
Abstract

Drones are quickly rising in popularity for carrying out missions in environments where
humans have difficulties performing tasks manually. They excel in both safety and ef-
ficiency. However, accuracy in the landing phase for autonomous drones is a difficult
challenge. This thesis presents the current progress in the continued development of a
system where an unmanned aerial vehicle (UAV) is to autonomously land on and pick up
a micro underwater glider (MUG) using computer vision and DUNE: unified navigation
environment.

A system implementation in DUNE with guidance methods and computer vision models
which the system rely on are developed and explained. The software and hardware nec-
essary to reproduce the methods used in this thesis for simulation and field testing are
presented.

Developed algorithms and methods are carried out by a miniature drone in a small scale
environment and ran through simulations with DUNE. The simulation provides a full im-
plementation test in a simulated environment governed by DUNE. These tests are used as
validation of the system before executing a field test. Results from the miniature drone
and simulations are presented and discussed in the thesis.

Field tests were conducted on land with a quadcopter and a fiducial marker on the ground
representing the MUG. The implemented system was able to detect the marker at an al-
titude of 5m and descend to an altitude of 40cm while maintaining the marker within the
camera view. The attempted landing maneuvers after closing in on the marker was not able
to keep the drone on the ground, but horizontal position error was kept within 20cm before
attempting to land. The results from the field test are presented, discussed and compared
with the results of the miniature drone and simulations.

Due to the national corona virus lockdown initiated 12.03.2020, field testing with the drone
intended to be used for this project was not performed.

i

Sammendrag

Autonome droner er i økende grad brukt til å utføre oppdrag som er vanskelig for men-
nesker å utføre selv. Droner tilbyr høy sikkerhet og effektivitet, men nøyaktighet i land-
ingsfasen er en vanskelig utfordring. Denne masteroppgaven presenterer statusen av et
kontinuerlig arbeid hvor målet er å lage programvare for en unmanned aerial vehicle
(UAV) slik at den kan autonomt lande på en micro underwater glider (MUG) og plukke
den opp ved hjelp av datasyn og DUNE: unified navigation environment.

Programvaren og maskinvaren som er nødvendig for å reprodusere metodene i masteropp-
gaven for simulering og felttesting blir presentert. Navigasjonsmetoder og datasynalgorit-
mer som programvaren er basert på blir utviklet og forklart.

Utviklet algoritmer og metoder blir utført på en miniatyr drone, og gjennom simulering
med DUNE. I simuleringen blir den fulle implementasjonen av DUNE testet. Testene blir
brukt som gradvis validering før en felttest med en større drone blir utført. Resultatene fra
testene med miniatyrdronen og simuleringene blir presentert og diskutert i masteropeg-
gaven.

Felttester ble utført på land med et quadcopter og med en lapp som inneholder posisjon-
sreferanser og som representerer en MUG. Systemet som ble laget var i stand til å gjenkjenne
lappen i en høyde på 5m og holde lappen innenfor bildet samtidig som den senket høyden
ned til 40cm. Forsøkte landinger klarte ikke å holde dronen på bakken, men horisontale
feil ble holdt innenfor 20cm før landing ble forsøkt. Resultatene blir drøftet og sammen-
linget med resultatene fra miniatyrdronen og simuleringene.

Grunnet nedstegninger foråsaket av koronautbruddet ble felttestene utført av en annen
drone enn den som masteroppgaven legger opp til å bruke.

ii

Preface

The work presented in this thesis concludes my master’s degree in Cybernetics and Robotics
at Norwegian University of Science and Technology (NTNU). The thesis represents the
continued work on the specialization project, written by the author and Aleksander Asp,
focused on establishing a quick and iterative testing platform for this thesis using a minia-
ture drone.

I would like to thank my supervisors; main supervisor Tor Arne Johansen and co-supervisor
Martin L. Sollie. Meetings and discussions with Johansen helped define my goals for the
thesis, and his feedback throughout the semester has helped keep the course steady. I
would like to thank Artur Piotr Zolich who has provided invaluable input on the software
stack and performed field testing on my behalf. I would also like to thank Alexander Asp
for his contributions to the specialization project and for the constructive discussions along
the way. Lastly, I would like to thank Ove Eldøy for providing the inspiration which lead
me to pursue this degree.

iii

iv

Table of Contents

Abstract i

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Problem Overview . 1

1.1.1 Initial MUG Localization . 2
1.1.2 High Altitude Approach . 2
1.1.3 Low Altitude Approach . 2
1.1.4 Pickup and return . 2

1.2 Outline . 3

2 Literature Review 5

3 Basic Theory 7
3.1 Reference frames and Transformations 7

3.1.1 Reference frames . 7
3.1.2 Rotations and Transformations 8

3.2 Computer Vision . 9
3.2.1 Camera Model . 9
3.2.2 Calibration . 10
3.2.3 Pose Estimation . 11
3.2.4 Object Detection . 11
3.2.5 Segmentation . 12

v

3.3 Modeling and Control . 12
3.3.1 Model Dynamics . 12
3.3.2 Guidance Systems . 14

3.4 Kalman filter . 15

4 System Overview 17
4.1 Software . 17

4.1.1 DUNE - Unified Navigation Environment 17
4.1.2 IMC protocol . 17
4.1.3 MAVLink Protocol . 19
4.1.4 The DUNE Task . 19
4.1.5 OpenCV . 20
4.1.6 ArduPilot . 20
4.1.7 FlightGear . 21

4.2 Hardware . 21
4.2.1 DJI S1000 multirotor . 21
4.2.2 3DR solo . 22
4.2.3 Ryze Tello . 22
4.2.4 ArUco Markers . 22
4.2.5 MUG . 23
4.2.6 BeagleBone Black . 23
4.2.7 Pixhawk 4 . 23
4.2.8 oCam-1CGN-U-T . 24
4.2.9 GoPro Hero4 . 24
4.2.10 Electropermanent magnet . 24

4.3 System State Machine . 24
4.3.1 Initialization . 25
4.3.2 Manual . 25
4.3.3 High Altitude Approach . 25
4.3.4 Low Latitude Approach . 25
4.3.5 Landing . 25

5 Implementation 27
5.1 Mutual Modules . 27

5.1.1 Filtering and Segmentation . 27
5.1.2 ArUco Detection . 29
5.1.3 Rectangle Marker Detection . 30
5.1.4 Transformations . 31
5.1.5 Camera Calibration . 32
5.1.6 ArUco Detection Tuner . 33

5.2 Tello Modules . 34
5.2.1 Control . 34
5.2.2 Video Decoding - h.264 decoder 34
5.2.3 State Machine . 35
5.2.4 Transformations . 35
5.2.5 Video Logs . 36

vi

5.3 DUNE Modules . 36
5.3.1 IMC messages . 36
5.3.2 Tasks . 38
5.3.3 Transformations . 40
5.3.4 Vendor Libraries in DUNE . 41

6 Experiments and Results 43
6.1 Small Scale Implementation - Tello . 43

6.1.1 Description . 43
6.1.2 Setup . 43
6.1.3 Calibration . 44
6.1.4 Results . 44
6.1.5 Discussion . 46

6.2 DUNE Implementation - Simulation . 47
6.2.1 Description . 47
6.2.2 Setup . 47
6.2.3 Results . 48
6.2.4 Discussion . 50

6.3 DUNE Implementation - 3DR . 50
6.3.1 Description . 51
6.3.2 Setup . 51
6.3.3 Results . 52
6.3.4 Discussion . 53

7 Discussion and Conclusion 55
7.1 Further Work . 56

Bibliography 57

Appendices 61
A Configuration Files . 63
B Flow Diagrams . 67
C 3DR Software Setup . 70
D Field Test Figures . 71

vii

viii

List of Tables

3.1 Discrete-time Kalman filter . 16

ix

x

List of Figures

4.1 IMC top level structure . 18
4.2 ArUco Marker Design . 23
4.3 MUG model . 23
4.4 State Diagram . 25

5.1 Camera Reference Frame . 32
5.2 Tello Side view with Reference Frames 36

6.1 Miniature Drone and ArUco Marker . 44
6.2 Tello Video Feed Corrupted vs Normal Quality 45
6.3 Relative ArUco position . 45
6.4 ArUco Position in body frame . 46
6.5 Simulation Hovering Altitude . 48
6.6 Simulation Hovering Horizontal Position 49
6.7 Simulation Landing Altitude . 49
6.8 Simulation Landing Horizontal Position 50
6.9 3DR Constant Bearing Target Position 52
6.10 3DR ArUco Position . 53

1 Camera Task Main Loop . 67
2 Constant Bearing Task . 68
3 SeaSurfacePickup Supervisor Task . 69
4 3DR Solo Software Setup . 70
5 3DR ArUco Position Flight 1 . 71
6 3DR Constant Bearing Target Position Flight 1 72
7 3DR ArUco Position Flight 3 . 73
8 3DR Constant Bearing Target Position Flight 3 74

xi

Abbreviations

API = Application programming interface
AUV = Autonomous underwater vehicle
AVC = Advanced video coding
BBB = BeagleBone Black
CNN = Convolutional neural network
CV = Computer vision
DOF = Degrees of freedom
DUNE = Unified navigation environment
GPS = Global positioning system
HSV = Hue-Saturaion-Value
IMC = Intermodule communication
LOS = Line-of-sight
LSTS = Underwater Systems and Technology Laboratory,

(Laboratório de Sistemas e Tecnologia Subaquática)
MCU = Micro-controller unit
MUG = Micro underwater glider
NED = North-East-Down
NTNU = Norwegian University of Science and Technology
RGB = Red-Green-Blue
HSV = Hue-Saturation-Value
ROV = Remotely operated vehicle
R-CNN = Region based convolutional neural network
UAV = Unmanned Aerial Vehicle
UDP = User datagram protocol
USARSim = Unified System for Automation and Robot Simulation
USV = Unmanned surface vehicle
VTOL = Vertical take-off and landing
HITL = Hardware in the loop
HIL = Hardware in the loop
SITL = Software in the loop
SIL = Software in the loop
EPM = Electropermanent magnet

xii

Chapter 1
Introduction

The scope of this thesis is to create a robust system for a multi-rotor UAV to identify,
approach and pickup a micro underwater glider (MUG) at the ocean surface. This thesis
is part of a larger, international project called Oasys. Oasys aims at creating fully au-
tonomous systems for reducing cost of observing and monitoring oceans. The motivation
behind the Oasys project is described in full on their website [9] and is summarized as
follows:

”One of the barriers towards a better understanding and sustainable development of
marine related economic activity is the high cost associated with ocean observing sys-
tems. Autonomous robotic systems are steadily revolutionizing the way we obtain data
and interact with the ocean. However most of existing autonomous systems still require
the involvement of manned missions in the deployment/recovery phases which represents
a high percentage of the total operational costs”

1.1 Problem Overview
The UAV takes off from an unmanned surface vehicle (USV) at sea where the UAV and the
MUG docks. The MUG will drift from the USV and the objective is to locate, pickup the
MUG and return it to the USV. There is no direct communication between the MUG and
the UAV which means that the drone has to initially search for the MUG in the ocean. To
help locate the MUG at the ocean surface, a fiducial marker of type ArUco is attached to
the fin of the MUG. The specific marker used is designed to be highly visible at the ocean
surface making it easily detectable. Additionally, this marker aids the UAV in approach-
ing the MUG for pickup as necessary accurate pose estimates can be gathered through
computer vision tracking methods. The task can be divided into four phases.

1. Initial MUG localization

2. High altitude approach.

1

Chapter 1. Introduction

3. Low altitude approach.

4. Pickup and return.

This thesis main focus is the approach phases of the project. Robust algorithms for tracking
the MUG is needed, especially high accuracy pose estimations at lower altitudes before
locking the MUG to the UAV with an electropermanent magnet. A system will need to be
developed in DUNE for controlling all the phases of the flight. An explanation is given for
each phase below.

1.1.1 Initial MUG Localization
The MUG will share its GPS location over radio network, but this measurement is ex-
pected to be imprecise. There is however no guarantee that a common communication
link between the MUG and the drone exists. Therefor some localization method must be
performed by the UAV to find the initial location of the MUG. The localization is finished
when the MUG is identified in the camera view. Computer vision algorithms must be cre-
ated for identifying the MUG based on generic visual properties available at high altitudes
such as shape and color.

1.1.2 High Altitude Approach
The marker attached to MUG provides pose estimates, but requires a certain resolution
of the marker not available at higher altitudes. The main objective is to descend while
maintaining the the marker within view until the fiducial details of the marker is visible.
Navigation methods based on the camera view location of the MUG will have to be de-
veloped. The altitude the drone has to descend to heavily depends on the visual noise and
camera resolution. Higher camera resolutions can be achieved by hardware, but this comes
at a cost of extra processing power.

1.1.3 Low Altitude Approach
At the stage where the marker details are sufficiently visible, computer vision algorithms
for performing pose estimation of the ArUco markers must be developed. Also guidance
methods based on these pose estimates is needed.

The low altitude approach will be stabler with higher pose estimate frequency. Therefor
the robustness of the noise reduction, filtering and segmentation must be optimized to
provide optimal conditions for a estimate to happen at every camera frame.

1.1.4 Pickup and return
For the drone to be able to pick up the MUG precisely, data about the ocean state has to be
estimated and compensated for. Ocean currents will induce a constant drift to the MUG
and waves will induce temporal movements. Additionally, wind will disturb the motion of
the drone. All these factors have to be regarded in order to achieve a robust and reliable

2

1.2 Outline

method for picking up the MUG in the expected environment.

The drone has an electropermanent magnet for securing the MUG as a payload. Additional
difficulties arise when the camera used by the drone is not able to keep the MUG visible
while at close enough contact to lock the MUG to the magnet. Different methods with
hardware setup will need to be tested to ensure measurements exists when closing in on
the MUG, or a good estimation process. Ultimately, this means there will be guesses at
when to activate the magnets and a method to identify a successful tethering must be used
before returning to the USV.

