
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Thomas Nakken Larsen

On the applicability of a perceptually
driven generative-adversarial
framework for super-resolution of
wind fields in complex terrain

Master’s thesis in Cybernetics and Robotics

Supervisor: Adil Rasheed

July 2020

Thomas Nakken Larsen

On the applicability of a perceptually
driven generative-adversarial
framework for super-resolution of
wind fields in complex terrain

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Great strides have been made in recent years in single-image super-resolution
(SISR) tasks by utilizing high-dimensional feature activations from pre-trained fea-
ture extractors to introduce a perceptual loss in generative-adversarial networks
(GANs). A perceptually driven GAN model was recently proposed for super-
resolving wind fields in complex terrain. While the generative model was shown
to produce plausible wind fields, no statistical analysis was shown, nor was the
perceptual aspect of the model justified for application on wind data.

This thesis investigates the applicability of such a perceptually driven model to
super-resolve low-resolution wind fields. An initial stability analysis found that
the perceptual loss component for the generative model consistently failed to con-
verge. Consequently, an in-depth analysis was performed on the wind data from
the perspective of the convolutional feature extractor used to construct this percep-
tual loss. Considering that the feature extractor was explicitly trained to classify
RGB images, wind datasets were converted into an RGB representation to build an
intuition for their equivalent visual complexity. It was hypothesized that the gen-
erative model was unable to fully learn the visual characteristics of the presented
wind data due to the significant difference between the dataset used to train the
feature extractor and the wind data used to train the generative model. Thus,
the variations in feature activations are thought to act as a source of noise for the
generative model rather than helping it improve the accuracy in its super-resolved
wind fields. By setting the model to super-resolve wind data from the top of the
domain, it was able to converge as expected. Therefore, it was shown that the
perceptual feedback from the feature extractor inhibits the model.

By enforcing an agreement evaluation between the Peak Signal-to-Noise Ratio
(PSNR) and the Learned Perceptual Image Patch Similarity (LPIPS) metrics, it
was shown that minimizing the perceptual loss is not synonymous with learning
the governing equations of airflow in the relevant domain. In conclusion, the pro-
posed model was deemed insufficient for the task of super-resolving wind fields in
complex terrain.

i

Sammendrag

Det har nylig blitt gjort store fremskritt innenfor datasyn for konstruksjon av
høyoppløste bilder fra referansebilder med lav oppløsning ved å benytte høy-
dimensjonale aktiveringer fra “feature-extractors” for å danne et perseptuelt tap i
“generative-adversarial” nettverk (GANs). En perseptuelt drevet GAN-modell ble
nylig foresl̊att for å øke oppløsningen av atmosfærisk vind i komplekst terreng. Dog
det ble vist til at den generative modellen kan produsere sannsynlige vindfelt, ble
det ikke fremvist noen statistisk analyse, og det perseptuelle aspektet av modellen
var ikke begrunnet for anvendelse p̊a vinddata.

Denne masteroppgaven undersøker anvendeligheten av en slik perseptuelt drevet
modell for å øke oppløsningen av atmosfærisk vind med opprinnelig lav oppløsning.
En initiell stabilitetsanalyse viste at den perseptuelle tapskomponenten for den
generative modellen konsekvent ikke klarte å konvergere. Følgelig ble en grundig
analyse utført p̊a vinddata fra perspektivet til den konvolusjonelle “feature extrac-
tor”’en som ble brukt til å konstruere dette perseptuelle tapet. Flere vinddatasett
ble representert som RGB-bilder for å bygge en intuisjon for deres visuelle kom-
pleksitet, tatt i betraktning at den anvendte “feature extractor”’en opprinnelig ble
trent til å klassifisere RGB-bilder. Det ble antatt at den generative modellen ikke
var i stand til å lære de visuelle egenskapene til vinddataene p̊a grunn av den
signifikante forskjellen mellom datasettet som ble brukt til å trene “feature extrac-
tor”’en og vinddataene som ble brukt til å trene den generative modellen. Videre
ble det antatt at variasjoner i aktiveringer fungerer som en kilde til støy for den
generative modellen i stedet for å hjelpe den med å forbedre nøyaktigheten i sine
genererte høyoppløste vindfelt. Ved å sette modellen til å heller øke oppløsningen
av vinddata fra toppen av domenet, klarte den å konvergere som forventet. Dermed
ble det vist at den perseptuelle tilbakemeldingen fra “feature extractor”’en hemmer
modellen.

Ved å sammenligne mellom m̊alinger av “Peak Signal-to-Noise Ratio” (PSNR) og
“Learned Perceptual Image Patch Similarity” (LPIPS), ble det vist at å min-
imere det perseptuelle tapet ikke nødvendigvis korresponderer med å lære den
grunnleggende dynamikken av luftstrømninger i det relevante domenet. Avslut-
ningsvis ble den foresl̊atte modellen ansett som utilstrekkelig for oppgaven med å
øke oppløsningen av vindfelt i komplekst terreng.

ii

Acknowledgments

I wish to give credit where credit is due; this thesis would not be possible to realize
without the assistance provided by the following people:

• My supervisor, Adil Rasheed, who introduced me to GANs and gave me the
opportunity to work with this topic.

• My co-student, Duy Tan Tran, for providing the Python implementation of
the proposed model and being a valuable discussion partner regarding the
issues found with the model.

• The HPC group at NTNU, for allowing me to use their high-performance
computational cluster, IDUN, to train numerous instances of the neural net-
work model.

• I also acknowledge the support from I got from the OPWIND: Operational
Control for Wind Power Plants project (Grant No.: 268044/E20).

• And last, but not least, a special thanks to my family and all the friends I’ve
made along the way for the incredible support they have given me throughout
the Cybernetics and Robotics course at NTNU.

Trondheim, 01.07.2020 Thomas Nakken Larsen

iii

Preface

This thesis concludes a Master of Science in Cybernetics and Robotics at the De-
partment of Engineering Cybernetics of the Norwegian University of Science and
Technology (NTNU). It was created under the supervision of Adil Rasheed during
the spring of 2020.

The preceding specialization project considered a different topic within supervised
learning, thus the author has no prior experience in working with generative-
adversarial networks (GANs). Initially, the thesis was intended to extent the ap-
plication of a novel GAN model to predict airflow using simulated satellite and
LIDAR data. Complications ecountered underway lead the thesis to change direc-
tions multiple times. Ultimately, the thesis show how the proposed model is unfit
for the task of airflow super-resolution. In order to determine the underlying issues
within the model, a rigorous literature search has populated the background chapter
with detailed information relating to the fundamental issues related to assumptions
made for the convergence of GAN frameworks, as well as some introductory details
relating to the perceptual aspect of image super-resolution.

The Python implementation of the ESRGAN model was provided by Duy Tan Tran
but was originally implemented by Eirik Ekjord Vesterkjær. All airflow datasets
were created using simulated data from the coupled HARMONIE-SIMRA system.
Execution of the ESRGAN model was facilitated by the HPC Group at NTNU,
utilizing the IDUN cluster. All plots and figures in this thesis were created using
the Python library matplotlib and the scientific data visualization engine Mayavi.
Other figures are used with explicit consent from their respective authors, and are
cited below the figure.

iv

Contents

Abstract i

Acknowledgments iii

Preface iv

List of Figures viii

List of Tables xi

Acronyms xii

1 Introduction 1
1.1 Problem description . 2
1.2 Thesis outline . 2
1.3 Research questions . 2

2 Background 4
2.1 Flow in complex terrain . 4
2.2 HARMONIE-SIMRA: a coupled multi-scale model for airflow data

generation . 6
2.3 Machine learning . 8

2.3.1 Supervised learning . 8
2.3.2 Unsupervised learning . 9

2.4 Artificial neural networks . 10
2.4.1 Activation functions . 11
2.4.2 Loss functions . 12
2.4.3 Backpropagation . 14

2.5 Deep learning . 16
2.6 Generative Adversarial Networks . 21

2.6.1 GAN failure modes and how to avoid them 24
2.7 Single Image Super-Resolution GANs 32

2.7.1 Introducing perceptual loss 34
2.7.2 The Learned Perceptual Image Patch Similarity metric 34

v

2.7.3 Enhanced Super-Resolution Generative Adversarial Network
for airflow velocity data . 36

3 Methods 40
3.1 Hardware specification . 40
3.2 Software specification . 41
3.3 Data generation process . 41

3.3.1 Preprocessing and splitting of data 43
3.4 Experiment I: Stability analysis of previous work 44

3.4.1 Model hyperparameters and training hacks 45
3.5 Experiment II: Assessing the validity of applying a perceptual SISR

method to airflow data . 47
3.5.1 Experiment IIa: Visualizing velocity fields as RGB images . . 48
3.5.2 Experiment IIb: Investigating perceptual features for airflow

data . 50
3.6 Experiment III: High-altitude airflow reconstruction with ESRGAN 53
3.7 Performance evaluation . 53

4 Results and discussion 56
4.1 Data preparation . 56
4.2 Experiment I: Stability analysis of previous work 57

4.2.1 Session 1: Training stability of the previously proposed model 57
4.2.2 Session 2: Continued training stability analysis with static

label smoothing . 59
4.2.3 Session 3: Multi-step learning rate cycling 63
4.2.4 Session 4: Extended training period and disabled instance

noise . 67
4.2.5 Summary and discussion of Experiment I. 70

4.3 Experiment II: Assessing the validity of applying a perceptual SISR
method to airflow data. 72
4.3.1 Experiment IIa: Visualizing velocity fields as RGB images . . 73
4.3.2 Experiment IIb: Investigating the effect of perceptual fea-

tures for airflow data. 75
4.3.3 Summary and discussion of Experiment II. 79

4.4 Experiment III: High-altitude airflow reconstruction with ESRGAN 80
4.5 Performance evaluation of models in Experiment I and III. 83

4.5.1 Test set PSNR and LPIPS agreement evaluation 84
4.5.2 Visual inspection of the best, average and worst performing

models . 84
4.5.3 Spatial LPIPS performance 86

5 Conclusions and further work 92
5.1 Answering the research questions . 92
5.2 Further work . 93

Bibliography 95

vi

A Overview of appendices 98

B Accessing the contents of netCDF data files 99

C GAN-related distances, divergences and algorithms 101

D Auxilliary feature extractor experiment 103

E Software requirements 105

F Spatial LPIPS evaluation for all models 107

vii

List of Figures

2.1 Visual representation of the domains covered in numerical models
for atmospheric flow. 7

2.2 A simple model of an artificial neuron. 11

2.3 Example ANN with a single hidden layer. 12

2.4 Relevant activation functions used in ANNs. 13

2.5 Local receptive fields in convolutional layers. 18

2.6 Zero-padding of size P = 1 in a convolutional layer. 19

2.7 Max-pooling layer in CNNs. 19

2.8 Transposed convolutional layer upscaling 2x2 input to 3x3. 20

2.9 Residual learning: building block . 21

2.10 Visualized generative adversarial framework. 22

2.11 Hypothetical visualization of the GAN minimax game, with variations 23

2.12 Hypothetical mode collapse in GANs. 26

2.13 Goodfellow GAN vs. RaGAN discriminator prediction development
during training. Plots reproduced from Jolicoeur-Martineau [21]. . . 30

2.14 Single-Image Super-Resolution task in a generative-adversarial con-
text. 35

2.15 ESRGAN archtecture. 37

2.16 ESRGAN feature extractor network. Although not depicted, there
are ReLU activations after each convolution. 38

3.1 Full 3D velocity field sampled from the HARMONIE-SIMRA cou-
pled system. 42

3.2 Sliced velocity field from the bottom of the 3D domain of Figure 3.1. 43

3.3 Channel-wise normalization and downsampling of velocity fields. . . 44

3.4 Direct translation of an 8-bit RGB image to a 3D Cartesian vector
field. The color of coordinate axes in (a) and (b) correspond to the
positive direction of their respective color in the reference image. . . 49

3.5 Converting a real image from RGB to a 3D vector field. 50

3.6 Converting a sliced 3D vector field to an RGB image. 51

3.7 Feature activations of VGG19-54 are spatially correlated to the input
data. 52

viii

4.1 Training session 1: Training instability across eight identical ESR-
GAN models. 58

4.2 Training session 2: Improved training stability and performance. . . 60

4.3 Session 2: Decomposing the generators’ training losses into their
weighted components. 61

4.4 Training session 2: Extended training for the worst performing model. 62

4.5 Training session 3: Multi-step learning rate schedule cycling each
50kth iteration. 64

4.6 Session 3: Learning rate development during training. 65

4.7 Session 3: Updated learning rate development during training. . . . 66

4.8 Training session 3: Multi-step learning rate cycling each 150kth it-
eration. 67

4.9 Training session 4: Extended training to 300k iterations and disabled
instance noise. 69

4.10 Training session 4: Decomposing the generator training losses into
their weighted components. 70

4.11 Arbitrary airflow velocity field normalized and translated to RGB. . 74

4.12 Visualizing the mean velocity field and the variance of each velocity
component. 75

4.13 Visualizing the mean velocity field and the variance of each velocity
component in higher-altitude training datasets. 76

4.14 Random airflow velocity fields from the middle- and top-layer train-
ing datasets are normalized as described for Experiment I and trans-
lated to RGB. 77

4.15 VGG19-54 feature extractor output using Flickr15.6k dataset as input. 77

4.16 VGG19-54 feature extractor output using the bottom-layer dataset
as input. 78

4.17 VGG19-54 feature extractor output using middle-layer dataset as
input. 78

4.18 VGG19-54 feature extractor output using top-layer dataset as input. 79

4.19 Experiment III: Highest-altitude velocity field reconstruction. 81

4.20 Experiment III: Decomposing the generator training loss into its
weighted components. 82

4.21 Filled contour plot comparison for each velocity component. Left
column: Bicubic interpolation, Middle column: High-resolution ref-
erence. Right column: Best model from Session 1. Each row repre-
sents the different velocity components, u, v and w. The generative
model is mostly able to reconstruct general flow structures, but not
for high-frequency details. 85

4.22 Filled contour plot comparison for each velocity component. Left
column: Bicubic interpolation, Middle column: High-resolution ref-
erence. Right column: Average model from Session 4. Each row
represents the different velocity components, u, v and w. The gen-
erative model recreates general flow structures but fails to do so
accurately. 86

ix

4.23 Filled contour plot comparison for each velocity component. Left
column: Bicubic interpolation, Middle column: High-resolution ref-
erence. Right column: Best model from Experiment III (top-level
airflow). Each row represents the different velocity components, u,
v and w. Although bicubic interpolation scores worse wrt. qual-
ity metrics, its reconstructed airflow more closely match the high-
resolution reference compared to the generative model. 87

4.24 Spatial LPIPS with terrain overlay for the bicubic interpolation
method. Added SIMRA domain for reference. 88

4.25 Spatial LPIPS with terrain overlay: Best and worst models of Ex-
periment I vs. BC. 88

4.26 Spatial LPIPS: Spatial error differences between similar models in
Session 2. 89

4.27 Spatial LPIPS with terrain overlay: Best and worst models of Ex-
periment III vs. BC. 89

4.28 Spatial LPIPS: Consistent spatial errors between similar models in
Experiment III. 90

D.1 Feature-space averaged variance of VGG19-54 activations using a
224x224 resolution subset of Flick30k. 104

F.1 Spatial LPIPS for all models in Session 1. 108
F.2 Spatial LPIPS for all models in Session 2. 109
F.3 Spatial LPIPS for all models in Session 3. 110
F.4 Spatial LPIPS for all models in Session 4. 110
F.5 Spatial LPIPS for all models in Experiment III. 111

x

List of Tables

2.1 Physical representations of terms in governing equations for air flow. 5
2.2 Scalar coefficients of governing equations for airflow 6
2.3 Computational details and resources used to run the HARMONIE

and SIMRA models. Recreated from Rasheed et al., [39]. 8
2.4 Notation for the backpropagation algorithm 14

3.1 Relevant variables in the netCDF files. 41
3.2 Hyperparameters related to the model architecture. 46
3.3 Hyperparameters related to the model training algorithm. 46
3.4 Datasets used for quantifying differences in feature activations for

perceptual loss. 53
3.5 Hyperparameter changes for Experiment III. 53

4.1 Training, validation and test set sizes. 56
4.2 Normalization factors calculated for each channel in all airflow datasets 57
4.3 Hyperparameter change for training session 2. 59
4.4 Hyperparameters introduced by implementing multi-step learning

rate cycling. 65
4.5 Hyperparameter change for training Session 3. 65
4.6 Hyperparameter changes for training session 4. 68
4.7 PSNR and LPIPS agreement evaluation for all trained models in

Experiment I and III. 91

B.1 Available data generated by the coupled HARMONIE-SIMRA system100

E.1 Core software modules used on the IDUN HPC Cluster. 105
E.2 Python 3.7.2 - Software requirements 106

xi

Acronyms

ANN Artificial Neural Network. 1, 10–14, 16, 17, 27, 33, 34, 36, 40, 75

cGAN Conditional GAN. 30, 32

CNN Convolutional Neural Network. 1, 17, 21, 33–35, 50, 54, 75

CV Cross-Validation. 9

DCGAN Deep Convolutional GAN. 21

EMD Earth Mover’s Distance. 28, 32

ESRGAN Enhanced Super-Resolution Generative Adversarial Network. 34, 36,
38–40, 43, 44, 47, 48, 50, 52–54, 56, 70, 72, 75, 80, 83, 92, 93

GAN Generative Adversarial Network. 1, 21, 23–25, 27–32, 34, 36, 45–47, 69, 71,
92, 101

HARMONIE Hirlam Aladin Regional Mesoscale Operational Numerical predic-
tion In Europe. xi, 6–8, 36, 41, 52, 56, 99

HPC High Performance Computing. 40

HR High-Resolution. 32–34, 36, 38, 43, 44, 72, 80

IPM integral probability metric. 28, 29, 32

JSD Jensen-Shannon Divergence. 24, 28, 29, 31, 32

KLD Kullback-Liebler Divergence. 24

LeakyReLU Leaky Rectified Linear Unit. 11, 36

LPIPS Learned Perceptual Image Patch Similarity. 34, 35, 54, 55, 83–90, 93

xii

LR Low-Resolution. 32–34, 36, 43

ML Machine Learning. 1, 8, 10

MSE Mean Squared Error. 13, 33, 34, 54, 55, 83–85, 93

NetCDF Network Common Data Form. 41, 42, 99

NTNU Norwegian University of Science and Technology. 40

PCA Principal Component Analysis. 10

PSNR Peak Signal-to-Noise Ratio. 33–35, 53–55, 57, 59, 63, 66–68, 71, 72, 80,
83, 84, 89, 93

RaGAN Relativistic Average GAN. 29–32, 34, 46, 59, 68, 71

RDB Residual Dense Block. 46

ReLU Rectified Linear Unit. 11, 12, 34, 36

RGAN Relativistic GAN. 29, 32

RRDB Residual-in-Residual Dense Block. 34, 36, 46

SIMRA Semi Implicit Method for Reynolds Averaged navier-stokes equations.
xi, 7, 8, 36, 41, 42, 48, 52, 56, 73, 79, 94, 99

SISR Single-Image Super-Resolution. 32–34, 36, 48, 70, 72, 92

SR Super-Resolution. 33, 34, 38, 53, 80

SRCNN Super-Resolution Convolutional Neural Network. 33

SRGAN Super-Resolution Generative Adversarial Network. 34

SSIM Structural Similarity Index. 34

tanh Hyperbolic Tangent. 11, 12, 16

WGAN Wasserstein GAN. 28, 29, 32, 102

xiii

xiv

Chapter 1

Introduction

Data-driven methods, especially in Machine Learning (ML) algorithms using Ar-
tificial Neural Networks (ANNs), have become increasingly popular due to the
advancement in computational power and the increase in open-source datasets
over the last decade. Convolutional Neural Networks (CNNs) have become highly
proficient in supervised learning tasks such as classification and low-dimensional
regression, even outperforming human performance in computer vision tasks ([25,
23, 44, 17]). Of particular interest is the Generative Adversarial Network (GAN)
framework, which is a purely data-driven approach that can approximate high-
dimensional probability distributions. When Goodfellow et al. introduced it in
2014, the framework was notoriously hard to stabilize and train to convergence,
but recent contributions have identified and alleviated several of the issues re-
lated to the fundamental training algorithm ([10, 42, 2, 29, 31]). This framework
enables the use of neural networks in unsupervised learning problems and has
become widely applied in computer vision image generation, style-transfer, and
super-resolution. In particular, the use of a CNN to evaluate the perceptual dis-
tance between a super-resolved image and its reference has significantly improved
the state-of-the-art performance ([20, 8, 27, 50]).

Numerical simulation of complex differential equations in fluid dynamics dominates
the state-of-the-art in fluid simulations. Despite that fluid dynamics long have been
accurately described through the Navier-Stokes equations, their sheer complexity
makes them infeasible to solve directly in real-time on current hardware. In wind
engineering applications, nested models are interpolated to solve the flow at differ-
ent scales. For applications such as weather forecasting and wind-power estimation,
there is a large amount of high-dimensional data stored from simulated atmospheric
flow in geographic domains [38, 39]. A novel method that utilizes a perceptually
driven GAN model for super-resolving airflow in complex terrain was recently pro-
posed ([47]). This generative model aims to learn the governing equations related
to ground-level airflow in a geographical domain to upscale low-resolution wind
fields to high-resolution in real-time. The model applies methods that have sig-

1

nificantly improved the state-of-the-art in image super-resolution, namely the use
of a pre-trained, convolutional feature extractor. While it has been shown that
the proposed model can produce plausible results, the fundamental dynamics in
the generative-adversarial framework has not been justified for learning governing
equations for airflow.

1.1 Problem description

This thesis considers an in-depth investigation of the proposed perceptually driven,
super-resolution generative-adversarial framework aimed at reconstructing ground-
level airflow in complex terrain. Through initial analysis, it was discovered that
the model struggled to converge consistently. The subsequent investigation was
formed through an iterative-inductive process aimed at determining the cause of
this convergence issue.

1.2 Thesis outline

This thesis is divided into 5 chapters:

• Chapter 1 is the current chapter. It presents the motivating factors for
investigating the validity of combining computer vision methods for solving
tasks traditionally performed by numerical simulations of wind fields. Three
research questions are raised regarding the application of the proposed model.

• Chapter 2 describes the relevant background required to understand the
internal dynamics of the proposed model. The basics of machine learning,
artificial neural networks, and deep learning principles lead to the presenta-
tion of generative-adversarial networks. Typical failure modes are described,
and recent contributions to avoid them are explained. Finally, the typical
application of GANs in single-image super-resolution tasks is presented along
with the proposed model for airflow data.

• Chapter 3 presents three experiments aimed to find whether the proposed
model applies to airflow data.

• Chapter 4 shows the results of each experiment and provides a logical pro-
gression between each conducted experiment.

• Chapter 5 concludes the thesis by answering the research questions pre-
sented in Chapter 1 and suggests potential further progression of the covered
topics.

1.3 Research questions

1. Why does the previously proposed GAN-based super-resolution model con-
sistently fail to reproduce its results?

2

2. What is the fundamental issue with applying the pre-trained feature extractor
to airflow data?

3. Is the generative model’s task of minimizing a perceptual loss synonymous
with learning the governing equations of airflow in the relevant domain?

3

Chapter 2

Background

This chapter establishes the theory required to justify the methods used in Chapter
3. Three main topics are presented; first, the governing equations of airflow are
described and used to quantify the computational complexity of solving these nu-
merically. A coupled multi-scale model solving the governing equations is presented
as the source of data used in the thesis. The second topic is machine learning, a
massive topic, thus only the most relevant topics are described. Lastly, artificial
neural networks are introduced, which provides a basis for presenting data-driven
generative models using artificial neural networks.

