronizing and clock disciplining with millisecond precision. An initial integration of the
TBR700RT was made in [1], but as shown in section 6.1, did not meet the synchronization
requirement. The work described in section 6.1.2 aims to improve on this, but has yet to
be verified.

Single Vessel Path Planner

A single vessel path planner shall be implemented that provides a safe path. The imple-
mentation should balance energy consumption, speed and algorithm run time in a manner
suitable for the vessel. Initial work is provided in section 5.4, along with an extended
discussion and assessment of alternatives to the implementation.

Optional: Single Vessel Fish Tracking

When only a single vessel has made contact with the acoustic tag, it would be beneficial if
it could start the tracking immediately. An implementation based on the [19] is proposed
as a solution to accomplish this goal.

Estimator for Fish Position

When the Fish Otters have made contact with the fish and assembled in formation, the
position of the fish has to be estimated. Methods such as the eXogenous Kalman filter
presented in [22] can be used as the starting point for this.

Low Noise Listening Maneuver

Another scenario for the Fish Otter is that they could be used as ”mobile buoys”, keeping
a position with as little noise polluting thruster action as possible. Experiences from the
project work showed that thruster usage had a severe impact on the measured signal-to-
noise ratio.

Battery Monitoring

Monitoring of the available energy stored in the battery shall be made available to the
vessel and its operator. This was implemented in the specialization project [1].

When the battery charge level sinks to below a set threashold, a planned action should
be taken, such as executing a pre determined plan and alerting the operator. This is left for
future works.
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Manual control

In situations such as berthing and deploying the vessel, operations with narrow safety
margins is expected. For these cases, the vessel should be able to be controlled manually.
This functionality is already implemented in the LSTS toolchain, and has been verified in
sea-trials in the specialization project [1].

3.2 Hardware Design

3.2.1 The Fish Otter ASV

The NTNU fish Otter ASV, as shown in figure 3.2, is based on the Maritime Robotics(MR)
Otter USV1, but with communication and control systems being designed and developed
at NTNU. It’s constructed as a catamaran multihull, with two pontoons spanning 200cm
in length, combined with a structure in between that carries control, communication and
payload hardware. At the stern of each pontoon, there is a fixed thruster to actuate the ves-
sel, providing steering by differential thrust, also called skid-steering. A useful feature of
the NTNU Otters that it has inherited from the MR Otter, is that it’s easy to both assemble
and disassemble into part weighting less than 20Kg. This makes it very portable, and also
ensures that it fits into most normal cargo vans. It also makes it manageable for a single
person to deploy the vessel alone, even from harbors with no slipway or shiplift, a simple
floating docks or some fitting terrain will suffice.

The reasoning behind calling the NTNU Otter an autonomous surface vehicle, if ounded
on the greater degree of independence from a operator/autonomy being envisioned.

An overview of the components of the NTNU Fish Otter ASV is given in table 3.2,
with the control box further detailed in table 3.3.

Navigational Sensors

For positioning, the Otter relies upon a single Hemisphere GNSS V104s. By using its
dual integrated GPS antennas, both GPS positioning and compass functions are achieved.
It also supports Space Based Augmentation Systems (SBAS) in addition to a single axis
gyro and tilt sensors for x- and y-axis. This results in an positional accuracy of better than
1.0 m available 95% of the time2. The v104s is interfaced through two full-duplex RS-232,
out off which the Fish Otter only uses one. An other relevant feature is the dedicated PPS3

output that can be used for time synchronization.
The RS-232 protocol of the v104s adheres to the NMEA4 0183 standard, but is ex-

tended by some Hemisphere GNSS specific messages.

1Since the procurement of the NTNU Otters, the hull of the Maritime Robotics Otter has been redesigned.
The old design has more of a straight keel, making it more direction bound at speed, and thus makes yaw motion
harder to achieve.

2According to the datasheet, when using SBAS.
3Pulse-Per-Second
4National Marine Electronics Association
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GPSWiFi
Airmax Signal
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Hydrophone

Motor
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Batteries

Figure 3.2: A picture of the Fish Otter with component labels (Before the hydrophone upgrade
mentioned in section 6.1).
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Figure 3.3: NTNU Fish Otter Hardware.

Powertrain

For the powertrain, the NTNU Otter uses a MR designed system based around Torqeedo
Ultralight products. The two Torqeedo Ultralight 403 trolling motors, originally designed
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Component Model Description
Thrusters Torqeedo Ultra-

light 403
One at the stern of each hull, 180W propul-
sive power, max 1200 RPM. [70]

Batteries Torqeedo Battery
915 Wh Ultra-
light 403

Two in each hull, total capacity 3660Wh(or
124Ah). [71]

Hulls Maritime
Robotics Otter

Catamaran, 200cm X 108cm, disassembly
into parts with weights under 20Kg possible.

Signaling Light Hella Marine
NaviLED 360

1W white.

5GHz Access
Point

Ubiquiti Bullet
AC IP67

AirMax, IP67 rated, Passive PoE,

5GHz Antenna Delock 802.11
ac/a/h/b/g/n An-
tenna

50Ω, N-type connector, SISO (1x1 MIMO)

Positioning Hemisphere
v104s

GPS compass, RS-232 NMEA0183 inter-
face, SBAS, gyro and tilt sensor

Hydrophone Thelma Biotel
TBR700RT/
TBRLive

Detects DPPM modulated 63-77 kHz acous-
tic tags, see section 6.1.

Control Box NTNU See table 3.3.

Table 3.2: Overview of the hardware components of the NTNU Fish Otter ASV.

for use on Kayaks, is coupled with four Torqeedo Ultralight 403 915Wh batteries through
a MR designed interface board. A benefit of basing the design around the commonly
available Torqeedo components, is that spare parts can be acquired anywhere international
shipping is available.

Communicating with the interface board is done using a CAN interface implementing
a MR defined protocol. This allows for controlling the RPM of the individual thusters, as
well as receiving telemetry from both motors and batteries.

Payload Sensor

The payload of the vessel, is a digital hydrophone, which lets the Otter detect aquatic
animals that acoustic tags have been attached to.

The digital hydrophones used on the NTNU Fish Otters are produced by the Trondheim
based company Thelma Biotel. The company’s web-page states that its roots are in the
technology developed in the experiments of Belchen, Holand and Mohus (one of which
was described in section 1.1), and as such, it still has ties with the NTNU DEC [28].
These ties has been a benefit in the development of the NTNU Fish Otters through direct
communication, and also as early adopters of the newly released TB Live.

Originally, the TBR700RT hydrophone was to be used, but was replaced by the TB
Live hydrophone as it became available. For the motivation behind the replacement, see
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section 6.1.

Communication

For letting the Fish Otter communicate with supporting systems, and also convey teleme-
try, two systems have been integrated: One based on Ubiquiti AirMax 5GHz equipment
and another based on LTE cellular communication. From experiences with the NTNU
AutoNaut5, cellular network coverage in Norway provides a quality of service sufficient
for use on ASVs in coastal areas. To provision for cases when this is not true, the AirMax
equipment is included as a backup system. An overview of all communication protocols
used, and connected devices is given in figure 7.6.

Internally, the components of the NTNU Otter communicate through wired Ethernet
cables, managed by a Teltonika RUT950 LTE router. Two of its four connections are then
used, one for the controlling computer, and the other for the AirMax AC.

At a sea trial performed by the NTNU Otter in the autumn of 2019, the range of the
AirMax equipment was found to be 1000m in near optimal conditions. The trial was
performed with a sector antenna used at the base station.

The Control Box

The control box is where all the peripherals is connected, and is based around the Rasp-
berry Pi 4 single board computer. To support the necessary interfaces of all the peripherals,
the daughter board StratoPi CAN by Sferea Labs has been used along with a FTDI USB
to RS-232 adapter. A table of the components in the control box along with short descrip-
tions is included in table 3.2. The exact wiring in the control box is documented in figure
3.4. To get more of an overview, figure 3.3 is included.

System classification

Assuming that roll, pitch and heave motion is negligible, the system is operating in three
degrees of freedom: surge, sway and yaw. Having fewer independent actuators than de-
grees of freedom, the Otter is classified as an underactuated marine vessel, as defined in
[74]. The result of this underactuation is the addition of a second degree non-holonomic
constraint. Controlling Surge is done by outputting equal thrust from the two thrusters,
while motion in yaw is accomplished by outputting differential thrust. The constraint lays
on sway motion, which there is no way to directly control.

Multiple Fish Otter ASVs

NTNU has procured a total of four Otters from Maritime Robotics, where at least three
are available for use as fish tracking Otters. For now, hardware has only been created for a
single fish Otter because the control box design had yet to be completed. With the addition
of the cellular modem in 7.1.2 and the change of hydrophone model described in section

5Currently managed by the thesis co-supervisor, and documented on http://autonaut.itk.ntnu.
no/doku.php
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Chapter 3. Design of a Robotic Fish Tracking Vehicle System

Component Model Description
Single Board
Computer

Raspberry Pi 4B
with 4GB RAM

CPU: Broadcom BCM2711, RAM: 4GB
LPDDR4, Storage: Micro-SD, 2xUSB3,
2xUSB2, 28xGPIO, 1x Gigabit Ethernet
port, for complete overview, see [72].

Interface board
for SBC

Sfera Labs
StratoPi CAN
(SPBC12X)

Connects to RPI4 GPIO pins, Power supply,
CAN, RS-485, relay, RTC, buzzer, hardware
wachdog. For complete overview, see [73]

Passive PoE
injector

Unknown Adds power to the ethernet cable going to
the Bullet AC IP67.

RS232 to USB FTDI USB-
RS232

Connects v104s GPS to RPI4

DIN rail Phoenix Contacts PTC thermistors on positive supply leads,
12-24v booster CUI Inc.

PDQE10-Q24-
S24-DIN

Used to provide 24v to the Ubiquiti Bullet
AC IP67 through the PoE injector, 10W
max.

Power dis-
tribution and
thruster control

Maritime
Robotics Otter
Torqeedo inter-
face board Rev.D

Provides a CAN interface to the Torqeedo
hardware, as well as power distribution.

Cellular Mo-
dem

Teltonika
RUT950

4G LTE router, see section 7.1.2.

Cellular An-
tenna

Teoglas Limited
MA741.A.BI.001

2x2 MIMO

Table 3.3: Overview of the hardware components used in the control box of the NTNU Fish Otter
ASV.

6.1, the hardware design phase is finished, and can be duplicated for the remaining two
fish Otters.

3.2.2 Supporting Hardware
In addition to the ASVs, additional hardware used when performing missions with the
Otters are:

• Communication mast: In locations where the cellular reception is not suitable for
controlling the Otters, a communication mast has been made, consisting of the a
broad but shorter range 120◦ sector antenna and a long range and concentrated dish
antenna6. The mast is approximately three meters high, with a weight near the
ground.

• Console PC: A tough laptop, like one of the Dell Latitude Rugged Extremes will be

6Sector: An Ubiquiti Rocket R5AC-lite with the antenna model Ubiquiti AM-5G19-120. Dish: Ubiquiti
Power Beam AC gen2
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Figure 3.4: Figure showing the updated wiring in the NTNU Fish Otter control box.

procured for use on missions with the Otters. Any computer able to run Neptus, and
with a wired Ethernet connection (USB to Ethernet can be used) will suffice.

• Controller: A Playstation 4 DUALSHOCK 4 is used to manually control the fish
Otter when needed (Berthing, embarking).
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3.3 Software Design On the NTNU Fish Otter ASV

Raspberry Pi OS

DUNE

Task Task Task Task Task Task

Figure 3.5: NTNU Fish Otter Software.

3.3.1 Operating System
The operating system on the RPI4 used in the NTNU Fish Otter is called Raspberry Pi OS7,
and is a Debian based GNU/Linux distribution specialized for use on the RPI hardware.
In addition to a full desktop variant, there is also a headless8 version available, named lite,
referring to it being lightweigh/less resource intensive alternative. As the use on the vessel
will be headless anyway, this option was selected.

Configuration

From a stock Raspberry Pi OS install, some configuration has been performed. The first
step is activating SSH and changing the super user9 password.

To control the peripherals through the GPIO header on the RPI4, some customiza-
tions have been made. For communication with the MCP2515 CANbus controller on the
StratoPi CAN, the SPI bus of the RPI4 has to be activated, the SocketCAN driver enabled,
and configured with the correct bit rate for communicating with the Torqeedo interface
card. This makes the CAN network interface available to the system as a socket.

If PPS time disciplining is used, the Linux kernel has to be compiled with the additional
options activated: CONFIG_PPS and CONFIG_NTP_PPS. After completion, a PPS source
can configured through a GPIO pin, making it an available device in /dev/pps010.

More detailed descriptions are available on the Fish Otters public Wiki.

3.3.2 DUNE on the NTNU Otter
The DUNE instance on the NTNU Fish Otter is using a custom configuration, with some
purpose built tasks and classes being developed for hardware not supported by the official
LSTS build. An selection of the most important tasks are shown in figure 3.6, as well as
an indication of message content sent between them.

The Hardware/Torqeedo task bridges messages between IMC and the CAN based
protocol used by the Torqeedo interface card. To facilitate this, the Otter utilizes a custom
IO handle, which is the software part of DUNE that interfaces OS drivers.

7Previously named Raspian
8Use without local peripherals, often through remote console.
9By default named pi.

10Device name is configurable

46



3.3 Software Design On the NTNU Fish Otter ASV

Torqeedo
Watchdog
LEDs
GPS
TB Live

Hardware

Vehicle sim
GPS sim
Port Motor sim
Starboard Motor sim

Simulation

ILOS Path
CourseAndSpeed
RemoteOperation

Control

Announce
Discovery
UDP
Logging

Transports

Vehicle
ClockPPS

Supervisors

Plan Engine
Plan DB
Maneuver multiplexer
Teleoperation Maneuver

Plan/Maneuver

GPSNavigation

Navigation

Actuator commands

Sensor states

Navigational state

Neptus Console

IMC over UDP

Vehicle state

Guidance commands

Maneuver commands

Figure 3.6: Overview of the most important tasks used in the DUNE configuration of the Otter, as
well as an (incomplete) view of communications between them.
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The guidance, navigation and control systems of the configuration uses the GPS to nav-
igate. For control, the CourseAndSpeed11 task implements PID controllers with optional
integral limiters for keeping desired course at a set speed. For guidance, the integrated
line-of-sight path controller is used. The benefits of the ILOS controller for underactuated
systems such as the Otter, is described in [74], while the controller itself is described by
the developer of the task in [75].

To be able to use the configuration both with hardware, and during simulations, the
tasks running in the hardware and simulation boxes at the bottom of figure 3.6 can be
switched through activating different profiles when executing DUNE. During develop-
ment, the RPI4 with the StratoPi CAN interface was available, so a third profile called
StratoPi has been created that enables some of hardware, while still simulating most of the
hardware.

The Plan/Maneuver, Supervisors and Transports tasks are all default from the official
LSTS DUNE, with no major modifications done before being used on the NTNU Fish
Otter. Of interest is perhaps the Teleoperation Maneuver that can be activated, which
switches control to RemoteOperation, allowing the console to control the actuators di-
rectly.

3.4 The Otter Server
To perform various supporting roles, a public server for the project has been obtained.
Provided by the NTNU technical support, it’s what they called a semi-administrated server
running the GNU/Linux based Ubuntu server. These servers are kept updated and backed
up by the IT-department, but can be customized to a certain degree by the user in order to
provide the desired services. The customization allowed are:

• Configuring the firewall to allow traffic on specified ports.

• Configuring the tool pkgsync, which decides what .deb or .rpm software packages
are installed on the server.

• Storing software files.

Access to perform the customisation’s can only be had through SSH12, so the command
line interface has to be utilized.

From the work performed in [1], a documentation wiki had already been deployed,
while the deployment of a IMC web-visualizing tool, VPN and IMC Proxy services are
described in section 7.2, 7.1.3 and 7.1.4.

11Somehow misleadingly called HeadingAndSpeed in the LSTS DUNE, but uses the course over ground from
the GPS.

12Secure Shell: Encrypted access to network services over unsecured networks.

48



Chapter 4
Designing a Database for Providing
A Priori Environmental Information

Knowledge of the vessel surroundings is necessary during autonomous operation, and may
also be beneficial when deciding where to prioritize when searching for fish. In its current
configuration, the NTNU Fish Otter has no sensors to survey its surroundings, and thus
must relay only on a priori knowledge of its environment that can be used in combination
with the GPS position1.

This section describes the design of a database containing a priori environmental infor-
mation, how the data is extracted from the S-57 ENC standard data format, and potential
additional sources of data. The use of this database is described in chapter 5.

4.1 Available data
The Otter will mostly operate in the Norwegian fjords, large rivers and lakes in mild
weather. Because of this, the scope of the data search was limited to data that are available
for Norway.

To avoid grounding, batymetric data is needed. The Norwegian mapping authority
Kartverket has developed a webservice called Geonorge, available at https://geonorge.no,
that describes itself as being the national website for map data and other location infor-
mation in Norway. Here, multiple datasets with bathymetric data for the Norwegian coast
can be found.

Due to Norwegian Law (prop. 116 L (2016-2017)), batymetric data with higher reso-
lution than 50 meters between every sounding included in a dataset are considered confi-
dential in accordance to the national security act. In order to to access the most detailed
datasets, with bathymetric data available in a 5m·5m grid, the Norwegian armed forces
must be consulted. According to discussions with Kartverket, they are not likely to release

1The Hemisphere GNSS v104s has a gyroscope and inertial tilt sensors for pitch and roll in addition to GPS.
They could possibly be utilized in some way, but has not been considered in this thesis
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the data for use in autonomous vehicles, or probably not for the extent that is desired.
For non-military use, data with 50m resolution is probably the best available within the
Norwegian coast2.

For bathymetry in 50·50m grids, there are two datasets available. One that covers the
whole country, which is based on some soundings and interpolation. During testing, it
was discovered that some areas that were right by land, had a depth of 100m or above,
which is obviously wrong. According to contacts at Kartverket, it is a known issue with
this dataset, due to it not using depth contour data in the interpolation. However, another
dataset containing data from actual soundings was available, but only covering most of the
Norwegian coast, and not all. One of the areas that it did not have data for, was around
Børsa, where the Fish Otter is being tested.

After requesting more data, Kartverket gave us access to the ENCs in S-57 format,
which unlike the bathymetric data, is meant to be used for navigational purposes, and
therefore the author assumes it to be more reliable. It also contains other data relevant for
navigation, of which some are interesting to the Otter.

4.2 Storing and Making Data Accessible

To effectively store and use the a priori geographical information data on the vessel, a local
SQLite3 database will be stored in each vessel. The SQLite database was chosen because
it doesn’t need connection to a server, and also because DUNE already came with the
necessary libraries. Another benefit is that it’s a very portable database because it stores
the entire database in a single file.

As the SQLite3 is a relational database, a solution for storing geometric objects must
found. In this thesis, this is the approach taken:

• Objects that are points by nature, like buoys and piers, are stored as (Latitude, Lon-
gitude) pairs in separate tables according to type.

• Objects that represent areas by polygons are either converted into two-dimensional
grids, or by extracting the vertices describing the polygons.

4.3 Data Extraction

Working with the data from S-57 ENCs can be done in various ways, but Kartverket rec-
ommended using the FME suite, which is introduced in 2.4.5. Besides supporting S-57
ENCs, the suite supports multiple other formats, and even has SQLite3 support, which is
used in this thesis.

An alternative would be to use the GDAL library, as is done by [15] for S-57 objects.
The benefit of using FME, is that it provides a GUI that allows novices like the author to
quickly perform advanced transforms on the data. The drawback is that it’s closed-source
and not free.

2With some small areas as an exception, where the higher resolution grids have been declassified.
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4.3 Data Extraction

4.3.1 Extracting Points of Interest from S-57 ENCs
The ENCs contain multiple features as point data that are of interest for an autonomous
vessel. For now, we have chosen to extract the objects BOYCAR, BCNSPP, BCNISD,
LIGHTS, OBSTRN, PILPNT, UWTROC and WRECKS, but others may be interesting to
add at a later point in the Otter development. A description of all objects is given in table
A.1. A visualization of the extracted data is shown in figure 4.1.

BCNISD
BCNSPP
BOYCAR
LIGHTS
OBSTRN
PILPNT
UWTROC
WRECKS

(a) Trøndelag

BCNISD
BCNSPP
BOYCAR
LIGHTS
OBSTRN
PILPNT
UWTROC
WRECKS

(b) Trondheim

Figure 4.1: A selection of points of interest from NO ENCs.

4.3.2 Two-dimensional Batymetric Grids

a

b

c

d

Figure 4.2: Square limits.

With a two-dimensional grid, getting information about the
area around the vehicle, can be reduced to a simple SQL
statement: ”SELECT * FROM TABLE WHERE Lat BE-
TWEEN a and c Lon BETWEEN d and b;”. This is visual-
ized in figure 4.2, and returns all values in a square around
the orange vehicle in the center.

A drawback with creating grids of data from polygons,
is that the dataset becomes much larger than the original
polygons, with a lot of redundant data. The alternative,
storing the polygons in the DB is not practicably possible
in vanilla SQLite if searching on locations is desired. This may be atoned for by switching
to a spatial database, but the effects of this has not been researched further.

Assessment of Data Sources

While the data from GeoNorge provides better depth resolution, there are a multitude
of reasons why using data from the S-57 ENC would be a better match for navigational
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purposes:

• Reliable data for all areas where the Otter might like to go.

• Not being limited to a grid with 50 meter resolution, because it could result in
smaller ground areas in between points going unnoticed. This problem can be miti-
gated if the grid has higher resolution.

• The S-57 data is considered more trustworthy, as it’s intended use is navigation and
charts for electrical chart plotters.

A pros/cons table is given in table 4.1, which summarizes the available datasets for
two-dimensional grids with depth data.

Dataset Resolution Pro Con
Geonorge Raw Data
[76]

Varying The most detailed
depth soundings
available along the
Norwegian coastline

Restricted access, Not
suited for navigation.

Interpolated depth
grid Geonorge[77]

50 Complete coverage of
the Norwegian coast

Very inaccurate both
in space and depth.

MAREANO depth
soundings Geonorge
[78]

50, 25, 5 Depth resolution Better spatial reso-
lution than 50m re-
stricted for most of
the Norwegian coast.
Incomplete coverage
of the Norwegian
coast.

Grids made from S-
57 DEPARE

User de-
fined

User defined grid res-
olution, coverage of
all areas where. S-57
DEPARE is avail-
able, including non-
Norwegian territories

Low depth Resolu-
tion.

Table 4.1: Datasets available for two-dimensional grids.

Reprojecting ETRS89 utm33 .xyz point clouds to WGS84 radians

The depth soundings from Kartverket, comes in .xyz3 point clouds, and are referenced
with the ETRS89 datum projected in UTM zone 33 coordinate system. The depth is given
as z in meters below the surface.

Pre-processing this data to simplify working with it in its target, the LSTS toolchain,
is done by transforming the datum to WGS84 with the coordinate angles given as radians.

3Similar to comma separated values, but only for three columns formatted with space as the delimiting char-
acter.
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The FME workbench given in B.1 shows how this was done. The resulting data is visu-
alized in figure 4.3a. The projecting introduces a small precision loss in the coordinates,
probably caused by drift between WGS84 and ETRS89. In QGIS, the measured error was
below 20cm in each direction, which may also just be an errors in the visualization (caused
by using fast but inaccurate transformations before visualizing). Either way, they will be
considered as negligible for the rest of this thesis, which is probably true for the use made
of them. The spatial accuracy of the original data is also unknown.

Figure 4.3b shows how a grid looks around the points, and also shows that depths are
known for all tiles that are not land.

(a) Trondheim

(b) Square grid around Munkholmen.

Figure 4.3: The bathymetry readings from GeoNorge.

Grid from S-57 DEPARE

In the S-57 ENC, there are a soundings object SOUNDG and a depth area DEPARE object
that contains information about the bathymetry. While the depth resolution is greater in
SOUNDG, the aggregated data in DEPARE is considered sufficient for navigational use.
It also has the benefit of describing an area, instead of discrete points, making it easier to
attach depth values to a two-dimensional grid without any interpolation between soundings
being needed.