1.2 Outline
Chapter 2 - Literature Review: This chapter discusses previous work in the field related
to this project.
Chapter 3 - Basic Theory: The chapter presents most of the relevant theory for the main
ideas and concepts used later in the project. This includes segmentation, Kalman filter,
computer vision, and also the dynamics of the system model.
Chapter 4 - System Overview: Chapter 4 describes the hardware and the main software
components used in the project. This includes DUNE, ArduPilot, drones, cameras, the
ArUco markers and more.
Chapter 5 - Implementation: The chapter describes the implementation details for each
of the modules needed to complete the full system. This covers both the DUNE and the
miniature drone implementation.
Chapter 6 - Experiments and Results: The penultimate chapter presents the experiments
performed and the data gathered. The experiments includes miniature drone flights, simu-
lations and field tests.
Chapter 7 - Discussion and Conclusion The final chapter contains a small discussion,
the conclusions drawn and future work.

3

Chapter 1. Introduction

4

Chapter 2
Literature Review

Generation of fiducial marker dictionaries using Mixed Integer Linear Programming[26]
and Speeded Up Detection of Squared Fiducial Markers[31] is the origin behind the ArUco
markers that will be used as fiducial marker canditates in this thesis. The paper goes into
the implementation details of the ArUco markers. The markers are designed to provide
fast and accurate fiducial data with occlusion tolerance for AR applications. These mark-
ers prove potential for the fast and high accuracy estimates of the MUG position required
for successfully executing a pick up mission.

Vision-Based Landing of a Simulated Unmanned Aerial Vehicle with Fast Reinforcement
Learning [32] looks into one of the critical steps before testing computer vision systems
and control systems in the field, that is, simulation. In the paper, a vision-based landing
approach for autonomous UAV’s is proposed, using fast reinforcement learning. This ap-
proach is tested in an extended version of the USARSim (Unified System for Automation
and Robot Simulation) environment with a simulated quadrocopter [32]. In the simula-
tion, the quadrocopter has a camera fixed at the center of its belly, and the target landing
site is a fully black circle surrounded by circles in a range of gray. The approach makes
use of the OpenCV framework to detect the target and the Least-Square Policy Iteration
as the reinforcement learning method. In the event that ArUco markers are found to be
sub-optimal, applying methods and concepts from this paper is an alternative.

Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned
Surface Vehicle [29] also uses a fiducial marker, placed on the platform of the unmanned
surface vehicle (USV) to accommodate the task of finding the USV’s relative position and
pose. An extended Kalman (EKF) filter is used to estimate the current position of the
USV, to compensate for potential temporary loss of marker detection. The EKF provides
accurate enough estimations, that in combination with odometry, this method is found to
be sufficient and applicable in poor weather conditions and in the absence of a global po-
sitioning system. A relatively small USV is used in this paper, however, it is still larger
than the quadrocopter itself, demanding less accuracy than what is required in this project.

5

Chapter 2. Literature Review

Autonomous Landing of a UAV on a Moving Platform Using Model Predictive Control
[23] presents an autonomous landing method for micro UAV’s to land on moving targets
in the presence of uncertainties and disturbances. For optimal localization of the moving
platform, a Kalman filter is implemented, and model predictive control is developed as part
of the system architecture. The computer vision system makes use of an AprilTag, similar
to the before mentioned ArUco codes, to estimate the relative position and pose of the
platform with respect to the camera. The simulation results in this paper demonstrate an
autonomous landing on a platform travelling up to 12m/s with an error of less than 37cm
from the center of the platform. The use of markers in computer vision systems to estimate
camera pose, as well as landing on a moving target are highly relevant tasks for this project.

In Autonomous Maritime Landings for Low-cost VTOL Aerial Vehicles [28] an architec-
ture that negates sensor limitations and allows for precise pose estimation, even in the
presence of wind disturbances, is proposed. The final landing method performs landing
maneuvers in the body-fixed reference frame to nullify poor estimation accuracy caused
by noisy measurements from GPS and magnetometers. The total system consists of three
different stages. The initial stage calculates an intersection point based on current posi-
tions of both vehicles and the estimated velocity of the marine vessel. The UAV flies to this
point autonomously using constant heading control. Note that the intersection point can be
updated repeatedly to compensate for drift and varying vessel velocity. Stage two begins
when the UAV is in vicinity of the marine vessel, and starts its search for an AprilTag.
Once the AprilTag has been located, the control system switches from inertial control to
relative control, using the body frame as reference and initiates the final landing sequence.
Several of these stages relate to the challenges in this project, especially landing on a ma-
rine vessel. However, a sizeable boat was used as the marine vessel in this paper [28], with
a significantly larger landing area than that of the micro underwater glider.

Multirotor pickup of object in the sea [27] presents a system setup for using onboard
computing, computer vision and radar as basis for picking up objects a sea. The detected
position with computer vision and the radar measurements are triangulated to estimate the
position of the object. The object is modelled with an constant velocity Kalman filter to
compensate for ocean currents. The implementation is integrated with DUNE, and uses
NED navigation to fulfill the objective. This paper share similar objectives as this one, but
this thesis will focus on body fixed frame navigation with fiducial markers as source for
high accuracy estimates. The DUNE implementation and design is very relevant to this
thesis.

6

Chapter 3
Basic Theory

3.1 Reference frames and Transformations

3.1.1 Reference frames

A coordinate system intended to express an object’s position is generally made up of two
or three axes, depending on the number of dimensions the object can move in and which of
these are considered of interest. The position of the object can then be uniquely expressed
using the same number of coordinates as the number of axes.

Coordinate systems can have their origin fixed in different locations. A reference frame
defines the location and orientation of a coordinate system. For small aerial vehicles it
is a common convention to adhere to the North-East-Down (NED) reference frame as an
inertial frame. An inertial frame is defined as reference frame in which the object does not
accelerate when there is zero net-force acting upon said object [24]. In the NED-frame,
the x-axis points towards true north, the y-axis east and the z-axis down towards earth to
complete a right-hand coordinate system. The origin of the NED frame is a starting point
of the earth’s surface.

For vehicles operating in a local area, that is when longitude and latitude can be approxi-
mated as constant, flat Earth navigation is used. This assumes the North-East axes forms
a constant tangential surface plane at the origin. In this case the NED reference frame can
be considered inertial.

In the case of controllable moving bodies, e.g. UAVs, it is also common practice to define
a body reference frame. In the body frame the origin of the coordinate system is typi-
cally defined as either the center of mass or the geometric center of the object. For aerial
vehicles it is common that the x-axis points out of the nose of the vehicle, along the longi-
tudinal axis of the plane, the y-axis points out of the right wing/side, lateral axis, and the
z-axis out of the belly/bottom of the aircraft.

7

Chapter 3. Basic Theory

A final common frame for aerial vehicles is the vehicle frame. The vehicle frame is simply
a NED coordinate system with the origin fixed in the geometric center or mass center of
the vehicle. With several different reference frames, a transformation from a point in one
frame to another is needed.

3.1.2 Rotations and Transformations

The relationship between coordinate frames can be expressed using a composite series
of rotational matrices and translation. The following methods are described using Euler
angles notation of type roll (φ), pitch (θ), yaw (ψ), which are commonly used to describe
motion rigid body vehicles moving freely. There are 3 fixed axis rotations defined as
simple rotations which is a rotation about a single fixed axis. The simple rotation matrix
for each axis is defined in equation 3.1.

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (3.1a)

Ry(θ) =

cos(θ) 0 sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (3.1b)

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.1c)

If two frames share an origin, e.g. frame a and frame b, but the axis are at different
orientations, a composite series of simple rotations, Ra

b can be used to express a point
with reference to frame B, pb, in frame A, pa. The resulting rotation matrix is defined as

Ra
b = Rz(ψ)Ry(θ)Rx(φ)

The angle parameters are defined as the relative angle of the axis in A with regards to the
axis in B. The point pa can then be expressed as

pa = Ra
bp

b

In the case where the origin of the frames are not shared, a translation has to be included
in addition to the rotation. The translation can be done in sequence after a rotation, but
alternatively the translation and rotation matrices can be combined into what is defined
as a homogenous transformation matrix. A homogenous transformation matrix fully de-
scribes the position and orientation of a coordinate frame with respect to a reference frame.

8

3.2 Computer Vision

A transformation matrix Ta
b used to express a point in frame A with respect to a point

expressed in reference frame B.

Ta
b =

[
Ra
b raab

01x3 1

]
(3.2)

where raab is defined as the position of frame B relative to frame A, expressed in frame A
coordinates.

As the transformation matrix is homogenous and 4x4, the position vector has to be aug-
mented to an homogenous vector to compute the transformation. This is done by augment-
ing a value of 1.

pb =
[
xb yb zb

]> ⇒ [
xb yb zb 1

]>
(3.3)

With this, any point expressed in B can be expressed in A by the following

pa = Ta
bp

b (3.4)

A point can also be expressed with regards to another frame by a series of intermediate
relative transformations similar to the composite simple rotations.

pa = Ta
bT

b
cp
c (3.5)

3.2 Computer Vision

3.2.1 Camera Model
When a picture is taken with a camera, the real world 3D scene is projected into a 2D
image. The rays of light that enters the camera lens, followed by an aperture, then hits the
surface of a light sensor which excites an area (pixel). The specific pixel that gets excited
on the surface of the light sensor is determined by the direction of the light ray. Certain
methods in computer vision relies on estimating the mathematical relationship between
the 3D scene and its 2D image projection. Thus, a camera model is needed to approximate
this process. The most commonly used camera model is the pinhole model.

The pinhole model represents an single aperture that lets light through a barrier. The pro-
jected object is then flipped onto the film on the other side of the barrier. To find the
mapping of a scene to the image plane, the aperture is defined to be the size of a single
point. This causes there to be no light saturation and each point in the scene will map to
an unique point on the film. If the aperture were to be larger, more light rays would hit the
same point on the film, increasing brightness at the cost of making the projection blurrier.

Modern camera uses lenses to compensate for the brightness versus sharpness factor. The
lenses also causes all the light rays traveling parallel to the optical axis to be focused to a
single point defined as the focal point. The distance from the center of the lens to the focal
point is defined as the focal length f . The augmentation of the ideal pinhole camera with a
lens is commonly done and thus the effect of the lens has to be included in the model. The

9

Chapter 3. Basic Theory

location of the pinhole aperture projection in into the film is defined as the principal point c.

In projective geometry, this information can be combined to make up the intrinsic param-
eters, K, of the camera model and is expressed as the following matrix

K =

fx s x0
0 fy y0
0 0 1

 (3.6)

Where fx and fy are the focal lengths, s is the skew coefficient, which is non-zero when
the image axes are not perpendicular, and x0 and y0 is the principal point coordinates. All
values are given in pixel units.

As well as the intrinsic parameters, there are extrinsic camera parameters which describes
the pose of the camera with respect to a world frame. The extrinsic camera parameters
consists of a rotation R and a translation t.

Together the intrinsic and the extrinsic camera parameters make up the camera model and
can be used to get the projection from a 3D world point

[
X Y Z

]
onto the image plane[

x y
]

by using the following relationship

W
[
x y 1

]
=
[
X Y Z

]
P (3.7)

Where W is defined as a scalar value used for scaling, and the camera matrix P defines
the camera model and is given by

P =

[
R
t

]
K (3.8)

With a known camera matrix, K, and known object models in a scene, different methods
can be utilized to determine the pose of the camera with respect to the objects.

3.2.2 Calibration
As mentioned in the previous section, the pinhole model is a mathematical representation
of a camera. The process of determining the cameras intrinsic and extrinsic parameters
such that the pinhole model best approximates the camera is called camera calibration. A
camera model is not perfect and the error between the estimated projection by using (3.7)
and the actual projection is defined as the reprojection error. To find the best camera model
parameters, calibration techniques tries to minimize this reprojection error across multiple
calibration images.

The general procedure for identifying the parameters involve capturing images of a world
scene where an object with known 3D keypoints exists. If there exists an object with
known 3D keypoints in a scene captured by the camera, and with the corresponding projec-
tion into the 2D image, the camera matrix can be determined by using (3.7). Frameworks
which provides computer vision algorithms, such as Matlab and OpenCV, has methods
for estimating the best camera matrix across multiple calibration images. A commonly

10

3.2 Computer Vision

used method for estimating the intrinsic camera parameters without knowing the extrinsic
parameters beforehand is the checkerboard calibration method.

3.2.3 Pose Estimation

In section 3.2.1 extrinsic camera parameters were explained as the orientation and trans-
lation of a camera relative to a scene, expressed in a global reference frame. With known
intrinsic camera parameters and known 3D keypoints such as fiducial objects in the scene,
the relationship of (3.7) can be used to calculate the extrinsic parameters of the camera and
thus give an estimate of the pose of the camera relative to an object in the scene. The ac-
curacy of the pose estimation is heavily dependant on the reprojection error of the camera
model, identified by the calibration process. Several pose estimation methods exists, but
the most relevant method for this thesis will be the ArUco square marker pose estimation
[31]. Alternatively, April Tags is another popular choice for fiducial markers that provides
pose estimation.

With a marker present and visible in the image plane, the corners of the ArUco marker
offers planar pose estimators. The binary codification of the ArUco markers is used to
determine the orientation of the marker as each corner in the marker is uniquely identified
by the coding. With the planar pose estimator and the orientation of the ArUco marker,
the relative pose of the camera can be found.

3.2.4 Object Detection

Object detection is a computer vision task where the goal is to classify and locate all in-
stances of known object classes in an image. With an image classifying network as a
starting point there are several ways to achieve object detection.

Early approaches mainly consisted of the regression method and the sliding window method.
The common trait for these methods, and later ones, is that the network outputs bounding
boxes for each detected object, in addition to the classification. A bounding box is de-
scribed by four values. The first two define the top left corner of the box (x- and y-value)
and the last two define the height and width of the box. The regression method computes
the difference between the network’s predicted bounding box and the true bounding box,
known as the ground truth box and uses this error in a regression analysis. This method
works fine with a fixed number of objects in the image, but falls short in the need of vari-
able sized output caused by variable number of objects in the input images.

The sliding window method entails the application of a CNN to many different crops of
the image. The CNN classifies each crop as either background or one of the object classes,
with a level of certainty. The biggest problem with this method is its computational cost,
as there is a large amount of different positions, scales and aspect ratios the CNN must
consider. The solution to this issue, which gave birth to several modern approaches, is the
concept of region proposals.

11

Chapter 3. Basic Theory

Today’s modern object detectors are either based on two-stage methods, which incorporate
region proposals, or single shot methods. An example of a two-stage method is the Faster
R-CNN method, where R-CNN means it is a region based convolutional neural network.
The Faster R-CNN method uses a region proposal network, which takes the post convo-
lution feature map as input, to predict regions of interest. The main improvement in this
method, compared to its predecessor Fast R-CNN, is that it uses a CNN in the region pro-
posal network, greatly increasing the speed of region proposals and thereby eliminating
what was the current bottleneck for performance.