2.1 Flow in complex terrain

Fluid flow is governed and restricted by the fundamental conservation laws. Al-
though these laws are generally applicable, Equations 2.1-2.6 present specifically
termed governing equations for atmospheric flow, as described by Rasheed et al.
[39]. Where applicable, the corresponding name of each equation is stated. The
notations used in Equations 2.1-2.6 are described in Table 2.1.

4

∇ · (ρsu) = 0 Conservation of mass (2.1)

Du

Dt
= −∇

(
pd
ρs

)
+ g

θd
θs
∇ ·R + f Conservation of momentum (2.2)

Dθ

Dt
= ∇ · (γT∇θ) + q Conservation of energy (2.3)

Dk

Dt
= ∇ · (νT∇k) + Pk +Gθ − ε Turbulent kinetic energy (2.4)

Dε

Dt
= ∇ ·

(
νT
σe
∇ε
)

+ (C1Pk + C3Gθ)
ε

k
− C2

ε2

k
Turbulent dissipation (2.5)

νT = Cµ
k2

ε
(2.6)

In Equations 2.1-2.6, the subscripts s, d indicate the associated term’s hydrostatic
value and deviation from the hydrostatic value, respectively. Thus, p = ps + pd,
θ = θs + θd, ρ = ρs + ρd. The hydrostatic equation is given by ∂ps/∂z = −gρs.
Although ρs normally isn’t measured, it can be calculated using the ideal gas law:
ρs = ps/Rθ(po/ps)

Rg/Cp , where Cp is the specific heat capacity for an ideal gas
at constant pressure and Rg is the gas constant. R, Pk, and Gθ are given by
Equations 2.7-2.9.

Rij = νT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij (2.7)

Pk = νT

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

(2.8)

Gθ = −g
θ

νT
σT

∂θ

∂z
(2.9)

Table 2.1: Physical representations of terms in governing equations for air flow.

Term Description
u Velocity
p Pressure
θ Potential temperature
ρ Density
R Stress tensor
f Source/sink term
g Acceleration due to gravity
γT Thermal diffusivity
q Temperature source

5

Some of the terms described in the equations above have different physical appli-
cations depending on the scale. In a mesoscale model, the stress tensor R and
source/sink term f can be used to represent the Coriolis forces; in a supermi-
croscale model, R and f can be used to represent aerodynamic resistance offered
by turbines.

Similarly, while Equations 2.4-2.5 constitute a two-equation turbulence model in
micro- and supermicroscale context, the turbulent dissipation term, ε, in Equation
2.4 is substituted with an approximation in a mesoscale context. This approxima-

tion is given by ε = (C
1/2
µ K)3/2/lt, where lt is computed as:

lt ≈
min(κz, 200m)

1 + 5Ri
(2.10)

Ri =
g
θ
∂θ
∂z(

∂u
∂z

)2 ≈ −GP Richardson number (2.11)

Therefore, the two-equation turbulence model can be reduced to a single-equation
model when considering a mesoscale context. Note that the stability correction
term in Equation 2.10, (1+5Ri), is replaced with (1−40Ri)−1/3 in convective con-
ditions. Finally, the remaining unexplained terms are constant, scalar coefficients
specified as:

Table 2.2: Scalar coefficients of governing equations for airflow

Cµ C1 C2 C3 κ σK σε
0.09 1.92 1.43 1.00 0.40 1.00 1.30

The mentioned sets of governing equations are not trivial to solve. The current
state-of-the-art is still utilizing numerical models for approximating airflow, and
the numerical methods differ depending on the scale of the relevant domain. A
coupled system of two numerical models at different scales is presented in the next
chapter.

2.2 HARMONIE-SIMRA: a coupled multi-scale
model for airflow data generation

This chapter presents a brief introduction to a coupled set of two numerical models
for solving the governing equations described in the previous chapter. Their intro-
duction here is meant to serve as a motivation for the use of data-driven methods
later on in the thesis. Details regarding the computational methods are therefore
out of the scope of this thesis, but the reader can refer to Rasheed et al. [38] and
Rasheed et al. [39] for more information.

The Hirlam Aladin Regional Mesoscale Operational Numerical prediction In Eu-
rope (HARMONIE) is a non-hydrostatic, mesoscale model “based on a two-time

6

level semi-implicit semi-Lagrangian discretization of the fully elastic equations, us-
ing a hybrid coordinate system in the vertical direction”[39]. The domain covered
by the HARMONIE model is shown in Figure 2.1a.

The Semi Implicit Method for Reynolds Averaged navier-stokes equations (SIMRA)
is a microscale model for anelastic flow. It utilizes the Boussinesque approximation
and has a fine resolution near wall boundaries to resolve interaction with terrain
and ocean surfaces. SIMRA “solves prognostic equations for all velocity compo-
nents, potential temperature and pressure”[39]. These variables are solved using
Equations 2.1-2.2 described above. Additionally, turbulent kinetic energy and tur-
bulent dissipation are solved using Equations 2.4 and 2.5, respectively. The domain
covered by the SIMRA model is shown in Figure 2.1b.

(a) HARMONIE domain
(b) SIMRA domain and mesh (Bessaker,
Norway)

Figure 2.1: Visual representation of the domains covered in numerical models for atmo-
spheric flow.

Source: Rasheed et al. [39]

The coupled HARMONIE-SIMRA system is formed by initializing the SIMRA
microscale model using interpolated information from the HARMONIE mesoscale
model. Table 2.3 shows how Rasheed et al. reports the computational resources
required to run the HARMONIE and SIMRA models. Although the specific compu-
tational models are omitted, their time complexity and use of resources is relevant
for later chapters.

As described, the coupled HARMONIE-SIMRA system is based on solving the
set of governing equations for airflow numerically, using the resources described in
Table 2.3. This thesis considers a data-driven generative model for solving these
equations. The generative model is based on a set of artificial neural networks
which, when fully trained, can solve the governing equations faster, potentially

7

Table 2.3: Computational details and resources used to run the HARMONIE and
SIMRA models. Recreated from Rasheed et al., [39].

Model Cores Domain size [km] Mesh elements Time [minutes]
HARMONIE 1840 1875× 2400× 26 46 · 106 87

SIMRA 48 30× 30× 2.5 1.6 · 106 13

several orders of magnitude. Before this model is presented, relevant background
for machine learning methods are covered.

2.3 Machine learning

Machine Learning (ML) is a field of study that has recently gained popularity
due to the increase in speed, availability, and capacity of computational power in
hardware, as well as the increased availability of large datasets. This development
has made ML algorithms realizable, as fundamental ML algorithms have previously
existed as purely theoretical due to their computational demand. ML techniques
are algorithms intended for a computer to perform actions or make conclusions
based on discovering patterns in data. Several approaches exist, depending on the
type of data and the task to perform. This thesis presents a model that utilizes
aspects in both supervised and unsupervised learning problems. Therefore, these
approached are explained, condensed from their description in [41, 16].

2.3.1 Supervised learning

Supervised learning is a task where an algorithm has access to a dataset consisting
of input-output pairs (x1, y1), (x2, y2), ..., (xN , yN). It is assumed that the outputs,
yi, are generated by an unknown function f(xi), where there are no restrictions
on the values or dimensions of xi or yi. The supervised learning task ultimately
attempts to approximate the function f(xi), given xi and yi.

Approximating this hypothesis, f̂(xi), for the true function f(xi) that is able to map
all inputs xi to outputs yi is not a hard task. However, the hypothesis should also
generalize to unseen data. An algorithm’s ability to generalize is usually evaluated
by withholding a test set during the training phase. A hypothesis is formed from
the training data, and its ability to generalize is evaluated on the test set. If an
algorithm is perfectly capable of classifying training data but performs significantly
worse on test data, it is said to be overfitted to the training data. Overfitting can
be avoided by carefully selecting appropriate algorithms for the task using a priori
knowledge of the task at hand.

Additionally, most modern algorithms are equipped with adjustable hyperparame-
ters. As no algorithm can be expected to work for any dataset, hyperparameters
allow tuning the algorithm based on prior knowledge of the applied data. In con-
trast, parameters refer to internal variables that are formed through the training
and constitute the algorithm’s hypothesis.

8

The selection of hyperparameter values is more often than not non-deterministic.
Several combinations of hyperparameters may lead an algorithm to converge, al-
though another set of values may lead to better performance. Therefore, hyper-
parameter tuning is standard practice while validating an algorithm. Tuning is
often done through trial and error, where the algorithm is run multiple times using
different sets of hyperparameters. Ideally, one would like to minimize the number
of hyperparameters to tune, as this optimization problem may also suffer from the
curse of dimensionality, which is explained further in Chapter 2.5. During the
tuning process, it is essential to avoid invalidating the results by peeking at the test
set. If the test set is used to improve the algorithm’s performance through tuning,
then some information from the test set has leaked into the learning algorithm
and corrupted the experiment. Therefore, it is common practice to withhold an
additional part of the training dataset for validation, commonly called a validation
set. There exist many different methods for splitting the data into training, valida-
tion and test sets, depending on the algorithm, and the nature and amount of the
available data. Among the most common methods is k-fold Cross-Validation (CV),
where the algorithm is run k times using a different fraction 1/k of the training set
as a validation set for each execution. This way, the whole training set is utilized
both for training and validation, and the validation performance is evaluated as an
average across the k executions. Only after the tuned algorithm is fixed and final
can it be evaluated on the test set for the final results.

Supervised learning tasks can either be intended for classification or regression
tasks. In a classification task, the target output values are represented by a finite
set of discrete values (e.g “Real”, “Fake”), often described as “labels”. In contrast,
a regression task involves approximating the output value(s) from a continuous
distribution of values (e.g. height 0-1000m). In both cases, the algorithm generates

a predicted output ŷi = f̂(xi), and receives feedback through a loss function,
L(yi, ŷi), to update the algorithm’s parameters between iterations in the training
data.

2.3.2 Unsupervised learning

Unsupervised learning is, in contrast to supervised learning, a task where an al-
gorithm has access to a dataset consisting of input data x1, x2, ..., xN ∈ X, with
no known corresponding output values y1, y2, ..., yN ∈ Y . The goal of an unsu-
pervised learning task is usually to draw inferences from the dataset, typically in
data where the underlying patterns are unknown. This task is less intuitive than
supervised learning due to the absence of a “correct” mapping, or “true” labels.
To signify the distinction (and relation) between this task and supervised learning,
let’s rephrase the supervised learning task; suppose that the input-output pairs
in supervised learning are represented by some joint probability density Pr(X,Y).
Now, supervised learning can be described as a density estimation problem and
the algorithm’s task is to approximate the conditional density Pr(Y |X), given the
relation Pr(X,Y) = Pr(Y |X) · Pr(X), where Pr(X) is the marginal density of the
values in X. The conditional density is normally found using a loss function in an

9

optimization problem to find the optimal hypothesis. Due to the (typically) low
dimensionality of Y in supervised learning, solving this optimization problem tends
to be sufficient, and estimating Pr(X) is not necessary [16].

In comparison, the unsupervised learning task is to directly find intrinsic proper-
ties of Pr(X) without any of the aids present in supervised learning. Furthermore,
the typical dimensionality of X tends to be significantly higher in unsupervised
learning tasks. Unsupervised algorithms, such as Principal Component Analysis
(PCA) attempt to map a sub-space of X, X̂ ∈ Rk, that explains the majority of
the variance in X, where X ∈ Rn and k ≤ n. Other algorithms such as Clustering,
are presented a dataset hypothesized to contain distinct categories of samples, for
which the algorithm attempts to explain Pr(X) using a set of simpler densities rep-
resenting distinct categories within the dataset. Due to the lack of an equivalent
to a loss function, there are no definitive measure of quality nor any conclusive ar-
guments for the viability of an algorithm. Therefore, one often resorts to heuristics
to select and evaluate an unsupervised learning algorithm.

2.4 Artificial neural networks

Although traditional ML algorithms have many application areas due to their rel-
atively simple designs and proofs of convergence, there is a limit to their use when
either the complexity or dimensionality of the data in question becomes large. Ar-
tificial Neural Networks (ANNs) improve upon these methods by being modeled
to approximate any function, disregarding the data complexity and dimensional-
ity. These properties come at a cost, typically concerning the sheer amount of
data, training time, and computational resources needed to approximate the de-
sired function. Essential building blocks of ANNs are introduced in this chapter,
using inspiration from their descriptions in [32] and [41].

The main inspiration for modeling ANNs is the human brain. Mental activity is
realized through an ensemble of electrochemical activations in neurons. With some
exceptions, individual neurons output a signal based on the sum of inputs from
interconnected neurons. If this sum exceeds the threshold potential, the neuron
is said to “fire”; otherwise, it does nothing [35]. An “artificial neuron” has a
similar structure; a linear combination of weighted inputs are summed and fed to
an activation function, which yields a scalar output. This structure can be modeled
as:

y = f(wTx+ b), (2.12)

where (w, x) ∈ Rn is the weight and input vectors, f : R → R is the activation
function and (y, b) ∈ R is the output and bias, respectively. The output is then
connected to the input of an arbitrary number of subsequent artificial neurons. A
simple model of an artificial neuron is visualized in Figure 2.2. These artificial
neurons often referred to as “nodes” or “units”, are assembled in linked layers. An
ANN is simply a collection of such layers, where the outputs of layer (i-1) are linked
to the inputs of layer (i), and the outputs of layer (i) are linked to the inputs of

10

Figure 2.2: A simple model of an artificial neuron.

layer (i+1), as presented in a simple example in Figure 2.3. Networks with this
type of architecture are said to be feed-forward neural networks. Other network
architectures exist, although they exceed the scope of this thesis and is left for the
reader to explore. Every ANN has at least one input layer and an output layer,
while the topology of the hidden layers is an important design choice that has a
significant impact on its properties.

2.4.1 Activation functions

Essentially, any differentiable function f : R → R has the potential for use as an
activation function. However, in the interest of keeping the computational time
low and enable the ANN to represent a nonlinear function, it is common to select
a simple, nonlinear function for this purpose. Due to the difficulty of designing
good activation functions, the typical choice changes as discoveries are made. At
the time of writing, a plethora of activation functions have emerged, and the choice
typically depends on the application. However, the Rectified Linear Unit (ReLU),
presented in Figure 2.4a, is one of the most commonly used activation functions in
ANNs today. ReLU is exceptionally simple, as it acts as a purely linear function as
long as the input is larger than zero. It improves upon the traditional Hyperbolic
Tangent (tanh) and Sigmoid activation functions by reducing the chance of suffering
from the vanishing gradients problem (Chapter 2.4.3), although it is still susceptible
to it. Leaky Rectified Linear Unit (LeakyReLU), presented in Figure 2.4b, avoids
this problem by introducing a weak, scaled negative slope for inputs less than zero.
Instead of completely cutting off the flow of negative values through the network,
LeakyReLU allows some negative values to pass through. Equations 2.13-2.15

11

Figure 2.3: Example ANN with a single hidden layer.

describe mathematical representations of the relevant activation functions.

Multiple activation functions are often used for a single ANN. Like the initial choice
of activation function, combining different activation functions is a design choice
and depends on the application area. For instance, one might choose ReLU as
the main activation function for hidden layers, but the application may require an
output between -1 and 1. In that case, one may choose to replace ReLU with tanh
in the output layer. tanh is presented in Figure 2.4c.

ReLU(x) = max(0, x) ReLU activation function (2.13)

LeakyReLU(x) = max(αx, x) LeakyReLU activation function (2.14)

tanh(x) =
2

1 + e−2x
− 1 Tanh activation function (2.15)

2.4.2 Loss functions

A measure of error is necessary for quantifying how well the ANN has approxi-
mated the true function. When the network is initialized with random weights,
it will naturally produce nonsensical outputs. Updating the network’s weights is
the only way to alter its hypothesis during training. Loss functions serve the pur-
pose of providing feedback to the network by quantifying the distance between the
network’s output and the target output. These are typically modeled as L(y, ŷ),
where L : Rn → R is some measure of distance or error. Consider the following

12

(a) ReLU (b) LeakyRelu (c) Tanh

Figure 2.4: Relevant activation functions used in ANNs.

loss function:

L(y, ŷ) =
1

N

∑
x

||y(x)− ŷ(x)||2 Mean Squared Error (2.16)

=
1

N

∑
x

||y(x)− f̂(wTx+ b)||2,

where N denotes the number of input-output pairs (x, y). This widely used loss
function represents the Mean Squared Error (MSE) between the target output and
the estimated output. Note that L(y, ŷ) ≥ 0. A perfect estimation leads to a loss
of zero, indicating that the network has found a sufficient mapping. Conversely, a
high loss indicates a poor hypothesis. Earlier, it was described that ANNs can ap-
proximate any function. With the introduction of artificial neurons, loss functions
and their properties, the training algorithm can be introduced.

By substituting ŷ(x) with f̂(wTx + b) in Equation 2.16, the loss function is no
longer represented only by the network’s output layer, but rather its full set of
layers. Thus, the loss can be spread across the entire network. When the loss
function is used to form a classic, unconstrained optimization problem:1

min(L(y, f̂(wTx+ b))),

then the ultimate goal of approximating a true function is synonymous to solving
the optimization problem. Gradient descent is a widely used optimization algo-
rithm in the context of training ANNs. Without going into detail, this algorithm
is based on an iterative updating scheme using the loss gradient:

θi+1 ← θi − α∇L(θi), (2.17)

where i is the current iteration, θ represents the parameters (weights and biases) in
the network, and α is the first hyperparameter to be introduced: the learning rate.

1Theory regarding optimization problems is not covered in this thesis; the reader is referred
to Nocedal & Wright [33] to explore this topic.

13

Notice that θ is not defined for i = 0, which motivates the need for a parameter
initialization scheme. However, applying this algorithm on an ANN induces a
more significant problem; calculating the loss gradient, ∇L(θi), wrt. each network
parameter. Fortunately, a simple and efficient algorithm to solve this problem was
popularized by Rumelhart et al. [40].

2.4.3 Backpropagation

Backpropagation is the backbone of learning in ANNs. Principles described this
far all lead up to this algorithm, which solves the seemingly impossible task of
adjusting values for each and every weight and bias in an arbitrarily designed
feed-forward neural network. Fortunately, the solution is relatively simple; back-
propagation utilizes the fact that the outputs of a layer are solely dependent on the
local parameters (weights and biases), its activation function and the outputs of the

previous layer. In combination with the chain rule, df(g(x))
dx = df

dg
dg
dx , backpropaga-

tion is able to explicitly distribute the loss gradient across all nodes in the network.
Notation and descriptions for backpropagation in this chapter are condensed from
Nielsen [32]. Their work includes intuitive interpretations of intermediate terms,
which is left for the reader to explore.

Establishing specific notation

Before deriving the relevant equations for this algorithm, some notation is necessary
to describe individual weights and biases in an arbitrary ANN. Table 2.4 describes
this notation and introduces an additional measure, δlj , which will be shown to be
particularly useful. For the purpose of keeping the notation as in [32], C(·) is used

Table 2.4: Notation for the backpropagation algorithm

wljk The weight for the connection from the kth neuron in
the (l − 1)th layer to the jth neuron in the lth layer.

blj The bias of the jth neuron in the lth layer.

zlj (
∑
k w

l
jka

l−1
j) + blj The weighted input to the jth neuron in the lth layer.

σ(·) The activation function.

alj σ(zlj) The activation of the jth neuron in the lth layer.

δlj
∂C
∂zlj

The error in the jth neuron in the lth layer.

temporarily to denote the loss function, L(·). A final addition to this notation is
its matrix form, which is defined by simply removing the subscript j from relevant
terms in Table 2.4. For instance, al represents the vector containing activations of
all neurons in layer l.

14

Deriving the equations

Consider a single neuron, j, in the output layer, L. With the established notation
and application of the chain rule, its error can be calculated as

δLj =
∂C

∂zLj
=

∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
σ′(zLj),

and the corresponding matrix form for all neurons in the output layer would be

δL = ∇aLC � σ′(zL), (2.18)

where � represents the Hadamard product (element-wise multiplication). It turns
out that finding δL aids in finding the error in the previous layer:

δL−1j =
∂C

∂zL−1j

=
∑
k

∂C

∂zLk

∂zLk
∂zL−1j

=
∑
k

δLk
∂zLk
∂zL−1j

=
∑
k

wLkjδ
L
k σ
′(zL−1j)

Similar to δL, this can be represented on matrix form as

δL−1 = ((wL)T δL)� σ′(zL−1) (2.19)

Errors for remaining layers can be found by backpropagating δL until it is calculated
for all layers:

δL−1 = ((wL)T δL)� σ′(zL−1)

δL−2 = ((wL−1)T δL−1)� σ′(zL−2)

...

δl = ((wl+1)T δl+1)� σ′(zl)

Using these errors, it is straight forward to explicitly distribute the loss across all
weights and biases in the network:

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

=
∂C

∂zlj
= δlj (2.20)

∂C

∂wljk
=
∂C

∂zlj

∂zlj
∂wljk

= δlja
l−1
k (2.21)

15

Vanishing gradients

Now it should clear why both the loss and activation functions are chosen to be
differentiable, as it is essential to the backpropagation algorithm. These derivations
also uncover some potential issues related to the choice of activation function.
Equations 2.18 and 2.19, express the errors’ dependencies on the first derivative
of the activation function. Recall the function tanh (Figure 2.4c). If its input is
sufficiently large, the output is on a near-flat slope and the corresponding derivative
is near zero. A neuron with these characteristics is said to be saturated, and learns
slow as a consequence.

The backpropagation algorithm

With the necessary notation and equations established, the backpropagation algo-
rithm can be defined.

Algorithm 1: The backpropagation algorithm

1 Initialized ANN with random weights and biases;
2 Input: Set input layer activations a1 with input data x.

3 Feedforward: For each layer l ∈ {2, 3, ..., L}, compute zl = wlal−1 + bl and

al = σ(zl).
4 Output error δL: Compute δL = ∇aLC � σ′(zL).
5 Backpropagate the error: For each layer l ∈ {L− 1, L− 2, ..., 2} compute

δl = ((wl+1)T δl+1)� σ′(zl).
6 Output: The gradient of the cost function is given by

7
∂C
∂wl

jk

= δlja
l−1
k and ∂C

∂blj
= δlj .

Output from Algorithm 1 is well suited for iterative updating schemes such as
gradient descent. Equation 2.17 presented the issue of calculating the loss gradient,
which now is solved by the introduction of backpropagation. The combination of
these methods enables an arbitrary feed-forward ANN to iteratively reduce its error,
and ultimately build a hypothesis that maps the input-output pairs. Although the
elements of ANNs and how they are trained is covered, their shortcomings have not
been addressed. In the beginning of this chapter, some of the issues were briefly
mentioned, and are generally associated with deep ANNs. The next chapter will
address the most common obstacles and how they are treated.

2.5 Deep learning

Deep learning is a term with no definitive root in literature, but is typically used
to underline neural networks designed with a “large” number of hidden layers.
A network that is considered “deep” today may change in the future. Deeper
networks have the potential to solve more complex problems, although there is no
way to determine the optimal topology of a network a priori. Increasing the amount
of hidden layers results in multiple obstacles for training, one of which being the

16

curse of dimensionality [3]. As the number of hidden layers increases, the number of
adjustable parameters increases exponentially. The curse of dimensionality dictates
that it is infeasible for an optimization problem to completely explore all states of
a high-dimensional model given a finite number of training samples. While the
strength of Artificial Neural Networks (ANNs) lies within their high-dimensional
structure, it is also their curse. This is the reason why deep neural networks are
notorious for requiring a large dataset and a lot of training to successfully solve
their optimization problem. However, a large dataset is not the only solution, as a
number of methods have been developed to reduce the number of parameters in a
deep network.