The DEPARE object describes areas where depth is between an upper and lower limit,
DRVAL2 and DRVAL1. For navigational use, DRVAL1 can therefore be used as the shal-
lowest depth expected at a certain point.

To create two-dimensional grids with the desired attributes from polygons in the DE-
PARE ENC object, the FME workbench shown in B.4 has been created. It creates a square
grid in a given resolution, that is given values from attributtes from DEPARE. A filter then
removes areas that are not described by DEPARE, the coordinates are extracted and named
Lat and Lon, and finaly, the result is saved as a table in a SQLite DB.

This workbench is then batch deployed on all ENCS with the name ”NO4”, with the
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’4’ indicating its purpose is navigation (as described in table 2.2). The result of this can be
seen in figure 4.4.

(a) Trøndelag (b) Trondheim

Figure 4.4: Two-dimensional array of points based on DEPARE from NO4 ENCs. The purple points
all have DRVAL1 and DRVAL2 defined.

Two-dimensional DEPARE bathymetric grids with varying resolution

A possible extensions to this way of storing data, is to use different resolutions based on
depth. This is possible in FME by using an attribute filter transformer, which allow us
to filter out shallower areas, and have a higher resolution in these areas than in the deep
areas where there is no danger of grounding. The example shown in in figure 4.5 has
10m between points in areas with DRVAL1 <= 20.0m, and have 50m between points
with 100m > DRVAL1 > 20.0m. For areas with DRVAL1 >= 100.0m, there is 75m
between points.

4.3.3 Extracting Vertices from S-57 Polygons
The two-dimensional grids uses a lot of storage, and searching for the desired area in the
data also becomes computationally expensive. An alternative way to handle the DEPARE
polygons has therefore been explored; Extracting the vertices of the polygon. This would
mean that the vessel only gets to know the information of an area when it crosses between
polygons, and thus handle less data. For the DEPARE object, this means that the vessel
only gets to know the depth as it explores an area with different depth, which is what is
wanted for implementing anti-grounding.

For this to work, there must be some known minimum distance between vertices,
which there is not in the S-57 ENCs. Because of this, redundant vertices have been made,
so there is at least one vertex per n meters.
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(a) NO4D1620 (b) Trondheim

Figure 4.5: Two-dimensional array of points based on DEPARE from NO4D1620 with higher res-
olution in shallow areas. 10m·10m in shallower that 20m, 50m·50m for depth between 20m and
100m, and 75m·75m for depths deeper than 100m.

For further reducing the amount of data handled with this method, just including the
depth ranges that are interesting can be done. For the purpose of anti-grounding, depths
above a certain threshold can be ignored, because the vessel is only interested in knowing
if it’s entering a shallow area.

The workbench to extract vertices from S-57 polygons is shown in figure B.3. The
vertex extractor is doing the actual work in this bench, while the other transformers filter
the the data, makes vertices denser, gives the coordinated the names Lat and Lon; and
converts the coordinate angles from degrees to radians.

4.4 Discussion
While this chapter has considered data covering the ocean, the FME workbenches for
working on DEPARE objects from S-57 ENCs is also functional on shapefiles4. The
Norwegian Water Resources and Energy Directorate uses shapefiles in their database of
Norwegian lakes larger than 2500 m2, with some 600 of the lakes having available depth
information [79]. Operating the Otters in lakes is a possible future scenarion, where these
shapefiles may be used to create a DB for the Otter.

4.4.1 Choosing the Resolution
For the two dimensional grids and for the DEPARE vertices, finding the balance between
spatial resolution and the amount of data is an important topic. On the one hand, better

4By exchanging the S-57 reader for a shapefile reader

55



Chapter 4. Designing a Database for Providing A Priori Environmental Information

(a) Trøndelag (b) Trondheim

Figure 4.6: Vertices on contour around depth areas (DEPARE) from NO4 ENCs. DRVAL1 and
DRVAL2 is defined for all the red points.

resolution will lead to smaller features such as narrow portions of the navigable area being
detected. On the other side, larger resolutions will make searching the data slower, and for
motion planning on the two-dimensional grid, path searching is made more computation-
ally expansive. The 50m·50m grid shown in figure 4.4 was made more as a demonstration,
and is not considered feasible for operations close (< 50m) to the land.

Another aspect of choosing the resolution should be based around the expected accu-
racy of the GPS/GNSS. According to the the producer, the estimated accuracy of the v104s
is 1m at 95% of the time with SBAS augmentation[80], which is supported over Europe
and most of Northern America5. Based on this, the grid resolution should be above 1m.

A definite conclusion of the most suited resolution for the Otter is not made in this
thesis, but a 2m grid is experimented with in section 5.4.1 for path planning purposes.

4.4.2 Optimizing Database Performance
In order to increase the querying speed, Latitude and Longitude have been defined as the
primary key in all extracted data. In addition to this, a index has been added to depth
information fields to allow fast queries that restrict depth. Adding the extra indexes makes
the database file larger, and a decision therefore has to be made at a later point if this is
merited or not.

More specialized ways of optimizing the database performance is to change the SQLite3
file parameters PARAMS. For instance, SQLite3 databases can be used as in-memory
databases, potentially increasing its performance. Storing the database in memory could
also be possible through ramfs or tmpfs in the OS. None of these suggestions have been
implemented in this thesis, but is worth exploring in future works.

5The v104s SBAS supports operation in the EGNOS and WAAS areas [80].
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An entirely different approach is to change to a database format that is optimized for
storing and querying spatial data. An interesting candidate is SpatialLite, which is an ex-
tended version of SQLite but with spatial indexes and spatial querying algorithms already
implemented. SpatialLite also has the benefit of supporting storing and searching through
polygon objects. In hindsight, using this might have provided a better solution than the
one presented in this thesis.

A final measure for optimizing the database performance is that only the data relevant
for a mission should be included in the vessel. For the NTNU Otter, restricting the area of
the grid is one example of this.

4.4.3 Weather Forecast Services
As a part of searching for available data, publicly available APIs for weather forecasts
was explored. The desired forecasts were for wave, wind and current in services covering
Norway. As the services may prove to be useful in the future of the Otter project, they are
included here:

• Barentwatch API: https://code.barentswatch.net/wiki/display/
BWOPEN/API-Documentation

• Ocean Forecast from The Norwegian Meteorological Institute: https://api.
met.no/weatherapi/oceanforecast/0.9/documentation#/

• Weather forecast from Yr, with a list of more APIs from The Norwegian Meteoro-
logical Institute: https://developer.yr.no/

A potential use for these in the fish tracking system, is as a way to contextualize the
weather conditions while a fish is being tracked. While not used in this thesis, they may
be integrated to the online data visualizing solution explored in 7.2.
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Chapter 5
Utilizing the A Priori Data in LSTS
Toolchain

To make use of the a priori data gathered in chapter 4, the DB has to be available on
the vessel, and DUNE needs to be able to read and make use of the data. The libraries
written to accomplish this is described in section 5.2. Tasks that uses these libraries are
then created, consisting of two methods of anti-grounding in section 5.3 and a global path
planner in section 5.4.

In addition, a short introduction to a Neptus implementation developed by Alberto
Dallolio is given in section 5.5, showing how the same database and SQL queries has been
used to increase the situational awareness for the operator.

5.1 Implementation Design Choices in DUNE

When implementing new functionality for DUNE, a decision has to be made if it should
be as a task, or as a class that is used by tasks. Two example designs of implementing it
as a task is: 1) that all functions using the DB, is cobbled together in a single task, or 2)
that other task can access the information through IMC messages being requested from
a reader task. For use cases requiring many queries, like the path planning described in
section 5.4, this would add a lot of overhead, and come with a significant performance
penalty. Instead, the functionality has been implemented as a set of classes in the DUNE
library1.

This comes with the challenge of possibly having multiple threads accessing the same
DB file at once. While SQLite has multi-user support, performance could suffer if multiple
users/threads commits changes at the same time. This is not considered a problem in the
work presented here, because none of the classes using the database needs to permanently
alter the DB, which means that the DB connection mode can be set to read-only.

1Source folder: src/DUNE/SituationalAwareness
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5.2 Situational Awareness Classes in DUNE
An overview of the C++ classes created for accessing the DB created in section 4 is given
in table 5.1, and a class diagram is given in figure 5.1. The base class LocationData opens
a DB connection in the constructor, and closes the DB in the destructor. It also provides
a function that makes a SQL clause condition for use when a square around a point is
wanted, as shown in figure 4.2.

Class name Description Data used
DensifiedVertices Used with table of vertices Depare vertices that have been

densified
TwoDGrid Used with two-dimensional

grids
Kartverket soundings and grid
made from S-57 object DE-
PARE

PointOfInterest Used for point data Points extracted from S-57
objects.

PathPlanner Implements the A*-algorithm
to find paths between two loca-
tions from the depth grids.

See TwoDGrid

LocationData Base class used for treating
data with locations

All of the above

Table 5.1: C++ classes implemented in DUNE to get data from the DB.

5.2.1 Data Containers
To store the spatial data, a superclass storing coordinates was created, and then inherited
from to provide functionality for additional attributes. These points could then be stored
in C++ STL containers to keep series of data.

The superclass is named LocationData::LocationDataContainer_t, and stores
latitudes and longitudes. The <operator2 is overloaded, in order to allow a special sorting
method to used in containers. The implemented sorting method works by first sorting on
latitude, and for values with equal latitude, sort on longitude. This makes searching in
sorted STL containers, such as the keys in std::map possible.

Two basic subclasses has been implemented, named
DensifiedVertices::DensifiedVerticesContainer_t and
TwoDGrid::DepthDataContainer_t. Additionally, the STD::vector container type
with each has been defined as DEPAREVector and DepthVector to simplify code read-
ing.

5.2.2 PointOfInterest
The points of interest (POI) class contains a single function that gets all POI of an Object
within a square, and returns a std::vector with locations as LocationData_t. For de-

2The less-than operator.
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LocationData

# Database::Connection db connection;

+ LocationData(const std::string &dbPath) :void
+ ∼LocationData() : void
+ writeCSVfile(const LocationVector &inVec, const std::string &outputFile) : bool
# makeSquareWhereClause(double Lat, double Lon, double half size) : std::string

TwoDGrid

...

PathPlanner

...

DensifiedVertices

...

PointsOfInterest

...

Figure 5.1: Class diagram showing all the C++ classes implemented in DUNE to get data from the
DB.

bugging, the inherited LocationData::writeCSVfile is used without modifications.
For more details, see the class diagram in figure 5.2.

LocationData

...

PointsOfInterest

+ PointsOfInterest(const std::string &dbPath) : void
+ ∼PointsOfInterest() : void
+ getPOISquare(double Lat, double Lon, double half size,

std::string tablename) : LocationVector

Figure 5.2: Class diagram showing the PointsOfInterest C++ class developed for DUNE.
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5.2.3 DensifiedVertices

The class for using the vertices extracted in section 4.3.3 is called DensifiedVertices, and
its class diagram is given in figure 5.3, with code included in the appendix D.3.2.

getSquare returns all vertices in a square area around a location, which is useful for
checking the surroundings of a position.

getWithinRadius does exactly the same, but removes vertices that are farther away
than the radius before returning, effectively returning a circle. This requires some addi-
tional computation, because the distance from (Lat, Lon) is calculated for each vertices
returned from getSquare, so use should be restricted to small radiuses.

The getCorridor function works by making multiple points along the line between
(startLat, StartLon) and (endLat, endLon), and then running getSquare with half_size

= corridorWidth. The results from all getSquare function calls is merged together
and returned. The result ends up being a corridor, hence the functions name.

The isDepthAbove iterates through a DensifiedVertices vector checking for
DRVAL1<minDepth. This can be combined with getCorridor to check a transect for
crossings into areas that are shallower than a minimum depth. This is one of the solutions
developed in section 5.3.

LocationData

...

DensifiedVertices

- verticeDist : double

+ DensifiedVertices(std::string dbPath, double dbGridSize)
+ ∼DensifiedVertices(): void
+ isDepthAbove(DensifiedVertices DEPAREinputVector, double minDepth): bool
+ bool writeCSVfile(DensifiedVertices depths, std::string outputFile): bool
+ getWithinRadius(double Lat, double Lon, double radius) : DensifiedVertices
+ getCorridor(double startLat, double startLon, double endLat, double endLon, double steps,

double corridorWidth) : DensifiedVertices
+ getCorridor(double startLat, double startLon, double endLat, double endLon,

double corridorWidth) : DensifiedVertices
+ getSquare(double Lat, double Lon, double half size) : DensifiedVertices

Figure 5.3: Class diagram showing the DensifiedVertices C++ class developed for DUNE.

5.2.4 TwoDGrid

To use the grids with bathymetric data created in section 4.3.2, the class TwoDGrid has
been created in DUNE. The class diagram is available in figure 5.4, while the code is
included in appendix D.3.3.
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The functions getSquare, getWithinRadius and getCorridor performs the same
querying as in the DensifiedVertices class, but in the two-dimensional grids.

The function getClosestDepths gets a square that reaches two times the grid reso-
lution in each direction. In this square, the closest value in each quadrant is selected and
returned. The result is always a list of four grid positions when not at the coastline.

Checking a transect in the two-dimensional grids for grounding is complicated, be-
cause areas with land are not represented in the dataset. The question then becomes how
does one detect if parts of a transect is land? This is where the getClosestDepths func-
tions comes in handy, because land is identified whenever less than four grid positions
are returned. This is used in checkTransect to check points at regular intervals along a
transect, and returning locations that are land, have no data or that is closer to land than
the gridsize, meaning the depth cannot be guaranteed.

A side effect of the method used in checkTransect, is that a safety buffer around the
coast is created. This can either be seen as positive, in that it deems uncertain areas not
navigable, but can also be negative, because it reduces the navigable area of the vessel.

If the transect is deemed not to go through land areas, the returned coordinates come
with depth measurements. Checking a depth threshold for the transect can then be done
by iterating through the results, and verifying that the depths are acceptable.

5.2.5 SQL Queries

All the queries that have been written, uses a square selection to accomplish their purpose.
In order to avoid writing the same code in every class, the function makeSquareWhereClause
was created in the superclass. It creates a where clause that limits the range of returned

values from a query. The SQL formulation for this is given in code listing 5.1, with the
letters in the square brackets representing the four edges of the queried area, as shown in
figure 4.2.

Code 5.1: SQL ”where” clause created by makeSquareWhereClause.

1 Lat between [d] and [b] and Lon between [a] and [c]

The simplest example of a complete SQL query using this makeSquareWhereClause
is given in code listing 5.2, which is the query used in the getSquare and getWithinRadius
functions.

Code 5.2: SQL query that returns a square.

1 select Lat, Lon, Depth from table where Lat between [d] and [b]
and Lon between [a] and [c];

The SQL query used in getClosestDepths to get the four closest depth readings
from a point also uses the same query, as shown in line 2, 5, 8 and 11 of code listing 5.3.
The results are then used in four separate queries that each get the closest depth reading
of each quadrant around ([vesselLon], [vesselLat]). Finally the union command
makes the four queries return only a single result.
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LocationData

...

TwoDGrid

- gridSize : double

+ TwoDGrid(const std::string &dbPath, double dbGridSize) : void
+ ∼TwoDGrid() : void
+ getSingleDepth(double Lat, double Lon, double grid size) : std::vector<double>
+ getClosestDepths(double Lat, double Lon, double grid size) : DepthVector
+ getSquare(const LocationDataContainer t &center, double half size,

double minDepth m) : DepthVector
+ getSquare(double Lat, double Lon, double half size,

double minDepth m) : DepthVector
+ getWithinRadius(double Lat, double Lon, double radius, double minDepth m) : DepthVector
+ getWithinRadius(const LocationDataContainer t &center, double radius,

double minDepth m) : DepthVector
+ writeCSVfile(const DepthVector &depths, const std::string &outputFile) : bool
+ checkTransect(double startLat, double startLon, double endLat, double endLon,

double steps) : std::pair<DepthVector, LocationVector>
+ checkTransect(double startLat, double startLon, double endLat,

double endLon) : std::pair<DepthVector, LocationVector>
+ getCorridor(double startLat, double startLon, double endLat, double endLon, double steps,

double corridorWidth) : DepthVector
+ getCorridor(double startLat, double startLon, double endLat, double endLon,

double corridorWidth) : DepthVector

Figure 5.4: Class diagram showing the TwoDGrid C++ class developed for DUNE.

Code 5.3: SQL query that returns the four closest depths around the vessel.

1 select min(Lat+Lon), Lat, Lon, Depth from
2 (select Lat, Lon, Depth from table where Lat between [d] and [

b] and Lon between [a] and [c])
3 where Lat >= [vesselLat] and Lon >= [vesselLon]
4 union select max(Lat+Lon), Lat, Lon, Depth from
5 (select Lat, Lon, Depth from table where Lat between [d] and [

b] and Lon between [a] and [c])
6 where Lat <= [vesselLat] and Lon <= [vesselLon]
7 union select min(Lat-Lon), Lat, Lon, Depth from
8 (select Lat, Lon, Depth from table where Lat between [d] and [

b] and Lon between [a] and [c])
9 where Lat >= [vesselLat] and Lon <= [vesselLon]

10 union select max(Lat-Lon), Lat, Lon, Depth from
11 (select Lat, Lon, Depth from table where Lat between [d] and [

b] and Lon between [a] and [c])
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12 where Lat <= [vesselLat] and Lon >= [vesselLon];

5.2.6 Discussion
The observant reader may have noticed that the functions in the subclasses were relatively
similar. Adding these functions to the superclass would be a better solution, avoiding
having to make one function in each class performing almost identical task (such as the
get square functions). The problem with such an approach, is that the data is returned in
std::vector containers. The vector container is dependent on having a fixed and known
object size at compilation time, which it would not have if it stored objects of different
types. The multi-class approach is therefore a compromise which makes the code less
elegant, but should not affect performance. A proposed solution is to store pointers to
objects instead of the actual objects in the container. This option has not been further
explored.

5.3 Anti-Grounding Task in DUNE
To keep the vessel in the navigable area of the sea, a system for checking plans and mon-
itoring the depths in the vicinity of the vessel has been developed, in the form of an anti-
grounding task in DUNE. As the functionality of the task is supervising the depth, it has
been placed in dune/src/Supervisors/Grounding/.

Two alternatives has been developed to accomplish anti-grounding, one based on the
two-dimensional grid, and the other based on the DEPARE contour vertices.

Checking plans in DUNE, is accomplished by subscribing to
IMC::PlanSpecification. Each message contains one or more maneuvers which have
to be checked. The maneuvers may be of different types, each with their own speciality
that the grounding task can handle separately.

The only maneuver currently supported by this task, is the GoTo maneuver. This
maneuver creates a straight line path from one point to another that is to be traveled at a
given speed.

Acknowledgement: Alberto Dallolio wrote the code in the DUNE task that iterates
through a received plan, while the author developed the checkTransect code. Al-
berto Dallolio also wrote the periodical grounding check on the vessels surroundings
in the task.

5.3.1 By two-dimensional grids
The two-dimensional grids created in section 4.3.2 only contains points that are on the
ocean, and has no representation of land. To be able to detect land, one either has to add
data for land3, or use the absence of points in an area to deduce that the area is land. The

3Readily available from the S-57 object LNDARE.
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Figure 5.5: Plan used to demonstrate anti-grounding transect checking.

latter is chosen in this implementation, which creates an instance of the TwoDGrid class,
and uses the checktransect function.

For this to be effective, the square has to be ngrid ∗
√

2m in width and length, where
ngrid is the grids resolution. Due to rounding errors and small possible position shifts
when projecting ETRS UTM33 grids to WGS84, some small margin me should be added
ngrid ∗

√
2 +mem.

Iterating through the maneuvers of the plan, a checkTransect is called on each goTo
maneuver.

A special case of the GoTo maneuver is when it is starting in a different location
than where the vessel is located. Then the vessel first travels to the starting point of the
maneuver. To check the transect between the current vessel position and the starting point
of the maneuver is solved by having the task subscribe to the IMC message IMC::GpsFix
, and storing the most recent location. This can then be used as starting position of the
transect.

If grounding is detected in an activated plan, an IMC::Abort message is sent, which
makes the vehicle supervisor end the plan execution, and stopping the vessel. An alterna-
tive to this, would be searching for a valid path with the path planner described in section
5.4.

In addition to checking received plans, the task can also perform regular depth data
queries for the current location, giving the operator warning if the vessel is nearing or
entering shallow water. For this, using the already received IMC::GpsFix is used. With
the getWithinRadius function, the information about the surroundings are queried, and
the result can be checked for shallow depth.

Based on the path shown in figure 5.5, the results from this anti-grounding approach is
shown in figure 5.6.
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(a) 50m grid (b) 2m grid

Figure 5.6: The results of running checkTransect on Munkholmen, Trondheim with grids of
depth. Red points are detected land area, other colors show the navigable waters of the transects
(with no depth limit set).

5.3.2 By DEPARE Contour Vertices
For checking plans, the DEPARE contour vertices can also be used. By checking a corridor
around a transect, all depth changes along the transect is detected.

In order to guarantee that a vertex is detected, the corridor width has to be larger than
largest gap expected between the vertices of any contour in the data. When the vertex
distance of the data is set to 5m, as used in the data shown in figure 4.6, a result such as
figure 5.7 are returned.

As each crossing of a line of vertices signify entering an area with different depth
limits by a different DRVAL1 and DRVAL2, how is the vessel to know if it is entering a
shallow area or leaving it? The proposed solution to this, is to store the previous registered
DRVAL1. When meeting a new vertex with DRVAL2 equal to the previously recorded
DRVAL1, the detected vertex signifies that one is entering the area with the detected DR-
VAL1, else, one is leaving the area.

5.3.3 Discussion
The queries used for the anti-grounding examples use the square queries with the vessel
at the center of the square. Alternative, this square could be skewed in the direction of
movement to get more relevant data in a longer horizon. Ideally, the area checked should
be cone shaped around the vessel, with the broadest part of the cone sitting in the direction
of movement, but making those kinds of queries efficiently in SQL would be difficult.

The depth soundings of the ENCs is referenced to NMAPs sea chart zero4 reference,
as is defined in [81]. This level is placed below or at the lowest astronomic level refer-
ence, which is the the lowest expected tidal depth without accounting for the effects of
the weather. Lower depth than those read from the ENC data is therefore not expected to
occur frequently.

A benefit of using the DEPARE vertices rather than the twoDgrid, is that it requires less
data to be stored to accomplish the same effective resolution for anti-grounding purposes.
It would also make it easier to make maneuvers that follows the contours of sub-aquatic

4Translation from Norwegian word Sjøkartnull.
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Figure 5.7: The results of running checkTransect on Munkholmen, Trondheim with contour
vertices. Points show returned vertices with known DRVAL1 and DRVAL2 for each transect.

structures, which might be an usefull feature for searching along the coastline. The draw-
backs is that it does not contain the amount of information that the MAREANO grid has.
In the used dataset, as shown in figure 4.6, a filter has been applied to remove areas where
DRVAL1 is above 20m, in order to reduce the amount of vertices in the database. Keeping
this filter would also lead to having no information about depths in deeper areas

Grid Areas Considered Grounding

An example of what areas the grid implementation deem not navigable is shown in figure
5.8. This is the same area previously shown in figure 4.3b. From the figure, the need to
put restrictions on depth is visible by areas on land being allowed. The outer area of the
figure has a 5m depth limit, which results in a larger safety buffer around land. The figure
shows depth soundings from the MAREANO dataset, in a 50m·50m grid.

5.4 Path Planning in DUNE

Online path planning will be required in multiple scenarios of autonomous collaborative
fish tracking. An example is when one vessel has made a tag detection, the other vessels
should stop searching, and instead congregate in desired positions in the vicinity of the
vessel that made initial tag detection.

A benefit of having the two-dimensional grid, is that with small modifications, it can
be used as a graph with all locations being in the navigable area, with a known minimum
depth. This means that the algorithms developed for graph searching can be used to create
valid paths between any two points in the navigable area. For this purpose, the class
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Figure 5.8: Area the Anti-Grounding implementation considers grounding. Inner area: No data.
Outer area, depth below 5m.