3.2.5 Segmentation
The idea of image segmentation is to partition the input image in a manner that makes
it more meaningful from an analytical standpoint. A common use of segmentation is to
locate objects or contours by detecting edges and corners. In a segmented image, areas
that have the same label or colour, share at least one similar characteristic.

There are many different methods available to achieve segmentation, one of the simplest
being thresholding. The most basic threshold method takes a gray-scale image as an input
and outputs a black and white binary image by transforming each pixel to either black or
white, depending on the threshold value.

3.3 Modeling and Control
The following sections in Modeling and Control are reused from the specialization project
[21].

3.3.1 Model Dynamics
When modeling the dynamics of the system, the multirotor is assumed to be a rigid body,
with center of mass in the geometric center and with six degrees-of-freedom (DOF). The
translational equations of motion of the multirotor are then well established [30] and can
be expressed in the body frame as:

F b = m(V̇
b

+ ωb × V b), (3.9)

where V b = [u, v, w] represents the drone’s translational velocity in the body frame,
ωb = [p, q, r] is the drone’s rotational velocity expressed in body frame, m is the mass of
the multirotor and the vector F b represents all applied external forces.

The external forces involved in the system are the forces of gravity, thrust and drag which
can be expressed as: ∑

F = F g + F t + F d (3.10)

The force of gravity is simplymg
−→
k in the inertial NED frame, and can be expressed in the

body frame using the rotation matrix Rb
i = (Ri

b)
T = (Rz,ψRy,θRx,φ)T . The direction

12

3.3 Modeling and Control

of the thrust force of the multirotor is entirely in the negative z-direction in the previously
defined body frame. The drag force of a body moving at a relatively high speed relative to
the air around it can be modeled as

F d =
1

2
ρV 2

aCdA, (3.11)

where Va is the airspeed of the drone, ρ is the air density, Cd is the drag coefficient and A
is the surface area of the drone perpendicular to the airspeed direction.

Expressing the drag force in the body frame yields:

∑
F b = Rb

i

 0
0
mg

+

 0
0

−
∑N
i=1 F

b
t i

+


1
2ρV

2
axCdAx

1
2ρV

2
ayCdAy

1
2ρV

2
azCdAz

 (3.12)

Multiplying in Rb
i gives

∑
F b =

 −sin(θ)mg
sin(φ)cos(θ)mg
cos(θ)cos(φ)mg

+

 0
0

−
∑N
i=1 F

b
t i

+


1
2ρV

2
axCdAx

1
2ρV

2
ayCdAy

1
2ρV

2
azCdAz

 (3.13)

Note the negative sign for the thrust force as the z-axis is defined to be positive out of the
belly/bottom of the drone. Plotting this into equation (3.9) yields:

m(V̇
b
+ωb×V b) =

 −sin(θ)mg
sin(φ)cos(θ)mg
cos(θ)cos(φ)mg

+

 0
0

−
∑N
i=1 F

b
t i

+


1
2ρV

2
axCdAx

1
2ρV

2
ayCdAy

1
2ρV

2
azCdAz

 , (3.14)

which finally can be rewritten as:

u̇v̇
ẇ

 =

 −sin(θ)g
sin(φ)cos(θ)g
cos(θ)cos(φ)g

+

 0
0

− 1
m

∑N
i=1 F

b
t i

+


1

2mρV
2
axCdAx

1
2mρV

2
ayCdAy

1
2mρV

2
azCdAz

−
qw − rvru− pw
pv − qu


(3.15)

For the rotational equations of motion expressed in the body frame, the following equation
for the sum of moments is well established: [30]

Jω̇b + ωb × Jωb = M b, (3.16)

where J is the moment of inertia tensor and M b is the sum of external moments. Due
to the drone’s geometric symmetry in both the ibkb-plane and the jbkb-plane the inertia

13

Chapter 3. Basic Theory

products Jxz = Jzx, Jxy = Jyx and Jyz = Jzy all equal zero. This gives the following
expression for the sum of external moments:

M b =

JxxṗJyy q̇
Jzz ṙ

+

(Jzz − Jyy)qr
(Jxx − Jzz)pr
(Jyy − Jxx)pq

 (3.17)

3.3.2 Guidance Systems
A guidance system repeatedly, or continuously, computes the desired position, velocity
and attitude of a controllable vehicle, which are to be used in a given control system.
These desired parameters will vary, depending on the guidance method in use. In the case
of target tracking using velocity control, line-of-sight guidance, pure pursuit guidance and
constant bearing guidance are commonly used methods.

Line-of-sight (LOS) guidance is a 3-point guidance scheme in which the interceptor, the
controllable vehicle/object, must limit its motion along the reference-target line of sight
vector. This guidance method is typically used in surface-to-air missiles.

The pure pursuit guidance method is similar to that of the LOS method, but is instead a
2-point guidance scheme, where no reference point is in use. With a pure pursuit approach
the interceptor aligns its linear velocity with the interceptor-target line of sight vector.
This is a common strategy in nature as well, where most predators chasing prey will adopt
this method. In modern technology however, it is commonly employed in air-to-surface
missiles. The desired velocity can be calculated as follows

vnd = −k p̃n

||p̃n||
, (3.18)

where
p̃n := pn − pnt (3.19)

is the line-of-sight vector between the interceptor and the target and

k = Ua,max
||p̃n||√

(p̃n)T p̃n + ∆2
p̃

(3.20)

where Ua,max defines the max approach speed toward the target and ∆p̃ > 0 impacts the
transient interceptor-target rendezvous behaviour [25]

Constant bearing guidance differs from the previously described methods as it is a pre-
dictive approach. Instead of following a target, this method predicts an intersection point
at controls the interceptor towards this point. It is a 2-point guidance scheme and is of-
ten referred to as proportional navigation. It is considered ideal for scenarios that involve
non-maneuvering targets. The desired velocity can be calculated as follows

vnd = vnt + vna (3.21)

14

3.4 Kalman filter

where vna = −k p̃n

||p̃n|| and vnt is the target velocity.

3.4 Kalman filter
Modern control systems are usually equipped with a state estimator used in the processing
of sensor and navigation data. This raw data is typically sent to a signal processing unit for
quality control and wild point removal before being transmitted to a control system. The
state estimator is capable of noise-filtering, making state predictions and reconstructing
unmeasured states. One of the more famous algorithms for this purpose is the Kalman
filter, first introduced in the 1960’s [25].

The Kalman filter is an efficient recursive algorith that uses a series of noisy measure-
ments from a system’s sensors in order to estimate the states of a dynamic system. The
Kalman filter works for both linear and nonlinear systems. The noise-filtering capabilities
of the Kalman filter allow it to remove both white noise and colored noise from the state
estimates and even wild point removal can be implemented. If a temporary loss of mea-
surements should occur, the filter equations behave as a predictor, ensuring the controlled
vehicle does not immediately deviate far from its desired pose. At the moment when new
measurements are available, the predictions are corrected and updated to give the mini-
mum variance estimate.

A necessary assumption when designing a Kalman filter is that the model of the system
is observable. This assumption must hold in order for the estimated states, x̃ to converge
to the actual states x. Additionally, with an observable system, the state vector can be
reconstructed recursively using the measurement vector y and the control input vector u.

A discrete-time Kalman filter is often the state estimator applied in electromechanical
systems and is defined in terms of the system model as follows [25]:

x(k + 1) = Φx(k) + ∆u(k) + Γw(k), (3.22a)
y(k) = Hx(k) + v(k) (3.22b)

where

Φ = exp (Ah) ≈ I + Ah+
1

2
(Ah)2 + ...+

1

N !
(Ah)N (3.23)

∆ = A−1(Φ− I)B, (3.24)

Γ = A−1(Φ− I)E (3.25)

and h is the sampling time.

The algorithm for the linear discrete-time Kalman filter is depicted in Table 3.1, from
Handbook of Marine Craft Hydrodynamics and Motion Control [25].

15

Chapter 3. Basic Theory

Table 3.1: Discrete-time Kalman filter

Description Equation

Design Matrices Q(k) = QT (k) > 0, R(k) = RT (k) > 0

(usually constant)

x̄(0) = x0

Initial Conditions P̄ (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T] = P 0

Kalman gain Matrix K(k) = P̄ (k)HT (k)[H(k)P̄ (k)HT (k) + R(k)]−1

State estimate update x̂(k) = x̄(k) + K(k)[y(k)−H(k)x̄(k)]

Error covariance update P̂ (k) = [I −K(k)H(k)]P̄ (k)[I −K(k)H(k)]T

+K(k)R(k)KT (k), P̂ (k) = P̂
T

(k) > 0

State estimate propagation x̄(k + 1) = Φ(k)x̂(k) + ∆(k)u(k)

Error covariance propagation P̄ (k + 1) = Φ(k)P̂ (k)ΦT (k) + Γ(k)Q(k)ΓT (k)

16

Chapter 4
System Overview

4.1 Software

4.1.1 DUNE - Unified Navigation Environment

DUNE is a runtime environment for unmanned systems’ onboard software, developed by
the Laboratório de Sistemas e Tecnologia Subaquática (LSTS) [22]. DUNE interacts with
sensors, payloads and actuators, but also provides systems for communications, maneu-
vering, navigation, plan execution and vehicle supervision [6]. In essence, DUNE acts as
a task manager and as a message bus manager. The runtime environment is written in C++
and is both cpu architecture and operating system independent. DUNE has been designed
for systems/vehicles with a wide range of performance capabilities, including very limited
systems.

A task in DUNE is a C++ class that has specific life time cycles and generally has responsi-
bility of fulfilling a clear objective during runtime. This can for example be to read camera
frames and collect information from the frame by using computer vision methods. The
task manager coordinates the multiple tasks that are running. The scheduling and commu-
nication between tasks is then orchestrated by the task manager providing a programmatic
consistency in the runtime of the tasks.

Another focus of DUNE is the message passing concept. The idea is that different tasks
written for arbitrary parts of the system run on different threads, but can share data using a
message bus. The communication, sharing of data, between the different tasks is governed
by a publisher/subscriber design pattern.

4.1.2 IMC protocol

The communication protocol used in DUNE is the IMC protocol (InterModule Communi-
cation) [16], which is also created by LSTS. The protocol is used for sharing data between

17

Chapter 4. System Overview

different tasks, but is also used for communication between different vehicles. The proto-
col is aimed to serve as a transport agnostic, delay and interrupt tolerant protocol to coor-
dinate networked vehicles. A problem arises when communication is to be done between
systems built upon different operating systems and with different hardware for communi-
cation. Thus the IMC protocol has been designed such that the data to be exchanged is self
contained and can be recognized and interpreted by all participating modules regardless of
platform dependencies. The IMC protocol can easily be expanded to include new message
definitions in a local version of the protocol.

The whole protocol definition is contained in an XML file. Language bindings for differ-
ent languages and documentation is automatically generated from this file. Thus DUNE
can easily communicate through the IMC protocol with external system built on other
languages than C++. A message following the IMC protocol has the following top-level
structure:

Figure 4.1: IMC top level structure

18

4.1 Software

The payload contains the message to be sent and contains several fields depending on the
definition of the message in the XML file. An example of a message definition that will
be used later is given below.

1 <message id="4610" name="Camera Tracking" abbrev="CameraTracking">
2 <description>
3 Message to track object
4 </description>
5 <field name="Target position x" abbrev="x" type="fp32_t" unit="m">
6 </field>
7 <field name="Target position y" abbrev="y" type="fp32_t" unit="m">
8 </field>
9 <field name="Target position z" abbrev="z" type="fp32_t" unit="m">

10 </field>
11 </message>

4.1.3 MAVLink Protocol
Another protocol that is widely used for communication with drones is the MAVLink pro-
tocol [7]. MAVLink is a lightweight messaging protocol sharing similarities with the IMC
protocol. Because of limited transmission rates that drones often experience, the protocol
has been designed to have a small overhead. Although MAVLink is very efficient, it is lim-
ited to a max payload size of 256 bytes. IMC on the other hand has no boundaries for this
and thus can nest many IMC messages in one message. The protocol is also commonly
used for communication between onboard hardware modules as well. For example com-
munication between DUNE and ArduPilot running on the flight management unit onboard
a drone is done through MAVLink.

4.1.4 The DUNE Task
DUNE tasks follows the unix philosophy of doing one thing and doing it well. In general,
DUNE tasks can be split into two categories: producer tasks and consumer tasks. The pro-
ducer task is one that typically creates an IMC message variable, for example by reading
a sensor value. This value can then be dispatched (published) to the message bus using
the dispatch(msg) method, which sends the variable as an IMC message. The other
tasks which then wants to be subscribed to a certain type of IMC message can do this by
calling the bind<IMC::[msg_type]>(this) in the task constructor. The IMC mes-
sage will now be received by the task whenever a IMC message of this type is dispatched
from another source. Each tasks then has to have an implementation of what action do
perform when receiving a message of the type they are subscribed to. The specific func-
tion handle for this event is consume(const IMC::[msg_type] *msg){}). The
function defines the action of the task on said event, and can for example be used to update
the internal reference of a position of an object of interest, which is gathered by another
task. There is currently no method for subscribing to messages from specific publishers
sources other than filtering the messages by source post reception.

Some of the tasks implemented in DUNE only need to react to new message events, but
other ones needs to execute at a certain frequency. DUNE has options for defining a task

19

Chapter 4. System Overview

as periodic which augments the task with a main loop that is executed at a configurable
frequency. This can for example be used to read from a sensor at 10Hz. The task manager
in DUNE handles the scheduling of the periodic tasks.

Configuration

There are many different tasks in the source code for DUNE for distinct purposes and
many of these these will not be relevant for the vehicle using DUNE. Therefor configura-
tion files are used to tell DUNE which tasks to include in the runtime.

The selection of tasks that are to be run during a session of DUNE is given as a com-
mand line argument with the name of the configuration file to be used. These files are
characterized by their .ini extensions. As well as telling DUNE which tasks to include,
configuration files also contain parameters that are passed on to the tasks. Configuration
files can include other configurations, and thus enables building upon existing configura-
tions.

For the OASYS project NTNU has a configuration file developed for the base features
of the UAV that will be used, specifically the ntnu-hexa-003.ini configuration file.
This configuration handles basic functionality such as tasks that needs information about
the mathematical model of the drone and handles the communication systems available.