Due to the recent raise in popularity of deep learning, there are many different
network designs suited for different purposes. This thesis considers a particu-
lar network design consisting of two competing ANNs which will be presented in
Chapter 2.6. First, some elemental methods needed to construct these networks
are presented.

Convolutional layers

Up until this point, hidden layers in ANNs have been described as fully connected,
or dense, layers where the output of one node in a hidden layer is connected to the
inputs of all nodes in the next layer. In contrast, convolutional layers make con-
nections in small, localized regions of the input. These local receptive fields enable
Convolutional Neural Networks (CNNs) to take advantage of spatial structures in
data. Representing layers as 2-dimensional matrices, rather than 1-dimensional
vectors, makes it easier to illustrate this property. Figure 2.5 shows local receptive
fields in a convolutional layer as a sliding 3x3 window across a 7x7 input. Each win-
dow connects the inputs it covers to a neuron in the hidden layer, indicating that
the hidden neurons in this example have 9 weights and 1 bias. In this example, the
window is said to have a stride of 2, as it moves 2 spaces each time. Stride length,
along with the size of the local receptive fields are design choices that impact the
network’s topology and function. Padding the outer edges of the input can allow
the widow to move outside the original input dimensions, as shown in Figure 2.6.
Whereas hidden neurons in a fully connected layer have individual weights and
biases, neurons in a convolutional layer share theirs. With shared parameters, one
can interpret that all neurons in a hidden layer are looking for the same feature
at different spatial locations in their input. CNNs are therefore able to take the
translational invariance of data into account. For this reason, shared parameters
are often called filters or kernels, and the filtered inputs of a local receptive field
is called a feature map. A convolutional layer may have several filters looking for
different features. Using multiple filters adds a 3rd dimension, a feature space, to
the output.

To limit the number of parameters in a CNN, convolutional layers are typically
configured to produce an output with a smaller spatial size than its input. The

17

Figure 2.5: Local receptive fields in convolutional layers.

output size can be controlled to a certain extent:

O =
W −K + 2P

S
+ 1,

where O is the output height/length, W is the input height/length, K is the ker-
nel/filter size, P is the amount of padding and S is the stride length.

Pooling layers

Typically placed immediately after convolutional layers, the pooling layer summa-
rizes the convoluted outputs without adding any trainable parameters. Filters in
convolutional layers typically have some spatial overlap, as seen in Figure 2.5, which
may result in neighbouring outputs having similar traits. Figure 2.7 illustrates how
a max-pooling layer selects the highest activation in a 2×2 region, and discards the
others. Information regarding the feature’s exact location is blurred, but pooling
significantly reduces the number of parameters in the network.

Transposed convolution

While convolutional layers typically reduce the spatial dimensions of their input,
a transposed convolutional layer does the opposite. However, a transposed convo-
lution is not equivalent to the inverse operation of a convolutional layer. Consider

18

Figure 2.6: Zero-padding of size P = 1 in a convolutional layer.

Figure 2.7: Max-pooling layer in CNNs.

Figure 2.8, which illustrates a transposed convolution of a 2x2 input to a 3x3 out-
put. The operation is actually the same as in standard convolution, as seen in
Figure 2.5, although the input layer is padded to mimic a larger spatial resolution.
Here, a 2x2 input is padded in a specific way to form a 5x5 input. As a result,
the convolution reduces the spatial dimensions from 5x5 to 3x3, although the orig-
inal input was 2x2. Thus, a transposed convolutional layer can be considered like
any other convolutional layer, without adding any complexity for backpropaga-

19

tion. This type of layer is useful for tasks such as image reconstruction/upscaling,
or in the decoder in a encoder-decoder network. While there are plenty of fast,
interpolation-based up-scaling algorithms available, they lack the ability to learn
the means of interpolation from training data, which transposed convolution fa-
cilitates. For details on arithmetic and variations of transposed convolution, see
Dumoulin & Visin [9].

Figure 2.8: Transposed convolutional layer upscaling 2x2 input to 3x3.

Residual learning

In contrast to the hidden layer modifications mentioned earlier, residual learning
adds only a simple skip connection to avoid the vanishing gradients problem, thus
enabling very deep networks to be constructed. The author of this building block,
He et al. [17], refers to several deep learning competitions in which residual learning-
enabled networks are superior in a variety of applications, making it a formidable
addition to the deep learning building block arsenal.

Consider the illustrated residual skip connection in Figure 2.9. Assume thatH(x) is
the true function to be approximated by the hidden layers. If one hypothesizes that

20

Figure 2.9: Residual learning: building block

the set of hidden layers can approximate H(x), then it is equivalent to hypothesize
that they can approximate the residual function H(x) − x. This is realized by
letting the hidden layers fit the mapping F(x) := H(x) − x. Regaining H(x) is
simply done by adding skip connections as seen in Figure 2.9. Thus, the hidden
layers’ functionality remains the same, and the residual skip connection allows the
backpropagated gradient to traverse the skip connections [17].

2.6 Generative Adversarial Networks

”Generative Adversarial Networks is the most interesting idea in the
last ten years in machine learning.”

Yann LeCun, Director, Facebook AI (2016)

The generative-adversarial framework is a relatively new addition to the deep learn-
ing arsenal, and provides an interesting solution to “supervise” an unsupervised
learning problem. When Goodfellow introduced it in 2014 [11], CNNs had already
reached proficiency in image classification [25, 23, 44]. In 2015, a contribution by
Radford et al. [36] bridged the gap between CNNs models and their application in
unsupervised learning tasks by supplementing Goodfellow’s Generative Adversarial
Network (GAN) with a Deep Convolutional GAN (DCGAN).

An intuitive analogy for generative-adversarial frameworks is a competition be-
tween a forger learning to print fake cheques and an investigator learning to distin-
guish real and fake cheques. Initially, the forger’s fake cheques are horrible (imagine
a pile of random notes next to the real cheques), and would thus be quite easy to
distinguish. Luckily, it is also the investigator’s first day on the job; they have
no idea what a real cheque should look like. For each generation of fake and real
cheques, the investigator learns to discard the odd-looking notes placed on their
desk, and the forger is forced to try something else. After some time, the forger may
realize that a certain kind of perforated paper works better, then carefully selected
words, fonts and inks. It becomes increasingly hard to distinguish fake from real

21

cheques, which forces the investigator to recognize very specific properties, such
as valid number sequences for account numbers and signatures. This cycle may
continue indefinitely. It can be proven that, given unlimited resources, the forger
will end up generating real cheques, and thus the investigator will only have a 50%
chance of correctly classifying a forged cheque.

Generative models solve unsupervised learning problems in attempts to generate
samples of a high-dimensional target distribution. As mentioned in Chapter 2.3,
unsupervised learning tasks lack a measure of success; evaluating the validity of
a generated sample is a hard problem. Goodfellow et al. [11] proposed a novel
framework in which a generative model is trained in an adversarial process. Figure
2.10 illustrates this framework. A generative model, G, generates “fake” samples
of a distribution, G(z) = tf ∼ T ′ using inputs from a latent space, Z. An adver-
sarial model, D, receives both tf and samples of the true distribution, tr ∼ T , and
estimates the probability, D(t), of said samples originating from T . Thus, the gen-
erator’s goal is to fool the discriminator into believing that the generated samples
indeed belong to the true distribution; G attempts to find a mapping Z → T . This
competition can be modeled mathematically as a two-player minimax (zero-sum)
game using a convex-concave value function, V (G,D):

min
G

max
D

V (D,G) = Etr∼T [logD (tr)] + Etf∼T′ [log (1−D (G (z)))] (2.22)

However, this is only true if the investigator is able to learn optimally between each
iteration of fake cheques.

Figure 2.10: Visualized generative adversarial framework.

Thus, D is trained to maximize the probability of assigning the correct label on
true and generated samples, while G is trained to minimize the probability of D
assigning the correct label on generated samples. Corresponding loss functions are
shown in Equations 2.23-2.24. D aims to maximize Equation 2.23, while G aims
to minimize Equation 2.24.

LGAND = log(D(tr)) + log(1−D(G(z))) (2.23)

LGANG = log(1−D(G(z))) (2.24)

22

The GAN model converges when G and D reach a Nash equilibrium, which is
the optimal point of Equation 2.22. Ideally, this point corresponds to D having
a 50% chance of correctly classifying fake samples, coined as an ideal discrimina-
tor. Figure 2.11 illustrates a few, purely hypothetical, minimax game progressions.
Initially, the losses are expected to have large initial fluctuations, as both G and
D are learning from scratch. As both networks improve their performance, these
fluctuations diminish and the losses hopefully converge. The losses are inversely
correlated to a certain extent; since G and D have slightly different loss functions,
ultimately parameterized by their individual weights and biases, their losses do
change with respect to each other but tend to converge towards different values.
Moreover, D solves a much simpler, supervised learning problem compared to G
solving an unsupervised learning problem. As a result, D tends to experience
smaller loss fluctuations and faster convergence. Overall, one would expect to see
an initially low, but increasing discriminator loss before convergence, and the op-
posite for the generator loss. Uncertain convergence conditions make it hard to
determine whether the model has achieved a good local minima or not. GAN’s
training stability is also particularly fragile; there are multiple modes of failure
which may occur during training. Such modes can significantly impact the quality
of generated samples and are not necessarily trivial to identify.

Figure 2.11: Hypothetical visualization of the GAN minimax game, with variations

Before the most common failure modes are presented, some details surrounding the
training algorithm must be clarified. Algorithm 2 describes the original gradient
descent-based training algorithm for GANs. The only mentioned hyperparameter,
k, relates to one of the conditions described in Goodfellow et al. [11], that requires
D trained to optimality in each iteration to satisfy their global optimality proof.
The optimal discriminator D∗G is defined for a fixed G:

D∗G(t) =
PT (t)

PT (t) + PT ′(t)
(2.25)

Substituting D∗G into Equation 2.22 reformulates the minimax game for an optimal

23

Algorithm 2: Minibatch stochastic gradient descent training of generative-
adversarial networks. Hyperparameter: k ∈ N \ {0} is the number of steps
to apply to the discriminator. Rephrased from its definition in [11].

1 for number of training iterations do
2 for k steps do
3 • Sample minibatch of m noise samples {z(1), ..., z(m)} from prior Z.

4 • Sample minibatch of m examples {t(1), ..., t(m)} from data
generating, true, distribution T .

5 • Update the discriminator by ascending its stochastic gradient:
6

∇θD
1

m

m∑
i=1

[
logD

(
t(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

7 end

8 • Sample minibatch of m noise samples {z(1), ..., z(m)} from prior Z.
9 • Update the generator by descending its stochastic gradient:

10

∇θG
1

m

m∑
i=1

[
log
(

1−D
(
G
(
z(i)
)))]

11 end

D, given a fixed G:

max
D

V (D∗G, G) = Etr∼T [logD∗G(t)] + Etf∼T′ [log (1−D∗G(t))]

max
D

V (D∗G, G) = Etr∼T

[
log

PT (t)

PT (t) + PT ′(t)

]
(2.26)

+ Etf∼T′

[
log

PT ′(t)

PT (t) + PT ′(t)

]
Equation 2.26 is maximized when D∗G = 1

2 , which implies that PT ′ = PT . Rigorous
proofs of this relation to Jensen-Shannon Divergence (JSD) and Kullback-Liebler
Divergence (KLD) minimization are shown in Goodfellow et al. [11]. Thus, the hy-
perparameter, k, is intended to tune the approximation of an optimal discriminator
between each iteration. Note that k influences the algorithm’s time complexity
O(n ∗ (k + 1)), where n is the number of training iterations and the number of
network parameters are disregarded. Even a small increase in k will significantly
increase the training time.

2.6.1 GAN failure modes and how to avoid them

In practice, training GANs seldom results in converging to an ideal discriminator,
and is at the time of writing still an area of interest for research. Moreover, the

24

proofs of convergence make some unrealistic assumptions, such as unlimited re-
sources and training the discriminator to optimality between each iteration. The
latent space, Z and the true data distribution, T , are represented as probability
distributions in the convergence proofs. This implies that unlimited training sam-
ples are available, which is often not the case. Nevertheless, traversing an infinite
set of examples is infeasible in practice. Additionally, only an approximation to an
optimal discriminator can be achieved in each iteration of Algorithm 2. A higher
value of the hyperparameter k could provide a better approximation, but will also
drastically increase the training time. When the number of training iterations, n,
is typically chosen in the order of 105, k is very expensive to increase.

As a result of these assumptions, GANs are often unstable in practice and require
significant tuning to stabilize. Nevertheless, the generative model may still succeed
in finding a sufficient mapping depending on its application. For instance, an appli-
cation for art generation may not require a perfectly converged model to generate
satisfactory results. Safety-critical or physics applications would naturally have
stricter requirements for the model accuracy and consistency. This chapter covers
observable symptoms, consequences and causes of the most common GAN failure
modes, followed by recent and state-of-the-art methods developed to avoid these.

Vanishing gradients

Chapter 2.4.3 described the vanishing gradients problem as a consequence of deep
neural networks or saturated activation functions. In a GAN context, the van-
ishing gradients problem is referring to a saturated discriminator output, leading
to slow or halted generator learning. As mentioned, GAN’s convergence proof as-
sumes an optimally trained discriminator between each iteration. However, this
may inhibit the generator’s training; if the discriminator outperforms the gener-
ator significantly, then the generator may fail due to vanishing gradients from a
saturated discriminator output [1]. Consider Equation 2.24. If D is extremely con-
fident, and consistently classifies D(G(z)) ≈ 0.0, then the generator’s loss gradient
is also small. Due to the significant impact of saturating discriminator outputs
in GAN frameworks, recent contributions for loss functions are often specified as
either saturating or non-saturating.

Mode collapse

In Algorithm 2, each updating step for D considers a fixed G, and vice versa. In
G’s pursuit of fooling D, it might find a particular output that appears particularly
convincing. If D is not optimal, then it can assign a higher probability to certain
modes of the true distribution. For instance, if the true distribution contains an
equal number of cats and dogs, a non-optimal discriminator may assign a higher
probability to true samples of cats rather than dogs. To maximize Equation 2.24,
G produces more samples of higher-probability modes, and is said to overfit this
particular iteration of D. Thus, G collapses a wide range of elements in Z to a few
modes in T ′ capable of fooling D. In turn, the next iteration of a non-optimal D
learns to reject that particular mode. As a result, the generator cycles through a

25

Figure 2.12: Hypothetical mode collapse in GANs.

small set of specific modes which often don’t cover the entire distribution. Goodfel-
low originally named this behaviour after the Helvetica scenario, but is commonly
called mode collapse. Figure 2.12 illustrates a 1-dimensional, bimodal probability
distribution for which a hypothetical generator is trained to approximate. Initially
(left), the generator is randomly initialized between the two modes. Then (middle),
the generator may learn that a certain output resulted in a large ascent in its max-
imization problem, and moves its output toward this mode. Finally (right), the
generator collapses all its samples into a single mode of the true distribution. Of
course, the next discriminator iteration picks up on this mode collapse, and learns
to reject that mode, even if samples may be drawn from the true distribution.
Subsequently (not in figure), the generator finds the next mode, the discriminator
rejects that mode and the cycle continues. Mode collapse is easy to illustrate for
a 1-dimensional example, but can be hard to show for high-dimensional distribu-
tions. One exception is for computer vision tasks, where it is trivial to interpret
whether the generator has collapsed into producing a single flower, face or animal.
For distributions that cannot be easily visualized, mode collapse is harder to diag-
nose. Although mode collapse is traditionally attributed to a fault in the training
algorithm; specifically, Goodfellow [10] describes that the Nash equilibrium of the
minimax game in Equation 2.22 is not shared with the corresponding maximin
game:

max
D

min
G

V (D,G),

26

where the generator now lies in the inner optimization loop, i.e., it is asked to
map every point in Z to the sample that the discriminator believes to be the most
realistic. Simultaneous gradient descent is particularly susceptible to this, as it
does not differentiate between minimax and maximin. However, mode collapse
could also be attributed to a lack of capacity in both or either network. At the
time of writing, the described symptoms of mode collapse is generally understood,
although a sulotion to fix it completely has not yet been found. Some recent
modifications to the standard GAN training algorithms have improved the number
of modes explored by the generator and will be introduced after the other failure
modes are described.

Convergence failure

Algorithm 2 might never let Equation 2.22 converge to its Nash equilibrium. A
traditional ANN application such as image classification has a simple task of min-
imizing a single loss function, e.g. classification error rate; GANs attempts to
converge to its Nash equilibrium of two competing networks. This equilibrium can
be imagined to lie on a saddle point on the joint loss functions, given the theoretic
assumption that Equation 2.22 is convex-concave. Goodfellow [10] points out that
even for a trivial value function, V (x, y) = xy, the gradient dynamics form a cir-
cular orbit around its Nash equilibrium. It can be shown that for an infinitesimal
learning rate, the gradients will orbit the equilibrium infinitely. Moreover, a larger
learning rate may sent the gradients spiraling out to infinity.

Nagarajan & Kolter [31] show that, under more realistic assumptions, the theo-
retically convex-concave minimax game in Equation 2.22 is concave-concave. Not
only are concave optimization problems seldom stable, but this also suggests that
the generator’s minimization objective drives the model away from its equilibrium.
Then again, these are observations in the game-theoretic function space; the com-
peting networks are ultimately represented in parameter-space by ANNs that are
certainly not convex themselves.

Mode collapse is actually one of the more harmful manifestations of non-convergence,
as it represents an orbital rotation through a few modes of the true distribution,
rather than converging. Another interpretable manifestation can be related to the
discriminator’s prediction confidence; as more realistic samples are generated, the
discriminator’s accuracy gets closer to chance level, making its feedback to the
generator less meaningful, and eventually random when D(t) = 0.5. Thus, it is not
uncommon to store intermediate states of the model in case the generator starts
overfitting meaningless discriminator feedback [13].

A brief note on recent contributions

A plethora of modifications have been proposed both to alleviate failure modes
and to expand on the original GAN’s functionality. Although the mentioned fail-
ure modes are still relevant, the overall performance and stability of recent GAN
implementations have improved drastically. Authors often term their contribu-

27

tion as “major modification”GAN-“auxiliary modification”, resulting in a jungle
of different naming conventions either relating to the training algorithm, frame-
work architecture or the input data conditioning. For instance, modifying a con-
ditional GAN model with deep, convolutional neural network architecture using
Wasserstein loss in the training algorithm with gradient penalty could be termed
a “cDCWGAN-GP”. These abbreviations may become long, thus some authors
resort to naming the model after the task it set to solve instead, such as SRGAN
[27] for the computer vision super-resolution task. Different naming conventions
can therefore make it troublesome to find relevant literature. GANs are becoming
highly popular; multiple improvements for a wide variety of GAN-based applica-
tions are published each year, especially for computer vision tasks. Only a few,
relevant and/or impactful contributions are mentioned here, but the reader is en-
couraged to explore the numerous GAN modifications available. Hereafter, the
original GAN model will be referred to as “Goodfellow GAN”.

Training algorithm modifications

Goodfellow et al. proposed a non-saturating modification to their original Equation
2.22 to avoid vanishing gradients; instead of minimizing log(1 − D(G(z))), the
generator could attempt to maximize log(D(G(z))) instead. Equations 2.27-2.28
show the non-saturating loss functions. LGAND is unchanged, but LGANG∗ is slightly
different from Equation 2.24.

LGAND = log (D (tr)) + log (1−D (G (z))) (2.27)

LGANG∗ = log (D (G (z))) (2.28)

While this modification might seem trivial, the resulting set of equations can no
longer form the fundamental minimax game and is therefore only a heuristic ap-
proach. Although Equation 2.28 provides stronger gradients for the generator in
early training, it also tends to make the model highly unstable. Arjovsky & Bottou
[1] show that this non-saturating loss results in large, noisy updates in the gener-
ator’s gradient norms, unless the model has converged already. Furthermore, this
behaviour is shown to drastically lower the quality of generated samples.

Arjovsky et al. [2] introduced Wasserstein GAN (WGAN): a GAN variant that is
quite different from the Goodfellow GAN’s optimization problem. WGAN’s popu-
larity has lead it to be a typical benchmark comparison against novel contributions
and present in various stability analyses. Since WGAN is not directly applied in
this thesis, only a brief introduction is presented. Instead of approximating a JSD
minimization between the true and generated distributions, Arjovsky et al. pro-
pose a minimization of the Earth Mover’s Distance (EMD), i.e. the Wasserstein-1
distance, between them instead. This metric is shown to be an integral probabil-
ity metric (IPM), which inherently enforces a 1-Lipschitz constraint on the model.
Furthermore, they replace the discriminator with a critic that performs a regres-
sion rather than a binary classification. As a result, the WGAN critic can be
trained to optimality in each iteration without risking the saturation-induced is-
sues seen in Goodfellow GANs. However, to uphold a 1-Lipschitz critic, WGAN

28

requires that its critic’s parameters (weights and biases) have a magnitude restric-
tion. In their original paper, this was enforced through weight clipping, e.g. forcing
−0.1 < w, b < 0.1 after each parameter update. They emphasize that weight clip-
ping is far from ideal to ensure Lipschitz continuity. Gulrajani et al. [14] improved
this in their proposed WGAN with gradient penalty (WGAN-GP) by regularizing
the critic parameters.

Arjovsky et al. [2] claims that mode collapse is impossible in WGANs, given the
same assumption of training the critic to optimality. Similar to Goodfellow GAN,
WGAN requires multiple critic updates per generator update. As mentioned for
Goodfellow GANs, increasing the number of critic iterations per generator iteration
results in a substantial increase in training time. The WGAN training algorithm
(Algorithm 4 in Appendix) shows a slightly more specific training algorithm com-
pared to Algorithm 2, as it specifies that the RMSProp optimizer should be used as
opposed to a generic gradient-based optimizer in Goodfellow GAN. Arjovsky et al.
[2] attributed events of training instability in WGAN to the use of momentum-based
gradient optimizers such as Adam. Conversely, Gulrajani et al. [14] recommends
implementing the Adam optimizer for WGAN-GP.

Finally, Jolicoeur-Martineau [21] proposes a family of Relativistic GANs (RGANs)
and Relativistic Average GANs (RaGANs) that modifies the original training al-
gorithm by targeting the discriminator’s development in predicting the probability
of real data being sampled from the true distribution. Towards the end of (suc-
cessful) training in Goodfellow GANs, the discriminator ends up predicting that
both real and fake samples as real. RGAN takes into consideration the a priori
knowledge that half of the samples are indeed fake, ensuring that D(tr) decreases
as D((G (z)) increases. Jolicoeur-Martineau argue that this relativistic property
results in a more accurate approximation to JSD minimization for non-IPM-based
GAN models. Moreover, it can be shown that IPM-based GANs, such as WGAN,
inherently possess the relativistic property and are a subset of RGANs as a result.

Jolicoeur-Martineau presents empirical evidence from computer vision experiments
indicating RaGAN’s improved stability compared to Goodfellow GAN and superior
performance compared to WGAN. Furthermore, RaGAN with a gradient penalty
outperforms WGAN-GP using only a single discriminator update per iteration,
significantly reducing the amount of time needed for training. These results are
promising, but purely empirical.

Only RaGAN is presented here since it is directly applied in Chapter 3; the reader
is encouraged to explore the other variants proposed by Jolicoeur-Martineau [21].
The relevant loss functions are shown in Equations 2.29-2.30, and Figure 2.13 shows
how they are envisioned to alter the discriminator’s predictions during training
compared to a Goodfellow GAN.