PathPlanner has been created. A class diagram is available in figure 5.9. As can be seen
in the diagram, the TwoDGrid class is inherited from, making all of its functions available.

PathPlanner implements the best-first search variant A*, as is described in section
2.5.2, with the actual algorithm being run in the findPath function.

Creating Edges

As the grid does not contain connections between the nodes needed to consider it a graph,
the edges has to be defined in some way. Using the spatial relationship between them has
been chosen in the implementation of the PathPlanner class. This works by consider-
ing every node in some parameter around the searched nodes as direct neighbours. This
has been implemented with the getSquare function from the TwoDGrid class, but the
getWithinRadius function should also work. The current node being expanded by the
algorithm is then set as the parent for the returned neighbours.
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LocationData

...

TwoDGrid

...

PathPlanner

+ PathPlanner(const std::string &dbPath, double dbGridSize): void
+ ∼PathPlanner(): void
+ findPath(double startLat, double startLon, double endLat, double endLon,

unsigned int squareSize, double goalDistance, unsigned int maxIter) : searchNodeMap
+ tracePath(searchNodeMap::const iterator endNode,

const searchNodeMap &inNodeMap) : searchNodeMap
+ writeCSVfile(const searchNodeMap &inMap, const std::string &outputFile) : void
- calcH(const LocationDataContainer t &node,

const LocationDataContainer t &endNode) : double
- calcG(const LocationDataContainer t &node,

const LocationDataContainer t &endNode) : double
- isNodeGoal(const LocationDataContainer t &node,

const LocationDataContainer t &goalNode, double distanceLimit): bool
- isNodeInMap(PathPlanner::searchNodeMap::const iterator nodeItr, const &inMap): bool
- depthVecToSearchMap(const NauticalCharts::DepthVector &inDepthVec) : searchNodeMap
- findParent(searchNodeMap::const iterator inNodeItr,

const searchNodeMap &inNodeMap): searchNodeMap::const iterator
- findLowestf(searchNodeMap &inNodeMap): searchNodeMap::iterator

Figure 5.9: Class diagram showing the PathPlanner C++ class developed for DUNE.

A benefit of this approach is that the edges does not need to be stored in the database,
but are instead implicitly defined from the spatial relationship. The drawback is that the
complete dataset has to be searched for every node. By using the indexed database, the
efficiency of this operation is significantly improved.

Storing Nodes and Algorithm Costs

To store the f, g and parent data needed by the A*-algorithm, the datatype PathPlanner
::searchData_t is created. It is further used as the value in a STL map, with
LocationData::LocationDataContainer_t as key. This container is defined with
the name PathPlanner::searchNodeMap to make code reading easier. The exact defi-
nition is found in line 56-69 of code listing D.10.
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Heuristic Function

For the heuristic function calcH, the three functions mentioned in section 2.5.2 were im-
plemented. As the vessel is not limited to moving in four or eight directions, the Manhattan
distance and the diagonal distance was deemed unfitting. Instead, the Euclidean distance
was used.

Distance Calculations in the Map

Because the map has coordinates in WGS84, the formula for Euclidean distance mentioned
in 2.5.2 could not be used directly. This is because the distance of one degree movement
in latitude is not equal to the distance of moving one degree in longitude, and the distances
are also varying depending on where on the earth one considers. To solve this, the WGS84
distance equation already implemented in DUNE was utilized, which accounts for the
curvature in the earth. This function was also used to calculate the distance between a
node and its neighbour in calcG.

Considering Start and End Nodes not in the Grid

The start and end locations will often not be defined precisely on a node in the grid. For the
start node, this solves itself by defining the point as a node and running the first iteration
of the algorithm. This finds the closest node in the grid, solving the problem.

For the goal condition, the function isNodeGoal solves this by accepting nodes within
a distance limit from the goal, instead of demanding that a certain node is met.

Returning a Path

The tracePath function backtracks from the goal node to the start node by going to each
nodes parent. When the start node is reached, the nodes in the path is returned, along with
f(n), g(n) and parent for debugging.

Remaining Functions

The remainder of functions in pathPlanner are either supporting functions for findPath
or tracePath, or used for debugging, and is not further expanded upon here, other than

referencing the reader to the code listing D.11.

Algorithm Parameters for Tuning

Beside the normal tuning of the heuristics function in all A*-implementations, the im-
plemented approach gives rise to further customization’s. By selecting the area shape
and size around a node considered neighbours, and the distance limit in the goal condi-
tion, the operation is changed. For optimal results, setting the distance limit to slightly
above the maximum distance expected between any position and a node. Quantified, this
is gridDistance ·

√
2/2. The area considered neighbours should be set slightly above

gridDistance ·
√

2 to avoid any land areas traversed.
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The reason for setting the value slightly above the calculated values are to account for
rounding errors.

5.4.1 Results
This section shows the results returned from the path planner.

The laptop used for the benchmarks is a Dell Inspiron 7590 CN759021SR with an
Intel Core i5-9300H (8MB Cache, up to 4.1 GHz, 4 cores) processor and 16GB of DDR4
2-channel RAM clocked at 2666MHz.

Laptop Compared to RPI4 Performance Example

To compare the performance of the laptop to the RPI4, the same paths were computed on
the laptop as well as the RPI4. The grid used has a resoulution of 50m·50m and the param-
eters used in the path planner was SquareSize=100, GoalDistance=37 and heuristic
scaling D=1.01. The dataset was created from the DEPARE ENCs as shown in figure 4.4
with a depth limit of 0.0m. This database contains 5’899’806 positions.

2.4km
9.8km
47.5km

Straight Distance

Figure 5.10: Benchmark paths found by path planner.

High-Resolution Performance Example

For the Otter, a higher grid resolution than 50m·50m is desirable. Therefore, a new 2m·2m
grid was created from the 5H1620 DEPARE ENCs containing 5’342’661 positions. The
new dataset is visualized in figure 5.11 where the black area contains the grid. The two
paths created are shown in figure 5.12, while the details about each path is given in table
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Path Distance
[m]

RPI4 [s] Laptop
[s]

Path
[nodes]

Open
[nodes]

Closed
[nodes]

Red 2508 4.3 1.0 28 215 325
Green 10264 51.3 12.1 124 856 4085
Blue 81771 2985.5 599.2 854 2758 241516

Table 5.2: PathFinder benchmark results.

5.3. The algorithm parameters used was SquareSize=4, GoalDistance=3 and heuristic
scaling D=1.01.

Figure 5.11: A 2x2m grid made of 5H1620 ENC DEPARE object.

Optimality versus Performance Example

To demonstrate the effect of different D values in the heuristic, the blue path from fig-
ure 5.2 was calculated with different values (with the other parameters as before being
SquareSize=100 ann GoalDistance=37). The resulting paths are visualized in figure
5.13, and figure 5.14 shows the areas covered by the searched nodes by each value. Note
that green ⊂ pink ⊂ brown ⊂ yellow. Details about the results are shown in table 5.4.

5.4.2 Discussion

The paths chosen for the RPI4 versus laptop comparisons were chosen to represent how the
algorithm can be used on different lengths and amount of nodes. The blue path distance
is far beyond what is expected to be a realistic scenario for the Otter, but is meant as a
pushing the limits of the implementation. The green path is more in line with how a worst
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Figure 5.12: Paths created by PathPlanner on high-resolution grid.

case path length for the Otter. The compute time it needed on the RPI4 is by the author
considered serviceable for a global path planner.

Using a 50m grid is however not considered acceptable, so another grid with a 2m
resolution was created along along with paths for benchmarking. Initial tests ran on the
laptop indicate that the algorithm is not feasible on the RPI4 for such resolutions, as shown
in table 5.3. It was not considered necessary to run the benchmarks on the RPI4, because
the laptops results were already worse than is considered acceptable.

To improve this, trying to make the algorithm more greedy is a possible solution. This
would in most cases mean that a significantly lower number of nodes has to be expanded.
As is seen in figure 5.13 the results visually look similar, and in figure 5.14 the dramatic
reduction in the amount of areas of nodes can be seen. This is reflected in the execution
times shown in table 5.4, which is more than halved by setting D=5. The downside is that
the path becomes much longer than an optimal path would have been, with an increase of
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Path Distance
[m]

Path
[nodes]

Laptop
[s]

Open
[nodes]

Closed
[nodes]

Cruising in
Nidelva (Red)

5733.1 1576 627.0 2182 197845

Around the Pier
(Green)

2146.9 511 599.2 2569 183449

Table 5.3: PathFinder benchmark results on 2x2 grid based on 5H1620 DEPARE object.

D Laptop [s] Distance [m] Open [nodes] Closed [nodes]
1.0 815.7 81740.3 2706 248143
1.2 513.3 82392.4 3982 144279
2.5 388.1 86582.6 4818 102367
5.0 349.1 89297.0 5164 92352

Table 5.4: Performance comparison with differently scaled heuristic function.

7557 meters in the worst case.
By comparing the results of D=1 from table 5.4 with the blue path from 5.2, which

was ran with D=1.01 but otherwise had identical parameters, the tie-breaking effect can be
seen. By only resulting in a slightly less optimal path (30m), a 217 second performance
improvement is achieved. This is because that in such an open environment, multiple
almost identical paths exists, with only one of them being the absolute most optimal. The
tie-breaking avoids this by slightly skewing the algorithm towards being more greedy,
resulting in fewer nodes being expanded5.

5.4.3 Further Work

The performance of the A* implementation in pathPlanner has not been optimized, and
was developed more as an proof of the usefulness of the created database, rather than a
viable solution. But in the field of grid based path planning/motion planning, there is
already several alternative algorithms that could be experimented with.

Accounting for the Kinematic constraints of the vessel

The kinematic constraints of the vehicle is not accounted for in the implemented A* al-
gorithm. An interesting alternative is the hybrid A*, which accounts for a vessels non-
holonomic constraints during the search. In [11], this algorithm is applied to a mobile
robot with similar constraints as the Otter, with the resulting paths that are guaranteed to
be navigable by the vehicle.

5The closed nodes have been expanded while the open nodes have only had their costs calculated, but not
their neighbours explored.
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Heuristic Scaling Factor D

1

1.2

2.5

5

Figure 5.13: Paths showing the effect of increasing the heuristic scaling D.

Changing to an All-Pairs Shortest Paths Algorithm

Instead of processing paths on-board, the two-dimensional grids could be pre-processed
with an All-Pairs Shortest Paths Algorithm, like the Floyd-Warshall Algorithm (See [82],
section 25.2). The result of the algorithm is a n2 predecessor matrix Pi that could be
stored on the vessel. To find the shortest path to any location would then be as simple as
looking up the next waypoint in the predecessor matrix.

For the 50m·50m grid based on all Trøndelag shown in figure 4.4a, there are 5899806
data entries. Each of these would have to store at least 3 fields at 32bit=4bytes, resulting in
a predecessor matrix size of 3 ·58998062entries∗4Bytes/node = 417.7TB6. At the time
of writing, adding that much storage to the Otter would not be feasible given the space and
budget constrains of the Otter.

Reducing the scope of the 50m grid to the operational area of the NTNU Fish Otter
(10Km · 10Km) results in a more feasible amount of nodes (10000m/50m)2 = 40000nodes

6This assumes that the node identifier is a 32-Bit address linking each node to a database where the latitude,
longitude is stored. In reality, 5899806 ∗ 8Bytes extra space would be needed to store the actual data.

76



5.4 Path Planning in DUNE

Heuristic Scaling Factor D

1

1.2

2.5

5

Figure 5.14: Effect on searched area by increasing the heuristic scaling D.

that requires 400002·4·3 = 19.2GB of storage. For the Otter, which is to operate in coastal
areas, a 50m grid resolution is most likely too small, with 5m being a more realistic mini-
mum. Doing the same calculations for a 5m grid results in a dataset requiring 6.4TB. This
is closer to being realizable, but probably still not a practical solution.

Sampling Based Approaches

The sampling based RRT* and PRM* introduced in [83] takes a wholly different approach
by pseudo-randomly exploring points in a a continuous space. Points that pass an accep-
tance test and compared to other nearby nodes have a better cost value are then added to the
grid. For watercrafts, the acceptance test would be avoiding land, shallow areas and other
hazardous points of interest. From the random points, the RRT* algorithm then connects
the nodes to a tree in a manner that makes it asymptotically optimal.

The PRM* algorithm is based much on the same concept, but does not include actually
finding the path. Instead it creates a graph of the configuration space formed as a multiple
clusters along with some cost metric. This graph can then be searched by other graph
traversal algorithms such as the A*.

Many of the functions needed to implement these algorithms have already been pro-
vided in the library of classes presented in this thesis, such as land and grounding checking
for obstacle detection, and checkTransect for considering if an edge can safely be added
between two of the randomly generated vertices. The algorithms should also be able to
operate directly on the polygons extracted from the S-57, which would reduce the stor-
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age requirements significantly. These algorithms should therefore be further explored for
potential use in the NTNU Fish Otters.

Performance gains from data structures

The most time-demanding operations in the A* while loop are searching in either the
database, or in the open and closed data-structures. In the developed implementation, the
C++ STL container STD::map is used, which performs insertion, erasing and search on
key in O(log n) complexity. Having defined the key as the location, searching for specific
location therefore becomes logarithmic in complexity. The downside is that extracting the
vertex with minimum fScore, which are not sorted on, results in a complexity of O(n).

Optimally, both location and fScore should be optimized for. A solution is to use a
container with multiple indexes. An example of such a container is the
Boost.MultiIndex 7 provided by the open-source Boost C++ libraries.

An entirely different approach is to store all data in the database, with multiple indexes.
This is possible in SQLite through temporary tables, which are stored in memory. By the
use of foreign keys8 instead of locations, this could be implemented in a memory efficient
way. This would mean using SQLite as a data container, which according to its homepage
is considered one of the appropriate uses[84].

PathPlanner On Varying-Resolution Database

By using a dataset with varying resolution, two benefits to the algorithm would be real-
ized: For the same amount of storage/points, areas with obstructions would have larger
resolution, while in deep areas, a larger distance between vertices could be achieved. This
would then result in a reduced number of nodes needing to be expanded.

Directly applying the written algorithm on the dataset shown in figure 4.5 does return
a result, but there are some problems with the paths found: The area around a vertex
considered neighbours have to be set to work with the largest resolution used, because a
possibility of no nodes being in the area. The benefit of the additional resolution in shallow
areas then disappear, because a large amount of vertices are just skipped, missing potential
problematic areas.

Deciding a goal condition is also problematic, Because the distance has to be set ac-
cording to the largest resolution.

A potential solution for overcoming these problems, would be to count neighbours
when a node is expanded, and then change parameters if more neighbours than expected
are returned. The development of such an algorithm is left for future works.

5.5 Situational Awareness in Neptus
As a closing remark on the use of the created databases, a Neptus plugin has been created
by Alberto Dallolio, which uses the database created in chapter 4 to increase the level

7https://www.boost.org/doc/libs/1_67_0/libs/multi_index/doc/tutorial/
basics.html

8The database equivalent of a memory pointer.
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5.5 Situational Awareness in Neptus

of situational awareness for the operator. As Neptus is written in Java, the code of the
situational awareness classes is rewritten for that language, with some additional queries
added for use when visualizing. This creates a visual interface for checking transects for
groundings, and also shows the POI, depth contours, and depth measurements.
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Chapter 6
Software Integration

6.1 Hydrophone Integration
To detect the transmitted signals from acoustic tags in water, a hydrophone is mounted on
the Otter, as shown in figure 3.2. In the figure, the Thelma Biotel TBR700RT hydrophone
is mounted, which originally was planned to be used on the NTNU Fish Otter. During the
period when this thesis work was completed, Thelma Biotel released a new hydrophone
called the TB Live. A comparison of the two are given in table 6.1. For use on the Otter,
there are many benefits to be gained by doing this upgrade, such as the built in PPS support
and the smaller footprint1. Because of this, the upgrade was made.

Feature TBR700RT TB Live
Battery operation Yes No

External power supply Yes Yes
Outer diameter [mm] 75 42

Length [mm] 230 80
Time synchronization RS-485 RS-485 time stamps and PPS

Timestamp Resolution [ms] 1 1
Message sending No Shared Open Network protocol

Table 6.1: TB Live comparison to TBR700RT.

To perform the upgrade, no software changes was needed. This was confirmed on mis-
sions with the NTNU AutoNaut, which has had the TB Live integrated into its hull, and
reused the task created for the Otter. The hardware changes needed were also minimal,
and are included in figure 3.42. In the current firmware of the TB Live, the PPS related
functionality is yet to be implemented and so the PPS connection to the RPI4 is still in-

1Reducing the drag of the hydrophone while moving through the water
2The hardware changes relating to the TB Live have not actually been made yet due to the author not having

access to the hardware.
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cluded in the diagram. If a logic level-shifter is needed for the PPS signal going to the TB
Live is still unclear, so it has been omitted from the figure.

6.1.1 Assessing the Implemented Hydrophone Synchronization
Before changing the hydrophone model to the better suited TB Live, time-synchronization
through the Thelma Biotel RS-485 protocol was developed and tested. Having correct
time-synchronization on the hydrophones is paramount, because they are used in the esti-
mators TDOA measurements.

The results of the experiment showed that the synchronization differed from the SLIM
PCB developed at NTNU DEC, which was used as a known good implementation. This
section describes the experiment, while section 6.1.2 describes improvements made to the
task in trying to mitigate the identified problems.

The Developed Time-Synchronization Method

To synchronize and discipline the internal clock of the Thelma Biotel hydrophones, a RS-
485 based protocol is used that sends either a complete Unix timestamp messages like
(+)123456789X where X is Luhn’s verification number, or a clock discipline message
(+) that rounds the clock to the nearest 10.5 seconds. The timestamp of tag readings are
given with a 1ms accuracy.

In order for all the vessels in the system to have synchronized and disciplined clocks,
the timestamps and PPS from the GPS system is used. To enable PPS support in Linux,
the kernel has been compiled with the options CONFIG_PPS and CONFIG_NTP_PPS as is
described in the WiKi3. This lets a PPS device be created, which is accessed by a monitor
in DUNE that disciplines the clock when it drifts beyond some threashold.

Experiment setup

The experiment was performed using a single tag, and two TBR700RT hydrophones, one
connected to the NTNU Fish Otter control box, and the other to a SLIM PCB. A picture
showing the hardware setup is given in figure 6.1. The trolley with the equipment was
brought outside for optimal GPS reception on a day with clear skies. After GPS fix was
achieved on both the Otter system and the SLIM system, the acoustic tag was activated
and transmissions logged.

The result from the two hydrophones can then be compared by joining the tag registra-
tions on sensor data measured by the tag. Having joined up the tags, the timestamps can
be compared to spot deviations.

Experiment Results

The logged tag registrations of the experiment is shown in figure 6.2, where the registra-
tions made by the NTNU Otter hardware is called RPIPPS, and the registrations made
with the SLIM PCB is called SLIM. As can be seen, there are three registrations where

3http://otter.itk.ntnu.no/doku.php?id=enable_pps_support_raspian, Accessed
07/07/2020
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6.1 Hydrophone Integration

Otter GPS

SLIM PCB
Pack

TBR700RT

Acoustic
Fish Tag 

Figure 6.1: The setup used in the PPS experiment.
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Figure 6.2: Comparison between SLIM and RPIPPS synchronization of TBR700RT (389ms had to
be added to to RPIPPS to account for constant offset).

the RPIPPS lags behind by about 15ms. In addition to this, a constant offset of 389ms had
to be applied to the RPIPPS match the registrations. The expected result is a steady drift
caused by temperature changes in the internal clock of the fish tag, which is exactly what
is seen in the SLIM results.

Discussion

In saline water, the propagation speed of acoustic waves is approximately 1500m/s [25].
The large deviations in the RPIPPS disciplined system would therefore result in an error of
1500m/s · 15 · 10−3s = 22.5m, which is unsuited for use in acoustic fish tracking systems
where position accuracy is desired. The constant offset is also a problem that must be
solved.

Possible reasons for the variation shown in RPIPPS is that the Linux kernel is not
a real-time operating system, making stable periodic tasks difficult. To solve this, the
suggested actions given below may help:

• Applying the CONFIG_PREEMPT_RT to the kernel.

• Adding a micro-kernel below the Linux kernel.

• Switching to a real-time operating system (RTOS). According to [44], DUNE runs
on the QNX RTOS.

• Isolate a dedicated CPU kernel for the purpose with the isolcpus kernel option.

Due to switching to the TB Live with dedicated PPS input, none of these solutions was
explored further.
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Assuming this solves the problem, the constant offset must nevertheless be mitigated
because it will still be used for the TB Live. By examining the documentation from Thelma
Biotel, this turned out to be an oversight from the developer (the author) who had failed to
notice that the messages had to be sent at timestamps ending with a zero, basically at 10
second segments (with an added 500ms delay).

Conclusion

The RPIPPS clock disciplining is not working sufficiently well to be used in the system.
As this will solve itself by upgrading to the TB Live, no further action will be taken. As
for the timestamp synchronization that does not work either, this should fixed by changes
to the hydrophone DUNE task.

6.1.2 Improvements to the DUNE Hydrophone Task
Due to the errors identified in the experiment, a redesign of the hydrophone task was
performed to fix the synchronizations. Instead of being designed as a periodically running
task with a separate thread monitoring the RS-485 serial communication, it was changed to
a continuously running task with timers that periodically sent timestamp and disciplining
messages (still having a separate reading thread).

While not having repeated the experiment to confirm it working4, printing the serial
timestamp messages from the redesigned task showed the desired behavior.

In anticipation of the use of the tag registrations in an estimator, the most recent GPS
position is added to the tags ensuing IMC message. At a later point, this functionality
should also include a buffer of the ten most recent GPS positions, as it may need to account
for some small propagation delays and such.

With the documentation for the TB Live, there came a range of commands that could
be used to configure the device, such as receiving channel and tag transmission protocols.
To make configuring the device simple, sending these commands where made available in
task parameters. These can then be set in the DUNE configuration file, which also means
that changes can be made remotely through Neptus without needing to recompile DUNE.

6.2 Preparation for Multi-Vessel Operations in the LSTS
Toolchain

The Fish Otter project will use at least three Otters to gather information and perform
multilateration on. In preparation for operations with multiple vessels, some changes had
to be made.

To have multiple Otters in the same IMC network, new IMC messages were made.
New IMC bindings with the updated addresses were created for Java, and added to IM-
CProxy and Neptus. New C++ bindings were added to DUNE as well.

For DUNE, one configuration file for each vessel was created. In order to not have
many almost identical configuration files to maintain, a common configuration file was

4Due to the author not having access to the hardware.
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created that included the hardware on all Otters. This file was then included in the config-
uration files to be used on the Otters.

The filenames for the configurations, as well as the IMC addresses are given in table
6.2. The address segment where the IMC addresses are placed, is for non-LSTS ASV.

Configuration Filename IMC Address
ntnu-otter-01.ini 0x2810
ntnu-otter-02.ini 0x2811
ntnu-otter-03.ini 0x2812
ntnu-otter-04.ini 0x2813

Table 6.2: The IMC addresses of the NTNU Fish Otters.
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Communications Design

7.1 Computer Networking
To establish communication between the operator and the Otters, two wireless systems
have been implemented: One using the Ubiquiti AirMax 5GHz wireless system, and the
other using a 4G LTE modem. The reasoning behind this, is that the 4G modem can be
used as primary communication, while the 5GHz is available for scenarios in areas where
4G LTE is not available.

7.1.1 5GHz Wireless

AirMax wireless equipment from Ubiquiti provides communication for the Otter and land
station. On the Otter, a Ubiquiti Bullet AC IP67 has been used, because of its IP rating.

On the land station, two access points are available. One is a 120◦ sector antenna
connected to a Ubiquiti Rocket AC, which was configured and used in the specialization
project [1]. During sea trials with clear skies and no waves, a solid connection was main-
tained in ranges up to 700 meters, while intermittent connection was achieved as far as
1000 meters from the communication mast. The other device, an Ubiquiti PowerBeam
Gen2 dish antenna/access point was configured as a part of this thesis work, with the hope
being that it will provide better range than the sector, at the expense of covering a smaller
area.

