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Preface
This master thesis is the culmination of my work in the 5 year integrated MCs cybernetics and robotics
study program at the Norwegian University of Science and Technology (NTNU) in Trondheim. The work
was performed in the period of 1th of January to 8th of July. My main supervisor was Edmund Førland
Brekke with Rudolf Mester and Andreas Vaage as the associative supervisor and co-supervisor respectively,
for which I will especially thank for insights and discussion applied to my work. In addition, I will also
thank Torleiv Håland Bryne for useful insights and implementation details of the nonlinear observer. Lastly,
I would thank my fellow Vortex-NTNU student, Ambjørn Waldum for all the hard work in the Marine
Cybernetics Lab during the experimental testing period under the COVID-19 restrictions.

The main work of this thesis, is directly linked to Manta-2020. This is an autonomous underwater vehicle
that is used to compete in the Robosub competition in San Diego, USA. The need for a robust navigation is
critical in order for Manta-2020 to perform well in this competition. Therefore two state estimators, working
real-time, one with acceleration and gyro bias estimation and the other with only gyro bias estimation, were
implemented to see how they compares to the already implemented state estimator.

Much of the written material and work done in this thesis is based on my previous work, which is given in
my project thesis[1] during the period of 20th of august to 17th of december 2019. This thesis contributes
to the real-time implementation of the ESKF, which were implemented previously in MATLAB, a IMU wild
point filter, sensor-synchronization, sensor-buffering, and a attitude nonlinear observer which is feedback
interconnected to a translational motion observer. This observer seems to have many steps like the EKF.
So a background in these estimators are assumed in this thesis. Also knowledge about linear algebra and
statistics are assumed to be known. However, full prior knowledge is not required. This thesis outlines
concepts and theory before applying them.

All of the work done on the C++ implementations on the state estimators and the IMU wild-point filter
are open source and lies on my github profile https://github.com/oyvind1501. Whomever who wants to
contribute, are pleased to make changes to my open-source code.

As a last note, the COVID-19 restrictions, delayed much of the experimental testing work. The students
working at Vortex-NTNU were not allowed to work on Manta-2020 from 12th of Mars. Two weeks before the
experimental testing, a fellow hardware Vortex-NTNU student gave me, MCs student Ambjørn Waldum and
three other Vortex students to work in his bed-sit room. This meant that extensive work on Manta-2020,
like installing a new Sonar, thether cable, new battery module had to be implemented on Manta-2020 before
the experimental testing could start.
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Abstract
An error-state Kalman filter (ESKF) based on Joan Solàs version [2] and a nonlinear observer(NLO) with
a feedback interconnected translational motion observer(TMO) based on the paper [3] were implemented
to work real-time on Manta-2020. Both of the these state estimators were written in C++ with a corre-
sponding robot operating system (ROS) node. These filters, together with the already implemented extended
Kalman filter, were then tested with interoceptive sensor measurements coming from an inertial measurement
unit(IMU), Doppler velocity log(DVL) and a pressure sensor, on a set of real test scenarios. These scenarios
included both "above water" and underwater scenarios which were then compared to an land-based and
underwater-based Qualisys motion capture camera system. This capture system were used to give ground
truth. In addition IMU-buffering, IMU-wild point filtering and sensor-synchronization were then added to
further enhance the state-estimation. Plots with the trajectories of all the state estimators and the Qualisys
motion capture system, were then used to compare the filters side by side, with DVL and pressure sensor
NIS tests of all filters to evaluate the filter consistency.
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Summary
This thesis presents a real-time doppler velocity logger and pressure aided inertial navigation system com-
parison between an error-state Kalman filter with acceleration and gyro bias estimation, a nonlinear observer
with gyro bias estimation and a extended Kalman filter on Manta-2020 autonomous underwater vehicle using
the Robot operating system platform. The two implemented state estimators, ESKF and NLO, are two very
recent filters in their respective field. A comparison between four real world testing scenarios were performed
at the MC-lab at Tyholt in Trondheim. These included two "above water" tests and two underwater tests.
The "above water" tests included a one round eight-shaped test and a 30 minutes square-shaped test. For
the underwater tests this included an square-shaped test and a sinusoidal-shaped test. The comparison were
then compared to MATLAB produced figures with a 3D east-north-altitude plot, position, velocity, attitude,
bias estimates, position error, velocity error, altitude error and lastly the NIS values.

IMU-sensor buffering, IMU-wild point filtering and sensor-synchronization were added to get better filter
estimates.
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Sammendrag
Denne rapporten presenter en sanntids doppler velocity logger og trykksensor hjulpet treghets navigasjons
system. Den sammenligner en feil-tilstand Kalman tilstandestimator basert på Joan Solà versjon [2] med
gyro og akkselerometer bias-estimering, en ulinær tilstandestimor basert på [3] med gyro bias-estimering
og et forlenget Kalman filter på Manta-2020 autonome-undervannsfarkosten med bruk av robot operativ
system plattformen (ROS). De to implementerte tilstandestimatorene ESKF og EKF er veldig nylige filtere
i deres felt. En sammenligning av fire eksperimentelle test senarior var gjort på Tyholt i Trondheim. Dette
inkluderte to "overvanns" tester og to undervanns tester. Første overvanns test var en åttetalls-aktig test,
mens andre overvanns test var en 30 minutters firkant-aktig test. For undervannstestene, var første test
en firkant-aktig test og andre test var en sinsus-funksjons-aktig test. Rosbag resultatene av filterene var
da lagt inn i MATLAB for å produsere figurer av 3D øst,nord og høyde, posisjon, hastighet, attityde, bias
estimasjonene, posisjonsfeilene, hastighetsfeilene og tilslutt DVL og trykksensor NIS verdiene.

IMU-sensor buffering, IMU-viltpunkt filtrering og sensor-synkronisering var lagt til for å få bedre tilstand-
sestimar på tilstandsestimatorene.
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Chapter 1
Introduction

1.1 Background
Until recently, autonomous systems have seen a drastic increase in a number of applications. The immense
research and development, together with advances in computational power and numerical optimization, have
led autonomous systems to be able to solve complex tasks in more complex environments. Especially this
cover AUV’s. Previously, they were mostly used in geoscience [11] and as research objects to study diffusion,
acoustic transmission and submarine wakes. Today, they contribute in several applications, such as deep
sea seafloor mapping with the help of multi-beam sonars, payload delivery, inspections and measurements
of various underwater compounds.

One key limitation with AUV’s, is the inability to use GNSS sensors underwater. Because of this, the AUV
is forced to perform dead reckoning if no other global sensor system, such as acoustics is used. Thus in order
for the AUV to perform several complex underwater tasks accurately, its GNC has to be robust. Especially,
this includes the navigation system, which requires high accuracy sensors with little noise and a robust
state-estimation.

1.2 Vortex-NTNU
Vortex-NTNU is a student-organization that is located at NTNU at Gløshaugen in Trondheim. The organi-
zation has ranged from 18-24 students from different engineering disciplines at NTNU, hiring new students
each year. The main purpose of the organization is to build underwater vehicles that is capable to compete
in underwater competitions, such as Robosub and MATE international ROV competitions. Vortex-NTNU
began in 2016, building a ROV named Mealstrom. This ROV is seen in figure 1.1 (a). In 2017, a new ROV
was built named Terrapin, which is seen in the figure 1.1 (b). In 2018, yet a again, a new ROV was built
named Manta, which is seen in figure 1.1 (c) . All of these ROV’s competed in the MATE international ROV
competition in USA. Going forward to 2019, the team decided to build an AUV from the old ROV model,
Manta. From 2019 up until now, the same AUV model, Manta, has been used, with the main idea of further
improve the software and add additional sensors. The team consist of four groups. The software-control,
software-perception, hardware-mechanical and hardware-electronic. The control team is mostly responsible
for the guidance and control system of Manta, while the perception team is responsible for most of the
navigation system and sensor-interfacing. The hardware teams are responsible for the hardware-design,
electronic communication with the sensors, embedded micro-controller and thrusters, waterproofing and
computer aided graphics design.
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(a) Mealstorm
(b) Terrapin

(c) Manta 2018
(d) Manta 2019

Figure 1.1: The ROV’s built in 2016 (Mealstorm), 2017 (Terrapin), 2018 (Manta 2018), 2019 (Manta 2019)

1.3 Robosub 2020
Robosub is a international student-AUV competition that takes place every year in the summer at NIWC
Pacific TRANSDEC, San Diego, California. The competition is operated of Robonation, inc (previously
AUVSI foundation) with the first competition in 1998 [12]. The competition is done in the TRANSDEC
Anechoic pool, seen in figure 1.2a. The main goal is to challenge engineering students to perform several
realistic underwater missions with new themes each year. For the Robosub 2020 competition the theme is
Skidoo. The tasks include driving trough and underwater gate with two pictures at each side, bumping into
underwater "bouys", collecting "items" and place them in respecitve bins and fire small and safe torpedoes
trough different shaped holes. The reader is refereed to [13] for more detail about the tasks, missions, rules
and scoring.
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(a) The TRANSDEC Anechoic pool in San Diego, Cali-
fornia. Courtesy: ([14], RoboNation, Inc)

(b) Cornell University running the Robosub 2014 finals.
Courtesy: ([15])

Figure 1.2: The TRANSDEC Anechoic competition pool used for Robosub (a) and Cornell University in
the Robosub 2014 finals (b)

1.4 Motivation
The main motivation for this thesis is to gain insight, document and compare different real-time aided inertial
navigation solutions for AUVs and UUVs in general. This is especially relevant because of the inability to
use GNSS in underwater environments as described in the background section, meaning a robust navigation
solution must be in place for the guidance and control to perform satisfactory, which is crucial in order for
the AUV to perform well in the upcoming Robosub-2020 competition. Also one bi-motivation is to facilitate
and give access to the open-source implementations of NLO and ESKF implementations in this thesis. This
is to give students at Vortex-NTNU and other interested contributors the opportunity to improve upon the
solutions, which will further enrich the development of underwater navigation.

1.5 Problem description
The main problem of this thesis is to develop and hopefully improve the existing navigation system on
the Vortex-AUV Manta-2020, which is based upon an EKF state estimator. This will be in the form
of a experimental testing comparison between the existing state estimator, EKF, NLO and ESKF state
estimators based upon [3] and [2] respectively. Furthermore the problem description can be summarized
with the following bullet points list:

• A literature study of IMU’s, DVL’s and pressure sensors and their error analysis.

• A literature study Kalman filters and nonlinear observers in general and a theoretical overview of the
NLO, ESKF and EKF used in the experimental testing comparisons.

• A literature study of real-time aspects for AINS

• Design and implementation of real-time aspects of the NLO and ESKF. This includes execution time,
sensor-synchronization and sensor-buffering.

• Design and implementation of an IMU wild-point filter.

• Design and implementation of a NLO and ESKF for real-time sensor fusion of IMU, DVL and pressure
sensor.

• Simulation testing comparison of the EKF, ESKF and NLO.
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• Experimental testing comparison of the EKF, ESKF and NLO with ground truth and consistency
analysis.

• Design and implementation of a user-friendly parameter - interface on the ESKF and NLO.

• Design and implementation an user-friendly general sensor-interface, such that other sensors may be
added without implementing code.

1.6 Contributions
With the list above, the following contributions were done throughout the thesis.

• A literature study of IMU’s, and DVL’s and their error analysis. item A literature study Kalman filters
and nonlinear observers in general and a theoretical overview of the NLO, ESKF and EKF used in the
experimental testing comparisons.

• A literature study of real-time aspects for AINS

• Designed and implemented an ESKF and NLO in C++.

• Designed and implemented an IMU wild point filter.

• Designed and implemented real-time aspects of the NLO and ESKF, which included execution time,
sensor-synchronization and sensor-buffering.

• Validated that the NLO and ESKF estimated real-time on Manta-2020.

• Validated and compared the EKF, ESKF and NLO trough experimental testing with both underwater
and "above water" camera-based system giving ground truth.

• NIS consistency analysis of EKF, ESKF and EKF.

• Designed and implemented a user-friendly parameter-interface on the ESKF and NLO.

1.7 Previous work
Manta has been developed since autumn 2017. The main focus then was the hardware-specific design and
construction. This included designing and installing relevant mechanical and electronic components and
accessories. Most of the design was done using CAD based methods and PCB software tools such as Altium.
There was also some focus on the software system where the Vortex-2017/2018 team implemented software
such that it was fully capable of manual operation by the use of a remote control. At the end of may 2018,
the team had made a fully working ROV which competed in the MATE international competition.

During autumn 2018 the Vortex team decided to develop the ROV to an AUV. The focus then shifted to
do research of finding relevant exterioceptive and interiorceptive sensors to use for autonomous operation.
After finding most of the relevant sensors described in chapter 3, except the sonar, custom software drivers
for these sensors were then implemented. The author contributed together with his co-supervisor Andreas
Vaage, the implementation of the IMU and most of the DVL custom drivers. In the meantime, the control-
software team began developing a simulation model of the AUV with a corresponding dynamical model and
a 1:1 scale design of the Marine Cybernetics labratory at Tyholt, Trondheim and the Robosub TRANSDEC
Anechoic pool in San Diego, California, depicted in figure 1.2a(a), in the simulation software tool Gazebo [5].
During the second semester the software team had developed a non-working, but complete motion control,
guidance, mission control system and a navigation solution based upon a 3 DOF PD controller, line of sight
guidance, state machine and an extended Kalman filter respectively.

Reaching august 2019 the main objective was to further develop, do experimental testing, enhance the
software architecture and find alternative or better solutions on the AUV with the goal of reaching the finals
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at the Robosub competition. Also this year a new exterioceptive sensor was added. The sonar, which added
the feature of long-distance 2D object detection. The development was then mainly on adding robust path
planning, object detection, camera and sonar- sensor fusion SLAM, AINS and neural network based object
detection for the front camera.

The author of this project contributed in the development of the EKF and an offline implementation of the
ESKF in his project thesis[1]. This thesis also had real-world test scenarios based on the Qualisys camera
system. Therefore much of the theory, static transforms between the sensor frames, tuning of the ESKF and
EKF have already been done in this thesis. Therefore much of the written material in the authors project
thesis will also be in this thesis, but some theory have been modified and further adjusted.

1.8 Related work
There are many related research and commercial AUV’s. One of them is the HUGIN family from Kongsberg
Maritime and Norwegian Defence Research Establishment. These AUV’s are used both for military and
commercial applications such as deep-sea seabed mapping, offshore surveying for the oil and gas industry,
Naval MCM and REA operations and hydrography [16]. Depicted in figure 1.3b is one their newest AUV’s
combined with updated on-board data processing and an overall improved sensor stack. Depicted in figure
1.3a, is the on-board integrated inertial navigation system used for the HUGIN 1000 and 3000 AUV’s. It is
based on an DVL, pressure sensor and compass AINS with different forms of position measurement updates
[17] which are seen in the lower part in 1.3a. Here DGPS + USBL, GPS surface fix, bathymetric terrain
navigation and Underwater transponder positioning are the methods used for position updates[17]. The state
estimator is an ESKF with a rotation-matrix based attitude estimation. Compared to the various integrated
navigation solutions contributed from this thesis, all use a quaternion based attitude estimation with DVL,
IMU and pressure sensor without any form of position measurement updates.

(a) HUGIN integrated inertial navigation system structure.
Courtesy: ([18])

(b) The HUGIN Superior AUV, general sensor stack and ar-
rangement. Courtesy: ([19])

Figure 1.3: HUGIN AINS structure(a) and HUGIN Superior AUV(b)
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1.9 Thesis outline
This thesis organizes its content in chapters and sections. The second chapters outlines the autonomous
underwater vehicle modeling. This chapter focus mostly on the mathematical notation, reference frames,
kinematics and kinetics for describing the marine AUV in motion.

Chapter 3 details theory of how INS systems generally work and their error analysis. In addition it presents
methods of finding the measurement noises using the Allan variance method. Also a wild point filtering
method will be introduced.

Chapter 4 outlines the sensor stack, electronic system and the details regarding the interoceptive sensors on
Manta-2020.

Chapter 5 goes trough the theory of the EKF,ESKF and the NLO. Together with this is it also shows realtime
aspects, such as time-synchronization, sensor-synchronization and the execution time.

Chapter 6 outlines the experimental testing scenarios, and how the preparation of the tests were done with
Qualisys motion capture system.

Chapter 7 discuss the results of the experimental testing scenarios.

Chapter 8 outlines conclusions based on the the results.

Chapter 9 discuss further work, and what can be contributed in order to make the state estimators perform
better.
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Chapter 2
Autonomous Underwater Vehicle
Modeling

Most of following mathematical notation, reference frames and kinematics are based on theory found in
[4].

2.1 Kinematics and reference frames
In order to analyze the kinetics and kinematics of the AUV, different reference frames are then needed.
Especially is this important to take into account, because the measurements from different sensors are given
in a specific reference frame. It is therefore critical to transform these measurements to a common reference
frame, before using them in for example a state observer. For this project, for instance, the DVL, IMU and
pressure sensor will have reference frames to their corresponding sensor frame, which is dependent on their
alignment.

There are different types of reference frames that can be used, such as ECI, ECEF, NED, BODY and the
respective reference frames for each sensor alignment, which will in general in this thesis be denoted as
SENSOR_FRAME. For convenience and easier notation, these frames will be denoted as {i}, {e}, {n} and
the SENSOR_FRAME to be the abbreviation name of the respective sensor.

The ECEF frame is an inertial frame that is mostly used for terrestrial navigation. It is an non-accelerating
frame, where the newtons second laws of motion can be applied. This reference frame is where for instance
the IMU has its measurements with respect to. Here the origin lies in the center of earth. The second
reference frame is the ECEF. This frame has the same properties as the ECI frame, but with the difference
that its axis rotate relative to the ECI frame with an angular rotation of w = 7.2921 ∗ 10−5 [4]. Mostly
this angular rotation is often neglected for vessels or marine crafts that are moving at low speed[4]. This
frame is mostly used for marine crafts that move long distances between continents. The NED frame is a
local reference frame that has its origin in defined relative to the earth reference ellipsoid (World Geodetic
System, 1984) [4]. This frame is where for instance the measurements coming from a GNSS sensors are given
in. Last but not least the BODY frame is the frame that is fixed to the marine vessel. It has its origin as
defined by the user, denoted CO, which is often designed to be midships in the waterline[4].
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Figure 2.1: The ECI, ECEF, NED and Body frames. Figure from [4]

For Manta-2020, the use of long distance terrestrial navigation is unnecessary. Therefore the most convenient
choice of reference frames, will then be NED, BODY and the SENSOR_FRAMES. In coordinate from, these
will be denoted as follows

{n} = [xw, yw, zw]T (2.1)
{b} = [xb, yb, zb]T (2.2)

and the reference frames for the IMU, DVL and pressure sensor as follows.

{imu} = [ximu, yimu, zimu]T (2.3)
{dvl} = [xdvl, ydvl, zdvl]T (2.4)

{pressure} = [xpressure, ypressure, zpressure]T (2.5)

2.1.1 Kinematic model
In order to define the kinematic model of any marine vessel, following a convenient and often used notation
of position, velocities, forces and moments, will be easier for the reader to comprehend and understand the
theory presented. Here the SNAME (1950) notation will be used shown in table 1.1.
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Table 1.1: SNAME-notation for marine vessels. Table from [5], Courtesy(SNAME (1950))

Based on the SNAME notation any marine vessel that uses {n} frame as its "world" coordinate reference
frame and the coordinate origin of {b}, can be described as in table 1.2.

Description Linear and Angular Linear Angular
Position η = [pnb/n,vbb/w]T pbb/n = [xnb/n, ynb/n, znb/n]T Θnb = [φnb, θnb, ψnb]T
Velocity ν = [vbb/n, ωbb/n] vbb/n = [unb/n, vnb/n, wnb/n]T ωbb/n = [pnb/n, qnb/n, rnb/n]T
Force/moment τ = [f bb ,mb

b] f bb = [X,Y, Z] mb
b = [K,M,N ]T

Table 1.2: 6 DOF kinematics on marine vessels using SNAME notation

These may be described as follows

pnb/n = Position of the origin of {b} (ob) with respect to {n} expressed in {n}

vvb/n = Linear velocity of the origin of {b} (ob) with respect to {n} expressed in {b}

Θ = Euler angles between {n} and {b}

ωbb/n = Angular velocity of {b} with respect to {n} expressed in {b}

f bb = Force with line of action trough the origin of {b} (ob) expressed in {n}

mb
b = Moment about the origin of {b} (ob) expressed in {n}

Figure 2.2 shows how table 1.2 can be represented visually on Manta-2020 or any other kind of marine
vessel.
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Figure 2.2: 6 DOF BODY and NED coordinate frames representation

With table 1.2 in mind the 6 DOF kinematic equation of a marine vessel can be expressed as follows [4].

