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Problem description

The Norwegian Defence Research Establishment (Forsvarets forskningsinstitutt,

FFI) is currently investigating the use of unmanned surface vehicles (USVs) for use

in various military applications. Two test platforms, Odin and Frigg, have been

developed to investigate the use of this technology in mine countermeasures oper-

ations and as support vessels for autonomous underwater vehicles. The vehicles

will operate autonomously, which requires a high degree of robustness and safety

in the control algorithms.

The vehicles will be required to operate safely and efficiently in complex dynamic

areas. The vehicles will have multiple goals, which may in part be conflicting, as

is the case with path following and collision avoidance. Furthermore, even with

no conflicting goals the scenarios can be complex, e.g. when moving through an

area cluttered with obstacles. In these situations, it is advantageous for the vehicle

to be able to plan its action ahead, increasing the likelihood of optimal vehicle

trajectories.

Such planning algorithms can be computationally expensive, making them infea-

sible for real-time obstacle avoidance. Furthermore, the complexity associated

with path following and collision avoidance makes the set of feasible solution

highly non-convex, making it difficult for traditional algorithms to find a global

optimum. In recent years, however, the use of sampling-based model predictive

control (MPC) has increased in popularity for maritime use. Sampling-based MPC

avoids the cost of a gradient search by simply searching among a limited set of

possible trajectories. By choosing the optimal trajectory among the candidates, a

global solution is found (albeit in a limited search space).
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This thesis will investigate the use of this family of algorithms. Specifically, the

suitability of sample-based MPC in areas where precise control are required is

of interest, as this poses a challenge when the solution space is heavily subsam-

pled. Such scenarios include path following and collision avoidance in cluttered

environments.

Specifically, the thesis will investigate the use of sampling-based MPC to make an

underactuated USV such as Odin and Frigg

• Minimizing the distance to a path or trajectory

• Keeping at least a minimum distance to other vessels and obstacles

• Following the international regulations for avoiding collisions at sea (COL-

REGs)

• Retain predictability by avoiding (too) frequent course adjustments

Proposed subtasks for this thesis are:

• Perform a literature study in the field of path- and motion-planning for un-

manned vehicles, with particular focus on underactuated vehicles or vehicles

with non-holonomic constraints

• Compare different approaches to sampling-based MPC

• Implement at least one sampling-based MPC algorithm in a simulated envi-

ronment

• Investigate the use of the implemented sampling algorithm(s) for path/tra-

jectory following and collision avoidance

The thesis will build upon preliminary work performed in a previous project

assignment.

ii



Abstract

The Norwegian Defence Research Establishment (Forsvarets forskningsinstitutt,

FFI) has for several years been researching subsea vehicles and drones. In recent

years the use of unmanned surface vehicles (USVs) for military applications has

also been the subject of investigation. One of the two test platforms used for this

purpose is Odin, which is using water-jet propulsion and a wide range of sensors

to navigate and analyze its surroundings. Odin is one of the resources used in mine

countermeasures research at FFI due to its potential role in mine countermeasures

operations and as support vessel for autonomous underwater vehicles.

The field of autonomy is a modern and developing field of research and exploration.

Collision avoidance (COLAV) and motion planning are core topics in this research

to be able to safely achieve fully autonomous vehicles. The problem is equivalent to

the one helmsmen have been facing for centuries: How do I steer this vessel in such
a way that the situation at hand is resolved as smoothly as possible? The problem is

complex due to objectives which may be conflicting, such as path following and

collision avoidance. If a vessel like Odin is to operate autonomously a wide range

of requirements have to be met. One of these is to be able to interact with other

vessels in regular seafaring situations. In the maritime domain, The International
Regulations for Preventing Collisions at Sea (COLREGs) in addition to the constant

quest for reduction of the risk of collision is governing how vessels should interact.

Odin will be required to operate safely and efficiently in complex dynamic areas.

It is advantageous for the vehicle to be able to plan its action ahead, increasing the

likelihood of optimal vehicle trajectories. Thus, algorithms for motion planning

for underactuated marine vehicles is highly relevant.
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In this thesis, two low-level, sample based Model Predictive Control (MPC) COLAV

algorithms have been investigated through simulations. Such algorithms function

as a part of a layered architecture and have as their main purpose to handle emer-

gency situations. In addition, it is desirable for them to comply with COLREGs. The

first algorithm is the branching-course model predictive control-algorithm (BC-MPC)

which was developed at Department of Engineering Cybernetics at the Norwegian
University of Science and Technology (NTNU) by Bjørn Olav Eriksen. Its purpose is

to always produce trajectories which causes the vessel to avoid collision and that

are feasible with respect to the dynamic constraints of the vessel. The other is the

sample based model predictive control-algorithm (SB-MPC) which is also developed

at NTNU, by Tor Arne Johansen and Inger Berge Hagen. The algorithm produces

course offsets and speed coefficient which can be combined with references from

a higher-level planner thus producing resulting references. Both algorithms are

able to prioritize when faced with diverging objectives such as path following and

collision avoidance.

To evaluate the two algorithms, they have both been implemented on a 3 degree

of freedom vessel model of Odin. A nominal course reference for navigation is

provided by a Line-of-Sight (LOS) guidance system, while the nominal speed is

user defined. The systems are asked to perform at equal situations and their

performances are evaluated. The originators’ tuning and implementation method

is used as a basis for exploration and other possibilities for increasing performance

are also explored and presented.

Several complex multi-obstacle scenarios where the obstacles fail to perform the

necessary measures to comply with the COLREGs, thus causing dangerous situa-

tions are tested. The vessel must plan ahead, prioritize its conflicting objectives

of path following and collision avoidance and create safe resulting maneuvers.

In all scenarios the algorithms perform in such a way that collisions are avoided.

Advantages and disadvantages from each of the algorithms are discussed.
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Sammendrag

Forsvarets forskningsinstitutt (FFI) har i flere år forsket på undervannsfartøy og

droner. De siste årene har fokuset også blitt rettet mot autonome overflatefartøy. En

av testplattformene som brukes til dette formålet er Odin. Odin har sin fremdrift fra

to vannjetter og er vel utstyrt med en sensorpark som analyserer sine omgivelser

ved bruk av kamera, radar og lidar. Den er en del av ressursene FFI bruker til mine-

mottiltaksforskningen grunnet dens potensielle rolle i mine-mottiltaksoperasjoner

og som støttefartøy for autonome undervannsfartøy.

Autonomi er et moderne forskningsfelt med stor internasjonal interesse. Kollisjon-

sunngåelse og bevegelsesplanlegging er nøkkelemner i forskningen på vei mot

trygge fullautonome kjøretøy. Innen det maritime er et av problemene likt det styr-

menn i århundrer har møtt: Hvordan styre på en tydelig måte som gjør at situasjonen
blir løst hensiktsmessig? Problemet er komplekst fordi det krever avveininger og

vurderinger av ulike alternativer for å forsøke å oppnå flere, muligens motstri-

dende målsetninger. Dette kan være banefølging og kollisjonsunngåelse. For at

et fartøy som Odin skal kunne operere autonomt må systemet imøtekomme en

rekke krav. Et av disse vil være evnen til å samhandle med andre skip i ordinære

sjøfartssituasjoner, og dermed overholde sjøveisreglene, samtidig som kollisjons-

faren til enhver tid søkes redusert. Det kreves at Odin kan operere i komplekse

dynamiske miljø på en trygg måte. Det vil være fordelaktig å kunne planlegge egne

manøvre i forhold til andre fartøy for å øke sannsynligheten for optimal avvikling

av situasjonene som oppstår. Dette gjør bevegelsesplanleggingsalgoritmer for

underaktuerte overflatefartøyer aktuelle for utforskning.

I denne oppgaven blir to lavnivå samplingsbasertemodel predictive control-algoritmer
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(MPC) implementert på en skipsmodell av USVen Odin. Begge algoritmene er

tiltenkt en rolle som en del av et fler-nivå kollisjonsunngåelses-system, og deres

formål er å raskt kunne oppfatte og håndtere nødsituasjoner. I tillegg er det ønskelig

om dette gjøres på en måte som er i tråd med sjøveisreglene. Den første algoritmen

er branching-course model predictive control-algoritmen (BC-MPC) som er utviklet

ved Institutt for Teknisk Kybernetikk ved Norges Teknisk-Naturvitenskapelige Uni-
versitet (NTNU) av Bjørn Olav Eriksen. Den har til hensikt å alltid produsere

gjennomførbare referanser som reduserer risikoen for kollisjon og prioriterer

fartøyets målsetninger. Den andre algoritmen er sample based model predictive con-
trol-algoritmen (SB-MPC) som også er utviklet ved NTNU, av Tor Arne Johansen

og Inger Berge Hagen. Algoritmen produserer kurs-offsets og fartskoeffesienter

som kan kombineres med referanser fra høy-nivå planleggere for å skape resul-

terende referanser. Begge algoritmene er kapable til å prioritere når de er møtt med

divergerende målsetninger slik som banefølging og kollisjonsunngåelse.

For å evaluere algoritmenes egenskaper har begge blitt implementert på en mod-

ell av Odin med 3 frihetsgrader hvor skipets dynamikk simuleres. Nominelle

kursreferanser produseres av et line-of-sight (LOS) guidance system, mens den

nominelle hastigheten er gitt av brukeren. De to algoritmene sammenlignes ved

at de blir testet i like situasjoner gjennom simuleringer. Den foreslåtte tuningen

fra opphavsmennene har blitt brukt som utgangspunkt, før andre muligheter for å

heve ytelsen ytterligere blir utforsket og presentert.

Flere komplekse scenarier med flere hindringer som ikke innretter seg etter sjøveis-

reglene og dermed skaper farlige situasjoner blir simulert. Algoritmene må plan-

legge fremover, veie målsetningene opp mot hverandre og skape referanser som

er trygge å følge. I alle situasjonene er ytelsen av slik karakter at kollisjon blir

unngått. Fordeler og ulemper med de ulike algoritmene blir presentert og diskutert.

Avslutningsvis drøftes ulike tuning-parametres påvirkning på algoritmenes evne

til å produsere trygge baner båten kan følge. Simuleringene validerer algoritmenes

funksjon i de ulike scenariene og resultatene er tilfredsstillende.
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Chapter 1

Introduction

In this introductory chapter an overview of the background and motivation for

the thesis is presented. A list of assumptions which are applied to limit the scope

is given. The contributions of the thesis are put in the context of previous work

from the specialization project [1]. Finally, a presentation of the structure of the

thesis is given.

1.1 Motivation

The automation of tasks in the society has been an objective across sectors for

decades. In many applications the purpose of automation is to increase the safety

and reduce costs. Automation is ranging from simple functions such as self-opening

doors, to more complex self-governing, autonomous systems such as self-driving

cars. Such technological progress enables people to avoid many boring or danger-

ous tasks, allowing these to be performed with little human involvement. Boring

tasks are typically tasks that are repetitive or non-challenging and trivial. While

a human operator may lose interest and focus, thus inflicting his performance, a

machine would be able to maintain its performance over time, thus increasing the

safety of a system.

The Norwegian Defence Research Establishment is responsible for defence related
research in Norway and has been researching autonomous robotics for several

1
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Figure 1.1: Odin underway. Courtesy of FFI.

years. One of the fields of investigation is the operation of unmanned surface

vehicles (USVs). The ability to employ USVs lay the foundation towards the long-

term goal of a new generation of equipment and methods formine counter measures
(MCM) [2]. By 2028, the goal is to have a new system in place for autonomous

detection and defusage of sea mines. The purpose is to move operators out of the

danger of mine fields. In this new era; human intervention in a potential minefield

should be superfluous such that in the event of an accident human lives will not

be at direct stake. In the recent years Odin has been used as a research platform

for autonomy in the Norwegian Defence’ capabilities.

The Royal Norwegian Navy (RNoN) already uses the autonomous unmanned vehicle

(AUV) HUGIN for detection, localization and classification of sea mines [3]. A

remotely operated single use weapon is used for the destruction of mines. A

mothership at a safe distance can be used to deploy small and fast USVs that carry

the AUVs and weapons into the operation area. The USV also acts as a relay

for communication between the mothership and AUV during the operation. Sea

mines are still legal according to international law, and their use is widespread

around the world [4]. As a part of NATO and as a nation with a long coastline it is

important for Norway’s sovereignty to be able to maintain control over these areas

and to be in the forefront of maritime technology. This enables us to maintain

our position as a nation with great nautical history and tradition. One of the



1.2. ASSUMPTIONS 3

actions needed to achieve this goal is to develop our own capabilities in maritime

defence technologies. It is now the job of both the Norwegian Defence Research

Establishment (FFI) and the RNoN to further develop concepts and solutions for

autonomous maritime mine counter measures (MMCM) that are deployable from a

safe location outside the minefield.

In addition to the clear need for autonomy in the field ofMMCM, collision avoidance

and autonomy at sea are very current topics. FFI’s USVs need to be able to handle

regular seafaring situations they encounter as well. In the maritime domain of

autonomous transportation several uncertainties such as obstacles with uncertain

position and speed are influencing the situations. Other vessels’ course of action

can also cause uncertainty in the decision making. External forces such as the

current sea state and weather may also affect the situations greatly and demand a

robust control system.

The development of autonomous collision avoidance has started with hybrid sys-

tems, meaning systems that aid the helmsman with situational awareness and

suggestions of alternative actions. Recent development in both sensor systems

and computational power has allowed for more research and development in the

field. The objective of this thesis is to investigate the use of collision avoidance

algorithms for use on the vessel model of Odin. These algorithms are able to plan

ahead to create more optimal behavior and increased safety.

1.2 Assumptions

The following general assumptions have beenmade in theworkwith this project:

1. The system is considered fully observable. All values which in reality may

have to be estimated, may be used in calculations.

2. The position, velocity and orientation of the obstacles are known.

3. Obstacles are assumed to move in a straight-line path with constant speed.

4. The situations take place in open sea, meaning that the vessel may assume

sufficient depth under its hull at all times and locations.

5. All situations occur on the vessel’s straight-line path towards the next way-

point which is considered to be far away.

6. The vessel is assumed to have a reasonably functioning low-level control
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system which causes provided references to be followed.

7. The calculation and selection of optimal trajectories are made in a single

step of calculation time.

8. We assume that the vehicle will remain in the displacement phase, such that

the simulations with the vessel model may represent real performance in a

good way.

9. No wind, waves, current or other external forces are affecting the vessels.

Remarks:
The collision avoidance situations occur far from the next waypoint (WP), thus

avoiding the need for heuristics that would make the vessel cope with not passing
theWP. Maybe the vessel is well off by passing theWP and heading for the next one,

or maybe the mission is dependent on the vessel passing theWP. This decision is up

to a higher level planner to decide. In real life the boat would have travelled some

distance in the duration of the calculation time. The challenges this presents are

considered to be beyond the scope of this project and implementation techniques

would need to be applied. The vessel is assumed to be able to follow all reasonable

provided references because of the assumption of the well functioning and verified

control system. This assumption allows for the prediction of future states, given a

certain control input. However, the investigation of the low-level control system is

outside the scope of this thesis.

In the branching-course model predictive control (BC-MPC) algorithm, the nominal

line of sight trajectory is assuming an instantaneous turn and acceleration as it is

produced without thought to vessel pose and dynamics. In the sample based model
predictive control (SB-MPC) algorithm, however, all the trajectories are calculated

without taking these aspects into account, thus assuming an instantaneous turn

and acceleration.

1.3 Previous work

In the fall semester of 2019, a 7.5 credit specialization project, TTK4551 - Engineering
Cybernetics, Specialization Project, was completed under the supervision of Kristin

Y. Pettersen at NTNU and Martin S. Wiig and Else-Line Ruud at FFI. The resulting

thesis was named Motion planning and collision avoidance for USVs and evolved

around Odin and the BC-MPC algorithm. The main results of the specialization
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project [1] consist of the following elements:

• The framework for being able to test different collision avoidance situations

• The implementation of the constant speed BC-MPC algorithm in Matlab.

• Systematic simulation and evaluation of the effect of BC-MPC tree generation

parameters.

• Implementation and evaluation of two different cost functions.

• Simulation and evaluation of the performance of the constant velocity BC-

MPC algorithm on the Odin model.

1.4 Contributions

The main contributions of the work presented in this thesis are as follows:

• An extensive literature review on motion planning and collision avoidance.

• The implementation of both the BC-MPC and the SB-MPC algorithm on the

Odin vessel model in Matlab and Simulink.

• A method for increased accuracy in the trajectory tracking for the BC-MPC

algorithm for feedback low-level controllers.

• The proposal of a new function for the evaluation of cost of collision in the

SB-MPC cost function.

• The proposal of a new align function and linear decrease of penalty in the

avoid function for the cost function with associated tuning in the BC-MPC

algorithm.

• A simulation study evaluating the performance of the two collision avoidance

algorithms in regards to the COLREGs and a safety perspective.

1.5 Outline

The remainder of this paper is structured as follows. First, in Chapter 2 an exten-

sive literature review on motion planning, collision avoidance, key parts of The
International Regulations for Preventing Collisions at Sea (COLREGs) and associated

algorithms is presented. Then, in Chapter 3 presents the system description of Odin,

its controllers and the sideslip effect. The line of sight LOS guidance scheme for

path following is also presented along with the method for predication of obstacle

positioning. The trajectory generation in the BC-MPC algorithm is presented in
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the first parts of Chapter 4. The chapter also presents an extensive cost function

for optimization and trajectory selection. Chapter 5 is devoted to the presentation

of the SB-MPC algorithm and is including both the tree generation and selection.

Next, in Chapter 6 different practical adjustments of the algorithms and their tun-

ing are presented. The tree generation and cost functions of both algorithms are

discussed. Then, the two algorithms are used in the simulations with the vessel

model of Odin in five single obstacle, and three complex multi obstacle scenarios

in Chapter 7. Finishing, the performance of the two algorithms are discussed in

the light of the simulations. Concluding remarks, important lessons learned and

suggestions for further work is presented in Chapter 8.



Chapter 2

Literature review

In this chapter relevant topics and past achievements in the field of collision

avoidance and motion planning will be addressed. The parts regarding collision

avoidance and COLREGs has its roots from the specialization project.

2.1 Collision Avoidance

Collision avoidance (COLAV) in the maritime domain has historically been handled

by the crew operating the ship. It must sense and interpret the situation at hand,

process it, and come up with a plan to solve the situation. The International
Regulations for Preventing Collisions at Sea (COLREGs) establish how one should

act in different situations. The situation is a multi-variable nonlinear problem that

traditionally has been solved by reviewing the position, speed and course of the

involved ships while taking a map of the immediate environment, as well as the

current weather, into consideration. The helmsman may alter both his course and

velocity in order to resolve a potential situation. In more recent times helmsmen

are aided by sophisticated technical solutions. One is the option to communicate

with the other party directly with a very high frequency (VHF) radio. This is a

valuable addition to the traditional, indirect communication through actions and

maneuvers.

Another semi-modern system is the automatic identification system (AIS). The AIS

7
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system broadcasts position and other relevant data over the VHF-network [5].

This information is by some boats and some transition-stations published on the

internet to web-pages like "marinetraffic.com". The frequency of updates over the

AIS-system is varying and can range up to once per minute. The distance from

shore and other vessels also inflicts howwell such a signal may be sent and received.