Power to the AirMax equipment used on the land station is, like on the Otter, provided
through passive 24V Power over Ethernet (PoE), with injectors from Ubiquiti. This injec-
tor is added between the computer and the access point, which has the benefit that only
one cable per device is needed on the mast.

Managing AirMax equipment is done through either a web based interface, or a com-
mand line interface accessed with SSH. Access to these interfaces can be had through
wired Ethernet or via a dedicated WiFi management network the device enables. This sep-
arate configuration network is needed because the AirMax protocol can not be interfaced
by standard WiFi devices.
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Multiple topologies are available for AirMax networks. For the work done in this
thesis, the devices at the base station have been set up as point-to-multipoint devices,
which acts like access points (APs) in the networks, while the Otters are points that all
communicate through the AP.

7.1.2 4G LTE Wireless

From the design phase of the NTNU Fish Otters, mobile broadband was a planned feature.
To meet that end, the MIMO antenna Teoglas Limited MA741.A.BI.001 with IP67 rating
was installed on the top of the control box, with its two SMA connectors on the inside of
the box. Originally, a USB modem from Huawei had been procured to be used along with
the antenna, but low confidence in whether it could withstand rough treatment or not led
to it being discarded.

A modem that could connect through a wired Ethernet cable was proposed as a better
solution. To achieve this, either a 4G router or a separate router in combination with a
4G modem had to be found, since the RPI4B1 is equipped with only one wired Ethernet
connection.

Because of the space constraints in the control box, and that one less component means
one less component to manage, the 4G router solution was deemed the better fit. A compo-
nent search commenced, trying to fulfill the following criterions:

Figure 7.1: The Teltonika RUT950 4G
router used in the fish Otter (Picture
from Teltonika).

• Appropriate size: Being able to fit in the con-
trol box.

• Solid mounting options, preferably din-rail.

• Two or more Ethernet ports, more is a plus.

• SMA external antenna connectors, or adapt-
able to SMA.

• VPN support preferable.

• Affordability.

In the end, these alternatives were considered:

• Westermo MRD-415

• Teltonika RUT240 or RUT950

• Welotech TK812L

• Advantech BB-SR303 with Ethernet power
delivery and 5 ports.

1Raspberry Pi 4 Model B
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From the alternatives, the Teltonika RUT950 (see fig. 7.1) was selected, because it fitted all
criterions and came at a reasonable price point. It provides routing between four Ethernet
ports, a built-in WiFi access point (not used for now) and a 4G LTE Cat 4 rated cellular
modem with dual-sim support.

Powering the RUT950 can be done either through a 2x2 Molex Micro-Fit 3.0 connec-
tor, or through passive PoE. As the PoE injector in the control box only has one output,
the Molex connector was wired up along with the two SMA 50Ω antenna connectors for
the cellular modem. How the connections were made in the control box is shown in figure
3.4.

A benefit of the RUT950 is that the firmware is based on OpenWRT, a highly extensible
GNU/Linux distribution for embedded devices, typically wireless routers2, giving ample
possibilities for customisations in addition to command line access through SSH.

RUT950 Software Configuration

Configuring the router for use in the Otter has been done through the web interface,
though access through SSH has also been experimented with for debugging. The fol-
lowing changes has been made compared to default:

• OpenVPN Client configuration, see figure C.2.

• Port Forwarding, see figure C.1.

• Disabled integrated WiFi AP.

• Root/admin user setup: Changed password for the root user through SSH, as well
as the admin used in web interface.

• LAN setup: Changed the IP subnet. Different subnets is assigned to each RUT950,
with values as shown in table 7.1.

Network Base Address Netmask
VPN 10.8.0.1 255.255.255.0

RUT950 Otter1 Local 10.10.0.1 255.255.255.0
RUT950 Otter2 Local 10.11.0.1 255.255.255.0
RUT950 Otter3 Local 10.12.0.1 255.255.255.0
RUT950 Otter4 Local 10.13.0.1 255.255.255.0

Table 7.1: Planned subnetworks for the NTNU Fish Otter System.

7.1.3 VPN Setup and Deployment
To simplify the communication between the networked devices on the Otter ASVs and the
console through the Internet, a VPN solution has been installed. The benefits of this is that
all devices is on the same network, making it possible to reach all devices connected to the
RUT9503. The topology of the VPN, is given in figure 7.2.

2Description from their web page: openwrt.org/about
3An alternative would be to report the IP addresses of the routers to a DNS service.
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Figure 7.2: VPN topology.

To realize the VPN, the open-sourced OpenVPN solution was chosen (a short intro-
duction to VPNs and OpenVPN is given in section A.1.1). The deployment included
installing and configuring a server located at the otter.itk.ntnu.no server. The RUT950 has
both server and client functionality support from the factory, but only the client function-
ality is used in this thesis work.

The configuration process that was used is described in [85], which includes setting up
the a public cryptography key infrastructure with easy-rsa along with the basic server/-
client setup for an ISO/OSI 3rd layer tunnel VPN. For the RUT950 client, the configuration
shown in figure C.2 was made. The setup on the operators computer can be performed ac-
cording to [85], but as the author was using Ubuntu 18.04, the client that was included by
default in the desktop environment was used.

7.1.4 IMCProxy
To use the IMCProxy in the NTNU Fish Otter System, the proxy server has been set to
run at the Otter server described in 3.4 an instance of the client is ran at the vessel when
needed, as shown in figure 2.6.

7.1.5 Discussion
The original purpose of introducing the VPN, was to have all IMC networks operate di-
rectly over the VPN, and not through the IMCProxy4. This would have required con-
figuring the VPN to operate on the data link layer of the ISO/OSI stack5. Configuring
OpenVPN to do this required configuring a virtual network bridge (TAP6 device) on the
NTNU Otter server. As mentioned in section 3.4, the server is managed by the IT-services

4Which is not dependent on the VPN to function.
5As described in appendix A.1.1
6Terminal Access Point
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at NTNU, and is only reachable through remote access. During the setup process of the
network bridge, communication with the server was lost. This complicated the configu-
ration of the VPN to the point where it was decided to simply settle on letting the VPN
operate in the network layer with a virtual TUN7 device. As the UDP IMC broadcast
used for discovering new devices is stopped at the routers, only using the VPN was not a
solution any longer, and thus the overhead of the IMCProxy had to be introduced.

It is generally considered a drawback to increase the amount of communication in
robotic systems because it tends to reduce the robustness. Because the TUN VPN is op-
erating on the network layer, IP packages are sent, which comes with a smaller overhead
than the Ethernet frames used in the intended link layer TAP VPN8. The comparison of
network overhead between the implemented IMCProxy+TUN VPN system versus only
having the TAP VPN has not been performed, so the author can not conclude the question
about whether the compromise was beneficial or detrimental to the networks performance.

As one could remove the VPN, and still have a functioning system, this should also be
further investigated. For this, the importance of loosing the other benefits of having the
VPN, such as simplifying connecting to remote devices, better control over network traffic
to and from the vessel and increased security due to the implemented encryption should
be considered. Increasing the security is a potential gain, because the collected data may
be used by adversaries to either sway the results or exploit the results as described in [86].

The topology of the AirMax network should also be further investigated. A suggested
option is to configure one of the Otters as the access point and the others communicating
through it. This would allow for faster and more efficient inter-vessel communication. The
caveat in choosing such a topology, is that the vessels could not operate at great distances
from one another. This is not expected to be a problem in the intended use-cases the Otter
system.

Regardless of the network design which ends up being implemented in the deployed
system, the ability to fail gracefully at communication loss will have to be implemented. A
possibility is having the vessel performing a maneuver that is considered safe, like loitering
or traveling back to the deployment area.

7.2 Website for sharing and analysing data

It is a goal of the NTNU Otter ASVs to be able to execute missions that will gather data
that is relevant to other scientists. Having every interested party learn to use Neptus can
not be expected, and it’s also not desirable to let others access the IMC network during
missions.

Instead, the design of a system that makes the telemetry available in a password pro-
tected online environment has been developed and deployed.

7Short for Tunnel.
8Because the Ethernet frames would still need to encapsulate the IP Packet.
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7.2.1 System Design

The design of the system is based around Grafana9 and InfluxDB10, along with a custom
ingester developed for reading IMC messages from the IMCProxy already being used,
and writing the data to the InfluxDB. By using Grafana as a visual querying solution for
the InfluxDB, both data monitoring during the mission, as well as sharing, analyzing and
exporting the data after the mission is made possible.

An overview of this system is shown in figure 7.3, which is simply an extension of
figure 2.6. Extracting the data in the server has the benefit of needing no additional data
from the vessels, as the data passes through the IMCProxy server anyways.

IMCProxy
Server

IMCProxy
Client

IMCProxy
InfluxDB
writer

IMCProxy
Client

Vessel Operator

Server

DUNE

HTTP

HTTPUDP UDP

WebSocke
t

Web
Socket

WebSocket

...
HTTP HTTP

Spectator 1 Spectator n

Figure 7.3: IMCProxy network with spectator functionality.

7.2.2 The IMC to InfluxDB Ingester Design

To ingest the IMC messages to the database, a simple Java application has been developed.
It is derived from the IMCProxy client11, but instead of relaying messages, it ingest them
to a DB. The written code is available in appendix D.2, with the parts of interest being
the function httpPostImcToInfluxDB that creates a HTTP POST request to the Otter
InfluxDB server that correctly formats the URL and parameters according to [63]. This
function then uses imcToInfluxLineProtocol to convert the IMC message fields to a

9Introduced in section 2.6.2.
10Introduced in section 2.7.6.
11Original code available at: https://github.com/LSTS/imcproxy
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line protocol string12.
The imcToInfluxLineProtocol function also filters the IMC messages by type,

so only certain messages are ingested to the DB. By basing the conversion on the Map<

String, Object> representation of the IMC message, all IMC messages13 are supported
without needing to specialize for each one. Adding new message types for ingestion there-
fore is as simple as adding another case in a switch statement, as shown in line 62 to 71 of
code listing D.1.

In anticipation of using the data in map panels in Grafana, IMC message attributes
containing coordinates are converted to degrees before ingesting.

To optimize sorting by message source and entity in the DB, these have been stored as
tags, while all other attributes are stored as fields.

If in some future design update, the IMCProxy is removed from the system, the parts
of this implementation could be reused in a Neptus plugin. Because both are written in
Java, and both use the same IMC bindings, the changes needed are minimal.

7.2.3 Result
The resulting system is presented in the two following screenshots: The dashboard shown
in figure 7.4 visualizes data from the InfluxDB in suited panels, such as a track map that
shows the path traversed by the vessel in a selected time period along with graphs of other
important telemetry. A practical feature for analysis shown in the figure, is that the data
is joined on timestamps. By hovering the cursor over the RPM metric, the corresponding
value for setThrustersActuation is shown, as well as a blue dot on the map signifying
where the vessel made the measurement.

Another dashboard was made with the purpose of showing tag registrations on a map,
as shown in figure 7.5. This map panel also supports spatial aggregating, which means that
if you zoom out, it will reduce multiple registrations to a single point with color indicating
the amount of tags in a location. This panel, as all panels in Grafana does custom time
ranges, which makes it possible to zoom the graphs for closer inspection.

7.2.4 Discussion
Because the system is placed on the same physical server as the IMCProxy server, the
delay between when the IMC message is sent from the vessel and it being available in the
InfluxDB through Grafana should be on par with or better than using Neptus for teleme-
try14. This means that the delay between the message being sent and it being available
in the visualization is only limited by the performance of the cellular communications
network, the public Internet infrastructure and how fast Grafana is allowed to query the
data.

The choice of using Grafana is motivated by getting most of the needed functionality
for minimal additional work, and also getting free functionality updates as updates become
available. If at some point in the future it is decided that the visualizations available does

12Described in section 2.7.6
13Some IMC message types are nested, support for these is not verified
14This holds only when IMCProxy is used, and not when vessel and operator is on the same network without

needing the IMCProxy.
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Figure 7.4: An example screenshot of the Grafana Dashboard.
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Figure 7.5: A Grafana Dashboard showing fish tag detections at the locations the registrations were
made.

not fit the projects purposes, the open-sourced nature of the project makes it possible to
develop new ones.

A benefit of using Grafana, is that it can pull data from various sources, making ex-
tending it to fetch publicly available weather data an interesting prospect. Another possible
extension imagined, is that a more computationally expensive estimator setup can be im-
plemented on the server, while the estimator running in the vessels only need compute
with enough accuracy to hold the vessels in formation around the tracked acoustic tag.

7.3 Summary
With the addition of the RUT950 and the Dish AirMax access point, as well as the upgrade
to the TB Live hydrophone, all planned devices for a single NTNU Fish Otter has been
installed and integrated. To document how they all communicate, figure 7.6 has been
created. For a more detailed diagram over all devices of the NTNU Fish Otter, see figure
3.4 where the discussed modifications has also been included.
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Chapter 8
Conclusion and Further Work

This masters thesis has presented the NTNU Fish Otter System in its current state, and the
work that has been performed for it to achieve its ultimate goal; to become an autonomous
multi-vessel system that collaboratively can search for and track acoustic fish tags. The
contributions made towards this goal is: Designing a system for providing a priori spatial
data on the vessel, implementing a global path planner, implementing an anti-grounding
monitor, implementing the network infrastructure, implementing an online interface for
visualizing vessel telemetry, and upgrading the hydrophone hardware and software.

The spatial a priori data system is based around S-57 formatted ENCs and publicly
available depth soundings. A database is designed to store this data, along with a software
library to make it accessible in DUNE, the on-board middleware. Use of this library is
then demonstrated by the implementations of an anti-grounding supervisor and a global
path planner for the vessel.

The network infrastructure is completed with the integration of a cellular modem.
Along with the already integrated 5GHz network, this will let the operator communicate
with the vessels to command and monitor its progress. To simplify device management, a
VPN is configured on the server for the system.

The servers function has also been extended with a system that stores and visualizes
received telemetry messages through an online interface. It is envisioned that this system
will be used to both assist the operator, and share data with collaborating researchers.

Finally, the previously written software implementation is given an assessment, and
found to have serious flaws. Updates is made accordingly, but the result has yet to be
put to the test. The implementation has also been made ready for use with an updated
hydrophone model, the TB Live from Thelma Biotel

8.1 Further Work
Throughout the sections of this thesis, multiple suggestions on how to improve and extend
the implemented solutions have been made. If the author was to select just one to focus
on, it would be further researching how changing to the SpatialLite database would impact
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storage efficiency. This would need to go along with changes done to both the path planner
and the anti-grounding functionality.

Options on how IMC messages are used through the Internet should also be explored.
The most important task to be performed in the project is performing more sea trials

in order to find appropriate parameter values to use in the path controller and the course
and speed controller. Along with this, the now completed design of the control box has
to be duplicated in order to get all Fish Otters operational. Once this has been completed,
the formation control and fish tag estimator described in [21] should be implemented, and
used as the base for further developments.
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Appendix A
Additional Background and Theory

A.1 Networked Remote Device Access
This section gives a brief description of computer networking technologies that have been
used in order to gain access to and control networked devices without physical access. In
the NTNU Fish Otter Project, this is relevant both for the server, and for the vessels during
missions.

A.1.1 VPN
A virtual private network creates an IPsec1 tunnel to allow the creation of private sub-
networks over public or shared networks like the Internet. By encapsulating, and also
often encrypting the network traffic between multiple points, data integrity and privacy
is accomplished. Only allowing data packets coming through the VPN tunnel also gives
control over who can send packets to a receiver.

VPN OSI/ISO Layer

Network protocols are often divided into a hierarchy of seven layers, according to the
ISO/OSI model for communication systems [87]. VPNs can operate either in the link2

layer or in the network3 layer. The operation done at the different layers by the VPN
server, is called routing for the network layer or bridging for the link layer.

A routing VPN causes less bandwidth overhead than a bridging VPN, due to an extra
Ethernet header being added to data units in bridged mode, and additional link layer pro-
tocols going through the VPN tunnel4, versus staying on the local network. In some cases,
where tunneling all link layer frames are desired, bridging VPNs are still needed.

1The IP (Internet Protocol) security protocol. Described in RFC4301 and RFC6071, RFCs being the formal
standard documents published by the Internet Engineering Task Force (IETF).

2The second layer in the ISO/OSI model.
3The third layer in the ISO/OSI model.
4Such as ARP requests.
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OpenVPN

OpenVPN is an open-source VPN solution released under the GPL licence. To authenti-
cate users, it supports the use of pre-shared secret keys, certificates or username/password
combinations. In this report, pre-shared keys has been used, created with the help of the
easy-rsa utility.

Configuring both the server and the clients is done through configuration files, with
support for both routed and bridged operating level.

A.1.2 Network Device Management
Physical access to the Otters while deployed is not practical, and even when physical ac-
cess is available, only the console computer has peripherals that a human operator can
interface with. The only way to manage the hardware and software of these devices are
through network interfaces. Secure Shell (SSH) and secure copy (SCP) are used exten-
sively in this work, so a brief introduction to the commands are given in this section.

Secure Shell

The secure shell command (SSH) is used to provide remote access to the host computers
command line, and also other secure services5. The basic command syntax is ssh [

remote_user]@[remote_host], while a plethora of options can be added, like chang-
ing remote port with -p [remote_port].

Secure Copy

The secure copy command (SCP) is a part of SSH that is used to transfer files between
two computers. The command syntax is: scp [from] [to], where [from] and to is
either a path in the local file system, or a remote path formatted like [remote_user]@[
remote_host]:[remote_path]. This is very similar to the UNIX command for local
copying, cp, but with options that are relevant for communication with remote hosts, like
-P [remote_port] for selecting which remote port to connect to.

A.2 Summary of TTK4550 Project Work on the NTNU
Fish Otter

During the second half of 2019, the author was assigned the task of performing a system
integration for the NTNU Fish Otter ASV. At that point, none of the software integration
had been performed, and although most of the hardware was mounted in the control box,
a lot of wiring had to be made. As the system never had been powered before in this
configuration, this involved also ensuring that power distribution of the vessel was sorted
out. For the PoE powered Ubiquiti Bullet IP67, a 12V to 24V converter had to be added to
avoid a voltage drop in a PTC that had been specified according to its current use at 24v.

5The Debian wiki: https://wiki.debian.org/SSH
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Originally, the SLIM synchronization board was to be used to synchronize the hy-
drophone clock. The author was encouraged to investigate the possibility of doing the
synchronization on the RPI4. The functionality for this was implemented, but not verified.

The software integration which was performed began with choosing an operating sys-
tem to use on the RPI4. The choice fell on the Debian based Raspian Lite distribution,
which was purposely made for the RPI SBCs. With an OS in place, an configuration
was made for DUNE, along with newly developed tasks to control the hydrophone, the
Torqeedo interface card and the other features on the StratoPi daughter board. To sup-
port communicating with the Torqeedo Interface card, CAN bus support also had to be
implemented for DUNE to interact with the SocketCAN drivers in the Linux Kernel.

By implementing software and connecting the hardware one component at a time, all
current components were successfully integrated. This was validated through two sea trials
where the first demonstrated basic vessel functions, and the second validated that acoustic
tags were detected and sent to the operator. The clock synchronization was implemented
and used, but could not be verified due to not having a known good implementation to
compare against.

The further work section of the report stated these tasks:

1. Verify PPS synchronization for system.

2. Make the TBR700RT DUNE task send periodic sync messages.

3. Make a custom PCB for the logic-level-shifter used on the PPS signal.

4. Hardware and software support for 4G communication.

5. Setting up and testing the Ubiquiti PowerBeam AC Gen2.

6. Getting IMC addresses for the fish Otters in the official IMC repository.

7. Properly tune the PID controllers of the course and speed controller, as well as the
parameters for the ILOS path controller.

All but task 3, 6 and 7 is addressed in this thesis. Task 3 and 6 is not considered
necessary any longer, but 7 remains highly relevant.

A.3 S-57 ENC Object Quick Reference
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Acronym Object Description
BCNISD Isolated Danger Beacon A beacon erected on an isolated danger

of limited extent, which has navigable
water all around it.

BCNLAT Lateral Beacon Used to indicate the port or starboard
hand side of the route to be followed.

BCNSPP Beacon, special purpose
/general

BOYCAR Cardinal Buoy Used in conjunction with the compass
to indicate where the mariner may find
the best navigable water.

BOYINB Installation Buoy Used for loading tankers with gas or oil.
BOYISD Isolated Danger Buoy A buoy moored on or above an iso-

lated danger of limited extent, which
has navi- gable water all around it.

BOYLAT Lateral Buoy Used to indicate the port or starboard
hand side of the route to be followed.

BOYSAW Safe Water Buoy Used to indicate that there is navigable
water around the mark.

BOYSPP Special Purpose Buoy Primarily used to indicate an area or
feature, the nature of which is appar-
ent from reference to a chart, Sailing
Directions or Notices to Mariners.

COALNE Coastline The line where shore and water meet
DEPARE Depth Area Area of water within a defined range of

values.
LIGHTS Light A luminous or lighted aid to navigation.
OBSTRN Obstruction In marine navigation, anything that hin-

ders or prevents movement.
PILPNT Pile long heavy timber or section of steel,

wood, concrete, etc.. forced into the
earth which may serve as a support,

UWTROC Underwater /awash rock A concreted mass of stony material or
coral which dries, is awash or is below
the water surface. The ruined remains
of a stranded or sunken vessel which
has been rendered useless.

WRECKS Wreck

Table A.1: Overview of the S-57 objects used in this report (Source: [55]).
.
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Appendix B
FME Workbenches

For a description of the nodes in the workbench, see table 2.3.

/media/nikolai/1c8e6f70-011a-4b5a-9635-633910e859d7/nikolai/Documents/NTNU/10semester/TTK4900-Master/kart/FMEflow/step1-xyzDepthmapToDB.fmw - Main - Page 1

Make depthmap table from xyz-files

CSV
CoordinateExtractor

Output

<Rejected>

Reprojector

Reprojected

depthmapRad

Lon

Lat

Depth

AttributeRenamer

Output

AngleConverter

Output

Figure B.1: FME flow for reading .xyz files in utm33 projection, and reprojecting them to WGS84,
then saving in database.
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/media/nikolai/1c8e6f70-011a-4b5a-9635-633910e859d7/nikolai/Documents/NTNU/10semester/TTK4900-Master/kart/FMEflow/step2-s57pointsOfInterestToDB.fmw - Main - Page 1

From S-57, extract points of interest to DB
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AngleConverter_2
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AngleConverter_12

Output

AngleConverter_10
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AngleConverter_9
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AngleConverter_8
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AngleConverter_7
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AngleConverter_6
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Input

Point
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Figure B.2: FME Workbench for extracting points of interest from POI.

/media/nikolai/1c8e6f70-011a-4b5a-9635-633910e859d7/nikolai/Documents/NTNU/10semester/TTK4900-Master/kart/FMEflow/step3-s57DEPAREdensifierToDB.fmw - Main - Page 1

Extract depth contours from S-57, make consistend density and write to DB

Writer Feature Types

Reader Feature Types

DEPARE DRVAL2_filter

0 .. 20

<Unfiltered>

Vertex_Densifier

Densified

VertexExtractor

Input

Point

AttributeRenamer

Output DEPARE

AngleConverter

Output

Figure B.3: FME workbench that extracts vertices from a polygon, makes more vertices at uniform
intervals around the polygon, and writes the result to a SQLite3 DB.
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/media/nikolai/1c8e6f70-011a-4b5a-9635-633910e859d7/nikolai/Documents/NTNU/10semester/TTK4900-Master/kart/FMEflow/step4-2dGridFromDepare.fmw - Main - Page 1

Create Point Cloud from S-57 AREA with attributes
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Output

<Rejected>

SpatialRelator

Requestor

Supplier

Output

<Rejected>

AttributeFilter

<Empty>

<Missing>

!<Missing>

<Null>

<Unfiltered>

2DGridAccumulator

Grid

<Rejected>

Reprojector_2

Reprojected

Reprojector

Reprojected
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Output
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Figure B.4: FME workbench that creates point cloud with values from S-57 polygon areas.
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Appendix C
RUT950 Configuration

Figure C.1: RUT950 port forwarding configuration.
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Figure C.2: RUT950 OpenVPN configuration.
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Appendix D
Source Code

D.1 GitHub Repositories
The source of the software developed for this project is available in these GitHub reposi-
tories, which are based on forks from the original LSTS repositories. The files that have
been created or changed is included in the remaining sections of this appendix.