η̇ = JΘ(η)ν ⇐⇒
[
ṗnb/n
Θ̇nb

]
=
[
Rn
b (Θnb) 03x3
03x3 TΘ(Θnb)

] [vbb/n
ωbb/n

]
(2.6)

where Rn
b (Θwb) : S3 → SO(3) is the Euler angle rotation matrix using the zyx convention from {b} to {n}

and TΘ(Θwb) is the Euler angle transformation matrix. These are defined as follows

Rn
b (Θnb) = RψRθRφ ⇐⇒ Rw

b (Θnb) =

cψcθ −sψcφ+ cψsθsψ sψsφ+ cψcφsθ
sψcθ cψcφ+ sψsθsψ −cψsφ+ sθsψcφ
−sθ cθsψ cθcψ

 (2.7)

TΘ(Θwb) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.8)

Where s, c, t denote sin, cos, tan respectively.

For underwater vessels like Manta-2020, a full 6 DOF navigation solution is required for the AUV to be fully
functional for underwater maneuvers and actions. One problem with the use of Euler angles, is that the
TΘ(Θnb) is undefined when the pitch angle θ is ±90◦, which is known as the Gimbal lock. If Manta-2020
where to do a maneuver such that the pitch angle where to get close to θ is ±90◦, it would potentially
break a navigation solution and give garbage data. Thus a another attitude representation has to be used.
A good candidate here is quaternions. They have the advantages of not having singularities/discontinuities
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and is mathematically simple. In this thesis, all of the implemented state estimators use quaternions as
their attitude representation. Other alternatives like rotation matrices could also have been used, like the
navigation solution of the HUGIN family, but they usually are over-parameterized, requires more storage
and is more susceptible to round-off errors [20].

2.1.2 Unit Quaternions
A unit quaterion is a four dimensional complex number representation with one real η and three imaginary
parts ε [4], q = [η, ε1, ε2, ε3]T .

There exist several different conventions of the unit quaterions. For instance the JPL and Hamilton conven-
tions. In this thesis, the Hamilton convention is used in the design of the state estimators. A visualization
of this quaternion representation is shown in figure 2.3

Figure 2.3: Visuzalization of the quaternion. Courtesy([5])

With this the 6 DOF kinematics equations can now be represented with quaterions as follows

η̇ = Jq(η)ν ⇐⇒
[
ṗnb/n

q̇

]
=
[
Rn
b (q) 03x3

03x3 Tq(q)

][vbb/n
ωbb/n

]
(2.9)

where the Rw
b (qwb) and Tq(q) are defined as:

Rn
b (q) =

1− 2(ε22 + ε23) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)
2(ε1ε2)− ε3η) 1− 2(ε21 + ε23) 2(ε2ε3 + ε1η)
2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε21 + ε22)

 (2.10)

Tq(q) = 1
2


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 (2.11)
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There are also several mathematical properties of these quaternions that are used extensively in the design
and implementation of the state estimators. These properties are the sum of two quaternions, tensor product,
norm, conjugate and normalization, which are represented below respectively.

qa + qb =
[
ηa + ηb
εa + εb

]
(2.12)

qa ⊗ qb =
[

ηaηb − εT εb
ηbεa + ηaεb + εaxεb

]
(2.13)

||q|| =
√
η2 + ε21 + ε22 + ε23 (2.14)

q∗ =
[
η
−ε

]
(2.15)

Especially is the normalization procedure 1.14 important to satisfy the constraint:

qTq = ε2 + η2
1 + η2

2 + η2
3 (2.16)

when integrating q̇ = T(q)ωbb/n.

2.1.3 Converting between quaternions and Euler angles
In order to get a visual representation of the AUV, Euler angles is the best suited attitude representation.
Thus conversion from and to quaterions and Euler angles are needed.

The conversion from quaternions to Euler angles is represented as follows [21]:

φ = atan2(2(ε2ε3 + ηε1), η2 − ε21 − ε22 + ε23) (2.17)
θ = asin(2(ηε2 − ε1ε3)) (2.18)
ψ = atan2(2(ε1ε2 + ηε3), η2 + ε21 − ε22 − ε23) (2.19)

and from Euler angles to quaternions as follows:

q =


cφ2 c

θ
2c

ψ
2 + sφ2 s

θ
2s

ψ
2

sφ2 c
θ
2c

ψ
2 − c

φ
2 s

θ
2s

ψ
2

cφ2 s
θ
2c

ψ
2 + sφ2 c

θ
2s

ψ
2

cφ2 c
θ
2s

ψ
2 − s

φ
2 s

θ
2c

ψ
2

 (2.20)

2.2 Kinetics
In order to simulate Manta-2020, its 6 DOF rigid body kinetics must be described. All of the numbered
values and methods described in this section are found by the Vortex-NTNU control team and is thoroughly
described in Kristoffer Rakstad Solberg master thesis [5].

The general 6 DOF rigid-body kinetics for a vessel is described in [4] as follows:

Mv̇ + C(v)v + D(v)v + g(η) + g0 = τpropolusion + τwind + τwave (2.21)
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Which is derived from the Newton-euler equation of a rigid body. Here the system inertia matrix M =
MRB + Ma consist the rigid-body mass matrix and the added mass matrix. The C(v) = C(v)RB + C(v)A
matrices, represent the Coriolis matrices for the rigid-body and added mass, respectively. The matrix
D(v) = DP + DV + Dn(vr) represent the damping matrix. For manta-2020 the static forces due to ballast
systems g0 will be neglected. The propolusion forces consist of the thruster forces from the AUV. By these
assumptions the 6 DOF rigid body kinetics breaks down to the following for an AUV:

Mv̇ + C(v)v + D(v)v + g(η) = τpropolusion + τwind + τwave (2.22)

Where M, C(v), D(v) and g(η) are described as:

M = MRB + MA =
[
mI3x3 −mS(rbg)
mS(rbg) Ib

]
− diag(∂X

∂u̇
,
∂Y
∂v̇

,
∂Z
∂ẇ

,
∂K
∂ṗ

,
∂M
∂q̇

,
∂N
∂ṙ

)

=



m− ∂X
∂u̇ 0 0 0 mzg −myg

0 m− ∂Y
∂v̇ 0 −mzg 0 mxg

0 0 m− ∂Z
∂ẇ myg −mxg 0

0 −mzg myg Ix − ∂K
∂ṗ −Ixy −Ixz

mzg 0 −mxg −Iyx Iy − ∂M
∂q̇ −Iyz

−myg mxg 0 −Izx −Izy Iz − ∂N
∂ṙ


(2.23)

C(v) = CRB(ν) + CA(νr)

=
[

03x3 −mS(vb
b/w)−mS(ωb

b/w)S(rb
g)

−mS(vb
b/w)−mS(rb

g)S(ωb
b/w) −S(Ibω

b
b/w)

]

+
[

03x3 −S(A11ν1 + A12ν2)
−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

] (2.24)

D(v) = DL + DNL(vr)

= −



X|u|u|ur|+ ∂X
∂u 0 0 0 0 0

0 Y|v|v|vr|+ ∂Y
∂v 0 ∂Y

∂p 0 Y|v|r|vr|+ ∂Y
∂r

0 0 Z|w|w|wr|+ ∂Z
∂w 0 ∂Z

∂q 0
0 Kv + ∂K

∂v 0 K|p|p|p|+ ∂K
∂p 0 Kr + ∂K

∂r

0 0 Mw + ∂M
∂q 0 M|q|q|q|+ ∂M

∂q 0
0 N|v|v|vr|+ ∂N

∂v 0 ∂N
∂p 0 N|v|r|vr|+ ∂N

∂r



g(η) = −
[

Rn
b (q)−1(fng + fnb )

rbg ×Rn
b (q)−1fng + rbb ×Rn

b (q)−1fnb

]
(2.25)

The matrices M, C(v), v(v) and g(η) are stated here for reference. Further analysis and justification is
stated below.

2.2.1 The inertia matrix M
The inertia matrix M is, as previously written, is composed of two parts MRB and MA, which is the
rigid-body mass matrix and added mass, respectively.
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The MRB matrix is defined according to [4] as follows

MRB =
[
mI3x3 −mS(rbg)
mS(rbg) Ib

]
(2.26)

Here I3x3 denotes the 3x3 identity matrix, m is the total mass of AUV in kg. S(rbg) is defined as the skew
symmetric matrix. rbg is defined as the location of center of gravity (CG) with respect to center of origin
(CO). Ib is the inertia matrix about the {b} frame’s origin. This can be found in equation (3.34) in [4] on
p.50 by the use of the parallel axis theorem.

Ib = Ig −mS2(rbg) = Ig −m(rbg(rbg)T − (rbg)T rbgI3x3) (2.27)

The inertia matrix Ig about center of gravity (CG) is defined according to the equations found on p. 49 in
[4].

and rbg is defined as the vector from the center of origin of {b} frame to the center of gravity. This is found
according to equation (3.11) in [4]

rg/w = rb/w + rg (2.28)

Expanded MRB can be written as follows.

MRB =


m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz

 (2.29)

The total added mass matrix MA is defined as follows:

MA =
[
A11 A12
A21 A22

]
= −



∂X
∂u̇

∂X
∂v̇

∂X
∂ẇ

∂X
∂ṗ

∂X
∂q̇

∂X
∂ṙ

∂Y
∂u̇

∂Y
∂v̇

∂Y
∂ẇ

∂Y
∂ṗ

∂Y
∂q̇

∂Y
∂ṙ

∂Z
∂u̇

∂Z
∂v̇

∂Z
∂ẇ

∂Z
∂ṗ

∂Z
∂q̇

∂Z
∂ṙ

∂K
∂u̇

∂K
∂v̇

∂K
∂ẇ

∂K
∂ṗ

∂K
∂q̇

∂K
∂ṙ

∂M
∂u̇

∂M
∂v̇

∂M
∂ẇ

∂M
∂ṗ

∂M
∂q̇

∂M
∂ṙ

∂N
∂u̇

∂N
∂v̇

∂N
∂ẇ

∂N
∂ṗ

∂N
∂q̇

∂N
∂ṙ


(2.30)

Since this AUV operates under the wave affected zone, the added mass matrix MA will be constant for any
frequency of the waves. Also this AUV will also only be allowed to move at low-speed. Thus the following
added mass matrix MA can then be found.

MA = −diag(∂X
∂u̇

,
∂Y
∂v̇

,
∂Z
∂ẇ

,
∂K
∂ṗ

,
∂M
∂q̇

,
∂N
∂ṙ

) = −



∂X
∂u̇ 0 0 0 0 0
0 ∂Y

∂v̇ 0 0 0 0
0 0 ∂Z

∂ẇ 0 0 0
0 0 0 ∂K

∂ṗ 0 0
0 0 0 0 ∂M

∂q̇ 0
0 0 0 0 0 ∂N

∂ṙ


(2.31)
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Where (X,Y,Z) are the added mass forces, and (u̇, v̇, ẇ) are the accelerations in the (x, y, z) directions in
the frame {b}.

Thus the total inertia matrix M is found to be:

M = MRB + MA =
[
mI3x3 −mS(rbg)
mS(rbg) Ib

]
− diag(∂X

∂u̇
,
∂Y
∂v̇

,
∂Z
∂ẇ

,
∂K
∂ṗ

,
∂M
∂q̇

,
∂N
∂ṙ

)

=



m− ∂X
∂u̇ 0 0 0 mzg −myg

0 m− ∂Y
∂v̇ 0 −mzg 0 mxg

0 0 m− ∂Z
∂ẇ myg −mxg 0

0 −mzg myg Ix − ∂K
∂ṗ −Ixy −Ixz

mzg 0 −mxg −Iyx Iy − ∂M
∂q̇ −Iyz

−myg mxg 0 −Izx −Izy Iz − ∂N
∂ṙ


(2.32)

Here the computer-aided design components make a total of 16.7 kg and the electronic parts plus the sensors
with a total of roughly 14.0 kg. This gives Manta-2020 a total weight of m = 30.7 kg.

With methods described in Kristoffer Solberg Rakstad master thesis [5], the following numbers on where used
on Manta-2020 MRB and MA respectively ([5], equations 4.37, 4.38, p.54) and where rbg = [0, 0, 0.1]T

MRB =


30.70 0 0 0 3.0700 0

0 30.70 0 −3.0700 0 0
0 0 30.700 0 0 0
0 −3.070 0 0.5032 −0.0002 0.0005

3.0700 0 0 −0.0002 0.4934 0
0 0 0 0.0005 0 0.9198

 (2.33)

MA =


10.7727 0 0 0 0 0

0 10.7727 0 0 0 0
0 0 49.7679 0 0 0
0 0 0 1.0092 0 0
0 0 0 0 1.0092 0
0 0 0 0 0 0

 (2.34)

2.2.2 The Coriolis matrix C(v)
The The Coriolis matrix C(v) consist of two parts CRB(v) and CA(v), which correspond to the rigid-body
and added mass Coriolis matrices respectively. These terms are due to a rotation between the {b} frame
and local NED frame {n} [5].

The CRB(v) can be found according to equation (3.55) on p.55 in [4]. This equation is stated as follows

CRB(v) =
[

03x3 −mS(vb
b/w)−mS(ωb

b/w)S(rb
g)

−mS(vb
b/w)−mS(rb

g)S(ωb
b/w) −S(Ibω

b
b/w)

]
(2.35)

With the centripital matrix CA(ν) defined as: ([4], p.120, equation (6.43)

CA(ν) =
[

03x3 −S(A11ν1 + A12ν2)
−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

]
(2.36)
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2.2.3 The damping matrix D(v)
The damping terms consist of five different effects. Potential damping, skin friction, wave drift damping,
damping due to vortex shedding and drag/lifting forces. Potential damping occurs when a body is forced
to oscillate with the wave excitation frequency. Since AUVs are not operating at the surface in the wave
affected zone. This damping will be assumed zero. This damping will be denoted DP. Skin friction is a
resistant force acting on an object in either laminar or turbulent vicious fluid. Wave drift damping will also
be considered to be zero, because the AUV operates below the wave affected zone. Damping due to vortex
shedding occurs because of frictional forces due to vortex sheets arises [4] p.122. The drag/lifting forces
arise when there is a linear circulation of water around the hull of the AUV and by cross-flow drag. These
damping terms consist of a linear part and nonlinear part. The linear part will be denoted DL and the
nonlinear term DNL(vr). Where vr denotes the relative velocity vector.

Thus the damping matrix D(v) on Manata-202 can be written as

D(v) = DL + DNL(vr) (2.37)

Where the linear viscous damping DL and DNL are calculated as follows [4].

DL = −



∂X
∂u 0 0 0 0 0
0 ∂Y

∂v 0 ∂Y
∂p 0 ∂Y

∂r

0 0 ∂Z
∂w 0 ∂Z

∂q 0
0 ∂K

∂v 0 ∂K
∂p 0 ∂K

∂r

0 0 ∂M
∂w 0 ∂M

∂q 0
0 ∂N

∂v 0 ∂N
∂p 0 ∂N

∂r


(2.38)

DNL(ν) = −


X|u|u|ur| 0 0 0 0 0

0 Y|v|v|vr| 0 0 0 Y|v|r|vr|
0 0 Z|w|w|wr| 0 0 0
0 Kv 0 K|p|p|p| 0 Kr

0 0 Mw 0 M|q|q|q| 0
0 N|v|v|vr| 0 0 0 N|v|r|vr|

 (2.39)

Thus the total Dν then becomes

D(v) = DL + DNL(vr)

= −



X|u|u|ur|+ ∂X
∂u 0 0 0 0 0

0 Y|v|v|vr|+ ∂Y
∂v 0 ∂Y

∂p 0 Y|v|r|vr|+ ∂Y
∂r

0 0 Z|w|w|wr|+ ∂Z
∂w 0 ∂Z

∂q 0
0 Kv + ∂K

∂v 0 K|p|p|p|+ ∂K
∂p 0 Kr + ∂K

∂r

0 0 Mw + ∂M
∂q 0 M|q|q|q|+ ∂M

∂q 0
0 N|v|v|vr|+ ∂N

∂v 0 ∂N
∂p 0 N|v|r|vr|+ ∂N

∂r


(2.40)
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For manta-2020 the following values where found [5].

DL =


19.5912 0 0 0 0 0

0 19.5912 0 0 0 0
0 0 50.5595 0 0 0
0 0 0 13.3040 0 0
0 0 0 0 13.218 0
0 0 0 0 0 1.1559

 (2.41)

and DNL(vr)

DNL(νr) =


7.3486|ur| 0 0 0 0 0

0 7.3486|vr| 0 0 0 0
0 0 26.1105|wr| 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (2.42)

2.2.4 The restoring forces g(η)
The restoring forces that acts on the AUV consist of gravitational and buoyancy forces. This can be
represented as follows [4]

g(η) = −
[

Rn
b(q)−1(fng + fnb )

rbg ×Rn
b(q)−1fng + rbb ×Rn

b(q)−1fnb

]
(2.43)

Where fng and fnb are defined as follows [4]

fng =

 0
0
W

 (2.44)

fnb = −

 0
0
B

 (2.45)

The W is denoted as the weight of the AUV. This is defined as

W = mg (2.46)

The weight has its origin in its center of gravity. On manta-2020 this is easily calculated to be with mass
m = 30.7kg and with gravity as the regional gravity g = 9.825 defined in equation 3.2, as follows

W = 30.7 ∗ 9.825 = 301.6275 N (2.47)

The definition of B is defined as the buoyancy force and is defined as

B = ρgO (2.48)
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Here ρ is defined as the density of fresh water, g as the gravitational acceleration and O as the displaced
fluid by the AUV. On manta-2020 it assumed that the AUV is neutrally bouyant and that W = B.
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Chapter 3
Inertial Navigation Systems

An inertial navigation system is a system that uses inertial sensor measurements and performs mathematical
equations and data processing, to estimate position, linear velocity and attitude (e.g PVA). This navigation
system will then have the important role of providing accurate and reliable estimates to the control system.
Some of the written material in this section will be directly from the author’s project thesis [1].

3.1 The IMU
One inertial sensor that used in inertial navigation is the IMU. This sensor usually consist of 3-axis ac-
celerometers and 3-axis gyros, which provide measurements of acceleration and angular velocity. With this
it is possible to integrate the acceleration and angular velocity measurements to provide PVA estimation.
However this system is a type of a dead reckoning system which will drift over time. This is because of the
inaccuracies and errors that the accelerometers and gyros in IMU have. It is therefore very important, espe-
cially in underwater environments where all 6 DOF is important and no GNSS system to provide absolute
position, to have a reliable IMU as possible. In this section the MEMS accelerometer, MEMS gyros and
their error characteristics will be discussed.

3.1.1 Accelerometers
Broadly, there are according to [22] two main types of accelerometers, mechanical and solid state. In this
thesis only the mechanical accelerometer will be presented. The reader is referred to [22] for more detail
about the solid state device approach. Also an introduction to micro electrical mechanical system (MEMS)
accelerometers will be discussed.

The mechanical accelerometer is based upon a mass that is attached to a spring. By measuring its deflection,
the specific force is measured from newton’s law F = ma in its input direction. Since newton laws applies only
in an inertial frame the spesific force will be denoted as f bb/i for strapdown INS. However, if local navigation
is used where {n} is assumed inertial, the force can be stated as f bb/n. By combining three accelerometers
together, with orthogonal input directions that forms a three dimensional Cartesian coordinate system, a
3D specific force is measured f bb/w. If the the accelerometer is defined with a 3D axis Cartesian right handed
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coordinate system with a strapdown approach, it should measure

f bb/n =

 0
0

+9.8xxx

 (3.1)

Where 9.8xxx is a local gravity. This local gravity can be calculated with the WGS84 ellipsoidal gravity
formula by the use of the latitude in the specific region as follows[23].

g = 9.7803253359
[

1+0.00193185265265241sin2(φ)√
(1−0.00669437999013sin2(φ))

] m
s2 (3.2)

The MEMS based accelerometers is according to [22] based on the same principles as the mechanical and solid
state methods. But comes with some advantages over traditional techniques, such as low power consumption,
short start-up times, light weighted and are small in size.

For the Tyholt region in Trondheim, were the experimental testing took place, this value was calculated
to

g = 9.7963744538548 (3.3)

with a latitude of 63.420164 converted in to decimal degrees.

3.1.2 Gyroscopes
According to [22], there are three main types of gyroscopes, the mechanical, optical and MEMS gyroscopes.
Here the MEMS gyroscope will be presented.

The MEMS gyroscope use the Coriolis effect, which says that within a rotating reference frame with angular
velocity ω, a mass m and velocity v, it experiences a force F [22]. This reference frame is inertial and is
relative to the {i} frame.

F = −2m(ωgyrob/i × vgyrob/i ) (3.4)

Where × denotes the cross product. MEMS gyros contains vibrating elements to measure the Coriolis
effect[22]. This is done with a single mass driven to vibrate along a drive axis. If the gyroscope is rotated
a secondary vibration is induced along the perpendicular sense axis. Thus here the angular velocity wbb/i is
measured by measuring this secondary rotation. These types of gyros are typically cheaper and less accurate
than mechanical, or optical gyroscopes [24]. Also in this case, since {w} is assumed inertial, the equation
becomes wbb/w. Gyroscopes also measures the earth angular rotation rate, which was stated in chapter 2.1
as being w = 7.2921 ∗ 10−5 which should be compensated for. Since this is a small value, this error source
can be neglected. By the use of 3-axis gyroscopes, a 3D angular velocity ωbb/w can be measured.