In Figure 2.1 a view at how information from the AIS system may be displayed

is presented. One can see the four ferries operating the stretch between Horten

and Moss. When the ships are going east, they take a more southerly route than

when they are heading west. This way they are always keeping right of each other

and operate in a predictive and easy way. Unfortunately, one cannot assume that

all vessels are using the AIS and VHF systems, therefore an autonomous collision

avoidance system cannot fully depend on these systems.

Figure 2.1: AIS information from the coastal area between Horten and Moss in

Norway displayed on a map. Screenshot from marinetraffic.com [6]

2.2 Collision avoidance regulations -COLREGs

There aremany different measurements that could give an indication of how serious

a situation is, with regards to a potential collision. These may be; distance between

ships, time to collision, Closest Point of Approach (CPA), Time to Closest Point of

Approach (TCPA). What kind of limits that would be reasonable to say that the ship

should start to react to may vary. If two ships encounter each other in open waters,

it may be reasonable to make sure that one steers clear of the other by a larger

margin than one could hope to achieve in more restricted waters. Which velocities

they are travelling in and which collision avoidance rules that come into play are

also parameters that affect how the situation should be interpreted and handled.
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Two helmsmen may also react differently to the same type of situation.

The International Regulations for Preventing Collisions at Sea (COLREGs) are pub-
lished by the International Maritime Organization (IMO). These rules originate from

far back in time, but the current set of rules are from 1972. These rules describe

how different situations at sea should be solved, how one should steer a vessel

and how responsibilities are partitioned. Complex multi vessel situations could

occur, where one must interpret which course of action that seems to be the most

reasonable. The rules are built such that one sometimes must break a rule in order

to obey another.

Further, one can never achieve a right over another vessel. Vessels are rather

categorized as either a "give way" (burdened) vessel and a "stand on" (privileged)

vessel. A situation may have two give way-vessels with no stand on vessel. In a

situation with three vessels one could be the give way to two of the others, while

one is the give way to only one, and the last one is simply a stand on-vessel to
both.

The COLREGs are built up by Parts A to F where each part contains rules that are

in similar categories. Part B - which is concerning steering and sailing, is again
partitioned into 3 sections. In addition, there are also 5 appendices. Many of these

rules are general and regarding equipment, communication and seamanship. In

regard to collision avoidance systems, Part B Section II is the most relevant. It

governs rules of steering and sailing while two ships have each other in sight.

Rules 11 and 12 is governing sailing vessels, while rules 13-17 are more general.

Many of the rules are describing how responsibility is divided among the vessels

as a function of their position in regard to each other. Figure 2.2 displays a way

the vessels may be classified.
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Figure 2.2: A top view of own vessel which classifies the sectors another boat may

be classified by. [7]

In this thesis the ability to comply with COLREGs is the subject of investigation,

but in a long-term view, one may look at COLREGs to be able to see the standard

of complexity in maritime traffic.

2.2.1 General remarks

These rules describe 1:1 vessel situations and are open for interpretation. Rule 6
- Safe speed, states that it is a vessel’s obligation always to maintain a safe speed,
to avoid collision and to be able to steer clear of or stop in front of obstacles. The

speed chosen shall be a result of the nature of the environment, surrounding waters,

the visibility, the maneuverability of the vessel, weather and traffic density. Rule 7
regarding risk of collision impose all vessels to continuously evaluate the presence

of risk of collision. It states that factors that determine how large such a risk is

viz. a constant compass bearing of an approaching vessel, and when the distance

to the other vessel becomes substantial in relation to the size of the other vessel.

Rule 8 - Action to avoid a collision demands that alteration of course and/or speed

to avoid collision shall, if the circumstances of the case admit, be large enough to

be readily apparent to another vessel observing visually or by radar.

2.2.2 Rule 13 - Overtaking

Rule 13 states that any vessel overtaking any other shall keep out of the way of

the vessel being overtaken. A vessel is defined as overtaking if it is coming from
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behind from a direction more than 22.5◦ abaft her beam. The overtaking vessel

may choose itself how it is to keep out of the overtaken vessel’s way. Once the

situation is defined as an overtaking situation, it shall not be interpreted as a

crossing situation later on, even if the positions of the vessels may allow one to

think that is so.

Figure 2.3: Overtaking

2.2.3 Rule 14 - Head-on situation

Rule 14 states that when two vessels are facing each other head on, with reciprocal

courses and they both are burdened vessels which share the responsibility of

keeping clear, they shall both alter their courses to starboard and pass on the port

side of each other.

Figure 2.4: Head-on
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2.2.4 Rule 15 - Crossing

Rule 15 is governing the crossing situation and declares that the vessel which has

the other to her starboard shall keep out of the way, and if the circumstances allow

it, she shall pass aft of the other vessel. This therefore implies that the vessel which

has the other boat to her port is the stand-on vessel and is not burdened by the

situation.

Figure 2.5: Crossing

2.2.5 Rule 16 - Action by give-way vessel

A vessel that is directed to give way shall perform its action to keep clear early

and clearly, so that the other vessel may observe it.

2.2.6 Rule 17 - Action by stand-on vessel

The stand-on vessel is obliged to maintain its course and speed so that the situation

at hand may be resolved in a predictable way. However, if the give-way vessel fails

to take appropriate action and a collision cannot be avoided by the action of the

give-way vessel alone, then the stand-on vessel shall take action to best resolve

the situation and avoid collision.

2.3 Motion planning

The field ofmotion planning evolves around the problem of finding the best possible

way to configure an object or robot through space over the duration of a time-

window. Thus, the object is made to move from its origin pose (i.e. position and

orientation) to a goal pose. This is also known as the piano mover’s problem. A
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motion planning algorithm may include knowledge about the robot’s abilities to

move, i.e. constraints, the stationary environment (a map) and sensor data about

moving obstacles.

How FFI divides the works with autonomy in its divisions sheds some light on

the associated topics. Scene analysis, swarm, and automated missions are the

three divisions. Control and planning are topics which are closely bounded and are

sorted into the automated missions division. Scene analysis is the field of perceiving

the vessel’s surroundings through sensors. It is a common simplification in route

planning to simply assume zero error in the scene analysis.

2.3.1 Algorithms

Canny and Reif showed in 1987 that the problem of dynamic motion planning for

a point in a plane, with obstacles and bounds on states such as velocity, is NP-hard

[8]. In practice it turns out to be a lot of different heuristics, which simplifies the

problem, and which often results in good practical performance.

One way of categorizing the algorithms in the field of motion planning and collision

avoidance is by separating between reactive and deliberate algorithms. Reactive

are of the sense-act kind, while deliberate algorithms are of the sense-plan-act
kind.

The artificial potential field was first presented by Khatib in 1986 [9], and models

the obstacles as a repulsive field and the goal as an attractive field. These fields are

summed to provide a resultant virtual force acting upon the vehicle, thus moving it

around obstacles and towards the vehicle’s goal. This method is closely related to

the virtual force field method [10], and is intuitive, easy to implement and has a low

computational complexity. However, the method creates a nonlinear field which is

prone to local minima, and the lack of planning ahead can lead to suboptimal and

oscillatory vehicle trajectories.

The Velocity Obstacle (VO) is a reactive algorithm invented by Fiorini and Schiller

[11] which is a very common and acknowledged method for collision avoidance

in dynamic environments. All velocities of a robot that cause a collision with

another robot form the set of a velocity obstacle, assuming that the other robot

maintains constant velocity. Having calculated which velocities that would cause a
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collision, one also subtracts infeasible velocities by using the vessel/robot dynamics

resulting in a set of reachable avoidance velocities to choose from. From these

the VO-approach does not dictate how a velocity is selected, but the use of a cost

function could decide this. The VO-approach avoids local minima, but may cause

sub-optimal behavior in complex scenarios. This is due to the algorithms lack

of planning and ability to look forward in time. Having several competing goal

or objectives then may cause problems. Planning algorithms therefore become a

natural next step of exploration.

Model Predictive Control (MPC) is an attractive choice of control principle which

may handle such complex problems [12]. MPC is a way of closing the loop of an

open loop optimization problem. The model predictive controller evaluates the

current states and select the optimal input to control the system in the desired

direction. The system responds to the input and the new states are then used to

solve the problem again yielding another set of new states. A quite interesting

point regarding the MPC regime is that the optimal inputs and states are calculated

for the whole prediction horizon, but only the first control input is actually applied.

It is possible to have algorithms that take longer time, which feed the system

with a short sequence of control inputs, before another solution is calculated

and ready. MPC have traditionally been applied in process regulation with fairly

slow dynamics and long prediction horizons [13]. The computational complexity

correlates with the run-time it takes to solve it. If you compute a very accurate

model it takes longer time to compute, and therefore longer time before the model

can receive a new - updated input. There is a trade-off between being able to

calculate newer solutions faster and being able to see far into the future in an

accurate way, to get optimal inputs. Figure 2.6 shows an illustration of the MPC

principle.

Nonlinear MPC is simple in concept, but the run-time associated with finding the

optimal solution may cause problems. A nonlinear program (NLP)-solver is needed

in such a case, and both sequential quadratic programming (SQP) and interior point
methods may be applied, but it is very difficult to guarantee for the optimality

of such a solution. Due to the nature of the problem of motion planning being a

highly complex problem, sample based MPC approaches become attractive. Sample

based MPC approaches have proven to be able to both avoid local minima and

avoid causing computations to last too long due to the finite number of alternatives



2.3. MOTION PLANNING 15

Figure 2.6: MPC principle illustrated. Figure from [13]

which are evaluated. Instead of calculating the optimal input in a continuous

search space, sample based MPC rather calculates a value indicating how well each

candidate in a set of candidates performs. The one that scores the best function

value from the cost function is then selected and passed on to the system. What is

lost in the transition from solving the problem in the continuous search space to

in a sample based search space is the possibility of proving optimality. However,

in the field of maritime navigation and control, the options a helmsman would be

having, may be well represented by making the discretization of the search space

fine-meshed. Two implementations of such sample based algorithms are; Eriksen’s

BC-MPC and Hagen’s SB-MPC.

Although sample based MPC may be applied for a group of algorithms, the name is

in this thesis linked to the specific algorithm presented in [14], [15] and [16], and

referred to as the SB-MPC algorithm.

With today’s available computational power, planning algorithms have become

more attractive, as the problems may increase both in complexity and in planning

horizon. This enables the users to achieve more optimal solutions in their pursuit

to achieve reliable anti-collision systems as a part of their autonomous solution.

Recent development in computational power allows solving larger problems faster,
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and thereby calling them even more often. The planning involves calculations

into different alternatives of actions and evaluation of these. Previously, deliberate

algorithms where only explored academically and where exclusively used for pre-

operation purposes with a priori information. But now, the group of algorithms is

considered applicable for online collision avoidance even though the environment

is characterized by quick, unpredictable and frequent changes in the environment.

This information comes from sensory-information. Due to the increased compu-

tational power, the separation between the two categories is therefore no longer

as substantial, and deliberate algorithms may prove valuable for online collision

avoidance.

Another way to distinguish between motion planning algorithms is by global and

local algorithms [17]. Global algorithms seek to solve the entire problem from start

to goal, while local algorithms seek to provide a part of the solution by reviewing a

local, defined part of the total space. Typically, global algorithms are applied before

a mission, and has little constrain on the computational complexity and therefore

computation time. On the other hand, local algorithms may take choices online

based on the current situation around the robot the algorithm controls, thus putting

large demands on the computational complexity of the problem. It is possible that

the local algorithms perform choices that are, when seen globally, not optimal,

however, the algorithm may have chosen it as a result of a greedy policy. A greedy

policy is a mapping between a situation or a state and a resulting action. A greedy

policy is a policy that chooses its action based on what is currently available of

information, which for a local algorithm may be limited.

One algorithm which is planning from start to finish is the Probabilistic roadmap
(PRM). It works by generating a random line segment and checking if the path of

the segment is either clear or contains a collision with an obstacle. If a collision

is present then the segment is rejected [18]. In the exploration of a cluttered

environment the algorithm spends most of its time doing collision detection.

The rapidly-exploring random tree (RRT) algorithm is an algorithm that deter-

mines the control inputs that can cause a robot to move from an initial- to a

goal-configuration while obeying the dynamic model and avoiding collision with

obstacles in the environment. Lavalle and Kaufner [19] further developed the

already known random tree, into the RRT. Both algorithms generate a random node
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in space and a step is taken from a point in the tree in the direction of the new

node. The random tree does so from a random node in the current tree, but the

RRT generates an edge from the nearest node in the current tree in the direction

of the new node. This causes the trees to develop drastically differently since RRT

is now growing into the unexplored at a much higher rate. The path from start to

goal may be discovered more quickly. However, observing such a path, one can

see that it is probably not the shortest path from start to finish. And if one where

to continue adding new nodes to the tree, it would still not result in a shorter or

more optimal path, since the edges between the nodes are static.

In the formulation of such problems one can easily associate a cost of travelling

over an edge from one node to another, with the distance between these nodes.

Other parameters which may affect the physical situation of doing so may also be

incorporated into such a cost function. Karaman and Frazzoli invented the RRT*

which are provably asymptotically optimal, meaning that the cost of the solution

converges to the optimum as the number of iterations performed by the algorithm

increases [20] [21]. It works by re-evaluating the cost of reaching each node in the

tree at given intervals, using a shortest path-search. If a shorter path to a node

is found, the edges are rewired to this new path. The advantage of optimal paths

is paid for in more "overhead" calculations, causing the whole algorithm to be

slower.

Sampling based algorithms are unable to determine that there doesn’t exists a

feasible path. PRM and RRT have been shown to work well in practical applica-

tions and also carries probabilistic completeness. This means that the methods’

probability of finding a solution approaches 100% as the computation time becomes

sufficiently large, however, the methods are incapable of determining whether or

not a solution exists. The PRM, Random tree, RRT and RRT* are all probabilistic

complete.

RRT and RRT* are examples of general, global algorithms employing randomness in

their exploration. Other algorithms, such as the BC-MPC and SB-MPC algorithms,

are local algorithms which use a predefined, horizon-limited tree of feasible path

alternatives. Each of the candidates in the tree are then are explored and tested for

their predicted performance.

Brooks et. al. [22] propose a method for tree generation in local parts of the



18 CHAPTER 2. LITERATURE REVIEW

environment by exploiting randomized sampling for exploration in a way not too

unlike RRT. The algorithm focuses on the motion planning problem using only local

information, and optimizing the path, with a cost function designed to bring the

robot closer to the long-term goal, over a limited time horizon. This is applicable

and useful as large parts of the environment will be outside the sensor range of

many moving robots. The branching of the tree is based on the end position from

the best control trajectory from the previous iteration. A finding from this work

which is interesting is the pruning of the tree if a node is evaluated to be of a

certain poor quality, e.g. a collision. This allows for large parts of the state-space

to be ignored in further computation, resulting in faster convergence towards an

optimal path. The method has proved functioning for both a car and a Segway

operating in walking pace.

Grid based algorithms aim to solve the problem of motion planning by discretizing

the continuous configuration space into cells in a grid. Each cell is associated with

a possible configuration and the neighboring cells may be seen as feasible “next

steps” in a candidate path. Each cell may be assigned a value corresponding to

how well the configuration is. Search algorithms like A* may be inputted these

situations and grids and produce a path from start to goal configuration. The

quality of the produced paths may be dependent on the granulation of the grid and

the ability of the robot to perform the planned path. For high performance the grid

size must be low, resulting in many cells with high computational complexity. One

challenge may be to use the robot-dynamics-model to calculate which neighboring

cells are possible to travel to, and still maintain the “stamp” of optimality from the

mathematical deduction of the path.

2.4 Layered software architecture formotionplan-
ning

The purpose of having a layered motion planning software architecture is to be able

to organize the flow of information and control inputs in a system with the purpose

of dividing the computation of tasks and decisions into adequate portions. There

are several reasons and advantages for choosing this type of software architecture.

One of them is the ability to develop and manage each layer individually. This

avoids building one single, large and complex block. In the field of computer science,
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the approach of layered software has been an advancing preferred approach in

many applications in the recent years. These applications range from secure

payment solutions to web-page designs and to embedded control systems with

online computation constraints.

Within the world of collision avoidance and motion planning, a constant challenge

is the changing situation and environment of the robot. However, as the global

computation of a path from start to finish is a multi-variable, nonlinear complex

problem which requires a fair portion of computation, and therefore time, one

faces the problem of an outdated solution, when it is ready for appliance. Tiered

segregation allows for each layer to solve different parts of the greater overall

problem and allows a short term COLAV algorithm to constantly “check” for

obstacles and evaluate different control inputs to deal with them. A slower higher-

level planner may evaluate a more complex problem over a larger horizon and a

larger surrounding area for example also taking a sea-map, weather and current

into consideration. This could be optimizing the nominal path for fuel efficiency

and minimization of travel distance.

A mid-level collision avoidance layer could also employ the principle of MPC.

However, this layer must solve a larger nonlinear problem in continuous time. As

this is prone to local minima it is difficult both to guarantee optimality and to

guarantee a worst-case computation time [23]. The algorithm is expected to be

able to plan long-term maneuvers and at the same time be able to handle rapid

changes to the environment. The low-level planner such as BC-MPC and SB-MPC

or a reactive layer such as a VO-algorithm can be expected to be able to keep

the vessel out of collisions as they are faster algorithms with such as their sole

purpose.

In Figure 2.7 one can see a vessel faced with a map with some moving obstacles

and a land area. Two alternate nominal paths are suggested and as this is a large

problem with a long horizon it may be the job of a higher-level planner to decide on

such a trajectory. It is not necessarily so that the computation of a such a problem

is performed with the information regarding the moving obstacles at all. This

would probably cause our vessel to choose route A. In reality a trained skipper or

an algorithm considering those obstacles would maybe choose to travel the slightly

longer but less busy seaway, alternative B.
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Goal position

Land

AB

Figure 2.7: Motion-planning situation

2.5 Initial comparison of SB-MPCandBC-MPC

Both BC-MPC [24] and SB-MPC [15], are algorithms in the family of sample based

MPC algorithms for collision avoidance. They are employed as a layer in a layered

architecture for motion planning and collision avoidance systems. The purpose is

to distribute the responsibility of handling different objects and obstacles so that

the vessel may behave in a way that enables it to reach its long-term goal as well as

reacting quickly to more short-term situations. A high-level planner will typically

take care of static obstacles and navigation resulting in a nominal path. The planner

may run prior to the vessel beginning its mission. Both algorithms are examples

of low-level planners which are deliberate algorithms of the sense-plan-act-kind.
The important task of this part of the hierarchy is the handling of current and

rapidly changing dangerous events. BC-MPC and SB-MPC both makes a greedy,

local choice which is likely to bring the robot closer to its goal. The difference

in the two lie primarily in the assumptions that are made to be able to generate

predicted trajectories and in the complexity, and sophistication of the trajectory

candidates. BC-MPC is in general more complex than SB-MPC. Each algorithm is



2.5. INITIAL COMPARISON OF SB-MPC AND BC-MPC 21

equipped with its own cost function which holds several similarities compared to

each other.

One advantage of the SB-MPC is the ability to be compatible with any other higher-

level planner which provides a speed and course reference. This is due to the

SB-MPC’s way of scaling the speed and adding an offset to the course to be able to

avoid collisions. Unfortunately, if the higher-level planner is finished with one line-

segment and then changes its course, the course reference will be falsely generated

and will be made out of a combination of two values generated independently from

each other. If the time from one call of SB-MPC to another is short, the problem

will be small and resolved fairly quickly. Hence, the time between calls to the SB

MPC algorithm should be short, in the order of 5-10 seconds depending on the

operation and speed of the vehicle. In this thesis the investigation of this particular

problem is seen to be outside of the scope and is not investigated further.