The configuration file created and used in this thesis for field testing is 3DR.ini To run
DUNE with this configuration the following command is used: ./dune -c 3DR

4.1.5 OpenCV
OpenCV is one of the worlds most popular open source library for computer vision algo-
rithms [10]. The library provides highly optimized implementations of more than 2500
algorithms and is used by large companies such as Google and Microsoft, as well as re-
searchers. The library supports many languages such as python and Matlab, but most
importantly C++. This C++ support means that OpenCV can easily be included in DUNE
implementations. OpenCV has implementations of many of the computer vision concepts
discussed in section 3.2.

4.1.6 ArduPilot
ArduPilot is an open-source autopilot suite aimed at controlling UAVs [5]. The software
suite supports many different types of crafts, but mainly fixed wing and multi-rotor crafts.
With a collection of low level control systems and high level algorithms for navigation, the
control of the craft becomes considerable an easier task to execute. ArduPilot is capable
for supporting fully autonomous systems as well as aiding a remote operator in control-
ling a vehicle. ArduPilot offers helpful abstractions, such as setting desired linear velocity
without having to manually calculate the rotor angles and velocities which achieves this
velocity.

20

4.2 Hardware

ArduPilot uses the MAVLink protocol for communications with external systems. DUNE
supports communication with ArduPilot by abstraction through the ArduPilot Task.

ArduPilot also includes MAVProxy [8] which is a GCS terminal that lets the user interface
the running ArduPilot software by translating the commands to the appropriate MAVLink
messages. MAVProxy can be used to initiate basic commands such as takeoff, set position
and landing. A command reference for basic command messages are supplied here [4].

ArduPilot is often run on flight management units onboard UAVs. A common setup is
to run DUNE on a microprocessor unit onboard the UAV while running ArduPilot on the
flight management unit. Alternatively, external computing can be done by running DUNE
on a GCS which communicates with the UAV running ArduPilot onboard.

4.1.7 FlightGear
FlightGear is an open source software providing flight-simulation. ArduPilot and Flight-
Gear can be synced, and by extension also DUNE. The flight simulator provides an virtual
3D environment for visualizing the flight. The simulation view can easily be redirected
as input to a computer vision algorithms and will be a useful tool for providing testing
navigation methods based on computer vision.

The camera view is shown in the FlightGear program, but the preview is also avail-
able locally over port 8080 by default over http. The default path for the preview is
http://localhost:8080/screenshot. This address can easily be provided as
video input source to capturing methods provided by OpenCV. A notable caveat with this
method is that the preview address is not a dynamically providing the updated view, un-
less the request is refreshed. To achieve a live feed of the FlightGear view, the capturing
device provided by OpenCV must be reinitialized before each frame grab attempt to get
the current view.

The ArduPilot install location contains a script for launching FlightGear where synchro-
nization with ArduPilot is automatically established. This script is located under
Tools/autotest/fg_quad_view.sh in the ArduPilot install folder. The script
takes care of all the command line arguments that are needed for the ArduPilot to work
with FlightGear and requires no editing.

4.2 Hardware

4.2.1 DJI S1000 multirotor
The S1000 octo-rotor UAV is a sturdy and powerful drone produced by DJI [11]. With
a takeoff weight of 9.5kg the drone has a hovering time of 15min. The drone can handle
extra hardware mounted onboard and still remain capable of carrying the MUG payload
during flight. The drone is customized with a microprocessor unit, flight management unit,
camera and electropermanent magnet for locking on to the MUG.

21

Chapter 4. System Overview

4.2.2 3DR solo
An alternative to the DJI s1000 drone is the 3DR Solo quad-copter [19]. The creators of
the Solo quad-copter are the same people that are behind the autopilot platform Pixhawk
4.2.7. This drone is smaller than the S1000 weighing about 1.5kg, and has a mount for a
GoPro camera. The Pixhawk onboard the 3DR solo runs Open Solo 4 which is developed
by the Open Solo team [17] independently from 3DR.
In contrast to the S1000 drone, the 3DR solo does not have the capability of running DUNE
onboard on a microprocessor unit.
This drone is not as powerful as the S1000, and is not able to carry out the full mission
described by the thesis. On the other hand, the quadcopter is sufficient to complete a fully
guided approach of the marker aided by computer vision, but not capable of carrying the
added weight of the MUG.

4.2.3 Ryze Tello
Another drone powered by DJI is the miniature quadcopter drone, Ryze Tello [13]. This
drone has been used for loose testing of different aspects that is to be implemented in the
DUNE. Communication and control is done over UDP which differs from the hardware
communication of DJI S1000. Modules such as the camera vision detection of ArUco
Markers and control reference values can be tested on the Tello drone without much loss
of generality. The Tello drone offers a poor quality stream of data, although at a low
latency, and a small API of available commands [12]. The miniature drone in this thesis
serves as quick iterative testing platform where detection methods and simple guidance
methods which use velocity references can be tested.

4.2.4 ArUco Markers
When the MUG appears at the ocean surface it has to be detected by the UAV using com-
puter vision. The ocean environment makes it difficult to distinctively separate the MUG
from its surroundings. To aid the detection of the MUG, an fiducial marker of type ArUco
is attached to the top of the wing of the MUG. ArUco (Augmented Reality University of
Cordoba) is a fast, lightweight and open source library for camera pose estimation using
squared markers [26]. An ArUco marker consists of an external black border and an inner
region that encodes a binary pattern.

The ArUco code is designed in black and white for detection algorithms to easily identify
them, but this choice of colour coding provides a lower visibility in ocean environments.
Instead, the used marker follows the colour scheme of international aerospace color which
is designed to easily differentiate the object from its surroundings. The specific marker
used has dimensions 200x100mm.

To convert back to the original colour convention such that standard ArUco detection meth-
ods can be applied, a simple threshold algorithm is used in post processing of the raw
image data. Instead of using advanced object detection methods for tracking the MUG,
established fast and accurate detection methods provided by the ArUco library can be used

22

4.2 Hardware

Figure 4.2: ArUco Marker Design

on the highly visible marker. This will provide reliable tracking while descending on top
of the MUG for pickup. The pictured ArUco marker in figure 4.2 used in this project be-
longs to the original ArUco dictionary and has an id of 1.

The ArUco detection algorithm needs a good view of the marker to correctly identify the
ArUco code, and estimate pose. This means that the mentioned tracking method will only
work at lower altitudes, but with high accuracy.

4.2.5 MUG
The proposed design for the MUG is given in the figure below:

Figure 4.3: MUG model

The top part of the MUG is a wing which is flat and magnetic. This wing will be almost
exactly at the water surface when the MUG is to be picked up. The wing will be where the
ArUco marker is placed as well, and center of gravity can be expected to be directly below
it.

4.2.6 BeagleBone Black
BeagleBone black is a high powered microprocessors capable of running a small linux dis-
tribution while being a minimal system [1]. The BeagleBone black is used as an onboard
microprocessor for running DUNE on the S1000.

4.2.7 Pixhawk 4
The S1000 utilizes different sensors and actuators with different interfaces. To ease the
process of interfacing with all the connected units, Pixhawk hardware allows full control
and a single tied point where all data is interfaced [18]. Pixhawk also supports autopilot
softwares with their flight management unit (FMU), such as the ArduPilot software suite.

23

Chapter 4. System Overview

4.2.8 oCam-1CGN-U-T
The camera model used with the S1000 drone is the oCam-1CGN-U-T developed by With-
robot in 2017 [3] The main importance of the camera used by the drone for computer vision
is high fidelity for detail and fast framerate for decreasing latency. It is a 1 mega pixels
colour shutter camera that supports external triggering. The colour output is Bayer RGB.
The oCam producers also supplies source files for interfacing the camera in C++.

4.2.9 GoPro Hero4
The camera used by the 3DR solo drone is GoPro Hero4 [15] and is mounted on a gimbal
underneath the drone. GoPro Hero4 allows for live streaming over WiFi at a high fram-
erate and resolution. With the 3DR solo, all processing will be done externally, which
means that the GoPro footage stream will be interfaced over a network stream, instead of
a hardware interface.

4.2.10 Electropermanent magnet
To secure the MUG to the UAV during pickup, an electropermanent magnet, OpenGrab
EPM v3 [2], is used to lock onto the top wing of the MUG. The magnet has a typical max
lifting force of 300N, more than enough for lifting the MUG.

In previous attempts a string has been used to hook the MUG, but were too imprecise.
Using a magnet results in a more accurate locking method at the cost of needing to be
closer to the target. This will affect the descent phase when the MUG is too close to
be identified by the camera. A benefit with the electropermanent magnet is that it only
consumes power during switching states, and thus being locked on to the target doesn’t
yield a higher power consumption for the drone. That is of course other than that of the
increased total weight caused by the payload. The magnet can cause magnetic interference,
especially when left in the on state with no payload attached. Depending on the mounting,
the interference can be ignored as it is heavily reduced beyond 10cm.

4.3 System State Machine
A system including a state machine was implemented in DUNE to handle the approach
phases described in the introduction 1.1. The following states are used in the implementa-
tion:

• Initialization

• Manual

• High Altitude Approach

• Low Altitude Approach

• Landing

24

4.3 System State Machine

A supervisor task is added to control the state machine of the UAV and the following state
diagram describes the top down behavior:

Figure 4.4: State Diagram

4.3.1 Initialization
The DUNE program relies on communication with ArduPilot which sends out heartbeat
messages following the MAVLink protocol. These heartbeat messages contains the mode
the ArduPilot software currently is in. Upon receiving a heartbeat the state transitions to
the manual state.

4.3.2 Manual
In the manual state, the state machine runs idle. The main purpose of the manual mode is to
offload the control to a operator. A operator can e.g. be used for takeoff and landing while
in this state. The state machine will also always listen for heartbeat messages indicating
the operator has taken control of the vehicle and and return to this state.

4.3.3 High Altitude Approach
In this state the MUG position is located by pixel position using detection method based
on shape and color of the visible part of the MUG. ArUco marker detection is always
performed as different factors such as fog and image noise will affect which height the
ArUco marker will be visible from.

4.3.4 Low Latitude Approach
At lower altitudes the marker is visible for the drone and guidance based on the fiducial
references in the marker can be used.

4.3.5 Landing
If within the landing threshold, the drone sets a predetermined landing velocity to assert
a landing. In this phase the drone only moves in z direction as the visual of the marker is
lost when closing in.

25

Chapter 4. System Overview

26

Chapter 5
Implementation

To cover the necessary implementations required for executing the desired functionality,
implementation is divided into the following:

1. Mutual Modules

2. Miniature Drone - DJI Ryze Tello

3. DUNE - Simulation and 3DR

The DUNE implementation will be the same for simulation and the 3DR solo drone, ex-
cept for specific task parameters. The mutual section will cover the modules which are
implemented as the same for both the miniature drone and DUNE.

5.1 Mutual Modules

5.1.1 Filtering and Segmentation

A key concept in computer vision methods that was brought up in 3.2.5 is filtering out the
unwanted information in the image. The ArUco marker detailed in 4.2.4 is the object of
interest and filtering will be employed to make the information encoded in this marker as
visible and distinct as possible for the detection algorithms. The filtering process consists
of sequential methods given in sequence below

1. Convert from BGR to HSV

2. Gaussian Blur Filter

3. Range Thresholding

27

Chapter 5. Implementation

Color Space Conversion

In OpenCV the default image captured is in BGR color space. The first step in the filtering
process is to convert the input image from BGR to HSV. BGR values are correlated with
the amount of light hitting the object, making the color channels correlated to each other.
On the other hand, HSV has properties hue, saturation and value, which are better proper-
ties for discriminating different objects from another based on color. With this is mind, the
marker color scheme is specifically chosen because of it’s uniqueness in HSV color values
compared to natural environments.

The method for converting the color space of an image to another is provided by OpenCV:�
cv::Mat image_in_BGR, image_out_HSV;
cv::cvtColor(image_in_BGR, image_out_HSV, cv::COLOR_BGR2HSV

);� �
Noise Removal

Noise filtering is then necessary to remove unwanted noise in the image which can affect
the detection quality. The Gaussian blur filter works by smoothing the pixels inside a
moving window, and function as a low pass filter. This reduces the noise at the cost of
an added blur, which reduces the quality by a factor. The method is implemented by the
following function in OpenCV�
cv::Mat image_in, image_out;
cv::Size window_size(3, 3);
int standard_deviation = 0;
cv::GaussianBlur(image_in, image_out, window_size,

standard_deviation);� �
A zero value for the standard deviation argument means that function calculates the used
value based on the window size.

Binarization

The next filtering method is the binarization of the image. As the HSV color scheme of
the marker is known, the marker information can be extracted by binarization performed
with threshold range values. The following method performs the binarization in OpenCV:�
cv::Mat image_in_HSV, image_binarized_out;
cv::Scalar low_HSV(0, 0, 0), high_HSV(180, 255, 255);
cv::inRange(image_in_HSV, low_HSV, high_HSV,

image_binarized_out);� �
Different software uses different value ranges for HSV values. In OpenCV the HSV value
ranges has a lower bound of 0 and 180, 255 and 255 respectively for the upper bound. All
the pixels in the input image that lies within the range specified will outputted with a value

28

5.1 Mutual Modules

of 255, and values outside the range will be outputted as 0. The HSV values of the marker
is affected by the light conditions at the scene, and good threshold ranges for extracting
the ArUco marker from its surroundings have to be used.

5.1.2 ArUco Detection

The creators of the ArUco markers [26] have created a library [14] that provides the general
ArUco detection functionality. This library uses OpenCV for image processing. OpenCV
also provides a ArUco library for implementing ArUco detection, but this library is not as
complete and up to date as the library provided by [26]. All classes and functions from the
library uses the aruco namespace.

There are 3 pivotal classes in the ArUco library that need some configuration to be cor-
rectly used:

• aruco::Marker

• aruco::CameraParameters

• aruco::MarkerDetector

They are declared and initialized in the following way.�
cv::Mat intrinsic, distortion;
aruco::CameraParameters cameraParameters;
aruco::MarkerDetector markerDetector;
cameraParameters.CameraMatrix = intrinsic;
cameraParameters.distortion = distortion;
markerDetector.setDictionary(aruco::Dictionary::ARUCO, 0.2)

;� �
Firstly, the intrinsic camera parameter matrices has to be created as cv::Mat objects.
An object of class CameraParameters is then created with these values. This camera
parameters object is used by the marker detector later on. The next step is to configure the
marker detector with the desired ArUco dictionary and the error correction rate.