3.1.3 Error characteristics
Inertial sensors have many different types of errors that have to be accounted for in an inertial navigation
system. Some of these errors are biases, scale-factor errors, cross-coupling, random noise and nonlinearities
[6]. If these are not accounted for or evaluated when choosing an IMU, the integration of noise, scale-factor
and bias corrupted measurements will produce large errors in position, velocity and attitude estimation
[25]. This is especially true when the IMU only is used to track 6DOF estimations. There are also other
error-characteristics like G-dependencies, but this will not be discussed in this thesis.
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The bias error is composed of two components, as shown in the equation 3.5 for the accelerometer and
angular rate sensor respectivly. The static part is a run-run bias that is constant for each time the IMU
is powered [6]. This constant is both dependent on the bias repeatability and changes its value each time
the IMU powers on and off. This bias contributes to around 90% of the total bias [6]. The second term is
the dynamic bias, which is an in-run bias A run-to-run static part bbacc,static that is constant for each time
the IMU is powered[6]. This constant is both dependent on the bias repeatability and changes each time
the IMU powers on and off[6]. This bias contributes to around 90% of the total bias. The second term is
a dynamic bias which is an in-run bias that depends on the bias stability [6]. Together these biases often
contribute to the most dominant error source.

bbacc = bbacc,static + bbacc,dynamic bbars = bbars,static + bbars,dynamic (3.5)

The scale factor error is based on the discrepancy of the gradient between the true motion and the mea-
surement [6]. This error is a propotional constant to the true motion input. Fortunately this error can be
corrected for by factory calibration. These scale factors can be described as shown in equation 3.6.

Sbacc =

sbacc,xsbacc,y
sbacc,z

 Sbars =

sbars,xsbars,y
sbars,z

 (3.6)

Cross-coupling is one of the errors that is IMU-specific only. It describes the orthogonality error between the
sensitivity axes of the angular rate and accelerometer sensors and the body frame. These errors are possible
to factory calibrate. These errors can be written as in equation 3.7 [6].

Mb
acc =

 sbacc,x mb
acc,xy mb

acc,xz

mb
acc,yx sbacc,y mb

acc,yz

mb
acc,zx mb

acc,zy sbacc,z

 Mb
ars =

 sbars,x mb
ars,xy mb

ars,xz

mb
ars,yx sbars,y mb

ars,yz

mb
ars,zx mb

ars,zy sbars,z

 (3.7)

Where the diagonal terms are the scale factors from equation 3.6

IMUs are also affected by random noise. These noise terms can be modeled as white Gaussian noise. They
are exhibited by all inertial sensors, and are not specific for IMU’s only. Especially for MEMS IMU’s ,
electrical noise limits the resolution of the sensors. These errors are also dependent on frequency and range.
These noise terms will be denoted as wb

acc for the accelerometers and wb
ars for the angular rate sensors. For

3-axis measurements these are described as follows.

wb
acc =

wacc,xwacc,y
wacc,z

 wb
ars =

wars,xwars,y
wars,z

 (3.8)

IMU’s are also affected by mounting errors that can be described by a static rotation matrix. This occurs
because it is very hard to perfectly mount the IMU such that it is aligned with the {b} coordinate frame.
This can however be fixed by simply defining the {b} coordinate axis to be aligned with the IMU coordiante
axis, but then this could for example be a problem later if the estimates were to control heading. These
misalignment static rotation matricies will be denoted for the acceleormeter and gyros as follows.

Racc
b (q) Rgyro

b (q) (3.9)
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Together the 3-axis IMU measurements together with bias, scale factor, cross-coupling, static misalignment
error can be expressed as follows[6].

aaccimu = Racc
b (q)(I3x3 + Macc)Rb

w(q)(v̇wb/w − gw) + bbacc + wb
acc (3.10)

and

ωgyroimu = Rgyro
b (q)(I3x3 + Macc)Rb

w(q)(ωbb/w) + bbars + wb
ars (3.11)

All of the discussed error-sources will behave differently on the measurement outputs. This can be further
seen in figure 3.1. Here it is seen that with no errors the input u and output y has the same output as input.
Looking at the scale-factor plot it can be seen that it can potentially give greater errors than the biases.
Combining them results in a scaled, biased and noisy measurement as seen in the lower right figure.

Figure 3.1: IMU error-sources. Figure from [6]

Looking at the error sources it is therefore critical to find the correct local gravity, factory calibrate the IMU
to remove most of the scale factor and cross-coupling errors and estimation of the bias and noise terms.

3.1.4 Allan variance
As described in the previous sections, multiple sources of errors arise for accelerometers and gyros, with one
of them being the noise terms wb

acc and wb
gyro. These are modeled as Gaussian distributions with zero mean

and a variance. With the Allan variance method, it is possible to determine these variances. In MEMS
accelerometers and gyros the biases bbacc and bbacc may wander over time, due to flicker noise. This noise can
be seen as an bias driving noise. With the Allan variance method it is possible to determine the variance of
this noise also.

According to [22] the Allan variance is a time domain analysis for characterizing noise and stability of a
signal. The Allan variance method can be described as follows [22].
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1. Take a long sequence of data and divide it into bins of length t.

2. Average the data in each bin to obtain a list of averages (a(t1), a(t2), ... a(tn), where n is the number
of bins.

3. The Allan variance can then be calculated as follows

AV AR(t) = 1
2(n− 1)

∑
i

(a(ti+1)− a(t)i)2 (3.12)

with the Allan deviation as

AD(t) =
√
AV AR(t) (3.13)

Normally the Allan variance for the accelerometers and gyros are specified in the data-sheet as their respective
random walk and bias instability found in their functional specifications.

3.1.5 Wild point filtering
Incoming measurements signals coming from any sensor can have many erroneous sources as shown in
figure 3.2. For the errors shown in the figure, there are wild points, high variance, frozen signals and
high derivaties. Such measurements may give potentially large errors in the state estimation and should
be checked and captured. For both the accelerometer and gyro measurements coming from the IMU, it
is therefore important to perform some form of signal processing. This could for example be in the form
of a range-check, variance check or a wild point detection and removal. The range check could be done
by defining a specific range on the output and discarding its output if its below or above the range. The
variance check can be used to indicate if the sensor has high variance output or if the measurement is a
frozen signal if it has low variance. The wild point detection and removal can be used to sense if there are
large spikes in the sensor output that corresponds to a measurements which is far off from the neighborhood
measurements.
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Figure 3.2: Incoming sensor signal errors. Courtesy([7])

Maybe the most critical error to consider for the IMU is the wild point detection and removal. In the state
estimators such large spikes can especially lead to poor estimation if the IMU measurements are directly
used in their prediction step, like the ESKF and the NLO presented in this thesis. For measurements in
acceleration, such spikes occur if the vessel bumps into an object.

There are several approaches to wild point filtering. The one presented in [7] is to discard estimates that is
outside a range around the estimated signal mean σ. This measurement signal value will then be rejected
for one sample. Figure 3.3 shows a visual representation of this.

Figure 3.3: Wild point filtering method Courtesy([7])

The acceleration and gyro wild point filter implemented by the author for the IMU on Manta-2020 is based
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on Brages master thesis [26] wild point filter implementation stated below.

Where the subscript i = x, y, z denotes the corresponding acceleration axis.

Here the wild point filter takes the absolute value of the current and previous measurement and sees if this
is less than a tolerance. This tolerance is a tuning parameter that can be specified by the user. If this is true
the current measurement becomes approved and sent. Otherwise it becomes rejected. In addition to this,
this wild point filter also sets a limit on how many of the measurements that can be dropped in the "max
dropped allowed" variable. This is recommended because if not implemented it can potentially "wild point
filter" too many measurements consecutively.

For the gyro a slightly different tolerance methodology was used. This is defined as follows [26].

Where ω is the noise threshold set slightly larger than the largest observed peak-to-peak noise.

This method is based on the assumption that an object which is hitting another unmovable object, will be
fully elastic in a system without friction. The system will then have the same velocity after the collision,
but then only with a angle of direction that is mirrored[26].

The figure 3.4 shows how the wild point filter drops measurements coming from the ax accelerometer
axis.
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Figure 3.4: Wild point filter demonstration

3.1.6 Prolonged prediction
For the ESKF and NLO the gyro and acceleration measurements are directily used in their prediction. If
the aiding sensor measurements drops out, these filters runs a prolonged 6 DOF prediction of the states
where the acceleration is integrated twice to get position and once to get velocity. The gyro is integrated
once to give attiude. Since the IMU have several error sources dissuced above, these errors will propegate
during prediction. For a relativly slowly moving system, like Manta-2020 these errors will have the largest
contributions to the propegration erros than the acutal dynamics of the system. Drifting will then occur
rapidly. One solution to this is to implement gyro and accelerometer bias estiamtion. The 3-DOF accelration
biases will then be observable for aiding sensors that measures absolute 3 DOF position, like a GNSS. For
Manta-2020 the pressure sensor measures absolute vertical position, which will render the az bias observable.
For gyro bias estimation will the ωx and ωy biases become observable by knowing the absolute direction of
the gravity vector. Fortunately this is given by the accelerometer as stated in equation 3.1. Then with bias
estimation the prolonged prediction will hopefully give less inaccurate estimates.

3.1.7 Inclination estimate
The ideal measurement coming from the accelerometers when the AUV is at rest, is shown in 3.1. Since the
gravity vector is measured, it is then possible to calculate the initial roll and pitch estimate by the following
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equations.

φ = atan2(aaccimuy
, aaccimuz

) (3.14)

θ = atan2(−aaccimux
,
√

(aaccimuy
)2 + (aaccimuz

)2) (3.15)

Using these inclination equations as roll φ and pitch θ measurements directly into state estimators is not
recommended. This is because it is hard to distinguish between the biases and the specific force exerted on
the AUV in relationship to the gravity vector.

On Manta-2020 these inclinations estimates are used to find the initial mounting error Racc
b (q) and Rgyro

b (q).
This was done by taking an average of M samples, finding their respective roll and pitch inclination value
and then taking the mean. This was done to minimize the effect of biases and errors. The author this time
implemented an ROS-service in the device driver of the IMU. By calling the message "calibrate" these mean
values were directly given to the user. It was then possible to put these values in the "alignment error"
parameter in the tuning parameter list given as a yaml file. This can be clearer seen in the figure 3.5.

Figure 3.5: IMU mounting method

3.2 Aided inertial navigation
As described above an INS alone is not enough to get accurate estimates of the integrated quantities. To
limit the drift occurred, the INS must be aided by other sensors that provide direct measurements of the
integrated quantities. These may be GNSS, pressure meter, magnetic compasses, Doppler velocity log (DVL)
or underwater transponders. In this section, the DVL and the pressure sensor will be discussed.
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3.2.1 Doppler velocity log
A Doppler velocity log is an acoustic sensor that provides linear velocity measurements with respect to the
sea bottom or water. The measurement principle in the DVL is the Doppler effect. This effect describes
the frequency shift that occurs when moving towards or away from a relative object or target. The DVL
uses transducer beams together with a long pulse to achieve this. This is done by sending the long pulse
vertically to the bottom and at least three transducer beams in different directions. This can be seen in the
figure below.

Figure 3.6: DVL work principle on the Manta-2020 AUV. Courtesy([5])
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Chapter 4
The AUV of interest - Manta 2020

4.1 Concept
Manta is an inspection-class hovering AUV designed and developed by students of the student-organization
Vortex-NTNU. Manta both serves as an experimental underwater platform for students writing their master
thesis and as an AUV that competes in the Robosub competition. The main idea is to give students
practical experience with underwater robotics and foster ties to organizations and companies developing
AUV technologies.

(a) Side view (b) Front view

Figure 4.1: The AUV of interest - Manta 2020

4.2 Sensor and thruster stack
In order for the AUV to perform accurate maneuvers from the guidance and control system, it is critical
that the navigation system is robust. An important part of this robustness comes from having accurate
and precise sensors. The choice of sensors therefore plays an important part for the autonomy. What type
of sensors also plays an critical role. By choosing sensors that provides measurements of the navigational
states, will increase the observability of the GNC system. By having too few observable states will limit the
control and guidance system, meaning less robust maneuvering in the AUV’s mission plan. For example in
trajectory and path following. Manta-2020 is here equipped with an IMU from Sensornor, STIM300, Blue
Robotics Low-light HD Camera used for object detection, FLIR Blackfly S camera to use for object detection
and SLAM, Gemini 720i-imaging sonar and a Nortek DVL1000. All sensors used on the AUV is seen in
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figure 4.2.

Figure 4.2: Manta-2020 sensor stack

The design and choice of actuators also plays a critical role. There respective location and number determines
the controllability of the system, which in the end determines how many degrees of freedom the controller
can control. Here Manta-2020 is equipped with 8 T200 Blue Robotics thrusters, which is an three-phase out-
runner motor, which run with a nominal voltage between 12-16 volt, with a maximum of 20 volt [27].

4.2.1 Interoceptive sensors
As seen in figure 4.2, Manta currently relies on three main interoceptive sensors to provide 6 DOF estimates
of the navigational states. The first main sensor is an MEMS based IMU from Sensonor [28], STIM300.
This sensor contains 3-axis accelerometers, 3-axis angular rate sensors and 3-axis inclinometers [8]. This
sensor provides measurements of the AUV’s acceleration and angular velocity. On Manta-2020 this sensor
is mounted in the center of gravity in an strap-down approach. The second main interoceptive sensor is
an DVL. This sensor measures velocity w.r.t the seafloor or water. Also equipped with the DVL is an
inbuilt pressure gauge to measure depth. These sensors will be the main sensors to be used in the state
estimation.

4.2.2 Exteroceptive sensors
Also seen in figure 4.2, Manta is also equipped with three exteriorceptive sensors. The Low light HD camera
is used as the primary source for close-up front object detection. This camera has a resolution of 2.24 MP
and a supply voltage of 5V. This camera is ideally suited to be used in underwater environments, because
of its low-light performance, color handling and on-board video compression [29]. The second exteroceptive
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sensor is the FLIR Blackfly S camera. This is used for bottom object detection and SLAM. These cameras
are ideal for integration with computer vision, because of its features such as manual control over image
capture and on-camera pre-processing [30]. Some of these features include precise control of acquisition,
gain, black level, white balance, color transformation and transfer [31]. The newly installed Gemini 720i -
imaging sonar is used as an long range "2D scanner" which is mainly used for geographical mapping of the
underwater environment and SLAM.

4.3 The IMU - STIM300
The first main sensor used on Manta-2020 is an tactical-graded IMU (STIM300) from Sensonor. This
sensor contains 3-axis MEMS-based angular rate sensors, 3-axis MEMS-based accelerometers and 3-axis
inclinometers. It has an operating temperature between40.0◦C and +85.0◦C. The sensor uses the RS422
protocol for communication with 1 start bit, 8 data length bits and 1 stop bit. It also contains a -3dB low
pass filter on each output. The startup time plus time to get valid data is a maximum of 6 seconds. It is
also possible to customize sample rate, output units, low pass filter dB frequency and RS422 bit-rate. For
Manta-2020 the STIM300 have the following parameters set

Parameters Units
Sample rate 125 samples/s
Low-pass filter -3dB frequency 66 Hz
Measurement output units ARS Angular rate [◦/s]
Measurement output units Accelerometer Acceleration [g]
RS422 BIT-RATE 921600 bits/s

Table 4.1: Parameters set in the STIM300 IMU

Also this IMU has an inbuilt synchronization signal named TOV that will synchronize the sensor channels.
The IMU also performs CRC for fault detection. On Manta-2020, the input voltage is set to 5V and where
the AUX+ and AUX- are not used. The output channels of the IMU is connected with a transmission over
USB 2.0 which has an theoretical maximum transfer speed of 480 Mbits/s[32].

4.3.1 Axis
The STIM300 axis is defined as shown in figure 4.3a. The definition of axes are needed in order to define
the correct static correction matrix between the {imu} and {body} frame. In figure 4.3a, the mechanical
dimensions of the IMU is displayed. On Manta-2020 the STIM300 is placed as an strap-down approach,
which means it is rigidly attached to the unit. As seen in figure 4.8 the location of the IMU lies in the center
of origin {CO}. As described in Chapter 2, the center of origin {CO} is chosen to be equal to the center of
gravity {CG}.
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(a) The STIM300 definition of axes (b) The mechanical dimensions of the STIM300

Figure 4.3: The STIM300 axes and mechanical dimensions. Figure from [8]

From the STIM300 datasheet, table 4.4 and 4.5 specifies the functional specification parameters for the
angular rate sensors and the accelerometers.

Figure 4.4: IMU acceleration error-characteristics table. Figures from [8]
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Figure 4.5: IMU angular rate sensor error-characteristics table. Figure from [8]

As seen in table 4.1, the sample rate was set to 125 hz to minimize the contribution of the random noise error.
Also Manta-2020 is not designed for high-speed applications, so a greater sample rater was not needed.

Error Stanarddeviation
Misalignment 1 mrad
Scalar 300 ppm
Bias 0.05 mg

Table 4.2: Quality of the accelerometer on STIM 300

Error Stanarddeviation
Misalignment 1 mrad
Scalar 500 ppm
Bias 0.5◦/

√
h

Table 4.3: Quality of the gyros on STIM 300

4.4 Doppler Velocity Log (DVL) - DVL1000
The second main interoceptive sensor used on Manta-2020 is a DVL1000 from Nortek. This sensor provides
velocity measurements relative to the sea-bottom or water. This is done by sending a pulse with three
or more acoustic beams in different directions. This DVL is designed to provide bottom tracking between
0.2 − 75m with a maximum of 300 meters operational depth [33]. This DVL can operate between -4 to
40 ◦C and is configurable to the RS-422 interface. It can operate between a DC-voltage input of 12 - 48
volts.
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Figure 4.6: DVL sensor configuration. Figure from [9]

4.4.1 Axes and mechanical specifications
In order to get the correct lever-arm rbdvl between the {imu} and {dvl} frame, the mechanical dimensions,
axes and center of origin must be known. On Manta-2020, the DVL is located as shown in figure 4.8 and is
rigidly attached to the AUV. The full sensor overview is seen in figure

(a) The DVL coordinate axes

(b) The mechanical dimensions of DVL1000

Figure 4.7: The DVL1000 coordinate system and INS configuration origin. Figures from [9]

4.4.2 DVL Measurement equation
On Manta-2020 the DVL is configured to use bottom tracking and not water tracking. This is because the
environments Manta-2020 will operate in will have a static sea bottom that has no motion. The velocity
measurement will then be written as follows [34], where {bottom} is a fixed reference frame at the bottom
of the sea.

vdvldvl/bottom = Rdvl
b (q)Rb

n(q)(vnb/n −Rn
b (q)S(ωbb/n)rbdvl) (4.1)

Where S(ωbb/n) is the skew symmetric matrix and rbdvl is the lever arm from the {dvl} frame to the {b} frame.
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Rn
b (q)S(ωbb/n)rbdvl is the extra velocity contributed from the rotation of the body frame. This however is

considered small if the lever arm rbdvl is small, and assuming the DVL is rigidly attached to the vessel. This
is the case for Manta-2020.

4.4.3 Pressure sensor measurement equation
As seen in the figure 4.6 the DVL-1000 is equipped with a pressure sensor. This is an absolute pressure
sensor that is configured to output depth measurements according to the following equation.

zpressureb/n = (P pressuren + bpressuren + wpressuren )P0

ρwatergn
(4.2)

Where P pressuren is the measured pressure, P0 is the atmospheric pressure, ρ is the water density and gn is
the local gravity.

This depth measurement gives an absolute position measurement in the local world frame that is used on
Manta-2020. With this it is possible to get an observable z - acceleration bias output from the bias estimation
used in the ESKF.

The pressure sensor is located as seen in figure 4.6. The {pressure} frame has its origin in the {dvl} frame,
and since it outputs absolute measurements relative to the world frame, there is no static rotation matrix
from the pressure frame to the body frame. However, the world frame does not have its origin in the {dvl}
frame. Therefore to get measurements in znb/n, an vertical arm rnpressure from the {pressure} frame to the
{n} must be added to zpressureb/n . This is stated as follows.

znb/n = rnpressure + zpressureb/n (4.3)

This vertical arm was found to be by measuring with a precise ruler.

rbpressure = −0.211 (4.4)

4.4.4 Sensor alignments
In figure 4.8 shows how the sensor- alignments for IMU and DVL are located on Manta-2020 and their
respective frames. Here rbdvl is the lever arm between {dvl} frame and {imu} frame.
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Figure 4.8: Manta-2020 interoceptive sensor alignment

Also seen in figure 4.8 the mounting reference frame {dvl} has the same orientation as the body frame. Thus
there are no rotation from the DVL to the body frame, and the the rotation matrix Rb

dvl(q) can be expressed
as follows.