One advantage of the BC-MPC algorithm is the lack of logic statements in the

cost function. It is not desirable for a low-level COLAV algorithm to have distinct

thresholds decide whether to go for plan A or B. The strive to avoid discontinuities

and logic statements intend to improve the robustness in respect to obstacle noise.

The cost function components of BC-MPC awards choices that are similar to the

previous choice. Another aspect is for the horizon in low-level algorithms not to

become too long, due to the lack of COLREGs-specific logic in the algorithm.

For the purpose of comparing these two algorithms they will in Chapter 7 be used

to resolve the same situations, and advantages and weaknesses will be discussed.

Many of the parameters in the two algorithms will be set equal to each other so

that it is not the effect of for example difference in horizon-length that causes these

differences. SB-MPC may be added on to a maybe unknown hybrid architecture,

while BC-MPC is in a larger degree built into the higher-level planners.
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Chapter 3

System description

In this chapter a description of the Odin USV, the vehicle model and the system

architecture is provided. Several topics in this masters thesis is coinciding with the

topics from the specialization project [1]. Equations and descriptions of the vessel,

its controllers and effects such as sideslip are therefore in some way reused and is

to a large degree inspired by the specialization thesis.

3.1 The Unmanned Surface Vessel - Odin

The Odin USV is an unmanned surface vessel (USV) FFI uses for research and

development purposes. Odin was the first vessel and it is now accompanied by

Frigg, which is very similar. The vehicles may be controlled manually, but the main

purpose is to develop and discover systems enabling autonomy on board.

The software onboard employs the Robotic Operating System (ROS) which acts

as a middleware between sensor drivers, the operator interface and the control

system components. Odin is a rigid buoyant boat (RBB) with propulsion from

two parallel mounted waterjets. Figure 3.1 shows the stern of Odin and its two

deflectors affecting the continuous stream of water. Simplified, they draw water

from underneath the boat and push it out the back. To steer the boat, one can change

the angle of the waterjet nozzle. To make the vehicle move backwards, a deflector

is used to steer the water flow from the nozzle forwards, thereby pushing the boat

23
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Figure 3.1: Odins two waterjets and deflectors seen at the stern of the vessel.

Courtesy of FFI.

backwards. The double waterjet system enables 3 DOF control as the controller can

inflict a wide variety of forces and moments on to the hull which allows for very

good maneuverability. This is essential for accurate position keeping or docking

operations, but when the boat is used in more traditional operations, like transit at

maneuvering speeds, the deflector is typically raised all the way and one controls

the boat with a combination of the magnitude of the force and the direction it is

pushed resulting in 2 DOF control in surge and yaw. This allows for the boat to

function as if it is propeller driven, and it performs with the limitation of being an

under-actuated system.

The dynamic model of Odin developed by FFI is a 3 DOF model containing the

states surge, sway and yaw. In layman terms - forward velocity, sideways velocity

and heading direction. Such horizontal-plane models are commonly used for ships

where the path following or trajectory tracking capabilities are investigated [25].

Figure 3.2 shows the motion terminology in 3 degrees of freedom.

The kinetic equations of motion are described in the following way [25]:

M ¤𝝂 + C(𝝂 )𝝂 + 𝑫(𝝂 )𝝂 = 𝝉 (3.1)
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Figure 3.2: Top-view of a vessel marked with motion-terminology in 3 degrees of

freedom (DOF)
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𝝂 =


𝑢

𝑣

𝑟


(3.2)

Where 𝑢,𝑣 and 𝑟 is the surge, sway and yaw-rate, respectively.

𝑀 is the mass matrix, 𝐶 is the coriolis matrix, 𝐷 is the damping matrix and 𝜏 the

forces inflicted by the propulsion system [2] [25].

M =


𝑚11 0 0

0 𝑚22 𝑚23

0 𝑚32 𝑚33


(3.3a)

C(𝜈) =


0 0 𝑐13(𝜈)

0 0 𝑐23(𝜈)

𝑐31 𝑐32(𝜈) 0


(3.3b)

D(𝜈) =


𝑑11(𝜈) 0 0

0 𝑑22(𝜈) 0

0 0 𝑑33(𝜈)


(3.3c)

𝝉 = 𝑓 (𝛿steering, 𝛿throttle, 𝛿deflector,𝝂 ) =


𝜏𝑢

0

𝜏𝑟


(3.3d)

Where 𝜏𝑢 and 𝜏𝑟 are the actuator forces and moments which act to cause the surge

and yawing motions. As the second element in 𝝉 is 0, the vessel is underactuated.

meaning that the number of actuators is lower than the states. An underactuated

system is a system whose states may not all be controlled by its actuators. In the

case of many boats; surge and yawmay be controlled through the thrust and rudder,

while the sway motion is induced by the surge and yaw motions. Sway is simply a

uncontrollable state, which is usually assumed to be stable. The function defining

𝝉 , which is the waterjet model is developed by FFI and is not disclosed.

Note that this model does not contain any disturbances from e.g. ocean currents

or waves. The model parameters for the simulation of the vessel dynamics were
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provided by FFI. The vessel model is fairly accurately describing the real boat’s

behavior from approximately 2 to 6 m/s. Outside these boundaries other models for

resisting forces and damping from water and air resistance on to the hull may be

applied, as the vehicle then enters the planing regime. As it is not within the scope

of this project to investigate the model, we assume that the vehicle will remain in

the displacement phase, and have ensured that the speed is approximately 5 m/s

in the simulations in Section 7.

The 3 DOF vessel model is described as follows:

¤𝜼 = R(𝜓 )𝝂 (3.4)

Where:

𝜼 =


𝑁

𝐸

𝜓


𝝂 =


𝑢

𝑣

𝑟


R(𝜓 ) =


𝑐𝑜𝑠(𝜓 ) −𝑠𝑖𝑛(𝜓 ) 0

𝑠𝑖𝑛(𝜓 ) 𝑐𝑜𝑠(𝜓 ) 0

0 0 1


(3.5)

3.2 System architecture

The system architecture is built up of several block which each has their own

function. The user inputs a nominal speed and a set of waypoints. Such information

could also come from a higher-level planner. A LOS guidance law is employed

to create a nominal course reference which doesn’t take obstacles into account.

This information in addition to the system states which are fed back from the

vessel model are used in the low-level collision avoidance algorithm. This collision

avoidance block is discussed in great detail and is the main topic of investigation in

the thesis. The low-level controllers convert a speed and course reference into surge

and heading references which are fed into a PD and a PID controller for heading

and surge, respectively. This is converted into steering, throttle and deflector angle

commands which are presented to the vessel model of Odin. The whole system

may be seen in Figure 3.3. The system is considered fully observable without any

measurement noise or disturbances, and key values are fed back to several parts of

the system.
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Figure 3.3: System architecture
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3.3 Low-level controllers

The 3 DOF model of Odin with its controllers is originally designed to receive a

heading and surge reference. Collision avoidance algorithms are often working

around course and speed as this is more directly translated into positions.

The relation between commanded speed and surge reference is here presented.

The speed 𝑈 is commanded by either SB-MPC or BC-MPC and in the transition

from a speed reference to a surge reference the following geometric relationship

is employed;𝑈 2
= 𝑢2

+ 𝑣2
, meaning that the speed is a combination of surge and

sway motions for a 3 DOF model. Using this relationship with a commanded speed

to create a reference for surge causes the following expression: 𝑢ref =

√
𝑈 2

ref
− 𝑣2

.

The problem with this relationship is when𝑈ref is commanded to be lower than

the current sway motion, for example zero. 𝑢ref then becomes the square root

of a negative value which would cause imaginary numbers. To ensure that the

reference signal is well defined, 𝑢ref is set to𝑈ref when𝑈ref < 𝑢ref . This way,𝑈 is

pushed towards𝑈ref as desired.

𝑢ref =


√

(𝑈 2

ref
− 𝑣2

) |𝑈ref | > |𝑣 |

𝑈ref 𝑒𝑙𝑠𝑒
(3.6)

The low-level controller is then provided the𝑢ref . Even as the controller in inputted

a surge reference, it has effectively become a speed controller. The speed controller

applied is a feedback PI-controller,

𝛿throttle = −(𝑒𝑢𝐾𝑝,𝑈 +

∫
𝑒𝑢𝐾𝑖,𝑈 ), (3.7)

where 𝑒𝑢 = 𝑢ref − 𝑢.

The course is controlled through the subtraction of sideslip from the course refer-

ence to create a heading reference. The rudder input is defined by the PD control

law,

𝛿rudder = −(𝑒𝜓𝐾𝑝,𝜒 + (𝑟ref − 𝑟 )𝐾𝑑,𝜒 ) (3.8)

where, 𝑒𝜓 = 𝜓ref −𝜓 .
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3.4 Path following and line of sight guidance

Even though in everyday speech the terms trajectory tracking and path following
may seem to be equal terms, they are not. In trajectory tracking, the objective is to

control the vessel to be at a particular position at a particular point in time. The

reference values are often provided as a time-series which combines positions with

time and allows the position to develop so that a route may be established.

Path following on the other hand only describes a route without the time-aspect

associated with the positions. The objective is simply to minimize the distance to

this path. One way of doing this is by commanding the course angle, to regulate

the cross-track error to zero [26]. Should, say, a tailwind or ocean currents in the

direction of travel be accompanying a vessel on its way from A to B it would be

nice to allow the voyage to be conveyed faster. Whether or not one wishes to do

so or to maintain a planned pace may depend on the mission. In this thesis Line Of
Sight (LOS) guidance will be employed to perform path following in the creation

of the nominal controller references.

The LOS scheme is a function that manipulates the course to be able to control the

vessel towards its next waypoint. As stated in Assumption 5, the transition from

one waypoint to the next is beyond the scope of this thesis.

The LOS guidance block uses the vehicle state 𝜼, which contains both the position

and orientation of the vessel, as input. The parameters used in the block are

lookahead distance ∆.

The path-tangential angle, 𝛼𝑘 , is calculated as

𝛼𝑘 = 𝑡𝑎𝑛−1
(

𝑦𝑘+1 − 𝑦𝑘
𝑥𝑘+1 − 𝑥𝑘

), (3.9)

and is a function of the position of the waypoint 𝑘 , and the next waypoint 𝑘 + 1.

The path orientation angle 𝛼𝑘 rotates the system from north - east coordinates in

the NED-frame to a path fixed reference frame. In other words a frame whose 1.

axis points in the direction from one waypoint to the next, and in which easily
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describes key parameters for the current situation.

𝝐(𝑡 ) = R𝑝 (𝛼)
𝑇 · (pn

(t) − pn
k) (3.10a)

𝝐(𝑡 ) =


𝑠(𝑡 )

𝑒(𝑡 )

 (3.10b)

Where 𝑠(𝑡 ) is the along-track error, and 𝑒(𝑡 ) is the cross-track error.

R𝑝 (𝛼)
𝑇

=


𝑐𝑜𝑠(𝛼𝑘 ) −𝑠𝑖𝑛(𝛼𝑘 )

𝑠𝑖𝑛(𝛼𝑘 ) 𝑐𝑜𝑠(𝛼𝑘 )

 (3.11)

For this path following purpose, only the cross-track error is relevant. The course

angle assignment (3.12a) consists of both the path-tangential angle, and the velocity-
path relative angle.

𝜒𝑑 (𝑒) = 𝜒𝑝 + 𝜒𝑟 (𝑒) (3.12a)

𝜒𝑟 (𝑒) = 𝑡𝑎𝑛−1
(

−𝑒
∆

) (3.12b)

𝜒𝑝 = 𝛼𝑘 (3.12c)

The lookahead distance ∆ is a tuning parameter which affects how steep the

approach towards the path should be. Low values causes the convergence towards

the straight-line path to be more drastic than higher values. A large ∆ causes low

𝜒𝑟 which again causes slow convergence towards the path. A rule of thumb for

larger ships is to choose ∆ as 2-3 times the length of the vehicle [25]. Odin is a short

and very maneuverable vessel, but still one that we wish to behave predictably

and calmly in normal operation. The lookahead distance ∆ has therefore been

selected to be 100 meters. In Figure 3.4 the relationship between the parameters

can be observed. The geometrical relationship 𝑒(𝑡 )2
+ ∆

2
= 𝑅2

demonstrates the

relationship between the parameters in the guidance system.
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Figure 3.4: Lookahead Based Steering

In Figure 3.5 one can see an example trajectory of how a vessel may move when

controlled by a LOS regime. As the vessel marked in green converges towards the

center-line of cross-track error 𝑒(𝑡 ) = 0, marked in purple, in the direction of the

vector field of blue arrows, the path tangential angle decreases.

3.5 Sideslip compensation

Experiments have shown that Odin is a type of vessel that sideslips a substantial

amount. This is due to the geometry of the hull and the combination of forces on

the hull as the vessel maneuvers. This causes the difference between heading and

course to become a critical factor in the navigation and control of this vessel. The

heading is the direction of the bow of the boat, while the course is the direction of

the velocity vector, which contains the underactuated sway component. The reason

why the heading and course may differ originates from the sideslip angle.

There are two types of situations that could help us visualize sideslip. The first is

in steady state travel where the vessel is affected by wind, current and waves. This

could cause the vessel to travel in a slightly different direction than the heading.

The difference between course and heading is denoted the sideslip angle. The
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Figure 3.5: LOS-guidance vector field with an example trajectory

second situation may be in a course changing maneuver. As the vessel turns, its

linear momentum must be shifted from its previous heading direction, to the new.

In this process the speed is not solely based on surge anymore, but also sway.

The sideslip angle is denoted 𝛽 and the correlation between the vehicle course 𝜒 ,

heading𝜓 , surge and sway is given by Equation (3.13).

𝜒 = 𝜓 + 𝛽 (3.13a)

¤𝜒 =
¤𝜓 +

¤𝛽 (3.13b)

𝛽 = 𝑎𝑡𝑎𝑛
𝑣

𝑢
(3.13c)

When evaluating the positions of the vehicle and the obstacles, the distinction

between the vehicle’s heading and course becomes critical.

In [7], Eriksen assumes that one can neglect sideslip in the trajectory generation by

assuming𝜓 = 𝜒 . In this thesis the sideslip has been taken into account to be able
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to better model the vessels actual motions. This is done in the BC-MPC case, partly

in the trajectory generation by using the actual course as the seeding direction of

the tree and later subtracting the sideslip to achieve a dynamic heading reference

which in practice is causing the PID-controller to be a course controller. In SB-MPC

courses are evaluated, and the same conversion to heading is performed just before

the signal is inputted the PID-controller.

3.6 Prediction of obstacle states

Both the BC-MPC and the SB-MPC algorithms employ linear prediction of obstacles.

The position of obstacle 𝑖 at time 𝑡 is denoted 𝒑𝑖 (𝑡 ).

𝒑𝑖 (𝑡 ) =


𝑁𝑖 (𝑡 )

𝐸𝑖 (𝑡 )

 (3.14)

Linear estimation of future states of obstacles are used, meaning that the current

course and speed is assumed to be constant. This is commonly used in collision

avoidance applications as it is a simple assumption which is not prone to noisy

yaw-rate and acceleration estimates [15]. The assumption is fair as long as the

prediction horizon is relatively short. The horizon of the predictions have been

kept as long as the trees of the ownship’s maneuvering possibilities. This allows

for obstacle avoidance considerations for the duration of whole horizon.

The course of the obstacle is calculated as:

𝜒𝑖 (𝑡 ) = 𝑎𝑡𝑎𝑛2( ¤𝐸𝑖 (𝑡 ), ¤𝑁𝑖 (𝑡 )) (3.15)

which enables linear prediction of obstacle positions:

𝑁𝑖 (𝑡 ) = 𝑁𝑖 (𝑡0) + ¤𝑁𝑖 · (𝑡 − 𝑡0) (3.16a)

𝐸𝑖 (𝑡 ) = 𝐸𝑖 (𝑡0) + ¤𝐸𝑖 · (𝑡 − 𝑡0) (3.16b)

Where 𝑁𝑖 (𝑡 ) and 𝐸𝑖 (𝑡 ) denotes the estimated position of obstacle 𝑖 at time 𝑡 .

In the simulations performed in this thesis, the measurements are done at the same
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time as the call, and the exact values for both velocities and positions are used to

predict the future positions. This leads to the prediction of obstacle position being

correct for all vessels that are traveling in straight line segments.

In the testing and verification of the BC-MPC algorithm Eriksen has performed

full-scale experiments in the Trondheimsfjord in Norway. Moving obstacles has

been observed by the test vessel Telemetron, which has been equipped with a

radar based tracking and detection system. Odin has state of the art observation

technology based on radar and lidar which one may assume will be able to perform

at least at the same level as that of the Telemetron, resulting in less noise and

well-founded control decisions.
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Chapter 4

Branching-course MPC
(BC-MPC)

In this chapter we will review the branching-course MPC algorithm. The BC-MPC

algorithm was developed by Bjørn Olav Eriksen at NTNU as part of the Autosea
project. It is a sample based MPC algorithm designed to be robust in regard to

noisy obstacle estimates[7]. Eriksen states that the BC-MPC and other algorithms

claiming to be COLREGs-compliant, are simply COLREGs-aware. The algorithm
has been validated through both simulations and physical testing in the Trond-

heimsfjord in October 2017. An implementation limited to the course trajectory

generation of the algorithm where performed as part of the specialization project

[1]. This work has been brought into this thesis in the first parts of Chapter 4. This

chapter will reuse and build on those results also presents further developments

such as speed manipulation and an extensive cost function.

In [7], Eriksen develops "trees" of possible positions which are dependent on time

based on a unified sampling of the possibility-space in both course and speed

acceleration. As these are the two controlled modes in the 3 DOF model of the

underactuated vessel this creates several alternatives which are all feasible for the

vessel to perform. A helmsman of a give way vessel who encounters another vessel

may resolve the situation by either altering his course, his velocity or both. That

37
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the BC-MPC algorithm has the same possibilities will become clear as we now

investigate the algorithm.

4.1 Vessel attitude control

In [7], the BC-MPC algorithmwas implemented on a vessel with analytically known

dynamics. A feedforward controller with feedback correction is therefore employed

to control the vessel. This allows the vessel to follow smooth and differentiable

references with little error.

Odin, however, has quite complex hydrodynamics, and a feedforward controller

for this vessel does not yet exist. Such a control layer is not the focus of atten-

tion in this thesis and has therefore not been investigated further. We therefore

employ feedback controllers. The end value of the course or speed is presented

directly to the low-level controller as soon as the maneuver is to be initiated. The

way to achieve accuracy in simulations is by selecting the tuning parameters of

the tree generation to values which empirically causes the mathematically gener-

ated trajectories match well with those actually produced by the vessel model of

Odin.

Feedforward control with feedback correction is probably a more accurate way of

achieving coinciding trajectories than our feedback control with a step response

in the reference passed to the controllers. However, the trajectory generation

parameters have been tuned through simulations so that the error in the actual

and projected trajectories are minimized.

4.2 Trajectory generation

The main steps of the trajectory generation part of the algorithm is reproduced

from [7] in this section. This work was presented in the specialization project [1]

as well, but the speed maneuver implementation is new for this thesis. Please note

that some of the parameter names might be different from [7] to this thesis.