LRaGAND = −Etr∼T

[
log
(
D̃(tr)

)]
− Etf∼T ′

[
log
(

1− D̃(tf))
)]

(2.29)

LRaGANG = −Etf∼T ′
[
log
(
D̃(tf)

)]
− Etr∼T

[
log
(

1− D̃(tr))
)]
, (2.30)

29

where

D̃(tr) = σ (C(tr)− Etf∼T ′C(tf)),
D̃(tf) = σ (C(tf)− Etr∼TC(tr)),
and C(t) is the preactivation of the discriminator output, D(t) = σ(C(t)). Yet,
they do not address RaGAN’s susceptibility to any failure modes.

Figure 2.13: Goodfellow GAN vs. RaGAN discriminator prediction development during
training. Plots reproduced from Jolicoeur-Martineau [21].

Input data conditioning

So far, details regarding the latent space, Z, have been lacking. In a standard GAN
configuration, Z is typically chosen to be a wide Gaussian probability distribution
on an arbitrary manifold. Mirza & Osindero [30] propose a Conditional GANs
(cGANs) with additional input layers in both the generator and discriminator to
enable the model to learn a multi-modal model. By conditioning inputs with
label data, y, to the generator and discriminator, a cGAN is able to generate
specific modes of a distribution. The minimax Equation 2.22 is slightly modified to
accommodate conditional terms D(tr|y) and 1−D(tf |y). For instance, Goodfellow
GANs could learn to generate fake MNIST [26] samples, but one cannot control
the generator to generate specific digits. cGAN includes a one-hot encoded digit
label as input, and the corresponding digit sample will be generated.

GAN training “hacks”

The summary of the NIPS 2016 Tutorial [10] for training Goodfellow GANs describe
multiple tips, or “hacks”, for improving training stability and performance. Some
relevant methods are presented here, but note that these are mostly based on
empirical evidence and heuristics. The tutorial itself underlines that the following
methods have shown to be helpful in some contexts, and hurtful in others. A
contribution by Salimans et al. [42] contain similar tips and tricks.

30

• One-sided label smoothing: intends to inhibit the discriminator from
producing extremely confident predictions. Especially early on, the dis-
criminator may become highly confident in its predictions, potentially re-
sulting in vanishing gradients for the generator. To combat this, Salimans
et al., Goodfellow ([42, 10]) suggest smoothing the labels (yi in Chapter
2.3.1) fed to the discriminator from “hard” labels lreal = 1.0, lfake = 0.0 to
lreal = 0.9, lfake = 0.0 for instance. Both authors explicitly advise against
smoothing labels for fake data, with the argument that the model should
never encourage choosing an incorrect class, but only reduce the confidence
in the correct class. This can be shown by adjusting the optimal discrimi-
nator Equation 2.25 with the label smoothing terms α and β for smoothing
real and fake labels, respectively.

D∗G(t) =
(1− α)PT (t) + βPT ′(t)

PT (t) + PT ′(t)
(2.31)

Equation 2.31 shows how label smoothing affects the optimal discriminator.
When β is zero, the only effect is that the optimal discriminator value is scaled
down. If β is nonzero, the dynamics of the optimal discriminator changes.
For instance, if PT (t) < PT ′(t), the discriminator will rather encourage the
generator to generate samples that resembles the input data rather than true
samples.

• Noisy labels: typically refers to adding a small random chance of the labels
to flip, i.e, lreal = 0.0, lfake = 1.0. In this thesis, noisy labels will rather refer
to an addition to the label smoothing method. Noisy labels adds stochasticity
to label smoothing. A small amount of noise, η ∼ N (0, 0.05), is added to the
smoothed labels. The resulting labels are clipped to stay within the range
0.0 ≤ (lreal + η, lfake + η) ≤ 1.0.

It is worth noting that these hacks were suggested for the Goodfellow GAN model,
and might not necessarily be applicable for more recently proposed GAN modifi-
cations. For instance, RaGAN inherently suppresses the discriminator’s prediction
confidence; inhibiting the discriminator further through label smoothing might not
contribute towards model stability. Due to the heuristic nature of these hacks,
experimentation is required to assess their impact on a specific model and task.

Sønderby et al., Arjovsky & Bottou [46, 1] suggested to add a small instance
noise, ε ∼ N (0, σ2), to real and fake samples before input to the discriminator.
The authors show that if T and T ′ are disjoint, then there is always a perfect2

discriminator between them. Instance noise is added to make the probabilistic
divergence (e.g. JSD) between the T and T ′ well-defined. Like label smoothing,
adding instance noise changes the optimal discriminator:

D∗G(t) =
PT+ε(t)

PT+ε(t) + PT ′+ε(t)
(2.32)

2Not to be confused with an optimal discriminator

31

During training, ε is annealed gradually such that the optimal discriminator returns
to Equation 2.25 toward the end of training. While this addition resembles other
heuristic hacks, is has been backed in a GAN convergence study by Mescheder et al.
[29]. Since instance noise target divergence minimization in the fundamental GAN
framework, this method might be more applicable to more recent models compared
to label smoothing.

Summary

Since this chapter covers a wide range of GAN contributions, a short summary of
the most relevant information is provided.

• GANs are notoriously hard to train, and can often suffer from vanishing
gradients, mode collapse and convergence failure.

• WGAN introduces a new minimization task with an IPM (EMD) that en-
forces a 1-Lipschitz constraint on the model. The authors claim that WGAN
cannot suffer from mode collapse if the discriminator is trained to optimality,
which still requires a significant increase in total training time.

• RGAN and RaGAN better approximate JSD minimization in practice by uti-
lizing the a priori knowledge that half of the samples fed to the discriminator
are fake. The author showed how IPM-based GAN models are inherently rela-
tivistic and how the relativistic property can be added to any non-IPM-based
GAN model. They also presented empirical evidence of RaGAN outperform-
ing WGAN while only requiring a single discriminator update per generator
update. RaGAN is directly implemented in this thesis.

• cGANs use conditional labels to generate specific modes of a target distribu-
tion.

• Label smoothing aims to avoid the vanishing gradients problem by making
the discriminator less confident in its predictions on true samples. Smoothing
fake labels may change the dynamics of the optimal discriminator (Equation
2.31) adversely.

• Noisy labels typically refers to randomly flipping labels of real and fake data.
In this thesis, it refers to adding stochasticity to the label smoothing hack.

• Instance noise makes the JSD minimization task well-behaved by altering
the (possibly) disjoint true and approximated distributions by adding an
annealing Gaussian noise to the true and generated samples.

2.7 Single Image Super-Resolution GANs

Single-Image Super-Resolution (SISR) describes the classic computer vision task
of recovering a High-Resolution (HR) image from a single LR image. LR images

32

are produced by downsampling High-Resolution (HR) images:

ILR = f(IHR),

where f represents the downsampling function. The SISR task is then to find
an inverse mapping, g ≈ f−1 such that LR images can be used to approximately
reconstruct their corresponding HR images, denoted Super-Resolution (SR) images:

IHR ≈ ISR = g(ILR) = f−1(ILR) +R,

where R is a residual. This inverse problem is under-determined due to the amount
of information loss during downsampling and the lack of any governing equations
that model inter-pixel relations. Therefore, there is no unique one-to-one mapping
to recover any HR image from LR [19].

Many interpolation-based super-resolution algorithms exists. Although these are
simple and fast algorithms, they also suffer from significant blurring and/or ar-
tifacting in the SR image, especially when the image contains high frequency or
complex details. In contrast, ANNs have shown great potential to recover plau-
sible SR images from LR in recent years. CNN-based SISR was first introduced
by Dong et al. [8], whom introduced the Super-Resolution Convolutional Neural
Network (SRCNN). Their method produces SR images of significantly higher Peak
Signal-to-Noise Ratio (PSNR) compared to traditional methods, and marks the
start of deep learning-based image super-resolution. However, the SRCNN uti-
lizes a Mean Squared Error (MSE) based loss function (Equation 2.16 in Chapter
2.4), which has the intrinsic property of averaging the error in the entire image.
Equations 2.33-2.34 describe PSNR and MSE in a SISR-context.

PSNR = 10 ∗ log10(max2
I)− 10 ∗ log10(MSE) (2.33)

MSE =
1

n

n∑
i=1

(IHRi − ISRi)2 (2.34)

where the maximum fluctuation term, maxI , is defined as the maximum possible
pixel-value in the image; for images with 8 bits per color channel, this value is
28 − 1 = 255. Quantifying a meaningful difference between two images is a hard
problem. While the PSNR metric has been used extensively, it is based on MSE.
PSNR has been shown to suffer from large variations even for indistinguishable
distortions, rendering it a non-ideal metric [52].

A brief note on digital image processing

There are statistical dependencies among pixels in an image due to objects’ geo-
metrical or structural properties, especially for neighboring pixels. This inter-pixel
redundancy is one of the bases for image compression algorithms, and conversely
enables pixel prediction based on its neighbors. Furthermore, some visual informa-
tion represented in an image is more significant for human perception than others.
For instance, contrast (brightness change) contributes significantly more towards

33

perception than fine details or gradual changes in color. The latter properties are
examples of psychovisual redundant information, and are often targeted by image
compression algorithms. Removing psychovisual redundant information from an
image does result in a quantitative loss, e.g, measurable MSE between the original
and compressed image, although the perceived difference is negligible or unnotice-
able [48].

2.7.1 Introducing perceptual loss

Significant improvements to ANN-based SISR were made by Johnson et al. [20],
introducing a deep convolutional perceptual loss for a residual CNN-based style-
transfer and super-resolution. Their perceptual loss uses ReLU activations at mul-
tiple locations in the convolutional part of the VGG16 [44] network pre-trained on
ImageNet [6]. Further SISR improvements were made by Ledig et al. [27], who
applied a similar perceptual loss in their proposed Super-Resolution Generative
Adversarial Network (SRGAN). However, they used a deeper network, VGG19,
for their perceptual loss, extracting the ReLU activations of VGG19-543. Finally,
Wang et al. [50] proposed an Enhanced Super-Resolution Generative Adversarial
Network (ESRGAN) model that improves upon the SRGAN model by slight al-
terations in perceptual loss, implementing a relativistic discriminator (RaGAN),
and proposing a novel Residual-in-Residual Dense Block (RRDB) without batch-
normalization. In fact, ESRGAN achieved 1st place in the 2018 PIRM Challenge
on Perceptual Image Super Resolution [4].

Figure 2.14 illustrates the framework of a SISR task in a GAN context. Note that
the main difference between this and the Goodfellow GAN framework shown in
Figure 2.10 is the latent space, Z. Now, Z is chosen to be the set of LR images,
ILR, found through applying a downsampling function, f , on the HR images, IHR.
Recall the description of supervised vs. unsupervised learning in Chapter 2.3.
GANs were introduced as a framework that typically accommodate unsupervised
learning tasks; SISR utilizes a content-aware difference between a generated SR
image and its corresponding HR ground truth image. This difference is embedded
in the generator’s optimization problem, for instance in the form of a perceptual loss
as described above. Therefore, one can consider GAN-based SISR as a supervised,
high-dimensional regression task in an unsupervised framework.

2.7.2 The Learned Perceptual Image Patch Similarity metric

Deep perceptual features have not only been applied to loss functions in GAN-
based SISR tasks; the Learned Perceptual Image Patch Similarity (LPIPS) was
introduced by Zhang et al. [52] for evaluating similarity between images. They
show that traditional metrics such as PSNR and SSIM often disagree with human
judgement of image similarities, and propose a novel perceptual metric based on

3VGG19-54 denotes the activations of the 4th convolutional layer before the 5th max-pooling
layer of a pre-trained 19-layer VGG network [44]

34

Figure 2.14: Single-Image Super-Resolution task in a generative-adversarial context.

feature distances in light-weight CNNs. This is somewhat similar to the VGG-
based perceptual losses described in Chapter 2.7.1, although LPIPS conserves the
spatial dimensionality of its inputs. This allows feature differences to be spatially
correlated with the input, i.e. one can visualize where and how severely the images
differ from each other.

• Feed reference and distorted image, x, x0 into network F .

• Extract feature maps from multiple layers, L, and unit-normalize in feature-
space, defined as ŷl, ŷl0 ∈ RHl×Wl×Cl for layer l ∈ L.

• Scale activations by vector wl ∈ RCl and compute the L2 distance.

• Average L2 distances spatially and sum in feature-space.

The L2 distance is defined as:

L2(x,y) =
∑
i

(
(xi − yi)2

)
Ultimately, the LPIPS metric is defined as:

d(x, x0) =
∑
l

1

HlWl

∑
h,w

||wl � (ŷlhw − ŷl0hw)||22 (2.35)

Note that spatially localized feature differences can be obtained by not computing
the spatial average of L2 distances. CNNs used for this metric are pre-trained
AlexNet [24], VGG [44] and SqueezeNet [18] architectures. The authors show “the
unreasonable effectiveness” of using such deep features as a perceptual metrics,
with significantly better correlation with human judgement. Moreover, a distance-
based metric provides a lower bound where the images are identical, in contrast to
the unbounded PSNR metric.

35

2.7.3 Enhanced Super-Resolution Generative Adversarial Net-
work for airflow velocity data

Chapter 2.6 presented how GANs can approximate high-dimensional distributions
using a ANN-based generative-adversarial approach. The previous chapter showed
how such models are used in SISR tasks to reconstruct HR images from LR, and
how SISR performance has improved following the introduction of deep perceptual
features. This thesis considers an ESRGAN model, modified for application on
3-dimensional (u,v,w) airflow velocities spanning a 2-dimensional horizontal grid.
This data structure is similar to RGB images, as they contain 3 color channels
(r,g,b) spanned across a 2-dimensional bitmap. Real-world data collected from
the coupled HARMONIE-SIMRA system (Chapter 2.2) is used to train the model.
Work done by Tran et al. [47] shows promising results when applying the ESRGAN
architecture for reconstruction of HR velocity fields from LR at a scale of both 2x
and 4x. However, they also raise doubts related to the applied quality metric,
statistical confidence and uncertainty in the model output with respect to safety
critical applications. These issues are addressed and quantified in this thesis to
further development of the model. Thus, the modified ESRGAN is presented here,
as implemented by Tran et al. [47] and Vesterkjær [49].4

Architecture

Figure 2.15 shows the architecture of the discriminator and generator. The gener-
ator architecture consists of an initial convolutional layer, 16 consecutive Residual-
in-Residual Dense Blocks (RRDBs), two convolutional upsampling blocks, and two
1x1 convolutional layers with 5x5 filters at the output. These 1x1 convolutions
functions as a feature space pooling while maintaining the spatial dimensions. The
discriminator is a typical VGG structure without max-pooling layers. It consists
of 5 consecutive convolutional blocks, where the number of 3x3 filters are doubled
after each block, increasing from an initial 128 filters to 1024 filters, while the spa-
tial resolution is similarly halved from 128x128 to 4x4. Finally, the discriminator’s
classifier is constructed from two dense layers. The first layer reduces the 1024x4x4
input vector to 100, and the second layer reduces these to a single output value.
All layers in both the generator and discriminator use the LeakyReLU activation
function, except for the output layers. In a Goodfellow GAN model, the discrimi-
nator’s output layer would use a sigmoid activation function to represent the binary
classification probability, but this activation is encapsulated in the adversarial loss
function.

An auxiliary feature extractor network is used to calculate a perceptual loss between
the reference and super-resolved velocity fields, which is added to the generator’s
loss function. With a similar structure as the discriminator, the feature extractor
consist of the convolutional part of a VGG19 network, shown in Figure 2.16. To
keep the figure compact, ReLU activations between consecutive convolutional layers

4Some discrepancies were found between the documented work and the Python implementation
obtained from said author. This thesis describes their model as implemented in their original code.
As a result, the model description will deviate somewhat from theirs.

36

(a) ESRGAN discriminator acrhitecture.

(b) ESRGAN generator architecture.

Figure 2.15: ESRGAN archtecture.

Source: Vesterkjær, [49]

are not shown. Features are extracted from VGG19-54, which corresponds to the
activations of the 4th convolutional layer before the 5th max-pooling layer. The
feature extractor is not trained along with the generator and discriminator; it is pre-
trained on the ImageNet dataset [6] and standardizes (subtracts mean and divide by
standard deviation) its input data channel-wise according to precalculated means
and standard deviations from ImageNet.

37

Figure 2.16: ESRGAN feature extractor network. Although not depicted, there are
ReLU activations after each convolution.

Loss Functions

A relativistic average discriminator is implemented, using Equations 2.29-2.30 to
compute the adversarial losses. While the discriminator is trained purely on adver-
sarial loss, the generator utilizes the weighted sum of two additional loss functions;
perceptual loss is found by calculating the L1 distance between the generated SR
and true HR images’ feature activations of VGG19-54, and pixel (content) loss is
calculated as the L1 distance between the corresponding SR and HR images.

L1(x,y) =
∑
i

|xi − yi| L1 distance (2.36)

LPixel1 = L1(IHR, ISR) Pixel loss (2.37)

LPerceptual1 = L1(F (IHR), F (ISR)) Perceptual loss (2.38)

(2.39)

where F (·) is the VGG19 feature extractor activations for layer VGG19-54. This
implementation is equivalent to the original ESRGAN model, and the resulting loss
functions can be modeled as:

LESRGAND = LRaGAND (2.40)

LESRGANG = LPerceptual1 + λLRaGANG + ηLPixel1 , (2.41)

where λ = 0.005 and η = 0.01 discount the adversarial and pixel losses, respectively.
Note that the perceptual loss is weighted 200 times more than the adversarial loss,
and 100 times more than the pixel loss. Wang et al. [50] denotes the entire Equation
2.41 as their “perceptual loss”. In this thesis, “perceptual loss” refers only to the
term LPerceptual1 in the same equation.

Training algorithm

Algortihm 12 shows a simplified Both the generator and discriminator use Adam
optimizers to backpropagate loss gradients and update their network parameters

38

[22]. The optimizers are linked to a multi-step learning rate scheduler which lowers
the learning rate after the model has reached specified milestones during training.
This is also similar to the ESRGAN model, although the learning rate schedule’s
frequency is modified. Furthermore, the discriminator is set to train twice as often
as the generator. Unlike ESRGAN, this model does not consider any pixel loss-
based pre-training of the generator. Specific hyperparameters are shown in Chapter
3.

Algorithm 3: Simplified ESRGAN training algorithm for airflow data, mod-
ified from Algorithm 2

1 for number of training iterations do
2 for k steps do
3 • Sample minibatch of paired HR and LR velocity fields.
4 • Generate paired HR and SR velocity fields by passing LR data

through the generator.
5 • Update the discriminator by ascending its stochastic gradient:
6

θD ← ∇θDLRaGAND

7 end
8 • Update the generator by descending its stochastic gradient:
9

LESRGANG = LPerceptual1 + 0.005 · LRaGANG + 0.01 · LPixel1

10

θG ← ∇θGLESRGANG

11 end
12 .

39

Chapter 3

Methods

This chapter describes the equipment and methods used to achieve the results
presented in Chapter 4. Three distinct experiments are presented:

I Stability analysis of previous work on ESRGAN with airflow.

II Assessing the validity of applying a perceptual SISR method to airflow data.

III High-altitude airflow reconstruction with ESRGAN.

Hereafter, these experiments will be addressed as Experiment I, II, and III, respec-
tively.

3.1 Hardware specification

As mentioned in Chapter 1, the recent development in computational hardware
is one of the key factors for the viability of executing deep learning algorithms.
However, this does not mean that any modern computer is able to execute such an
algorithm. The arguably most essential tool is the GPU, which is not necessarily
present in every computer. Some of todays mid- to high-end GPUs are capable
of realizing ANNs, but their capacity is limited as a result of being directed at
consumers. In order to facilitate deep neural networks and large datasets, it is
necessary to utilize high-capacity General Purpose GPUs (GPGPUs) intended for
industrial purposes.

All models in Experiment I were run on the NTNU IDUN computing cluster [45].
IDUN is an ongoing cooperative High Performance Computing (HPC) project be-
tween the faculties at NTNU and its IT division, created for the purpose of rapid
testing and prototyping HPC software. At the time of writing, the cluster consists
of more than 70 nodes and 90 GPGPUs. Half of the nodes are equipped with at
least two Nvidia P100 or V100 CUDA-compatible GPGPUs. Each node contains

40

two Intel Xeon cores, 128-768GB DDR4 RAM and is connected to an Infiniband
network.

A single node using one GPGPU on this cluster is sufficient to train the models in
Experiment I and III, although the real-time training duration could be improved
if parallel-computing principles were implemented (i.e. using multiple GPUs or
even nodes simultaneously). Experiment II can be run on virtually any computer.

3.2 Software specification

Two different softwares are used for visualizing collected data in this thesis. The
Python library “matplotlib” is used for most 2D visualizations, including all plots
in Experiment I, and RGB representations in Experiment IIa. The “Mayavi” appli-
cation was used through their Python scripting API “mlab” for 2D and 3D vector
field visualizations and feature activation maps in Experiment II and III [37]. The
neural network architecture is implemented in Python 3.7.2, using the deep learning
library PyTorch [34].

3.3 Data generation process

This chapter describes the initial data preprocessing shared across all experiments
using airflow data, unless specified otherwise. Airflow data used in this thesis
originates from the coupled HARMONIE-SIMRA system (Chapter 2.2) and was
downloaded from the THREDDS web server [15] using a Python script. Two
files are generated per day, each containing hourly averaged data for the time
intervals 00:00-12:00 and 12:00-24:00, respectively. Consequentially, there is 1 hour
of overlap between each subsequent file. The files are generated in the Network
Common Data Form (NetCDF), for which the Python library netcdf4 was used to
load the files’ content. Specific variables utilized from the data are presented in
Table 3.1 and the full list of variables is shown in Table B.1.

Table 3.1: Relevant variables in the netCDF files.

Variable Descripton Unit
x wind ml Wind velocity along x-axis (u) [m/s]
y wind ml Wind velocity along y-axis (v) [m/s]

upward air velocity ml Wind velocity along z-axis (w) [m/s]
geopotential height ml Geopotential height [m]

All variables in Table 3.1 share the same dimensions, (time, l, y, x) = (13, 41, 136,
135), as dictated by the domain specified in Chapter 2.2. Intuitively, the three
latter dimensions (l, y, x) represents the 3-dimensional geographic domain covered
by the HARMONIE-SIMRA system. Thus, the set of wind velocity variables,
(u,v,w), represent the simulated 3-dimensional velocity field within this domain.
The first dimension (time) represents what time of day the simulated velocity field

41

corresponds to. Date information is stored in each filename. Figure 3.1 illustrates
a randomly sampled velocity field from this data. Note that the axes are scaled for
visualization, and do not accurately represent the spatial dimensions of the SIMRA
domain.

Figure 3.1: Full 3D velocity field sampled from the HARMONIE-SIMRA coupled sys-
tem.

All experiments consider datasets consisting of velocity fields sliced from a horizon-
tal 2-dimensional sub-space of the domain, with respect to the selected geopotential
height over the surface. Hereafter, the term “sample” refers to such a horizontal
velocity field sampled at a point in time, collected from data in the NetCDF files.
This is visualized in Figure 3.2. Moreover, to conform with the nomenclature as-
sociated with neural networks, the velocity components (u, v, w) in a sample will
be referred to as “channels” of the sample.