Rb
dvl(q) = I3x3 (4.5)

As also seen in the figure 4.8, there is a distance from the origin of the IMU to the origin of the {dvl} frame
(See figure 4.7b) By measuring the distance with a precise ruler, the lever arm rbdvl was found to be.

rbdvl =

−0.035
−0.017
−0.211

 (4.6)

Also seen in figure 4.8, a rotation of π in pitch φ in euler angles will rotate the {acc} and {gyro} mounting
frames to the body frame {b}. Thus the static euler angles for the {acc} and {gyro} frames are found to be
as follows.

Θbacc = Θbgyro =

0
π
0

 (4.7)

and by converting to quaternions by the formula 2.20, qbacc and qbgyro were found to be

qbacc = qbgyro =


0
0
1
0

 (4.8)
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Now qbacc and qbgyro can now be inserted in the rotation matrices Rb
acc(q) and Rb

gyro(q).

Rb
acc(q) = Rb

gyro(q) =

−1.0 0 0
0 1 0
0 0 −1.0

 (4.9)

The pressure sensor had to be converted to NED and thus the vertical arm rbpressure was set to the follow-
ing.

rbpressure = −0.211 (4.10)

4.5 Exteroceptive sensors
Also seen in figure 4.2, Manta is also equipped with three exteriorceptive sensors. The Low light HD camera
is used as the primary source for close-up front object detection. This camera has a resolution of 2.24 MP
and a supply voltage of 5V. This camera is ideally suited to be used in underwater environments, because
of its low-light performance, color handling and on-board video compression [29]. The second exteroceptive
sensor is the FLIR Blackfly S camera. This is used for bottom object detection and SLAM. These cameras
are ideal for integration with computer vision, because of its features such as manual control over image
capture and on-camera pre-processing [30]. Some of these features include precise control of acquisition,
gain, black level, white balance, color transformation and transfer [31]. The newly installed Gemini 720i -
imaging sonar is used as an long range "2D scanner" which is mainly used for geographical mapping of the
underwater environment and SLAM.

4.6 Electronics system

Figure 4.9: Drawing of Manta-2020 main electronic motherboard. Courtesy: ([5], Rakstad)

Figure 4.9 shows the electronic motherboard on Manta-2020. On the lower right side, is an Odroid XU4
microcontroller. This computer acts as Mantas On-Board main computer (OBC), which is responsible to
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run the GNC system. The odroid has an Exynos 5422 application processer. This processer has a ARM
quad-core Cortex A15 (2.0 Ghz) plus a ARM quad-core Cortex A7 (1.3 Ghz) CPUs. It is also packed with
2 GB LPDDR3 RAM at 933 Mhz [35]. The OBC is installed with Ubuntu minimal 16.04 to make less
use for graphical user interface and other background programs that are not needed. These programs may
higher the computational burden on the microcontroller and may potentionally lower the computing power
needed for the GNC system. The Odroid is also interfaced with a number of peripheral modules which are
connected with a dedicated NanoPi Neo plus 2 (SBC) for standalone communication with the OBC[5]. The
use of a dedicated SBC makes Manta-2020 modular and makes it possible to do changes without opening
the main electronic enclosure [5]. On the upper right corner is the location of the switch. This switch has 6
Ethernet input ports which are connected to the sonar,DVL, front camera and carrier board of the Nvidia
Jetson TX2.

Manta is also equipped with a NVIDIA Jetson TX2 4GB module. Since this module is packed with a 256-
core NVIDIA pascal GPU[36], it is responsible for pre- and post processing of the camera feedback coming
from the FLIR Blackfly S and Blue Robotics HD camera. Looking at figure 4.10 the NVIDIA Jetson TX2 is
connected to its TX2 carrier board j120. This unit is packed with 1 USB 2.0, 1 USB 3.0 port and ethernet
jack. The USB 3.0 is used for communcation with the FLIR Blackfly S and the ethernet jack is connected
to the switch.

Also seen in figure 4.10 the STIM300 is connected with a USB 2.0 directly to the Odroid XU4 USB 2.0
hubs. This standard was used because of the easy interface with the device driver, that was written in-house
in C++11 (See Appendix A). The DVL is connected with a Ethernet connection to the switch. Its device
driver is also written in-house in Python 2.7 (See Appendix A). Manta-2020 is also equipped with a kill
switch, which turns off the battery voltage with the use of an magnetic sensor packed on the relè.
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Figure 4.10: Schematics of the electronic overview of Manta-2020

4.7 ROS - Robot operating system
The robot operating system is a set of software frameworks and tools for developing robotic software [37]. It
is open-source and provides services like hardware abstraction, low-level device control and message-passing
between processes [37]. By having it open-source, the possibility of sharing code is open to everyone, such
that high-quality code can be shared between contributors. ROS is based on modulation of software code
with programming languages such as Matlab, Python, C++ and more. These "modules" are named as nodes
in the ROS environment, consisting of software source-code of a particular application. ROS utilizes different
type of communication between the these nodes with both synchronous and asynchronous communication.
Synchronous communication is based upon "services" and continuously asynchronous communication over
"topics". The nodes that continuously publishes information to another node, are called "publisher" and
those who listens are called "subscribers". As with the ROS services is based on a server which provides a
callback to the client request.

ROS also comes packed with a software package called "tf"[38] and "rviz". The "tf" package offers the user
to keep track of multiple coordinate frames over time. Included in this package is also a homogeneous static
transform publisher that can be used to find the transformation between different coordinate frames. This
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is very useful in order to find the static rotations and lever arms between the sensor frames and body frame
such as Rb

bdvl(q), Rb
gyro(q), Rb

acc(q), Rb
pressure(q) and rbdvl [1]. The "rviz" package is a 3D-visualization tool

that can display the sensor frames,body frame, world frame and shows their respective static rotations and
lever arms. This tool is very useful when debugging and get a "feel" of how the localization behaves.

4.8 Software system overview

Figure 4.11: Software overview of Manta-2020. Courtesy([5], Rakstad)

Manta-2020 software architecture is based on a distributed network topology and a client/server network
communication between the components [5]. This communication is provided by ROS kinetic devel as
described in section 1.4.3.1. The complete general schematic overview of the software of Manta-2020 is seen
in figure 4.11. The flow starts at the mission plan and travels clockwise as shown by the arrows [5]. Here a
human operator or a communicator sets apriori information. This is may be of the form of targeted way-points
or a global or local map of the environment the AUV will operate in. This information is needed in order to
get the reference information, such that the GNC can calculate its errors with the reference. These waypoints
or maps are then added into a .yaml or .py file [5]. These will then be interpreted by a task manager such as
a finite state machine or a behavior tree [5]. Once the mission controller is finished compiling, it will arm the
thrusters and launch the exteriorceptive and interoceptive sensors modules by roslaunch commands. The
raw_data coming from each sensor is being published through a ROS topic coming from their implemented
device drivers as shown in the figure 4.10. The measurements are then going through a signal processing
block, such as a range test, wild point test or a lowpass filter. The filtered measurements are then also
published by a ros-topic to a localization node, such as a Kalman filter, nonlinear observer, particle filter
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or a Luenberger observer. Exteriorceptive sensory information such as camera feedback is going trough
either SLAM, object detection or line detection. All of this "situational awareness" information is then going
trough a Proactive Risk Assessment and spatial memory which then go further to the path planner and path
generator. In this report the main focus will be the blocks inside the dotted lines shown in the higher right
corner in figure 4.11. Specifically the sensor models for the interoceptive senors like the IMU, pressure gauge
sensor and DVL, signal processing such as a wild point filter for the accelerometer and angular rate sensor
for the IMU, a nonlinear state observer based on [3], Joan Solàs version of the Error-state Kalman-filter [2]
and a extended Kalman-filter from Charles River Analytics, Inc [39]. For more information of the software
overview, see [5].

41



Chapter 5
State estimators

Measurements coming directly from the DVL, IMU and the pressure sensor, do not alone give a full 6 DOF
state estimate of the AUV. Because of this state observers, together with a mathematical model and the
measurements coming from the sensors, can be used to estimate the 6 DOF states from 2.9 and 2.6. In
this section some theory of the Bayes filter will first be presented, then the discrete Kalman filter, extended
Kalman filter, the theory of Joan Solàs error-state Kalman filter based on [2] and finally theory about the
nonlinear observer based on [3].

5.1 The Bayes filter
In order to understand the Kalman filter, the Bayes filter must first be understood. First of all, the Bayes
filter is based upon a Markov process. (page 47 in [21]), where the filtering problem is described of two
models. The first is the kinematic prior or Markov model. This is usually denoted as p(xk|xk−1). The
second model describes the measurement model or likelihood. This model is specified as p(zk|x)k. Here
the x vector describes the states, while the z vector describes the incoming measurements. This can be the
output of different sensors.

In Bayesian filtering the problem is to estimate the posterior distributions p(xk|z)1:k−1 and p(xk|z)1:k. In
order to calculate these, the total probability theorem and Bayes’ theorem are used respectively.

p(x|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (5.1)

and

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) (5.2)

One of the key assumptions regarding the Bayes filter, is that the Markov property must hold .The Markov
property means that xk is independent of x0, ....,xk−1 when xk is given [21].

In order to find closed-form solutions of 5.1 and 5.2, the kinematic prior and measurement model must be
Gaussian and linear. By using a Gaussian distribution the linearity, the fundamental product identity and
independence rules can be used, and thus the solutions of 5.1 and 5.2 can be a closed-form solution. The
product identity states that a product of two Gaussian’s will produce another Gaussian distribution. The
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linearity rule states that if a Gaussian random variable goes through a linear transform the new random
variable is also Gaussian.

5.2 The discrete Kalman filter
The Kalman filter is in simple words an stochastic, optimal and recursive data processing algorithm based
upon a Bayes filter where the underlying distributions are assumed to be Gaussian[21]. The algorithm uses a
series of measurements, normally coming from the output of sensors, which contain statistical noise, compare
these measurements with a stochastic physical model, and produces optimal estimates of the true states.
These estimates tend to be more accurate than just the measurement readings alone.

The kinematic prior and the measurement model of the discrete Kalman filter is written as

xk = Fxk−1 + vk (5.3)
zk = Hxk + wk (5.4)

Here the F matrix denotes the transition matrix, which describes how the states will be predicted for each
cycle k. The vk describes the kinematic prior noise. The H matrix is defined as the measurement matrix,
and describes for example which of the states that are measured from a sensor. All output from these
sensors will contain noise in their measurements. This is captured in the wk vector, and is known as the
measurement noise. Both the measurement noise and the kinematic prior noise are assumed to be mutually
independent and have a Gaussian probability density function with zero mean[21]. The Gaussian distribution
with zero mean is to ensure that there exist a closed-form solution, and that the estimate of the true states
are unbiased. Thus these noise vectors can be written as follows

vk ∼ N (0,Q) (5.5)
wk ∼ N (0,R) (5.6)

Here Q is the process noise matrix representing the covariance of the kinematic prior, and accounts for the
uncertainty in the process model. This matrix is constant and does not get updated by the filter. The tuning
of this matrix is thus important in order to get accurate posterior estimates. The R matrix is known as the
measurement noise covariance and account for the uncertainty in the measurement model, and defines the
confidence in each of the measurements zk.

In order to get a probability density function of the kinematic prior and the measurement model, the expected
value and the variance can be found as follows. The steps are the same the measurement model.

E[xk] = E[Fxk−1 + vk] (5.7)
E[xk] = Fxk−1 + E[vk] (5.8)
E[xk] = Fxk−1 (5.9)

Var[xk] = Var(Fxk−1 + vk) (5.10)
Var[xk] = 0 + Var[vk] (5.11)
Var[xk] = Q (5.12)
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Thus the probability density function of the kinematic prior and the measurement model, can be written
as

p(x|xk−1) = N (xk; Fxk−1,Q) (5.13)
p(zk|xk) = N (zk; Hxk,R) (5.14)

The algorithm step by step

The full Kalman filter algorithm is seen in figure 5.1. The probability density figures take only the first cycle
into account. This is from k = 0 to k = 1. This is done in order to get an intuitive understanding of how
the filter predicts and updates and how the comparison between the prediction and measurement is done.
Also the figure clearly shows that all probability density functions are assumed to be Gaussian. One thing to
note in the figure is that the outputs are in univariate Gaussians. This is done for illustration purposes only.
Normally higher dimensions are used and thus the multivariate Gaussian will be the underlying probability
density function.

Kalman gainCurrent posterior state estimate Innovation

 Measurement prediction

State prediction

x

xx

x

Next cycle

Measurement model

x

Initial estimate

Figure 5.1: The discrete Kalman filter algorithm
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The initial estimate

Figure 5.2: The initial step of the kalman filter

The first step in the discrete Kalman filter algorithm is the initial estimate. Looking at figure 5.2, there
are parameters that have to be initilized, the initial state estimate x0 and the initial error covariance P0.
Together these form a Gaussian distribution with a mean of x̂0 and a variance of P0. In an compact form,
this can be written as follows:

p(x0) = N (x0; x̂0,P0) (5.15)

These parameters are critical in order for the Kalman filter to converge quickly to an optimal solution
that is more accurate than the measurement alone, the initial guess of the states x0 should have values
close to the true states xt. This may be the initial state measurements z0. If no sensors are to provide a
state measurement, for example position, then these states may be initialized to zero. For example if an
accelerometer and a GPS where to be used, the position estimate would be the last GPS reading, the velocity
as the last velocity GPS reading or the last accelerometer reading. The P0 could be initialized with the
measurement noise covariance matrix R for the given sensors that provide the states. For the example at
hand, P0 can be stated as follows:

P0 = blkdiag(Rgps,Rgps or Racc,0,0,Racc) (5.16)

The prediction step

Since the posterior probability density function of the previous time-step p(xk−1|zk−1) and the kinematic
prior model with probability density function given as in 5.13, are known, it is possible to calculate the
prediction step as given in 5.1. This is possible by the use of the fundamental product identity of Gaus-
sian probability density distributions and with the use of the total probability theorem. This can be seen
mathematically as [21]

p(x|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (5.17)

=
∫
N (xk; Fxk−1,Q)N (xk−1; x̂k−1,Pk−1)dxk−1 (5.18)

= N (xk; x̂k|k−1,Pk|k−1) (5.19)

Thus this step combines the previous posterior estimate with the kinematic prior and makes a new Gaussian
distribution based on the product rule for Gaussian distributions as seen in figure 5.3.
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Figure 5.3: The prediction step of the Kalman filter

After the state prediction step, the next step is the measurement prediction. This can be stated as fol-
lows

ẑk|k−1 = Hx̂k|k−1 (5.20)

Here the H matrix is known. This prediction step is important in order to compare the correct states with
the incoming measurements z, which leads to the innovation.

The innovation

After the prediction step, the Kalman alogrithm takes in measurements coming from the sensors in the
measurement model zk = Hxk + wk. Looking at figure 5.4 this forms a Gaussian distribution with a mean
the measured states Hxk and a covariance of R coming from the noise term in wk. zk then becomes sub-
tracted from the predicted estimate ẑk|k−1 together with its covariance calculated, known as the innovation
and innovation covariance respectively. This is a combination of the predicted covariance Pk|k−1 and the
measurement covariance R.
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Figure 5.4: The innovation step of the Kalman filter

The Kalman gain

With the innovation calculated, it is now possible to calculate the Kalman gain. This gain is found by the
following equation.

Wk = Pk|k−1HTS−1
k (5.21)

This gain measure how much the algorithm should trust the prediction compared to the measurements.
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The current posterior state estimate

Figure 5.5: The current posterior state estimate step of the Kalman filter

The last step in the discrete Kalman filter algorithm is the current posterior state estimate. As seen in figure
5.5, this is where the Kalman filter does its update based on the prediction, Kalman gain and innovation.
Looking at the resulting Gaussian distributions, the posterior estimate is intuitively an optimal Gaussian
distribution based on the product rule between the prediction and measurement Gaussians. Mathematically
this is calculated as follows.

p(x|z1:k−1) ∝ p(zk|xk)p(xk|z1:k−1) (5.22)
= N (zk; Hxk,R)N (xk; x̂k|k−1,Pk|k−1) (5.23)
∝ N (xk : x̂k,Pk) (5.24)

Pk is known as the posterior error covariance. This is the covariance of the posterior update probability
density function of 5.2. In intuitive language, the inverse of this matrix shows how "confident" the Kalman
filter is in its posterior state estimate [21].
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5.3 Tuning of the process noise covariance Q and filter consis-
tency

Tuning of the process noise covariance is important for the filter to get accurate estimates of the states close
to the true states. The process noise covariance is, as already written above, used in the kinematic prior as
a noise term. Since the Kalman gain is dependent upon the predicted error covariance, the process noise
covariance will say something about how much the prediction is trusted.

There are different methods of tuning the process noise Q. One method is based upon physical considerations
[21]. This takes into account how the true system will be maneuvered. If the maneuvers accurately represents
the state prediction, a low process noise covariance will then be set. In the opposite case, where the kinematic
prior model does not accurately predict the given maneuvers, a high process noise covariance should be set
[21].

A second method is based on filter consistency. With the use of the normalized estimation error squared
(NEES), stated as follows: [21]

εk = (x̂k − xk)TP−1
k (x̂k − xk) (5.25)

it is possible to find a reasonable process noise covariance. This will be the case if the kinematic prior model
gives reasonable predictions of the true maneuvering, the measurement noise covariance R is correctly given
with a Gaussian probability density function, and that the state errors x̂k−xk have magnitude commensurate
with the posterior error covariance Pk. If these requirements are met, it can be shown that the pdf of εk is
χ2 distributed. By combining all realizations of k together, a χ2 distribution form, which has a stochastic
variable as the average NEES (ANEES). By constructing a reasonable confidence interval of the mean
between α and 1− α, it is possible to find out if the filter is overconfident or underconfident. If the value of
ANEES is below the confidence interval lower value, means that the Q matrix is set too large, and the filter
is underconfident. While if the value of ANEES is above the confidence upper value, the Q matrix is set to
small, and the filter is overconfident.

Thus the most reasonable method to tune the process noise covariance Q would then be to combine the
first and second method described above. Then it is possible to have both physical considerations and
mathematical inspection to tune the process noise.

A more real life scenario of tuning the Q matrix is with the use of the NIS test, stated below as

εvk = νTk S−1
k νk (5.26)

where νTk is the innovation and S−1
k is the inverse of the innovation covariance.

The results of both of these tests should mimic a zero-mean univariate Guassian distribution. If so, NIS or
NEES are modeled as white noise, which indicates that the filter is assumed to have an optimal estimation.
When doing simulations or in real world scenarios where ground truth are given, both the NIS and NEES
can be calculated and is a critical step in order to tune the filter to for instance not diverge under long
periods of estimation.
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5.4 The extended Kalman filter
The discrete Kalman filter has now been thoroughly studied and has given a fundamental building block to
the theory of the extended Kalman filter. The algorithm has many of the same steps, and these steps will
not be studied in this section. This section, however, will account for the added steps and differences in the
algorithm.

5.4.1 Linearization scheme
The extended Kalman filter is in general based upon a nonlinear kinematic prior model and measurement
model. These are stated as follows [21].

xk = f(xk−1) + vk (5.27)
zk = h(xk) + wk (5.28)

where vk and wk corresponds to 5.5 and 5.6 respectively. The terms f and h denotes the nonlinear functions.
In order for the extended Kalman filter to have close-formed solutions of 5.1 and 5.2, f and h must be
linearized.

The linearization method is based upon a first order Taylor expansion approximation of f(xk−1) and h(xk).
This can be stated as follows[21].

f(xk−1) ≈ f(x̂k−1) + F(x̂k−1)∆xk−1 (5.29)
h(xk) ≈ h(x̂k|k−1) + H(x̂k|k−1)∆xk (5.30)

Here ∆x corresponds to the following [21].

∆xk−1 = xk−1 − x̂k−1 (5.31)
∆xk = xk − x̂k|k−1 (5.32)

5.4.2 Algorithm differences compared to the Kalman filter
Since there is now a nonlinear kinematic prior model and measurement model, the algorithm used for the
extended Kalman filter has some differences with the Kalman filter described in the previous section. The
differences are seen in figure 5.6.
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State predictionState prediction

 Measurement prediction

The Kalman filter The extended Kalman filter

 Measurement prediction

Figure 5.6: The differences in the algorithm between the Kalman filter and the extended Kalman filter

In the state prediction block of the extended Kalman filter, the linearization of f is done. Since the true
states are not known, the linearization operating point of F is the most recent posterior state estimate. For
the linearization of h, the operating point is the most recent state prediction.
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5.5 Manta-2020 Robot_localization - The open source EKF
Having discussed the theoretical aspect of the Bayes filter, the Kalman filter and the extended Kalman
filter, the problem is then to put this into place for Manta-2020. The use of just a discrete Kalman filter to
estimate, is insufficient. This is because the dynamics of Manta-2020 is nonlinear. This is because rotation
are required between the different frames described in section 1.1. With this an extended Kalman filter had
to be used.