The variable 𝑁 , which controls how many times the tree is branching was thor-

oughly investigated in the specialization project [1] in the fall of 2019. To have

as many as 3 maneuvers in a sequence allowed for the vessel to plan its position
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Table 4.1: Trajectory generation parameters for the BC-MPC algorithm

Description Symbol Typical values Unit

Number of speed maneuver alternatives 𝑁𝑈 1 − 31

Number of course maneuver alternatives 𝑁𝜒 1 − 31

Number of times a choice is made 𝑁 1 − 3

Length of timestep 𝑇 0.01 − 5 s

Maneuver time 𝑇𝑈 and 𝑇𝜒 4 − 20 s

Ramp time 𝑇ramp 1 s

The length of a single subtrajectory 𝑇end 4 − 20 s

Maximum speed acceleration ¤𝑈max 0 − 1 m/s^2

Maximum course acceleration ¤𝑟max 0 − 𝜋 rad/s^2

in detail, while evaluating accurately its potential metrics for a fair horizon into

the future. Eriksen concludes with 3 to be a nice value as well in [7], and suggests

increasing the duration𝑇𝜒 of each maneuver as a heuristic if one wishes to increase

the overall horizon.

4.2.1 Trajectory generation: Single subtrajectory

The desired velocity trajectories are evenly spaced in the feasible search space

for the desired vessel. In the proposed steps of the BC-MPC regime these values

are achieved from the vessel model. This is because the limits of both course

acceleration and speed acceleration are dependent on the vessel’s current state.

For simplification we have selected reasonable numerical values to be static in this

implementation of the BC-MPC regime and this round of simulation.

The acceleration is limited as

¤𝑈 ∈
[
¤𝑈min, ¤𝑈max

]
(4.1a)

¤𝑟 ∈
[
¤𝑟min, ¤𝑟max

]
(4.1b)
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There is created a uniformly distributed set of possible accelerations.

¤𝑈samples = { ¤𝑈1, ¤𝑈2, ..., ¤𝑈𝑁𝑈
} (4.2a)

¤𝑟samples = { ¤𝑟1, ¤𝑟2, ..., ¤𝑟𝑁𝜒
} (4.2b)

Ameasure for the steepness of a linear increase in acceleration is calculated.

𝑘𝑈 ,𝑖 =

¤𝑈𝑖

𝑇ramp

(4.3a)

𝑘𝑟,𝑖 =

¤𝑟𝑖
𝑇ramp

(4.3b)

This way of assigning values to the linear and angular acceleration is as described

by Eriksen in [7]. Note that slight changes are made to the equations assigning

acceleration rate from [7], although some typographical errors have been corrected

as in the specialization thesis [1] and is stated in (4.4).

¤𝑈𝑑,𝑖 (𝑡 ) =



𝑘𝑈 ,𝑖 · 𝑡 , 0 ⩽ 𝑡 < 𝑇ramp

𝑈𝑑,𝑖 (𝑡 ) ,𝑇ramp ⩽< 𝑇𝑈 −𝑇ramp

𝑈𝑑,𝑖 (𝑡 ) − 𝑘𝑈 ,𝑖 · (𝑡 − (𝑇𝑈 −𝑇ramp)) ,𝑇𝑈 −𝑇ramp ⩽ 𝑡 < 𝑇𝑈

0 ,𝑇𝑈 ⩽ 𝑡 ⩽ 𝑇end

(4.4a)

¤𝑟𝑑,𝑖 (𝑡 ) =



𝑘𝑟,𝑖 · 𝑡 , 0 ⩽ 𝑡 < 𝑇ramp

2¤𝑟𝑖 − 𝑘𝑟,𝑖 · 𝑡 ,𝑇ramp < 𝑡 ⩽ 𝑡 < 2𝑇ramp

0 , 2𝑇ramp ⩽ 𝑡 < 𝑇𝜒 − 2𝑇ramp

−𝑘𝑟,𝑖 (𝑡 − (𝑇𝜒 − 2𝑇ramp)) ,𝑇𝜒 − 2𝑇ramp ⩽ 𝑡 < 𝑇𝜒 −𝑇ramp

−2¤𝑟𝑖 + 𝑘𝑟,𝑖 · (𝑡 − (𝑇𝜒 − 2𝑇ramp)) ,𝑇𝜒 −𝑇ramp ⩽ 𝑡 < 𝑇𝜒

0 ,𝑇𝜒 ⩽ 𝑡 ⩽ 𝑇end

(4.4b)

When considering (4.4a) and (4.4b) analytically these constraints in the tuning of
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the parameters must be satisfied,

𝑇ramp · 2 ⩽𝑇𝑈 ⩽ 𝑇end (4.5a)

𝑇ramp · 4 ⩽𝑇𝜒 ⩽ 𝑇end, (4.5b)

for them to produce reasonable output trajectories.

Numerical integration is performed to create sets of 𝜒 and 𝑈 , i.e. sets containing

course and speed subtrajectories for all the samples that is to be evaluated. It can be

seen that the speed trajectories are continuously differentiable, while the course

trajectories are twice continuously differentiable. The initial course rate is selected

to be 𝑟𝑑,0 = 0, to ensure continuous course profiles. The first maneuver trajectories

are initiated with 𝑟𝑑,0 = 𝑟0/2 in the same way that the trajectories are initiated with

current course and the previous value of the end of the speed trajectory maneuver.

This proved to provide the best correspondence between actual trajectories and

the predicted ones.

𝑈𝑑,𝑖 (𝑡 ) = 𝑈𝑑,0 +

∫𝑡

𝑡0

¤𝑈𝑑,𝑖 (𝛾 )𝑑𝛾, 𝑖 ∈ [1, 𝑁𝑈 ] (4.6a)

𝑟𝑑,𝑖 (𝑡 ) = 𝑟𝑑,0 +

∫𝑡

𝑡0

¤𝑟𝑑,𝑖 (𝛾 )𝑑𝛾, 𝑖 ∈ [1, 𝑁𝜒 ] (4.6b)

𝜒𝑑,𝑖 (𝑡 ) = 𝜒𝑑,0 +

∫𝑡

𝑡0

𝑟𝑑,𝑖 (𝛾 )𝑑𝛾, 𝑖 ∈ [1, 𝑁𝜒 ] (4.6c)
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Figure 4.1: Speed - single subtrajectory

As described in (4.4a), the acceleration is altered linearly for 𝑇ramp seconds until it

reaches its desired level. It is kept at this value until 𝑇end - 𝑇ramp, then it begins to

decent back towards zero linearly. The speed has then reached a new level in a

smooth way. The resulting profiles may be seen in Figure 4.1
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Figure 4.2: Course - single subtrajectory

Equation (4.4b) increases the course acceleration linearly from zero to its maximum

value for the current sample before immediately descending to zero again, both

actions each take 𝑇ramp time. When the acceleration is kept constant, the course

velocity is constant which evenly changes the course. Towards the end of the

trajectory the opposite maneuver is performed by the course acceleration causing

the velocity to return to zero and the course to stay constant. All three resulting

profiles may be investigated in Figure 4.2

The two sets of desired velocity trajectories are combined tomake a union set:

U𝑑 = {𝑈𝑑,1(𝑡 ),𝑈𝑑,2(𝑡 ), ...,𝑈𝑑,𝑁𝑈
(𝑡 )} × {𝜒𝑑,1(𝑡 ), 𝜒𝑑,2(𝑡 ), ..., 𝜒𝑑,𝑁𝜒

(𝑡 )} (4.7)

Here, Eriksen checks feasibility of the combinations using the vessel model. This is

due to the fact that it may be a poor combination to turn as fast as possible while

also accelerating as fast as possible. Using the vessel model to perform such a test

has been beyond the scope of the BC-MPC implementation in this thesis.
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Another difference in the implementations of the BC-MPC between Eriksen and

this implementation is the feedback corrected pose trajectories.

𝑈̃ = 𝑈 −𝑈𝑑 (4.8a)

𝜒 = 𝜒 − 𝜒𝑑 (4.8b)

Where in [7] Eriksen correlates:

¤̃
𝑈 =

1

𝑇𝑈̃
𝑈̃ (4.9a)

¤̃𝜒 =

1

𝑇𝜒
𝜒 (4.9b)

In this thesis, the following simplification is made in line with Assumption 6:

𝑈 = 𝑈𝑑 (4.10a)

𝜒 = 𝜒𝑑 (4.10b)

4.2.2 Trajectory generation: Full trajectory

In this implementation of BC-MPC the speed is initialized by the last speed in the

previous manoeuvre. This causes the speed reference to always be continuous.

which is nice because it allows for evenly sized steps and the ability to return

to the nominal value without several small steps which can be affected by other

effects. The course trajectory however, is initialized from the course of the vessel

itself. The current course rate is also used to create the first maneuver in the

tree of maneuvers. The reason we found this best is because the tree will be as

closely linked to the actual trajectories that would be achieved through selecting

one of the candidates. This choice is possible because the vessel doesn’t move

until the calculation is ready in the simulated environment. However, in an actual

implementation the vehicle movement during the computation time would need

to be considered.
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As a single subtrajectory is added onto the previous one to generate a tree, the last

value in the previous subtrajectory is added to the new subtrajectory to generate a

smooth multi-maneuver trajectory.

A tree of candidate solutions that is initialized from the last position, course and

speed in the previous maneuver, would allow for the computation and evaluation

of the tree to be performed on the vessel’s way towards the trees root node. This

would causes the system to be under the assumption that the controlled vessel is

able to follow all provided references.

As the set of course and speed maneuvers U𝑑 are produced, all the different

combinations of these are different scenarios that our vessel could perform. Eriksen

uses the vessel model and control allocation theory to check all combinations for

feasibility. The vessel may for example, not be able to perform the maximum

acceleration while at the same time performing the most extreme sequence of

course maneuvers. Since we, in this thesis, do not perform such controls we have

been forced to choose values for course acceleration and speed acceleration that are

restricted enough so that all combinations that are available are fairly reasonable

to assume that one would be able to follow. The cost of this is that the vessel is

slightly restricted. When the vessel is not performing a course maneuver, it could

in reality be able to accelerate even harder in speed, and vice versa. Unfortunately,

this causes alternative actions that the boat could perform to never be in the set

that is evaluated for selection. Eriksen’s way of implementation is likely to achieve

slightly better performance, and this is worth looking into in future work with the

algorithm.
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Figure 4.3: Speed possibilities in the set of speed maneuvers 𝑁𝑈 = 5
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Figure 4.4: Course possibilities in the set of course maneuvers 𝑁𝜒 = 5

In Figure 4.4 and 4.3 the speed and course possibilities in the set of maneuvers is

plotted against time. The parameter 𝑇end = 10 is set to 10 s, while 𝑇𝜒 and 𝑇𝑈 is set

to 8 s. Both 𝑁𝑈 and 𝑁𝜒 is 5. ¤𝑈𝑚𝑎𝑥 = 1/25𝑚/𝑠2
and ¤𝑟𝑚𝑎𝑥 = 𝑝𝑖/25 𝑟𝑎𝑑/𝑠2

, while the



4.2. TRAJECTORY GENERATION 47

minimum limits are equal in magnitude with opposite signs.

4.2.3 Nominal alternative

In cases where there are no obstacles in theway, the vessel should follow its nominal

path. Obstacles may have thrown the vessel of this course, and a LOS guidance law

may be used to transition the vessel back to its intended path. The law as described

in (3.12) is used to forward project the vessels position if it were to have this course

for the duration of the horizon. However, no method for describing the transition

from the vessels current pose to a pose where it is tracking this desired course

𝜒𝑑 has been implemented. This alternative that is added to the set of available

trajectories is therefore not rooted in the vessels current pose, which may result in

large steps in the course reference 𝜒ref from one iteration to another. This way of

generating the trajectory and associated positions assumes an instantaneous turn,

which is unrealistic. The difference in position and course from what is evaluated

by the cost function and what is probable to occur as actual states will therefore

be by far the largest of all the alternatives. If the LOS alternative is selected it may

therefore be partly based on a weak basis. As the LOS course alternative is acting

as the nominal alternative, this course trajectory is only available for combination

with the nominal speed𝑈𝑑 .

4.2.4 Estimated scenario trajectory

Having achieved a set of velocities and courses that may be applied as references

and applying Assumption 2, one may calculate velocities and positions in the NED

frame. For each speed reference sequence, all the course reference sequences are

applied.

𝒑̄(𝑡 ) =


𝑁 (𝑡 )

𝐸(𝑡 )

 (4.11a)

𝑁 (𝑡 ) =

∫𝑡

𝑡0

𝑈 (𝛾 )𝑐𝑜𝑠(𝜒(𝛾 ))𝑑𝛾 (4.11b)

𝐸(𝑡 ) =

∫𝑡

𝑡0

𝑈 (𝑡 )𝑠𝑖𝑛(𝜒(𝛾 ))𝑑𝛾 (4.11c)
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The BC-MPC algorithm assumes that the controllers are able to follow the pro-

vided references, and for all combinations of course and speed maneuvers 𝜼𝑘 (𝑡 )

is calculated. 𝜼𝑘 (𝑡 ) is the estimated states of our vessel given a combination of

maneuvers 𝑘 . Since all predicted states belong to a scenario 𝑘 the index has been

omitted to ease the readability in the following sections.

In conventional 3 DOF modeling 𝜂 is defined as [𝑁, 𝐸,𝜓 ]
𝑇
. However, Eriksen [7]

uses 𝜒 as the last element in𝜼 due to the simplification of neglecting sideslip, hence

assuming that the sideslip 𝛽 = 0. A predicted scenario trajectory for the vessel

then may be written as

𝜼(𝑡 ) =


𝑁 (𝑡 )

𝐸(𝑡 )

𝜒(𝑡 )


, (4.12)

Unlike [7], we do not assume that 𝜒 = 𝜓 and 𝛽 = 0, and used the sideslip to

calculate the actual course. We have kept the notation of Eriksen to allow for

effective notation.

The predicted vessel pose trajectories are finally combined in the set
¯H .

¯H = {𝜂(𝑡,𝑈 (𝑡 ), 𝜒(𝑡 ))|𝑈 (𝑡 ), 𝜒(𝑡 ) ∈ ¯U} (4.13)
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Figure 4.5: Subtrajectories combined to a search space of trajectories with 𝑁 = 3,

constant speed and 𝑁𝜒 = 5

In Figure 4.5 one can see the subtrajectories being combined to form a set of

feasible combinations of course acceleration, which positions are mapped out in.

The parameter governing how many maneuvers should exist in a trajectory is here

set to three, 𝑁 = 3. 𝑁𝜒 , on the other hand is set to 5, which allows 5 different

course rate profiles to travel by.

In Figure 4.6 the position trajectories of the setH can be seen. It includes all course

trajectories tested for each speed trajectory. With 𝑁 = 3, 𝑁𝜒 = 3 and 𝑁𝑈 = 3

this results in 27 course trajectories and 27 speed trajectories. The values of the

parameters are selected for display purposes. When each of these are combined

together this causes 𝑁𝑁
𝜒 · 𝑁𝑁

𝑈
= 729 alternatives or scenarios that can be applied.

As can be seen, are many of them fairly close to each other, but the differences

between them and the way the room of opportunity is exploited is vastly increased

compared to the case of fixed speed. These trajectories should cover the alternatives

a real helmsman would evaluate and therefore avoid subsampling the continuous

reality in the creation of alternative maneuver sequences. In the creation of this
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Figure 4.6: Subtrajectories combined to a search space of trajectories with 𝑁 = 3,

𝑁𝑈 = 3 and 𝑁𝜒 = 3

figure, the max course acceleration applied is ¤𝑟max = 𝜋/25 rad/s2
and the max

speed acceleration is ¤𝑈max = 1/25 m/s2
.

4.3 Cost function

In this section Eriksen’s cost functions from [7] is presented, with minor mod-

ifications. These modifications apply to the time varying vector 𝒓 𝒊 between an

obstacle 𝑖 , and the ownship. The align function has also been expanded with a

speed deviance penalty. The tuning of all parameters have been based on the

suggested values, but has been an area of exploration in Section 7. Some heuristics

regarding time-varying weights have also been applied.

A cost function is a way of assigning a measure of optimality to an option. Opti-

mization problems are typically formulated as a minimization problem where in

this case, the desired trajectory is the one with the lowest cost function value. Such

a value may be formed by assigning penalties, increase of value, for something
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negative, and rewards, reduction of value, for something that is desired.

The trajectory that is minimizing the cost function is the combination of course

and speed trajectories, 𝜒∗ and𝑈 ∗
which are passed to the vessel. Eriksen employs

several functions for trajectory selection which take into account the heading and

position of moving obstacles.

The optimization problem is defined by Eriksen in [7] is defined as

𝐺(𝜼𝑘 (𝑡 ), 𝒖𝒅,𝒌 (𝑡 ),𝒑𝒅 (𝑡 )) = 𝑤𝑎𝑙 ·𝑎𝑙𝑖𝑔𝑛(𝜼(𝑡 ),𝒑𝒅 (𝑡 )) +𝑤𝑎𝑣 ·𝑎𝑣𝑜𝑖𝑑(𝜼(𝑡 )) +𝑤𝑡 · 𝑡𝑟𝑎𝑛(𝒖𝒅 (𝑡 )),

(4.14)

However, in this thesis, the cost function has been limited to

𝐺(𝜼𝑘 (𝑡 ), 𝒖𝒅,𝒌 (𝑡 ),𝒑𝒅 (𝑡 )) = 𝑤𝑎𝑙 · 𝑎𝑙𝑖𝑔𝑛(𝜼(𝑡 ),𝒑𝒅 (𝑡 )) +𝑤𝑎𝑣 · 𝑎𝑣𝑜𝑖𝑑(𝜼(𝑡 )), (4.15)

although some discussion regarding the transition component of the algorithm is

provided. The two remaining main components of the cost function is the align
and the avoid functions which are presented in Section 4.3.1 and 4.3.2, respec-

tively.

The optimal desired trajectory 𝒖𝒅
∗
(𝑡 ) is consisting of the pair of optimal course and

speed maneuvers. 𝑘 is used to denote each scenario, as in each possible combination

of a course and a speed maneuver sequence. Each scenario 𝑘 , is evaluated by the

cost function𝐺 , and the optimal input is found by selecting the one with the lowest

cost function value.

𝒖𝒅
∗
(𝑡 ) = arg min

(𝜼𝑘 (𝑡 ),𝒖𝒅,𝒌 (𝑡 ))∈(
¯H,U𝑑 )

𝐺(𝜼𝑘 (𝑡 ), 𝒖𝒅,𝒌 (𝑡 ),𝒑𝒅 (𝑡 )) (4.16a)

𝒖𝒅
∗
(𝑡 ) =


𝜒∗(𝑡 )

𝑈 ∗
(𝑡 )

 , (4.16b)
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4.3.1 Align function

The align function has as its purpose to reward those trajectories in the tree

maneuver sequences that correlate well with the nominal trajectory. It does so

by penalizing the deviation from the desired forward projected LOS trajectory

𝒑𝒅 (𝑡 ).

𝒑𝒅 (𝑡 ) =


𝑁𝑑 (𝑡 )

𝐸𝑑 (𝑡 )

 (4.17)

The desired course is calculated through the rate of change of the desired posi-

tion.

𝜒𝑑 = 𝑎𝑡𝑎𝑛2( ¤𝐸𝑑 , ¤𝑁𝑑 ). (4.18)

The trajectories are evaluated by the align function in (4.19).