• Main Otter DUNE branch with the new hydrophone task: https://github.
com/nikkone/dune/tree/ntnuOtterASV/

• Otter Situational Awareness branch of DUNE: https://github.com/nikkone/
dune/tree/nautical_charts_radians

• Otter branch of IMC: https://github.com/nikkone/imc/tree/ntnuOtterASV

• The Otter branch of IMCProxy and the IMC to InfluxDB ingester: https://
github.com/nikkone/imcproxy/tree/ntnuOtterASV

• The Otter branch of Neptus: https://github.com/nikkone/neptus/tree/
ntnuOtterASV

D.2 IMCProxy Data Ingester

Code D.1: ImcToInfluxDB.java

1 package pt.lsts.imc;
2
3 import java.net.HttpURLConnection;
4 import java.net.URI;
5 import java.net.URL;
6 import java.net.URLConnection;
7
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8 import java.text.SimpleDateFormat;
9 import java.util.Date;

10 import java.util.Map;
11 import java.io.OutputStream;
12 import java.nio.charset.StandardCharsets;
13
14 import org.eclipse.jetty.websocket.api.annotations.WebSocket;
15
16 import pt.lsts.imc.IMCMessage;
17
18 @WebSocket
19 public class ImcToInfluxDB extends ImcClientSocket {
20 protected static SimpleDateFormat format = new

SimpleDateFormat("[YYYY-MM-dd, HH:mm:ss] ");
21 protected static String influxhost = "http://localhost";
22 protected static int influxport = 8086;
23 protected static String dbname = "imc";
24
25 public void httpPostImcToInfluxDB(IMCMessage message) {
26 String messageLineProtocol = ImcToInfluxDB.

imcToInfluxLineProtocol(message);
27 if(messageLineProtocol != "") {
28 try {
29 System.out.println("Writing to DB: " + message.

getAbbrev());
30 // Connect
31 URL url = new URL(influxhost + ":" + influxport +

"/write?db=" + dbname + "&precision=ms");
32 URLConnection con = url.openConnection();
33 HttpURLConnection http = (HttpURLConnection)con;
34 http.setRequestMethod("POST"); // PUT is another

valid option
35 http.setDoOutput(true);
36 // make
37 byte[] out = messageLineProtocol.getBytes(

StandardCharsets.UTF_8);
38 int length = out.length;
39 // send
40 http.setFixedLengthStreamingMode(length);
41 http.setRequestProperty("Content-Type", "

application/x-www-form-urlencoded; charset=UTF
-8");

42 http.connect();
43 try(OutputStream os = http.getOutputStream()) {
44 os.write(out);
45 } catch (Exception e) {
46 System.out.println("err while writing db first

");
47 return;
48 }
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49 } catch (Exception e) {
50 System.out.println("err while writing db");
51 return;
52 }
53 }/* else {
54 System.out.println("Empty");
55 }*/
56 }
57
58 public static String imcToInfluxLineProtocol(IMCMessage

message) {
59 String out;
60 switch(message.getAbbrev()) {
61 // Add case case for messages to be stored
62 case "Rpm":
63 case "Voltage":
64 case "Current":
65 case "Temperature":
66 case "FuelLevel":
67 case "SetThrusterActuation":
68 case "GpsFix":
69 case "TBRFishTag":
70 case "TBRSensor":
71 case "EstimatedState":
72 Boolean first = true;
73 out = message.getAbbrev() + ",src="+ message.

getSrc() + ",ent=" + message.getSrcEnt() + " "
;

74 Map<String, Object> mp = message.getValues();
75 for (Map.Entry<String, Object> entry : mp.entrySet

()) {
76 if(first) {
77 first = false;
78 } else {
79 out += ",";
80 }
81 out += entry.getKey() + "=" + entry.getValue()

;
82 if(entry.getKey().equals("lat") || entry.

getKey().equals("lon")) { // Radians to
Degrees for lat and lon

83 System.out.println("Lat or Lon added");
84 out += "," + entry.getKey() + "deg=" + (

double)(entry.getValue())*(180/Math.PI
);

85
86 }
87 }
88 out += " " + message.getTimestampMillis();
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89 //System.out.println("Wrote to InfluxDB: " +
message.getAbbrev());

90 break;
91
92 default:
93 out = "";
94 }
95 return out;
96 }
97
98
99 @Override

100 public void onMessage(IMCMessage message) {
101 httpPostImcToInfluxDB(message);
102 }
103
104 public ImcToInfluxDB(String serverHost, int serverPort) throws

Exception {
105 connect(new URI("ws://"+serverHost+":"+serverPort));
106 }
107
108 public static void console(String text) {
109 System.out.println(format.format(new Date())+text);
110 }
111 public static void main(String[] args) throws Exception {
112 String host = "otter.itk.ntnu.no";
113 int port = 9090;
114
115 if (args.length == 5) {
116 try {
117 port = Integer.parseInt(args[1]);
118 host = args[0];
119 influxport = Integer.parseInt(args[3]);
120 influxhost = args[2];
121 influxhost = args[4];
122 }
123 catch (Exception e) {
124 System.out.println("Usage: ./imcplot <host> <port>

or ");
125 System.out.println("Usage: ./imcplot <host> <port>

<influxhost> <influxport> <dbname>");
126 return;
127 }
128 } else if (args.length == 2) {
129 try {
130 port = Integer.parseInt(args[1]);
131 host = args[0];
132 }
133 catch (Exception e) {
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134 System.out.println("Usage: ./imcplot <host> <port>
or ");

135 System.out.println("Usage: ./imcplot <host> <port>
<influxhost> <influxport> <dbname>");

136 return;
137 }
138 }
139 ImcToInfluxDB.console("Connecting to IMCProxy server at "+

host+":"+port);
140 ImcToInfluxDB.console("Using InfluxDB server at "+

influxhost+":"+influxport + ",db:" + dbname);
141 new ImcToInfluxDB(host, port);
142 }
143 }

D.3 DUNE
The DUNE files contain a preamble commenting the licensing of the LSTS software, but
has been omitted in this appendix. The line numbers on the side of the code represents the
line numbers in the original files, which is found in the GitHub repository.

D.3.1 LocationData Class

Code D.2: LocationData.hpp

30 #ifndef DUNE_SITUATIONALAWARENESS_LOCATIONDATA_HPP_INCLUDED_
31 #define DUNE_SITUATIONALAWARENESS_LOCATIONDATA_HPP_INCLUDED_
32
33 // DUNE headers.
34 //#include <DUNE/Config.hpp>
35 #include <DUNE/System.hpp>
36 #include <DUNE/Database.hpp>
37
38
39 namespace DUNE
40 {
41 namespace SituationalAwareness
42 {
43
44 //! The LocationData class
45 class LocationData
46 {
47 public:
48 class Error: public std::runtime_error
49 {
50 public:
51 Error(std::string op, std::string msg):
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52 std::runtime_error("Error (" + op + "): " + msg)
53 { }
54 };
55 //! Data structure for storing location data
56 struct LocationDataContainer_t
57 {// Could this just be a std::pair<double,double>?
58 double Lat;
59 double Lon;
60 LocationDataContainer_t() {
61 Lat = 0.0;
62 Lon = 0.0;
63 }
64 LocationDataContainer_t(double inLat, double inLon) {
65 Lat = inLat;
66 Lon = inLon;
67 }
68 bool operator<(const LocationDataContainer_t& rhs) const {
69 if (this->Lat < rhs.Lat) return true;
70 if (rhs.Lat < this->Lat) return false;
71
72 // a==b for primary condition, go to secondary
73 if (this->Lon < rhs.Lon) return true;
74 if (rhs.Lon < this->Lon) return false;
75 return false;
76 }
77 };
78 typedef std::vector<LocationDataContainer_t> LocationVector;
79
80 LocationData(const std::string &dbPath);
81 ˜LocationData(void);
82 bool writeCSVfile(const LocationVector &inVec, const std::

string &outputFile);
83 protected:
84 std::string makeSquareWhereClause(double Lat, double Lon,

double half_size);
85 Database::Connection* db_connection;
86 };
87 }
88 }
89
90
91 #endif // END define

DUNE_SITUATIONALAWARENESS_LOCATIONDATA_HPP_INCLUDED_

Code D.3: LocationData.cpp

30 // DUNE headers.
31 //#include <DUNE/DUNE.hpp>
32 #include <DUNE/SituationalAwareness/LocationData.hpp>
33 #include <DUNE/Coordinates.hpp>
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34 #include <DUNE/Math.hpp>
35 // Other C++
36 #include <fstream>
37 #include <iostream>
38 #include <iomanip>
39
40 namespace DUNE
41 {
42 namespace SituationalAwareness
43 {
44 LocationData::LocationData(const std::string &dbPath) {
45 db_connection = NULL;
46 try {
47 db_connection = new Database::Connection(dbPath.c_str(),

Database::Connection::CF_RDONLY);
48 } catch(std::runtime_error& e) {
49 throw Error("Could not make DB connection: ", System::

Error::getLastMessage());
50 }
51 }
52
53 LocationData::˜LocationData(void) {
54 if (db_connection!=NULL) {
55 delete db_connection;
56 }
57 }
58
59 std::string LocationData::makeSquareWhereClause(double Lat,

double Lon, double half_size) {
60 double lat_minus_displaced = Lat;
61 DUNE::Coordinates::WGS84::displace(-half_size,0.0,&

lat_minus_displaced, &Lon);
62
63 double lat_plus_displaced = Lat;
64 DUNE::Coordinates::WGS84::displace(half_size,0.0,&

lat_plus_displaced, &Lon);
65
66 double lon_minus_displaced = Lon;
67 DUNE::Coordinates::WGS84::displace(0.0,-half_size,&Lat, &

lon_minus_displaced);
68
69 double lon_plus_displaced = Lon;
70 DUNE::Coordinates::WGS84::displace(0.0,half_size,&Lat, &

lon_plus_displaced);
71
72 return std::string("Lat between " + std::to_string(

lat_minus_displaced) + " and " + std::to_string(
lat_plus_displaced) + " and Lon between " + std::
to_string(lon_minus_displaced) + " and " + std::
to_string(lon_plus_displaced));
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73 }
74
75 bool LocationData::writeCSVfile(const LocationData::

LocationVector &inVec, const std::string &outputFile) {
76 std::ofstream file_(outputFile);
77 file_ << "Lat,Lon" << "\r\n";
78 for (LocationData::LocationVector::const_iterator itr =

inVec.begin(); itr != inVec.end(); ++itr)
79 {
80 file_ << std::setprecision(15) << DUNE::Math::Angles::

degrees(itr->Lat) << "," << DUNE::Math::Angles::
degrees(itr->Lon) << "\r\n";

81 }
82 return false;
83 }
84
85 } // End of namespace SituationalAwareness
86 } // End of namespace DUNE

D.3.2 DensifiedVertices Class

Code D.4: DensifiedVertices.hpp

30 #ifndef DUNE_SITUATIONALAWARENESS_DENSIFIEDVERTICES_HPP_INCLUDED_
31 #define DUNE_SITUATIONALAWARENESS_DENSIFIEDVERTICES_HPP_INCLUDED_
32
33 // DUNE headers.
34 #include <DUNE/SituationalAwareness/LocationData.hpp>
35
36
37 namespace DUNE
38 {
39 namespace SituationalAwareness
40 {
41
42 //! The DensifiedVertices class
43 class DensifiedVertices: public LocationData
44 {
45 public:
46 //! Data structure for storing depth range data, DRVAL1=

mindepth, DRVAL2=maxdepth
47 struct DensifiedVerticesContainer_t: LocationDataContainer_t
48 {
49 double DRVAL1;
50 double DRVAL2;
51 DensifiedVerticesContainer_t(): LocationDataContainer_t

(0.0,0.0) {
52 DRVAL1 = 0.0;
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53 DRVAL2 = 0.0;
54 }
55 DensifiedVerticesContainer_t(double inLat, double inLon,

double inDRVAL1, double inDRVAL2):
LocationDataContainer_t(inLat,inLon) {

56 DRVAL1 = inDRVAL1;
57 DRVAL2 = inDRVAL2;
58 }
59 };
60 typedef std::vector<DensifiedVerticesContainer_t>

DEPAREVector;
61
62 DensifiedVertices(std::string dbPath, double verticeDist);
63 ˜DensifiedVertices(void);
64
65 bool isDepthAbove(DEPAREVector DEPAREinputVector, double

minDepth);
66
67 bool writeCSVfile(DEPAREVector depths, std::string

outputFile);
68
69 DEPAREVector getWithinRadius(double Lat, double Lon, double

radius);
70
71 DEPAREVector getCorridor(double startLat, double startLon,

double endLat, double endLon, double steps, double
corridorWidth);

72
73 DEPAREVector getCorridor(double startLat, double startLon,

double endLat, double endLon, double corridorWidth);
74
75 DEPAREVector getSquare(double Lat, double Lon, double

half_size);
76 private:
77 double verticeDist;
78 };
79 }
80 }
81
82
83 #endif // END define

DUNE_SITUATIONALAWARENESS_DENSIFIEDVERTICES_HPP_INCLUDED_

Code D.5: DensifiedVertices.cpp

30 // DUNE headers.
31 #include <DUNE/SituationalAwareness/DensifiedVertices.hpp>
32 #include <DUNE/Coordinates.hpp>
33 #include <DUNE/Math.hpp>
34 #include <DUNE/System/Error.hpp>
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35
36 // Other C++
37 #include <fstream>
38 #include <iostream>
39
40 namespace DUNE
41 {
42 namespace SituationalAwareness
43 {
44 DensifiedVertices::DensifiedVertices(std::string dbPath,

double dbVerticeDist):DUNE::SituationalAwareness::
LocationData(dbPath), verticeDist(dbVerticeDist){

45
46 }
47
48 DensifiedVertices::˜DensifiedVertices(void) {
49
50 }
51
52 /// DEPARE functions ///
53 DensifiedVertices::DEPAREVector DensifiedVertices::

getWithinRadius(double Lat, double Lon, double radius)
54 {
55 DensifiedVertices::DEPAREVector returnVector =

DensifiedVertices::DEPAREVector();
56 DensifiedVertices::DEPAREVector square = this->getSquare(Lat

,Lon, radius);
57 for (DensifiedVertices::DEPAREVector::iterator itr = square.

begin(); itr != square.end(); ++itr)
58 {
59 double distance = Coordinates::WGS84::distance(Lat, Lon,0,

itr->Lat, itr->Lon,0);
60 if(distance<=radius) {
61 returnVector.push_back(DensifiedVertices::

DensifiedVerticesContainer_t(itr->Lat, itr->Lon,itr
->DRVAL1,itr->DRVAL2));

62 }
63 }
64 return returnVector;
65 }
66
67
68
69
70 bool
71 DensifiedVertices::isDepthAbove(DensifiedVertices::

DEPAREVector DEPAREinputVector, double minDepth) {
72 for (DensifiedVertices::DEPAREVector::iterator itr =

DEPAREinputVector.begin(); itr != DEPAREinputVector.end
(); ++itr)
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73 {
74 if(itr->DRVAL1<minDepth)
75 return false;
76 }
77 return true;
78 }
79
80 DensifiedVertices::DEPAREVector DensifiedVertices::getSquare(

double Lat, double Lon, double half_size)
81 {
82 std::string tablename = "DEPARE";
83 std::string c_stmt = "select Lat, Lon, DRVAL1, DRVAL2 from "

+ tablename + " where " + makeSquareWhereClause(Lat,
Lon, half_size) + ";";

84 //std::cout << c_stmt;
85 DensifiedVertices::DEPAREVector returnMap;
86 try{
87 Database::Statement* iterator_stmt = new Database::

Statement(c_stmt.c_str(), *db_connection);
88 std::pair<bool, double> SQLLat;
89 std::pair<bool, double> SQLLon;
90 std::pair<bool, double> SQLDRVAL1;
91 std::pair<bool, double> SQLDRVAL2;
92 unsigned int cntr=0;
93 while (iterator_stmt->execute())
94 {
95 *iterator_stmt >> SQLLat >> SQLLon >> SQLDRVAL1 >>

SQLDRVAL2;
96 if(std::get<0>(SQLLat)) {
97 returnMap.push_back(DensifiedVertices::

DensifiedVerticesContainer_t(std::get<1>(SQLLat),
std::get<1>(SQLLon),std::get<1>(SQLDRVAL1),std::
get<1>(SQLDRVAL2)));

98 cntr++;
99 }

100 }
101 iterator_stmt->reset();
102 delete iterator_stmt;
103 } catch(std::runtime_error& e) {
104 throw Error("Problem while executing statement \"" +

c_stmt + "\": ", System::Error::getLastMessage());
105 }
106 return returnMap;
107 }
108
109 bool DensifiedVertices::writeCSVfile(DensifiedVertices::

DEPAREVector depths, std::string outputFile)
110 {
111 std::ofstream file_(outputFile);
112 for (DensifiedVertices::DEPAREVector::iterator itr =
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depths.begin(); itr != depths.end(); ++itr)
113 {
114 file_ << Math::Angles::degrees(itr->Lat) << "," << Math

::Angles::degrees(itr->Lon) << "," << itr->DRVAL1 <<
"," << itr->DRVAL2 << "\r\n";

115 }
116 return false;
117 }
118
119 DensifiedVertices::DEPAREVector DensifiedVertices::getCorridor

(double startLat, double startLon, double endLat, double
endLon, double steps, double corridorWidth) {

120 float stepLat= (endLat-startLat)/steps;
121 float stepLon= (endLon-startLon)/steps;
122
123 DensifiedVertices::DEPAREVector returnDEPAREVector = this->

getSquare(startLat, startLon, corridorWidth);
124 for(unsigned int step=1; step<steps;step++) {
125 DensifiedVertices::DEPAREVector squareAroundCurrentStep =

this->getSquare(startLat+step*stepLat, startLon+step*
stepLon, corridorWidth);

126
127 returnDEPAREVector.insert(returnDEPAREVector.end(),

squareAroundCurrentStep.begin(),
squareAroundCurrentStep.end());

128 }
129 return returnDEPAREVector;
130 }
131
132 DensifiedVertices::DEPAREVector DensifiedVertices::getCorridor

(double startLat, double startLon, double endLat, double
endLon, double corridorWidth) {

133 double distance = Coordinates::WGS84::distance(startLat,
startLon,0, endLat, endLon,0);

134 return getCorridor(startLat, startLon, endLat, endLon,
distance/(verticeDist/2*std::sqrt(2)), corridorWidth);

135 }
136 }
137 }

D.3.3 TwoDGrid Class

Code D.6: TwoDGrid.hpp

30 #ifndef DUNE_SITUATIONALAWARENESS_TwoDGrid_HPP_INCLUDED_
31 #define DUNE_SITUATIONALAWARENESS_TwoDGrid_HPP_INCLUDED_
32
33 // DUNE headers.
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34 #include <DUNE/SituationalAwareness/LocationData.hpp>
35
36
37 namespace DUNE
38 {
39 namespace SituationalAwareness
40 {
41 // Export DLL Symbol.
42 class DUNE_DLL_SYM TwoDGrid;
43
44 //! The TwoDGrid class
45 class TwoDGrid: public LocationData
46 {
47 public:
48
49 //! Data structure for storing depth data
50 struct DepthDataContainer_t: LocationDataContainer_t
51 {
52 double Depth;
53 DepthDataContainer_t(): LocationDataContainer_t(0.0,0.0) {
54 Depth = 0.0;
55 }
56 DepthDataContainer_t(double inLat, double inLon, double

inDepth): LocationDataContainer_t(inLat,inLon) {
57 Depth = inDepth;
58 }
59 };
60
61 typedef std::vector<DepthDataContainer_t> DepthVector;
62
63 //! TwoDGrid constructor.
64 TwoDGrid(const std::string &dbPath, double dbGridSize);
65
66 //! TwoDGrid destructor.
67 ˜TwoDGrid(void);
68
69 ///////////////////////////// DepthmapRad functions
70
71 //! Returns the depth of the queried location if it exists.
72 //! Returns the depth of the location closest to the queried

one, their distance and bearing.
73 std::vector<double>
74 getSingleDepth(double Lat, double Lon, double grid_size);
75
76 DepthVector
77 getClosestDepths(double Lat, double Lon, double grid_size);
78
79 DepthVector
80 getSquare(const LocationDataContainer_t &center, double

half_size, double minDepth_m = 0.0);
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81
82 DepthVector
83 getSquare(double Lat, double Lon, double half_size, double

minDepth_m = 0.0);
84
85 DepthVector
86 getWithinRadius(double Lat, double Lon, double radius,

double minDepth_m = 0.0);
87
88 DepthVector
89 getWithinRadius(const LocationDataContainer_t &center,

double radius, double minDepth_m = 0.0);
90
91 bool writeCSVfile(const DepthVector &depths, const std::

string &outputFile);
92
93 std::pair<DepthVector, LocationVector>
94 checkTransect(double startLat, double startLon, double

endLat, double endLon, double steps);
95
96 std::pair<DepthVector, LocationVector>
97 checkTransect(double startLat, double startLon, double

endLat, double endLon);
98
99 DepthVector

100 getCorridor(double startLat, double startLon, double endLat,
double endLon, double steps, double corridorWidth);

101
102 DepthVector
103 getCorridor(double startLat, double startLon, double endLat,

double endLon, double corridorWidth);
104 private:
105 double gridSize;
106 };
107 }
108 }
109
110
111 #endif

Code D.7: TwoDGrid.cpp

30 // DUNE headers.
31 #include <DUNE/Coordinates.hpp>
32 #include <DUNE/Math.hpp>
33 #include <DUNE/System/Error.hpp>
34 #include <DUNE/SituationalAwareness/TwoDGrid.hpp>
35
36 // Other C++
37 #include <fstream>
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38 #include <iostream>
39 #include <iomanip>
40
41 namespace DUNE
42 {
43 namespace SituationalAwareness
44 {
45 TwoDGrid::TwoDGrid(const std::string &dbPath, double

dbGridSize):DUNE::SituationalAwareness::LocationData(
dbPath), gridSize(dbGridSize) {

46 }
47 TwoDGrid::˜TwoDGrid(void){
48 }
49
50 std::vector<double> TwoDGrid::getSingleDepth(double Lat,

double Lon, double grid_size)
51 {
52 std::vector<double> ranges, bearings, depths;
53 std::vector<double> return_vec;
54 double range, bearing;
55
56 //std::string db_statement
57 std::string c_stmt = "select Depth from ’depthmapRad’ where

Lat = " + std::to_string(Lat) + " and Lon = " + std::
to_string(Lon) + ";";

58
59 try
60 {
61 Database::Statement* iterator_stmt = new Database::

Statement(c_stmt.c_str(), *db_connection);
62 std::pair<bool, double> DBDepth;
63
64 while(iterator_stmt->execute())
65 {
66 *iterator_stmt >> DBDepth;
67
68 if(std::get<0>(DBDepth))
69 {
70 iterator_stmt->reset();
71 delete iterator_stmt;
72 return_vec.push_back(std::get<1>(DBDepth));
73 return return_vec;
74 }
75 }
76 } catch(std::runtime_error& e)
77 {
78 throw Error("Problem while executing statement \"" +

c_stmt + "\": ", System::Error::getLastMessage());
79 }
80
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81 printf("This location does not exist in the map, retrieving
the closest . . . \n");

82
83 TwoDGrid::DepthVector four_closest = getClosestDepths(Lat,

Lon, grid_size);
84 for(TwoDGrid::DepthVector::iterator itr = four_closest.begin

(); itr != four_closest.end(); ++itr)
85 {
86 //std::cout << itr->Lat << " " << itr->Lon << "\n";
87 Coordinates::WGS84::getNEBearingAndRange(Lat,Lon, itr->Lat