The extended Kalman filter on Manta-2020 was implemented using the open-source implementation robot_localization.
This is a ROS package that contains a collection of nonlinear state estimation nodes. In this package the
EKF is named ekf_localization_node. This is a C++ written ROS node which subscribes on IMU and
aiding sensors measurements. With this the drivers for the IMU and DVL had to be made as ROS publisher
nodes. The IMU measurements were published in a standard ROS message of type sensor_IMU, while the
DVL and pressure measurements were published with an nav_/Odometry message. In the driver the IMU
measurements was set to publish with a frequency of 125 Hz. This is the standard frequency of the STIM
300. The DVL and pressure sensor measurements were set to publish with 8 Hz, which was the maximum
frequency that could be used. This was done to get as many measurements of the DVL and pressure sensor
as possible, such that the EKF minimized dead reckoning.

5.5.1 The Kinematic prior model
The EKF robot localization nonlinear kinematic prior model is based upon a standard 3D kinematic model
derived from Newtonian mechanics [40] with a 15 dimensional state vector xk. The state vector can be
written as follows [40].

xk =


pw(b/w)k

Θ(wb)k

vb(b/w)k

ωb(b/w)k

ab(b/w)k

 (5.33)

Here the coordinate system {w} corresponds to the world frame of robot_localization, which is discussed in
section 5.5.2 And the nonlinear kinematic transition model f(xk−1) as follow.

f(xk−1) =


pw(b/w)k−1

+ Rw
b (Θ(wb)k−1)vb(b/w)k−1

∆t+ 1
2Rw

b (Θ(wb)k−1)ab(b/w)k−1
∆t2

Θ(wb)k−1 + TΘ(Θ(wb)k−1)ωb(b/w)k−1
∆t

vb(b/w)k−1
+ ab(b/w)k−1

∆t
ωb(b/w)k−1

ab(b/w)k−1
+ Rb

w(Θ(wb)k−1)gw

 (5.34)

Here TΘ(Θ(wb)k−1)ωb(b/w)k−1
is given in 2.8.

The sampling frequency f = 1
∆t was set to match the frequencies of the NLO and ESKF.

5.5.2 Frames
The frames for Robot localization are defined as odom,map and base _link. The odom frame is an local
world fixed coordinate system that that is defined according to the inital state estimate in the EKF. The
base_link is the coordinate frame that is affixed to the robot. The map frame is a frame used for fusion
with GNSS systems. In the implementation and design of the ROS Param Yaml file, the inital attitude state
estimates were set to the default values, which were 0,0,0 for the given test scenarios. Odom and base_link
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were then both defined as ENU (East-North-Up) coordinate systems. These coordinate systems are better
seen in figure 5.7

Figure 5.7: EKF ROS - Robot localization coordinate frames

The EKF node assumes that the IMU measurements are defined according to ENU (East-North-Up). The
students at Vortex-NTNU then found that the best solution is to have the body frame as a ENU coordinate
system. Therefore the static transformations are not similar to the ESKF and EKF.

5.5.3 Static transformations
The ROS framework uses Tf_static_transform_publisher as static rotations and leverarm between different
frames. The static transform publisher is defined as follows [41]

• static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period_in _ms

Where x,y,z is the leverarm and yaw,pitch roll are the euler angles that must be spesifed in order to make
the static rotation matrix between frame_id child_and child_frame_id.

For the DVL the static transform is found to be roll = π and x, y, z = −0.035,−0.017,−0.211 and for the
IMU the static transfrom was set to yaw = π yielding the following static_transform_publishers

• static_transform_publisher -0.035 -0.017 -0.211 0 0 π base_link dvl 125

• static_transform_publisher 0 0 0 π 0 0 base_link imu 8

With the pressure sensor the output of the driver was set to output positive values when the AUV was moving
towards the water surface and negative when moving towards the bottom surface. This was done in order
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to have the zpressureb/odom axis in the same orientation as the z_odom. With this the vertical leverarm from the
odom to the pressure frame had to be set. Following equation 4.3, an verticalarm with z = rodompressure = 0.211
gives the static rotation. The static transform for the pressure sensor then became as follows

• static_transform_publisher 0 0 0.211 0 0 0 odom pressure 125

5.6 Limitations of the extended Kalman filter
A first order Taylor expansion of a nonlinear function will make a linear approximation. This linear approx-
imation will give raise to a linearization error. This is visualized in figure 5.8. This error depends on how
nonlinear the function is. If the nonlinear function is highly nonlinear, the linearization error will be large.
If the nonlinear function is mostly linear and varies slowly, the error will be low. Also, as seen in the figure,
the further away from the operating point a the linear approximation is, the larger the linearization error
becomes.

Figure 5.8: Linearization error that occurs by linearizing a nonlinear function. Figure from [10]

For the extended Kalman filter the linearization error will be a problem, if the kinematic prior and the
measurement model are highly nonlinear. The true behavior of the system will then not be captured very
well. Also if the sensors have slow sampling time relative to how fast the system is evolving, the linearization
error will raise. This has some important consequences for the estimation of the EFK. First, the posterior
state estimate will have a large deviation from the true states. Second, the posterior error covariance will not
capture the true uncertainty. In the worst scenario the linearization error may cause the extended Kalman
filter to become overconfident in its posterior estimate, even when the estimate is far off from the true states
and uncertainty in the states. This may cause the filter to diverge.

Another limitation of the extended Kalman filter is found if the kinematic or measurment model are not
first order differentiable. Also computing the Jacobian matrices may be computationally expensive for small
embedded systems.
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5.7 The error-state Kalman filter
Having discussed the limitations of the extended-KF, an alternative is the error-state Kalman filter (ESKF),
which has the important advantage of not having singularities both in state representation and in the
covariance representation. This filter is generally more suitable for inertial navigation systems (INS) than
the discrete KF and the EKF. The filter integrates the high frequency measurements from a gyro and an
accelerometer and estimates a 6 DOF state vector. By direct measurement coming from for example GNSS,
pressure sensor or magnetic compasses, the accelerometer and gyro biases become observable and thus the
drifting in INS will get smaller with time. The results are then with full pose estimates with INS only will
become more accurate.

5.7.1 The state values
The ESKF consist of a nominal state x, error-state δx and true states xt. The nominal states x account
for a perfect state model without biases and noise terms. The error state on the other hand accounts only
for the biases and noise terms. The true states will then be the combination of the nominal and the error
states. A further inspection of these states are seen in the table

States list
Description True Nominal Error Composition Measured Noise
Position pn(b/n)t

pnb/n δpnb/n pn(b/n)t
= pnb/n + δpnb/n

Velocity vn(b/n)t
vnb/n δvnb/n vn(b/n)t

= vnb/n + δvnb/n
Attitude qt q δθ qt = q ⊗

[
1

1
2δθ

]
Accelerometer bias bb(acc)t

bbacc δbbacc bb(acc)t
= bbacc + δbbacc bbaccn

Gyro bias bb(gyro)t
bbgyro δbbgyro bb(gyro)t

= bbgyro + δbbgyro bbgyron
Acceleration ab(imu)t

abimu wb
acc

Angular velocity ωb(imu)t
ωbimu wb

gyro

Table 5.1: ESKF states list

The idea is that the nominal states are assumed as large-signal and the error-state as a small signal. By
this the nominal states becomes non-linear integrable, and the error-states linearly integrable. By this the
error-states are suitable for linear-Guassian filtering.

5.7.2 The true states kinematics
By combining the gyroscope measurements given in 3.11 and the accelerometer measurements 3.10 the
formulation of the true states kinematic system is formulated as a nonlinear state vector ẋ = f(xt,u,b).
Where xt, u and w are given as

xt =


pn(b/n)t

vn(b/n)t

qt
bb(acc)t

bb(gyro)t

 u =
[

abimu −wb
acc

ωbimu −wb
gyro

]
b =

[
bbaccn
bbgyron

]
(5.35)

Where abimu is the equation given in 3.10 and ωbimu is the equation given in 3.11. The wb
acc and wb

gyro denotes
the acceleration and gyro measurements noise respectively. bbgyro and bbgyro denotes the acceleration bias
and gyro bias noise respectively.
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With these the true-state kinematics system can be formulated as follows [21]

ṗn(b/n)t
= vn(b/n)t

(5.36)
v̇n(b/n)t

= Rn
b (q)(abimu − bb(acc)t

−wb
acc) + gn (5.37)

q̇t = 1
2q

t
⊗ (ωbimu − bb(gyro)t

−wb
gyro) (5.38)

ḃb(acc)t
= −pbb

acc
I3x3bb(acc)t

+ bbaccn (5.39)
ḃb(gyro)t

= −pbb
gyro

I3x3bb(gyro)t
+ bbgyron (5.40)

The bias ḃ(acc)t
and ḃ(gyro)t

are modeled as a Gauss-Markov process, where p = 1/T and T is a time constant
[21]. pbb

gyro
is known as the gyro bias reciprocal time constant and pbb

acc
is known as the acceleration bias

reciprocal time constant.

The bias noises bbaccn and bbgyron and measurement noises aaccn and agyron are modeled as a white noise
process These bias noises are modeled as a white noise process, and are assumed Gaussian. These can be
stated as follows. [2]

wb
acc ∼ N (0,V) (5.41)

wb
gyro ∼ N (0,Θ) (5.42)

bbaccn ∼ N (0,A) (5.43)
bbgyron ∼ N (0,Ω) (5.44)

Where V, Θ, A and Ω are given as [2]

V = σ2
wb

acc
∆t2I3x3 (5.45)

Θ = σ2
wb

gyro
∆t2I3x3 (5.46)

A = 2pbb
acc
σ2
bb

accn
I3x3 (5.47)

Ω = 2pbb
gyro

σ2
bb

gyron
I3x3 (5.48)

The σ2
wb

acc
, σ2

wb
gyro

, σ2
bb

accn
and σ2

bb
gyron

can be found by the Allan variance method described in section
3.1.4.

5.7.3 The nominal state kinematics
The nominal state kinematics are defined as the true states without any noise. Thus the nominal states
become
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ṗnb/n = vnb/n (5.49)
v̇nb/n = Rn

b (q)(abimu − bbacc) + gn (5.50)

q̇ = 1
2q ⊗ (ωbimu − bbgyro) (5.51)

ḃbacc = −pbb
acc

I3x3bbacc (5.52)
ḃbgyro = −pbb

gyro
I3x3bbgyro (5.53)

5.7.4 The error state kinematics
The error state kinematics takes as stated all the noise and perturbations in account. The error state is
denoted as δx and are described by the following equations.

δṗnb/n = δvnb/n (5.54)
δv̇nb/n = −Rn

b (q)S(abimu − bbacc)δθ −Rn
b (q)δbbacc −Rn

b (q)wb
acc (5.55)

δθ̇ = −S(ωbimu − bbgyro)δθ − δbbgyro −wb
gyro (5.56)

δḃbacc = −pbb
acc

I3x3bbacc + bbaccn (5.57)
δḃbgyro = −pbb

gyro
I3x3bbgyro + bbgyron (5.58)

5.7.5 The discrete nominal state kinematics
In order to use the error-state Kalman filter, the nonlinear dynamics of the nominal states must be discretized
from continuous time. Since there does not exist closed-from solution of the continuous nominal state
kinematics [2]. The discretization must be done by numerical integration. This can be done by numerical
integration of the with the implicit Runga-kutta of order 4 (RK4). The discrete nominal state kinematics
can be stated as follows.

pnb/n = pnb/n + vnb/n∆t+ 1
2(Rn

b (q)(abimu − bbacc) + gn)∆t2 (5.59)

vnb/n = vnb/n + (Rn
b (q)(abimu − bbacc) + gn)∆t (5.60)

q = 1
2q ⊗ e

(

[
0

ωbimu

]
−

[
0

bbgyro

]
)∆t

(5.61)

bbacc = −pbb
acc

I3x3bbacc (5.62)
bbgyro = −pbb

gyro
I3x3bbgyro (5.63)

5.7.6 The discrete error state kinematics
Since the continuous error-state kinematics is a linear time-varying (LTV) system, it can be formulated as
follows. Here 0 and I are defined as a 3x3 matrices

δẋ =


0 I 0 0 0
0 0 Rn

b (q)S(abimu − bbacc) −Rn
b (q) 0

0 0 −S(ωbimu − bbgyro) 0 I
0 0 0 −pbb

acc
I 0

0 0 0 0 −pbb
gyro

I

 δx +


0 0 0 0

Rn
b (q) 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

n (5.64)
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Where n = [wb
acc,wb

gyro,bbaccn,bbgyron]T represents the noises in the IMU input. By looking at equations
5.41 this can be modeled as a Guassian distribution as follows.

n ∼ N (0,D) (5.65)

Where D is the combination of V, Θ, A and Ω and is represented as a diagonal matrix D = blkdiag(V,Θ,A,Ω).

The system is now on the form

δẋ = Aδx + Gn (5.66)

The discretized version will be on the form

δx = Fδx + v (5.67)

where v ∼ N (0,Q). Here Q denotes the discrete time version covariance matrix of D. This can be seen as
the kinematic prior of the error-state Kalman filter.

If the quantities q, abimu − bbacc and ωbimu − bbgyro must be assumed constant over a time interval for dis-
cretization to be possible [21]. This discretization can then be done by Van Loan’s formula [21] (eq. 4.63
p.61).

e

[
−A GDGT

0 AT

]
T

=
[
e−AT e−ATQ

0 e(AT)T

]
(5.68)

where T denotes the discretization time difference tk − tk−1. This time difference can be set to be equal to
1

fimu
. Where fimu is the frequency of which IMU measurements arrive. With this F and Q can be found as

follows

F = eAT (5.69)

Q = (eATT

)Te−AT (5.70)

Since these equations requires a matrix exponential, it may be slow on embedded hardware. To handle this,
the transition matrix F can be Taylor approximated. This approximation is stated as follows

F = eAT = I + AT + 1
2A2T 2 + 1

6A3T 3 + ... =
∞∑
k=0

1
k!A

kT k (5.71)

where the Q matrix can be defined as

Q = GDGT (5.72)

On Manta-2020 a third order approximation of the transition matrix F was used instead of Van Loan
when estimating real time on Manta-2020. Van Loan increased the computation time dramatically, which
were not feasible to be calculated in the OBC in Manta-2020. This was due to the matrix exponentional
calculation.
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5.7.7 The prediction step
Having now found the discrete error state kinematics, it is now possible to form the prediction step in the
filter. This can be written as follows [2].

δx̂k|k−1 = Fδx̂k−1 (5.73)
Pk|k−1 = FPFT + Q (5.74)

which is the same prediction step as in the KF, but now with the error-state kinematics instead of the
previous posterior state estimate.

5.7.8 The update step
In order for the filter to not just use dead reckoning, complementary sensor data such as DVL and pressure
sensor have direct measurements of vbb/n and znb/n respectively. This is done in the update step of the
ESKF.

The incoming measurement can be stated as follows.

zk = h(xkt) + wk (5.75)

with wk as in 5.6.

Since this is a function of the true kinematics xt it is formulated as follows.

xt = x⊕ δx =



pnb/n + δpnb/n
vnb/n + δvnb/n
q ⊗

[
1

1
2δθ

]
bbacc + δbbacc

bbgyro + δbbgyro

 (5.76)

where ⊕ denotes a conventional sum for all the states except for the attitude.

Thus 5.75 can be rewritten as follows [21].

zk = h(x⊕ δx) + wk (5.77)

Using the results found in [2], the Jacobian of h can now be found as follows.

H = ∂h

∂δx

∣∣∣
xt=x

= ∂h

∂xt

∣∣∣
xt=x

∂xt
∂δxt

∣∣∣
xt=x

= HxXδx (5.78)

Where Xδx is found to be [2]

Xδx =

I6x6 0 0
0 Qδx 0
0 0 I6x6

 (5.79)
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with Qδx as follows.

Qδx = 1
2


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 (5.80)

Where q = [η, ε1, ε2, ε3]T

With this the update step of the ESKF can be formed

Wk = Pk|k−1HT (HPk|k−1HT + R)−1 (5.81)
δx̂k = Wk(zk − h(xk)) (5.82)
Pk = (I−WkH)Pk|k−1 (5.83)

For Manta-2020 the aiding sensors are the DVL and pressure sensor, which are measuring vdvlb/n and zpressure
according to the equations 4.1 and 4.2. To implement the DVL the following method can be used [1].

zk = h(vn(b/n)tk
) + wk (5.84)

= vb(b/n)k + wk (5.85)
= Rb

w(qtk)(vn(b/w)tk
+ Rn

b (qtk)S(ωbb/nk)rbsensor) + wk (5.86)

Where vb(b/sensor)k = Rb
sensor(q)vsensorsensor/b.

For vessels and vehicles where the moment arm rbsensor is small, it can be neglected. Also for slowly moving
AUV’s, with relatively small motion in roll and pitch, this moment arm will contribute very little to the
velocity. This was the case for Manta-2020.

zk = h(vn(b/n)tk
) + wk (5.87)

= vb(b/bottom)k + wk (5.88)
= Rb

n(qtk)vn(b/n)tk
+ wk (5.89)

Here it is seen that the measurement model are dependent on the states q and v. With this the measurement
Jacobin can be found as follows.

Hx =
[
03x3 Hv3x3 Hq3x4 03x6

]
(5.90)

where Hv and Hq are stated as follows.

Hv =
∂Rb

n(qtk)(vn(b/n)tk
)

∂vn(b/n)tk

∣∣∣
vn

(b/n)tk
=vn

(b/n)k

(5.91)

Hq =
∂Rb

n(qtk)(vn(b/n)tk
)

∂qtk

∣∣∣
qtk=q(k

(5.92)
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The solutions are then found to be [2]

Hv = Rb
n(qtk) (5.93)

Hq = 2[ηvn(b/n)tk
+ ε× vn(b/n)tk

| εTvn(b/n)tk
I3x3 + ε(vn(b/n)tk

)T − vn(b/n)tk
εT − ηS(vn(b/n)tk

)] (5.94)

Where qtk =
[
η
ε

]
With sensors like the pressure sensor that measures in the local world frame, the equations become relatively
much simpler. For a 1 DOF vertical position estimate, like a pressure sensor, the following equation can be
used.

zk = h(zn(b/n)tk
) + wk = zn(b/n)tk

+ wk (5.95)

With this Hx is stated as follows

Hx =
[
02x2 Hz1x1 03x13

]
(5.96)

With Hz as

Hz =
∂zn(b/n)tk

∂zn(b/n)tk

∣∣∣
zn

(b/n)tk
=zn

(b/n)k

= I1x1 (5.97)

5.7.9 ESKF injection and reset step
In order for the filter

After the update step, the error state δx has no longer a mean of zero. The nominal states must then
be updated with the observed error state. This is done in the ESKF injection step. This is stated as
follows.

x̂k = x̂k ⊕ δx̂ (5.98)

After the injection step, the nominal states have been updated, there is of no interest of keeping the error state
in the next cycle of the ESKF. Therefore it has to be reset. The ESKF reset step is stated as follows.

δx̂k = 0 (5.99)
Pk = GPkGT (5.100)

where G is calculated as follows.

G =

I6x6 0 0
0 I3x3 − S( 1

2δθ̂) 0
0 0 I6x6

 (5.101)

Where S is the skew symmetric matrix.

61



5.8 Nonlinear Observer
Together with the extended Kalman filters and error-state Kalman filters discussed above, there are nonlinear
state estimators/observers that are based on nonlinear stability theory. These observers may have the
advantage of having a semiglobal or sometimes global convergence even with potentially large inaccurate
initial estimates and unknown noise statistics [42]. Compared to the EKF, some nonlinear observers does not
rely on lineratization for covariance calculation [42]. Also compared to both the EKF and ESKF, they may
be the best choice for low-cost applications, because of the relatively large computational cost of the Kalman
filters [3]. Where for the EKF the linearization and solving the Riccati equation makes it computationally
expensive and for the ESKF the need for exponential mapping may give slow peformance.

The nonlinear observer presented in this thesis is a modification of the nonlinear observer based on the paper
[3]. This is based on a nonlinear attitude observer which is feedback interconnected to an translational motion
observer (TMO). The TMO has many similar steps as the EKF, and it solves the Riccati equation.

5.8.1 Assumptions and sensor configuration
The nonlinear observer presented assumes the following sensors and sensor measurements are available.

• A non-biased measurement abacc coming from the IMU accelerometer.

• A biased measurement ωbgyro coming from the IMU gyro.

• A full velocity measurement vbsensor coming from a GNSS receiver with the following measurement
Rb
e(q)veGNSS or a DVL measurement vbdvl or some other sensor that may be transformed or rotated

into vbb/n.

Together with this the following assumptions are also assumed.

• A bound Mgyro on the magnitude of the gyro bias bbgyro.

• The angular velocity ωbb/n and the time derivative of abacc are uniformily bounded.

5.8.2 Attitude estimation
The first sub-problem will be on estimating the q and gyro bias bbgyro, by the use of two hypothetical pair
of vector measurements in the {b} frame, νb1 = abacc and νb1 = vbsensor. These must have the property
that

||abacc × vbsensor|| > 0 (5.102)

Where × is the cross-product. With this the attitude observer state equations are written as follows.