𝑎𝑙𝑖𝑔𝑛(𝜼,𝒑𝒅 (𝑡 )) =

∫𝑡0+𝑇
full

𝑡=𝑡0

(𝑤𝑝

������

𝑁 (𝛾 )

𝐸(𝛾 )

 − 𝒑𝒅 (𝛾 )

������
2

+𝑤𝜒 |Υ(𝜒(𝛾 )−𝜒𝑑 (𝛾 ))|+𝑤𝑈 |𝑈 (𝛾 )−𝑈𝑑 |𝑑𝛾

(4.19)

The align function compares the two trajectories in 3 ways over the duration of

𝑇full. 𝑇full represents the entire trajectory prediction time-horizon as is sums the

duration of each subtrajectory 𝑁 times.

𝑇full =

𝑁∑
𝑗=1

𝑇end (4.20)

In the align function, first, the Euclidean distance is integrated over the horizon

and scaled by𝑤𝑝 . Second, the sum of the differences between the predicted and

desired course is calculated and scaled with 𝑤𝜒 . Υ is a function which maps an

angle to the interval of [−𝜋, 𝜋 ). Last, the speed of a scenario is compared to that of

the desired value𝑈𝑑 , this error is scaled by𝑤𝑈 .

4.3.2 Avoid function

The avoid function is the part of the BC-MPC’s cost function which causes our

vessel to avoid and keep distance to other obstacles. A vector, r𝑖 (𝑡 ), from the
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ownship to obstacle 𝑖 is employed.

r𝑖 (𝜼(𝑡 );𝒑𝑖 (𝑡 )) =


𝑁 (𝑡 )

𝐸(𝑡 )

 − 𝒑𝑖 (𝑡 ) (4.21a)

r𝑖 (𝜼(𝑡 );𝒑𝑖 (𝑡 )) =


𝑟𝑁,𝑖

𝑟𝐸,𝑖

 , (4.21b)

Please note that this vector is opposite of what is stated by Eriksen in [7], but the

intent is the same, which is to create a vector from the obstacle to our ownship. The

vector r𝑖 (𝑡 ) is used to calculate both the Euclidean distance between the obstacle

and the ownship 𝑑𝑖 , and the relative bearing from the obstacle to the ownship in

relation to the obstacles’ heading, 𝛽𝑖 .

𝑑𝑖 (𝜼(𝑡 ),𝒑𝑖 (𝑡 )) = |r𝑖 (𝑑𝑖 (𝜼(𝑡 );𝒑𝑖 (𝑡 )))| (4.22a)

𝛽𝑖 (𝜼(𝑡 ), p𝑖 (𝑡 )) = Υ(atan2(rE,i(𝜼(t)), rN,i(𝜼(t))) − 𝜒𝑖 (t)) (4.22b)

xn

yn

𝜓!

Ownship

(𝑁 , 𝐸)

(𝑁!, E!)

North

East

𝛽!
𝑑!

Figure 4.7: Distance 𝑑𝑖 and relative bearing 𝛽𝑖 between vessels. Figure inspired

from [7].

The avoid function penalizes trajectories associated with risk of collision. It is built
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up by integrating the weighted penalty over time for the whole horizon.

𝑎𝑣𝑜𝑖𝑑(𝜼(𝑡 )) =

𝑀∑
𝑖=1

∫𝑡0+𝑇
full

𝑡=𝑡0

𝑤𝑖 (𝛾 )𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖 (𝜼(𝛾 ))𝑑𝛾, (4.23)

where M is the number of obstacles.

While Eriksen [7] keeps the weights constant throughout the horizon, we have

chosen to linearly decrease the weight of penalty to help the avoid function priori-

tize the dangers that appear closer and sooner to be weighted more, than distant

more uncertain dangers.

𝒘𝒊(𝑡 ) = 1.5 − 𝑡

ℎ𝑜𝑟𝑖𝑧𝑜𝑛
(4.24)

The weight𝑤𝑖 (𝑡 ) applies for all obstacles, 𝑖 . A variation where larger more inma-

neuverable vessels or vessels with larger velocities where weighted heavier could

also be relevant.

4.3.3 Penalty function

The penalty function penalizes the position of a time-instant in a trajectory by

evaluating either only the distance 𝑑𝑖 in the circular penalty case, or evaluating

both the distance 𝑑𝑖 and 𝛽𝑖 together in the elliptical penalty case. The circular

region is well suited for static obstacles, while the elliptical is better suited for

moving obstacles.

Circular:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 (𝜼) =



1 , 𝑑𝑖 < 𝐷0

1 +
𝛾−1

𝐷1−𝐷0

(𝑑𝑖 − 𝐷0) , 𝐷0 ⩽ 𝑑𝑖 < 𝐷1

𝛾1 − 𝛾−1

𝐷2−𝐷1

(𝑑𝑖 − 𝐷1) , 𝐷1 ⩽ 𝑑𝑖 < 𝐷2

0 , 𝑒𝑙𝑠𝑒

(4.25)

𝛾1 ∈ (0, 1) is a tuning parameter governing the penalty at distance 𝐷1. Selecting

𝛾1 = 0.1 causes our vessel to be slightly influenced by the avoid function at distances

larger than 𝐷1, and to react much more resolute when 𝑑𝑖 (𝜼(𝑡 ),𝒑𝑖 (𝑡 )) is smaller than
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𝐷1 and the penalty approaches 1. The circular penalty region can be seen in Figure

4.8.
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Figure 4.8: Circular penalty region

The elliptical COLREGs regions are created through the conversion to the circular

parameters 𝐷𝑘 , 𝑘 ∈ [0, 1, 2].

𝐷𝑘 (𝛽𝑖 ) =



𝑏𝑘 , 𝛽𝑖 < −𝜋
2

𝑎𝑘𝑏𝑘√
(𝑏𝑘𝑐𝑜𝑠(𝛽𝑖 )

2
+(𝑎𝑘𝑠𝑖𝑛(𝛽𝑖 )

2

−𝜋
2
⩽ 𝛽𝑖 < 0

𝑎𝑘𝑐𝑘√
(𝑐𝑘𝑐𝑜𝑠(𝛽𝑖 )

2
+(𝑎𝑘𝑠𝑖𝑛(𝛽𝑖 )

2

0 ⩽ 𝛽𝑖 <
𝜋
2

𝑏𝑘𝑐𝑘√
(𝑐𝑘𝑐𝑜𝑠(𝛽𝑖 )

2
+(𝑏𝑘𝑠𝑖𝑛(𝛽𝑖 )

2

𝜋
2
⩽ 𝛽𝑖

(4.26)

𝒂 =

[
𝑎0, 𝑎1, 𝑎2

]
(4.27a)

𝒃 =

[
𝑏0, 𝑏1, 𝑏2

]
(4.27b)

𝒄 = 𝒃 + 𝑑𝐶𝑂𝐿𝑅𝐸𝐺𝑠 (4.27c)
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The values in vector 𝒂, 𝒃 and 𝒄 determine the parameters of the elliptic penalty

region surrounding the obstacles. These may be tuned to change our vessels actions

in regard to the positions around obstacles. The elliptical penalty region can be

seen in Figure 4.9.
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Figure 4.9: Elliptical penalty region. Notice the axis in regards to the obstacle

position (0,0)

4.3.4 Inner penalty

The inner penalty is a subfunction of the penalty function which has its purpose in

penalizing positions inside 𝐷0 or the area described by 𝑎0, 𝑏0 and 𝑐0 in the elliptical

penalty function is applied. The reason one would want to do this is to further

penalize positions which are inside the collision region. It is fairly logical that

being in the center of the collision region is a worse situation than being at its edge.

However, the penalty is determined by a situational parameter 𝑦𝑏 which is not

trivial to calculate. Our experience is that the controlled vessel steers well clear of

the danger region even without this function, and it seems somewhat superfluous

as the algorithm performs adequately and achieves reasonable results without it.

It has therefore not been implemented.
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4.3.5 Transition function

The Transition part of the cost function has the function of awarding the scenarios

that are closest related to the previous selected scenario. This causes the overall

actions of the vessel to be more consistent and less subject to noisy obstacle esti-

mates. However, if a drastically different scenario (or combination of maneuvers) is

evaluated by the other parts of the cost function to be better, then it will be selected.

This is the result careful tuning of weight parameters affecting the magnitude of

the different parts’ contribution to the overall cost.

In this thesis, the states of the obstacles are fully available for the algorithm to

use, while in more complex simulations and real applications of such an algorithm

these states would have to be estimated. The obstacles are traveling linearly along

a predefined path, and the forward prediction of the obstacles as described in

equation (3.16) are also linear. This is an assumption that is fair for short periods

of time in many cases, but in this case, it is absolutely accurate. There are therefore

no “surprises” for Odin that would cause it to drastically change its plan, and we

have observed that the BC-MPC algorithm functions fine without this part of the

algorithm in place. In practice, some sensor noise would have to be expected, but

given the state-of-the-art object detection and tracking systems currently on Odin

the problem is assumed to be manageable.
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Chapter 5

Sample Based MPC
(SB-MPC)

In this chapter the SB-MPC algorithm is reviewed. It was originally presented

in [15]. Inger Berge Hagen wrote her master’s thesis [14] at NTNU in 2018 and

explored in greater detail the SB-MPC and also contributed in publishing [16].

Preliminary full-scale testing was also attempted, but not completed. In 2019 the

algorithmwas part of Dutch initiative for sea trials of collision avoidance algorithms

[27], and the approach was shown to be capable of finding and performing safe

maneuvers in challenging situations.

5.1 Introduction to SB-MPC

A similarity between the way the SB-MPC and BC-MPC approaches are built

up is the way trajectories are generated based on the input from a higher-level

planner. The BC-MPC can be said to generate a tree of alternative paths, where

the chosen path is the one which best both avoids obstacles and correlates to the

nominal planned trajectory. If there are no obstacles, the higher-level alternative

is selected. The SB-MPC algorithm’s trees are directed in the direction of 𝜒𝑑 from

the higher-level planner or a nominal guidance law. In the case of this thesis, the

LOS guidance law is used. The tree consists of straight line segments, which each

59
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has a constant offset to the nominal course 𝜒𝑑 . The limits for width of offsets has

been set to [−90
◦, 90

◦
]. This allows for the collision avoidance layer to simply

add an offset, while at the same time continuing towards its long-term goal. The

SB-MPC evaluates several speed coefficients in relation to each course offset as

well. The output from the SB-MPC algorithm is 𝜒ca and 𝑃ca, a course offset and a

speed coefficient, respectively. These are employed to create the speed and course

references as can be seen in (5.1).

𝑈ref = 𝑈𝑑 · 𝑃ca (5.1a)

𝜒ref = 𝜒𝑑 + 𝜒ca (5.1b)

If no obstacles occur, then the SB-MPC outputs a zero course offset and a speed

coefficient equal to 1, which causes the vessel to simply follow the LOS-regime with

𝑈ref = 𝑈𝑑 and 𝜒ref = 𝜒𝑑 . However, if there are obstacles in the way, the SB-MPC

provides a combination of a course offset 𝜒ca and a speed factor 𝑃ca to manipulate

the new references. The references provided to the lower level controllers are then

a new course reference and a new speed reference.

5.2 Trajectory generation

The way the course reference is generated is different in the two algorithms. The

BC-MPC approach creates a smooth three with multiple turns for each trajectory

candidate, while the SB-MPC simply draws straight line segments from the vessels

current position. One of the differences between the two - are in the direction of

the tree. SB-MPC is directing the center of the tree in the 𝜒𝑑 -direction, meaning,

the direction recommended by the higher-level planner which does not, in our

case, take other vessels or obstacles into consideration in its planning. BC-MPC

accepts some error in position and course from what is being evaluated by the

cost function to do this. BC-MPC is directing its tree in the direction of its current

course. All of the trajectories in the BC-MPC tree are built on the basis that they

shall be as close to the actual trajectory that would be generated if the current

scenario is chosen, and therefore starts with the vessel pose.

The SB-MPC algorithm has several similarities to the BC-MPC. Some of the param-
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eters are thereby similar and are named equally in this thesis. For the parameters

that only exist in one of the methods the naming conventions applied in the orig-

inating papers are kept and applied. Parameters for trajectory generation along

with suggested value ranges are presented in Table 5.1.

Table 5.1: Trajectory generation parameters for the SB-MPC algorithm

Description Symbol Typical values Unit

Number of speed maneuvers 𝑁𝑈 1-10

Number of course maneuvers 𝑁𝜒 1-31

Course offset limits [-180,180]
◦

Number of times a choice is made 𝑁 1

Length of timestep 𝑇 0.01-5 s

Maneuver time 𝑇𝑈 and 𝑇𝜒 0 s

Horizon 𝑇full 30-300 s

The length of a single subtrajectory 𝑇end 30-300 s

The SB-MPC algorithm is spanning its tree from the vessels current position and

in the direction of 𝜒𝑑 with 13 straight-line course trajectories for each speed

alternative.

• Course offset (𝜒ca)[
◦
]: [-90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90].

• Speed factor (𝑃ca): [1.0, 0.5, 0.0]

The course offset vector is containing each of the course offset alternatives which

are referred to as 𝜒ca. The speed factor vector is similarly built up with the elements

denoted as 𝑃ca. In the candidate trajectory, the desired course 𝜒𝑑 is kept constant

for the whole horizon, while in reality 𝜒𝑑 would change as the vessel approaches

the straight-line path, allowing smooth convergence. The trajectories are denoted

𝑘 to correspond with a combination of speed coefficient and course offset in the

same way as in the BC-MPC algorithm.
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Figure 5.1: SB-MPC trajectory tree with predicted trajectories for nominal speed

in each course alternative
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Figure 5.2: SB-MPC Position trajectory tree with all three speed alternatives for

each course alternative

The blue lines in Figure 5.1 and 5.2 correspond to the alternatives from the nominal

speed, 𝑃ca = 1. The green lines indicate the trajectory for the zero course offset
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trajectory. The black lines correspond to the trajectories of the vessel at half

nominal speed 𝑃ca = 0.5. The last speed alternative 𝑃ca = 0.0 does not show

in the figure, but is represented by a constant position for the whole horizon.

The predictions are all made with the assumption of instantaneous turn, and

instantaneous speed change.

5.3 Cost function

In this section the SB-MPC cost function from [14] is presented, with minor modi-

fications. The obstacle positions in combination with the generated vessel scenario

trajectories lays the foundation for the calculation and notation of the parameters

in Table 5.2.

Table 5.2: Notation for the SB-MPC algorithm

Description Symbol

Predicted velocity of the USV at a future time instant 𝑡 , in scenario 𝑘 . ®𝑣𝑘
0
(𝑡 )

Predicted velocity of obstacle 𝑖 at a future time instant 𝑡 , in scenario 𝑘 . ®𝑣𝑘
0,i

(𝑡 )

Predicted distance to obstacle 𝑖 at time instant 𝑡 , in scenario 𝑘 . 𝑑𝑘
0,i

(𝑡 )

The distance within which the COLREGs is said to apply for the obstacles. 𝑑𝑐𝑙𝑜𝑠𝑒

The indexing used are

𝑘 ∈{1, 2, ..., 𝑁𝑠 } (5.2a)

𝑖 ∈{1, 2, ..., 𝑁𝑜 }, (5.2b)

where the index 𝑘 denotes the scenario, while 𝑖 denotes the obstacle.

Each scenario is evaluated by a cost function consisting of several components.

These components are summed together in the overall Hazard function. It consists

of an obstacle-specific part, two parts which penalizes deviation from the previous

elected control behavior and two parts which penalize deviation from the desired

control behavior. The obstacle specific part consists of the product of risk and cost,

and the COLREGs binary indicator 𝜇𝑘𝑖 (𝑡 ) which is scaled by the weight 𝜅𝑖 .
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These components are summed together in the Hazard function:

H𝑘
(𝑡0) = max

𝑖
max

t∈D(t0)

(
𝐶𝑘
𝑖 (𝑡 )𝑅𝑘𝑖 (𝑡 ) + 𝜅𝑖𝜇

𝑘
𝑖 (𝑡 )

)
+ ∆𝜒 (𝜒ca, 𝜒ca,last) + ∆𝑃 (𝑃ca, 𝑃ca,last) + 𝐾𝑃 (1 − 𝑃 ) + 𝐾𝜒 𝜒

2

ca

(5.3)

Here, the function R denotes the risk and is described in Section 5.3.1. The function

C defines the cost of collision and is described in Section 5.3.2. The cost of deviance

of course and speed, and the COLREGs compliance operator is described in Sections

5.3.3 and 5.3.4. 𝐷(𝑡0) = {𝑡0, 𝑡0 +𝑇𝑠 , ..., 𝑡0 +𝑇 } where 𝑇𝑠 is the discretization interval

of 0.1 seconds and 𝑇 is the prediction horizon of the MPC. 𝑇 = 45 seconds is

applied.

The optimal control control input is the one associated with scenario 𝑘∗(𝑡0) which

is the one that minimizes the cost function.

𝑘∗(𝑡0) = arg min

𝑘

H𝑘
(𝑡0) (5.4)

5.3.1 Risk of collision

In many applications such as insurance calculations, failure mode analysis in

engineering applications and project management disciplines, the risk of an event

is estimated through the multiplication of probability of that event occurring and

magnitude of the resulting impact. In [14], the way risk is evaluated is by letting

Danger be the product of Risk of collision and Cost. The concept is the same and

creates a simple way of weighing both the likelihood and the severity of a danger.

The function for risk of collision is

𝑅𝑘𝑖 (𝑡 ) =


1

|𝑡−𝑡0 |𝑝 (
𝑑

safe

𝑑𝑘
0,𝑖

(𝑡 )

)
𝑞 , if d

k

0,i
(t) < dsafe

0 , otherwise

(5.5)

where the risk is functioning as a likelihood-operator. It is predicted as a function

of time and predicted distance from an obstacle. The prediction of risk must be at

a time 𝑡 > 𝑡0. The way the risk is calculated can be tuned through the parameters

𝑑safe, 𝑝 and 𝑞. 𝑑safe establishes the boundary for where one at the time of the call

evaluates the risk of collision with obstacle 𝑖 . If the distance at the time of the

function call is smaller than 𝑑safe

𝑖 , the parameter works as a scaling parameter
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where large values cause larger risk for the same distance. The parameter 𝑝 is

the exponent weighing the distance in time until risk occurs, while 𝑞 ≥ 1 weighs

the distance at a time in relation to 𝑑safe

𝑖 exponentially. Hagen states that these

parameters are the key parameters for Rule 16 compliance [14], which is the duty

of the give-way vessel to keep well clear of all other vessels and do so in due

time.

5.3.2 Cost of collision

The cost of collision is calculated in [14] as the difference in the two involved

vessels’ velocity squared, multiplied with a scalar gain 𝐾coll. This gain could be

dependent on the size and type of the obstacle or the position in regard to the

velocities, but is in this implementation a constant value. The form of the function

reminds of that of kinetic energy 𝐸 = 1/2𝑚 ∗ 𝑣2
which is not a bad measure for the

severity of a collision.

𝐶𝑘
𝑖 (𝑡 ) = 𝐾coll(𝑡 )

���®𝑣𝑘
0
(𝑡 ) − ®𝑣𝑘

i
(𝑡 )

���2 (5.6)

If the ownship where to find itself very close to an obstacle, with quite similar

course and speed, the calculated cost of collision would be very small. However,

in reality, all collisions are bad, and the collisions that result in a large spill of

kinetic energy are of course correspondingly worse. Penalizing all collisions with

a base cost, in addition to the afore mentioned velocity dependent part of the cost

might help avoid situations collisions where both vessels are traveling in the same

direction at similar speeds not far from each other.