The process of identifying markers in a frame provided by the camera is then done by:�
cv::Mat frame;
std::vector<aruco::Marker> detectedMarkers;
float markerSize = 0.1; // meters
detectedMarkers = MDetector.detect(frame, cameraParameters,

markerSize);� �
This provides a vector of identified ArUco markers belonging to the dictionary defined
earlier. The vector of ArUco markers can then be iterated through and information about
id and pose can be gathered in the following way:

29

Chapter 5. Implementation

�
int id;
cv::Vec3d position;
cv::Mat orientation;
for (auto &marker : detectedMarkers) {

id = marker.id;
position = marker.Tvec;
orientation = marker.Rvec;
aruco::CvDrawingUtils::draw3dAxis(frame, marker,

cameraParameters);
}� �
The ArUco library also includes utilities for drawing marker objects in an image providing
a visualization of the detected pose of the marker.

5.1.3 Rectangle Marker Detection
At higher altitudes the marker will not be detailed enough to decode the marker informa-
tion with ArUco detection methods. Thus a simpler detection method must be used that
relies on the shape and color of the marker, which is much easier to identify with lower
resolution.
The algorithm is based off the initial filtered image. Firstly all the contours are found in
the image.�
cv::Mat image_filtered;
std::vector<cv::Mat> contours;
cv::findContours(image_filtered, contours, cv::

RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);� �
The cv::RETR_EXTERNAL implies that only the outer contours should found, ignore
nested contours. Additionally, cv::CHAIN_APPROX_SIMPLE means that redundant
information of the contour points will be removed, e.g. a line would only need two points
to be represented.

Then with a list of all the contours found in the filtered image, each of the contour is seen
as a candidate. For each contour candidate, the rectangle with the smallest possible pixel
area that envelops all the contour points of a candidate is generated. Then the rectangle
fit is calculated as the area of the contour divided by the area of the generated enveloping
rectangle. Finally, the rectangle fit is weighted with the area of the contour candidate. The
latter part is included to compensate for pixel noise and artifacts as they are likely to score
high on rectangle fit. The best candidate is then determined as likely being the ArUco
marker. Thresholds are also included as a minimum standard that a candidate has to meet.

30

5.1 Mutual Modules

�
std::vector<cv::Mat> contours;
float min_size = 100 // min pixel area
float min_shape_fit = 0.2; // => min 20% fit
float best_fit = -1;
cv::RotatedRect best_candidate;
for (auto &contour : contours) {

float contour_area = cv::contourArea(contour);
if (contour_area < min_size) {

continue;
}
cv::RotatedRect min_area_rect = cv::minAreaRect(contour);
float rect_area = cv::contourArea(min_area_rect.points);
float shape_fit = contour_area/rect_area;
if (shape_fit < min_shape_fit) {

continue;
}
float weighted_fit = shape_fit * contour_area;
if (weighted_fit > best_fit) {

best_fit = weighted_fit;
best_candidate = min_area_rect;

}
}� �
A negative best_fit value after the procedure implies that no candidates were found
that met the criteria.

The performance of the filtering/segmentation greatly increases the detection rate as this
method is more prone to false positives than the ArUco marker. Good filtering also de-
creases the amount information the cv::findContours has to search through and the
amount of contour candidates, improving processing speed.

5.1.4 Transformations

The computer vision detection locations by the miniature drone, simulation and the S1000
are all expressed in the same frame. This frame is centered in the center of the camera view
where a detected ArUco marker is given x,y position according to positive x horizontally
to the right and positive y vertical downwards. This means the z position is given with
positive direction coinciding with the direction the camera is facing. The camera coordi-
nate frame is illustrated in figure 5.1.

The position estimates the navigation method uses is gathered from the camera which is
mounted on the body of the vehicle. All navigation will be done with reference to body
frame, and the pose estimates from the camera must be transformed from camera to body
frame. The camera on Tello, FlightGear, 3DR and S1000 has a fixed mounting where
suitable static transformation matrices from camera to body must be found. In the case

31

Chapter 5. Implementation

Z

X

Y

Figure 5.1: Camera Reference Frame

where a variable/gimbal mounting is used for the camera, a composite time-varying roll-
pitch-yaw rotation must be used instead to express position in body frame as discussed in
3.1.2.

5.1.5 Camera Calibration
The quality of the camera calibration is necessary to correctly perform pose estimation as
this directly affects the accuracy of the detection methods.
The chosen method for calibration was a standard checkerboard calibration performed
with OpenCV. As the size and number of squares are known in the printed checkerboard,
the information about the camera parameters and distortion coefficients can be retrieved by
analyzing the image projections. This is done by analyzing multiple images of the chess-
board at different angles and comparing the identified chessboard grid to known values,
such as the number of corners in rows and columns of the board.

Algorithm

Given a chessboard, for example printed on a piece of A4 paper, the key points will be the
corners of each square that is not on the edge of the chessboard. The size of the printed
squares in meters have to be known before running the calibration. To create the vector
containing the object points for each of the corners of the checkerboard, the following
procedure is used.�
cv::Size boardSize(7, 9);
float squareSize = 0.02; // 2cm
std::vector<cv::Point3f> corners;
for(int i = 0; i < boardSize.height; i++) {

for(int j = 0; j < boardSize.width; j++)
corners.push_back(Point3f(float(j*squareSize),

float(i*squareSize), 0));
}

}� �
The resulting vector of object points contains the 3D keypoints with origin in the upper
left square. This list of object points is then used as basis for what the corners in the 2D

32

5.1 Mutual Modules

image should map to.
The pixel position of the chessboard corners in a calibration image can be found by in the
following way:�
cv::Size boardSize(7, 9); //example
std::vector<std::vector<<cv::Point2f>> totalImagePoints
std::vector<cv::Mat> calibrationImages;
for (auto &calibrationImage : calibrationImages) {

std::vector<cv::Point2f> imagePoints;
cv::findChessboardCorners(calibrationImage, boardSize,

imagePoints);
totalImagePoints.push_back(imagePoints)

}� �
Where imagePoints is an output argument that contains the pixel points of each corner
of the checkerboard found in the calibration image. This process is done for each calibra-
tion image and the corner positions are stored for each image in totalImagePoints.
With a list for the 3D object points and the 2D image pixel points of the corners, the camera
matrix and distortion coefficients can be found by the OpenCV function cv::calibrateCamera.�
cv::Size calibrationImageSize;
cv::Mat cameraMatrix, distCoeffs;
std::vector<cv::Mat> rvecs, tvecs;
std::vector<std::vector<cv::Point3f>> totalObjectPoints;
std::vector<std::vector<cv::Point2f>> totalImagePoints;
double rms;
rms = cv::calibrateCamera(objectPoints, imagePoints,

calibrationImagesSize, cameraMatrix, distCoeffs, rvecs,
tvecs, 0);� �

The totalObjectPoints is a vector that includes the previous list objectPoints
replicated to the amount of calibration images. The rms value of the reprojection error
are returned from the function indicating the fit of the camera matrix based on all the
calibration images. The function start off by estimating the initial camera pose as if the
intrinsic parameters was already known using a SolvePnP function. Then the function
minimizes the reprojection error, the sum of squared distances between the observed image
points and the projected object points using the current intrinsic estimates and poses.

5.1.6 ArUco Detection Tuner
To further improve the filtering methods for detecting the ArUco markers in the video
stream, a program was made to analyze the percentage of detected ArUco markers in all
frames contained in a directory or from a video file. This module uses the captured video
data from flights where the filter parameters easily can be adjusted and the result analyzed
for increased effectiveness with the same input. This is used to optimize the parameters
based on the current flight environment and detect the highest as possible number of mark-
ers.

33

Chapter 5. Implementation

5.2 Tello Modules
All the modules created for the Tello drone has been implemented in C++ independently of
DUNE. The Tello drone does not have the capability of running custom software onboard,
but has an API for interfacing the onboard firmware. This API is accessed by sending
messages over UDP and the list of API calls available is listed here [12].

The GCS software created for the Tello was created with aim to build a modular setup for
controlling and interfacing the drone. In difference to DUNE, all layers had to be devel-
oped from scratch. Multiple modules were created to abstract the lower level interactions
built upon the UDP communication such that the control algorithms and data manipulation
could be implement at a higher level without knowledge of underlying interfaces. DUNE
already offer this level of modularity by design, but translating the primitive API that the
Tello offers to a DUNE implementation would remove the benefit of using DUNE at all.
The main modules of the Tello implementation is

• State Machine

• Control

• Video Decoding

5.2.1 Control
In the API list for the Tello drone, there is a command for setting the desired velocity
with respect to body frame of the vehicle by sending a command of the following form:
rc ud lr bf yaw Where rc is the command identifier and the proceeding arguments
are replaced with a value of -100 100 respectively. The arguments signifies up-down, left-
right, back-forward, yaw rate. The constant bearing guidance method described in 3.3.2 is
implemented with reference to body frame navigation and the generate velocities are used
as arguments for this command.

5.2.2 Video Decoding - h.264 decoder
The camera input from the Tello drone is sent to port 11111 to the IP of the machine that
connected to the drone. The video is sent over UDP with H.264 encoding. OpenCV nor-
mally has options for capturing input video streams of any type, but for H.264 encoded
streams sent over UDP, it causes a high delay of about 5 seconds. OpenCV uses ffmpeg
to decode the stream internally, but no workaround for the internal buffering was found.
Thus an attempt at creating an custom H.264 byte stream decoder was made to amend the
latency issue.

When installing ffmpeg the additional source code library, avlib, is also installed
which can be used to create specialized video processing tools in C++. Using the source
code a module for decoding a H.264 stream was created. The module stitches the frag-
mented H.264 encoded UDP stream into a sequence of AVframe type frames. Finally the
module converts the frames into cv::Mat objects such that the functionality provided

34

5.2 Tello Modules

by OpenCV can be used. Using this H.264 decoder implementation, internal buffering
is avoided as the processing method is fully customized and thus latency is reduced to a
minimum.

5.2.3 State Machine
The main module of the Tello drone is the state machine. Three states were defined to
handle the flight of the drone.

• Takeoff

• Approach

• Landing

Takeoff

When the drone is manually turned on, it creates a network which users can connect to. It
establishes a session with an external machine when it receives an message over UDP con-
taining the the string ok. To enable video streaming, a API call on the form streamon is
sent. The drone responds with an ok string on the same port if the command was received
and successful. After this the takeoff command is sent and when ok is received back the
state machine transitions to approach.

Approach

After takeoff the image stream data is analyzed with the ArUco detection method described
in 5.1.2. While continuously processing the image dat and detecting markers, a timer for
dead reckoning is set. The timer is reset whenever a marker is detected, but in the event the
timer elapses a control signal for setting the velocity reference to zero is sent and the drone
hovers in place. At the event of an object detection, the located object position is trans-
formed from camera frame to body frame and a feed forward loop is executed, instructing
the Tello to approach the marker following constant bearing guidance as mentioned in
3.3.2. At the event of a detection loss, the dead reckoning timer will elapse based on a
set time, causing the drone to enter the dead reckoning state again. A predefined altitude
and horizontal radius is used to determine when the drone should transition to the landing
state.

Landing

Given a certain amount of consecutive frames inside these thresholds, the drone will given
signal to perform a landing maneuver, which terminates the flight.

5.2.4 Transformations
The Tello drone has a built in camera which its mounted at the end of the body. To capture
what is underneath the drone, a mirror is mounted to angle the view. This mirror acts a

35

Chapter 5. Implementation

simple rotation of −90◦ degrees about the camera x axis and in addition causes the image
to become flipped about the x axis. The flipped image is corrected in OpenCV by using
the function cv::flip(image, image_out, 0 where the zero argument is the flip
code which signifies a horizontal flip. An illustration of the body and camera frame is
given below:

Figure 5.2: Tello Side view with Reference Frames

This causes the body frame to be translated with respect to the camera frame, but with
no orientation change. A suitable transformation matrix from camera to body frame that
compensates for the translation distance is:

Tb
c =


1 0 0 0

0 1 0 −0.035

0 0 1 0

0 0 0 1

 (5.1)

5.2.5 Video Logs
Flight data logging is important for analysis in post processing, and especially the video
stream data recorded from the Tello drone. The video stream is recorded as a sequence of
images and ffplay frame%1d.png is used to playback the images as video. ffplay
is provided by the developers of ffmpeg [20].

5.3 DUNE Modules

5.3.1 IMC messages
Reusing IMC messages should be preferred, but for some cases new IMC messages was
necessary for creating a explicit information flow between tasks and to handle data logging.

Reused Messages

• IMC::DesiredControl - Contains float values for desired control loop velocity refer-
ences.

• IMC::Autonomy - Contains information about ArduPilot state, e.g. autonomous
mode or manual.

• IMC::EstimatedState - Contains values for NED position, velocity and orientation
using the takeoff position as origin.

36

5.3 DUNE Modules

Newly Defined IMC messages

The following messages were created to complete the information flow in the implemen-
tation.

• IMC::ArUcoTracking - Contains fields for position and orientation and the ID of the
ArUco marker.

• IMC::CameraTracking - Contains fields for position of general objects.

• IMC::ConstantBearingTarget - Contains target positions and velocities used to up-
date constant bearing velocity.

• IMC::SeaSurfacePickupState - Contains enumerated fields for sharing the current
state of the system with other tasks.

IMC::CameraTracking

This messages is used to dispatch location of objects tracked within the camera view. This
message is used for sharing general position of a tracked object where the method for
finding the object is not of importance. This message is used by the task that captures the
video stream during flight to update the tracked position of the desired object.

IMC::ArUcoTracking

This is the specific message used by the camera task to dispatch information about de-
tected ArUco markers in the camera view. In addition to the position fields in the generic
IMC::CameraTracking messages, this message also includes ArUco specific infor-
mation such as the ArUco marker ID and orientation of object. This means that the sub-
scriber, can filter the detected markers by ID and apply custom behavior based on ID.

IMC::ConstantBearingTarget

This message was created to update information about the target position and velocity
needed by the constant bearing guidance task. A custom message also provides a method
for doing transformation and processing of the tracked camera object before dispatching a
target reference. In this implementation, it is necessary to transform the detected position
of the marker to body frame before dispatching a message of this type.