˙̂q = 1
2 q̂ ⊗ (

[
0

ωbimu

]
−
[

0
bbgyro

]
+
[

0
σ̂

]
) (5.103)

˙̂b
b

imu = Proj(bbgyro,−kiσ̂) (5.104)

Where Proj denotes a projection that restricts the gyro bias estimate bbgyro such that ||bbgyro|| < Mgyro [3]
and where σ̂ is an injection term that is defined as follows

σ̂ = S(k1abacc)Rb
nsatMf

(ânacc) + S(k2vbsensor)Rb
nvnsensor if fbi == true

σ̂ = S(k1abacc)Rb
nsatMf

(−gn) + S(k2vbsensor)Rb
nvnsensor otherwise

(5.105)
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where S is the skew symmetric matrix, k1 and k2 are gain tuning parameters and the fbi is the feedback
interconnection between the TMO and NLO. Since anacc is not directly measured, it has to be estimated,
leaving it to ânacc. The satMf

is a saturation bound based on the magnitude bound Mf . Also if one where
to use a GNSS sensor the velocity vnsensor would be directly measurable. But if the measurements were
coming from a sensor that measured velocity in the {b} frame only, like a DVL. The following σ̂ has to be
used.

σ̂ = S(k1abacc)Rb
nsatMf

(ânacc) + k2S(S(abacc)vbsensor)Rb
nS(satMf

(ânacc))v̂nb/n if fbi == true

σ̂ = S(k1abacc)Rb
nsatMf

(−gn) + k2S(S(abacc)vbsensor)Rb
nS(satMf

(ânacc))v̂nb/n otherwise
(5.106)

Where v̂nb/n is the velocity estimate given in equation 5.115 summarized below.

The discrete time version can be found by using Runge Kutta method 4 (RK-4). The resulting equations
are stated below.

q̂ = 1
2 q̂ ⊗ e

∆t(

[
0

ωbimu

]
−

[
0

b̂bgyro

]
+

[
0
σ̂

]
)

(5.107)

For embedded systems where calculations of the matrix exponential may be computationally expensive, the
quaternion estimation q can be estimated with the following equation

q̂ = 1
2q ⊗

[
cos(∆t

2 (ωbimu − bbgyro + σ̂))
sin(∆t

2 (ωbimu − bbgyro))∆t(ωbimu − bbgyro + σ̂)

]
(5.108)

One important notice is that the quaterion has to be normalized in either of these cases.

The discrete time version of the gyro bias estimation b̂bgyro is not straightforward because it is based on the
projection term. In order to handle this the discrete time version is calculated as follows.

b̂bgyro = −(I3x3 −
b̂bgyrob̂bgyroT )
b̂bgyrob̂bgyroT )

)kiσ̂ if b̂bgyroT b̂bgyro > M2
gyro and − bbgyroT kiσ̂ > 0

b̂bgyro = b̂bgyro − kiσ̂ otherwise

(5.109)

5.8.3 Position, velocity and NED acceleration estimation
In the paper [3], the position and velocity estimates are dependent on position and velocity measurements
coming directly from a GNSS reciever. In order to use this nonlinear observer independent on absolute
position and velocity measurements, some modifications on the position and velocity observer equations had
to be made. These are stated below. The TMO then becomes as follows.

˙̂p
n

b/n = v̂nb/n (5.110)
˙̂v
n

b/n = ânacc + gn (5.111)
ξ̇ = −Rn

b (q̂)S(σ̂)abacc (5.112)
ânacc = Rn

b (q̂)abacc + ξ (5.113)
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By using numerical integration with the implicit Runge-kutta of order 4 (RK4), the discrete time version
can be found. These are stated below as follows.

p̂nb/n = p̂nb/n + v̂nb/n∆t+ ∆tξnb/n + Rn
b ((q̂)(1

2∆t2 − 1
6∆t3S(σ))abacc) + gn 1

2∆t2 (5.114)

v̂nb/n = ∆tξn + Rn
b (q̂)((∆t− 1

2∆t2S(σ))abacc) + gn∆t (5.115)

ξn = ξn −Rn
b (q̂)∆tS(σ)abacc (5.116)

anacc = Rn
b (q̂)abacc + ξ (5.117)

5.8.4 The prediction step
With the discrete time version of the attitude, position, velocity and NED acceleration kinematics, it is
now possible to form the prediction step of the observer. These equations are calculated directly from the
numerical integration step.

x̂k|k−1 = Fx̂k−1 + Bu + D (5.118)

where x̂ = [p̂nb/n, v̂nb/n, ξn]T and F, B and D are calculated as follows.

F =

I ∆tI 1
2∆t2I

0 0 ∆tI
0 0 I

 B = Rn
b (q)

∆t
2

∆t3
6

∆t ∆t2
2

0 ∆t

 D = gn
 ∆t

2
∆t

03x1

 (5.119)

The u is dependent on the feedback interconnection term fbi. It is defined as follows.

u =
[

abacc
−S(σ)abacc

]
if fbi == true

u =
[
abacc
03x1

]
otherwise

(5.120)

Also if the feedback interconnection is true fbi then F is defined as follows.

F =

I ∆tI 0
0 0 0
0 0 I

 (5.121)

The nonlinear observer uses a uncertainty measure similiar to the EKF, which is calculated as follows.

Pk|k−1 = FPkFT + Q (5.122)

where P is the uncertainty matrix and Q is the discrete time version of the process noise co-variance, which
is calculated using Tustins’ integration.

Q = 1
2(FGk|k−1DGT

k|k−1FT + GkDGT
k )∆t (5.123)
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Here D is the continuous time process covariance matrix, which is used in the tuning of the filter. Gk|k−1
and Gk are Tustins matrices defined as follows

Gk|k−1 =

 0 0
Rn
q (q)k|k−1 0

0 Rn
q (q)k|k−1

 Gk =

 0 0
Rn
q (q)k 0
0 Rn

q (q)k

 (5.124)

Where 0 represent a 3x3 zero matrix.

5.8.5 The update step
The update step of the observer is based on the innovation, Kalman gain and update step of the EKF.

The measurement model is defined similiar to the EKF as follows.

zk = Hxk + wk (5.125)

Recall that H is the measurement matrix, Hx is the measured states and wk is the noise.

The innovation is defined as follows

νk = zk − ẑk|k−1 (5.126)

Where ẑk|k−1 is defined as Hx̂k|k−1.

The innovation covariance is defined as

Sk = HPk|k−1HT + R (5.127)

Where R is the measurement covariance.

The Kalman gain is defined as follows

Wk = Pk|k−1HTS−1
k (5.128)

With this the current posterior estimate is the same as in the EKF, which is defined as follows

x̂k = x̂k|k−1 + Wkνk

Pk = (I−WkH)Pk|k−1
(5.129)

For velocity measurements vbsensor like the DVL measuring velocity relative to the world frame. The H is
defined as follows.

H =
[
03x3 Rb

n(q̂) 03x3
]

(5.130)

where ẑk is equal to

zk = h(vn(b/n)) + wk (5.131)
= vb(b/bottom)k + wk (5.132)
= Rb

n(q̂)vn(b/n) + wk (5.133)
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Where for the pressure sensor the H is given as follows.

H =
[
01x2 1 01x6

]
(5.134)

5.9 Real-time aspects
There are different type of real-time aspects that have to be considered when using embedded hardware with
relatively little computational power. Because of this limitation, sensor measurements may be coming into
the estimation nodes in much higher frequency than the embedded hardware can calculate the estimates
coming from the state estimators. With this the estimator node will only use the latest measurements and
may potentially skip important in-between measurements coming from the high frequency sensors.

Also one critical real-time aspect to consider is time-synchronization of the sensors. If a measurement coming
from a sensor is time-delayed, its accuracy to the real states may be off by a large error[43]. Especially is
this true for high-speed vessels or aircraft. Thus to handle this is important for higher accuracy and PVA
estimation.

A second real-time aspect that is important to handle, is sensor-synchronization. If two or more sensors or
more sensors are used in the state estimators, their measurements are coming with different timestamps. If
the sensors are not synchronized the state estimator may estimate with an older or a newer measurement
than the other sensor measurement based on their timestamp.

Finally a third real-time aspect to consider is the execution time of the state estimators. This could be the
time the state estimator uses from one estimate k − 1 to the next estimate k or it could the time the state
estimators uses in updating the states with the incoming measurements. With this it is possible to find the
execution time of a specific state estimator on a specific CPU to find out how well the state estimator may
perform on embedded hardware.

5.9.1 Time-synchronization
Time delayed measurements, as discussed above, can have big impact on the accuracy of the PVA estimation,
and may give large errors. Following the source [43], there are several key error sources that causes these
delayed measurements.These are listed in the table below.
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Table 1.3: Time synchronization error sources. Courtesy([43])

As seen in table 1.3 there are three main categories of general error sources, the internal hardware delay,
the data transmission delay and registration delay. The internal hardware delay is the delays that occur
in the respective hardware of the sensor. Some of these delays are due to the analog to digital conversion,
the filtering process, like low pass or high pass filtering and the data-transmission from the sensor to the
communication port to for example the OBC. As shown in the figure, these are either stated in the data-
sheet or can be calibrated because of their constant behavior. However they are not always constant, and
may vary in time. For example if an adaptive filtering method is used. For an IMU these delays may be
large (50-60 ms for a navigation grade IMU [43]). The second general error is the data transmission delay.
These delays are due to the communication board or protocol that is used in the communication between
the sensor and for example the OBC. This delay is the amount of time required to forward or push all of a
sensor packet bits into the communication wire[44]. This is normally a constant delay that can be calibrated
and mathematically found. The equation is given as follows [44].

Dtrans = Npacket
Rtrans

(5.135)

Where Dtrans is the transmission delay, Npacket is the number of bits in the sensor packet and Rtrans is the
rate of transmission (bits/s). This is like the internal filtering and transmission, a constant delay that can
be calibrated.

The third source of error is the registration delay. These are related to the computer clock reading and
computer interrupt request (IRQ). These delayes as seen in the figure requires a more sophistaced approach
with low level coding with real time clock and a multi I/O timing board, for example a Sentiboard, to keep
these delays below 1 ms [43].
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5.9.2 Sensor-synchronization and sensor-buffering
The first step in sensor-synchronization is to gather information about the sensor message. For the presented
state estimators in this thesis, the most important ones are listed below as follows.

• The incoming measurement z

• The measurement covariance R

• The incoming timestamp tstamp of the message.

Where the timestamp is based on when the software program received the message, or updated with timing-
synchronization by a dedicated hardware timing board from for example a Sentiboard as discussed in the
section above.

With this it is now possible to make a sensor-buffer for each sensor that is used in the state estimator. In
software programs these buffers can for example be vectors, arrays, dictionaries or lists depending on the
programming language used. The sensor-information can now be stored in the buffer as soon as they arrive
the corresponding "callback" function in the software program with the latest measurement appended to
the end of the buffer. One important note to this is that too many messages in the buffer can make the
estimator use a too delayed measurement, because of too long execution time, which is not convenient. Thus
the buffer needs to be "emptied" to only contain the latest message after a certain threshold Mthres of the
size of the buffer. One alternative solution to this is to take the mean of a certain numberMmean of incoming
measurements and timestamps and then push these to the end of the buffer.

With now having a buffered sensor-system it is now possible to make an algorithm such that sensor-
synchronization can be made. The are several alternatives to this. One example is to add all the incoming
messages from the sensors into a common buffer, sorting the messages based on the timestamps and then
taking these measurements into the state estimators. This is shown clearer in the figure 5.9 below. This was
added to Manta-2020.

Figure 5.9: Common buffer sensor synchronization
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5.9.3 Execution time
There are several methods to calculate the execution time. In for example C++11 or above, the package
standard library package Chrono can be used. In Python, the Timeit library can be used. These are simple
to use libraries that can be implemented anywhere in the software code to calculate the execution time or
duration to a specific part in the code. For the estimators presented in this thesis, the most important
execution time would be to consider the time between the estimated states and the time to update the filter
with the sensor measurements. The method in this thesis would be to take the mean, standard deviation and
the max value of a certain number of estimates. Then running the filters at least five times to calculate yet
again their mean, standard deviation and max value. The following table shows the results for Manta-2020
in the prediction and the DVL and pressure updates steps for the ESKF and NLO.

Description ESKF (ms) NLO (ms)
Max value - Predict 2.938 1.471
Mean value - Predict 2.167 0.981
STD - Predict 0.171 0.115
Max value - DVL update 2.773 0.952
Mean value - DVL update 2.001 0.652
STD - DVL update 0.293 0.11
Max value - Pressure update 2.213 0.6877
Mean value - Pressure update 1.37 0.475
STD - Pressure 0.21 0.07

Table 5.2: Execution time of NLO and ESKF

Looking at table 5.2 it is seen that the NLO has the fastest execution time overall. This is when the ESKF
has been adjusted to a third order approximation of the transition matrix. This was planned to be tested
on the OBC during testing, but since of time constraints and COVID_19 this was not possible. The tests
above was done on a laptop with a Intel core i5-9300H processor.
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Chapter 6
Experimental testing

In order to check the quality of the error-state Kalman filter, nonlinear observer and the extended-Kalman
filter, experimental testing is needed. This will aim to see if the software implementations work as intended,
and to point out what software needs to be redefined and debugged. It is also needed in order to see how
the software implementations behaves to the hardware on AUV.

6.1 Preparation and COVID-19
A week before the physical experiments, a "preparation" period was conducted. Since this could not be done
at NTNU because of the COVID-19 restrictions, one of the members of Vortex-NTNU offered a workplace
at their home. Only five people were allowed to work at the same time, which meant that the author of
this report and another master student from Vortex had to do much of the new hardware and electronic
installment. This meant that "quick solutions" were implemented with little to no testing beforehand.
Because of this, a bug not allowing us to launch the thrusters arised, meaning that all of the experimental
testing had to be done without the thrusters and GNC system.

6.2 Experimental testing at the Marine Cybernetics laboratory
The experimental testing were done at the Marine Cybernetics laboratory (MC - lab) in Trondheim, Norway.
It is a part of the Department of Marine Technology at NTNU where it is mainly used for master students
and PhD candidates [45]. It consist of two rooms. One room with a basin of dimensions length, width
and depth = 40m x 6.45m x 1.5m and a controller room. These are depicted in figure 6.1. The MC-lab
also offered a Qualisys motion capture system, that could real-time 6DOF measure the AUV. Also in the
basin-room, a move-able platform could be used to move along the water. This was extensively used during
the experimental testing.
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(a) The Marine Cybernetics testing basin and the Qualisys cam-
era locations (b) The Marine Cybernetics laboratory controller room. Figure

from [45]

Figure 6.1: The Marine Cybernetics laboratory.

(a) Qualisys "above water" motion capture camera (b) Qualisys underwater motion capture camera

Figure 6.2: The Qualisys motion capture system cameras

6.3 Calibration and set-up of the Qualisys motion capture sys-
tems

The MC-lab also offered a real-time 6DOF - tracking system for both underwater and "above water" envi-
ronments. This was based on Qualisys camera-motion capture system. The main components in this system
was the Qqus cameras, depicted in figure 6.2 and the Qualisys track manager (QTM) software. The Qqus
cameras were based on an infrared (IR technology that tracked the IR reflection from the motion balls that
was fitted on a vehicle. For the "above water" system, the Qqus cameras were mounted on a towing carrage
in a fixed angle and position. Figure 6.1 and 6.2a show this. For the underwater system, there were a
total of 6 Qqus cameras that were mounted on a movable rail, numbered from 1 to 6. These cameras were
also fixed in angle and position. Figure 6.2 shows a close up version of the camera, move-able rail and its
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number. These cameras had to use internal light sources to get higher accuracy in the tracking of the IR
reflections from the motion balls. This is clearer seen in figure 6.6. There were two main computers with
dedicated QTM software in the control room. This meant that all the experiments could be supervised from
the control room.

The accuracy of the Qualisys camera system were dependent on its tracking capabilities and calibration
volume. Therefore Qualisys had to be setup and calibrated before starting the test scenarios.

6.3.1 "Above water" Qualisys camera setup
The first procedure was to calibrate and setup the "above water" Qualisys motion capture systems. This was
done by first setting a fixed world coordinate frame, making a measurement volume, placing tracker balls on
the AUV and then defining a 6DOF rigid body.

6.3.2 Fixed world frame setup
The first procedure to calibrate the "above water" cameras, was to make the world coordinate system and its
respective origin. This was done by placing a fixed square with four tracking markers on it in the middle of the
basin as seen in figure 6.3. Here the lower leftmost tracking ball is the origin of the world coordiante system,
while the rightmost tracking ball is defined as the x-axis. The uppermost ball tracked the y-axis.

Figure 6.3: Qualisys "above water" world coordinate setup

6.3.3 Calibration volume setup
Next up was to make the calibration volume. This volume is the 3D tracking space in which the Qualisys
cameras could accurately track the body frame based on the bone length tolerance. This space was also the
only valid space the Qualisys could make a 3D coordinate system of the body frame of the AUV. In order to
make the calibration volume, one had to use a rotating stick ("magic wand") with two tracking balls. This
was a two person operation. One had to move a moveable rail backwards while another rotated the stick up
and down while rotating. The procedure is seen in figure 6.4. With the underwater Qualisys camera system,
spinning stick was also used. The procedure was almost the same, but now one had to spin it under the
water surface instead. This is seen in figure 6.4
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Figure 6.4: Qualisys "above water" calibration volume setup

After the calibration physical setup, the calibration volume was made. This is depicted in figure 6.4

Figure 6.5: Qualisys "above water" calibration volume

6.3.4 Underwater Qualisys camera system
The underwater Qualisys camera system had a total of 6 cameras located underwater as seen in figure 6.6.
The cameras emitted blue light in order to better identify the tracking balls that were place on the AUV.
Also under calibration the light sources from the basin room had to be lowered or turned off in order to
remove unwanted light.
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Figure 6.6: Qualsisys underwater cameras locations

6.3.4.1 Calibration volume setup

The underwater calibration setup was almost the same as with the "above water" calibration. The only
difference was that the spinning stick, had to be spun up and down underwater instead of above. The
procedure is shown in figure 6.7

Figure 6.7: Qualsisys underwater camera system physical calibration setup

For the underwater camera system the calibration volume is shown in figure 6.8. The coordinate system
in the middle is defined as the world coordiante system. This was both set to an NED coordinate system,
because the NLO and ESKF used this coordinate system as a fixed world frame.
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Figure 6.8: Qualisys underwater camera system calibration volume

Next up was to make the body frame coordinate system on the AUV. This was done by placing tracker
balls on the AUV. A total of three tracker balls had to be seen by the cameras at all time. Therefor a total
number of 6 tracker balls was used. The tracking balls setup on the AUV is seen in figure 6.9

Figure 6.9: Manta-2020 tracking balls setup

6.4 Qualisys calibration results
The accuracy of the Qualisys system is based on the average residual of the calibration results. The calibration
results from the "above water" system in figure 6.10. Here the "Id" is the identity of the Qqus camera. "X,Y,Z"
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is the distance (in mm) between the origin of the fixed world frame to the optical center of the cameras [46].
The distance are then respectivly given as a arm in the "X,Y,Z" direction[46]. The points cloumn represents
the number of motion balls each camera has seen during calibration. The last column is the Average residual,
which is the distance between the 2D position of the motion balls and the reference balls position coming from
the fixed world coordinate system. This value could in mm tell how accurate the each camera will estimate
the 6 DOF PVA. Since this exposure of this error was later discovered after the experimental testing weeks,
only a picture of the "above water" calibration results were given. The COVID-19 restrictions made it hard
to go back to the MC-lab and take a picture of the Qualisys underwater camera system.