𝐶𝑘
𝑖 (𝑡 ) = 𝐾coll

���®𝑣𝑘
0
(𝑡 ) − ®𝑣𝑘

i
(𝑡 )

���2 + 𝐾coll𝐶base (5.7)

Equation (5.7) has been applied with success in the simulations in this thesis.

Another way of influencing the calculation of the cost of collision could be to use

the rate of change in the length of the LOS vector 𝐿. If this is decreasing rapidly,

then the two vessels are approaching each other. In the case of two vessels driving

away from each other they have a large difference in their velocities, causing a

large cost of collision. Unfortunately, this penalty occurs even though it is desirable

for the vessels to increase their distance, if they wish to avoid collision.
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5.3.3 Cost of course and speed deviance

The subfunction 𝐾𝑃 (1 − 𝑃ca) causes a penalty to all speed coefficients that are

not equal to 1. The function is built to take elements 𝑃ca ∈ [0, 1]. The deviation

from nominal course is penalized by 𝐾𝜒 𝜒
2

ca
, causing course offsets to be penalized

quadratically.

The COLREGs rule 8 state that it is desirable to maneuver in a predictable way,

and one therefore wishes to minimize the change of course and speed over time.

At the same time, one does not wish to do so at the cost of safety. A penalty for

changing the course and speed from one iteration to the next is implemented. It is

important that this does not exceed the magnitude of the danger part of the cost

function, as that should always be prioritized [16].

The cost of course change is calculated as

∆𝜒 =


𝐾∆𝜒,port(𝜒ca − 𝜒ca−last)

2 , if turn to port

𝐾∆𝜒,starboard(𝜒ca − 𝜒ca−last)
2 , if turn to starboard

(5.8)

The reason that there are two different values for the gains for the penalty to

starboard and to port is due to the wish of changing our course to starboard in the

event of a head-on situation (rule 14) or crossing situation (rule 15). Therefore, the

relation; 𝐾∆𝜒,port < 𝐾∆𝜒,starboard should apply.

In the case of change of speed factor, the function is as follows:

∆𝑃 = 𝐾∆P |𝑃ca − 𝑃ca−last | (5.9)

The previous commanded propulsion 𝑃ca−last is compared to the candidate 𝑃ca of

scenario 𝑘 and deviations are penalized linearly causing an effect of consistency in

speed changes.

5.3.4 COLREGs compliance

To achieve control inputs which not only minimize danger, but also complies with

COLREGs, a binary operator 𝜇𝑘𝑖 (𝑡 ) is implemented. It evaluates if our ownship,

with the selection of the control input associated with scenario 𝑘 is breaking any

rules in its relation to obstacle 𝑖 at time 𝑡 . This operator is triggered to be true,
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𝜇𝑘𝑖 (𝑡 ) = 1 when certain evaluation criteria is fulfilled. The LOS unit vector from

our vessel to obstacle 𝑖 is denoted 𝐿𝑘𝑖 (𝑡 ). This is much like, but in the opposite

direction of the 𝑟𝑖 (𝑡 )-vector from the BC-MPC scheme. In Table 5.3 the angles used

for classification is presented.

Table 5.3: Classification parameters for the SB-MPC algorithm

Parameter Value Description

𝜙ot 68.5◦ Overtaking

𝜙ho 22.5◦ Head-on

𝜙ah 15.0◦ Ahead

𝜙cr 68.5◦ Crossing

𝜇𝑘𝑖 (𝑡 ) = RULE14 or RULE15 (5.10a)

RULE14 = CLOSE & STARBOARD & HEAD − ON (5.10b)

RULE15 = CLOSE & STARBOARD & CROSSING & NOT OVERTAKEN (5.10c)

In other words, 𝜇𝑘𝑖 (𝑡 ) is true, when either Rule 14 or 15 is broken. The terms for

their individual triggering can be seen in Eq. (5.10) b and c.

CLOSE An obstacle 𝑖 is CLOSE when it is closer than the threshold distance 𝑑𝑐𝑙𝑜𝑠𝑒 .

𝑑𝑘
0,i ≤ 𝑑𝑐𝑙𝑜𝑠𝑒 (5.11a)

OVERTAKEN A vessel is classified as OVERTAKEN if it is CLOSE, the obstacle

speed is larger than our ownship speed, and the angular difference in the velocities

are less than 𝜙ot. The requirements are:

𝑑𝑘
0,i ≤ 𝑑𝑐𝑙𝑜𝑠𝑒 (5.12a)

|®𝑣𝑖 (𝑡 )| > |®𝑣𝑘
0
(𝑡 )| (5.12b)

®𝑣𝑘
0
(𝑡 ) · ®𝑣𝑖 (𝑡 ) > 𝑐𝑜𝑠(𝜙ot)

���®𝑣𝑘
0
(𝑡 )

��� |®𝑣𝑖 (𝑡 )| (5.12c)
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STARBOARD Obstacle 𝑖 is said to be STARBOARD of our ownship if the bearing

angle of ®𝐿𝑘𝑖 (𝑡 ) is larger than the heading angle of our ownship.

HEAD-ON An obstacle can be said to be head-on if it is CLOSE, and

|®𝑣𝑖 (𝑡 )| > 0.05 (5.13a)

®𝑣𝑖 (𝑡 ) · ®𝑣𝑘0 (𝑡 ) < −𝑐𝑜𝑠(𝜙ho)|®𝑣𝑖 (𝑡 )| |®𝑣𝑘0 (𝑡 )| (5.13b)

®𝑣𝑘
0
(𝑡 ) · ®𝐿𝑘𝑖 (𝑡 ) > 𝑐𝑜𝑠(𝜙ah)|®𝑣𝑘

0
(𝑡 )| (5.13c)

Where the first equation translates to that the obstacle is moving. The second that

their courses are towards each other with an error less than 𝜙ho = 22.5◦. And the

last equation that the speed of the ownship is in the direction of the obstacle within

a 𝜙ah = 15
◦
margin.

CROSSING For the vessels to be defined as CROSSING, they need to fulfill

®𝑣𝑖 (𝑡 ) · ®𝑣𝑘0 (𝑡 ) < 𝑐𝑜𝑠(𝜙cr)|®𝑣𝑖 (𝑡 )| |®𝑣𝑘0 (𝑡 )|, (5.14)

which means that their velocities have a larger angular difference than 𝜙cr =

68.5◦.

5.3.5 COLREGs transitional cost

The T 𝑘
𝑖 (𝑡 )-operator is a suggested addition to the cost function which is proposed

in [16]. TheH𝑘
(𝑡0) is as before only now with the addition of T 𝑘

𝑖 (𝑡 )∗𝑖 , where the
first is a binary operator ∈ {0, 1} and the latter is the tuning parameter acting

as weighting in regards to the overall function. The purpose of this part of the

function is to prevent our vessel to pass an obstacle in another way than originally

intended by the current control behavior.

By comparison this part of the cost function has a lot of the same properties

and functions as the Transition part of the BC-MPC cost function. For the same

reasons that the Transition part of the BC-MPC cost function was left out, the

COLREGs transitional cost T 𝑘
𝑖 (𝑡 ), is left out of the SB-MPC regime. This allows for

the algorithms to compete on equal terms and as they are not exposed to faulty

sensor information and only encounter straight-line traveling, constant velocity

obstacles they should both be able to perform well. Yet, the COLREGs transitional
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cost operator is still presented here:

T 𝑘
𝑖 (𝑡 ) = O𝑘

𝑖 (𝑡 ) ∨ Q𝑘
𝑖 (𝑡 ) ∨ X𝑘

𝑖 (𝑡 ), (5.15)

where the following binary operators are applied:

O𝑘
𝑖 (𝑡 ) = 1 - The USV is overtaking vessel 𝑖 in scenario 𝑘 at time 𝑡 .

Q𝑘
𝑖 (𝑡 ) = 1 - The USV is being overtaken by vessel 𝑖 in scenario 𝑘 at time 𝑡 .

X𝑘
𝑖 (𝑡 ) = 1 - The USV is crossing paths with vessel 𝑖 in scenario 𝑘 at time 𝑡 .

Overtaking: The overtaking indicator is triggered in by the following logical

relation:

O𝑘
𝑖 (𝑡 ) =


O𝑖 (𝑡0) ∧ S𝑘

𝑖 (𝑡 ) , 𝑖 𝑓 ¬S𝑖 (𝑡0)

O𝑖 (𝑡0) ∧ ¬S𝑘
𝑖 (𝑡 ) , 𝑖 𝑓 S𝑖 (𝑡0)

, (5.16)

where, S𝑖 (𝑡0) indicates that the obstacle 𝑖 is currently on the starboard side of

Odin, S𝑘
𝑖 (𝑡 ) indicates that the obstacle 𝑖 at time 𝑡 in scenario 𝑘 is starboard of our

vessel.

The first case in the overtaking criterion at time 𝑡 is that of the obstacle is not

starboard at the time of call, but starboard and overtaking at the time 𝑡 later on.

The latter one is triggered if the vessel is overtaking at a point in time if it is both

overtaking and starboard at the time of call, 𝑡0, but not not starboard at the time

𝑡 .

When O𝑖 (𝑡0) = 1,Odin is currently overtaking vessel 𝑖 if the obstacle is considered

close ahead and is traveling at a lower speed. As long as the obstacle’s speed is not

close to zero, this condition also applies.

®𝑣(𝑡0) · ®𝑣𝑖 (𝑡0) > 𝑐𝑜𝑠(𝜙ot) |®𝑣(𝑡0)| |®𝑣𝑖 (𝑡0)| (5.17)

Overtaken: The overtaking operator Q𝑘
𝑖 (𝑡 ) is simply evaluating the situation

from the perspective of the obstacle. If the obstacle satisfying the criterion for

Overtaking, then our vessel is classified as a vessel which is being overtaken and

Q𝑘
𝑖 (𝑡 ) = 1.
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Crossing:
X𝑘
𝑖 (𝑡 ) = 𝑋𝑘

𝑖 (𝑡0) ∧ S𝑖 (𝑡0) ∧ S𝑘
𝑖 (𝑡 ) ∧ turn to port (5.18)

The USV is in a crossing situation if X𝑘
𝑖 (𝑡 ) = 1 with obstacle 𝑖 if the obstacle is

ahead and:

®𝑣(𝑡0) · ®𝑣𝑖 (𝑡0) < 𝑐𝑜𝑠(𝜙cr) |®𝑣(𝑡0)| |®𝑣𝑖 (𝑡0)| ∧ ¬O𝑘
𝑖 (𝑡 ) ∧ ¬Q𝑘

𝑖 (𝑡 ) (5.19)

The angle between the velocities are of a certain difference 𝜙cr while the vessels

are not overtaking nor crossing.

One can see that the classifying criteria in the COLREGs compliance section differ

slightly from that of the COLREGs transitional cost. The differences may originate

from different the articles’ - [14] and [16], implementation and investigation of

the cost function. But the COLREGs transitional operator is investigating the

development of a situation from 𝑡0 to 𝑡 whereas the first simply evaluates a moment

in time 𝑡 .

Goal position

Land

Χ!"

Figure 5.3: Collision avoidance situation with limitation in the surrounding waters
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In the SB-MPC regime a grounding function g must be used to take into consid-

eration the nature of the surrounding waters and to avoid selecting a 𝜒ca that

could cause grounding. Such a situation can be seen in Figure 5.3. Simply using

a higher-level planner that takes this into consideration and leaving it out of the

low-level planner will be deficient.
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Chapter 6

Implementation

In this chapter we will show how we have connected the BC-MPC and SB-MPC

algorithms to the Odin model and its controllers. The tuning of each algorithm is

also presented. The BC-MPC and SB-MPC algorithms have both been implemented

to take in a desired direction and desired speed. They have both been given the task

of solving the motion planning problem for the Odin model by then outputting

course and speed references. The algorithms have been faced with the same

situations in regards to obstacles and positions and the results are presented in

Chapter 7. Through the simulations they are given equal opportunities to perform

and their resulting references have been passed to the vessel’s controllers. The

performance of the overall system are then subject of evaluation.

Matlab 2019a and Simulink have been the main tools for implementation. The

MSS-toolbox for guidance, navigation and control has also been used with some of

its functions [28]. A 3 degree of freedom model of the vessel, its controllers and

hydrodynamics was received from FFI at project initiation. The Simulink model is

running with a variable step solver. This allows the solver to chose how large steps

it should take in time dependent on the rate of change of values in the systems. If

the dynamic response of the system is significant, the step-size is reduced. If not,

the steps are increased to reduce computational load. However - the Matlab-fcn

containing the low-level collision avoidance algorithm is set to be called at a fixed

step-iteration of 0.1 seconds. This means that the reference value for both the

73
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speed and course reference will be updated with a frequency of 10 Hz, which is a

reasonable rate for the vehicle dynamics of Odin.

6.1 Low-level controllers

The first step of an overall process to implement a collision avoidance algorithm

will be to make sure that the vessel control is performing consistently well, and is

able to track simple references. This can be done by tuning the low-level course

and speed controllers to perform benchmark maneuvers such as turning, stopping

and acceleration behaviors to achieve an accurate and responsive vessel.

In [1], the practicalities behind the sideslip compensation, the speed and course

controller tuning is presented in greater detail. However, the relationship between

speed and surge reference is developed as a part of this thesis and is presented

in Chapter 3. Here, key elements of the controllers are revisited. The controller

tuning is presented in Table 6.1.

Table 6.1: Low-level controller tuning

Description Value

𝐾𝑝,𝜒 200

𝐾𝑑,𝜒 600

𝐾𝑝,𝑈 8

𝐾𝑖,𝑈 4

The sideslip is subtracted from the selected and optimal choice of course trajectory,

thus creating a heading reference for the vessel model. The rudder input is defined

by the PD control law,

𝛿rudder = −(𝑒𝜓𝐾𝑝,𝜒 + (𝑟ref − 𝑟 )𝐾𝑑,𝜒 ) (6.1)

where,

• 𝑟ref = 0

• 𝑒𝜓 =𝜓ref -𝜓
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The reason 𝑟𝑟𝑒 𝑓 is kept at zero instead of its actual value is to avoid large spikes in

the event of steps in the reference signal.

We recall that the speed controller applied is a feedback PI-controller,

𝛿throttle = −(𝑒𝑢𝐾𝑝,𝑈 +

∫
𝑒𝑢𝐾𝑖,𝑈 ), (6.2)

where 𝑒𝑢 = 𝑢ref − 𝑢.

6.2 General tuning considerations

In general, one may view the overall tuning process of the two algorithms to be

fairly similar. In the tuning of the algorithm parameters the suggested values from

the papers of Hagen and Eriksen has been used as a starting point. In this section

some general guidelines for tuning of them both are given, before the specific tuning

of BC-MPC and SB-MPC is presented in Section 6.3 and 6.4, respectively.

The tuning distances found in both algorithms affect the distances in which the

position is penalized. In SB-MPC it is the 𝑑safe and 𝑑close while in the BC-MPC the

vectors a, b and c are the key parameters. The parameter 𝑑close in SB-MPC is fairly

equivalent with 𝐷0 in BC-MPC which is composed by the bearing angle 𝛽 and the

distances 𝑎0, 𝑏0 and 𝑐0. These parameters are the limit for when the penalty really

starts to increase dramatically due to the risk of collision. In general, the lower the

distances, the closer and more dangerously the vessels are allowed to be each other,

thus allowing path following to be fulfilled in a larger degree. If the distances are

large, the distances to travel around an obstacle becomes large. In this case it is

necessary that the time horizon of the algorithms is seen in relation to the speed to

allow for the algorithm to see beyond the obstacle’s penalty region and find a path

which brings the ownship closer to its goal in a safe way. If the tuning distances

are large, and the horizon too short, it is possible that our ownship would take

a very large detour lasting for several iterations of the function call, as it lacks

the ability to see the long term downside of turning and moving parallel to the

obstacle. Such behavior is not only suboptimal, but also unpredictable for the other

vessels to observe, which again could lead to dangerous situations.

The time between each call of the low-level collision avoidance algorithm, 𝑇call,
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called𝑇BC−MPC in the specialization project [1], is also interesting. For SB-MPC the

time, 𝑇call,SB−MPC = 5𝑠 , while in the BC-MPC algorithm the time 𝑇call,BC−MPC = 10𝑠 .

This is due to the BC-MPC being more computationally heavy, and the need to

perform a maneuver before the next is applied. To investigate them both it would

be fair to have a difference in how often that may be called in these simulations as

well. The investigation of run-time has not been the focus for this thesis.

The collision avoidance algorithms has now been tuned for transport missions along

a straight-line nominal trajectory. For missions with a higher degree of need to

follow a certain path, the lookahead distance of the LOS-Guidance must be lowered,

and the cost of speed reduction should be lowered, to allow for the algorithm to

«wait out» occurring situations, instead of driving off with an alternative course at

nominal speed.

6.3 Tuning of the BC-MPC algorithm

The simulation parameters used on the BC-MPC algorithm in this thesis is mainly

built up of trajectory generation and cost function tuning parameters. These are

presented in Table 6.2.

6.3.1 Tree generation

The goal is to build a tree of trajectories which the vessel is able to perform, and

which to a large degree covers the span of possible actions to avoid to heavy

subsampling. The tuning of the tree generation in the BC-MPC algorithm was well

investigated in the specialization thesis from the fall of 2019 [1]. The parameters

regarding number of course alternatives, number of times the tree is branching

and the acceleration limit values are in line with those findings. The time horizon,

however, has increased from 30 to 45 seconds. The main focus of tuning in this

thesis is placed in the speed branching and cost function tuning. The key parameters

from Odin used in the implementation can be found in Table 6.2.

A difference between this implementation and the one of Eriksen [7] is the way

the trajectories are initialized. When initializing the tree of trajectory candidates,

the first subtrajectory in all of them must be initialized with the actual course

as obtained from equation (3.13a). This decides the direction the tree is put in

initially. See Figure 6.1. The other subtrajectories begin with the values the previous
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Table 6.2: Selected tuning parameters for the BC-MPC algorithm

Description Symbol Typical values Unit

Number of speed maneuver alternatives 𝑁𝑈 5

Number of course maneuver alternatives 𝑁𝜒 5

Number of times a choice is made 𝑁 3

Length of timestep 𝑇 0.1 s

Maneuver time 𝑇𝑈 and 𝑇𝜒 8 s

Ramp time 𝑇ramp 1 s

The length of a single subtrajectory 𝑇end 15 s

Maximum course acceleration ¤𝑟max

𝜋
25

rad/s^2

Maximum speed acceleration ¤𝑈max

1

25
m/s^2

Position weight 𝑤𝑝 1

Course/angular error scaling weight 𝑤𝜒 100

Speed error scaling weight 𝑤𝑈 50

Align weight 𝑤al 1

Avoid weight 𝑤av 6000

LOS Lookahead distance ∆ 100 m

Major axis parameters 𝒂 [50, 150, 250] m

Minor axis parameters 𝒃 [12, 20, 50] m

Starboard axis parameters 𝒄 [27, 35, 65] m

COLREGs distance 𝑑𝐶𝑂𝐿𝑅𝐸𝐺𝑠 15 m

Obstacle cost gradient parameter 𝛾1 0.1
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subtrajectory ends. Eriksen initializes the trajectories with the last value from

the previous trajectory causing no steps in the reference. When initializing with

the previous value the vessel may propagate errors in position and course, if the

control layer is unable to follow the references.