, itr->Lon, &bearing, &range);
88 ranges.push_back(std::fabs(range));
89 bearings.push_back(bearing);
90 depths.push_back(itr->Depth);
91 }
92 int min_index = std::min_element(ranges.begin(),ranges.end()

) - ranges.begin();
93 double min_range = *std::min_element(ranges.begin(), ranges.

end());
94 return_vec.push_back(depths[min_index]);
95 return_vec.push_back(min_range);
96 return_vec.push_back(bearings[min_index]);
97
98 return return_vec;
99 }

100
101 TwoDGrid::DepthVector TwoDGrid::getClosestDepths(double Lat,

double Lon, double grid_size)
102 {
103 double disp = 2*grid_size;
104 std::string c_stmt = "select min(Lat+Lon), Lat, Lon, Depth

from (select Lat, Lon, Depth from depthmapRad where " +
makeSquareWhereClause(Lat, Lon, disp) + ") where Lat >=
" + std::to_string(Lat) + " and Lon >= " + std::
to_string(Lon) +

105 " union select max(Lat+Lon), Lat, Lon, Depth from (select
Lat, Lon, Depth from depthmapRad where " +
makeSquareWhereClause(Lat, Lon, disp) + ") where Lat <=
" + std::to_string(Lat) + " and Lon <= " + std::
to_string(Lon) +

106 " union select min(Lat-Lon), Lat, Lon, Depth from (select
Lat, Lon, Depth from depthmapRad where " +
makeSquareWhereClause(Lat, Lon, disp) + ") where Lat >=
" + std::to_string(Lat) + " and Lon <= " + std::
to_string(Lon) +

107 " union select max(Lat-Lon), Lat, Lon, Depth from (select
Lat, Lon, Depth from depthmapRad where " +
makeSquareWhereClause(Lat, Lon, disp) + ") where Lat <=
" + std::to_string(Lat) + " and Lon >= " + std::
to_string(Lon) + ";";
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108
109 //std::cout << c_stmt;
110 TwoDGrid::DepthVector returnMap;
111 try{
112 Database::Statement* iterator_stmt = new Database::

Statement(c_stmt.c_str(), *db_connection);
113 std::pair<bool, double> DBLat;
114 std::pair<bool, double> DBLon;
115 std::pair<bool, double> DBDepth;
116 while (iterator_stmt->execute())
117 {
118
119 *iterator_stmt >> DBLat >> DBLat >> DBLon >> DBDepth; //

Four because max/min column gets discarded
120 if(std::get<0>(DBLat)) { // If row not empty (only

checks first element)
121 returnMap.push_back(TwoDGrid::DepthDataContainer_t(std

::get<1>(DBLat), std::get<1>(DBLon), std::get<1>(
DBDepth)));

122 }
123 }
124 iterator_stmt->reset();
125 delete iterator_stmt;
126 } catch(std::runtime_error& e) {
127 throw Error("Problem while executing statement \"" +

c_stmt + "\": ", System::Error::getLastMessage());
128 }
129 return returnMap;
130 }
131
132 TwoDGrid::DepthVector TwoDGrid::getSquare(const TwoDGrid::

LocationDataContainer_t &center, double half_size, double
minDepth_m) {

133 return this->getSquare(center.Lat, center.Lon, half_size,
minDepth_m);

134 }
135
136 TwoDGrid::DepthVector TwoDGrid::getSquare(double Lat, double

Lon, double half_size, double minDepth_m)
137 {
138 //select * from depthmapRad where depth > 20 and Lat between

1.1 and 1.101
139 std::string c_stmt = "select Lat, Lon, Depth from depthmapRad

where Depth > " +std::to_string(minDepth_m)+ " and " +
makeSquareWhereClause(Lat, Lon, half_size) + ";";

140 TwoDGrid::DepthVector returnMap;
141 try{
142 Database::Statement* iterator_stmt = new Database::

Statement(c_stmt.c_str(), *db_connection);
143 std::pair<bool, double> DBLat;

133



144 std::pair<bool, double> DBLon;
145 std::pair<bool, double> DBDepth;
146 while (iterator_stmt->execute())
147 {
148 *iterator_stmt >> DBLat >> DBLon >> DBDepth;
149 if(std::get<0>(DBLat)) { // If row not NULL
150 returnMap.push_back(TwoDGrid::DepthDataContainer_t(std

::get<1>(DBLat), std::get<1>(DBLon), std::get<1>(
DBDepth)));

151 }
152 }
153 iterator_stmt->reset();
154 delete iterator_stmt;
155 } catch(std::runtime_error& e) {
156 throw Error("Problem while executing statement \"" +

c_stmt + "\": ", System::Error::getLastMessage());
157 }
158 return returnMap;
159 }
160
161 TwoDGrid::DepthVector TwoDGrid::getWithinRadius(const TwoDGrid

::LocationDataContainer_t &center, double radius, double
minDepth_m) {

162 TwoDGrid::DepthVector returnVector = TwoDGrid::DepthVector()
;

163 TwoDGrid::DepthVector square = this->getSquare(center,
radius, minDepth_m);

164 for (TwoDGrid::DepthVector::iterator itr = square.begin();
itr != square.end(); ++itr)

165 {
166 double distance = Coordinates::WGS84::distance(center.Lat,

center.Lon, 0, itr->Lat, itr->Lon, 0);
167 if(distance<=radius) {
168 returnVector.push_back(TwoDGrid::DepthDataContainer_t(

itr->Lat, itr->Lon, itr->Depth));
169 }
170 }
171 return returnVector;
172 }
173
174 TwoDGrid::DepthVector TwoDGrid::getWithinRadius(double Lat,

double Lon, double radius, double minDepth_m)
175 {
176 TwoDGrid::LocationDataContainer_t center = TwoDGrid::

LocationDataContainer_t(Lat, Lon);
177 return this->getWithinRadius(center, radius, minDepth_m);
178 }
179
180
181 bool TwoDGrid::writeCSVfile(const TwoDGrid::DepthVector &
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depths, const std::string &outputFile)
182 {
183 std::ofstream file_(outputFile);
184 file_ << "Lat,Lon,Depth" << "\r\n";
185 for (TwoDGrid::DepthVector::const_iterator itr = depths.

begin(); itr != depths.end(); ++itr)
186 {
187 file_ << std::setprecision(15) << Math::Angles::degrees(

itr->Lat) << "," << Math::Angles::degrees(itr->Lon) <<
"," << Math::Angles::degrees(itr->Depth) << "\r\n";

188 }
189 return false;
190 }
191
192 std::pair<TwoDGrid::DepthVector, TwoDGrid::LocationVector>
193 TwoDGrid::checkTransect(double startLat, double startLon,

double endLat, double endLon, double steps) { // Add depth
limit

194 float stepLat= (endLat-startLat)/steps;
195 float stepLon= (endLon-startLon)/steps;
196 TwoDGrid::LocationVector groundingPositions=TwoDGrid::

LocationVector();
197 TwoDGrid::DepthVector returnVector = TwoDGrid::DepthVector()

;
198
199 // Iterate through points on line between start- and end-

position
200 for(unsigned int step=0; step<steps;step++) {
201
202 // Get four closest depth soundings
203 TwoDGrid::DepthVector fourClosest = this->getClosestDepths

(startLat+step*stepLat, startLon+step*stepLon,
gridSize);

204
205 // If less than four depth soundings available, it’s

probably ground
206 if(fourClosest.size() < 4) {
207 groundingPositions.push_back(TwoDGrid::

LocationDataContainer_t(startLat+step*stepLat,
startLon+step*stepLon));

208 } else {
209
210 // Select the closest of the four depth soundings
211 double closest_distance=-1;
212 TwoDGrid::DepthDataContainer_t closest= TwoDGrid::

DepthDataContainer_t();
213 for (TwoDGrid::DepthVector::iterator itr = fourClosest.

begin(); itr != fourClosest.end(); ++itr) {
214 double distance = Coordinates::WGS84::distance(

startLat+step*stepLat, startLon+step*stepLon,0,
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itr->Lat, itr->Lon,0);
215 if (distance < closest_distance or closest_distance <

0.0) {
216 closest_distance=distance;
217 closest = *itr;
218 }
219 }
220 returnVector.push_back(closest);
221 }
222 }
223 return std::pair<TwoDGrid::DepthVector, TwoDGrid::

LocationVector>(returnVector,groundingPositions);
224 }
225
226
227 std::pair<TwoDGrid::DepthVector, TwoDGrid::LocationVector>
228 TwoDGrid::checkTransect(double startLat, double startLon,

double endLat, double endLon) {
229 double distance = Coordinates::WGS84::distance(startLat,

startLon,0, endLat, endLon,0);
230 return TwoDGrid::checkTransect(startLat, startLon, endLat,

endLon, distance/gridSize);
231 }
232
233 TwoDGrid::DepthVector TwoDGrid::getCorridor(double startLat,

double startLon, double endLat, double endLon, double
steps, double corridorWidth) {

234 float stepLat= (endLat-startLat)/steps;
235 float stepLon= (endLon-startLon)/steps;
236
237 TwoDGrid::DepthVector returnDepthVector = this->getSquare(

startLat, startLon, corridorWidth);
238 for(unsigned int step=1; step<steps;step++) {
239 TwoDGrid::DepthVector squareAroundCurrentStep = this->

getSquare(startLat+step*stepLat, startLon+step*stepLon
, corridorWidth);

240
241 returnDepthVector.insert(returnDepthVector.end(),

squareAroundCurrentStep.begin(),
squareAroundCurrentStep.end());

242 }
243 return returnDepthVector;
244 }
245
246 TwoDGrid::DepthVector TwoDGrid::getCorridor(double startLat,

double startLon, double endLat, double endLon, double
corridorWidth) {

247 double distance = Coordinates::WGS84::distance(startLat,
startLon,0, endLat, endLon,0);

248 return getCorridor(startLat, startLon, endLat, endLon,

136



distance/(gridSize/2*std::sqrt(2)), corridorWidth);
249 }
250 } // End of namespace SituationalAwareness
251 } // End of namespace DUNE

D.3.4 PointsOfInterest Class

Code D.8: PointsOfInterest.hpp

30 #ifndef DUNE_SITUATIONALAWARENESS_POINTSOFINTEREST_HPP_INCLUDED_
31 #define DUNE_SITUATIONALAWARENESS_POINTSOFINTEREST_HPP_INCLUDED_
32
33 // DUNE headers.
34 //#include <DUNE/Config.hpp>
35 //#include <DUNE/DUNE.hpp>
36 #include <DUNE/SituationalAwareness/LocationData.hpp>
37
38
39 namespace DUNE
40 {
41 namespace SituationalAwareness
42 {
43 // Export DLL Symbol.
44 class DUNE_DLL_SYM PointsOfInterest;
45
46 //! The PointsOfInterest class
47 class PointsOfInterest: public LocationData
48 {
49 public:
50 //! PointsOfInterest constructor.
51 PointsOfInterest(std::string dbPath);
52
53 //! PointsOfInterest destructor.
54 ˜PointsOfInterest(void);
55 LocationVector getPOISquare(double Lat, double Lon, double

half_size, std::string tablename);
56 };
57 }
58 }
59
60
61 #endif // END

DUNE_SITUATIONALAWARENESS_POINTSOFINTEREST_HPP_INCLUDED_

Code D.9: PointsOfInterest.cpp

30 // DUNE headers.
31 #include <DUNE/DUNE.hpp>
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32 #include <DUNE/System/Error.hpp>
33 #include <DUNE/SituationalAwareness/PointsOfInterest.hpp>
34
35 // Other C++
36 #include <fstream>
37 #include <iostream>
38
39 namespace DUNE
40 {
41 namespace SituationalAwareness
42 {
43 PointsOfInterest::PointsOfInterest(std::string dbPath):DUNE::

SituationalAwareness::LocationData(dbPath) {
44 }
45
46 PointsOfInterest::˜PointsOfInterest(void){
47 }
48
49 PointsOfInterest::LocationVector PointsOfInterest::

getPOISquare(double Lat, double Lon, double half_size, std
::string tablename)

50 {
51
52 std::string c_stmt = "select Lat, Lon from " + tablename + "

where " + makeSquareWhereClause(Lat, Lon, half_size);
53
54 PointsOfInterest::LocationVector returnVector;
55 try{
56 Database::Statement* iterator_stmt = new Database::

Statement(c_stmt.c_str(), *db_connection);
57 std::pair<bool, double> SQLLat;
58 std::pair<bool, double> SQLLon;
59 unsigned int cntr=0;
60 while (iterator_stmt->execute())
61 {
62 *iterator_stmt >> SQLLat >> SQLLon;
63 if(std::get<0>(SQLLat)) {
64 returnVector.push_back(PointsOfInterest::

LocationDataContainer_t(std::get<1>(SQLLat), std::
get<1>(SQLLon)));

65 cntr++;
66 }
67 }
68 iterator_stmt->reset();
69 delete iterator_stmt;
70 } catch(std::runtime_error& e) {
71 throw Error("Problem while executing statement \"" +

c_stmt + "\": ", System::Error::getLastMessage());
72 }
73 return returnVector;
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74 }
75 } // End of namespace SituationalAwareness
76 } // End of namespace DUNE

D.3.5 PathPlanner Class

Code D.10: PathPlanner.hpp

30 #ifndef DUNE_SITUATIONALAWARENESS_PATHPLANNER_HPP_INCLUDED_
31 #define DUNE_SITUATIONALAWARENESS_PATHPLANNER_HPP_INCLUDED_
32
33 // DUNE headers.
34 #include <DUNE/SituationalAwareness/TwoDGrid.hpp>
35 #include <map>
36
37 namespace DUNE
38 {
39 namespace SituationalAwareness
40 {
41 // Export DLL Symbol.
42 class DUNE_DLL_SYM PathPlanner;
43
44 //! The TwoDGrid class
45 class PathPlanner: private DUNE::SituationalAwareness::

TwoDGrid
46 {
47 public:
48 class Error: public std::runtime_error
49 {
50 public:
51 Error(std::string op, std::string msg):
52 std::runtime_error("PathPlanner error (" + op + "):

" + msg)
53 { }
54 };
55 //! Data structure for search
56 class searchData_t
57 {
58 public:
59 double f;
60 double g;
61 LocationDataContainer_t parent;
62 searchData_t(): f(0.0), g(0.0), parent() {
63 }
64 searchData_t(double inF, double inG, double

inLatParent, double inLonParent): f(inF), g(inG),
parent(inLatParent, inLonParent) {

65 }

139



66 };
67
68 typedef std::pair<LocationDataContainer_t, searchData_t>

searchNode;
69 typedef std::map<LocationDataContainer_t, searchData_t>

searchNodeMap;
70
71 PathPlanner(const std::string &dbPath, double dbGridSize);
72 ˜PathPlanner(void);
73
74 searchNodeMap findPath(double startLat, double startLon,

double endLat, double endLon, double squareSize = 75,
double goalDistance = 37.0, unsigned int maxIter =
1000000);

75
76 searchNodeMap tracePath(PathPlanner::searchNodeMap::

const_iterator endNode, const searchNodeMap &inNodeMap
);

77 void writeCSVfile(const searchNodeMap &inMap, const std::
string &outputFile);

78 private:
79 double calcH(const LocationDataContainer_t &node, const

LocationDataContainer_t &endNode);
80 double calcG(const LocationDataContainer_t &node, const

LocationDataContainer_t &endNode);
81
82 bool isNodeGoal(const LocationDataContainer_t &node, const

LocationDataContainer_t &goalNode, double
distanceLimit);

83 bool isNodeInMap(PathPlanner::searchNodeMap::
const_iterator nodeItr, const searchNodeMap &inMap);

84
85 searchNodeMap depthVecToSearchMap(const TwoDGrid::

DepthVector &inDepthVec);
86
87 searchNodeMap::const_iterator findParent(searchNodeMap::

const_iterator inNodeItr, const searchNodeMap &
inNodeMap);

88 searchNodeMap::iterator findLowestf(searchNodeMap &
inNodeMap);

89 };
90 }
91 }
92
93
94 #endif

Code D.11: PathPlanner.cpp

30 // DUNE headers.
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31 #include <DUNE/SituationalAwareness/PathPlanner.hpp>
32 #include <DUNE/Coordinates.hpp>
33 #include <DUNE/Math.hpp>
34 // Other C++
35 #include <fstream>
36 #include <iostream>
37 #include <iomanip>
38
39 namespace DUNE
40 {
41 namespace SituationalAwareness
42 {
43 PathPlanner::PathPlanner(const std::string &dbPath, double

dbGridSize):TwoDGrid(dbPath, dbGridSize){
44
45 }
46 PathPlanner::˜PathPlanner(void){
47
48 }
49 /// Path planning ///
50
51
52 double PathPlanner::calcH(const PathPlanner::

LocationDataContainer_t &node, const PathPlanner::
LocationDataContainer_t &endNode) {

53 /*double D=50;
54 double D2=75;
55 double d_max = std::max( std::abs(node.Lat-endNode.Lat),

std::abs(node.Lon-endNode.Lon) );
56 double d_min = std::min( std::abs(node.Lat-endNode.Lat),

std::abs(node.Lon-endNode.Lon) );
57 return D*d_max + (D2-D)*d_min;*/
58
59 // uniform Diagonal Distance heuristic WGS84
60 // return std::max(WGS84::distance(nodeLat, nodeLon,0,

nodeLat, endLon,0), WGS84::distance(nodeLat, nodeLon,0,
endLat, nodeLon,0));

61
62 // Euclidian distance heuristic
63 return 1*Coordinates::WGS84::distance(node.Lat, node.Lon,0,

endNode.Lat, endNode.Lon,0);
64
65 // Manhattan distance heuristic WGS84
66 // return WGS84::distance(nodeLat, nodeLon,0, nodeLat,

endLon,0+WGS84::distance(nodeLat, nodeLon,0, endLat,
nodeLon,0);

67 }
68
69 double PathPlanner::calcG(const PathPlanner::

LocationDataContainer_t &fromNode, const PathPlanner::

141



LocationDataContainer_t &toNode) {
70 // Euclidian distance
71 return Coordinates::WGS84::distance(fromNode.Lat, fromNode.

Lon,0, toNode.Lat, toNode.Lon,0);
72 }
73
74 PathPlanner::searchNodeMap::iterator PathPlanner::findLowestf(

PathPlanner::searchNodeMap &inNodeMap) {
75 PathPlanner::searchNodeMap::iterator lowestFNode = inNodeMap

.end();
76 for (PathPlanner::searchNodeMap::iterator itr = inNodeMap.

begin(); itr != inNodeMap.end(); ++itr) {
77 if(lowestFNode==inNodeMap.end() || itr->second.f <

lowestFNode->second.f) {
78 lowestFNode = itr;
79 }
80 }
81 return lowestFNode;
82 }
83
84 bool PathPlanner::isNodeGoal(const PathPlanner::

LocationDataContainer_t &node, const PathPlanner::
LocationDataContainer_t &goalNode, double distanceLimit){

85
86 if( distanceLimit < Coordinates::WGS84::distance(node.Lat,

node.Lon,0, goalNode.Lat, goalNode.Lon,0) ) {
87 return false;
88 } else {
89 return true;
90 }
91 }
92
93 bool PathPlanner::isNodeInMap(PathPlanner::searchNodeMap::

const_iterator nodeItr, const PathPlanner::searchNodeMap &
inMap) {

94 PathPlanner::searchNodeMap::const_iterator match = inMap.
find(nodeItr->first);

95 if(match != inMap.end())
96 return true;
97
98 return false;
99 }

100
101 PathPlanner::searchNodeMap PathPlanner::depthVecToSearchMap(

const TwoDGrid::DepthVector &inDepthVec) {
102 PathPlanner::searchNodeMap returnNodes;
103 for (TwoDGrid::DepthVector::const_iterator itr = inDepthVec.

begin(); itr != inDepthVec.end(); ++itr) {
104 returnNodes.emplace(LocationDataContainer_t(itr->Lat, itr

->Lon), PathPlanner::searchData_t(0.0, -1.0, 0.0, 0.0)
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);
105 }
106 return returnNodes;
107 }
108
109 PathPlanner::searchNodeMap::const_iterator PathPlanner::

findParent(PathPlanner::searchNodeMap::const_iterator
inNodeItr,const PathPlanner::searchNodeMap &inNodeMap) {

110 return inNodeMap.find(inNodeItr->second.parent);
111 }
112
113 PathPlanner::searchNodeMap PathPlanner::tracePath(PathPlanner

::searchNodeMap::const_iterator endNode, const PathPlanner
::searchNodeMap &inNodeMap) {

114 PathPlanner::searchNodeMap returnMap;
115 unsigned int maxIter = 10000;
116 unsigned int iter = 0;
117 PathPlanner::searchNodeMap::const_iterator node = findParent

(endNode, inNodeMap);
118 while(!inNodeMap.empty()) {
119 returnMap.emplace(*node);
120 if(iter >= maxIter) {
121 printf("maxIter reached");
122 break;
123 }
124 if(node->second.f== -1) {
125 printf("Start reached");
126 break;
127 }
128 if(node == inNodeMap.end()) {
129 printf("Parent not found");
130 break;
131 }
132 node = findParent(node, inNodeMap);
133 iter++;
134 }
135 return returnMap;
136 }
137
138 //! A* algorithm using depthmapRad
139 PathPlanner::searchNodeMap PathPlanner::findPath(double

startLat, double startLon, double endLat, double endLon,
double squareSize,double goalDistance, unsigned int
maxIter) {

140 unsigned int iterations = 0;
141 double minDepth_m = 0.0;
142 PathPlanner::searchNodeMap openNodes;
143 PathPlanner::searchNodeMap closedNodes;
144 LocationDataContainer_t endLocation =

LocationDataContainer_t(endLat, endLon);
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145 openNodes.emplace(LocationDataContainer_t(startLat, startLon
),PathPlanner::searchData_t(-1.0, 0.0, 0.0, 0.0));

146
147 // Allocating loop-variables
148 PathPlanner::searchNodeMap::iterator currentNodeItr;
149 std::pair<PathPlanner::searchNodeMap::iterator, bool>

currentPair;
150 PathPlanner::searchNode currentNode;
151 double tentativeG;
152 PathPlanner::searchNodeMap::iterator currentSuccessorNodeItr

;
153 while(!openNodes.empty()) {
154 if(iterations >= maxIter) {
155 break;
156 }
157 // Get element with smallest f, remove from openNodes and

add to closedNodes
158 currentNodeItr = findLowestf(openNodes);
159
160 currentPair = closedNodes.emplace(*currentNodeItr);
161 currentNode = *(currentPair.first);
162
163 openNodes.erase(currentNodeItr);
164 // Check if current node is goal
165 if(isNodeGoal(currentNode.first, endLocation, goalDistance

)) {
166 printf("FoundDest, writing open\n");
167 writeCSVfile(openNodes, "/home/nikolai/debugdune/ppopen.

csv");
168 printf("FoundDest, writing closed\n");
169 writeCSVfile(closedNodes, "/home/nikolai/debugdune/

ppclosed.csv");
170 printf("Tracing path\n");
171 return tracePath(currentPair.first,closedNodes);
172 }
173
174 // Get successors(in a square) and set parent location
175 //searchNodeMap successor = depthVecToSearchMap(this->

getWithinRadius(currentNode.first, squareSize,
minDepth_m));

176 searchNodeMap successor = depthVecToSearchMap(this->
getSquare(currentNode.first, squareSize, minDepth_m));

177
178 // Process successors
179 for (PathPlanner::searchNodeMap::iterator itr = successor.

begin(); itr != successor.end(); ++itr) {
180 tentativeG = currentNode.second.g + calcG(currentNode.

first, itr->first);
181 currentSuccessorNodeItr = openNodes.find(itr->first);
182 if(currentSuccessorNodeItr != openNodes.end()) {//Is
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node already in openNodes
183 if(tentativeG < currentSuccessorNodeItr->second.g) {//

Has the g value improved?
184 currentSuccessorNodeItr->second.parent = currentNode

.first;
185 currentSuccessorNodeItr->second.g = tentativeG;
186 currentSuccessorNodeItr->second.f =

currentSuccessorNodeItr->second.g + calcH(
currentSuccessorNodeItr->first, endLocation);

187 if(!isNodeInMap(currentSuccessorNodeItr, closedNodes
)) {//Has the node neighbour of the node been
expanded before?