Before shaping the samples for input into a neural network, they must undergo some
preprocessing as they were stored as “masked arrays” (numpy.ma.MaskedArray),
which are not directly compatible with the implemented neural network model.
These arrays contain masks to indicate invalid values in the dataset, likely due
to errors or failures in the simulator. A “true” mask indicates the presence of an
invalid value; conversely, a “false” mask indicates a valid entry. Coincidentally,

42

(a) The effect of geopotential height.
Same colormap scaling as in Figure 3.1.

(b) Top view. Rescaled colormap.

Figure 3.2: Sliced velocity field from the bottom of the 3D domain of Figure 3.1.

the majority of the masked invalid data were present near the domain boundaries.
These were avoided by truncating the edges along the x and y axes, resulting in the
new dimensions being (l = 41, y = 128, x = 128). Further, the resulting dimensions
for x and y correspond to the dimensions used in the original ESRGAN paper [50].
A few unmasked invalid values were present in the center of the domain. These
were ignored by enforcing a maximum threshold value for valid entries. Since
the relevant variables contain wind speeds, this threshold was set to 100 [m/s] to
accommodate for potential strong winds. Observed unmasked invalid entries tend
to have values larger than 1022[m/s], although the minimum observed (invalid)
value is 280[m/s]. Samples ignored this way comprise 0.5% of the available data.

3.3.1 Preprocessing and splitting of data

Initially, the coarse Low-Resolution (LR) data must be generated by downscal-
ing the fine High-Resolution (HR) data. This is done by interpolating the HR
data using the nearest neighbor algorithm, implemented in the PyTorch library
torch.nn.functional.interpolate. This yields HR and LR datasets with resolutions
of 128× 128, and 32× 32, respectively. As described in Chapter 2.3, these datasets
are split into training, validation and test sets at ratios of 0.8/0.1/0.1, respectively.
The model is only allowed to use the training dataset for learning, and its perfor-
mance on the validation dataset is used to tune model hyperparameters between
training sessions. Only after hyperparameter tuning is concluded is the model’s
performance evaluated on the test set.

Finally, the datasets are normalized (centered and scaled) by the linear transforma-
tion in Equation 3.1. This equation allows for modifying the range of values in the

43

(a) Raw HR data
(128 × 128)

(b) Normalized HR data
(128 × 128)

(c) Generated LR data
(32 × 32)

Figure 3.3: Channel-wise normalization and downsampling of velocity fields.

data, if necessary. The default normalization range is set to 0 ≤ x ≤ 1. Minimum
and maximum values are found in the HR training dataset, as the validation and
test set should be considered unseen data. Figure 3.3 shows the resulting trans-
formation from raw data to normalized, downsampled data. Finally, the datasets
are loaded into PyTorch TensorDataset structures, which in turn are managed by
PyTorch DataLoaders interfacing the ESRGAN architecture.

xnorm = (BH −BL) ∗ x−min(x)

max(x)−min(x)
+BL (3.1)

where BH is the upper bound, and BL is the lower bound.

Normalization is required to shape the data as expected by the ESRGAN model.
Note that the trained model will also generate samples with the same range. There-
fore, the normalization factors are conserved to denormalize the reconstructed ve-
locity fields using the corresponding inverse function.

3.4 Experiment I: Stability analysis of previous
work

It was recently shown that a modified ESRGAN model could produce reasonable
super-resolution velocity fields when using downscaled, coarse-resolution fields as
input to the generator, and set the discriminator to distinguish between real and
generated fine-resolution fields [47]. The base model architecture is presented in
Chapter 2. In this experiment, the results of the work done by Tran et al. [47] are
initially reproduced using recreated datasets from the same data generation source
and identical hyperparameters for the model. The Python implementation of the
proposed model (Chapter 2.7.3) was provided by the said author and consists of
∼ 3000 lines of Python code. Naturally, a considerable amount of time was spent
reading and understanding the data flow and logic in their implementation. Their

44

pre-trained model is used as a benchmark against the models trained from scratch
in this experiment.

Originally, this experiment was meant to serve as an entry point for learning about
GANs and how to train them, with the ultimate goal of ground-level airflow es-
timation using higher-altitude data. Through extensive testing it became clear
that reproducing the results consistently using the hyperparameters and training
methods described in [47] was infeasible. Through dialog with the main author of
[47], the discrepancies between the work and the actual model were resolved. The
resulting sets of hyperparameters are presented in Chapter 3.4.1. Thus, this exper-
iment changed into an assessment of the method’s ability to consistently achieve
its advertised results. With the lack of similar literature on perceptual GAN-based
super-resolution of velocity fields, subsequent experiments are formed through an
iterative and inductive process based on empirical results. Multiple models using
identical hyperparameters are trained in parallel to assess the model’s ability to
converge consistently. Ideally, one would only tune a single hyperparameter be-
tween each training session. Due to the significant amount of time and resources
required to fully train this model, some model iterations consider changes in mul-
tiple hyperparameters.

3.4.1 Model hyperparameters and training hacks

The initial sets of hyperparameters related to the architecture and training al-
gorithm of the model is shown in Table 3.2 and Table 3.3, respectively. When
hyperparameters are modified between training sessions, updated values for the
relevant hyperparameters are described. Note that the number of training itera-
tions differ between the generator and discriminator in Table 3.3. Whenever the
number of training iterations are mentioned, it is directed at the discriminator. The
corresponding number of training iterations for the generator is calculated using
the D/G training ratio. Moreover, the notation 1k = 1000 is used when specifying
the number of training iterations.

The GAN training “hacks” described in Chapter 2.6 are present in the implemen-
tation. Instance noise is added to real and fake samples is shown in Equation 3.2,
where ε ∼ N (0, 1), it is the current training iteration, and N is the total number

of training iterations. Note that the noise-scaling term,
√

it
N , increases the noise

level towards the end of training rather than annealing it as intended by Sønderby
et al., Arjovsky & Bottou [46, 1]. It is not clear from the previous work whether
this was intended or not. Through dialog with the author of the first iteration of
this implementation, Vesterkjær [49], the increasing term was labelled as a bug in
the code. Unfortunately, this bug remained undiscovered until after all experiments
were concluded and there was no time left to fix it and re-train the models.

Xinstance noise(X, it) = X + ε ∗
√
it

N
(3.2)

The label smoothing implementation has two modes: static and stochastic. With-

45

Table 3.2: Hyperparameters related to the model architecture.

Hyperparameter Generator Discriminator
Normalization N/A Batch normalization
Activation function LeakyReLU, α = 0.2 LeakyRelu, α = 0.2
Base # of features 128 128
of input channels 3 3
of output channels 3 3
Weight initialization scaling 0.5 1.0
Feature kernel size N/A 3
Local feature fusion kernel size 1 N/A
of RRDBs 16 N/A
RDB growth rate 32 N/A
RDB residual scaling 0.2 N/A
RRDB residual scaling 0.2 N/A
HR kernel size 5 N/A

Table 3.3: Hyperparameters related to the model training algorithm.

Hyperparameter Generator Discriminator
Batch size 8 8
Initial learning rate 1e-4 1e-4
β1 (First moment decay) 0.9 0.9
β2 (Second moment decay) 0.999 0.999
Multi-step learning rate schedule [10k, 20k, 30k, 40k] [10k, 20k, 30k, 40k]
Multi-step learning rate decay 0.5 0.5
Loss function Equation 2.41 Equation 2.40
D/G training ratio N/A 2
Label smoothing N/A Equation 3.4
Instance noise N/A Equation 3.2
Training iterations 75k 150k
Validation period Every 1000 iterations Every 1000 iterations

out label smoothing, the real and fake labels are set to values 1.0 and 0.0. The
static method sets the sample labels to 0.9 and 0.1 for real and fake samples, respec-
tively. It was mentioned that Salimans et al., Goodfellow ([42, 10]) both explicitly
advised against smoothing fake labels, as it was shown to change the dynamics of
the optimal discriminator (Equation 2.31). Nevertheless, label smoothing is still a
heuristic “hack” that was created for a Goodfellow GAN model, and might there-
fore work differently for the more recent RaGAN implemented in this model. The
stochastic method will be termed “noisy labels”, which as described in Chapter
2.6 is not to be confused with the typical meaning of flipping the labels. This
adds a small noise, γ ∼ N (0, 0.05) to the smoothed labels. In summary, the label

46

smoothing model can be described as:

lstatic =

{
0.9, real sample.

0.1, generated sample.
(3.3)

lstochastic = clip (lstatic + γ) , γ ∼ N (0, 0.05), (3.4)

where clip() is a function that ensures that the resulting label stays within the
range 0 ≤ lstochastic ≤ 1.

3.5 Experiment II: Assessing the validity of ap-
plying a perceptual SISR method to airflow
data

While the ideal progression from Experiment I would continue towards finding a
stable and consistent method, a limitation in computational resources lead the
thesis to take another direction. A topic that is unaddressed in Tran et al. [47] is
the significant difference in the data applied to an ESRGAN method. Although the
data structures are equivalent, there is a considerable difference between a pixel in
an RGB image and a point velocity vector in airflow data.

Although the data structure of RGB images and the relevant vector fields are iden-
tical, they originate from widely different systems. An RGB image (in this context)
is essentially an information medium intended for visual interpretation by a human.
There is no model for what an arbitrary image should look like. Natural images,
however, contain local inter-pixel dependencies. When carefully selected, labelled
images are collected into large datasets such as ImageNet, Flickr30k or CIFAR-
10 and set in a supervised classification task, neural networks are able to learn
meaningful features to differentiate between the different image labels. Chapter
2.7 explained how the use of pre-trained, deep perceptual features such as VGG19-
54 in GANs-based image generation has improved state-of-the-art compared to
traditional loss functions.

In contrast, the relevant vector fields in this context are generated from an equation-
based model of a physical system. As such, their dynamics are defined by the
relevant governing equations. Chapter 2.1 described how airflow is governed by
a set of PDEs. As a result, the velocity fields are bound to global criteria such
as conservation of mass, energy and momentum. However, such data cannot be
labelled and shaped into a supervised learning problem. It is therefore not feasible
to create a feature extractor specialized on airflow data in the same manner.

In order to train a super-resolving generative model specifically for airflow, one
must ensure that the model indeed learns the governing equations of airflow. Sim-
ilar models exist, however, known fluid flow super-resolution generative models
don’t utilize a perceptual loss. For instance, tempoGAN, by Chu & Thuerey [5],
utilizes deep perceptual features from the discriminator itself. This is a particularly

47

interesting solution, as it solves the mentioned issue of creating a feature extractor
for airflow data. To the author’s knowledge, perceptual loss is not used in any
physics-based generative model, engineering applications outside computer vision
tasks. However, the ESRGAN architecture and training algorithm has been used in
DeepBedMap [28] to super-resolve terrain data, but they specifically avoided using
perceptual loss. It is hard to argue how or why a perceptual loss would enable
a generative model to learn governing equations. Nevertheless, the previous work
did indeed show that a perceptual model is able to produce better results than the
traditional bicubic interpolation method. Investigating how the perceptual loss
behaves on airflow velocity data vs. RGB images will give some insight into how
and why this method works, and to what extent.

3.5.1 Experiment IIa: Visualizing velocity fields as RGB im-
ages

Image color values, (r, g, b) ∈ {0, 1, 2, ..., 2b − 1} ⊂ N, are discrete and bounded by
the bit-depth, b, of the image. E.g., an 8-bit image has 28 = 256 possible values
for each color channel. In contrast, velocity data, (u, v, w) ∈ R, are continuous and
effectively unbounded. Consequently, it is trivial to find a map (r, g, b)→ (u, v, w),
but data-informed normalization is required to find a map (u, v, w)→ (r, g, b).

In Experiment I, each velocity component is normalized based on their correspond-
ing global maximum and minimum in the training dataset. As a result, the nor-
malized training data is bounded within the range 0 ≤ (u, v, w) ≤ 1, and can be
represented as a b-bit RGB image by multiplying each entry with 2b− 1 and round
them to the nearest integer. However, there is no guarantee that previously un-
seen validation and test data conform to the normalized range. This normalization
method also suppresses dominant velocity components and significantly changes
their direction in a Cartesian coordinate system. For instance, the vertical velocity
component, w, is bound to have a smaller velocity range compared to the hori-
zontal components, u and v. While information lost through normalization can be
regained from denormalizing the data, this information is effectively unknown for
the generative model.

This experiment attempts to build towards an intuition for whether or not air-
flow velocity fields are eligible as input to a method that is originally constructed
for perception-driven SISR. To do this, normalization is performed to visualize
and translate data between RGB and vector field representations, using the same
dataset and normalization method as in Experiment I. Two additional datasets are
created from the same date range, but from higher altitudes in the SIMRA do-
main. These are thought to emphasize the perceptual difference between complex
flow near ground level and smoother flow in higher altitudes.

Relating RGB images to vector fields

Figure 3.4 illustrates how a trivial gradient image can be represented as a vector
field. The 8x8 RGB image in Figure 3.4a appears grayscale due to the symmetric

48

(a) 8x8 RGB gradient image.

(b) Vector field (Top view). (c) Vector field (Side view).

Figure 3.4: Direct translation of an 8-bit RGB image to a 3D Cartesian vector field.
The color of coordinate axes in (a) and (b) correspond to the positive direction of their
respective color in the reference image.

color values in the gradient from bottom left (r = 0, g = 0, b = 0) to top right
(r = 255, g = 255, b = 255). Figure 3.5 shows how a more complex 480x500
RGB image can be directly translated to a vector field. A colormap (“ocean”) was
applied to the vector field, such that small vectors appear dark and large vectors
appear bright. The color corresponds to vector magnitude, and is indifferent to
direction. The detail view in Figure 3.5c shows how the dominant red and blue
colors of the baboon correspond to their corresponding components in the vector
field.

49

(a) RGB baboon (480x500). (b) Vector field baboon (480x500).

(c) Detailed view (zoom in).

Figure 3.5: Converting a real image from RGB to a 3D vector field.

Relating vector fields to RGB images

Figure 3.6 shows the inverse operation where a magnetic torus vector field is nor-
malized and represented as an RGB image. This illustrates how gradual changes
in vector directions relate to corresponding changes in color. Note that the original
zero-vectors are represented by an average gray in Figure 3.6d due to the presence
of negative vectors in Figure 3.6a-3.6b and the fact that all the velocity components
have the same scale.

3.5.2 Experiment IIb: Investigating perceptual features for
airflow data

The perceptual loss applied in ESRGAN is based on VGG19: a CNN intended for
image classification, pre-trained on the ImageNet dataset. As such, the feature
extractor, VGG19-54, is specifically trained to detect meaningful features in RGB
images. When applied to airflow velocity data, will the feature extractor still find

50

(a) Vector field
(Top view).

(b) Vector field
(Side view).

(c) Normalized vector field
(Top view).

(d) Normalized vector field repre-
sented as an RGB image.

Figure 3.6: Converting a sliced 3D vector field to an RGB image.

meaningful features? What are “meaningful” features in this context?

For a 3x128x128 image input to the feature extractor, VGG19-54 (Figure 2.16)
yields a 512x8x8 matrix of convoluted feature maps (Chapter 2.5), or 32768 fea-
tures. Normally, this matrix is connected to several fully connected layers, each
with 4096 nodes, acting as a classifier. Since the relevant VGG19 model was pre-
trained on ImageNet, this classifier attempts to distinguish between 1000 different
image classes. The pre-trained model has a documented Top-1 and Top-5 error rate

51

of 27.62 and 9.12, respectively.1 To achieve this accuracy, the classifier is highly
reliant on receiving features that are different for each class.

Similarly, it is important for the generator in the ESRGAN model to receive mean-
ingful differences between features of generated and true images in order to improve
its super-resolution performance. However, Experiment I does not consider ESR-
GAN applied to image data. It will be shown that the model’s perceptual loss,
based on this feature extractor, does not converge in Experiment I. The lack of
convergence is hypothesized to stem from an inability to use the information in
the downsampled airflow data to mimic the feature extractor’s learned perceptual
features in the super-resolved velocity fields.

Since the raw output from VGG19-54 is high-dimensional in feature space, it is
infeasible to compare in raw form. As described in Chapter 2.5, convolutional
layers retain rough spatial information of their feature map. Therefore, more inter-
pretable information can be obtained from calculating a feature-space mean and
variance, leaving the spatial dimensions intact. This process smooths the infor-
mation considerably, but is deemed sufficient for the purpose of this experiment.
Figure 3.7 shows how the VGG19-54 activations are spatially correlated to its input
image. It is clear that the feature extractor has found significant features around
the eyes and mouth of the baboon, represented as large feature activations and
high variance in those regions of the image.

(a) Input RGB image.
(500x480)

(b) Feature-space average.
(31x30)

(c) Feature-space variance.
(31x30)

Figure 3.7: Feature activations of VGG19-54 are spatially correlated to the input data.

This experiment explores the variance of feature activations obtained from the
VGG19-54 feature extractor for different datasets, as shown in Figure 3.7. Specif-
ically, feature activations from airflow velocity training data is compared to RGB
image datasets. The airflow data is processed the same way as in Experiment I.
Moreover, the previous work (Tran et al. [47]) only considers data obtained from
the bottom layer of the HARMONIE-SIMRA domain. Here, two additional air-
flow datasets are created from the same date range, using the same preprocessing

1Error rates are documented for classifying ImageNet samples cropped to a size 224x244.

52

methods, but from higher altitudes in the domain. High-altitude airflow is less
affected by terrain, and is therefore assumed to be smoother compared to ground-
level. These datasets are included to test whether the reduced complexity of a
high-altitude velocity field impacts the information gained from the feature extrac-
tor. The image dataset is created from a random subset of the Flickr30k dataset
[51], with a similar amount of samples cropped to 128x128 resolution. The original
ESRGAN model was trained on Flickr2K and DIV2K, but Flickr30k was selected
to match the number of image samples to the amount of airflow data. Table 3.4 lists
details regarding each dataset. Note that the dataset “Bottom-layer” corresponds
to the training dataset used in Experiment I.

Table 3.4: Datasets used for quantifying differences in feature activations for perceptual
loss.

Dataset Description # samples Processing
“Bottom-layer” bottom of domain 15628 Channel-wise normalization.
“Middle-layer” middle of domain 15639 Channel-wise normalization.
“Top-layer” top of domain 15591 Channel-wise normalization.
“Flickr15.6k” Flickr30k subset 15600 Crop to 128x128 resolution.

3.6 Experiment III: High-altitude airflow recon-
struction with ESRGAN

It will be shown in Experiment II that the perceptual feature extractor network
yields significantly less variation when presented a high-altitude dataset compared
to the ground-level dataset used in Experiment I. With a relatively constant output
from the feature extractor, it is hypothesized that this feedback drives the ESRGAN
model towards generating samples with low perceptual variation rather than having
the generator mimic perceptual features in its output. Hyperparameters for the
executed model correspond to Session 4 in Experiment I, but with instance noise
enabled. Deviations from the original hyperparameters are summarized in Table
3.5.

Table 3.5: Hyperparameter changes for Experiment III.

Changes hyperparameter(s) Original value New value
Label smoothing Equation 3.4 Equation 3.3
Training iterations 150k 300k
Multi-step learning rate schedule [10k, 20k, 30k, 40k] [50k, 100k, 150k, 200k]

3.7 Performance evaluation

The proposed model evaluates the generated SR velocity fields using the PSNR
metric. As mentioned in Chapter 2.7, this metric is originally intended for com-

53

paring RGB images, and suffers from qualitative variations due to imperceptible
differences in psychovisual redundant information. While these variations may be
considered noise when comparing RGB images, they represent important differ-
ences in vector magnitudes and directions in airflow data.

Furthermore, the PSNR metric is defined for discrete, bounded data. The airflow
data used in this thesis is considered continuous and unbounded. Previous work
solved this issue by adjusting the max fluctuation term, R2, in Equation 2.33 to:

R2 = 1.0 For normalized training/validation data. (3.5)

R2 = max(IHR)2 For denormalized testing data. (3.6)

Additionally, a small epsilon, ε = 10−8, is added in the denominator to avoid the
risk of an undefined logarithm (or division by zero). This results in a different
R2 term for every data sample. Moreover, vector components are equally likely to
assume large negative values. For vector fields containing predominantly negative
vectors, the corresponding maximum positive value may be small. In turn, a small
R2 term makes Equation 3.6 more sensitive to MSE. Although there is no clear
choice for R2, setting it to some constant value will ensure that the PSNR metric
is calculated equally for all samples. To simulate a corresponding max fluctuation
term, R2 is set to the largest difference in normalization factors calculated for the
training dataset. Thus, the resulting PSNR metric can be expressed as:

PSNR = 10 ∗ log10(R2)− 10 ∗ log10(MSE + ε) (3.7)

where R2 is the largest possible difference between normalization factors calculated
for the training dataset.

Between training sessions, the PSNR validation performance is used to evaluate
performance. Training and validation losses are used to identify signs of any fail-
ure modes or potential issues during training. Note that the training losses are
calculated as a batch-size average, while validation losses are averaged across the
entire validation dataset. After hyperparameter tuning is concluded, the models
are run on the test set. Test set performance will be evaluated by calculating the
PSNR mean and standard deviation of all denormalized, super-resolved samples
for each trained model. These will be compared against the traditional bicubic in-
terpolation method. In a real-world context, interpolation would not be performed
on normalized data. Since interpolation is performed on “raw” low-resolution data,
no processing is needed.

Additionally, the state-of-the-art LPIPS metric is applied for comparison. Zhang
et al. [52] provide the pre-trained CNNs used in their work, from which the VGG
architecture is used in this thesis. Although LPIPS is intended for evaluating differ-
ences between RGB images, its bounded nature should provide more interpretable
results. Moreover, it has been shown that LPIPS corresponds significantly better
to human judgement compared to PSNR. It will be shown that the ESRGAN model
mostly attempts to minimize its own perceptual loss during training. However, the
previous work did not justify whether minimizing a perceptual loss is synonymous

54

to learning the governing equations of airflow for this model. Therefore, the LPIPS
metric is compared against PSNR to find potential disagreements. Arguably, a per-
fect reconstruction will yield both a negligible perceptual distance (LPIPS ≈ 0.0 as
well as MSE ≈ 0.0. If the model is focused on minimizing the perceptual distance
and disregards psychovisual redundant information, then the metrics will disagree,
e.g., LPIPS will be small, but MSE will be large. “Large” in this context refers to
“larger than the corresponding MSE yielded by bicubic interpolation”.

LPIPS assumes that its input data is normalized channel-wise to the range −1 ≤
(r, g, b) ≤ 1. Given that the generated airflow data is already within the range
0 ≤ (u, v, w) ≤ 1, reshaping this data is a simple matter of transforming it again
using Equation 3.1 with adjusted boundary values. Bicubic interpolated data is
normalized with normalization factors calculated for the training data.

Chapter 2.7 mentioned that spatial feature differences can be found by not averag-
ing over the spatial dimensions in Equation 2.35. By leaving the spatial dimensions
intact, a spatial sample-mean can be calculated across the test set to find areas
within the domain where the generative model struggles to reconstruct the air-
flow. In combination with an overlay of the terrain, this can provide a much more
detailed difference in performance between the models and bicubic interpolation.

Ultimately, randomly sampled velocity fields from the best, an average and the
worst performing models are illustrated and compared against the corresponding
high-resolution field and the bicubic interpolated result. A random-number gener-
ator selects different samples for each presented model to avoid “cherry picking”
the results. Each velocity component will be investigated individually using filled
contour plots with discrete color maps. Thus, detailed structural information can
be interpreted from each velocity component of the different methods.

55

Chapter 4

Results and discussion

This chapter presents a historical development of the investigation of the proposed
ESRGAN applied to airflow data. First, details regarding the data collection and
preprocessing are presented. Subsequently, the results from each experiment intro-
duced in Chapter 3 are presented. Summarized discussions are included in Exper-
iments I and II to motivate the progression to the next investigation. Ultimately,
the performance evaluation concludes the results obtained from trained models in
Experiments I and III.