IMC::SeaSurfacePickupState

This message includes the state of the supervisor state machine. It is used to share the
current system state to other tasks that execute differently depending on the state of the
system.

37

Chapter 5. Implementation

5.3.2 Tasks
As mentioned earlier in section 4.1.1, DUNE is built upon tasks that can subscribe to and
publish messages following IMC protocol. The different tasks necessary for building up a
functional state machine that covers the different problems discussed in this thesis are:

• SeaSurfacePickup Supervisor Task

• Camera Task

• ConstantBearing Task

• Logger Task

• ArduPilot Task

Altered Tasks

ArduPilot Task

The ArduPilot task is responsible for the communication between DUNE and the external
ArduPilot program. The task therefor includes a lot of the functionality that ArduPilot
supports, providing the interface to DUNE. Missing from the original task was sending
velocity references to the ArduPilot software by the MAVLink protocol. As the constant
bearing guidance method outputs a reference velocity, the task had to be altered to sup-
port this for the guidance method to work. This was solved by making the ArduPilot
task subscribe to IMC::DesiredControl messages and adding an action to send the refer-
ence to ArduPilot with the apropriate MAVLink message that supported this. In the same
MAVLink message, a flag can be used to indicate which frame the velocity reference is
expressed in. The appropriate flag for body fixed navigation was used in this case instead
of the default NED flag.

Newly Added Tasks

Camera Task

The camera task interfaces the video stream coming from the mounted vehicle camera,
filtering the frame, performing detection methods and displaying the video stream with
annotated data displayed on top of the received frame. For post processing purposes, the
video stream is also saved to file.

The task is defined as a periodic task executing at the defined frequency specified in the
configuration file. The flow of the periodic loop of the camera task is given by figure 1 in
appendix B. At each execution cycle, the task tries to grab a frame of the incoming video
stream. If no such frame is available at the time, the current cycle is ended. If a frame is
available, the next action is to filter the input by the same method as discussed in 5.1.1.
First the task tries to identify an ArUco marker in the filtered image by using the ArUco
detection algorithm from 5.1.2. If an ArUco marker is detected, the task dispatches the
pose data, else the task tries to identify the pixel location of the rectangle shaped marker

38

5.3 DUNE Modules

as described in 5.1.3. Both the ArUco pose and the pixel location is expressed in the same
frame. The pixel position is then normalized based on the frame size and dispatched. The
SeasSurfacePickup supervisor task later handles the translation from pixel location to me-
ter units.

Lastly, the original frame with annotated information is displayed to the operator along-
side the filtered frame. In the case where the marker is visible in the original frame, but
not the filtered frame, improved methods for filtering can be developed in post analysis of
the saved video data. The annotated data shown on top of the frame received is marker
position in either pixel or centimeters depending on the successful detection method, the
current state of the supervisor task, and the fps.

The position data of the ArUco markers is not altered in the camera task, all transformation
from camera frame to body frame is done by the supervisor task.

A configuration file example for this task can be found in appendix A under Sensors.Camera.
Parameters such as ArUco marker square size, camera matrix, distortion coefficients, and
filter values can be set in the configuration file.

Constant Bearing Task

The constant bearing task calculates the desired velocity of the vehicle for performing
constant bearing guidance. The algorithm is implemented as described in section 3.3.2.
The task receives the vehicle position from IMC::EstimatedState messages, and the target
position and velocity from IMC::ConstantBearingTarget. One caveat with this implemen-
tation is that the theory for constant bearing guidance relies on using a common inertial
reference frame for both the interceptor and the target. The pose estimates of the target
given by the other task are expressed in vehicle fixed frames. The constant bearing algo-
rithm then has to be changed to handle body frame navigation. To achieve this, the NED
vehicle position received from IMC::EstimatedState is ignored and set to zero for all axes.
The target position is then seen as the direct error in position. The IMC::EstimatedState
functionality is included for potential future navigation methods based on NED reference
frames. The constant bearing task flow is shown in figure 2 in appendix B

The task has parameters for setting max velocity of the vehicle, and the rendezvous fac-
tor. Setting the max velocity prevents the vehicle from performing sudden maneuvers
while doing testing as the operator can easily detect and react to unwanted behavior before
harmful damage is done.

SeaSurfacePickup Supervisor Task

The SeaSurfacePickup supervisor task is the main system task that governs the state ma-
chine detailed in 4.3. The supervisor subscribes to the following messages

• IMC::CameraTracking

• IMC::ArUcoTracking

39

Chapter 5. Implementation

• IMC::AutopilotMode

which it uses for basis for state transitions and actions. An in detail flow diagram of the
task is given in appendix B by figure 3.

When maneuvering based on IMC::CameraTracking data, the supervisor has two criteria
that it uses to decide when to descend. These criteria are given as percentage radii centered
at the origin of the camera frame. The first criteria is an initial radius, e.g. 5%, that the
pixel location must be within before descending is added to the constant bearing target
message. After meeting this criteria, a looser criteria, e.g. 10%, is used for allowing some
displacement when descending. If the looser criteria is breached, the pixel location of the
marker must be centered within the initial radius again before descending.

The supervisor task can also be parametrized with a hovering altitude as shown in appendix
A under Supervisors.ssp. When maneuvering based on IMC::ArUcoTracking data in Low
Altitude Approach, a hovering altitude of 0 implies that the drone should attempt to land
on the target, and a value above 0 will cause the state machine not to transition to the
landing state and instead hover at this altitude while keeping the horizontal position error
at 0. As the marker is eventually lost within the camera view when approaching closely, a
parameter, Landing Mode Altitude, is used for determining which altitude above
the marker is sufficient before transitioning to the landing state(if landing is intended).
When attempting to land, the dispatched constant bearing target z value is chosen as a
constant value to enforce downwards movement without ArUco pose estimate updates.

Logger Task

DUNE has built in logging of IMC messages dispatched during a session, but a custom
logger task was created to log data to a simpler and human readable format. The logger
task subscribes to all the IMC messages detailed in 5.3.1 and does not dispatch anything.
Instead the task reads all the relevant imc data dispatched and logs a copy of the data to
a file corresponding to the IMC message. All data entries are appended with the time
elapsed since the program execution began. Each file name is also appended the start time
of the flight for future reference.

5.3.3 Transformations
Because the camera has a fixed mounting in simulation, on the s1000 and 3DR, the trans-
formation matrix can be calculated beforehand and added to the implementation. Should
the camera be mounted on a controllable gimbal in the future, the camera task should be
expanded to consume a message with information about the gimbal pose and calculate the
transformation matrix when updated.

FlightGear Simulation

The camera view in flight gear is a virtual camera mounted centered 10cm underneath the
copter. The body frame in Flight Gear has a positive x out of the head of the copter and

40

5.3 DUNE Modules

positive y direction out the right wing. To get from camera to body frame only a simple
rotation of 90 degrees about the z-axis is needed.

Tb
c =


0 −1 0 0

1 0 0 0

0 0 1 0.1

0 0 0 1

 (5.2)

3DR Solo

The camera on the 3DR solo is mounted on a gimbal which was set to replicate the view in
the FlightGear simulations for consistency between simulation and field testing. Therefor
the same simple rotation of 90 degrees about the z-axis is needed to transform the ArUco
position in camera frame to body frame.

Tb
c =


0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 (5.3)

5.3.4 Vendor Libraries in DUNE
External libraries are included in DUNE by placing the relevant header and source files
for a library into ”vendor/librares/*library name*” under the DUNE source folder. For
inclusion of the ArUco library source files provided by [26], the files would be placed into
”vendor/libraries/ArUco”. To link these source files to a desired task, a CMake config-
uration file has to be created and placed under the ”vendor/libraries/ArUco” path. Each
vendor library has this CMake configuration with the required name ”Library.cmake”. The
CMake rules needed for the ArUco library were added such that no external dependencies
except OpenCV are needed when building the source code.

41

Chapter 5. Implementation

42

Chapter 6
Experiments and Results

6.1 Small Scale Implementation - Tello

6.1.1 Description
The aim of the experiment is to look at the viability of processing the ArUco detection al-
gorithm while navigating based on the position estimates in real time. The vehicle used for
this experiment will be the miniature drone Tello 4.2.3. For guidance the constant bearing
method detailed in 3.3.2 is used to create the desired body frame velocities as input to the
miniature drone. If this composite experiment is successful, the system implemented for
the miniature drone will serve as the foundation of the DUNE implementation.

The miniature drone is used to track an ArUco marker lying on the ground. The camera
parameters are found by the same calibration method as discussed in 5.1.5 Then by using
the detection algorithm discussed in 5.1.2, the ArUco marker is identified when inside the
camera view and the Tello moves towards the marker by the velocity inputs generated by
the constant bearing method discussed in 3.3.2.

Two test will be performed where one is hovering at a desired altitude over the marker,
and the second one being landing on the marker. There is a firmware enforced limit on
the miniature Tello drone of not being able to descend to a lower altitude than about 40cm
if not executing a landing maneuver. Thus a certain amount of consecutive frames inside
a predefined threshold will server as the criteria for a landing maneuver is automatically
sent. The distinction between the hovering and landing test is the loss of marker data as
the drone moves closely to the marker.

6.1.2 Setup
The hardware required for this experiment is

• DJI Ryze Tello with mirror

43

Chapter 6. Experiments and Results

• ArUco Marker

• Computer.

The drone and the marker is pictured below. The embedded ArUco marker has a side
length of 8cm for reference.

Figure 6.1: Miniature Drone and ArUco Marker

The flight data is logged to file with reference to time at when the takeoff maneuver is
finished. This is also when the main loop of the program is started.

6.1.3 Calibration
Calibration is done according to the method described in 5.1.5 A total amount of 21 pic-
tures were gathered from the miniature drone video stream at different heights and angles.
From these pictures the following camera matrix and distortion coefficients were identi-
fied:

P =


930.074 0 462.764

0 964.503 391.505

0 0 1

 (6.1)

dc =
[
0.09337 −2.17267 0.017468 −0.00093258 11.4034

]
(6.2)

with a overall mean reprojection error of 0.526 pixels for the calibration set.

6.1.4 Results
Image Corruption and Artifacts

The image quality of the video stream from the Tello drone is periodically heavily cor-
rupted. A showcase of the best and corrupted image data is given in the figure below.
These pictures are in sequence and shows that the corruption of the image can sponta-
neously cause a jump of estimated position of the marker. To compensate for this, a low
pass filter was introduced to remove sudden changes in marker position estimate based on
the estimated velocity of position changes.

44

6.1 Small Scale Implementation - Tello

Figure 6.2: Tello Video Feed Corrupted vs Normal Quality

Dead Reckoning

The image corruption also means that the drone will be dead reckoning spontaneously. To
handle the loss of estimate data, a timer was added which elapses if no new detections are
made within a predefined time of 1 second. Each time a new detection is done, the timer
is reset. If the timer elapses the velocity of the drone is set to zero. In almost every case of
dead reckoning the marker was still inside the camera view, but not detectable due to the
image corruption. Thus not moving until the image quality improved was often enough to
recover and continue execution.

Stable Hovering

The aim of this test was to center itself directly above the ArUco marker lying on the
ground while maintaining a predefined altitude of 1m above the marker. The following
data presents the position of the ArUco marker expressed in body frame.

0 5 10 15 20 25 30 35 40 45

time [s]

-20

0

20

40

60

80

100

120

d
is

ta
n
c
e
 [
c
m

]

ArUco position

x
b

a

y
b

a

z
b

a

Figure 6.3: Relative ArUco position

The sharp value changes in the chart occurs when there is a loss of marker tracking. As

45

Chapter 6. Experiments and Results

mentioned earlier, due to image corruption this happens fairly often. Instead of hovering
at 1m above the ArUco marker, the drone hovered at about 95cm. The build in firmware
of the Tello drone tries to maintain the drone at whatever height and position it is currently
at if no input is given. This is not perfect at the drone deviates a lot when there is no input
as well, meaning when there is a loss of the ArUco marker, the drone may start to deviate
as seen in the graph.

Landing

The aim of this test was to approach the ArUco marker while maintaining the marker
within the camera view. The threshold ranges for landing was a horizontal radius of 2cm
and an altitude below 40cm. After 5 consecutive frames within this threshold, a landing
maneuver was sent and the flight terminated. The flight position data are presented in the
figure below.

0 5 10 15 20 25

time [s]

-40

-20

0

20

40

60

80

100

d
is

ta
n
c
e

 [
c
m

]

ArUco position

x
b

a

y
b

a

z
b

a

Figure 6.4: ArUco Position in body frame

The drone kept a steady approach, but often limiting movement in 3 axis simultaneously.
This occurred because even though the API for the drone supports small velocity set points,
there was some thresholds before the drone would start moving. As the max velocity of the
velocity referenced generated by the constant bearing method is capped at a desired level,
the lesser error axes were given a lesser velocity reference. This caused the movement to
be prioritized in axes with larger error until they became about leveled.

6.1.5 Discussion
After handling the image corruption and dead reckoning, the drone made steady approaches
to its target in both the landing and hovering experiment resulting in successful execution.
The successful detection of the ArUco marker in the high noise environment serves as a
proof of concept for guidance based on ArUco markers. This can be seen as an worst case

46

6.2 DUNE Implementation - Simulation

test, as the image quality from the camera on a full size test drone will be substantially
better. Therefor the implementation was found worthwhile to also implement in DUNE
for simulation trials and full size testing.

6.2 DUNE Implementation - Simulation

6.2.1 Description
To test the full DUNE implementation, a simulated run with ArduPilot in the loop and
FlightGear as the camera source was done. An virtual ArUco marker was added closely to
the initial drone position such that marker were visible to the drone after takeoff.

Similar to the previous test with the miniature drone, this experiment aims at using both
detected rectangle and ArUco marker data to navigate the simulated drone into a controlled
hovering altitude and landing on the marker.

6.2.2 Setup
Before starting the DUNE program, setup for ArduPilot and FlightGear is required.

FlightGear

FlightGear is launched by running the script Tools/autotest/fg_quad_view.sh
which is located under the ArduPilot build folder. After executing the script the virtual
camera is shown. To feed the camera view to the DUNE task, a parameter for video source
of the Camera Task is set in the config file to be http://localhost:8080/screenshot.