188 openNodes.emplace(*currentSuccessorNodeItr);
189 }
190 }
191 } else {// Node not in Opennodes
192 if(!isNodeInMap(itr, closedNodes)) {
193 itr->second.parent = currentNode.first;
194 itr->second.g = tentativeG;
195 itr->second.f = itr->second.g + calcH(itr->first,

endLocation);
196 openNodes.emplace(*itr);
197 }
198 }
199 }
200 if(openNodes.empty()) { // Just for debugging
201 printf("Empty Opennodes!\n");
202 break;
203 }
204 iterations++;
205 }
206 return closedNodes;
207 }
208
209 void PathPlanner::writeCSVfile(const PathPlanner::

searchNodeMap &inMap, const std::string &outputFile)
210 {
211 std::ofstream file_(outputFile);
212 file_ << "Lat,Lon,LatParent,LonParent,f,g" << "\r\n";
213 for (PathPlanner::searchNodeMap::const_iterator itr = inMap.

begin(); itr != inMap.end(); ++itr)
214 {
215 file_ << std::setprecision(15) << Math::Angles::degrees(

itr->first.Lat) << "," << Math::Angles::degrees(itr->
first.Lon) << "," << Math::Angles::degrees(itr->second
.parent.Lat) << "," << Math::Angles::degrees(itr->
second.parent.Lon) << "," << itr->second.f << "," <<
itr->second.g << "\r\n";// << "," << itr->second.h <<
"\r\n";

216 }

145



217 }
218 }
219 }

D.3.6 Grounding Task

Code D.12: Task.cpp Grounding Supervisor.

30 // ISO C++ 98 headers.
31 #include <cstring>
32 #include <cmath>
33 #include <vector>
34 #include <string>
35 #include <fstream>
36 #include <sstream>
37
38 #include <chrono> // For timing only, can be removed
39
40 // DUNE headers.
41 #include <DUNE/DUNE.hpp>
42
43 namespace Supervisors
44 {
45 //! Insert short task description here.
46 //!
47 //! Insert explanation on task behaviour here.
48 //! @author Nikolai Lauv s & Alberto Dallolio
49 namespace Grounding
50 {
51 using DUNE_NAMESPACES;
52 struct Arguments
53 {
54 //! Path to DB file
55 std::string db_path;
56 //! Path to debug folder
57 std::string debug_path;
58 //! Map resolution.
59 double map_res;
60 //! Range around location of interest.
61 double range;
62 //! Grid size.
63 double grid_size;
64 //! Surroundings check frequency.
65 double surr_check;
66 //! GPS entity label.
67 std::string elabel_gps;
68 };
69
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70 struct Task: public DUNE::Tasks::Task
71 {
72 //! Debug variable.
73 int m_surr_num;
74 //! Current Lat and Lon of vehicle.
75 double m_current_lat, m_current_lon;
76 //! Timer.
77 Time::Counter<float> m_timer;
78 //! GPS entity eid.
79 int m_gps_eid;
80 // Task arguments
81 Arguments m_args;
82 // Database handle.
83 SituationalAwareness::TwoDGrid* m_nc;
84
85 //! Constructor.
86 //! @param[in] name task name.
87 //! @param[in] ctx context.
88 Task(const std::string& name, Tasks::Context& ctx):
89 DUNE::Tasks::Task(name, ctx),
90 m_surr_num(0),
91 m_current_lat(0.0),
92 m_current_lon(0.0),
93 m_nc(NULL)
94 {
95 param("Digital Map Path", m_args.db_path)
96 .defaultValue("")
97 .description("Path to digital map DB file");
98
99 param("Debug Path", m_args.debug_path)

100 .defaultValue("")
101 .description("Path to where debuging files are saved");
102
103 param("Digital Map Resolution", m_args.map_res)
104 .units(Units::Meter)
105 .defaultValue("")
106 .description("Digital Map resolution in meters");
107
108 param("Range Around Location", m_args.range)
109 .units(Units::Meter)
110 .defaultValue("")
111 .description("Radius [m] of circle containing queried

locations, around location of interest");
112
113 param("Squared Grid Size", m_args.grid_size)
114 .units(Units::Meter)
115 .defaultValue("")
116 .description("Grid Size");
117
118 param("Surroundings Check Frequency", m_args.surr_check)
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119 .units(Units::Second)
120 .defaultValue("180.0")
121 .minimumValue("0.0")
122 .description("Frequency at which current vehicles

surroundings are observed");
123
124 param("Entity Label - GPS", m_args.elabel_gps)
125 .description("Entity label of ’GpsFix’ message");
126
127 bind<IMC::Abort>(this);
128 bind<IMC::PlanSpecification>(this);
129 bind<IMC::GpsFix>(this);
130
131 }
132
133 //! Update internal state with new parameter values.
134 void
135 onUpdateParameters(void)
136 {
137 if(paramChanged(m_args.surr_check))
138 m_timer.setTop(m_args.surr_check);
139 }
140
141 //! Reserve entity identifiers.
142 void
143 onEntityReservation(void)
144 {
145 }
146
147 void
148 onEntityResolution(void)
149 {
150 try
151 {
152 m_gps_eid = resolveEntity(m_args.elabel_gps);
153 }
154 catch (...)
155 {
156 m_gps_eid = 0;
157 }
158 }
159
160 //! Acquire resources.
161 void
162 onResourceAcquisition(void)
163 {
164 try {
165 m_nc = new SituationalAwareness::TwoDGrid(m_args.db_path

, m_args.map_res);
166 } catch(std::runtime_error& e) {
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167 inf(DTR("Problem opening charts: %s"), e.what());
168 }
169 }
170
171 //! Initialize resources.
172 void
173 onResourceInitialization(void)
174 {
175 //! Set timer for periodic check of surroundings.
176 m_timer.setTop(m_args.surr_check);
177 }
178
179 //! Release resources.
180 void
181 onResourceRelease(void)
182 {
183
184 try {
185 Memory::clear(m_nc);
186 }
187 catch(std::runtime_error& e) {
188 err(DTR("Could not clear Nautical charts class: %s"), e.

what());
189 }
190
191 }
192
193 void
194 consume(const IMC::Abort* msg)
195 {
196 if (msg->getDestination() != getSystemId())
197 return;
198
199 if (isActive())
200 requestDeactivation();
201 }
202
203 void
204 consume(const IMC::GpsFix* msg)
205 {
206 if(msg->getSource() != getSystemId() || msg->

getSourceEntity() != m_gps_eid)
207 return;
208 m_current_lat=msg->lat;
209 m_current_lon=msg->lon;
210
211 if(m_timer.overflow())
212 {
213 //! Check vehicle surroundings.
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214 TwoDGrid::DepthVector a = m_nc->getWithinRadius(
m_current_lat, m_current_lon, m_args.range);

215 for (TwoDGrid::DepthVector::iterator itr = a.begin();
itr != a.end(); ++itr)

216 {
217 inf("%f %f %f", itr->Lat, itr->Lon, itr->Depth);
218 }
219 //! Is just a variable for debugging m_surr_num.
220 m_nc->writeCSVfile(a, m_args.debug_path + "surroundings"

+ std::to_string(m_surr_num) + ".csv");
221 m_surr_num++;
222
223 m_timer.reset();
224 }
225 }
226
227 void
228 consume(const IMC::PlanSpecification* msg)
229 {
230 std::vector<IMC::Maneuver> maneuvers_list;
231 //Create waypoints matrix: first row has vehicle current

position.
232 Math::Matrix waypoints(msg->maneuvers.size()+1, 2);
233 waypoints(0,0) = m_current_lat;
234 waypoints(0,1) = m_current_lon;
235
236 unsigned i=0;
237 // Iterate through plan maneuvers
238 for (std::vector<IMC::PlanManeuver*>::const_iterator itr =

msg->maneuvers.begin(); itr != msg->maneuvers.end();
++itr)

239 {
240 // For now just to GoTos.
241 const IMC::Goto* m = static_cast<const IMC::Goto*>((*itr

)->data.get());
242 //spew("LAT LON: %0.4f %0.4f", m->lat, m->lon);
243
244 waypoints(i+1,0) = m->lat;
245 waypoints(i+1,1) = m->lon;
246 i=i+1;
247 }
248 //SituationalAwareness::DensifiedVertices* m_dep = new

SituationalAwareness::DensifiedVertices(m_args.db_path
, 10);

249
250 for(int j=1; j<waypoints.rows(); j++)
251 {
252
253 // Depthmap based grounding check
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254 spew("LAT LON destLat destLON: %0.4f %0.4f %0.4f %0.4f",
waypoints(j-1,0), waypoints(j-1,1), waypoints(j,0),
waypoints(j,1));

255 std::string directory = m_args.debug_path + "
dune_transect_" + std::to_string(j) + ".csv";

256 std::pair<TwoDGrid::DepthVector, LocationData::
LocationVector> transectcheck= m_nc->checkTransect(
waypoints(j-1,0), waypoints(j-1,1), waypoints(j,0),
waypoints(j,1));

257 m_nc->writeCSVfile(transectcheck.first, directory);
258
259 // For exporting the areas considered land.
260 //SituationalAwareness::LocationData* m_ld = new

SituationalAwareness::LocationData(m_args.db_path);
261 //directory = m_args.debug_path + "dune_transect_land_"

+ std::to_string(j) + ".csv";
262 //m_ld->writeCSVfile(transectcheck.second, directory);
263
264
265 inf("%u", transectcheck.second.size());
266 if(transectcheck.second.size() !=0) {
267 inf("Aborted because of grounding (depthmap based)");
268 IMC::Abort abort;
269 abort.setDestination(getSystemId());
270 dispatch(abort);
271 } else {
272 inf("No grounding detected, maneuver approved");
273 }
274 /*
275 // DEPARE based grounding check
276 std::string directory = m_args.debug_path + "

dune_transect_" + std::to_string(j) + ".csv";
277 DensifiedVertices::DEPAREVector transectCorridor = m_dep

->getCorridor(waypoints(j-1,0), waypoints(j-1,1),
waypoints(j,0), waypoints(j,1), 20);

278 m_dep->writeCSVfile(transectCorridor, directory);
279 if(!m_dep->isDepthAbove(transectCorridor, 10)) {
280 inf("Aborted because of grounding (depare based)");
281 IMC::Abort abort;
282 abort.setDestination(getSystemId());
283 dispatch(abort);
284 } else {
285 inf("No grounding detected, maneuver approved");
286 }
287 */
288 }
289 }
290
291 void
292 readCoordFromFile(std::string path)
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293 {
294 std::vector<double> lat, lon;
295 std::fstream in(path);
296
297 std::string line;
298 double lat_val, lon_val;
299
300 while(std::getline(in, line))
301 {
302 std::istringstream iss(line);
303 iss >> lat_val >> lon_val;
304 lat.push_back(Angles::radians(lat_val));
305 lon.push_back(Angles::radians(lon_val));
306 }
307
308 in.close();
309 }
310
311
312
313
314 //! Main loop.
315 void
316 onMain(void)
317 {
318 while (!stopping())
319 {
320 waitForMessages(1.0);
321 }
322 }
323 };
324 }
325 }
326
327 DUNE_TASK

D.3.7 ThelmaBiotel Hydrophone Task
In addition to the included code, a separate thread is used for reading the serial input. This
is almost identical with the one used in DUNEs GPS task, and because so few modifica-
tions has been made to it, it’s not included here. It’s available in the GitHub repository.
There is also a header file containing definitions of the commands supported by the TB
Live. As this is not used, it has not been included here.

Code D.13: Task.cpp ThelmaBiotel Hydrophone Sensors.

30
31 //TODO: Add feature: position at 5s before tag registration in imc

message.
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32 // ISO C++ 98 headers.
33 #include <cstring>
34 #include <algorithm>
35 #include <cstddef>
36 #include <ctime>
37 #include <string>
38 #include <sstream>
39 #include <chrono>
40
41 // DUNE headers.
42 #include <DUNE/DUNE.hpp>
43 //#include <DUNE/Time/Clock.hpp>
44
45 // Local headers.
46 #include "Reader.hpp"
47 #include "commands.hpp"
48
49 namespace Sensors
50 {
51 //! Device driver for ThelmaHydrophone
52 namespace ThelmaHydrophone
53 {
54 using DUNE_NAMESPACES;
55
56 //! Maximum number of initialization commands.
57 static const unsigned c_max_init_cmds = 14;
58 //! Timeout for waitReply() function.
59 static const float c_wait_reply_tout = 4.0;
60 //! Power on delay.
61 static const double c_pwr_on_delay = 5.0;
62 //! Number of fields in fish tag message
63 static const unsigned c_tag_fields = 9;
64 //! Number of fields in TBR-700RT sensor reading
65 static const unsigned c_tbr_sensor_fields = 8;
66 //! Message used to sync Thelma hydrophones
67 static const std::string syncString = "(+)";
68
69 struct Arguments
70 {
71 //! Serial port device.
72 std::string uart_dev;
73 //! Serial port baud rate.
74 unsigned uart_baud;
75 //! Order of sentences.
76 std::vector<std::string> stn_order;
77 //! Input timeout in seconds.
78 float inp_tout;
79 //! Initialization commands.
80 std::string init_cmds[c_max_init_cmds];
81 //! Initialization replies.
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82 std::string init_rpls[c_max_init_cmds];
83 //! Power channels.
84 std::vector<std::string> pwr_channels;
85 //! Write full unix timestamp every timestamp_send_divider

times task is run.
86 unsigned int timestamp_send_divider;
87 //! Sync Period;
88 double sync_period;
89 };
90
91 struct Task: public DUNE::Tasks::Task
92 {
93 //! Serial port handle.
94 IO::Handle* m_handle;
95 //! Task arguments.
96 Arguments m_args;
97 //! Last initialization line read.
98 std::string m_init_line;
99 //! TBRReader thread.

100 TBRReader* m_TBRReader;
101 //! How often the full unix timestamp is sent, in executions

% counter
102 unsigned int timestamp_send_counter;
103 //! Timer.
104 Time::Counter<float> m_sync_timer;
105 //! Current Lat and Lon of vehicle.
106 fp64_t m_current_lat, m_current_lon;
107
108 Task(const std::string& name, Tasks::Context& ctx):
109 DUNE::Tasks::Task(name, ctx),
110 m_handle(NULL),
111 m_TBRReader(NULL),
112 m_current_lat(0.0),
113 m_current_lon(0.0)
114 {
115 // Define configuration parameters.
116 param("Serial Port - Device", m_args.uart_dev)
117 .defaultValue("")
118 .description("Serial port device used to communicate with

the sensor");
119
120 param("Serial Port - Baud Rate", m_args.uart_baud)
121 .defaultValue("115200")
122 .description("Serial port baud rate");
123
124 param("Sync Period", m_args.sync_period)
125 .units(Units::Second)
126 .defaultValue("10.0")
127 .minimumValue("0.0")
128 .description("Period between sync messages");
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129
130 param("Write full timestamp divider", m_args.

timestamp_send_divider)
131 .defaultValue("6")
132 .minimumValue("1")
133 .description("Write full unix timestamp every

timestamp_send_divider times task is run.");
134
135 param("Input Timeout", m_args.inp_tout)
136 .units(Units::Second)
137 .defaultValue("4.0")
138 .minimumValue("0.0")
139 .description("Input timeout");
140
141 param("Power Channel - Names", m_args.pwr_channels)
142 .defaultValue("")
143 .description("Device’s power channels");
144
145 param("Sentence Order", m_args.stn_order)
146 .defaultValue("")
147 .description("Sentence order");
148
149 for (unsigned i = 0; i < c_max_init_cmds; ++i)
150 {
151 std::string cmd_label = String::str("Initialization

String %u - Command", i);
152 param(cmd_label, m_args.init_cmds[i])
153 .defaultValue("");
154
155 std::string rpl_label = String::str("Initialization

String %u - Reply", i);
156 param(rpl_label, m_args.init_rpls[i])
157 .defaultValue("");
158 }
159
160 bind<IMC::DevDataText>(this);
161 bind<IMC::IoEvent>(this);
162 bind<IMC::GpsFix>(this);
163 }
164 //! Update internal state with new parameter values.
165 void
166 onUpdateParameters(void)
167 {
168 if(paramChanged(m_args.sync_period))
169 m_sync_timer.setTop(m_args.sync_period);
170 }
171 void
172 onResourceAcquisition(void)
173 {
174 if (m_args.pwr_channels.size() > 0)
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175 {
176 IMC::PowerChannelControl pcc;
177 pcc.op = IMC::PowerChannelControl::PCC_OP_TURN_ON;
178 for (size_t i = 0; i < m_args.pwr_channels.size(); ++i)
179 {
180 pcc.name = m_args.pwr_channels[i];
181 dispatch(pcc);
182 }
183 }
184
185 Counter<double> timer(c_pwr_on_delay);
186 while (!stopping() && !timer.overflow())
187 waitForMessages(timer.getRemaining());
188
189 try
190 {
191 if (!openSocket())
192 m_handle = new SerialPort(m_args.uart_dev, m_args.

uart_baud);
193
194 m_TBRReader = new TBRReader(this, m_handle);
195 m_TBRReader->start();
196 }
197 catch (...)
198 {
199 throw RestartNeeded(DTR("1"), 5);
200 }
201 }
202
203 bool
204 openSocket(void)
205 {
206 char addr[128] = {0};
207 unsigned port = 0;
208
209 if (std::sscanf(m_args.uart_dev.c_str(), "tcp://%[ˆ:]:%u",

addr, &port) != 2)
210 return false;
211
212 TCPSocket* sock = new TCPSocket;
213 sock->connect(addr, port);
214 m_handle = sock;
215 return true;
216 }
217
218 void
219 onResourceRelease(void)
220 {
221 if (m_TBRReader != NULL)
222 {

156



223 m_TBRReader->stopAndJoin();
224 delete m_TBRReader;
225 m_TBRReader = NULL;
226 }
227
228 Memory::clear(m_handle);
229 }
230
231 void
232 onResourceInitialization(void)
233 {
234 bool configuration_mode = false;
235 for (unsigned i = 0; i < c_max_init_cmds; ++i)
236 {
237 if (m_args.init_cmds[i].empty())
238 continue;
239 if(!configuration_mode) {
240 slowTbrSend(TBCMD_ENTER_COMMAND_MODE); //TODO:Check

for response
241 configuration_mode = true;
242 }
243 std::string cmd = String::unescape(m_args.init_cmds[i]);
244 m_handle->writeString(cmd.c_str());
245
246 if (!m_args.init_rpls[i].empty())
247 {
248 std::string rpl = String::unescape(m_args.init_rpls[i

]);
249 if (!waitInitReply(rpl))
250 {
251 err("%s: %s", DTR("no reply to command"), m_args.

init_cmds[i].c_str());
252 throw std::runtime_error(DTR("failed to setup device

"));
253 }
254 }
255 }
256 if(configuration_mode) {
257 commandTbrSend(TBCMD_EXIT_COMMAND_MODE); //TODO:Check

for response
258 configuration_mode = true;
259 }
260
261
262 setEntityState(IMC::EntityState::ESTA_NORMAL, Status::

CODE_ACTIVE);
263 //! Set timer for periodic check of surroundings.
264 debug("Waiting to start timer to dividable by 10.");
265 while(std::time(0) % 10 != 0);
266 m_sync_timer.setTop(m_args.sync_period);
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267 sendTbrTimestampSync();
268 debug("Finished waiting to start timer to dividable by 10.

");
269 }
270
271 void
272 consume(const IMC::DevDataText* msg)
273 {
274 if (msg->getDestination() != getSystemId())
275 return;
276
277 if (msg->getDestinationEntity() != getEntityId())
278 return;
279
280 spew("%s", sanitize(msg->value).c_str());
281
282 if (getEntityState() == IMC::EntityState::ESTA_BOOT)
283 m_init_line = msg->value;
284 else
285 processSentence(msg->value);
286 }
287
288 void
289 consume(const IMC::IoEvent* msg)
290 {
291 if (msg->getDestination() != getSystemId())
292 return;
293
294 if (msg->getDestinationEntity() != getEntityId())
295 return;
296
297 if (msg->type == IMC::IoEvent::IOV_TYPE_INPUT_ERROR)
298 throw RestartNeeded(msg->error, 5);
299 }
300
301 void
302 consume(const IMC::GpsFix* msg)
303 {
304 if (msg->getSource() != getSystemId())
305 return;
306 m_current_lat=msg->lat;
307 m_current_lon=msg->lon;
308 //spew("Received position: %f %f \n", m_current_lat,

m_current_lon);
309 }
310
311 //! Wait reply to initialization command.
312 //! @param[in] stn string to compare.
313 //! @return true on successful match, false otherwise.
314 bool
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315 waitInitReply(const std::string& stn)
316 {
317 Counter<float> counter(c_wait_reply_tout);
318 while (!stopping() && !counter.overflow())
319 {
320 waitForMessages(counter.getRemaining());
321 if (m_init_line == stn)
322 {
323 m_init_line.clear();
324 return true;
325 }
326 }
327
328 return false;
329 }
330
331 uint8_t calcLuhnVerifDigit(uint32_t timestamp) // From TB

Live datasheet, fw1.0.1 rev.1
332 {
333 uint16_t digitSum = 0;
334 uint32_t digit = 0;
335 for(uint8_t i = 0; i < 9; i ++) {
336 timestamp /= 10;
337 digit = timestamp % 10;
338 if( (i % 2) == 0 ) {
339 digit *= 2;
340 }
341 if(digit > 9) {
342 digit -= 9 ;
343 }
344 digitSum += digit;
345 }
346 uint8_t luhnsCheckDigit = ( digitSum * 9) % 10;
347 return luhnsCheckDigit;
348 }
349
350 void sendTbrTimestampSync() {
351 // Get timestamp from system clock
352 std::time_t timestamp = std::time(nullptr);
353 // Remove last digit
354 std::string UTCUnixTimestamp = std::to_string(timestamp

/10);
355 // Add Luhn verification number
356 UTCUnixTimestamp += std::to_string(calcLuhnVerifDigit(

timestamp));
357 // Add preamble and send
358 slowTbrSend(syncString + UTCUnixTimestamp);
359 }
360
361 void sendTbrSync() {
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362 slowTbrSend(syncString);
363 }
364 void commandTbrSend(std::string cmd) {
365 m_handle->write(cmd.c_str(), cmd.size());
366 }
367
368 void slowTbrSend(std::string cmd) {
369 // Send to uart slowly, because ThelmaHydrophone processes

max 1 char per millisecond
370 char a[1] = {’0’};
371 for(char& c : cmd) {
372 a[0] = c;
373 m_handle->write(a, 1);
374 Delay::waitMsec(1);
375 }
376 spew(DTR("Sent: \"%s\" at \"%ld\""), cmd.c_str(), std::

time(0));
377 }
378
379 //! Read int from input string.
380 //! @param[in] str input string.
381 //! @param[out] dst number.
382 //! @return true if successful, false otherwise.
383 bool readIntFromString(const std::string& str, int& dst) {
384 try {
385 dst = std::stoi(str);
386 return true;
387 }
388 catch (const std::invalid_argument& ia) {
389 err(DTR("Invalid argument: %s"), ia.what());
390 return false;
391 }
392 return true;
393 }
394
395 //! Process sentence.
396 //! @param[in] line line.
397 void
398 processSentence(const std::string& line)
399 {
400 spew(DTR("Process"));
401 if (line.find("ack01") != std::string::npos) {
402 spew(DTR("Sensor clock diciplined"));
403 } if(line.find("ack02") != std::string::npos) {
404 spew(DTR("Sensor timestamp set"));
405 } if (line.find("$") != std::string::npos) {
406
407 // Discard leading noise.
408 size_t sidx = 0;
409 for (sidx = 0; sidx < line.size(); ++sidx)
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410 {
411 if (line[sidx] == ’$’)
412 break;
413 }
414
415 // Split sentence
416 std::vector<std::string> parts;
417 try {
418 spew(DTR("try"));
419 String::split(line.substr(sidx + 1, line.size()), ",",

parts);
420 } catch(const std::exception& ex) {
421 err(DTR("Invalid argument: %s"), ex.what());
422 return;
423 }
424
425 interpretSentence(parts);
426 }
427 }
428
429 //! Interpret given sentence.
430 //! @param[in] parts vector of strings from sentence.
431 void
432 interpretSentence(std::vector<std::string>& parts)
433 {
434 spew(DTR("Interpret"));
435 /*if (parts[0] == m_args.stn_order.front())
436 {
437 // Test if all sentences received, TODO, can probably be

removed
438 }*/
439
440 if(parts.size() >= 3) {
441 if(parts[2] == "TBR Sensor") {
442 interpretSensorReading(parts);
443 } else {
444 interpretTagDetection(parts);
445 }
446 }
447 }
448 //! Interpret SensorReading sentence.
449 //! @param[in] parts vector of strings from sentence.
450 void
451 interpretSensorReading(const std::vector<std::string>& parts