4.1 Data preparation

In order to replicate the results, the data underwent the equivalent preprocessing as
in [47]. Thus, data generated by the HARMONIE-SIMRA system in the date range
04.08.2017 to 30.10.2019 was downloaded and preprocessed as described in Chapter
3.3.1 This corresponds to 818 days consisting of 19632 velocity field samples of
hourly averaged data. After rejecting invalid values, 19535 samples remain (0.5%
rejected). Table 4.1 presents the resulting sizes of each dataset. Normalization
factors calculated for each velocity component of each dataset are presented in
Table 4.2.

Table 4.1: Training, validation and test set sizes.

Dataset Training data Validation data Test data Usage
Bottom-layer 15628 samples 1953 samples 1954 samples Experiment I
Middle-layer 15639 samples 1954 samples 1955 samples Experiment II
Top-layer 15628 samples 1953 samples 1954 samples Experiment II and III

1[47] describes a different initial date. Through dialog with the author of [39], it was confirmed
that the earliest available date is 04.08.2017.

56

Table 4.2: Normalization factors calculated for each channel in all airflow datasets

Velocity component
Dataset

Bottom-layer Middle-layer Top-layer
[max, min] [max, min] [max, min]

u [18.99, -12.54] [40.38, -27.85] [36.09, -23.94]
v [13.54, -13.64] [31.24, -33.77] [31.36, -33.64]
w [5.59, -2.68] [9.15, -6.80] [4.43, -3.19]

4.2 Experiment I: Stability analysis of previous
work

This experiment is divided by subsequent attempts to stabilize the proposed model
through an iterative-inductive process. One or more hyperparameters of the model
are tuned between each attempt, and several models are trained in parallel to
assess the impact on training stability and performance variations. Hereafter, the
individual attempts are termed sessions.

4.2.1 Session 1: Training stability of the previously proposed
model

First, an important note regarding the performance metric used is addressed. As
described in Chapter 3, PSNR is not an ideal metric. Due to the unconventional use
of comparing velocity fields as RGB images, this metric is only used to compare
training development for models. Moreover, the scale of the data differs when
considered during training vs. testing due to the corresponding normalization and
denormalization. Thus, the R2 (max fluctuation) term is changed depending on
the relevant scale. Therefore, the amplitude of the presented PSNRs are used only
for comparison between experiments, and should not be compared to conventional
values when applied to RGB images.

Chapter 3.4 mentioned how the original goal of this experiment was changed due
to training instabilities. A considerable amount of time was spent on dialogue with
the author of [47] to modify the Python implementation to correspond to their
proposed model due to typos and omitted details. In total, eight identical models
were trained to get an initial understanding of the model stability. The pre-trained
model was initialized at its end state and trained for an additional 150k iterations
to assert whether the current implementation is stable. Note that this results in
a total of 300k training iterations for the pre-trained model, so it is expected to
perform better. Unfortunately, the pre-trained model’s training losses for its first
150k iterations were unobtainable.

Hyperparameters for these models are shown in Tables 3.2 and 3.3. The resulting
training and validation metrics are presented in Figure 4.1. It is recommended
that the reader zooms in on the plots to see the axes and scales properly. The
models seem to produce varying results consistently. Out of the eight identically

57

(a) Comparing PSNR development on validation data for 8 identical models against a
pre-trained model.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.1: Training session 1: Training instability across eight identical ESRGAN
models.

trained models, two models in Figure 4.1a seemed to produce significantly better
results compared to the others. Figure 4.1e shows that the best performing models
have a steeper increase in discriminator validation loss early on, while this loss is
oscillating around a constant value for the worse-performing models. Both training
losses in Figures 4.1b and 4.1d are heavily affected by noise. Recall that the models
use both stochastic label smoothing and instance noise, which both contribute
towards confusing the discriminator. While noisy losses are expected, they should

58

converge (to a certain extent) towards a value at the end of the training. The
generator losses have a clear exponential trend, but like the discriminator losses,
they oscillate without any sign of convergence.

4.2.2 Session 2: Continued training stability analysis with
static label smoothing

Despite earlier efforts, additional discussions with the author of the model were
required to determine the correct proposed model. A change was made to the
hyperparameters of the model. Specifically, the label smoothing was changed from
stochastic to static, such that real and fake labels are set to flat values 0.9 and 0.1,
respectively.

Table 4.3: Hyperparameter change for training session 2.

Changed hyperparameter(s) Original value New value
Label smoothing Equation 3.4 Equation 3.3

Following the change in hyperparameters (Table 4.3), four models were trained
from scratch, along with another instance of the pre-trained model. Figure 4.2
presents their PSNR performance and losses. With static label smoothing, most
models achieve a more consistent PSNR performance, although one of them still
failed to converge to a similar state. Note that model “ESRGAN 2” in Figure
4.2a suffers from a barely noticeable convergence failure, as explained in Chapter
2.6. The discriminator training losses (Figure 4.2d) are significantly more stable
throughout the training compared to the models in Session 1. In fact, they appear
too stable. Recall that the RaGAN losses are symmetrical and that the discrimina-
tor loss is intended to increase as the generated samples become less distinguishable
from real samples. Since there is no rise in discriminator loss, it is likely that it
successfully distinguishes between real and fake samples throughout the training.
Moreover, the models seem to share a trend of increasing discriminator validation
loss (Figure 4.2e) until 50k iterations. After this point, the validation losses start
to diverge from each other. The discriminators may have overfitted the generator
training samples, and fail to recognize generated validation samples. Recall that
Chapter 2.6 describes such behavior as an initial phase of mode collapse. How-
ever, the generator’s heavy reliance on content-related losses prevents the model
from collapsing a range of low-resolution velocity fields to a single super-resolved
output. Hypothetically, this would be recognizable in the PSNR validation perfor-
mance plot.

In contrast, the worst model, “ESRGAN 4”, experienced poor PSNR performance
and almost constant discriminator losses until the end of the training period. De-
spite that the learning rate reached its minimum value nearly 100k iterations earlier,
the model managed to escape a long-lasting local minima. From Figure 4.2a it is
unclear whether “ESRGAN 4”’s performance development further would continue
increasing or flatten out. It is interesting to note how this escape is very noticeable

59

(a) Comparing PSNR development on validation data for 4 identical models against a
pre-trained model, noisy labels disabled.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.2: Training session 2: Improved training stability and performance.

in the discriminator losses, but barely visible in the corresponding generator losses.
Figures in 4.3 show the individual weighted components of the generators’ losses, as
described in Equation 2.41. The perceptual losses in Figure 4.3a decrease initially
but oscillate with a relatively constant amplitude of around 0.1 (peak-to-peak)
throughout the rest of training. Recall that the adversarial and pixel losses are
weighed with factors λ = 0.005 and η = 0.01. While the discriminators arguably
reach their minimum possible loss value of 0.199 in both training and validation,
the corresponding unweighted adversarial losses oscillate around 0.014 ∗ 200 = 2.8

60

(a) Perceptual loss component.

(b) Adversarial loss component.

(c) Pixel loss component.

Figure 4.3: Session 2: Decomposing the generators’ training losses into their weighted
components.

for the generators. The large weighing on perceptual loss, in comparison, over-
shadows the discriminators’ feedback. When “ESRGAN 4” breaks out of its local

61

minima, the discriminator training loss is seen to return to a low value quickly.

In contrast, the discriminator validation loss remains considerably high. This shows
how quickly the discriminator can overfit a sudden change in the generator. It is
unfortunate that this event happened so close to the end of the training, as it would
be interesting to follow this model’s progression further.

(a) PSNR development for extended training on previously worst performing model,
compared to pre-trained model.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.4: Training session 2: Extended training for the worst performing model.

62

Extended training of the worst performing model

The model instance labeled “ESRGAN 4” in the previous training session managed
to escape its poor local minima at the very end of the training period. Training con-
tinuation of the worst performing model, “ESRGAN 4”, is attempted for another
150k iterations with two parallel instances. Stochastic label smoothing is reacti-
vated for one model, while the other had no change in hyperparameters. Note
that this process is equivalent to resetting the learning rate schedule during train-
ing. Considering their total training period, the multi-step learning rate schedule
was effectively reset after 150k iterations. Figure 4.4 presents the results from
training these models. The extended pre-trained model from the previous training
session is included in these plots. Note how the model with noisy labels enabled
experiences significantly larger variations in discriminator training loss and higher
discriminator validation loss while its PSNR performance is worse than the other
models. However, the corresponding generator losses assume a shape similar to the
other models. Performance-wise, these models are the closest to the pre-trained
benchmark yet. Since the amount of training time is one of the most crucial hyper-
parameters for any neural network model, an increase in training iterations could
be beneficial. Furthermore, cycling of the learning rate schedule might have the
potential to help poorly converged models out of their local minima. However, the
extended training has shown no improvements for the convergence of perceptual
loss.

4.2.3 Session 3: Multi-step learning rate cycling

Performance improvements from extended training in Session 2 motivated an explo-
ration of multi-step learning rate cycling in combination with training for twice the
amount of iterations. Due to the increase in training time, the number of models
trained each session is reduced. In PyTorch, learning rate cycling is implemented
for switching between two static learning rates, but not for multi-step learning
rate schedules. Therefore, the cyclic multi-step learning rate scheduler had to be
implemented manually. To avoid perturbing the model near the end of training,
cycling is disabled for the final 20% of iterations. The use of the Adam optimizer
introduces some design issues. Adam keeps a moving average of the previous gra-
dients used for updating the parameters in its internal state. In addition to the
frequency for which the schedule should be cycled, a hyperparameter for keeping
or discarding the “memory” of the Adam optimizer was created and respectively
termed “hard” and “soft” resetting. New hyperparameters are defined in Table
4.4. Both hard and soft resetting modes are explored with a cycling period of 50k
iterations. With a total of 300k training iterations, learning rate cycling occurs
at [50k, 100k, 150k, 200k], and is disabled after the model has trained for 240k
iterations. This is summarized in Table 4.5 and Figure 4.6.

Figure 4.5 shows the training of the two models. Both models reach a similar PSNR
performance before the first learning rate cycle, a good basis for comparing effects
of the hard vs. soft resetting methods. It is clear that the hard reset method
can be detrimental to an initially well-performing model. The soft reset share

63

(a) PSNR development for multi-step learning rate cycling each 50kth iteration.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.5: Training session 3: Multi-step learning rate schedule cycling each 50kth

iteration.

a similar trend, although less significant. The discriminator losses share similar
overfitting characteristics as in Session 2, where the training loss quickly returns
to its minimum after every cycle. Validation losses, however, experience increasing
spikes after each cycle. Nevertheless, neither model exceeds the best models in
Session 2. While these results suggest the effect of learning rate cycling, it is only
shown for two initially well-performing models. Nothing can be concluded on its
effects on poorly performing models other than the empirical results in Figure 4.4a,
which simulated a single cycle at iteration 150k with hard resetting. The impact

64

Figure 4.6: Session 3: Learning rate development during training.

Table 4.4: Hyperparameters introduced by implementing multi-step learning rate cy-
cling.

Name Type Description
lr cycle period Positive integer Number of training iterations to exe-

cute before cycling the learning rate
schedule.

lr cycle hard reset Boolean TRUE/FALSE: “Hard”/“Soft”, dis-
card/keep Adam optimizer’s internal
state when cycling.

of soft-reset cycling on a poorly performing model is still unknown.

Lower learning rate cycle frequency and removing instance noise

This training session aims to further explore multi-step learning rate cycling with
hard resetting to more closely resemble the extended training in Session 2. The
previous models considered a higher cycling frequency than initially investigated,
which was shown to have detrimental effects on well-performing models. Moreover,
the presented plots are difficult to interpret even without learning rate cycling.
Lowering the frequency may increase their readability by allowing models to sta-
bilize more between cycles. An updated learning rate development is presented
in Figure 4.7 Additionally, due to the empirical performance improvements from
disabling noisy labels in Session 2, this training session also investigates the impact
of disabling instance noise as described in Chapter 2.6. Instance noise acts as a
source of confusion for the discriminator in early training, and is annealed towards

Table 4.5: Hyperparameter change for training Session 3.

Changed hyperparameter(s) Original value New value
Label smoothing Equation 3.4 Equation 3.3

Training iterations 150k 300k
Learning rate cycle period N/A (new) 50k (disabled after 200k)

Learning rate cycle reset mode N/A (new) Both are used

65

Figure 4.7: Session 3: Updated learning rate development during training.

the end of training.

Figure 4.8 shows the results of this session. Considering the model with instance
noise disabled, there is a slight improvement in PSNR performance following the
cycling event, although not as significant as what was observed with the equivalent
model in Figure 4.4a. Based on the poor PSNR performance in combination with
the near-constant discriminator losses, it appears that the model is stuck in a bad
local minima. In fact, this model seems to have encountered an issue similar to the
worst performing model in Figure 4.2; the discriminator’s training and validation
losses appear constant. However, as the learning rate cycles at 150k iterations,
the discriminator losses are essentially unaffected. A small perturbation can be
observed in Figure 4.8e, which quickly returns the constant value. It is not clear
whether this issue was induced by disabling instance noise or if it corresponds to
the behaviour of model “ESRGAN 4” in Session 2.

The model with instance noise enabled behaves similar to the corresponding pre-
vious model. However, it could be worth noting that the PSNR performance has
already started deteriorating from convergence failure before the learning rate cy-
cle event. Therefore, the continued performance deterioration after cycling the
learning rate could also be attributed to this failure mode. Considering the em-
pirical results gathered so far, multi-step learning rate schedule cycling has been
mildly beneficial for poorly performing models, and similarly inhibiting for well-
performing models. For the sake of consistent and predictable training, this is a
step in the right direction, but this method might not be the optimal way to achieve
consistent results.

The development of instance noise was not considered when implementing multi-
step learning rate cycling. As the magnitude of the added noise is decreasing
towards the end of training, this should also have been reset to conform with
the extended training in Session 2.2 Although implementing this could better
approximate the retrained model, it would further complicate an already complex
model. In the interest of avoiding unnecessary complexity, the next experiment
attempts a different approach.

2The bug in Equation 3.2 was still undiscovered at this point, but has no significant impact
for the conclusion of this thesis.

66

(a) PSNR development for multi-step learning rate cycling each 150kth iteration.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.8: Training session 3: Multi-step learning rate cycling each 150kth iteration.

4.2.4 Session 4: Extended training period and disabled in-
stance noise

It is apparent from Figure 4.1a that the worse performing models all have a positive
slope for PSNR at the end of training. Figure 4.2a illustrates that there is a chance
for a poor model to improve at the end of training. Although retraining this
model yielded promising results, Session 3 concluded that a multi-step learning
rate schedule cycling is not effective enough considering the added complexity to
the training algorithm. A common factor in all sessions is the significant variation

67

of PSNR performance in the first 50k iterations of the training. Within the first 50k
iterations, the multi-step learning rate schedule has already reached the minimum
learning rate for the remainder of the training period. This session takes a step
back, and explores what happens when the models are allowed to train for twice
as many iterations, and the (original) multi-step learning rate schedule is extended
accordingly. Moreover, to address the change in discriminator loss when noisy labels
was disabled in Session 2, this experiment further reduces the training algorithm’s
stochasticity by disabling instance noise as well. This was briefly explored in Session
3, although no conclusions could be drawn. This session aims to further assess the
impact of instance noise for this model. Table 4.6 shows how each hyperparameter
is changed for this session. Three models were trained this time; the fourth model
was prevented from executing due to a temporary exhaustion of the institute’s
computational quota on IDUN.

Table 4.6: Hyperparameter changes for training session 4.

Changed hyperparameter(s) Original value New value
Label smoothing Equation 3.4 Equation 3.3
Training iterations 150k 300k
Multi-step learning rate schedule [10k, 20k, 30k, 40k] [50k, 100k, 150k, 200k]
Instance noise Equation 3.2 None

Figure 4.9 shows the results from this training session. Although the PSNR per-
formances lie in the higher range compared to previous results, the discriminator
validation losses behave differently. Figures 4.9d and 4.9e show how the discrimina-
tor losses converge towards the same value, and Figure 4.9a shows that the PSNR
validation performance for all three models converge to values between 58 and 64
[dB]. While these PSNR performances are considerably more stable than in pre-
vious training sessions, the models converge to different values. Due to the small
sample size (3 models), there is no guarantee that a fourth model would converge
within the same range.

It is curious how the PSNR performances are unchanging when the generators’
training losses are oscillating considerably even towards the end of training. While
the learning rate schedule does decrease the models’ learning rate throughout the
training period, the PSNR performance remains stable after the second decrease in
learning rate (100k iterations). Figure 4.10 shows the models’ generator training
losses decomposed into their terms as shown in Equation 2.41. Recall that the
adversarial and pixel losses are weighted with a factor of λ = 0.005 and η = 0.01,
respectively and are illustrated with this weighting. The unweighted pixel loss
converges to a relatively low value, LPixel1 = 0.0002 ∗ 100 = 0.02. In contrast,
the weighted adversarial loss converges around a value 0.014; the corresponding
unweighted value would be 1

λL
RaGAN
G = 200 ∗ 0.014 = 2.8. Compared to the

discriminator adversarial losses (Figure 4.9d), this is very high considering that
RaGAN’s loss functions are symmetrical. Hyperparameter changes performed so
far have mostly targeted the discriminator, as most issues found in the literature

68

(a) PSNR development for training models with instance noise disabled.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.9: Training session 4: Extended training to 300k iterations and disabled in-
stance noise.

search related to GAN training is attributed to the discriminator [10, 42]. None of
the training sessions in Experiment I has targeted the generator’s training alone.
Considering the heavily weighted perceptual loss, which greatly affects the genera-
tor of this model, it is worth looking more into detail of how the feature extractor
impacts training.

69

(a) Perceptual loss component.

(b) Adversarial loss component.

(c) Pixel loss component.

Figure 4.10: Training session 4: Decomposing the generator training losses into their
weighted components.

4.2.5 Summary and discussion of Experiment I.

This experiment has provided an overview of the training stability of the pro-
posed model for super-resolving coarse-resolution airflow velocity fields using the
perceptual-based SISR model, ESRGAN. Tuning different hyperparameters for the
model has given insight into inhibiting factors such as noisy perceptual loss and
discriminator overfitting. The conducted training sessions have not reached a con-

70

clusion for how to best stabilize the model.

From stochastic to static label smoothing

Session 2 showed an overall increase in PSNR validation performance and more con-
sistent loss progressions after changing from stochastic to static label smoothing.
The label smoothing method is still in conflict with arguments from Goodfellow,
Salimans et al. who argued that smoothing fake labels will change the dynamics
of the optimal discriminator in a Goodfellow GAN framework. This model imple-
ments RaGAN, which by design behaves quite differently from Goodfellow GAN.
In comparison, RaGAN may be less sensitive to smoothing of fake labels. However,
the larger weighting and values of the generators’ perceptual loss component has
shown to overshadow the discriminator feedback.

Multi-step learning rate schedule cycling

While the extended training of the worst performing model, “ESRGAN 4”, in
Session 2 performed close to the extended pre-trained model, the corresponding
models in Session 3 using a novel multi-step learning rate schedule cycling method
did not achieve similar results. Similar to this “ESRGAN 4”, one of the models in
Session 3 experienced the same issue with constant discriminator losses. Since this
model also considered disabling instance noise, the results from Session 3 were
inconclusive. By considering models in Session 4, it was found that disabling
instance noise does not cause this issue. Therefore, it seems more likely that cycling
the learning rate schedule is insufficient to “bump” poor models out of their local
minima.

Longer training and disabling instance noise

Due to large variations in PSNR validation performance within the first 50k train-
ing iterations, Session 4 considered extending the number of training iterations
and widen the multi-step learning rate schedule accordingly. Furthermore, in-
stance noise was disabled for all models in order to obtain a greater understanding
of its effects. Compared to the previous sessions, these models achieve a more sta-
ble PSNR validation performance towards the end of training, albeit only with a
small margin. Furthermore, the models converged to different PSNR values. Inter-
estingly, the discriminator validation losses appear significantly different from the
previous sessions.

The impact of a faulty instance noise implementation

The noise-scaling bug in Equation 3.2 was undiscovered until after all experiments
were concluded (including Experiment II and III) and there was no time left to fix it
and redo the experiments. In the hindsight, it is obvious that the increasing amount
of instance noise throughout the training impacts the discriminator validation losses
in many of the preceding sessions of Experiment I. As described in Chapter 2.6, an
annealing instance noise is intended to make the task of divergence minimization

71

between the true and approximated distributions well-defined. The implementation
error effectively reversed the scaling such that the samples were added more and
more noise towards the end of training. This would likely be more problematic if
the model’s loss functions were purely adversarial. Due to the addition of content-
and perceptual loss, the generators were not significantly affected. In fact, even
though the discriminators in Session 2-4 managed to minimize their losses, the
generators were virtually unaffected.

On the non-convergence of perceptual loss

As explained in Chapter 3, the applied ESRGAN model is heavily reliant on a
perceptual loss. Considering that the generator losses share a similar development
throughout all training sessions, the different hyperparameter changes has not af-
fected the generators loss development significantly. There is one exception; in
Session 1, the initial stochastic label smoothing method elicited large discrimina-
tor training losses compared to the subsequent training sessions. However, the
discriminator losses showed no sign of converging, and there was large variations in
the models’ PSNR validation performances. With static label smoothing, the dis-
criminator training losses consistently converged to a minimum value of 0.2. Recall
that Chapter 2.6 described the expected discriminator loss development in a well-
performing model to be low initially, with an increasing trend before convergence.
This behaviour has not been observed for any of the trained models so far. The
weighting of the generator’s loss components (Equation 2.41) in combination with
the large, noisy perceptual loss values is thought to overshadow the discriminators’
feedback. In Session 2 and 4, the generators’ losses were decomposed into their
weighted components, and a discussion was started regarding the convergence of
perceptual loss. The previous work did not justify whether or not it is feasible
to apply such a perceptually driven model to super-resolve airflow data, nor how
it can solve the governing equations of airflow (Chapter 2.1). Since the feature
extractor is pre-trained for classification of ImageNet data, its activations relate to
high-level features it is trained to look for in RGB image data. Therefore, the next
step of this thesis starts an investigation on the use of a perceptual loss applied for
super-resolution of airflow data, specifically.

4.3 Experiment II: Assessing the validity of ap-
plying a perceptual SISR method to airflow
data.

The applied ESRGAN framework was developed for SISR on RGB image data,
inheriting assumptions such as negligible psychovisual information loss and infinite
plausible solutions for a reconstructed HR image. Whereas small changes in color
may be negligible in SISR, the corresponding error in velocity fields can impact
vector directions. Before investigating the feature extractor used for perceptual
loss, an intuition for the differences and similarities between RGB and airflow

72

velocity data is established by representing the airflow as RGB data.

4.3.1 Experiment IIa: Visualizing velocity fields as RGB im-
ages

First, a random sample from the training dataset is converted into an RGB im-
age as described in Chapter 3.5. The same normalization factors calculated for
Experiment I in Table 4.2 are used to normalize the vector field. This way, the
image is represented as seen by the feature extractor in Experiment I. Figure 4.11
shows each step of the transformation for a random sample in the bottom-layer
training dataset. Recall that each velocity component is assigned its own color,
i.e, u → red, v → green, w → blue. It is clear that green is the most dominant
color in this sample, corresponding to the velocity component v along the y-axis
in the SIMRA domain. This is not evident from the original vector representation
in Figure 4.11a, and is likely due to a change in the dominant velocity components
through normalization. While the RGB representation in Figure 4.11b is lacking
in both brightness and contrast, the feature extractor is likely to register some of
the geometric shapes in the image; Dodge & Karam [7] shows how VGG networks
are resilient to contrast distortion, i.e., VGG networks have good classification
performance on images with artificially low contrast.