Figure 6.10: Qualisys "above" water calibration results

6.5 Defining the 6 DOF rigid body frame
After the calibration setup was done, the 6DOF rigid body frame had to be made. This was done by placing
Manta-2020 in the water with the tracker balls, and after three or more cameras had tracked more than
three tracking balls, the body frame was made. These are depicted in figure 6.11.
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(a) Qualisys 6DOF rigid body setup close-up (b) Qualisys 6DOF rigid body setup zoomed-out

Figure 6.11: The Qualisys motion capture 6DOF rigid body setup

6.6 Testing scenarios
A total of 5 testing scenarios were chosen to test the comparison between the ESKF, NLO and EKF. Three
of the tests were used with the "above water" Qualisys system, while the other two were used with the
underwater Qualisys camera system. Since the Qualisys system could only give accurate and consistent 6
DOF in their respective measurement volume, some of the tests had to be adjusted. One important notice,
is that none of the tests used the GNC system during testing with the reason being a hardware bug in the
thruster configuration. This was hard to fix without having any people from the Vortex hardware team. All
of the testing scenarios were then manually done. For the "above water" tests, a person in wet-suit moved the
AUV while another person was giving tether cable and communicating with a person in the control room,
who kept track of the Qualisys consistency, at the same time. This is clearer depicted in figure 6.12.
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Figure 6.12: Manual testing procedure

For the underwater tests, another procedure was used. Now a added "stick" on top of the AUV was installed.
This was done in order to carry out the maneuvers for the underwater tests. The installed stick is shown
in the figure 6.13. The capture procedure was then manually done by having one person standing on the
movable platform, one moving the platform and one keeping track of the Qualisys 6 DOF consistency.
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Figure 6.13: Manta-2020 stick installment

6.6.1 Underwater testing scenarios
The first underwater testing scenarios was chosen to be a L x B = 3.0 m x 2.5 m square with a depth of
z = -0.5 m and a total of 8 waypoints. This test was originally planned with a variable z-value of z = -
0.5 m to z = - 1.0 m, as shown in figure 6.14 However this was a hard test to accomplish, because of the
inconsistency in the rigid body frame for the Qualisys underwater camera system. This was due to the
cameras not having three or more tracker balls in their vision. The test was then redefined with a constant
z-value of z = -0.5 m, depicted in figure 6.15 This testing scenario was chosen because of the high accuracy
in the 6 DOF tracking of Qualisys and how well the estimators tracked surge, sway, heave and yaw. This
test was also a realistic maneuvering scenario for the AUV. Pitch and roll was tried to be kept as low as
possible. The second underwater testing scenario was set to be a "sinus wave". With start on the water
surface and moving - 0.5 m in depth and 0.5 m in surge on each waypoint with a total of 11 waypoints and
L x D = 3.0 m x 0.5 m. This testing scenario is seen in the figure 6.16. This testing scenario was chosen
because it resembled a good comparison between the state estimators, and how well they could handle depth
variations, and also see how the pressure-sensor worked.
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Figure 6.14: Underwater planned square-testing scenario

Figure 6.15: Underwater performed square-testing scenario

Figure 6.16: Underwater "sinus-wave" testing scenario
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6.6.2 "Above water" testing scenarios
The "above water" testing scenarios were set to be a L x B = 6m x 3m square, L x B = 5m x 3m 30 min
lap square and a "eight numbered" test with a horizontal and vertical distance of 3 meter apart from each
waypoint. All of these tests are depicted in the figures 6.17, 6.18 and 6.19 respectively. The short-square
test, was chosen mostly to set up a "method" of how the 30 min square test should be performed. Because
of this no sensor measurements were recorded during the test-square. This would have been the backup test
if the 30 min test showed to be infeasible. This was because it had to be done manually. The 30 min lap -
square test was chosen to see the effect from the bias estimation from the ESKF and NLO and compare this
to the EKF.

Figure 6.17: "Above water" square testing scenario

Figure 6.18: "Above water" square 30 min lap testing scenario
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Figure 6.19: "Above water" eight number testing scenario

6.7 Recording and data gathering
The 6 DOF data from the Qualisys motion capture system was gathered by using the QTM software from
one of the computers in the MC-lab control room. For both the "above water" and underwater system, the
recorded data was stored in a .mat file with body frame NED position and (XYZ) Euler angles data. The
recording frequency was also for both systems set to 125 hz to match the frequency output of the ESKF,
NLO and IMU. This meant that no extrapolation or interpolation of the Qualisys data had to be done,
which could have lead to more inaccurate comparisons. The only 6 DOF tracking parameter QTM offered
was the bone length tolerance. This is the maximum separation between the lengths of the corresponding
bones in a rigid body definition and a measured rigid body [46]. The default value for this value was 5mm,
and a higher value meant that the accuracy in attitude calculations lowered. This value had to be adjusted
to 60mm and 70mm for the "above water" and underwater systems respectively. At these values the Qqus
cameras could define a consistent 6 DOF rigid body frame.

QTM settings
System Frequency Data Tracking parame-

ters
Value Storage

format
"Above water" 125 hz NED{x,y,z},(XYZ)

Euler angles
Bone length tolerance 60 mm .mat

{struct}
Underwater 125 hz NED{x,y,z},(XYZ)

Euler angles
Bone length tolerance 70 mm .mat

{struct}

Table 6.1: Qualisys tracking manager setup

The measurements coming from the DVL, IMU and pressure sensor were recorded with rosbags with their re-
spective rostopic freqency. Specifically the rosbags gathered aaccimu, ω

gyro
imu , z

pressure
b/w and vdvlbottom/b, as depicted

82



in figure 6.20. The data from the rosbags was then used directly to the NLO, ESKF and EKF.

Figure 6.20: NLO, EKF and ESKF Sensor data gathering method

6.8 Tuning of filter parameters
For the AUV to run the testing scenarios satisfactory, tuning of the measurement noise covariances had to
be done for the ESKF, NLO and EKF. In order to compare the filters, the same tuning parameters for the
IMU, DVL and pressure sensor were set. The end results of the tuning parameters can be seen in section
6.9.7.

6.8.1 The EKF and NLO continous time process noise covariance D
The continous time process noise covariance D was set to match the process noise of the NLO for the
corresponding states. Otherwise the default values of the in the robot_localization was used. The resulting
D matrix for the EKF was set as follows.

Dekf = diag(0.0001, 0.0001, 0.0001, 0.03, 0.03, 0.06, 0.001, 0.001, 0.001, 0.01, 0.01, 0.02, 0.01, 0.01, 0.015)
(6.1)

and for the NLO as follows.

Dnlo = diag(0.0001, 0.0001, 0.0001, 0.001, 0.001, 0.001) (6.2)
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6.8.2 Tuning the gyros and accelerometers
The gyro and accelerometers measurement noise (σ2

wb
gyro

, σ2
wb

acc
) and bias driving noise variances (σ2

bb
gyron

, σ2
bb

accn
) were found using the Allan variance method described in section 3.1.4. The Allan variance plot

for the gyroscopes and accelerometers were given in the STIM 300 datasheet. Thus the measurement noise
variances σ2

wb
acc

, σ2
wb

gyro
, σ2

bb
accn

and bias noises σ2
bb

gyron
could be found.

Figure 6.21: The allan variance of the gyros

Bias instability Angle Random Walk
X-axis 0.4◦/h (at 1000 s) 8 ◦/

√
h

Y-axis 0.28◦/h (at 1150 s) 8 ◦/
√
h

Z-axis 0.32◦/h (at 1070 s) 9 ◦/
√
h

To find σ2
wb

gyro
the following equation is used.

σ2
wb

gyro
= ( π

180 ∗ 60(8 + 8 + 9
3 ))2 = 5.8761 ∗ 10−6 (6.3)

σ2
bb

gyron
is found as follows

σ2
bb

gyron
= ( π

180 ∗ 3600 ∗
√

1000+1150+1070
3

(0.4 + 0.28 + 0.32
3 ))2 = 2.4331 ∗ 10−15 (6.4)

To find σ2
wb

acc
and σ2

bb
accn

the following accelerometer allan variance plot is used.
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Figure 6.22: The allan variance of the accelerometers

Bias instability Angle Random Walk
X-axis 0.027 mg (at 1000 s) 0.12 mg/

√
h

Y-axis 0.029 mg (at 800 s) 0.13 mg/
√
h

Z-axis 0.031 mg (at 800 s) 0.13 mg/
√
h

Using the same method as above σ2
wb

acc
and σ2

bb
accn

are found to be

σ2
wb

acc
= 3.4531 ∗ 10−5 (6.5)

σ2
bb

accn
= 6.2345 ∗ 10−6 (6.6)

6.8.3 Tuning the DVL
According to the data-sheet of the DVL, the variance σ2

wb
dvl

of the Gaussian measurement noise wdvl could
be found from the instantaneous Doppler noise, which the data-sheet called figure of merit (FOM) [9]. This
FOM value was scaled to represent a standard deviation of the Gaussian measurement noise of the bottom
velocity tracking vdvlb/bottom and could be used directly as a measurement covariance R in a Kalman filter
or any statistical state observer. Since the FOM value gave instantaneous Doppler noise, the measurement
noise R(t) changed at each cycle. These FOM values could be set directly in the covariance matrix in the
driver of the DVL. Thus the measurement covariance matrix were set as follows for the NLO, ESKF and
EKF.

Rdvl = blkdiag(FOM2
x , FOM

2
y , FOM

2
z ) (6.7)
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One interesting note here is since this is a time varying measurement noise with instantaneous Doppler noise,
the DVL will give accurate measurement covariances continuously, and thus means that in environments
where the DVL measurements are unreliable, the covariances will be higher, and the state estimators can
trust their prediction more.

6.8.4 Tuning the pressure sensor
The measurement noise variance σ2

ww
pressure

where tuned as following for the all state estimators.

σ2
ww

pressure
= 2.5125 (6.8)

A more optimal method would have been to measure the variance by the definition of the variance. By
calibrating the pressure sensor at land such that it at average gives a mean of 0 and then collect a set of
data, setting a threshold for wild points,and then calculate the sample variance for the given data.

6.8.5 Tuning the Gauss-Markov bias model for ESKF
The acceleration and gyro bias reciprocal time constants (pbb

acc
,pbb

gyro
) were both initially set with a value of

1. This value tended to give discrete jumps and unsmooth behavior of the gyro and acceleration biases. By
setting these to smaller values 10−3 ensured smooth changes of the biases.

6.8.6 Tuning of the k1, k2, ki and Mgyro parameters for the NLO
For the NLO the tuning of the k1 and k2 were tuned to the following values.

k1 = 0.1 k2 = 0.01 (6.9)

Too large values of these seemed to make the NLO give unpredictable behavior with garbage like data.

For the ki and Mgyro, it was tuned to the following.

ki = 0.3 Mgyro = 0.3 (6.10)

Too large values of ki seemed to render the gyro bias estimates with an non-smooth behavior. The tun-
ing parameter Mgyro is the bound that restricts the gyro estimates. A low value of this was therefore
preferred.

6.8.7 The resulting tuning parameters

Measurement covariances for EKF
Description Symbols Values

Acceleration Racc σ2
wb

acc
I3x3 3.4531 ∗ 10−5I3x3

Gyro Rgyro σ2
wb

gyro
I3x3 5.8761 ∗ 10−6I3x3

DVL Rdvl diag(FOM2
x , FOM

2
y , FOM

2
z ) changes on each cycle

Pressure sensor rpressure σ2
ww

pressure
2.5125
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Measurement covariances for ESKF
Description Symbols Values

Acceleration V (σ2
wb

acc
/∆t)I3x3 (3.4531 ∗ 10−5/8 ∗ 10−3)I3x3

Acceleration bias A 2pbb
acc
σ2
bb

accn
I3x3 2 ∗ 10−3 ∗ 6.2345 ∗ 10−6I3x3

Gyro Θ (σ2
wb

gyro
/∆t)I3x3 (5.8761 ∗ 10−6/8 ∗ 10−3)I3x3

Gyro bias Ω 2pbb
gyro

σ2
bb

gyron
I3x3 2 ∗ 10−3 ∗ 2.4331 ∗ 10−15I3x3

DVL Rdvl diag(FOM2
x , FOM

2
y , FOM

2
z ) changes on each cycle

Pressure sensor rpressure σ2
ww

pressure
2.5125

Accelerometer and gyro bias reciprocal time constants for ESKF
Description Value

Acceleration pbb
acc

10−3

Gyro pbb
gyro

10−3

Measurement covariances for NLO
Description Symbols Values

DVL Rdvl diag(FOM2
x , FOM

2
y , FOM

2
z ) changes on each cycle

Pressure sensor rpressure σ2
ww

pressure
2.5125

Tuning parameters for the NLO
Description Value

Acceleration injection gain k1 0.1
Velocity injection gain k2 0.01
σ injection gain ki 0.3
Gyro bias bound Mgyro 0.3

6.9 Initialization
Since the rosbags where gathered of the sensors of all test scenarios as seen in the figure 6.20, the state
estimators could be run by playing back the rosbags with its sensor data. With this it was not required to
have Manta-2020. To resemble the most accurate comparison between the estimators, the initial estimate
x̂0 of all the filters where initialized to its zero state for all test scenarios. For the ESKF and NLO which
initialized with quaternions, this was set to q = [1, 0, 0, 0]T . The initial error covariance P0 of the filters,
where also tuned to be equal to in their respective states. For the EKF the following initial error covariance
was used.

P0 = blkdiag(0.001I,Rgyro,Rdvl,Rgyro,Racc) (6.11)

for the ESKF

P0 = blkdiag(0.001I,Rdvl,Θ,A,Ω) (6.12)

and at last for the NLO

P0 = blkdiag(0.001I,Rdvl, 0.0012I) (6.13)
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Chapter 7
Results and discussion

7.1 Experimental results
This chapter outlines all the experimental results from the MC-lab at Tyholt. These results present the
performance for each of the implemented state estimators, EKF, ESKF and NLO on Manta-2020. The
results include a comparison of the PVA estimation of the state estimators and Qualisys, the PVA errors,
the bias estimates of ESKF and NLO and the NIS consistency analysis. For each testing scenario, a discussion
based on these will be presented. The order will first be to discuss the "above water" testing scenarios and
then the underwater ones. First off will be the eight number, then the 30 min square test, with the underwater
sinus test after that and at last the underwater square test.
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7.1.1 "Above water" eight number

Figure 7.1: East-north-altitude 3D trajectory comparison between the EKF and Qualisys - eight number
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Figure 7.2: East-north-altitude 3D trajectory comparison between the ESKF and Qualisys - eight number
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Figure 7.3: East-north-altitude 3D trajectory comparison between the NLO and Qualisys - eight number
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Figure 7.4: EKF/ESKF/NLO east trajectory comparison with Qualisys - eight number
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Figure 7.5: EKF/ESKF/NLO north trajectory comparison with Qualisys - eight number
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Figure 7.6: EKF/ESKF/NLO altitude trajectory comparison with Qualisys - eight number

Looking at the figures 7.1, 7.2 and 7.3 their East-north-altitude trajectory is represented with a closer look
at their north, east and altitude comparison given in the figures 7.4, 7.5 and 7.6. These figures give a high
overview of how the EKF, ESKF and NLO compares to Qualisys. By observation it is seen that all three
estimators follow the Qualisys trajectory pretty well with a slight offset. This offset could due to the initial
alignment of the Qualisys world frame not matching the world frame of the AUV totally prefect or it could
be the estimation itself. It is also seen that the ESKF has slightly more non-smooth behavior than the EKF
and NLO. This can be verified by looking at altitude comparison in figure 7.6. Here the altitude position
alters much between 0.03 m and -0.03 m. A reason for this could be that the ESKF uses the acceleration
measurement coming from the IMU directly in the prediction step. When doing prolonged prediction with
IMU only, it will as soon as possible drift. This is especially true if the gravity vector is not calculated or
estimated totally correct. When the filter then gets updated with an pressure measurement, it will update
its estimate most of its time close to that measurement based on its measurement covariance. This could
be the reason for the up-and-down behavior of the ESKF. The NLO also has the acceleration and gyro
measurements used directly in the prediction, but it is adjusted by the injection term σ, which takes the
velocity behavior into account. Furthermore when it comes to the NLO and EKF, they both have continuous
time process noise covariance D that is not dependent on the variance of the measurement noises of the gyro
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and accelerometer σ2
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and the bias driving noise variances σ2
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. With this their continuous

time process noise covariance D can be tuned independently from these variances. With the exact same
continuous time process noise covariance with the EKF and NLO, it is observed that the EKF resembles a
better estimate than the NLO. This could come from that the gain tuning parameters k1 and k2 where not
tuned that well.
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Figure 7.7: Velocity x comparison between the EKF, ESKF and NLO compared to Qualisys - eight number
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Figure 7.8: Velocity y comparison between the EKF, ESKF and NLO compared to Qualisys - eight number
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Figure 7.9: Velocity z comparison between the EKF, ESKF and NLO compared to Qualisys - eight number

Looking at the x and y velocities in the figures 7.7, 7.8, it is seen that the ESKF and NLO estimate the
velocities of Qualisys very well, where the ESKF seems to have the best estimate compared to Qualisys. This
is rather not that strange, because these states are directly observable by the DVL. But the behavior of the
EKF seems a little strange. This could be because the velocity kinematic transition model of the EKF does
not resemble the true dynamics of the AUV, or because the process noise is not correctly tuned. Looking at
the z velocity figure 7.9 all of the state estimators estimates very close to Qualisys.
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Figure 7.10: Roll comparison of EKF,ESKF and NLO compared to Qualisys - eight number
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Figure 7.11: Pitch comparison of EKF,ESKF and NLO compared to Qualisys - eight number
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Figure 7.12: Yaw comparison of EKF,ESKF and NLO compared to Qualisys - eight number

Going over to the attitude comparison in the figures 7.10, 7.11 and 7.12 it is seen that the estimates of
roll and yaw resembles the closest estimates compared to Qualisys, where the EKF seems to be the closest
one. This seems a little strange because both of the ESKF and NLO have gyro bias estimation, where both
the roll and pitch biases are observable because of the gravity vector of the accelerometer. This could be
an implementation bug of the gyro bias in the ESKF and NLO by the author such that the roll and pitch
estimates will produce errors, but then that would also have given corrupted yaw estimates, which is not
the case as seen in figure 7.12. Another explanation could be that the kinematic prior model of the EKF
resembles more the true behavior of the AUV, which will make the prediction closer to the true state of the
AUV.
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Figure 7.13: ESKF bias estimates - eight number
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Figure 7.14: NLO bias estimates - eight number

Looking at the ESKF acceleration bias estimates in figure 7.13 it is seen that the x and y acceleration
biases are non-observable, but the z-acceleration bias is observable. This is due to the pressure sensor giving
absolute position in the world frame. To get observable acceleration bias in x and y, the need of for example
a GNSS sensor is required. One would think that the DVL will render these biases observable, and it could
have done so under specific maneuvers. But since it measures velocity in {b} frame the rotation matrix
Rn
b (q) must be calculated perfectly by the gyros. By the use of an inclinometer sensor that could measure

roll and pitch together with for example a magnetometer that measures heading, this rotation matrix would
be correctly estimated. This could have contributed in making these acceleration biases observable coming
from a DVL sensor.

Looking at the gyro bias estimates of the ESKF and NLO in figure 7.13 and 7.14, it seems for the ESKF
that the x and y gyro biases are non-observable, which is verified in the 30 min square test. This is rather
strange, because these biases should be directly observable by having the accelerometer measuring specific
force, using the gravity vector. This is most likely a bug in the implementation of the ESKF. For the NLO
it seems that
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Figure 7.15: Position error of EKF,ESKF and NLO compared to Qualisys - eight number
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Figure 7.16: Velocity error of EKF,ESKF and NLO compared to Qualisys - eight number
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Figure 7.17: Velocity error of EKF,ESKF and NLO compared to Qualisys - eight number

Having discussed the position, velocity and attitude, their errors compared to Qualisys are also important
to discuss. Looking at figure 7.15, 7.16 and 7.17 the errors compared to Qualisys are summarized with the
RMSE for each state estimator. With these plots, we can find which state estimator that had the best overall
performance compared to Qualisys.

Looking at the position errors, it is seen that the NLO peforms the overall worst with an RMSE of 0.298,
0.232 and 0.0482 of east, north and altitude error respectively. This is the NLO has the largest error overall
with a RMSE of 0.298, 0.232 and 0.0482. This could come from the tuning of k1 and k2 as discussed above.
One interesting note here is that even when the ESKF had an alternating in their position estimates, it
actually gives the most accurate position estimates overall with RMSE of 0.184, 0.232 and 0.0244 for the
east, north and altitude error respectively. This was not expected. This accounts also for the velocity and
attitude errors. Especially for the attitude erros, it is actually seen that the NLO and ESKF have smaller
RMSE than the EKF even when it seemed to have larger errors on the attitude plots in the figures 7.10,
7.11 and 7.12.
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Figure 7.18: NIS DVL - EKF/ESKF/NLO comparison - eight number
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Figure 7.19: Gauss compare DVL - EKF/ESKF/NLO comparison - eight number
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Figure 7.20: NIS Pressure - EKF/ESKF/NLO comparison - eight number
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Figure 7.21: Gauss compare Pressure - EKF/ESKF/NLO comparison - eight number

In terms of filter consistency the NIS figures are represented in the 7.18, 7.19, 7.20 and 7.21. The plots
of 7.18 and 7.20 represent the NIS values together with their respective upper and lower bound for the
inverse chi-square distribution. The total percent of how many NIS values are inside this bound is also
given. The figures 7.19 and 7.21 represent a box plot of the NIS values compared to series of the norm of a
three dimensional zero-mean unit-variance Guassian. The most optimal solution would be that the NIS test
results resembles a guassian distrubiton completely. This would mean that the estimation error is modelled
as white noise, which indicates optimal estimation. For NIS/NEES tests results which have larger number
of NIS values than its respective Gaussian distribtion itself, can lead to divergence. As seen in the DVL
Gauss comparison between the ESKF. EKF and NLO the EKF the NLO may seem to resemble the best
comparison to the Gauss. The EKF will not diverge, but could have been better tuned with lower values in
the DVL measurement covariance R.