) {
452 spew(DTR("Interpret SensorReading"));
453 if (parts.size() < c_tbr_sensor_fields)
454 {
455 war(DTR("invalid SensorReading sentence"));
456 return;
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457 }
458
459 int serial_no = 0;
460 int unix_timestamp = 0;
461 int temperature = 0;
462 int avg_noise_level = 0;
463 int peak_noise_level = 0;
464 int recv_listen_freq = 0;
465 int recv_mem_addr = 0;
466 float temp_C = 0.0;
467
468 if (readIntFromString(parts[0], serial_no))
469 {
470 // Receiver serial number
471 spew(DTR("Serial number: %u"), serial_no);
472 }
473 if (readIntFromString(parts[1], unix_timestamp))
474 {
475 //UTC UNIX timestamp
476 spew(DTR("UTC UNIX timestamp: %u"), unix_timestamp);
477 }
478 if (readIntFromString(parts[3], temperature))
479 {
480 // Temperature
481 temp_C = float(temperature-50)/10.0;
482 spew(DTR("Temperature(C): %f"), temp_C);
483 IMC::Temperature temp_msg;
484 temp_msg.setSourceEntity(255);
485 temp_msg.value = fp32_t(temp_C);
486 dispatch(temp_msg);
487 }
488 if (readIntFromString(parts[4], avg_noise_level))
489 {
490 // Average Noise Level
491 spew(DTR("Average Noise Level: %u"), avg_noise_level);
492 }
493 if (readIntFromString(parts[5], peak_noise_level))
494 {
495 // Peak noise level
496 spew(DTR("Peak noise level: %u"), peak_noise_level);
497 }
498 if (readIntFromString(parts[6], recv_listen_freq))
499 {
500 // Noise logging frequency
501 spew(DTR("Noise logging frequency: %u"),

recv_listen_freq);
502 }
503 if (readIntFromString(parts[7], recv_mem_addr))
504 {
505 // Receiver memory address
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506 spew(DTR("Receiver memory address: %u"), recv_mem_addr);
507 }
508 IMC::TBRSensor sensor_msg;
509 sensor_msg.serial_no = serial_no;
510 sensor_msg.unix_timestamp = unix_timestamp;
511 sensor_msg.temperature = fp32_t(temp_C);
512 sensor_msg.avg_noise_level = avg_noise_level;
513 sensor_msg.peak_noise_level = peak_noise_level;
514 sensor_msg.recv_listen_freq = recv_listen_freq;
515 sensor_msg.recv_mem_addr = recv_mem_addr;
516 dispatch(sensor_msg);
517 }
518 //! Interpret fishtag sentence.
519 //! @param[in] parts vector of strings from sentence.
520 void
521 interpretTagDetection(const std::vector<std::string>& parts)
522 {
523 spew(DTR("Interpret tag"));
524 if (parts.size() < c_tag_fields)
525 {
526 war(DTR("invalid tag sentence"));
527 return;
528 }
529
530 int serial_no = 0;
531 int unix_timestamp = 0;
532 int millis = 0;
533 int trans_protocol = 0;
534 int trans_id = 0;
535 int trans_data = 0;
536 int SNR = 0;
537 int trans_freq = 0;
538 int recv_mem_addr = 0;
539
540 if (readIntFromString(parts[0], serial_no))
541 {
542 // Receiver serial number
543 spew(DTR("Serial number: %u"), serial_no);
544 }
545 if (readIntFromString(parts[1], unix_timestamp))
546 {
547 //UTC UNIX timestamp
548 spew(DTR("UTC UNIX timestamp: %u"), unix_timestamp);
549 }
550 if (readIntFromString(parts[2], millis))
551 {
552 //Millisecond timestamp
553 spew(DTR("Millisecond timestamp: %u"), millis);
554 }
555
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556 //Transmit protocol
557 if(parts[3] == "R256")
558 trans_protocol = IMC::TBRFishTag::TBR_R256;
559 else if(parts[3] == "R04K")
560 trans_protocol = IMC::TBRFishTag::TBR_R04K;
561 else if(parts[3] == "S64K")
562 trans_protocol = IMC::TBRFishTag::TBR_S64K;
563 else if(parts[3] == "R64K")
564 trans_protocol = IMC::TBRFishTag::TBR_R64K;
565 else if(parts[3] == "R01M")
566 trans_protocol = IMC::TBRFishTag::TBR_R01M;
567 else if(parts[3] == "S256")
568 trans_protocol = IMC::TBRFishTag::TBR_S256;
569 else if(parts[3] == "HS256")
570 trans_protocol = IMC::TBRFishTag::TBR_HS256;
571 else if(parts[3] == "DS256")
572 trans_protocol = IMC::TBRFishTag::TBR_DS256;
573 spew(DTR("Transmit protocol: %s, enum: %i"), parts[3].

c_str(), trans_protocol);
574
575
576 if (readIntFromString(parts[4], trans_id))
577 {
578 // Tag ID number
579 spew(DTR("Tag ID: %u"), trans_id);
580 }
581 if (readIntFromString(parts[5], trans_data))
582 {
583 // Tag raw data
584 spew(DTR("Tag raw data: %u"), trans_data);
585 }
586 if (readIntFromString(parts[6], SNR))
587 {
588 // Signal to noise ratio
589 spew(DTR("SNR: %u"), SNR);
590 }
591 if (readIntFromString(parts[7], trans_freq))
592 {
593 // Signal frequency
594 spew(DTR("Signal frequency: %u"), trans_freq);
595 }
596 if (readIntFromString(parts[8], recv_mem_addr))
597 {
598 // Receiver memory address
599 spew(DTR("Receiver memory address: %u"), recv_mem_addr);
600 }
601 IMC::TBRFishTag tag_msg;
602 tag_msg.serial_no = serial_no;
603 tag_msg.unix_timestamp = unix_timestamp;
604 tag_msg.millis = millis;
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605 tag_msg.trans_protocol = trans_protocol;
606 tag_msg.trans_id = trans_id;
607 tag_msg.trans_data = trans_data;
608 tag_msg.snr = SNR;
609 tag_msg.trans_freq = trans_freq;
610 tag_msg.recv_mem_addr = recv_mem_addr;
611 tag_msg.lat = m_current_lat;
612 tag_msg.lon = m_current_lon;
613 dispatch(tag_msg);
614 }
615
616 void
617 onMain(void)
618 {
619 while(!stopping()) {
620 if(m_sync_timer.overflow())
621 {
622 m_sync_timer.reset();
623
624 if(timestamp_send_counter >= m_args.

timestamp_send_divider) {
625 sendTbrTimestampSync();
626 timestamp_send_counter = 0;
627 } else {
628 sendTbrSync();
629 }
630 //spew("C: %ld", std::time(0));
631 spew("Sending duration: %f", m_sync_timer.getElapsed()

);
632 timestamp_send_counter++;
633 }
634 consumeMessages();
635 }
636 }
637 };
638 }
639 }
640
641 DUNE_TASK

D.3.8 Specific Otter Configuration File

Code D.14: ntnu-otter-04.ini

31
32 [Require basic.ini]
33
34 ###################
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35 # General Parameters. #
36 ###################
37 [IMC Addresses]
38 ntnu-otter-01 = 0x2810
39 ntnu-otter-02 = 0x2811
40 ntnu-otter-03 = 0x2812
41 ntnu-otter-04 = 0x2813
42
43 [General]
44 Vehicle = ntnu-otter-04
45 Vehicle Type = asv
46 Speed Conversion -- Actuation = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0
47 Speed Conversion -- RPM = 0.0, 120, 245, 360, 490, 615, 725, 845,

980, 980, 980
48 Speed Conversion -- MPS = 0.0, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8,

3.09, 3.09, 3.09
49 Absolute Maximum Depth = 0
50 Time Of Arrival Factor = 5.0

D.3.9 Common Otter Configuration File

Code D.15: basic.ini

31
32 [Require ../common/imc-addresses.ini]
33 [Require ../common/transports.ini]
34 [Require ../common/maneuvers.ini]
35
36 [Profiles]
37 StratoPi = Special simulation mode where only the hardware

features of the StratoPi are active
38
39 ###################
40 # General Parameters. #
41 ###################
42
43 [Transports.Announce]
44 Enabled = Always
45 Entity Label = Announce
46 Announcement Periodicity = 10
47 Enable Loopback = 1
48 Enable Multicast = 1
49 Enable Broadcast = 1
50 Multicast Address = 224.0.75.69
51 Ports = 30100, 30101, 30102, 30103, 30104
52 System Type = USV
53
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54 [Transports.Discovery]
55 Enabled = Always
56 Entity Label = Discovery
57 Multicast Address = 224.0.75.69
58 Ports = 30100, 30101, 30102, 30103, 30104
59
60 #[Transports.Logging]
61 #Flush Interval = 0.5
62
63 ###################
64 # Navigation. #
65 ###################
66
67 [Navigation.General.GPSNavigation]
68 Enabled = Always
69 Entity Label = Navigation
70 Entity Label - GPS = GPS
71 Entity Label - Yaw = GPS
72
73 ###################
74 # Control. #
75 ###################
76
77 [Control.ASV.HeadingAndSpeed]
78 Enabled = Always
79 Entity Label = Course & Speed Controller
80 Debug Level = None
81 Maximum Thrust Actuation = 1.0
82 Maximum Thrust Differential Actuation = 0.4
83 Ramp Actuation Limit = 0.0
84 Hardware RPMs Control = true
85 RPMs at Maximum Thrust = 1100
86 RPMs PID Gains = 0.2e-3, 0.21e-3, 29.0e-6
87 RPMs Feedforward Gain = 0.46e-3
88 MPS PID Gains = 1.0, 25.0, 0.0
89 MPS Integral Limit = 200.0
90 MPS Feedforward Gain = 100.0
91 Minimum RPM Limit = 62
92 Maximum RPM Limit = 1100
93 Maximum RPM Acceleration = 62
94 Yaw PID Gains = 1.5, 0.0, 0.0
95 Maximum Heading Error to Thrust = 30.0
96 Entity Label - Port Motor = Torqeedo - Motor 0
97 Entity Label - Starboard Motor = Torqeedo - Motor 1
98 Share Saturation = true
99 Log PID Parcels = true

100
101 [Control.Path.PurePursuit]
102 Enabled = Never
103 Entity Label = Path Control
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104
105
106 #Integral line of sight
107 [Control.Path.ILOS]
108 Enabled = Always
109 Entity Label = Path Control
110 Debug Level = None
111 Control Frequency = 10
112 Along-track -- Monitor = true
113 Along-track -- Check Period = 20
114 Along-track -- Minimum Speed = 0.05
115 Along-track -- Minimum Yaw = 2
116 Cross-track -- Monitor = true
117 Cross-track -- Nav. Unc. Factor = -1
118 Cross-track -- Distance Limit = 25
119 Cross-track -- Time Limit = 20
120 Position Jump Threshold = 10.0
121 Position Jump Time Factor = 0.5
122 ETA Minimum Speed = 0.1
123 New Reference Timeout = 5.0
124 Course Control = false
125 Corridor -- Width = 1.5
126 Corridor -- Entry Angle = 15.0
127 Corridor -- Out Vector Field = true
128 Corridor -- Out LOS = false
129 ILOS Lookahead Distance = 4.0
130 ILOS Integrator Gain = 0.5
131 ILOS Integrator Initial Value = 0.0
132 Bottom Track -- Enabled = false
133
134 [Control.Path.VectorField]
135 Enabled = Never
136 Entity Label = Path Control
137 Debug Level = None
138 ETA Minimum Speed = 0.1
139 Control Frequency = 10
140 Along-track -- Monitor = false
141 Along-track -- Check Period = 20
142 Along-track -- Minimum Speed = 0.05
143 Along-track -- Minimum Yaw = 2
144 Cross-track -- Monitor = false
145 Cross-track -- Nav. Unc. Factor = 1
146 Cross-track -- Distance Limit = 25
147 Cross-track -- Time Limit = 20
148 Position Jump Threshold = 10.0
149 Position Jump Time Factor = 0.5
150 ETA Minimum Speed = 0.1
151 New Reference Timeout = 5.0
152 Course Control = false
153 Corridor -- Width = 2.5
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154 Corridor -- Entry Angle = 15.0
155 Extended Control -- Enabled = false
156 Extended Control -- Controller Gain = 1.0
157 Extended Control -- Turn Rate Gain = 1.0
158 Bottom Track -- Enabled = false
159 Bottom Track -- Forward Samples = 7
160 Bottom Track -- Safe Pitch = 35.0
161 Bottom Track -- Minimum Range = 4.0
162 Bottom Track -- Slope Hysteresis = 1.5
163 Bottom Track -- Check Trend = false
164 Bottom Track -- Execution Frequency = 5
165 Bottom Track -- Depth Avoidance = true
166 Bottom Track -- Admissible Altitude = 2.5
167
168
169 [Control.ASV.RemoteOperation]
170 Enabled = Always
171 Entity Label = Remote Control
172 Active = true
173 Active - Scope = maneuver
174 Active - Visibility = developer
175 Execution Frequency = 10
176 Connection Timeout = 2.0
177
178 ###################
179 # Maneuvers. #
180 ###################
181
182 # Can this be removed?
183 [Maneuver.FollowReference.AUV]
184 Enabled = Always
185 Entity Label = Follow Reference Maneuver
186 Horizontal Tolerance = 15.0
187 Vertical Tolerance = 1.0
188 Loitering Radius = 7.5
189 Default Speed = 50
190 Default Speed Units = percent
191 Default Z = 0
192 Default Z Units = DEPTH
193
194 [Maneuver.RowsCoverage]
195 Enabled = Always
196 Entity Label = Rows Coverage Maneuver
197
198
199 ###################
200 # Monitors / Supervisors #
201 ###################
202
203 [Monitors.Clock]

169



204 Enabled = Never
205 Entity Label = Clock
206 Minimum GPS Fixes = 30
207 Maximum Clock Offset = 2
208 Boot Synchronization Timeout = 60
209 Hardware Clock Synchronization Command = hwclock -w
210
211 [Monitors.Entities]
212 Enabled = Always
213 Entity Label = Entity Monitor
214 Activation Time = 0
215 Deactivation Time = 0
216 Debug Level = None
217 Execution Priority = 10
218 Report Timeout = 5
219 Transition Time Gap = 4.0
220 Maximum Consecutive Transitions = 3
221 Default Monitoring = Daemon,
222 GPS,
223 Navigation,
224 Path Control
225 Default Monitoring -- Hardware = Torqeedo
226
227 [Supervisors.Vehicle]
228 Enabled = Always
229 Entity Label = Vehicle Supervisor
230 Activation Time = 0
231 Deactivation Time = 0
232 Debug Level = None
233 Execution Priority = 10
234 Execution Frequency = 2
235 Allows External Control = false
236 Maneuver Handling Timeout = 1.0
237
238 [Supervisors.AUV.LostComms]
239 Enabled = Never
240 Entity Label = LostComms Supervisor AUV
241 Plan Name = lost_comms
242 Lost Comms Timeout = 10.0
243 Debug Level = Spew
244
245 ###################
246 # Hardware. #
247 ###################
248
249 [Actuators.Torqeedo]
250 Enabled = Hardware, StratoPi
251 Execution Frequency = 40
252 Debug Level = Spew
253 Entity Label = Torqeedo
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254 CAN Port - Device = can0
255 Power Channel H_MOT0 - Name = Starboardmotor_pwr
256 Power Channel H_MOT0 - State = 1
257 Power Channel H_MOT1 - Name = Portmotor_pwr
258 Power Channel H_MOT1 - State = 1
259 Power Channel H_VR0 - Name = Signal_Light
260 Power Channel H_VR0 - State = 1
261 Power Channel H_5V - Name = Hydrophone
262 Power Channel H_5V - State = 1
263 Motor write divider = 10
264
265 [Safety.StratoPIWatchdog]
266 Enabled = Hardware, StratoPi
267 Entity Label = Watchdog
268 Execution Frequency = 0.5
269 TimeToggled = 0.25
270 Debug Level = Spew
271
272 # To use with the signal light
273 # The Identifiers are separated by commas, so more can be

implemented easily
274 # The patterns are given first by on/off(0/1) for each led,

followed by how long in millis. The pattern loops/repeats.
275
276 [UserInterfaces.LEDs]
277 Enabled = Hardware, StratoPi
278 Entity Label = Signal Light
279 Interface = GPIO
280 Identifiers = 26
281 Critical Entities = Logger
282 Pattern - Normal = 1, 2000, 0, 2000
283 Pattern - Fuel Low = 1, 200, 0, 200, 1, 200, 0, 2000
284 Pattern - Plan Starting = 1, 200, 0, 2000
285 Pattern - Plan Executing = 1, 500, 0, 500
286 Pattern - Error = 1, 200, 0, 2000
287 Pattern - Fatal Error = 1, 200, 0, 2000
288 Pattern - Shutdown = 1, 200, 0, 2000
289
290 [Sensors.GPS]
291 Enabled = Hardware
292 Entity Label = GPS
293 Serial Port - Device = /dev/ttyUSB0
294 Serial Port - Baud Rate = 19200
295 Sentence Order = GPHDT, GPROT, GPHDM, GPGGA, GPVTG, GPZDA
296 Debug Level = Spew
297 Initialization String 0 - Command = $JASC,GPGGA,1\r\n
298 Initialization String 1 - Command = $JASC,GPVTG,1\r\n
299 Initialization String 2 - Command = $JASC,GPZDA,1\r\n
300 Initialization String 3 - Command = $JATT,NMEAHE,0\r\n
301 Initialization String 4 - Command = $JASC,GPROT,1\r\n
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302 Initialization String 5 - Command = $JASC,GPHDT,1\r\n
303 Initialization String 6 - Command = $JASC,GPHDM,1\r\n
304 Initialization String 7 - Command = $JSAVE\r\n
305
306 [Sensors.TBR700RT]
307 Enabled = Hardware, StratoPi
308 Debug Level = Spew
309 Entity Label = Hydrophone
310 Serial Port - Device = /dev/ttyAMA0
311 Serial Port - Baud Rate = 115200
312
313 ###################
314 # Simulators. #
315 ###################
316
317 [Require ../common/vsim-models.ini]
318
319 # Vehicle simulator.
320 [Simulators.VSIM]
321 Enabled = Simulation, StratoPi
322 Entity Label = Simulation Engine
323 Execution Frequency = 25
324
325 # GPS simulator.
326 [Simulators.GPS]
327 Enabled = Simulation, StratoPi
328 Execution Frequency = 1
329 Entity Label = GPS
330 Number of Satellites = 9
331 HACC = 2
332 HDOP = 0.9
333 Activation Depth = 0.2
334 Report Ground Velocity = false
335 Report Yaw = false
336 Initial Position = 63.33, 10.083333
337
338 # Port motor.
339 [Simulators.Motor/Port]
340 Enabled = Simulation, StratoPi
341 Entity Label = Motor 0
342 Execution Frequency = 20
343 Thruster Act to RPM Factor = 50, 1100.0
344 Thruster Id = 0
345
346 # Starboard motor.
347 [Simulators.Motor/Starboard]
348 Enabled = Simulation, StratoPi
349 Entity Label = Motor 1
350 Execution Frequency = 20
351 Thruster Act to RPM Factor = 50, 1100.0
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352 Thruster Id = 1
353
354 ###################
355 # Transports. #
356 ###################
357
358 [Transports.UDP]
359 Enabled = Always
360 Entity Label = UDP
361 Debug Level = None
362 Activation Time = 0
363 Deactivation Time = 0
364 Execution Priority = 10
365 Announce Service = true
366 Contact Refresh Periodicity = 5.0
367 Contact Timeout = 30
368 Dynamic Nodes = true
369 Local Messages Only = false
370 Transports = Acceleration,
371 AngularVelocity,
372 AutopilotMode,
373 ControlParcel,
374 CpuUsage,
375 Current,
376 DesiredPath,
377 DesiredRoll,
378 DesiredSpeed,
379 DesiredVerticalRate,
380 DesiredZ,
381 EntityList,
382 EntityParameters,
383 EntityState,
384 EstimatedState,
385 EstimatedStreamVelocity,
386 EulerAnglesDelta,
387 FollowRefState,
388 FuelLevel,
389 GpsFix,
390 GpsNavData,
391 Heartbeat,
392 IndicatedSpeed,
393 LeaderState,
394 LinkLevel,
395 LogBookControl,
396 LoggingControl,
397 MagneticField,
398 OperationalLimits,
399 PathControlState,
400 PlanControl,
401 PlanControlState,
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402 PlanDB,
403 PlanGeneration,
404 PlanSpecification,
405 PowerChannelControl,
406 Pressure,
407 QueryEntityParameters,
408 RemoteActions,
409 RemoteActionsRequest,
410 Rpm,
411 RSSI,
412 SaveEntityParameters,
413 SetEntityParameters,
414 SetServoPosition,
415 SetThrusterActuation,
416 SimulatedState,
417 StorageUsage,
418 Target,
419 TBRFishTag,
420 TBRSensor,
421 Temperature,
422 TrexOperation,
423 TrueSpeed,
424 VehicleMedium,
425 VehicleState,
426 VelocityDelta,
427 Voltage
428 Filtered Entities = CpuUsage:Daemon
429 Local Port = 6002
430 Print Incoming Messages = 0
431 Print Outgoing Messages = 0
432 Rate Limiters = CpuUsage:1,
433 EntityState:1,
434 EstimatedState:10,
435 FuelLevel:0.1,
436 SimulatedState:0.5,
437 StorageUsage:0.05,
438 Acceleration:10,
439 AngularVelocity:10,
440 MagneticField:10,
441 Temperature:10,
442 Pressure:10,
443 EulerAnglesDelta:10,
444 VelocityDelta:10
445
446 [Transports.Logging]
447 Enabled = Always
448 Entity Label = Logger
449 Flush Interval = 5
450 LSF Compression Method = gzip
451 Transports = Acceleration,
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452 AngularVelocity,
453 Announce,
454 AutopilotMode,
455 ControlLoops,
456 ControlParcel,
457 CpuUsage,
458 Current,
459 DesiredHeading,
460 DesiredPath,
461 DesiredRoll,
462 DesiredSpeed,
463 DesiredVerticalRate,
464 DesiredZ,
465 DevCalibrationControl,
466 EntityList,
467 EntityState,
468 EstimatedState,
469 EstimatedStreamVelocity,
470 EulerAnglesDelta,
471 FollowReference,
472 FollowRefState,
473 FuelLevel,
474 GpsFix,
475 GpsNavData,
476 IndicatedSpeed,
477 LeaderState,
478 LinkLevel,
479 LogBookEntry,
480 MagneticField,
481 ManeuverControlState,
482 PathControlState,
483 PlanControl,
484 PlanSpecification,
485 PlanControlState,
486 PlanDB,
487 PowerChannelControl,
488 Pressure,
489 Reference,
490 Rpm,
491 RSSI,
492 SetControlSurfaceDeflection,
493 SetThrusterActuation,
494 SimulatedState,
495 StopManeuver,
496 StorageUsage,
497 Temperature,
498 TBRFishTag,
499 TBRSensor,
500 TrueSpeed,
501 TrexObservation,
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502 TrexPlan,
503 TrexToken,
504 TrueSpeed,
505 VehicleCommand,
506 VehicleMedium,
507 VehicleState,
508 VelocityDelta,
509 Voltage
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