To gain a similar intuition for the whole training dataset, both the mean and
variance of each spatial location of the dataset are calculated and represented as
RGB images. To emphasize the results, these images are normalized channel-wise
according to their own maxima and minima, thus utilizing the full range for each
color. Figure 4.12 illustrates the normalized mean velocity field and its spatial
variance. Due to the new normalization method, the mean velocity field shows
the dominant velocity components at each spatial location in the domain. The
image is still predominantly green, but areas containing higher ratios of red and
blue can be seen. Color interaction illustrate how terrain impacts the airflow in
the domain. The variance in Figure 4.12b shows how the airflow varies more
over the sea compared to terrain. Moreover, the yellow color shows how the wind
predominantly changes in x- and y- axes, but not in the vertical z-axis.

This short analysis has introduced some perceptual intuition for the ground-level
airflow, and how information is conversed after the transformation to RGB image
data. As mentioned in Chapter 3, two additional dataset were created for this
experiment. The same analysis is performed on datasets “middle-layer” and “top-
layer”. Two random samples, one from each dataset, are converted into RGB in
the same manner as in Figure 4.11. These are shown in Figure 4.14. With less
terrain-induced complexity, the image representations of velocity fields from higher
altitudes are significantly harder to interpret.

Figures 4.13a-4.13b show the mean and variance for the dataset collected from
the middle-layer dataset (middle of the domain), and Figures 4.13c-4.13d show the
same for the top-layer dataset (top of the domain). Notice how both the means
and variances become smoother as a result of the higher altitudes. Naturally, these

73

(a) Original and normalized vector field representation.

(b) RGB representation of a normalized vector field.

Figure 4.11: Arbitrary airflow velocity field normalized and translated to RGB.

74

(a) Mean velocity field. (b) Velocity field variance.

Figure 4.12: Visualizing the mean velocity field and the variance of each velocity com-
ponent.

airflows are less affected by the terrain compared to Figure 4.12. For a feature
extractor such as the one used in Experiment I, however, these smaller sample
differences are likely to produce similar feature activations. This is investigated in
the following section.

4.3.2 Experiment IIb: Investigating the effect of perceptual
features for airflow data.

Despite the low interprebility of how ANNs make decisions in general, it is known
that CNNs trained for image classification look for low-level details such as corners
and edges [12]. While contrast is not easily quantified, it can easily be identified
visually in images. Experiment IIa provided an intuition into how airflow data
is perceived from the standpoint of the feature extractor. This experiment inves-
tigates how the convolutional feature extractor reacts to different datasets, and
what kind of visual information is important for such a network to find meaningful
features. Considering that the ESRGAN model in Experiment I weighs perceptual
loss 200 times more than adversarial loss (Equation 2.41), it is safe to state that
the generator is particularly sensitive to the feedback it receives from the feature
extractor. It is important for the generative model’s convergence that the feature
extractor provides feedback that will improve the quality of its generated samples,
i.e., move towards the wanted mapping from Z → T (Chapter 2.6).

Before investigating airflow datasets, a downloaded subset RGB images from Flickr30k
termed “Flickr15.6k” (Table 3.4) is presented to the feature extractor. The output
is processed as explained in Chapter 3.5.2. Figure 4.15 shows the feature-space
averaged mean and variance across each output of the feature extractor for this
dataset. The mean activations (Figure 4.15a) varies between 2.81 and 7.95, and

75

(a) Normalized mean velocity field in
the middle-layer dataset.

(b) Normalized variance of the velocity
fields in the middle-layer dataset.

(c) Normalized mean velocity field in
the top-layer dataset.

(d) Normalized variance of the velocity
fields in the top-layer dataset.

Figure 4.13: Visualizing the mean velocity field and the variance of each velocity com-
ponent in higher-altitude training datasets.

Figure 4.15b shows that these activations have a variance around 20 in the inner
part of the image. Variance in the outer edges are smaller. While one could assume
that this is attributed to the fact that the feature extractor was pre-trained on im-
ages with higher resolution (224x224), an auxiliary experiment using 5200 224x244
Flickr30k images (Figure D.1) shows that this is not the case. Recall zero-padding
in convolutional layers shown in Figure 2.6. It is likely that the lower variations
along the edges are a result of the local receptive fields passing over zero-padded
edges in each layer. Nevertheless, these results provide an intuition for the be-
haviour of the feature extractor when presented data it is specifically trained to
classify.

76

(a) RGB representation of a sample
from the middle-layer dataset.

(b) RGB representation of a sample
from the top-layer dataset.

Figure 4.14: Random airflow velocity fields from the middle- and top-layer training
datasets are normalized as described for Experiment I and translated to RGB.

(a) Feature-space averaged mean acti-
vations.

(b) Feature-space averaged variance of
activations.

Figure 4.15: VGG19-54 feature extractor output using Flickr15.6k dataset as input.

The same procedure is done for the bottom-layer training dataset used in Exper-
iment I. Figure 4.16 shows the corresponding results. Note that even the highest
averaged activation in Figure 4.16a is smaller than the lowest activation in Figure
4.15a. Similarly, the feature-space averaged variances in Figure 4.16b are both
smaller and more localized across the diagonal compared to Figure 4.15b. This
could be interpreted as spatial areas within the domain where the airflow charac-
teristics are significant enough to elicit richer activations from the feature extractor,

77

(a) Feature-space averaged mean acti-
vations.

(b) Feature-space averaged variance of
activations.

Figure 4.16: VGG19-54 feature extractor output using the bottom-layer dataset as
input.

compared to other areas within the same domain.

(a) Feature-space averaged mean acti-
vations. (Actual range is [0.84, 2.26])

(b) Feature-space averaged variance of
activations. (Actual range is [0.06, 0.35])

Figure 4.17: VGG19-54 feature extractor output using middle-layer dataset as input.

When comparing these results with higher-altitude datasets, the colorbar range
values from Figure 4.16 are kept to illustrate the differences induced by smoother
velocity fields. Figures 4.17 and 4.18 shows the results using the middle- and
top-layer training datasets as input, respectively. It is obvious that the smoother
high-altitude velocity fields provide significantly less information for the feature

78

extractor, resulting in smaller variations in its feature activations.

(a) Feature-space averaged mean acti-
vations. (Actual range is [0.84, 2.35])

(b) Feature-space averaged variance of
activations. (Actual range is [0.03, 0.28])

Figure 4.18: VGG19-54 feature extractor output using top-layer dataset as input.

4.3.3 Summary and discussion of Experiment II.

Experiment IIa presented how airflow data used in Experiment I can be visualized
in an RGB representation after normalization. This was done to give an intuition
for how the normalized airflow data is presented to the feature extractor. Moreover,
Figure 4.12 shows how this RGB representation can visualize statistical properties
averaged across the normalized training dataset. The same properties were visual-
ized for airflow data sampled from higher altitudes in the SIMRA domain, which
were shown to contain significantly smoother spatial properties.3

Experiment IIb has shown how the variance in the feature extractor feedback is
affected by the complexity in its input data. There is a clear correlation between
the decreasing complexity in Figures 4.12 and 4.13 and the corresponding feature-
space averaged variance shown in Figures 4.16, 4.17 and 4.18. Furthermore, it was
shown that even ground-level airflow data yields significantly smaller variances in
feature activations compared to an RGB image dataset. This relatively smaller
range of variation is hypothesized to have affected the models in Experiment I to
learn initially, but acts as a source of noise later in the training period. In other
words, it is assumed that the generators become confused by the different percep-
tual characteristics present in the airflow data. Consider Figure 4.20a showing the
development of perceptual loss in Session 4 of Experiment I. Although the trend de-
creases exponentially in early training, it is also evident that the oscillations around
this trend don’t diminish. After a certain point (around 40k iterations in Figure
4.20a), the generator is no longer able to make the super-resolved samples more

3These visualizations are also, in the author’s opinion, rather mesmerizing.

79

perceptually similar to their corresponding high-resolution velocity fields. Conse-
quently, the perceptual loss acts as a noisy feedback for the generator, preventing
it from fine-tuning its outputs.

However, it is not inconceivable that the models in Experiment I are able to recon-
struct high-altitude velocity fields, even when using this perceptual loss. Consider
that the perceptual loss for the highest-altitude HR data are essentially constant
(Figure 4.18b) in comparison. Note that the captions describe the actual activa-
tion and variance ranges. As a result, the feature extractor will output similar
activations for every training sample. If the generator produces a SR sample with
different/significant perceptual characteristics, the resulting perceptual loss will
drive the generator to produce samples with little or no such features. As the
perceptual loss is driven towards zero this way, the adversarial and pixel/content
losses will start to contribute more towards training the generator. It is arguably
simpler for the generator to learn a constant perceptual characteristic rather than
predicting different characteristics for each sample, especially since the feature ac-
tivations are based on an entirely different type of data. This is investigated in the
following experiment.

4.4 Experiment III: High-altitude airflow recon-
struction with ESRGAN

Results in Experiment II show how the feature-space averaged variances of fea-
ture extractor activations become very small for high-altitude airflow data, even
compared to the relatively low variance for ground-level data. By decomposing
generator losses in Experiment I, it was shown how the perceptual loss acts as a
noise towards the end of training. Hypothetically, it should be easier for the genera-
tor to ensure similar perceptual characteristics in its output rather than predicting
and mimicking high-level features from an entirely different dataset, i.e., ImageNet.
Moreover, the high-altitude velocity fields were shown to be significantly smoother
due to the lack of interaction with terrain. While smoother velocity fields pose
a simpler reconstruction task for the model, the traditional bicubic interpolation
method is bound to perform better as well. Therefore, the criteria for the gener-
ative model to “succeed” should be more stringent than in Experiment I. Thus,
the ESRGAN model is presented the highest-altitude training dataset and is set to
reconstruct HR velocity fields in the same manner as in Experiment I. The hyper-
parameters were chosen based on the results from Session 4 in Experiment I, albeit
with instance noise re-enabled (Table 3.5).

The results of this experiment is shown in Figure 4.19. Three of the models achieve
PSNR validation performances of ≈ 140 [dB], which is significantly higher than any
of the models in Experiment I. Given that this reconstruction task is less complex
than in Experiment I, a higher PSNR performance was expected. Consider the dis-
criminator and generator adversarial losses in Figures 4.19d and 4.20b, respectively.
Compared to models in Experiment I, these losses more closely resemble the hypo-

80

(a) PSNR validation performance.

(b) Training loss for generators. (c) Validation loss for generators.

(d) Training loss for discriminators. (e) Validation loss for discriminators.

Figure 4.19: Experiment III: Highest-altitude velocity field reconstruction.

thetical loss development shown in Figure 2.11 in Chapter 2.6. The discriminators
have an easy task in the first 20k iterations before the generator starts to produce
believable reconstructions. Subsequently, the adversarial losses oscillate with grad-
ually smaller amplitudes as both networks converge. Moreover, de-weighting the
generators’ adversarial losses, ≈ 0.004 ∗ 200 = 0.8, shows that the discriminator-
generator adversarial losses are in fact balanced. One model, however, seem to have
experienced the recurring issue of constant discriminator loss (e.g., “ESRGAN 4”
in Session 2 and “LR cycle@150k without instance noise” in Session 3.)

81

(a) Perceptual loss component.

(b) Adversarial loss component.

(c) Pixel loss component.

Figure 4.20: Experiment III: Decomposing the generator training loss into its weighted
components.

Consider the perceptual component of the generator training loss in Figure 4.20a.
It is clear that these models suffer less from noisy feature extractor feedback as in

82

Experiment I (4.10a). It was hypothesized in Experiment II that the significantly
smaller variance in feature activations for this dataset could lead to an easier min-
imization task for the generative model. The perceptual loss development in these
models strengthens this theory. As the generators manage to quickly reduce and
stabilize their perceptual loss, the adversarial feedback from the discriminators has
a larger impact. As a result, the generators are able to balance minimizing their
perceptual and adversarial losses.

4.5 Performance evaluation of models in Experi-
ment I and III.

Up until this point, all models have been evaluated based on their PSNR per-
formance on validation datasets. As all experiments are concluded, the models
will be presented their test datasets to finalize the performance evaluation. Given
that this model is quite expensive to train, both with respect to time and com-
putational resources, it should perform considerably better than the traditional
bicubic interpolation method to consider applying it in real-world applications. In
addition to trained models, the original pre-trained model and two downloaded
variants of the original ESRGAN (by Wang et al. [50]) are tested and used as ref-
erences. However, the applied evaluation metrics are designed for use on image
data. How can the quality of reconstructed airflow data be evaluated using such
metrics? Recall that PSNR is notorious for yielding large variations between in-
distinguishable images. In image compression, for instance, the goal is to remove
psychovisual redundant information without removing perceptually important in-
formation. Therefore, PSNR is non-ideal for such tasks. In contrast, airflow data
contains no redundant information. Consequently, any difference in PSNR, or the
MSE as it is based on, represents valid differences in the compared flows. As ex-
plained in Chapter 3.7, the calculation of PSNR for denormalized testing data is
different due to the change of scale in denormalized data. Using the calculated nor-
malization factors in Table 4.2 yields the following R2 (simulated max fluctuation)
terms:

R2
Ex1 = (18.99− (−12.54))2 = 994.14

R2
Ex3 = (36.09− (−33.64))2 = 4862.27

where R2
Ex1 and R2

Ex3 are applied for models in Experiment I and III, respectively.

The LPIPS metric is introduced to quantify a perceptual performance. As ex-
plained in Chapter 3.7, the agreement between this metric and PSNR is used to
identify whether models tend to ignore psychovisual redundant information rather
than learning the governing equations of airflow. Considering the unconventional
application of super-resolving fluid data using a perceptual approach, no existing
literature has investigated nor justified whether minimizing a perceptual distance
is synonymous to learning the relevant fluid dynamics. The spatial property of

83

the LPIPS metric is of particular interest. While differences in MSE and PSNR
indicate meaningful errors, they cannot relate the error spatially. Bicubic interpo-
lation is expected to fail for high-frequency details in the airflow, but at least it
will fail predictably. Therefore, the spatial LPIPS evaluation aims to find whether
the trained models produce errors in a predictable manner.

4.5.1 Test set PSNR and LPIPS agreement evaluation

The test set performances of the 22 trained models in Experiment I and 4 models
trained in Experiment III are presented in Table 4.7. Models exceeding the perfor-
mance of the bicubic interpolation method are marked in bold letters. Since PSNR
is based on MSE, this is included as well. Overall, few of the trained models in Ex-
periment I exceed bicubic interpolation in PSNR performance. In Experiment III,
however, three of the four models significantly exceed bicubic interpolation. Con-
sider Equation 3.7 for calculating PSNR. When values for MSE becomes small,
the function starts to increase exponentially. Without an upper bound on the
PSNR metric, and no comparable literature due to data-driven normalization of
unconventional data, it is hard to estimate the actual quality of the super-resolved
velocity fields.

Recall that a perfect reconstruction will yield an LPIPS value of zero, i.e., lower
LPIPS is better. The LPIPS metric yields more optimistic results for the most
trained models compared to bicubic interpolation. Even the worst performing
model from Session 2, which had significantly worse PSNR validation performance
during training compared to the other models, yield a smaller mean perceptual dif-
ference for its generated samples compared to bicubic interpolation. As explained
in Chapter 3.7, LPIPS is included in the performance evaluation to find poten-
tial disagreements with the PSNR metric. It was stated that the metrics should
agree when the reconstruction is good, and disagree when the model disregards
psychovisually redundant information. Several of the models achieve better LPIPS
scores than the bicubic interpolation method and simulaneously scores worse for
PSNR. This disagreement indicates that these models attempt to minimize the
perceptual difference between their super-resolved samples and the corresponding
high-resolution velocity field rather than reconstructing the airflow according to the
governing equations. LPIPS and PSNR values relating to Experiment III suggest
that three of the models achieve near-perfect reconstruction of all test samples.
Considering the findings for high-altitude data in Experiment II, the LPIPS metric
might not be well suited for this particular dataset. Notice how “ESRGAN1” in
Experiment III has a relatively large MSE of 6.14± 4.84, while the corresponding
LPIPS metric still yields a small value.

4.5.2 Visual inspection of the best, average and worst per-
forming models

Visual inspection of each velocity component can uncover any discrepancies that
are not discovered from the applied metrics. Filled contour plots with a discrete

84

color-map was thought to give an easily interpretable representation. Ground-level
outputs from the best, an average and the worst performing models according to
Table 4.7 are presented to show a range of possible outputs from the model. The
outputs were sampled using a random number generator to avoid “cherry picking”
the results. These are presented in Figures 4.21, 4.22 and ??, respectively. Models
in Experiment III achieved near-perfect reconstruction capabilities according to
MSE and LPIPS. Figure 4.23 shows that the bicubic interpolation arguably recon-
structs the high-resolution velocity field better than the generative model despite
achieving worse quality metrics. Thus, the applied metrics become inaccurate for
near-perfect reconstruction.

Figure 4.21: Filled contour plot comparison for each velocity component. Left column:
Bicubic interpolation, Middle column: High-resolution reference. Right column: Best
model from Session 1. Each row represents the different velocity components, u, v and
w. The generative model is mostly able to reconstruct general flow structures, but not
for high-frequency details.

85

Figure 4.22: Filled contour plot comparison for each velocity component. Left column:
Bicubic interpolation, Middle column: High-resolution reference. Right column: Average
model from Session 4. Each row represents the different velocity components, u, v and
w. The generative model recreates general flow structures but fails to do so accurately.

4.5.3 Spatial LPIPS performance

Chapter 2.7 described that localized perceptual differences can be found by remov-
ing the spatial averaging in Equation 2.35. Calculating spatial LPIPS for the full
test set and averaging sample-wise can uncover areas within the domain where a
model consistently fails to match the corresponding high-resolution velocity field.
To visually compare the models, the color-map is scaled with respect to the max-
imum LPIPS value found this way for the bicubic interpolation method, which is
presented in Figure 4.24. Similar to Table 4.7, lower spatial LPIPS values mean
smaller differences between super-resolved and high-resolution. This figure shows
that the bicubic interpolation method tends to produce the most perceptually dif-
ferent airflow characteristics in areas where the terrain is more complex. Consider
that the method does not take any domain knowledge into consideration. These

86

Figure 4.23: Filled contour plot comparison for each velocity component. Left column:
Bicubic interpolation, Middle column: High-resolution reference. Right column: Best
model from Experiment III (top-level airflow). Each row represents the different velocity
components, u, v and w. Although bicubic interpolation scores worse wrt. quality metrics,
its reconstructed airflow more closely match the high-resolution reference compared to the
generative model.

results show that the bicubic smoothing of turbulent and complex flow elicit per-
ceptual differences compared to the true high-resolution airflow.

The best and worst performing models with respect to LPIPS in Experiment I and
III, including the other reference models, are tested in the same way as bicubic
interpolation. Figure 4.25 shows the spatial LPIPS differences for these models
in Experiment I, where the best model (left) yields significantly smaller and less
localized perceptual differences compared to bicubic interpolation (right). In con-
trast, the corresponding errors for the worst model (middle) are less correlated
with terrain complexity and generally larger. These representations provide valu-
able supplementary information to the mean LPIPS values in Table 4.7.

87

(a) Localized errors. (b) SIMRA domain

Figure 4.24: Spatial LPIPS with terrain overlay for the bicubic interpolation method.
Added SIMRA domain for reference.

(a) Best: Session 4 - ESR-
GAN3.

(b) Worst: Session 1 - ESR-
GAN6.

(c) Reference: Bicubic inter-
polation.

Figure 4.25: Spatial LPIPS with terrain overlay: Best and worst models of Experiment
I vs. BC.

For Session 2, models “ESRGAN1”, “ESRGAN2” and “ESRGAN3” achieved sim-
ilar LPIPS scores in Table 4.7. Figure 4.26 compares the errors of these models in
the spatial domain. Note that the color-map for these models are scaled relative
to the models’ own maximum error. In other words, this figure is not meant to
compare against bicubic interpolation. Although their performances differ slightly,
the spatial errors appear consistent between the models. This shows that when in-
dependent models achieve similar LPIPS performances, their corresponding spatial
errors are consistent.

Corresponding representations are created for models in Experiment III using the
highest-altitude test dataset. Note that the altitude considered for these models

88

(a) ESRGAN1. (b) ESRGAN2. (c) ESRGAN3.

Figure 4.26: Spatial LPIPS: Spatial error differences between similar models in Session
2.

don’t have an actual contour for terrain, but the ground-level contour is included
to represent the domain below. Figure 4.27 illustrates how bicubic interpolation
(right) fails in a similar manner as for ground-level airflows, i.e, surrounding com-
plex terrain, though with considerably lower error rates. In contrast, super-resolved
velocity fields from the best model (left) yields almost no perceptual difference. The
worst model (middle), however, yields a rather strange result. Recall from Experi-
ment III that this model experienced constant discriminator losses and a constant
PSNR validation performance throughout training. Interestingly, the model’s per-
ceptual loss (Figure 4.20a) converged along with the other models, indicating that
minimizing the perceptual loss is not necessarily synonymous to achieving accurate
super-resolved velocity fields.

(a) Best: ESRGAN3. (b) Worst: ESRGAN1.
(c) Reference: Bicubic inter-
polation.

Figure 4.27: Spatial LPIPS with terrain overlay: Best and worst models of Experiment
III vs. BC.

Furthermore, consider that the LPIPS performance for three of the models in
Experiment III are identical in Table 4.7 and even close to representing perfect
reconstruction capabilities. Figure 4.28 illustrates that the small errors are consis-

89

tent in the spatial domain. Compared to the corresponding comparison for models
in Experiment I (Figure 4.26), these models have an even closer correlation. This
shows great promise for the model’s ability to consistently reproduce its results
when its LPIPS scores become small. Some error patterns can be seen along the
edges of the domain. Nevertheless, the associated errors are relatively small, but
should still be considered in future work.

(a) ESRGAN2. (b) ESRGAN3. (c) ESRGAN4.

Figure 4.28: Spatial LPIPS: Consistent spatial errors between similar models in Exper-
iment III.

90

Table 4.7: PSNR and LPIPS agreement evaluation for all trained models in Experiment
I and III.

Session Model
PSNR [dB] MSE VGG LPIPS

mean ±std mean ±std mean ±std

Bicubic
interp.