The way the first course subtrajectory develops is caused by numerical integration

of the course rate from equation (3.13b). The first subtrajectory of the course rate is

initialized with half of the vessels current value, while the remaining subtrajectories

are initialized by the last value in the previous vector. The effect the initial course

rate has on the course tree is to bend the first part of it as can be seen in Figure

6.2.
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Figure 6.1: Course, 𝜒 = 30
◦
at time of the

BC-MPC call
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Figure 6.2: Course rate, 𝑟 = 𝜋/20 rad/s at

time of the BC-MPC call

As the tree of the BC-MPC algorithm is seeded in the direction of the vessel, it is

possible for an incorrect tuning to cause circular behavior in the position of the

vessel. If the tree is too radical in its steering it can cause a small area where the

ownship may «spend time» being stuck in a local minima.

In the BC-MPC regime Eriksen also gives another reason to avoid sectioning the

search space too fine which is to be able to have visible maneuvers. A counterar-

gument to this, is that the difference between to alternatives in a tree may be small

without this causing a problem, however a course or velocity change should be of

such magnitude that it is easily observable.
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6.3.2 Tuning of the cost function

In Section 4.3.3, the tuning vectors 𝒂, 𝒃 and 𝒄 is presented. They span the penalty

region around each obstacle and affects our vessel’s maneuvers. By simple logic

and reasoning it is easy to agree that it is more dangerous to be directly in front of

an obstacle than behind it. Therefore, the parameter 𝒂, which spans forward, is

larger than 𝒃 which spans backwards. The parameter 𝒄 extends the penalty region

to the obstacles starboard side. The elliptical penalty region makes the BC-MPC

COLREGs-aware, not COLREGs-compliant, through this scheme without applying

direct logic statements. The elliptical penalty region is penalizing being on the

starboard side of an obstacle causing our ship to make a starboard turn in a head

on situation. The head-on situation is a fairly common situation to occur at sea

and the resulting action is therefore important.

With the thought of the circular region being best suited for static obstacles and

the elliptical for the moving obstacles, it would be fair to suggest that making the

parameters of a, b and c dependent on the speed of the obstacle is a good idea.

However, this is not pursued further in this thesis. In [7] the tuning parameters of

the BC-MPC indicates that the desired minimum distances to other vessels is in

the range of tens to several hundred meters. In this thesis the margins have been

reduced to be able to evaluate performance in cluttered situations.

The weighting parameters which inflict how the vessel prioritises between collision

avoidance, trajectory alignment, speed deviation and course deviation has been

selected by trial and error. The weight𝑤𝑝 is set to 1, for simplicity as the selection

of the other values are dependent on the relation between the weights.

6.4 Tuning of the SB-MPC algorithm

The simulation parameters used on the SB-MPC algorithm in this thesis is presented

in Table 6.3.

6.4.1 Tree generation

In the SB-MPC algorithm the tree is more easily defined, and the suggestions of 13

straight-line course trajectories for each speed alternative has been employed. A

finer grid was also investigated, but the performance was not especially rewarding
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Table 6.3: Selected tuning parameters for the SB-MPC algorithm

Description Symbol Value Unit

Number of speed maneuver alternatives 𝑁𝑈 3

Number of course maneuver alternatives 𝑁𝜒 13

Course offset limits [-90,90]
◦

Number of times the tree is branching 𝑁 1

Length of timestep 𝑇 0.1 s

The length of a single subtrajectory 𝑇end 45 s

Maneuver time 𝑇𝑈 and 𝑇𝜒 0 s

Horizon 𝑇full 45 s

Characterization parameter for close situations 𝑑close 200 m

Characterization parameter for immediate situations 𝑑safe 60 m

Weight of collision penalty 𝐾coll 0.5

Weight of base cost of collision C_base 10

Risk parameter for time 𝑝 0.5

Risk parameter for distance 𝑞 2.0

COLREGs weight 𝜅 3.0

Speed deviance weight 𝐾𝑃 2.5

Course deviance weight 𝐾𝜒 3.0

Weight of speed change 𝐾∆𝑃 1.0

Weight of course change to starboard 𝐾∆𝜒,starboard 0.9

Weight of course change to port 𝐾∆𝜒,port 1.2

LOS Lookahead distance ∆ 100 m

Ahead 𝜙𝑎ℎ 15
◦

Overtaking 𝜙𝑜𝑡 68.5
◦

Head-on 𝜙ℎ𝑜 22.5
◦

Crossing 𝜙𝑐𝑟 68.5
◦
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due to the cost of increased computational load. Such a grid may also cause less

observable maneuvers. Hagen concludes in [14], after exploring a finer grid, that

the original grid is well suited for the algorithm.

The 13 course offsets are evenly distributed in the interval [−90
◦, 90

◦
]. As these

are simply offsets from the nominal course 𝜒𝑑 it is in practice also impossible

for the vessel to travel away from its destination. However, in very complex and

dangerous situations temporarily moving away from the target, might be in the

best interest of the vessel to ensure collision avoidance. Widening the course offset

limitations or initializing the tree in another way might allow for this to happen,

however this is not explored in this thesis.

6.4.2 Tuning of the cost function

The safety distance, 𝑑safe, is increased from Hagen’s suggested 40 m to 60 m. The

rest of the tuning has attempted to reduce the cost of being inside this zone. This has

caused the vessel to act earlier, and cause more predictable behavior. In general it

seems that the minimum distance between our ownship and the obstacles correlate

very strongly with the 𝑑safe of the SB-MPC, while the BC-MPC seem to allow the

distance to be significantly lower when passing behind another vessel. This seems

to give the BC-MPC some possibilities to pursue the path following in a higher

degree while at the same time, keeping the risk of collision under control.

In the SB-MPC algorithm, 𝑝 and 𝑞 from equation (5.5) decides the impact of the

time until the risk occurs and the distance of obstacles on the risk evaluation,

respectively. The time weight𝑤𝑖 (𝑡 ), which we have introduced in (4.24), plays a

similar role in the BC-MPC algorithm. With 𝑝 < 1, the effect of time is damped by

its exponent. This may have a good purpose as one would like the risk to fall with

time, but not too fast. However, if one lets 𝑝 decline towards zero the risk over time

stays constant given a fixed distance to the obstacle. Selecting 𝑝 =
1

2
seems like an

appropriate value based on both the plots of the risk and experimental simulation

with the vessel model. The tuning values of the SB-MPC algorithm are presented

in Table 6.3 and 6.4.

In Figure 6.3 one can observe the risk as a function of time, with a fixed distance

of 30 m. Note that the risk with the original tuning proposed by Hagen the risk is

drastically larger than the limitations from the y-axis. As the time into the future
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Table 6.4: Risk tuning in the SB-MPC algorithm

Description Hagen’s value New value

𝑞 4 1.5

𝑝 1 0.5

𝑡 is small enough in relation to 𝑡0 the risk will approach infinity. However, such

huge values initially is not desirable as the rest of the horizon then is undermined.

Figure 6.3: Evaluation of 𝑝 and 𝑞 as a function of time with constant distance 𝑑𝑘
0,𝑖 (𝑡 )

In Figure 6.4b the two tuning suggestions’ risk is plotted against time while being

subject to dynamic distance to the obstacle. This is a typical situation for the

vessel to be in, and one can see that the new tuning, clearly indicates a high risk

in relation to the shortest distance, while also prioritizing events that are in near

future first.
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out cutoff for visualization purposes

Figure 6.4: Risk evaluation with dynamic distance over time

The parameter 𝐾𝜒 has been increased from Hagen’s 1.3 to 3, thus forcing the

ownship to limit the use of course offsets. This allowed for faster convergence back

to nominal course without any course offsets, while at the same time allowing for

course to be the main tool for collision avoidance. 𝐾∆𝑃 and 𝐾𝑃 , the speed tuning

parameters must be selected carefully, and in relation to each other. Large values

of 𝐾∆𝑃 causes the speed to be less subject to change, both from the nominal speed

and back to it. Large values of 𝐾𝑃 causes the cost of changing the speed away from

the nominal speed𝑈𝑑 to increase. Too low values has the effect of the vessel simply

using speed to resolve the situations at hand. This happens, unfortunately, at the

cost of progress towards its end destination. Simulations indicate that 𝐾𝑃 should

be larger than 𝐾𝜒 .

The COLREGs transitional cost presented in subsection 5.3.5 is not a part of the

simulation study. The grounding function 𝑔 is not a part of the implementation

either as it is not a topic of investigation in the thesis.

It becomes evident that the tuning is very complex and intertwined process. Chang-

ing one parameter may cause the rest of them to need adjustment as well. The

tuning proposed in this thesis is therefore a suggestion that seems to work well

for a wide variety of situations which we will now investigate further in Chapter

7.
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Chapter 7

Simulation study

With both collision avoidance algorithms in place, the overall systemwith guidance

law, vessel model and dynamics will now be tested, and the performance of each

algorithm evaluated. The differences and challenges of both algorithms will be

highlighted and discussed in relation to their functions.

7.1 Selection of simulation scenarios

We will use 8 different scenarios to evaluate the performance of the SB-MPC and

the BC-MPC algorithms. The first five scenarios are single-obstacle scenarios

designed to demonstrate the algorithms performance with respect to COLREGs. As

Eriksen states in [7], the collision algorithms that claim to be COLREGs-compliant,
are simply COLREGs-aware, meaning that their performance is not complex and

customized enough for the behavior to be truly compliant.

The three complex multi-vessel scenarios’ purpose is to create a sort of chaos where

our ownship must actively steer and maneuver to resolve the situations in a safe

way. The situations are realistic, yet challenging. There are several simultaneously

active COLREGs rules where the vessel must prioritize its potential maneuvers.

Situations where the obstacles fail to comply to their obligations as imposed by the

rules occur. While the scenarios should be realistic, the obstacles are still assumed

to travel linearly at constant speed. If they had been allowed to act unpredictably,

85
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this would have made the scenarios even more challenging. An overview of the

initial poses of the vessels in each scenario is presented in Table 7.1 and 7.2.

Table 7.1: Initial values for single obstacle scenarios

𝜂(𝑡0) 𝜈(𝑡0) 𝜂Obs1(𝑡0) 𝜈Obs1

Scenario 1: Head on
0 m

0 m

0
◦



5 m/s

0 m/s

0 m/s



400 m

0 m

180
◦



5 m/s

0 m/s

0
◦/s


Scenario 2: Crossing from port

0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s




300 m

−300 m

90
◦



5 m/s

0 m/s

0
◦/s


Scenario 3: Crossing from starboard
0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s



300 m

300 m

270
◦



5 m/s

0 m/s

0
◦/s


Scenario 4: Overtaking

0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s



120 m

0 m

0
◦



2 m/s

0 m/s

0
◦/s


Scenario 5: Being overtaken

0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s



−200 m

0 m

0
◦



10 m/s

0 m/s

0
◦/s


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Table 7.2: Initial values of complex multi-vessel scenarios

𝜂(𝑡0) 𝜈(𝑡0) 𝜂Obs1(𝑡0) 𝜈Obs1 𝜂Obs2(𝑡0) 𝜈Obs2 𝜂Obs3(𝑡0) 𝜈Obs3

Scenario 6
0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s



300 m

350 m

270
◦



5 m/s

0 m/s

0
◦/s




200 m

−250 m

90
◦



5 m/s

0 m/s

0
◦/s


n/a n/a

Scenario 7
0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s



300 m

0 m

180
◦



5 m/s

0 m/s

0
◦/s



500 m

200 m

180
◦



5 m/s

0 m/s

0
◦/s



600 m

−20 m

180
◦



5 m/s

0 m/s

0
◦/s


Scenario 8

0 m

0 m

0
◦



5 m/s

0 m/s

0
◦/s



400 m

0 m

180
◦



5 m/s

0 m/s

0
◦/s




350 m

−200 m

135
◦



5 m/s

0 m/s

0
◦/s



400 m

200 m

225
◦



3 m/s

0 m/s

0
◦/s



For each of the 8 different scenarios presented in this chapter, the figures used to

display key parameters are the same. The first figure, like Figure 7.1, contains a

map over the situation area in which our ownship always starts in 𝒑 = [0, 0]
𝑇
. Its

trajectory is drawn as a black line, while the obstacle trajectory is marked as a red

line. The vehicle and obstacle starting position is drawn as a black and red circle,

respectively. The other vessels i.e. the obstacles, are numerated as 1 - red, 2 - green

and 3 - blue. As it is difficult to interpret where the vessels are in relation to each

other at different times, the vehicle position and obstacle position at three different

time instants is marked with numbers. The yellow vehicle figure and red obstacle

figure are not drawn to scale.
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7.2 Single obstacle scenarios

7.2.1 Scenario 1: Head on

In Scenario 1, both vessels share the duty of giving way and both shall do so

by changing their course to starboard, as dictated by COLREGs rule 14. Our

vessel, with the SB-MPC algorithm does so nicely with a constant course offset

of approximately 45 degrees. One the vessels are well clear of each other the

convergence back towards the nominal path is initiated and performed immediately.

Theminimum distance between the vessels is 65 m. The speed is kept at the nominal

values throughout the situation.
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Figure 7.1: Scenario 1: Head-on with SB-MPC

The distance plot in Figure 7.2a, displays the distances between each obstacle

and our ownship against time. The threshold values 𝑑safe and 𝑑close is also plot-

ted.

Each of the algorithms employs a cost function to evaluate the severeness of the
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current situation. The value of the selected control input also evaluated. In SB-

MPC, in Figure 7.2b, a plot of the cost of the selected alternative against time, one

may evaluate the severeness of the situation the ownship finds itself in. A value of

zero indicates no penalty, meaning no hazard and no selection of control inputs

other than the nominal values. Typical low values in the min hazard plot indicates

that there is something dangerous in the surrounding area, but the algorithm

is able to avoid it by simply selecting the control scenario 𝑘 which minimizes

the cost function. This results in speed and course references fairly close to the

nominal ones, thus achieving low or no hazard. Values that breach a threshold of

approximately 5 indicate that the vessel sees no alternatives that does not bring

with it any hazard, and the size of the value indicates the severeness of the situation.

When it comes to the BC-MPC, which can be seen in Figure 7.4b, the same analogy

applies, but the numerical values are generally higher due to the different cost

function.

In Figure 7.2c and 7.2d, the course and speed are plotted. In pink, the nominal

choices 𝜒𝑑 and 𝑈𝑑 are presented. The blue line shows the 𝜒ref and 𝑈ref which is

the values presented to the low-level controllers. In green, the actual values of

𝜒 and 𝑈 are presented. In SB-MPC the speed and course are assumed changed

instantaneously, while in BC-MPC the selected speed and course which are used

in the evaluation of the alternatives are denoted 𝜒ref,smooth and 𝑈ref,smooth. The

times of initiation of a new maneuver sequence and initial value 𝜒ref,smooth(𝑡call)

and𝑈ref,smooth(𝑡call) are marked with an red asterix. The general tendency of these

red overlapping segments reveal the degree of coherency between one iteration’s

plan and the next as well.

In the following sections, only the figures which play an explicitly important role

or reveal an interesting feature or effect will be commented, while all of them are

included to create an holistic view of the situations.
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Figure 7.2: Scenario 1: Head-on with SB-MPC situational metrics

In the case with the head-on situation with the vessel controlled by the BC-MPC

algorithm, the results are very similar to that of the SB-MPC. This is a good thing, as

they both handle the situation in a desirable way. One can however notice that the

BC-MPC initially acts slightly less, but ends up with a course of approximately 75

degrees, which is recognizably larger than that of the SB-MPC. Course trajectories

from the tree of courses are selected for the first 4 calls of the BC-MPC, before, as

the risk of collision disappears, the nominal alternative is selected for the rest of

the simulation. This can be seen in Figure 7.4d. The minimum distance is between

the vessels with the BC-MPC algorithm is 82 m. The distance is plotted against

time in Figure 7.4a. The figure also contains the minor axis limits of the elliptical

penalty region.
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Figure 7.3: Scenario 1: Head-on with BC-MPC
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Figure 7.4: Scenario 1: Head-on with BC-MPC situational metrics

7.2.2 Scenario 2: Crossing from port

In Scenario 2, Rule 15 regarding crossing situations applies. As we are the vessel

that has the other vessel entering from our port side, we have the right of way as the

stand-on vessel. However, the give-way vessel does not adhere to her obligations.

With the situation turning out in this manner, our ownship must do its best to

reduce risk and maneuver clear of the obstacle. The SB-MPC algorithm does so by

keeping the fastest speed it can choose from within the SB-MPC regime and steers

off 45 degrees to starboard to prolong time to closest point of approach (TCPA) and

maximize the distance at the closest point of approach (CPA) through its actions.

Here it would be nice to be able to speed up above the nominal speed𝑈𝑑 to avoid

the non-responsive obstacle. This could have been an option if values of 𝑃ca > 1

where available for selection. The minimum distance is 66 m.
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Figure 7.5: Scenario 2: Crossing from port with SB-MPC
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(b) The cost function value of the selected sce-

nario over time

0 20 40 60 80 100 120

Time [s]

-100

-50

0

50

100

C
ou

rs
e 

[d
eg

re
es

]

Course reference

ref

d

(c) Course

0 20 40 60 80 100 120

Time [s]

0

1

2

3

4

5

6

S
pe

ed
 r

ef

Speed reference

Uref

U
Ud

(d) Speed

Figure 7.6: Scenario 2: Crossing from port with SB-MPC situational metrics

In Scenario 1 we observed that the elliptical penalty region helps the vessel perform

maneuvers that are in line with the COLREGs. However, this region may cause

our ship to perform maneuvers away from our nominal course and speed when an

obstacle is crossing from port, as in scenario 2. Rule 15 clearly determines that we

have the right of way in this situation. Rule 17 states that if one is in a situation

where the other vessel is giving way, then you shall, as the stand-on vessel strive

to maintain your course and speed for the purpose of predictability. However, in

this situation, the give-way vessel does not give way, and it becomes up to us to

avoid the obstacle in a safe way. The BC-MPC algorithm chooses to slightly lower

the speed and steer clear of the obstacle by selecting a trajectory aft of it as can

be seen in Figure 7.7. The minimum distance is 62 m. As the BC-MPC algorithm

allows for increased speed, passing in front of the obstacle with increased speed

may well also have been a viable action.
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One may discuss whether or not the actions of the two algorithms are too early, or

at an adequate point in time. This is a matter of tuning, and as both algorithms

avoid the collision in a neat and predictable way, it may be evaluated to be a fair

course of action.
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Figure 7.7: Scenario 2: Crossing from port with BC-MPC
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Figure 7.8: Scenario 2: Crossing from port with BC-MPC situational metrics

7.2.3 Scenario 3: Crossing from starboard

The situation in scenario 3 is not very unlike scenario 2, but although the initial

positions are symmetrical identical , the actions of the algorithm are not the

same. This is due to differences in penalty regions, COLREGs Rule 15 regarding

crossing and tuning parameters causing different values for the different potential

maneuvers.