ArduPilot

To launch ArduPilot, the current working directory has to be under the ArduCopter
folder. Then by entering sim_vehicle.py -w ArduPilot is launched with the con-
figuration in the ArduCopter folder. The trailing command -w is to wipe persistent
data that may be stored between sessions. Via the MAVProxy terminal prompt that is cre-
ated when running ArduPilot, the drone is firstly set in mode guided with the command
mode guided. Then the drone is armed with the command arm throttle before
finally sending the takeoff command takeoff 15 which initiates the liftoff of the drone
to an altitude of 15 meters above the takeoff position.

DUNE

The DUNE configuration file for vehicle needs to be adapted to the differences between
the simulation and a real drone. All these differences can be set in the configuration files.
This means parameters such as thresholding ranges, video source path, landing criteria etc.
have to be customized for the simulation environment.

47

Chapter 6. Experiments and Results

The configuration file for the simulation tests is provided in appendix A with name
flightgear.ini. This file details all the specific parameters used in the experiment.
The final step to start the experiment is to launch the DUNE program with this config file
with ArduPilot as SITL. Specifically ./dunce -c flightgear -p AP-SIL. The
DUNE program starts to execute detection and maneuvering as soon as it’s launched.

6.2.3 Results
To illustrate the results, the constant bearing target data dispatched in the DUNE system
is displayed for altitude z and for horizontal positions x and y. The dashed vertical line
indicates the transition from navigation based on detected marker rectangles to ArUco
marker data.

Stable Hovering

Altitude data is shown below:

0 10 20 30 40 50 60

time [s]

0

1

2

3

4

5

6

7

d
is

ta
n

c
e

 [
m

]

Constant Bearing Target Position

z
b

a

Figure 6.5: Simulation Hovering Altitude

Since there is no height information in the rectangle detection method, the drone is as-
sumed to be 3m above the target, making the drone continuously descend until the fiducial
detail of the ArUco marker is visible. As discussed in 5.3.2, the transition happens after 5
consecutive frames with ArUco marker information detected. An altitude of 6.5m over the
ArUco marker seems to be sufficient to achieve a stable detection of the ArUco marker.
The following graph shows the horizontal position:

48

6.2 DUNE Implementation - Simulation

0 10 20 30 40 50 60

time [s]

-6

-4

-2

0

2

4

6

8

d
is

ta
n

c
e

 [
c
m

]

Constant Bearing Target Position

x
b

a

y
b

a

Figure 6.6: Simulation Hovering Horizontal Position

From the view provided by FlightGear, there is some quantization that is noticeable at
sub centimeter positions. This causes the horizontal position of the drone to jump when
approaching 0cm.

Landing

In addition to the dashed line indicating the switch from rectangle detection to ArUco
detection, the second dashed line indicates the beginning of the landing state. The altitude
data of the landing is given in the graph below.

0 10 20 30 40 50 60

time [s]

0

1

2

3

4

5

6

d
is

ta
n

c
e

 [
m

]

Constant Bearing Target Position

z
b

a

Figure 6.7: Simulation Landing Altitude

When switching to the landing state, the constant bearing target altitude is given constantly
as 1m below the drone, causing the drone to move assertive to the ground.

49

Chapter 6. Experiments and Results

The horizontal data is given in the graph below.

0 10 20 30 40 50 60

time [s]

-5

0

5

10

15

20

25

30

d
is

ta
n

c
e
 [

c
m

]

Constant Bearing Target Position

x
b

a

y
b

a

Figure 6.8: Simulation Landing Horizontal Position

Before entering the low altitude state, the ArUco marker position is fairly precise and when
ArUco marker data is available the horizontal error is not much different from the pixel
position. The landing takes place at an altitude of about 40cm where the horizontal error
is within 2cm in both x and y.

6.2.4 Discussion
Some unexpected resolution boundaries in the simulated camera view were found to cause
an inaccuracy in the final part of the approach. Being affected by this, the resulting po-
sition data rarely exceeded 2cm when stabilizing on hovering and when landing on the
target. As the MUG fin is of size 20x10cm, an error of 2cm would be sufficient accuracy
for testing the implementation with a full size drone such as the S1000. The discrete cam-
era view positions will also not be a factor when doing field testing and thus these discrete
value jumps will be absent in the a non-simulated implementation.

The simulation had a stable detection of the ArUco marker at 6.5m, but from runs with the
Tello drone, the height for stable detection in the field test will probably be at much lower
altitudes.

The experiment shows that the implementation provides a stable method for navigating the
drone closely to the marker while not affected by disturbances. This simulation does not
include wind disturbances, ocean currents or wave induced motion, which will be factors
to consider when doing a full sized field test.

6.3 DUNE Implementation - 3DR
As the S1000 full size drone was not available for testing due to the circumstances, the
DUNE implementation will be tested on the 3DR solo instead. A successful result with

50

6.3 DUNE Implementation - 3DR

the 3DR testing will not mean that the same implementation would suffice for the S1000.
The S1000 differs in both weight and amount of rotors and hardware setup which will alter
the viability of the implementation. The results are instead taken as strong indicators of
the behavior of the implementation.

6.3.1 Description
With successful experiments with the DUNE implementation in simulation, the same im-
plementation is to be tested with the 3DR solo drone affected by a real world environment.
A notable difference from the OASYS project ocean environment, is that the 3DR solo
does not have capabilities for landing on water and thus will be tested in a field instead.
This means that wave induced motion and ocean currents will be absent in this test.

The DUNE program is ran on a GCS in this experiment and communication with the
ArduPilot program running onboard the drone is proxied through MAVProxy. The aim
of the experiment is to evaluate the performance of the implementation running on a
GCS while communicating with the ArduPilot software running on the drone. Delays
are expected as all communications happen through a WiFi access point. Compared to
the simulation there will be wind disturbances and more elements in the video stream to
differentiate the ArUco marker from. Three tests were done were the goal was to land the
3DR drone on the marker.

6.3.2 Setup
Hardware

• 3DR Solo

• GoPro Hero4

• Laptop as GCS

• ArUco Marker

The remote controller for the 3DR solo works as a WiFi access point. The GCS and the
drone are both connected to this AP.

Software

Some software setup is required for enabling external computing and the data communi-
cation between the GCS and the 3DR solo drone. The software setup nodes are illustrated
in appendix C.

The video feed from the GoPro is duplicated on the GCS to avoid buffering and DUNE
grabs frame from the duplicated stream. The MAVLink messages DUNE intends to send
to the drone is proxied through a local MAVProxy session and then to the ArduPilot.

51

Chapter 6. Experiments and Results

The specific flight parameters used for this experiment are detailed in the 3DR.ini file
included in appendix A. The altitude threshold for landing was set to 40cm in for the these
flights.

6.3.3 Results

This section will only present the data from the second flight. The data plots from of other
flights are included in appendix D.

The filter implementation worked well in the lighting conditions in the 3 flights, and the
marker shape was consistently tracked from the start of the flights. The first and second
flight entered the landing phase, but the last flight did not. The positional data of the ArUco
marker is presented below. The first dashed line represents the transition from high to low
altitude approach, while the second dashed line represents the start of the landing phase.

0 10 20 30 40 50 60 70 80

time [s]

-200

-150

-100

-50

0

50

100

150

200

d
is

ta
n

c
e

 [
c
m

]

Constant Bearing Target Position

x
b

a

y
b

a

z
b

a

Figure 6.9: 3DR Constant Bearing Target Position

The horizontal position is increasingly oscillating around 0 while descending until the
ArUco marker details are visible. After switching to low altitude approach at an altitude
of 84cm, the horizontal position error is maintained within 20cm while the drone is slowly
descending to the landing altitude threshold of 40cm. Shortly after meeting the landing
criteria and entering the landing state, the marker is lost within the camera view. Although
the drone was instructed to land, the drone did not come to a still at the ground. From the
ArUco position data given in the graph below, the drone begins to ascend after failing to
land for a while, and thus new ArUco measurements are seen after landing. The horizontal
error when reappearing is initially very low, implying a likelihood of a potential successful
landing had the drone stayed at the ground.

52

6.3 DUNE Implementation - 3DR

0 10 20 30 40 50 60 70 80

time [s]

-40

-20

0

20

40

60

80

100

120

d
is

ta
n

c
e

 [
c
m

]

ArUco Position

x
c

a

y
c

a

z
c

a

Figure 6.10: 3DR ArUco Position

From figure 6.10 the first ArUco detection is at an altitude of about 110cm above the
marker. 20 seconds elapsed from the first detection until the ArUco detection updates
were consistent enough to switch to low altitude approach.

Reviewing the data points after the flight, the video stream was consistently 25Hz as con-
figured in the 3DR.ini file in appendix A. Pose estimation data was detected in 29.6%
of all the frames received.

6.3.4 Discussion
Comparing the high altitude with the low altitude navigation, the high altitude navigation
method based on pixel values seemed to cause a consistent overshoot that increased as the
drone descended. After switching to the low altitude navigation, the motion of the drone
was much stabler. This would imply that the navigation method based on the pixel loca-
tion of the marker should be able to perform better, even if there was an influence of wind
disturbance. This differs from the simulation experiment where the pixel method was re-
liable. In the simulation test the drone entered low altitude approach at 6.5m, as seen in
figure 6.5, while in this flight the switch occurred at 84cm. This might have caused the
navigation method to perform better in simulation.

In two of the flights the drone switched to the landing state, but the landing velocity was
tuned too low. The z velocities were correctly dispatched after reviewing the logged data,
but from the flight it seems this wasn’t enough to actually move the drone downwards.
This caused the drone to hover when it should have asserted a landing. This seems to be
similar to the Tello drone where too low velocity references didn’t cause any movement.
This should be a quick fix of increasing the constant bearing guidance U_a_max in the
landing stage.

53

Chapter 6. Experiments and Results

Although the drone reached altitudes were the ArUco pose could be used in each of these
3 flights, a better high altitude navigation method would reduce the flight time. The insta-
bility could also have caused the drone to lose the marker within the camera view, which
would be critical.

Post Flight Filter Analysis

In post review of the filter values used for the flights and the recorded video stream, new
filter values were found which increased the percentage amount of ArUco markers de-
tected from 29.6% to 58%. This would’ve increased the altitude the drone switched to low
altitude approach from 84cm to 148cm. As the navigation performed much better based
on the ArUco marker pose information, an earlier detection of the ArUco marker would
greatly improve the marker approach.

54

Chapter 7
Discussion and Conclusion

To carry out part of the mission described by the OASYS project, a system with an appro-
priate state machine was formulated and implemented. The state machine was designed
to handle the states from a MUG detection based on shape and color available at a high
altitude to the landing on the MUG for pickup. The different modules for computer vision
and guidance methods were implemented to realize the state machine. Supporting mod-
ules such as data logging were also implemented to inspect the behavior of the system in
post analysis.

A fast and iterative platform for testing independent algorithms were made for a miniature
drone. Including programmatic video decoding, computer vision and guidance methods.
This platform was used as a proof of concept before transitioning the algorithms to the
DUNE implementation.

A setup for a simulated environment was created to enable testing of the full DUNE im-
plementation. Most importantly, the simulation environment included an artificial camera
view cohering to the simulated position of the drone. ArUco markers could be placed in
this artificial scene and thus provided simulation basis for a full implementation test.
Field tests with the intended DJI S1000 drone were not done because of the national corona
lockdown initiated March 12, 2020. Instead, three flight tests with an alternative drone
were done. The experiment was performed on ground and not in a ocean environment,
and instead of onboard computing the implemented system was ran externally on a GCS.

The implemented system in DUNE was able to identify the ArUco marker shape at alti-
tudes of 5m, and the ArUco fiducial details at 1m. The navigation method was able to keep
the ArUco marker within view from first shape detection until an altitude of 40cm where
landing was attempted. The drone was not able to complete the landing and stay on the
ground. In the flights were landing was attempted, the horizontal position error was small
and did not exceed 20cm. This result was considered reasonable, as no wind disturbance
model was included in the test. The ArUco markers served as reliable pose estimators

55

Chapter 7. Discussion and Conclusion

while the constant bearing guidance method could use some tuning.
Because of the external computing, performance capability increased at the cost of minor
latency in the communication with the drone. Higher processing of the image data was
achieved which enabled faster frame rate and higher resolution than what an onboard sys-
tem could achieve. With 5G support at offshore distances, fast data rates at low latency
for mobile units will be available and makes a case for doing external computing with the
S1000 drone as well.

7.1 Further Work
The field test in this thesis were conducted on land, and thus testing in a sea environment
which is the intended environment remains. These conditions will add factors as ocean
currents and wave induced motions for which this thesis has not covered, but will be es-
sential for a higher success percentage. As testing with the DJI S1000 drone was not
possible, this also remains as further work. The next step of this thesis would be to tune
the constant bearing guidance velocity outputs by doing more field tests, and implement-
ing models for wind and ocean disturbances.

With the transition to external computing, detection methods using trained neural networks
to detect the ArUco marker shape might be worth exploring. Furthermore, the system
implemented in DUNE has to be expanded to handle the initial search of the MUG after
takeoff and attaching the MUG to the UAV with the electropermanent magnet.

56

Bibliography

[1] Beaglebone black - wiki.
https://elinux.org/Beagleboard:BeagleBoneBlack. Accessed
February, 2020.

[2] Open grab epm v3 - wiki.
https://kb.zubax.com/display/MAINKB/OpenGrab+EPM+v3. Ac-
cessed January, 2020.

[3] Withrobot - ocam-1cgn-u-t.
http://withrobot.com/en/camera/ocam-1cgn-u-t/. Accessed Jan-
uary, 2020.

[4] Ardupilot - mavlink interface.
https://ardupilot.org/dev/docs/mavlink-basics.html, Ac-
cessed January, 2020.

[5] Ardupilot - software.
https://ardupilot.org/index.php/about, Accessed January, 2020.

[6] Dune - unified navigation environment.
https://lsts.fe.up.pt/toolchain/dune, Accessed January, 2020.

[7] Mavlink - about.
https://mavlink.io/en, Accessed January, 2020.

[8] Mavproxy - about.
https://ardupilot.org/mavproxy/index.html, Accessed January,
2020.

[9] Oasys - home.
https://blogg.hioa.no/oasys/, Accessed January, 2020.

[10] Opencv - about.
https://opencv.org/about/, Accessed January, 2020.