The NIS pressure tests on the other hand, seems very well tuned, where all of the state estimators have over
90 % inside their 95 % confidence interval. Compared to the Gauss all of them are close to the zero-mean
Guass. This indicates that the measurement covariance of the pressure sensor has been well tuned.
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7.1.2 "Above water" 30 min square
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Figure 7.22: EKF/ESKF/NLO east trajectory comparison with Qualisys - 30 min square
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Figure 7.23: EKF/ESKF/NLO north trajectory comparison with Qualisys - 30 min square
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Figure 7.24: EKF/ESKF/NLO altitude trajectory comparison with Qualisys - 30 min square

Looking at the position estimates in the figures 7.22, 7.23, it is seen that the EKF, ESKF and NLO compare
close to Qualisys between 0 and 200 seconds. After that they begin to drift. This is expected because the
AUV does not have any sensor that gives direct measurements of horizontal position in the NED frame, like
a GNSS receiver, which can update their horizontal position. The drift does not seem to be that large tough.
The EKF and NLO end up with roughly 2 meters drift in the east position and 5 meters drift in the north
position.

For the ESKF, the filter begins to diverge completely at around 900 seconds (15 minutes). As seen in equation
This could be due to a bug in the authors C++ implementation. However this seems strange because that
would have most likely given inaccurate estimates much earlier. A more reasonable explanation could be
that the IMU has been slightly moved during the test period. Since the IMU is not bolted or tightly attached
to the AUV, the person moving Manta-2020 could have made a slight offset in its original position. This
would have caused a mounting error that was not corrected for. This could have led to that the prolonged
prediction of the ESKF giving very inaccurate estimates. But this seem yet again rather stranger, because
then the EKF and NLO would also have been affected.
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Figure 7.25: Velocity x comparison between the EKF, ESKF and NLO compared to Qualisys - 30 min
square
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Figure 7.26: Velocity y comparison between the EKF, ESKF and NLO compared to Qualisys - 30 min
square
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Figure 7.27: Velocity z comparison between the EKF, ESKF and NLO compared to Qualisys - 30 min
square

Going over to the velocity plots in the figures 7.25, 7.26 and 7.27, the velocities of the NLO gives the most
accurate estimation over time compared to the ESKF and EKF. However the ESKF seems to estimate more
accurately in the first 250 seconds.

One interesting note is that velocities of the ESKF do not diverge completely, but rather begins to oscillate
considerably. One reason for this could be that the prolonged prediction estimates have become divergent,
but each time a DVL measurement comes into the filter, the velocity estimates becomes updated, and these
estimates then come close to the measurement. This is most likely true, because the measurement covariance
of the DVL Rdvl has FOM values that are in the 10−4 − 10−7 range.

For the velocities of the NLO, they seem to have a "smoothing" behavior. This may be due to the tuning
of the k1 and k2 in the injection term σ. This is because the velocity prediction is directly dependent on
this injection term. Low values of these therefore gives little contribution to the acceleration term. Also the
estimates of the attitude seems to be very accurate, which contribute in having an accurate Rn

b (q) matrix,
which is important for the prediction step.
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Figure 7.28: Roll comparison between the EKF, ESKF and NLO compared to Qualisys - 30 min square
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Figure 7.29: Pitch comparison between the EKF, ESKF and NLO compared to Qualisys - 30 min square

117



0 200 400 600 800 1000 1200 1400 1600 1800

Time [sec]

-200

-100

0

100

200

Y
a
w

 [
d

e
g

]

Qualisys - EKF/ESKF/NLO Yaw comparison
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Figure 7.30: Yaw comparison between the EKF, ESKF and NLO compared to Qualisys - 30 min square

For the attitude estimates in figure 7.28, 7.29 and 7.30, the most interesting notes are that the yaw estimation
is very accurate even for a long duration test of 30 minutes. There are no sensor that give measurements of
heading directly, like a magnetometer.
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Figure 7.31: ESKF bias estimates - 30 min square
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Figure 7.32: ESKF bias estimates - 30 min square

For the bias estimates of this test, given in the figures 7.31 and 7.32, the acceleration and gyro bias estimates
of the ESKF becomes divergent after 200 seconds. The values alternatives well beyond 1000 deg/h for the
gyro biases and between -2 and 3 m

s2 for the acceleration biases. This is a result from that the error covariance
has diverged, giving inconsistent behavior of all the states. For the gyro biases of the NLO the z and x values
seem to move slowly towards a steady state value. This should have been the x and y value, and not the z
value, because of the z value, as described above, should not be observable. This could be due to a wrong
setup of the figure. If this is the case, the non-observable bias should be the z value. Here it is seen that it
grows continuously in a linear fashion. This will however be bounded by the tuning parameter Mgyro.
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Figure 7.33: Position error of EKF,ESKF and NLO compared to Qualisys - 30 min square

121



Figure 7.34: Velocity error of EKF,ESKF and NLO compared to Qualisys - 30 min square
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Figure 7.35: Attitude error of EKF,ESKF and NLO compared to Qualisys - 30 min square

Looking at the figures of the PVA errors. The most reasonable would be to look at the comparison between
the NLO and EKF. For the position errors given in the figure 7.33, it is observed that the NLO has a RMSE
of 2.86 and the EKF has 3.38. One reason for this could be that the y velocities RMSE for the NLO (0.0821)
is much smaller than the EKF rmse (0.169). However the EKF have lower RMSE (1.41) in the north position
than the NLO (1.7). A reason for this could be that the process noise covariance for the position was well
tuned for the EKF and not for the NLO.

Looking at the attitude error, it is observed that the NLO have lower RMSE values for roll and pitch than
the EKF. A reason for this could be the gyro bias estimation of the NLO. This could also explain why the
NLO has much lower north RMSE than the EKF. This is because an accumulating roll and pitch error, will
make for a larger drift in east and north positions.
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Figure 7.36: NIS DVL - EKF/ESKF/NLO comparison - 30 min square
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Figure 7.37: Gauss compare DVL - EKF/ESKF/NLO comparison - eight number
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Figure 7.38: NIS pressure - EKF/ESKF/NLO comparison - 30 min square
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Figure 7.39: Gauss compare pressure - EKF/ESKF/NLO comparison - square

Going over to the NIS dvl plots in figure 7.36, 7.37, it is observed that the NIS of the NLO and EKF have
over 60 % of their values inside the 95 % confidence interval. However, the DVL NIS of the NLO has many
more outliers than the EKF as seen in the Guass compare figure 7.37. This means that the tuning of the
continuous time process noise D of the NLO have too small values for the velocity estimates. For the EKF
on the other hand the NIS values are much lower and many of the values are below the lower limit. This
means that continuous time process noise for the EKF have too large values for the velocity estimates. As
discussed above, the latter is preferred, because the former can lead to divergence. The same holds true for
the NIS of the pressure, seen in the figures 7.38 and 7.39.

127



7.1.3 Underwater sinus

Figure 7.40: East-north-altitude 3D trajectory comparison between the EKF and Qualisys - underwater
sinus
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Figure 7.41: East-north-altitude 3D trajectory comparison between the ESKF and Qualisys - underwater
sinus
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Figure 7.42: East-north-altitude 3D trajectory comparison between the NLO and Qualisys - underwater
sinus

Looking at the east-north-altitude trajectory in the figures 7.40, 7.41 and 7.42, it is observed that the NLO
seems to have a long transient period before reaching up from its initial estimates, compared to the ESKF
and EKF. Also it is observed that the ESKF seems to have the fastest convergence to the Qualisys altitude
trajectory. This could be because the k1 and k2 were tuned to low, giving too little contribution in the
velocity estimates. It could have also been due to that the continuous time covariance matrix D is tuned to
low, such that the "trust" in prediction is higher. This could very well be the case, because the AUV was
initially totally still in the water before starting the tests.
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Figure 7.43: EKF/ESKF/NLO east trajectory comparison with Qualisys - underwater sinus
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Figure 7.44: EKF/ESKF/NLO north trajectory comparison with Qualisys - underwater sinus
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Figure 7.45: EKF/ESKF/NLO altitude trajectory comparison with Qualisys - underwater sinus

Going over to the position estimates in the figures 7.43, 7.44 and 7.45, it is observed that the north comparison
is especially inaccurate for all the state estimators and it occurs a spike at the time of t ≈ 38 seconds. This
could be due to the range of the DVL not giving measurement close to the pool bottom. This will alter
the positions estimates. The east estimates seem also to be affected by this. Making a slight offset to the
Qualisys estimates after t ≈ 38 seconds. For the altitude positions is verified from the discussion above that
the NLO has a large transient behavior compared to the ESKF and EKF. The ESKF seems to be the one
with the lowest transient period. This could come from the fact that the nominal state kinematics are based
on the acceleration and gyro measurements from the IMU. And since Manta-2020 was almost standing still
when starting the test, the contribution of the prediction estimate h(xk) in the update step (given in the
equations 5.81 - 5.83) with the pressure measurement could have been very low. This means that z-position
would converge quickly to the pressure measurement. How quickly this goes is, as discussed in the eight test
section, based on the measurement covariance Rpres.
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Figure 7.46: Velocity x comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
sinus
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Figure 7.47: Velocity y comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
sinus
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Figure 7.48: Velocity z comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
sinus

Looking at the velocity figures 7.46, 7.47, 7.48, it is observed that the x velocity has a spike around 38
seconds. This confirms the discussion of the position plots above, that this could be due to inaccurate DVL
measurements. The interesting note here is that the y velocity of ESKF has very oscillating behavior. As
discussed in the 30 min test, this could be due to the implementation bug. This behavior however, was not
before 400 seconds. Furthermore this behavior did not show up in the eight test or the underwater square
(discussed below) test either. This is also the reason for the spiked behavior of the ESKF in the first 38
seconds in the north comparison plot.
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Figure 7.49: Roll comparison between the EKF, ESKF and NLO compared to Qualisys - underwater sinus
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Figure 7.50: Pitch comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
sinus
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Figure 7.51: Yaw comparison between the EKF, ESKF and NLO compared to Qualisys - underwater sinus

Observing the attitude figures 7.49, 7.50 and 7.51 one very interesting note here is the that when the corrupt
measurements of the DVL comes at around 38 seconds the roll and pitch estimates of the EKF and especially
the ESKF, seems to get more inaccurate and altered. This is not the case for the NLO. The reason for this
is that the NLO has its attitude feedback interconnected with the translational motion observer described
in section 5.8. This means that the update on attitude is like its "seperated" from the behavior of the
translation motion observer, which could explain why it does not alter the NLO pitch and roll estimates.
The yaw estimates of ESKF and EKF seem to not be altered though. The spikes occurring on the Qualisys
estimates could be due to the cameras loosing track of the balls.

139



0 10 20 30 40 50 60

Time [sec]

-2

-1

0

1

2

3

4

A
c
c
l 
b

ia
s
 [

m
/s

2
]

10
-3 ESKF - Acc and Gyro Bias Estimates

x

y

z

0 10 20 30 40 50 60

Time [sec]

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

G
y
ro

 b
ia

s
 [

d
e

g
/h

]

x

y

z

Figure 7.52: ESKF bias estimates - underwater sinus
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Figure 7.53: NLO bias estimates - underwater sinus

The figures 7.52 and 7.53 shows the bias plots of the test. The interesting note here is that the z acceleration
bias of the ESKF is oscillating. This is could be due to the up-and-down motion of the AUV and that the
measurements coming from the pressure sensor are moving up and down. However it seems like it is not
altering its transient behavior.
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Figure 7.54: Position error of EKF,ESKF and NLO compared to Qualisys - underwater sinus
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Figure 7.55: Velocity error of EKF,ESKF and NLO compared to Qualisys - underwater sinus
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Figure 7.56: Attitude error of EKF,ESKF and NLO compared to Qualisys - underwater sinus

Going over to the position, velocity and attitude error in 7.54, 7.55 and 7.56, the overall RMSE of the ESKF
is greater than the NLO and EKF. This is expected since the velocity estimation had an oscillating behavior
with the reasons discussed above. Furthermore the overall RMSE of the NLO is actually greater than the
EKF even tough the pitch and roll RMSE estimates are much lower relatively speaking. This could be
because of the slow transient behavior of the NLO.
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Figure 7.57: NIS DVL - EKF/ESKF/NLO comparison - underwater - sinus
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Figure 7.58: Gauss compare DVL - EKF/ESKF/NLO comparison - underwater sinus
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Figure 7.59: NIS pressure - EKF/ESKF/NLO comparison - underwater square
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Figure 7.60: Gauss compare pressure - EKF/ESKF/NLO comparison - underwater sinus

Moving over to the DVL NIS plots in 7.57, it is observed that a lot of the values are under the lower limit for
the NLO and EKF. This usually means as discussed previously, that the continuous process noise covariance
matrix D has too large values. Tuning this would have maybe led to more accurate behavior compared to
Qualisys. Observing the NIS values for the ESKF, most of the values are above the upper limit and then
goes towards the lower limit. This is rather expected because of the oscillating behavior of the velocity y
measurement. This is resembled further in the gauss comparison figure 7.58.

For the pressure NIS values in figure 7.59, the NIS values of the ESKF and EKF have the most values inside
the upper and lower limit with 82.1 % and 60.2 % respectively. However for the NLO only 52.4 % are
inside the confidence interval. This means yet again that the tuning of the continuous time process noise
covariance for the position is not well tuned. Also looking at the 7.60, the NLO may diverge if this test was
to be prolonged.
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7.1.4 Underwater square

Figure 7.61: East-north-altitude 3D trajectory comparison between the EKF and Qualisys - underwater
square
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Figure 7.62: East-north-altitude 3D trajectory comparison between the ESKF and Qualisys - underwater
square
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Figure 7.63: East-north-altitude 3D trajectory comparison between the NLO and Qualisys - underwater
square

Comparing the figures 7.61, 7.62 and 7.42 it is seen that the NLO has a slow transient behavior like in
the underwater sinus test. This usually means, that the k1 and k2 were tuned to low, as discussed for the
underwater sinus test. Also in this case the ESKF has the fastest convergence.
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Figure 7.64: EKF/ESKF/NLO east trajectory comparison with Qualisys - underwater square
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Figure 7.65: EKF/ESKF/NLO north trajectory comparison with Qualisys - underwater square
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Figure 7.66: EKF/ESKF/NLO altitude trajectory comparison with Qualisys - underwater square

For the east, north and altitude figures given in 7.64, 7.65 and 7.66 the most interesting note here is that
the transient behavior of the altitude of all three estimators seems to be faster than the underwater sinus
test. Still the ESKF has the fastest behavior as seen in the altitude comparison.
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Figure 7.67: Velocity x comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
square
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Figure 7.68: Velocity y comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
square
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Figure 7.69: Velocity z comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
square

Moving over to the velocity figures in 7.67, 7.47 and 7.48 it seems like the y velocity of ESKF still has the
same oscillating behavior issue as with the underwater-sinus test. Because of this, this behavior may be due
to the person holding the pole while moving Manta-2020, which can give slight movement in velocity. This
also give some spikes in the accelerometer. This could have been due to the wild point filter was not tuned
for such small movements.
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Figure 7.70: Roll comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
square
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Figure 7.71: Pitch comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
square
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Figure 7.72: Yaw comparison between the EKF, ESKF and NLO compared to Qualisys - underwater
square

Going over to the attitude plots in the figures 7.70, 7.71 and 7.72 it is observed that the NLO has almost
the worst performing roll and pitch estimates compared to Qualisys. In comparison to the underwater sinus
test this was not the case. This was probably due to the spike occurring for the y velocity that altered the
pitch and yaw estimates of the EKF and ESKF.
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Figure 7.73: ESKF bias estimates - underwater square
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Figure 7.74: NLO bias estimates - underwater square

Shown in figure 7.73 and 7.74, there is a very different behavior of the bias estimates than the earlier test
experiments. For example the y gyro bias for the ESKF. This moves first down to roughly -17 deg/h before
moving towards again. This seems like a very unpredictable behavior. This could have been due to the an
unsteady moving of the person moving Manta-2020 during the test. This seems like a logical explanation
because the roll and pitch estimates of Qualisys are very oscillating. This issue could have been solved by
tuning the ω threshold in the wild point filter. For the gyro bias estimates of the NLO, the same behavior
of the y value are the same, with reasons discussed in the previous experiments. This time, however, the x
value seems to not "lock" itself to the z value. This could also be due to the wild point filtering not taking
effect.
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Figure 7.75: Position error of EKF,ESKF and NLO compared to Qualisys - underwater square
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Figure 7.76: Velocity error of EKF,ESKF and NLO compared to Qualisys - underwater square
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Figure 7.77: Attitude error of EKF,ESKF and NLO compared to Qualisys - underwater square

Observing the position error in figure 7.75, the EKF have the lowest RMSE for the horizontal positions. For
the altitude, the relatively large RMSE for the NLO is because of the slow transient behavior. For the ESKF
the unexpected behavior of the gyro bias estimates, could be the reason why its north and east positions
could have contributed in greater RMSE than the EKF and NLO. However this does not seem to be the
case, because of the low pitch and roll RMSE of the ESKF in figure 7.77. A more logical explanation would
have been that the oscillating behavior of the y velocity of would have contributed to this error. But this
seems to not be the case. Looking at figure 7.76 this seems also to not be the case. The ESKF has a smaller
y velocity RMSE than the EKF. Then this position error could be due to tuning of the ESKF.
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Figure 7.78: NIS DVL - EKF/ESKF/NLO comparison - underwater square
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Figure 7.79: Gauss compare DVL - EKF/ESKF/NLO comparison - underwater square

Looking at the NIS DVL test in figure 7.78, the values in this test are most of the time well below the lower
limit. This includes also the ESKF after ca 300 seconds. This is further seen in the Gauss compare figure
7.79. Here all three estimators are well below the Gauss, meaning that they will not diverge, but they are
not estimating optimally. Also comparing this to the NIS compare in the underwater sinus test, the ESKF
had much more of its values above the upper limit. This is due to the prolonged period of the oscillating
behavior of the velocity in that test. In this test most of the dominant behavior of this stopped at around
40 seconds compared to almost the whole period of the sinus test.
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Figure 7.80: NIS pressure - EKF/ESKF/NLO comparison - underwater square
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Figure 7.81: Gauss compare pressure - EKF/ESKF/NLO comparison - underwater square

For the NIS pressure values given in the figures 7.80 most of the values are well inside the 95 % confidence
interval for the ESKF and NLO unlike the values for the underwater sinus test. This is most likely due
to the alternating z values in the sinus test, and that the difference between the predicted state and the
measurement of the pressure sensor are relatively large. Thus lowering the rpressure and increasing the
continuous time process noise covariance of the filters D.

For the Gauss pressure comparison in figure 7.81, all of the state estimators seem to resemble a very close
distribution to the zero-mean Gaussian. This means the estimation errors of the filters are close to a modeled
white noise, which indicates an optimal solution.
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Chapter 8
Conclusion

A real-time ESKF, NLO and EKF were successfully implemented and experimentally tested on Manta-2020.
The tests included both underwater and "above" water tests scenarios from the MC-lab at Tyholt. This
included also a 30 min test scenario to see if the filters were stable. Unfortunately the ESKF did not seem to
satisfy this. This could have been because of an implementation bug, or more likely because of an mounting
change in the IMU during the test. The NLO and EKF, on the other hand, prove to be stable for this
test.

Looking at the results the EKF shows to have overall a NIS Gaussian that is closest to the zero-mean
Gaussian. The NLO proves to be robust for corrupted velocity measurements of the DVL. The ESKF shows
to have the fastest convergence of the altitude and give overall the most accurate velocity estimation. The
filters were tuned to have the same initial state estimate x̂0, error covariance P0 for the respective states and
measurement covariances Racc,RgyroRdvl and rpressure from the DVL, IMU and the pressure sensor.

The implemented sensor-synchronization proved to be successfully working for the ESKF and NLO. In
addition the ESKF and NLO C++ implementations, successfully estimated real-time on Manta-2020. The
wild point filter served to be working, but not tuned well for the behavior of Manta-2020.
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Chapter 9
Further work

To increase the accuracy of the state estimators, there are several aspects that can be further analyzed. For
example in regards to safety and redundancy. Some safety features can include sensor redundancy, logging
of measurements and more sophisticated signal processing that accounts for a frozen signal or signals with
high or low variance as seen in figure 3.2. Other aspects of future work can include

• More sophisticated methods of aligning the Qualisys data with the ESKF/EKF data

• Error handling in the filters and in case of dropped measurements from the wild point filter. This
could be warnings to the user, shutting down the ros-node if wrong filter parameters are used, etc...

• Coupling visual mapping with state estimation

• Newton-Laplace or Gauss-Newton optimization

• Implementation of a magnetometer, which can provide heading measurements.

• time synchronization with a timing board. For example a Sentiboard.
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Appendix A
Links
Sensonor STIM300 Driver: https://github.com/vortexntnu/stim300

Nortek DVL1000 Driver: https://github.com/vortexntnu/dvl_1000

ESKF implementation: https://github.com/oyvind1501/ESKF

NLO implementation: https://github.com/oyvind1501/nonlinear_observer

Wild point filter: https://github.com/oyvind1501/imu_wild_point_filter
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