When our ownship equipped with the SB-MPC algorithm is faced with an obstacle

which is crossing from starboard, it is the give-way vessel. The way it resolves

the situation can be seen in Figure 7.9. It is to first make a slight port turn, and

then later a large correction to starboard to pass aft of the obstacle as COLREGs

demands. The reason why the vessel acts like this is because the initial selected

scenario which steers to port, avoids entering the zone of COLREGs evaluation.
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Once the vessel turns out to be in that zone a couple of iterations later, it will be

penalized for trying to pass in front of the obstacle. The resulting maneuver is to

make a rather large course adjustment and pass behind the obstacle. The minimum

distance is 60 m.
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Figure 7.9: Scenario 3: Crossing from starboard with SB-MPC
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Figure 7.10: Scenario 3: Crossing from starboard with SB-MPC situational metrics

When employing the BC-MPC algorithm in Scenario 3 the vessel slows down

slightly and passes aft of the obstacle. When an obstacle is crossing from starboard,

rule 17 states that we are the give-way vessel. Yet due to the lack of penalty

region on the port side of this vessel our ownship performs a very small maneuver

to avoid the obstacle. The distance of largest deviation from the nominal path is

approximately equal to that of the previous scenario, which from a safety standpoint

is sufficient. However, from a COLREGs point of view it would be desirable for the

algorithm to show greater will to give way in this scenario than in the previous.

Yet, in this scenario the minimum distance is slightly less with its resulting 55 m.

The performance is however adequate, due to the mid-level collision avoidance

algorithms which may handle such easy single obstacle situations.

In the case that the BC-MPC algorithm goes from selecting the LOS-guidance
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alternative after selecting a course and speed maneuver sequence from the tree,

the reference trajectories assumes an instantaneous turn and acceleration. As this

is not the case for what the real vessel may perform, the option evaluated may be

artificially better than the others due to this effect. The jump in the reference may

be seen in Figure 7.12c and 7.12d speed and course figure.
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Figure 7.11: Scenario 3: Crossing from starboard with BC-MPC
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Figure 7.12: Scenario 3: Crossing from starboard with BC-MPC situational metrics

7.2.4 Scenario 4: Overtaking

In Scenario 4, when we are the overtaking vessel we also carry the obligation to

keep clear of the other vessel. The SB-MPC algorithm does so by initiating a course

change to starboard. The minimum distance is 66 m as the obstacle is passed. The

whole situation is performed in a very smooth and predictable way. The speed is

kept at the nominal value, and the course offset is fairly constant until the vessel is

passed.
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Figure 7.13: Scenario 4: Overtaking with SB-MPC



102 CHAPTER 7. SIMULATION STUDY

Distance to obstacles

0 10 20 30 40 50 60 70 80 90

Time [s]

0

50

100

150

200

250

300

350

400

450

500
D

is
ta

nc
e 

[m
]

dsafe

dclose

Obstacle 1

(a) Distance

Analysis of minimum of cost function over time

0 10 20 30 40 50 60 70 80 90 100

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
os

t f
un

ct
io

n 
va

lu
e 

[]

(b) The cost function value of the selected sce-

nario over time

0 10 20 30 40 50 60 70 80 90

Time [s]

-100

-50

0

50

100

C
ou

rs
e 

[d
eg

re
es

]

Course reference

ref

d

(c) Course

0 10 20 30 40 50 60 70 80 90

Time [s]

0

1

2

3

4

5

6

S
pe

ed
 r

ef

Speed reference

Uref

U
Ud

(d) Speed

Figure 7.14: Scenario 4: Overtaking with SB-MPC situational metrics

The BC-MPC algorithm on the other hand initiates a turn to port to be able to pass

the obstacle, as can be seen in Figure 7.15. The COLREGs does not dictate how such

an overtaking situation must be resolved, so this choice is good as the other. The

reason it does so is due to the penalty region which is spanning to the starboard

side of the obstacle, causing the port side to be more attractive. One may notice

that the vessel waits slightly longer before initiating the turn, but when it does,

it is a very clear maneuver. The minimum distance is 48 m and the convergence

towards the nominal path is slightly slower than that of the SB-MPC. This is due to

the applied heuristic for the passing a future reference from the BC-MPC generated

course trajectory to the controller.
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Figure 7.15: Scenario 4: Overtaking with BC-MPC
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Figure 7.16: Scenario 4: Overtaking with BC-MPC situational metrics

7.2.5 Scenario 5: Being overtaken

In the case of the vessel being overtaken by another the other vessel has the

responsibility of keeping clear as it is the approaching vessel which is creating the

situation. In this situation, it does not do so, and it therefore becomes the job of

the low-level collision avoidance algorithm to perform the necessary measures to

avoid collision. Our vessel is keeping a nominal speed of 5 m/s when the obstacle

is approaching from the aft at 10 m/s. The distance between them is therefore

reduced rapidly and action is demanded. Our vessel chooses to maintain its speed

and deviates its course to starboard. The minimum distance is 62 m as it is passed

by the other vessel.
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Figure 7.17: Scenario 5: Being overtaken with SB-MPC
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Figure 7.18: Scenario 5: Being overtaken with SB-MPC situational metrics

In this situation the vessel is forced to make large course changes from the nomi-

nal course alternative. The SB-MPC algorithm causes the vessel to maneuver in

positions far from those in the selected maneuver alternative that was evaluated by

the cost function. The error is typically in the range of 10 meters. This is a weak-

ness caused by the simplifications in the SB-MPC algorithm. Yet, the algorithm

handles the situations fairly well. This is due to the lacking accuracy being taken

into account by having larger margins. So the resulting behavior is working in a

satisfying way, but it is not operating at the same level of accuracy as the BC-MPC

algorithm.

The performance of the BC-MPC algorithm can be investigated in Figure 7.19. As

in the previous scenario the vessel chooses to diverge to port to avoid collision.

The minimum distance between the vessels are 80 m. The course is at its largest
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50 degrees off the nominal value. In Figure 7.20d while the speed is actually

increased to approximately 8 m/s. This is to evade from the penalty region of the

obstacle.
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Figure 7.19: Scenario 5: Being overtaken with BC-MPC
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Figure 7.20: Scenario 5: Being overtaken with BC-MPC situational metrics

7.3 Multi-obstacle scenarios

7.3.1 Scenario 6: Two vessels crossing

In this scenario the vessel is faced with the challenge of two crossing vessels. The

first from port (Obstacle2) which for which we are the stand-on vessel, and then

one from starboard (Obstacle1) for which we are the give-way vessel. Rule 15 for

crossing situation applies. The performance of the SB-MPC algorithm can be seen

in Figure 7.21. The SB-MPC steers well clear of the first obstacle, passing in front

at nominal speed. Our vessel then passes aft of the second obstacle heading north,

before finally converging onto the nominal path. The cost function value is kept

low as the vessel is able to, through its maneuvers, avoid generating any particular

risk of collision. The speed is kept at the nominal value, but the course offset is



7.3. MULTI-OBSTACLE SCENARIOS 109

fairly large to be able to minimize the risk, as can be seen in Figure 7.22c. The

minimum distances between Obstacle 1 and 2 are 61 and 86 m, respectively.
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Figure 7.21: Scenario 6: Two vessels crossing with SB-MPC
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Figure 7.22: Scenario 6: Two vessels crossing with SB-MPC situational metrics

The BC-MPC algorithm resolves the situation in roughly the same way. Although

one can identify some differences in Figure 7.23. The initial maneuver off from the

nominal path is performed later, but with slightly larger course changes. As the

vessel is passing the first obstacle it accelerates significantly up to approximately

8 m/s. This allows for the vessel to avoid the obstacles in a larger degree.

In the simulations, Obstacle 1 is the one that is the closest to our vessel. As can

be seen in Figure 7.24a, the minimum distance is 88 and 139. As the minimum

distances are 88m for the BC-MPC and 61 m for the SB-MPC both algorithms can

be said to handle the situation well.
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Figure 7.23: Scenario 6: Two vessels crossing with BC-MPC
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Figure 7.24: Scenario 6: Two vessels crossing with BC-MPC situational metrics

7.3.2 Scenario 7: Complex multi vessel head-on

In Scenario 7 there are three obstacles heading south, while our vessel wishes to

do the opposite. As the first vessel is met head-on, SB-MPC chooses to deviate its

course to starboard, as we have observed earlier. Unfortunately, this maneuver

causes the vessel to approach Obstacle 2. The vessel navigates in between the two

obstacles, before converging back towards the nominal path. Twice in the duration

of this process does it occur that our vessel reduces its speed. This can be seen

in Figure 7.26d. This aims to reduce the the distance traveled in the horizon to

avoid being penalized for close encounters with the obstacles. In the first speed

reduction the speed uses approximately 10 s before the actual speed is equivalent to

the reference. In the second case, where the speed reference is 0 m/s from 40 to 45 s,

the speed is reduced, but not nearly to the extend that is desired from the algorithms
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point of view. This sort of inaccuracy could potentially be very dangerous, as it

could cause the selection of maneuvers to be made on false assumptions. The

minimum distances to obstacle 1, 2 and 3 is 65, 137 and 66 m, respectively.
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Figure 7.25: Scenario 7: Complex multi vessel head-on with SB-MPC
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Figure 7.26: Scenario 7: Complex multi vessel head-on with SB-MPC situational

metrics

In comparison to the SB-MPC the BC-MPC algorithm finds the gap between Obsta-

cle 1 and 2 to be too narrow, and as there exists an option to deviate to port without

being surrounded by obstacles, it does so. This is in violation of rule 14 regarding

head on situations, but is a safe solution which allows all vessels to pass free of

each other. The speed is immediately increased to be able to distance oneself from

the obstacles in an efficient way. The course is selected to be approximately 140
◦

off the nominal course for tens of seconds. As the necessary distance is created the

vessel heads north again and reduces its speed to the nominal one. The minimum

distances between the vessels turn out to be 153, 320 and 79 m. When the vessel

decides to head port in a head on situation, it becomes evident that the elliptical

penalty region causes it to have a much greater distance to the other vessel when

passing.
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Figure 7.27: Scenario 7: Complex multi vessel head-on with BC-MPC
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Figure 7.28: Scenario 7: Complex multi vessel head-on with BC-MPC situational

metrics

7.3.3 Scenario 8: Complex multi vessel

In Scenario 8 three obstacles are approaching a point a couple of hundred meters

in front of our vessel with different headings. As can be seen in Figure 7.29, the

nominal path has become an unattractive one - and the SB-MPC selects an offset

to starboard. The course is kept fairly stable for almost the whole horizon until

the vessel is allowed to converge towards the nominal path again. Two drops in

the speed reference can be observed in Figure 7.30d, and are caused due to the

cost functions desire to avoid generating too much distance from the nominal

path. This is a tradeoff between nominal speed and a slightly deviant course, as the

course is still such that it causes the vessel to increase the vessels distance from the

desired path. The minimum distance to each obstacle is 83, 115 and 62 m.
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Figure 7.29: Scenario 8: Complex multi vessel with SB-MPC
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Figure 7.30: Scenario 8: Complex multi vessel with SB-MPC situational metrics

In Figure 7.31 one can see how the BC-MPC algorithm resolves the situation. It does

as the SB-MPC, and diverges to starboard initially. The path taken is distancing

Obstacle 1 more efficiently at first, before the course is fairly straight north for a

segment. The minimum distance to each vessel is observed to be 141, 138, and 45 m.

The reason our ownship passes so close aft of the last obstacle, is due to the short

penalty region spanning backwards. The vessel is therefore allowed to converge

with a sequence of nominal course and speed references at the same point in time

as the SB-MPC, but while having spent more time at the nominal speed, resulting

in overall more satisfying behavior.
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Figure 7.31: Scenario 8: Complex multi vessel with BC-MPC
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Figure 7.32: Scenario 8: Complex multi vessel with BC-MPC situational metrics

7.4 Discussion

The BC-MPC algorithm seems to be able to perform the different maneuvers slightly

better than the SB-MPC. As they have so many equal terms of competition the

increased performance is very likely to come from the development of a finer

granulated tree in the BC-MPC rather than the simpler SB-MPC tree. The BC-MPC

algorithm seems to generate trajectory references which relieves the situation in

a slightly more effective way than the SB-MPC. Both algorithms’ cost functions

are intuitive to tune to cause the desired performance and they both make good

choices from their tree of possibilities in most of the situations.

One way of reducing the accuracy gap between the continuous and sample based

MPC is by letting the number of samples become large. If this where to approach
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infinite, then almost all solutions would be represented. The exception is that

the length of maneuvers in BC-MPC is defined and at the time of 𝑇𝜒 and 𝑇𝑈 from

the BC-MPC call, there will be a small period of constant speed and course for

all alternatives. This aside, letting the number of samples grow brings with it

larger computation time, causing the solution to have become “older” and not

necessarily fitting to the way the situation has developed. Short computation-time

is therefore important. One way of being able to solve with a fine-granulated tree

and still limit computation time, is to have a coarse tree functioning as some kind

of pre-investigation. Whichever trajectory in the tree that yields the lowest cost,

could lay out the foundation of a fine-granulated tree in this direction and area. To

further improve the performance of the current implementation of the BC-MPC

algorithm the nominal LOS alternative in the maneuver tree would need a transient

maneuver to be able to evaluate the process of converging towards such a path

in a realistic way. This would increase the accuracy and achieve more coinciding,

predicted and actual trajectories, avoiding too frequent selection of the nominal

alternative.

One very clear difference between the two algorithms is their difference in evalu-

ating risk of collision. In the SB-MPC cost function (5.3), the hazard of scenario 𝑘

calculated from time 𝑡0 is subject to two max operators. The first and outermost

max operator selects the hazard that is associated with the most hazardous obstacle

𝑖 . The second and innermost one gives the hazard at the most hazardous point in

time 𝑡 for each scenario with each obstacle. As a result of this 𝐻𝑘
will not be influ-

enced by whether the hazard is fairly large over time in the horizon, or if it occurs

abruptly. This cost function will neither take into consideration whether there

are several hazardous obstacles associated with scenario 𝑘 or only a single one.

However, in reality, being surrounded by several obstacles may limit the potential

courses of action drastically thus causing a more hazardous situation. BC-MPC on

the other hand, which uses a potential field method in the optimization-part (4.14)

of the algorithm will simply add the different repulsive fields around obstacles thus

inflicting an overall effect on the selection of the optimal trajectory. The evaluation

of each point in time is summed to create an overall cost value. Maybe one would

think that the behavioural differences would be larger due to this difference in

trajectory selection, but they both seem to select the best possible trajectories of

those available for each of them.
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It is interesting to see the magnitude of the minimum distances for the different

algorithms in the different situations. The safety distance 𝑑safe, is the threshold for

when risk is evaluated in the SB-MPC algorithm, and is in practice the desired lower

limit of distance between the obstacles and the vessel. The vessel will perform

evasive maneuvers in order to avoid breaching this limit. In the simulations this

value has been 𝑑safe = 60𝑚, resulting in minimum distances just a couple of meters

larger than this value in all scenarios. In BC-MPC, however, where the penalty

region is dependent on the bearing between the vessels, the minimum distance

is varying in much greater degree. The elliptical penalty region is defined by

the vectors a, b and c. The resulting distances are ranging from approximately

45 to 80 m for the closest encountered vessel in the different scenarios. The

advantage with this is the ability to evaluate the situation in a higher degree of

accuracy and perform the best possible actions. However, if the effect of penalizing

positions in front more than in aft of other vessels is exaggerated, other vessels

may interpret the situation as dangerous as they are approached closely in their

rear. However, in a tight and messy situation it is desirable for our vessel to be able
to perform the safest possible actions and an accurate description of the situation

is therefore practical. Another important tuning parameter is the obstacle cost

gradient parameter, 𝜇1. It is causing an early increase in penalty as a function of

distance, spanning over a much larger region than in SB-MPC. The largest region

causes only marginal effects to the choice of trajectory, but this causes the BC-MPC

to begin early to perform actions to avoid dangerous situations thus producing

satisfying results.

As discussed in Scenario 7, the SB-MPC is clearly making decisions on false assump-

tions. The controlled vessel does not perform instantaneous turns and accelerations

and the underlying assumption for tree generation does not hold. But, the algo-

rithm performs fairly good even as this is the case. Nevertheless, it does not deliver

the accuracy in computation which the BC-MPC does.

Rule 8 compliance with clear and easily observable maneuvers is allowed for if

the granulation of the tree generation is not too fine. Cost function tuning that

causes the vessel to make choices that are predictable is also of high importance.

However, if the LOS-guidance alternative is selected, then it probably is because

the vessel is in a situation of low risk of collision. In such a situation one may to

a larger degree allow for a slowly changing speed and course, which may cause
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poor visibility of maneuvers. In the case of SB-MPC, it will always be prone to a

slowly changing 𝜒𝑑 from the higher-level planner. In the LOS-guidance scheme

one may choose a adequately large lookahead distance ∆ so that the course causes

the vessel to converge slowly and predictably towards the desired path.
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Chapter 8

Conclusions and future
work

This chapter summarises some of the key findings in the thesis and suggests future

work on the topic.

8.1 Conclusions

Through the implementation of the SB-MPC and BC-MPC algorithms on the vessel

model of Odin and the simulation study performed, it becomes clear that both

algorithms are truly capable low-level collision avoidance algorithms. They handle

complex situations and are able to predict and plan future events, thus causing more

optimal behaviour. They cause the controlled vessel to make clear and predictable

maneuvers in line with COLREGs rule 8, which reduce the risk of collision. The

algorithms are both COLREGs-aware, but not entirely COLREGs-compliant. This

is due to the lack of COLREGs specific logic which would have to handle very

complex situations. This is difficult due to the vague definitions of the COLREGs

and the room for interpretations of situations. For a low-level COLAV algorithm

this should not be the focus either, as its purpose is to handle emergency situations

where obstacles are either detected late, behaving dangerously or the middle-layer

fails to produce a valid solution to the situation.

125
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Comparing the two algorithms, the BC-MPC algorithm is a more complex algo-

rithm to implement, but it is able to evaluate trajectories which are of higher

complexity and coincide better with the trajectories actually performed by the

vessel. This proves to be a valuable property when the environment becomes

cluttered, and margins are reduced. The search space of trajectories is also more

refined as it allows for sequences of maneuvers in comparison to SB-MPC’s single

choice. This being said, SB-MPC is able to apply logic regarding its trajectories in

a simpler way which allows for attractive logical COLREGs evaluation functions

in the cost function, while BC-MPC is employing the repulsive fields for the same

function.

8.2 Future Work

For these algorithms to become more widely known and used a systematic tuning

guide for quick and easy implementation would have to be presented. This should

govern different vessel types, propulsion systems and mission types for the vessels.

Making more of the parameters dependent on situational parametres will give the

cost functions more knowledge to be able to make better choices. This could for

example be penalty regions which are dependent on the speed of the vessel and

the obstacles.

Both implementations would probably gain increased accuracy in navigation

through the implementation of a feedforward controller for course and speed.

The BC-MPC algorithm in particular needs such a controller to truly benefit from

its precisely generated trajectories. However, in the current implementation, the

trajectory-generation parameters have been tuned through empirical data so that

the error in the actual and projected trajectories are minimized, and the overall

performance is satisfying.

Further simulations and on-water testing and verification should also be a part

of the future work with the algorithms. As a part of the verification simulations

one should strive to give the algorithm as equal terms of operation as in real life

as possible. One of the differences one should account for is that of measurement

and estimation noise. This could be generated in simulations and help ensuring

a swift transition to real vessels. Although both algorithms have been tested

in practice previously, both would benefit from stress testing in multi obstacle
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cluttered environments where accuracy in trajectory tracking and planning abilities

are explored. The integration with the vessel and its dynamics which may differ

from that of the model may reveal new challenges. In practice scene analysis

with obstacle detection and tracking may be noisy, thus reducing performance.

Therefore, several heuristics may need to be applied for implementation and sensor

integration in order to achieve great performance.
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