57

https://elinux.org/Beagleboard:BeagleBoneBlack
https://kb.zubax.com/display/MAINKB/OpenGrab+EPM+v3
http://withrobot.com/en/camera/ocam-1cgn-u-t/
https://ardupilot.org/dev/docs/mavlink-basics.html
https://ardupilot.org/index.php/about
https://lsts.fe.up.pt/toolchain/dune
https://mavlink.io/en
https://ardupilot.org/mavproxy/index.html
https://blogg.hioa.no/oasys/
https://opencv.org/about/

[11] S1000 - user manual.
http://dl.djicdn.com/downloads/s1000/en/S1000_User_
Manual_v1.10_en.pdf, Accessed January, 2020.

[12] Tello - sdk 2.0 user guide.
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%
20SDK%202.0%20User%20Guide.pdf, Accessed January, 2020.

[13] Tello - specs.
https://www.ryzerobotics.com/tello/specs, Accessed January,
2020.

[14] Aruco library source.
https://sourceforge.net/projects/aruco/files/, Accessed June,
2020.

[15] Gopro hero4 - docs.
https://gopro.com/en/us/update/hero4, Accessed June, 2020.

[16] Imc protocl docs.
https://www.lsts.pt/docs/imc/master/, Accessed June, 2020.

[17] Open solo 4 - wiki.
https://github.com/OpenSolo/OpenSolo/wiki, Accessed June, 2020.

[18] Pixhawk 4 - docs.
https://docs.px4.io/v1.9.0/en/flight_controller/
pixhawk4.html, Accessed June, 2020.

[19] 3dr - about.
https://www.3dr.com/company/about-3dr/, Accessed March, 2020.

[20] Ffmpeg - software.
https://ffmpeg.org/about.html, Accessed March, 2020.

[21] Aleksander Asp and Marius Eskedal. Ocean surface pickup with multirotor drone.
2020.

[22] Paulo Dias. Dune - home.
https://github.com/LSTS/dune/wiki, Accessed February, 2020.

[23] Yi Feng, Cong Zhang, Stanley Baek, Samir Rawashdeh, and Alireza Mohammadi.
Autonomous landing of a uav on a moving platform using model predictive control.
MDPI, 2018.

[24] Douglas Fields. Galilean relativity. University of New Mexico, 2015.

[25] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
Wiley, 2011.

58

http://dl.djicdn.com/downloads/s1000/en/S1000_User_Manual_v1.10_en.pdf
http://dl.djicdn.com/downloads/s1000/en/S1000_User_Manual_v1.10_en.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://www.ryzerobotics.com/tello/specs
https://sourceforge.net/projects/aruco/files/
https://gopro.com/en/us/update/hero4
https://www.lsts.pt/docs/imc/master/
https://github.com/OpenSolo/OpenSolo/wiki
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://www.3dr.com/company/about-3dr/
https://ffmpeg.org/about.html
https://github.com/LSTS/dune/wiki

[26] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas, and Rafael
Medina-Carnicer. Generation of fiducial marker dictionaries using mixed integer
linear programming. Pattern Recognition, 51, 10 2015.

[27] Jens Ludvik Grytnes Joberg. Multirotor pickup of object in the sea. 2019.

[28] Kevin Ling, Derek Chow, Arun Das, , and Steven L. Waslander. Autonomous mar-
itime landings for low-cost vtol aerial vehicles. In 2014 Canadian Conference on
Computer and Robot Vision, 2014.

[29] Riccardo Polvara, Sanjay Sharma, Jian Wan, Andrew Manning, and Robert Sutton.
Vision-based autonomous landing of a quadrotor on the perturbed deck of an un-
manned surface vehicle. MDPI, 2018.

[30] Timothy W. McLain Randal W. Beard. Small Unmanned Aircraft, Theory and Prac-
tice. Princeton University Press, 2012.

[31] Francisco Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer.
Speeded up detection of squared fiducial markers. Image and Vision Computing,
76, 06 2018.

[32] Marwan Shaker, Mark N.R. Smith, Shigang Yue, and Tom Duckett. Vision-based
landing of a simulated unmanned aerial vehicle with fast reinforcement learning. In
2010 International Conference on Emerging Security Technologies, 2010.

59

60

Appendices

61

A Configuration Files

flightgear.ini
1 # Main ardupilot file
2 [Require uav/arducopter.ini]
3

4 # Disable original supervisor to avoid interference =============
5 [Supervisors.Vehicle]
6 Enabled = Never
7 [Plan.Engine]
8 Enabled = Never
9 [Maneuver.Multiplexer]

10 Enabled = Never
11 [Plan.DB]
12 Enabled = Never
13 [Plan.Generator]
14 Enabled = Never
15 [Maneuver.CommsRelay]
16 Enabled = Never
17 [Maneuver.FollowReference.UAV]
18 Enabled = Never
19 [Simulators.GPSRTK]
20 Enabled = Never
21

22

23 # Marius Eskedal Specific
24 # ===
25

26 [Supervisors.ssp]
27 Enabled = Always
28 Entity Label = State Machine
29 Hover Altitude = 0 ; 0 => land on marker
30 Landing Mode Altitude = 0.4
31 Debug Level = Debug
32

33 [General]
34 Vehicle = ntnu-hexa-003
35 Time Of Arrival Factor = 3
36

37 [Control.UAV.Ardupilot/AP-SIL]
38 Enabled = AP-SIL
39 ; Ardupilot Tracker = False
40 Ardupilot Tracker = False
41 Debug Level = Debug
42 Convert MSL to WGS84 height = True
43 TCP - Address = 127.0.0.1
44 TCP - Port = 5762
45

46 [Sensors.Camera]
47 Enabled = Always

63

48 Entity Label = Camera Tracking
49 Camera Source = http://localhost:8080/screenshot ;

<- Flight Gear Src↪→

50 Flight Gear = True ; This recaptures the feed on
every loop↪→

51 Window Output Scale = 0.6
52 ; Force Input Size = 1280 720
53 Filter HSV low = 0, 100, 100
54 Filter HSV high = 180, 255, 255
55 ArUco Correction Rate = 0.2
56 ArUco Marker Size = 0.08
57 Save Video = True
58 Camera Matrix = 1.8842924457197389e+03 0 640,
59 0 1.8128540206355172e+03 360,
60 0 0 1
61 Distortion Coefficients = 0 0 0 0 0
62 Debug Level = Debug
63 Execution Frequency = 25
64

65 [Supervisors.Logger]
66 Enabled = Always
67 Entity Label = Data Logger
68 Log CBT = True
69 Log CT = True
70 Log LP = True
71 Log LV = True
72 Log SM = True
73 Log DV = True
74 Log DC = True
75 Log AT = True
76 Debug Level = Debug
77

78 [Control.UAV.Ardupilot/Hardware]
79 Enabled = Never
80 Ardupilot Tracker = False
81 Debug Level = Debug
82 #TCP - Address = 127.0.0.1
83 #TCP - Port = 5762
84

85 [Control.Path.ConstantBearing]
86 Enabled = Always
87 Execution Frequency = 10
88 Entity Label = Constant Bearing
89

90 [Navigation.UAV.Navigation]
91 Use RTK If Available = False
92

93 [Simulators.Simple]
94 Initial Position = 10,5,0
95

96 [Transports.Ardupilot/AP-SIL]
97 Enabled = AP-SIL
98 Entity Label = Sitl Layer
99 SITL - Port Out = 5763

100 Debug level = Spew

64

3DR.ini
1 # Main ardupilot file
2 [Require uav/arducopter.ini]
3

4 # Disable original supervisor to avoid interference =============
5 [Supervisors.Vehicle]
6 Enabled = Never
7 [Plan.Engine]
8 Enabled = Never
9 [Maneuver.Multiplexer]

10 Enabled = Never
11 [Plan.DB]
12 Enabled = Never
13 [Plan.Generator]
14 Enabled = Never
15 [Maneuver.CommsRelay]
16 Enabled = Never
17 [Maneuver.FollowReference.UAV]
18 Enabled = Never
19 [Simulators.GPSRTK]
20 Enabled = Never
21

22

23 # Marius Eskedal Specific
24 # ===
25

26 [Supervisors.ssp]
27 Enabled = Always
28 Entity Label = State Machine
29 Hover Altitude = 0 ; 0 => land on marker
30 Landing Mode Altitude = 0.4
31 Debug Level = Debug
32

33 [General]
34 Vehicle = ntnu-hexa-003
35 Time Of Arrival Factor = 3
36

37 [Control.UAV.Ardupilot/AP-SIL]
38 Enabled = AP-SIL
39 ; Ardupilot Tracker = False
40 Ardupilot Tracker = False
41 Debug Level = Debug
42 Convert MSL to WGS84 height = True
43 TCP - Address = 127.0.0.1
44 TCP - Port = 5762
45

46 [Sensors.Camera]
47 Enabled = Always
48 Entity Label = Camera Tracking
49 Camera Source = http://127.0.0.1:8080
50 Flight Gear = False ; This recaptures the feed on

every loop, Assumed to only be needed for FG↪→

51 Window Output Scale = 0.6
52 Filter HSV low = 0, 90, 100
53 Filter HSV high = 180, 255, 255
54 ArUco Correction Rate = 0.2
55 ArUco Marker Size = 0.08

65

56 Save Video = True
57 Camera Matrix = 762.2507610259398 0

651.586731790949,↪→

58 0 767.0199707973958
387.8374003362774,↪→

59 0 0 1
60 Distortion Coefficients = -0.3304015894835765

0.2005034994112137 -0.007653633455265741 0.003153903391754909
-0.095984363467503250

↪→

↪→

61 Debug Level = Debug
62 Execution Frequency = 25
63

64 [Supervisors.Logger]
65 Enabled = Always
66 Entity Label = Data Logger
67 Log CBT = True
68 Log CT = True
69 Log LP = True
70 Log LV = True
71 Log SM = True
72 Log DV = True
73 Log DC = True
74 Log AT = True
75 Debug Level = Debug
76

77 [Control.UAV.Ardupilot/Hardware]
78 Enabled = Hardware
79 Entity Label = Autopilot
80 UDP - Address = 127.0.0.1
81 UDP - Port = 14550
82 Use External Nav Data = False
83 Debug Level = Debug
84 Ardupilot Tracker = False
85

86 [Control.Path.ConstantBearing]
87 Enabled = Always
88 Execution Frequency = 10
89 Entity Label = Constant Bearing
90

91 [Navigation.UAV.Navigation]
92 Use RTK If Available = False
93

94 [Simulators.Simple]
95 Initial Position = 10,5,0
96

97 [Transports.Ardupilot/AP-SIL]
98 Enabled = AP-SIL
99 Entity Label = Sitl Layer

100 SITL - Port Out = 5763
101 Debug level = Spew

66

B Flow Diagrams

Figure 1: Camera Task Main Loop

67

Figure 2: Constant Bearing Task

68

Figure 3: SeaSurfacePickup Supervisor Task

69

C 3DR Software Setup

Figure 4: 3DR Solo Software Setup

70

D Field Test Figures

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

ti
m

e
 [
s
]

-1
0
0

-5
00

5
0

1
0
0

1
5
0

2
0
0

distance [cm]

A
r
U

c
o

 P
o

s
it

io
n

x
c a

y
c a

z
c a

Figure 5: 3DR ArUco Position Flight 1

71

0
5

0
1
0

0
1

5
0

2
0
0

2
5

0
3

0
0

ti
m

e
 [

s
]

-2
0

0

-1
5

0

-1
0

0

-5
00

5
0

1
0

0

1
5

0

2
0

0

distance [cm]

C
o

n
s

ta
n

t
B

e
a

ri
n

g
 T

a
rg

e
t

P
o

s
it

io
n

x
b a

y
b a

z
b a

Figure 6: 3DR Constant Bearing Target Position Flight 1

72

6
0

7
0

8
0

9
0

1
0
0

1
1

0
1

2
0

1
3
0

1
4

0
1

5
0

1
6

0

ti
m

e
 [

s
]

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

distance [cm]

A
r
U

c
o

 P
o

s
it

io
n

x
c a

y
c a

z
c a

Figure 7: 3DR ArUco Position Flight 3

73

0
2

0
4

0
6

0
8

0
1

0
0

1
2
0

1
4
0

1
6

0

ti
m

e
 [

s
]

-1
5

0

-1
0

0

-5
00

5
0

1
0

0

1
5

0

2
0

0

distance [cm]

C
o

n
s

ta
n

t
B

e
a

ri
n

g
 T

a
rg

e
t

P
o

s
it

io
n

x
b a

y
b a

z
b a

Figure 8: 3DR Constant Bearing Target Position Flight 3

74

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Problem Overview
	Initial MUG Localization
	High Altitude Approach
	Low Altitude Approach
	Pickup and return

	Outline

	Literature Review
	Basic Theory
	Reference frames and Transformations
	Reference frames
	Rotations and Transformations

	Computer Vision
	Camera Model
	Calibration
	Pose Estimation
	Object Detection
	Segmentation

	Modeling and Control
	Model Dynamics
	Guidance Systems

	Kalman filter

	System Overview
	Software
	DUNE - Unified Navigation Environment
	IMC protocol
	MAVLink Protocol
	The DUNE Task
	OpenCV
	ArduPilot
	FlightGear

	Hardware
	DJI S1000 multirotor
	3DR solo
	Ryze Tello
	ArUco Markers
	MUG
	BeagleBone Black
	Pixhawk 4
	oCam-1CGN-U-T
	GoPro Hero4
	Electropermanent magnet

	System State Machine
	Initialization
	Manual
	High Altitude Approach
	Low Latitude Approach
	Landing

	Implementation
	Mutual Modules
	Filtering and Segmentation
	ArUco Detection
	Rectangle Marker Detection
	Transformations
	Camera Calibration
	ArUco Detection Tuner

	Tello Modules
	Control
	Video Decoding - h.264 decoder
	State Machine
	Transformations
	Video Logs

	DUNE Modules
	IMC messages
	Tasks
	Transformations
	Vendor Libraries in DUNE

	Experiments and Results
	Small Scale Implementation - Tello
	Description
	Setup
	Calibration
	Results
	Discussion

	DUNE Implementation - Simulation
	Description
	Setup
	Results
	Discussion

	DUNE Implementation - 3DR
	Description
	Setup
	Results
	Discussion

	Discussion and Conclusion
	Further Work

	Bibliography
	Appendices
	Configuration Files
	Flow Diagrams
	3DR Software Setup
	Field Test Figures