38.21 3.20 0.20 0.16 0.35 0.14

Reference
models

Pretrained
model

38.01 3.01 0.20 0.17 0.26 0.10

Original
ESRGAN

27.21 3.77 2.77 2.77 0.52 0.17

PSNR
ESRGAN

36.17 3.40 0.33 0.29 0.34 0.15

Session 1

ESRGAN1 29.27 1.31 1.24 0.46 0.38 0.11
ESRGAN2 37.68 3.02 0.22 0.18 0.25 0.09
ESRGAN3 29.04 1.05 1.28 0.37 0.33 0.09
ESRGAN4 28.74 0.94 1.36 0.35 0.40 0.11
ESRGAN5 37.10 2.93 0.25 0.20 0.29 0.11
ESRGAN6 26.72 1.00 2.18 0.57 0.43 0.11
ESRGAN7 32.67 1.70 0.59 0.29 0.35 0.09
ESRGAN8 27.98 1.11 1.64 0.50 0.42 0.11
Ext. pretrained 39.21 3.01 0.16 0.13 0.17 0.07

Session 2

ESRGAN1 37.12 2.96 0.25 0.19 0.27 0.10
ESRGAN2 37.35 2.98 0.23 0.19 0.26 0.10
ESRGAN3 37.30 2.89 0.23 0.18 0.27 0.10
ESRGAN4 35.48 2.65 0.35 0.26 0.31 0.10
Ext. pretrained 39.03 3.05 0.16 0.14 0.18 0.08
Ext. worst noisy 38.39 2.96 0.19 0.15 0.21 0.09
Ext. worst 38.59 2.99 0.18 0.14 0.21 0.09

Session 3

Cycle 50k, hard 35.76 2.94 0.34 0.27 0.28 0.11
Cycle 50k, soft 36.40 2.92 0.29 0.23 0.26 0.11
Cycle 150k, no
noise

34.15 1.89 0.43 0.23 0.30 0.09

Cycle 150k 36.41 3.01 0.30 0.24 0.29 0.11

Session 4
ESRGAN1 37.52 3.27 0.24 0.21 0.20 0.09
ESRGAN2 36.47 3.16 0.29 0.24 0.25 0.12
ESRGAN3 39.02 3.25 0.17 0.15 0.16 0.08

Ex. III

Bicubic
interp.

58.40 4.24 0.012 0.017 0.017 0.022

ESRGAN1 35.14 11.38 6.14 4.84 0.075 0.156
ESRGAN2 69.08 3.18 0.001 0.001 0.002 0.004
ESRGAN3 67.08 2.55 0.001 0.001 0.002 0.003
ESRGAN4 68.48 3.17 0.001 0.001 0.002 0.004

91

Chapter 5

Conclusions and further
work

5.1 Answering the research questions

The answer to each of the following research questions concludes the work done in
this thesis, and proposals for further work are presented.

Why does the previously proposed GAN-based super-resolving model
consistently fail to reproduce its results?
Experiment I conducted a stability analysis of the previously proposed model for
super-resolving low-resolution velocity fields using the perceptually driven SISR
model, ESRGAN. Through hyperparameter tuning, learning rate cycling, and dou-
bling the number of training iterations, it was found that the perceptual component
in the generator loss function consistently failed to converge for all models.

What is the fundamental issue with applying the pre-trained feature
extractor to airflow data?
The previous work failed to justify whether a perceptual feature extractor pre-
trained on ImageNet applies to the airflow velocity data considered for this model.
Experiment II investigated the difference in perceptual characteristics between
RGB image data in Flickr30k, ground-level airflow training data in Experiment
I, and two high-altitude training datasets created for the same date range. Trans-
lating the airflow velocity data to RGB provided an intuition for the visual com-
plexity of airflow data as presented to the feature extractor. Additionally, the
training datasets were averaged and normalized independently to visualize the
spatial correlation and variance between samples using the RGB representation.
It was shown that the ground-level airflow data yielded significantly less variance
in feature activations compared to the RGB dataset.

Furthermore, the higher-altitude training datasets yielded considerably less vari-

92

ance in feature activations, even near-constant. Experiment III considered the
same model in Experiment I applied to the highest-altitude dataset to investigate
whether rich variations in perceptual feature activations are beneficial or inhibiting
for the generative model. Compared to models in Experiment I, the models in Ex-
periment III achieved a significantly higher PSNR performance, discriminator loss
progressions corresponded to the hypothetical minimax game illustration (Figure
2.11) and a converging perceptual loss. Empirical evidence suggests that higher
variance in the perceptual feature activations makes a more difficult task for the
generator to solve when there is a significant difference between the dataset used
to train the feature extractor versus the dataset available to the generative model.

Is the generative model’s task of minimizing a perceptual difference syn-
onymous to learning the governing equations of airflow in the relevant
domain?
Even though the PSNR validation performances in Experiment III were promising,
the values alone are hard to interpret. The performance evaluation considered an
agreement comparison between the PSNR and LPIPS metrics. The criterion to
be met was based on the agreement between a higher PSNR than bicubic inter-
polation, and a corresponding lower LPIPS score. It was shown that most models
in Experiment I failed this agreement criterion, except for models with extended
training, i.e., started their training from the end state of a pre-trained generator.
Considering that the original ESRGAN model [50] performs initial pre-training
of their generative model before introducing the adversarial framework, this ad-
dition may benefit the model. However, these “extended” models still performed
only marginally better than bicubic interpolation. Spatial LPIPS errors averaged
sample-wise over test data for the bicubic interpolation method were illustrated,
and it was shown that perceptual distance error values correspond to areas of more
complex terrain. Comparing trained models with similar LPIPS scores showed that
localized errors are spatially correlated. This shows promise for the consistency
of the model output, despite the imperfect reconstruction quality. Furthermore,
models in Experiment III resulted in near-perfect reconstruction quality both with
respect to LPIPS and MSE, with corresponding near-perfect spatial correlation in
LPIPS error. Through visual inspection, it was shown that the applied metrics
become inaccurate when the airflow reconstruction is near-perfect.

5.2 Further work

Ultimately, this thesis concludes that the proposed perceptually driven generative-
adversarial framework is unsuited for reconstructing airflow in complex terrain.
Empirical evidence suggests that the model is capable of reconstructing smoother
airflow based on the fact that the output from the feature extractor is near-constant.
Therefore, it is possible that the network architecture itself is sufficient, and the
fundamental issue is attributed to the RGB data used to train the feature extrac-
tor. Since airflow data cannot be used to form a supervised learning problem, a
feature extractor explicitly trained for airflow cannot be created in the same way

93

as for RGB image data. There is, to the author’s knowledge, one exception; Chu &
Thuerey [5] utilizes intermediate convolutional features extracted from the discrim-
inator in their proposed generative model for super-resolving coarse fluid simula-
tions with rich turbulence details. Consider that the discriminator essentially solves
a supervised learning task, i.e., classifies between “real” and “fake” flow fields, the
resulting convolutional network is similar both in structure and task as the pre-
trained feature extractor in this thesis. Assuming that the generative-adversarial
model avoids the typical issues such as discriminator overfitting, mode collapse,
and convergence failure, the resulting discriminator should become an expert in
discovering high-level features attributed to real flow, i.e., it learns the governing
equations. Using the convolutional feature extractor part of the discriminator can
provide the generative model with expert knowledge directly related to the airflow
data, rather than the corresponding RGB-related high-level features found by the
feature extractor used in this thesis.

Sanchez-Gonzalez et al. [43] propose a particle-based “Graph Network-based Sim-
ulator” (GNS) that can learn complex fluid physics for different viscosities and
simulates realistic fluid interaction with a presented environment. Adopting this
model using airflow and including the SIMRA terrain data can be considered by
future researchers.

94

Bibliography

1. Arjovsky, M. & Bottou, L. Towards Principled Methods for Training Gener-
ative Adversarial Networks. stat 1050 (Jan. 2017).

2. Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein GAN (Jan. 2017).
3. Bellman, R. & Corporation, R. Adaptive Control Processes: a Guided Tour:

R-350 (Rand Corporation, 1961).
4. Blau, Y., Mechrez, R., Timofte, R., Michaeli, T. & Zelnik-Manor, L. The 2018

PIRM Challenge on Perceptual Image Super-resolution 2018. eprint: 1809.
07517.

5. Chu, M. & Thuerey, N. Data-driven synthesis of smoke flows with CNN-based
feature descriptors. ACM Transactions on Graphics 36, 1–14. issn: 1557-7368.
http://dx.doi.org/10.1145/3072959.3073643 (July 2017).

6. Deng, J. et al. Imagenet: A large-scale hierarchical image database in 2009
IEEE conference on computer vision and pattern recognition (2009), 248–255.

7. Dodge, S. & Karam, L. Understanding how image quality affects deep neural
networks in (June 2016), 1–6.

8. Dong, C., Loy, C. C., He, K. & Tang, X. Image Super-Resolution Using Deep
Convolutional Networks 2014.

9. Dumoulin, V. & Visin, F. A guide to convolution arithmetic for deep learning
(Mar. 2016).

10. Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks 2016.
arXiv: 1701.00160 [cs.LG].

11. Goodfellow, I. J. et al. Generative Adversarial Networks 2014. eprint: 1406.
2661.

12. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning http : / / www .

deeplearningbook.org (MIT Press, 2016).
13. Google. Machine Learning Course: Generative Adversarial Networks (Ac-

cessed: 05.2020). Apr. 2019. https://developers.google.com/machine-
learning/gan/training.

14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. Im-
proved Training of Wasserstein GANs 2017. arXiv: 1704.00028 [cs.LG].

15. HARMONIE-SIMRA Database (Accessed 04.2020). https://thredds.met.
no/thredds/fileServer/opwind/.

95

1809.07517
1809.07517
http://dx.doi.org/10.1145/3072959.3073643
https://arxiv.org/abs/1701.00160
1406.2661
1406.2661
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developers.google.com/machine-learning/gan/training
https://developers.google.com/machine-learning/gan/training
https://arxiv.org/abs/1704.00028
https://thredds.met.no/thredds/fileServer/opwind/
https://thredds.met.no/thredds/fileServer/opwind/

16. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning
isbn: 9780387848587 (Springer, 2009).

17. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recog-
nition in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2016), 770–778.

18. Iandola, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and ¡0.5MB model size 2016. arXiv: 1602.07360 [cs.CV].

19. Irani, M. & Peleg, S. Improving resolution by image registration. CVGIP:
Graphical Models and Image Processing 53, 231–239. issn: 1049-9652 (1991).

20. Johnson, J., Alahi, A. & Fei-Fei, L. Perceptual Losses for Real-Time Style
Transfer and Super-Resolution 2016. eprint: 1603.08155.

21. Jolicoeur-Martineau, A. The relativistic discriminator: a key element missing
from standard GAN 2018. eprint: 1807.00734.

22. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization 2014.
arXiv: 1412.6980 [cs.LG].

23. Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Advances in Neural Informa-
tion Processing Systems 25 1097–1105 (Curran Associates, Inc., 2012).

24. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. Commun. ACM 60, 84–90. issn: 0001-
0782. https://doi.org/10.1145/3065386 (May 2017).

25. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE 86, 2278–2324
(Dec. 1998).

26. LeCun, Y. & Cortes, C. MNIST handwritten digit database. http://yann.
lecun.com/exdb/mnist/ (2010).

27. Ledig, C. et al. Photo-Realistic Single Image Super-Resolution Using a Gen-
erative Adversarial Network 2016.

28. Leong, W. J. & Horgan, H. J. DeepBedMap: Using a deep neural network to
better resolve the bed topography of Antarctica. The Cryosphere Discussions
2020, 1–27. https://www.the-cryosphere-discuss.net/tc-2020-74/
(2020).

29. Mescheder, L., Geiger, A. & Nowozin, S. Which Training Methods for GANs
do actually Converge? 2018. arXiv: 1801.04406 [cs.LG].

30. Mirza, M. & Osindero, S. Conditional Generative Adversarial Nets (Nov.
2014).

31. Nagarajan, V. & Kolter, J. Z. Gradient descent GAN optimization is locally
stable 2017. arXiv: 1706.04156 [cs.LG].

32. Nielsen, M. Neural Networks and Deep Learning (accessed 20.04.2020). http:
//neuralnetworksanddeeplearning.com/index.html (Determination Press,
2015).

33. Nocedal, J. & Wright, S. J. Numerical Optimization isbn: 0387303030 (Springer,
2006).

34. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library 2019. arXiv: 1912.01703.

96

https://arxiv.org/abs/1602.07360
1603.08155
1807.00734
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3065386
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.the-cryosphere-discuss.net/tc-2020-74/
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1706.04156
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
https://arxiv.org/abs/1912.01703

35. Purves, D. et al. Neuroscience isbn: 9780878936953 (Oxford University Press,
2012).

36. Radford, A., Metz, L. & Chintala, S. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks (Nov. 2015).

37. Ramachandran, P. & Varoquaux, G. Mayavi: 3D Visualization of Scientific
Data. Computing in Science & Engineering 13, 40–51. issn: 1521-9615 (2011).

38. Rasheed, A., Süld, J. & Kvamsdal, T. A Multiscale Wind and Power Forecast
System for Wind Farms. Energy Procedia 53 (Dec. 2014).

39. Rasheed, A., Tabib, M. & Kristiansen, J. Wind Farm Modeling in a Realistic
Environment Using a Multiscale Approach June 2017. https://doi.org/10.
1115/OMAE2017-61686.

40. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning Representations
by Back-propagating Errors. Nature 323, 533–536. http://www.nature.
com/articles/323533a0 (1986).

41. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach 3rd. isbn:
0136042597, 9780136042594 (Prentice Hall Press, Upper Saddle River, NJ,
USA, 2009).

42. Salimans, T. et al. Improved Techniques for Training GANs 2016. arXiv:
1606.03498 [cs.LG].

43. Sanchez-Gonzalez, A. et al. Learning to Simulate Complex Physics with Graph
Networks 2020. arXiv: 2002.09405 [cs.LG].

44. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv 1409.1556 (Sept. 2014).

45. Själander, M., Jahre, M., Tufte, G. & Reissmann, N. EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastructure 2019.
arXiv: 1912.05848 [cs.DC].

46. Sønderby, C. K., Caballero, J., Theis, L., Shi, W. & Huszár, F. Amortised
MAP Inference for Image Super-resolution 2016. arXiv: 1610.04490 [cs.CV].

47. Tran, D. T. et al. GANs enabled super-resolution reconstruction of wind field
(Unpublished). 2019.

48. Tyagi, V. Understanding Digital Image Processing isbn: 9781351342667 (CRC
Press, 2018).

49. Vesterkjær, E. E. GAN implementation for single image super resolution. Ac-
cessed (01.2020). 2019. %7Bhttps://github.com/eirikeve/esrdgan%7D.

50. Wang, X. et al. ESRGAN: Enhanced super-resolution generative adversarial
networks in The European Conference on Computer Vision Workshops (EC-
CVW) (Sept. 2018).

51. Young, P., Lai, A., Hodosh, M. & Hockenmaier, J. From image descriptions to
visual denotations: New similarity metrics for semantic inference over event
descriptions. TACL 2, 67–78 (2014).

52. Zhang, R., Isola, P., Efros, A. A., Shechtman, E. & Wang, O. The Unreason-
able Effectiveness of Deep Features as a Perceptual Metric in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), 586–595.

97

https://doi.org/10.1115/OMAE2017-61686
https://doi.org/10.1115/OMAE2017-61686
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/2002.09405
https://arxiv.org/abs/1912.05848
https://arxiv.org/abs/1610.04490
%7Bhttps://github.com/eirikeve/esrdgan%7D

Appendix A

Overview of appendices

The appendix contains additional information considered excessive to include in the
main part of the thesis. Its contents are meant to provide additional information
for interested researchers.

98

Appendix B

Accessing the contents of
netCDF data files

This appendix explains some additional information regarding the NetCDF files
generated by the HARMONIE-SIMRA system used to form the datasets in this the-
sis. Each file has the naming convention ”simra BESSAKER [YYYYMMDD]T[HH]Z.nc”,
where [YYYYMMDD] is replaced with a past date, and [HH] is replaced with ”00”
or ”12” depending on whether the file contains data from 00:00-12:00 or 12:00-
24:00, respectively. These filed predates back to 04.08.2017, and are continuously
generated at the time of writing. Table B.1 contains all variables available in each
file. Using the netcdf4 library for Python3, the file is loaded into a netcdf4.Dataset
data structure. Variables can then be accessed from the netcdf4.Dataset.

99

Table B.1: Available data generated by the coupled HARMONIE-SIMRA system

Variable Description
time(time) Time of day
forecast reference time() NA
l(l) Vertical separator for horizontal planes
rotated latitude longitude() NA
x(x) x-axis
y(y) y-axis
longitude(y,x) NA
latitude(y,x) NA
geopotential height ml(time,l,y,x) Geopotential height
surface altitude(y,x) NA
air potential temperature ml(time,l,y,x) NA
x wind ml(time,l,y,x) Wind velocity along x-axis (u)
y wind ml(time,l,y,x) Wind velocity along y-axis (v)
upward air velocity ml(time,l,y,x) Wind velocity along z-axis (w)
x wind 10m(time,y,x) NA
y wind 10m(time,y,x) NA
air pressure ml(time,l,y,x) Pressure
surface air pressure(time,y,x) Pressure at surface-level
turbulence index ml(time,l,y,x) NA
turbulence dissipation ml(time,l,y,x) Kinetic energy loss due to turbulence

Dimensions(sizes): x(135), y(136), l(41), time(13)

100

Appendix C

GAN-related distances,
divergences and algorithms

This appendix provides mathematical descriptions of different distances and diver-
gences used in GAN context, as described by Arjovsky et al. [2].

δ(T, T ′) = sup
A∈

∑ |T (A)− T ′(A)| Total Variation (TV) distance

(C.1)

KL(T ||T ′) =

∫
log

(
T (x)

T ′(x)

)
T (x)dµ(x) Kullback-Leibler (KL) divergence

(C.2)

JS(T, T ′) = KL(T ||Tm) +KL(T ′||Tm) Jensen-Shannon (JS) divergence
(C.3)

W (T, T ′) = inf
γ∈

∏
(T,T ′)

E(x,y) ∼ γ [||x− y||] Earth Mover’s Distance (EMD)

or Wasserstein-1
(C.4)

101

Algorithm 4: Training algorithm for WGAN. Rephrased from its definition
in [2].

1 Hyperparameters : α, the learning rate. c, the weight clipping
parameter. m, the batch size. ncritic, the number of iterations of the critic
per generator iteration.

2 Require : θC0 , initial critic parameters. θG0 , initial generator parameters.
3 while θG has not converged do
4 for t = 0, ..., ncritic do
5 • Sample batch of m noise samples {z(1), ..., z(m)} from prior Z.

6 • Sample batch of m examples {t(1), ..., t(m)} from data generating,
true, distribution T .

7 • Update the critic using RMSProp:

8 ∆C ← ∇θC
[
1
m

∑m
i=1 C

(
t(i)
)
− 1

m

∑m
i=1 C

(
G
(
z(i)
))]

9 θC ← θC + α · RMSProp(θC ,∆C)
10 θC ← clip(θC ,−c, c)
11 end

12 • Sample batch of m noise samples {z(1), ..., z(m)} from prior Z.
13 • Update the generator using RMSProp:

14 ∆G ← −∇θG 1
m

∑m
i=1

[
C
(
G
(
z(i)
))]

15 θG ← θG − α · RMSProp(θG,∆G)

16 end

102

Appendix D

Auxilliary feature extractor
experiment

Experiment IIb raised a suspicion regarding smaller variances along the outer spa-
tial axes of VGG19-54 feature activations. Since the applied VGG19 network was
pretrained on 224x244 images, an additional Flickr30k subset was created. Using
5200 224x244 images, the feature-space averaged variance was found in the same
manner as in Experiment IIb. The results are shown in Figure D.1.

103

Figure D.1: Feature-space averaged variance of VGG19-54 activations using a 224x224
resolution subset of Flick30k.

104

Appendix E

Software requirements

This appendix contains the core software modules and Python libraries used in this
thesis.

Table E.1: Core software modules used on the IDUN HPC Cluster.

Software module Version
GCC 8.2.0-2.31.1

CUDA 10.1.105
Python 3.7.2

105

Table E.2: Python 3.7.2 - Software requirements

Python library Version
cycler 0.10.0
joblib 0.14.1

kiwisolver 1.1.0
matplotlib 3.1.3

numpy 1.18.1
opencv-python 4.2.0.32

Pillow 7.0.0
progressbar2 3.47.0

protobuf 3.11.3
psutil 5.7.0

pyparsing 2.4.6
python-dateutil 2.8.1

python-utils 2.3.0
scikit-learn 0.22.1

scipy 1.4.1
six 1.14.0

tensorboardX 2.0
torch 1.4.0

torchvision 0.5.0

106

Appendix F

Spatial LPIPS evaluation for
all models

Only a few figures illustrating the sample-mean spatial LPIPS differences were
presented in Chapter 4 to avoid clutter. Corresponding figures for all models are
presented here.

107

(a) ESRGAN1. (b) ESRGAN2. (c) ESRGAN3.

(d) ESRGAN4. (e) ESRGAN5. (f) ESRGAN6.

(g) ESRGAN7. (h) ESRGAN8. (i) Ext. pretrained.

Figure F.1: Spatial LPIPS for all models in Session 1.

108

(a) ESRGAN1. (b) ESRGAN2. (c) ESRGAN3.

(d) ESRGAN4.
(e) Ext. ESRGAN4
with noise.

(f) Ext. ESRGAN4.

(g) Ext. pretrained.

Figure F.2: Spatial LPIPS for all models in Session 2.

109

(a) LR cycle 50k,
hard reset.

(b) LR cycle 50k, soft
reset.

(c) LR cycle 150l w/o
instance noise.

(d) LR cycle 150k.

Figure F.3: Spatial LPIPS for all models in Session 3.

(a) ESRGAN1. (b) ESRGAN2. (c) ESRGAN3.

Figure F.4: Spatial LPIPS for all models in Session 4.

110

(a) ESRGAN1. (b) ESRGAN2. (c) ESRGAN3.

(d) ESRGAN4.

Figure F.5: Spatial LPIPS for all models in Experiment III.

111

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Thomas Nakken Larsen

On the applicability of a perceptually
driven generative-adversarial
framework for super-resolution of
wind fields in complex terrain

Master’s thesis in Cybernetics and Robotics

Supervisor: Adil Rasheed

July 2020

	Abstract
	Acknowledgments
	Preface
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem description
	Thesis outline
	Research questions

	Background
	Flow in complex terrain
	HARMONIE-SIMRA: a coupled multi-scale model for airflow data generation
	Machine learning
	Supervised learning
	Unsupervised learning

	Artificial neural networks
	Activation functions
	Loss functions
	Backpropagation

	Deep learning
	Generative Adversarial Networks
	GAN failure modes and how to avoid them

	Single Image Super-Resolution GANs
	Introducing perceptual loss
	The Learned Perceptual Image Patch Similarity metric
	Enhanced Super-Resolution Generative Adversarial Network for airflow velocity data

	Methods
	Hardware specification
	Software specification
	Data generation process
	Preprocessing and splitting of data

	Experiment I: Stability analysis of previous work
	Model hyperparameters and training hacks

	Experiment II: Assessing the validity of applying a perceptual SISR method to airflow data
	Experiment IIa: Visualizing velocity fields as RGB images
	Experiment IIb: Investigating perceptual features for airflow data

	Experiment III: High-altitude airflow reconstruction with ESRGAN
	Performance evaluation

	Results and discussion
	Data preparation
	Experiment I: Stability analysis of previous work
	Session 1: Training stability of the previously proposed model
	Session 2: Continued training stability analysis with static label smoothing
	Session 3: Multi-step learning rate cycling
	Session 4: Extended training period and disabled instance noise
	Summary and discussion of Experiment I.

	Experiment II: Assessing the validity of applying a perceptual SISR method to airflow data.
	Experiment IIa: Visualizing velocity fields as RGB images
	Experiment IIb: Investigating the effect of perceptual features for airflow data.
	Summary and discussion of Experiment II.

	Experiment III: High-altitude airflow reconstruction with ESRGAN
	Performance evaluation of models in Experiment I and III.
	Test set PSNR and LPIPS agreement evaluation
	Visual inspection of the best, average and worst performing models
	Spatial LPIPS performance

	Conclusions and further work
	Answering the research questions
	Further work

	Bibliography
	Overview of appendices
	Accessing the contents of netCDF data files
	GAN-related distances, divergences and algorithms
	Auxilliary feature extractor experiment
	Software requirements
	Spatial LPIPS evaluation for all models

