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Abstract

Many embedde d systemsoperate under severe power
and energy constraints. V oltageclock scaling is one
mechanism by which energy consumption may be re-
duced: 1t 1s base d on the fact that pwer consumption
15 a quadratic function of the voltage, while the speed
15 a linear function. In this pap er, we show how volt-
age scaling can be sche dule do reduc eenergy usage
while still meeting real-time deadlines.

1. Introduction

Many applications impose sev ere pow erand/or energy
constraints on embedded systems. Examples include
battery-pow ered devices and spacecraft relying on solar
or nuclear pow er.

V oltagecon trol isa pow erfulmechanism for reduc-
ing the energy consumption: the pow er consumption de-
clines as the square othe v oltage, while circuit delays
increase linearly . Since the clock frequency is propor-
tional to the inverse of the circuit dela y,w ehave an
obvious tradeoff betw eenthe power consumed and the
speed of the circuit.

The idea of exploiting this tradeoff has attracted in-
creasing atten tionsince the first paper was published
in 1994 [6]. In [1], a circuit may choose from among
multiple voltage levels to reduce pow er consumption
while satisfying latency constraints. In [8], the Dhry-
stone 1.1 benchmarks were run on an ARM7D processor
at two voltage-frequency combinations: (5.0V, 33 MHz)
and (3.3V, 20 MHz) yielding 185 MIPS/watt and 579
MIPS/watt, respectively. Y aoet al. deriv ed a wltage-
control heuristic to reduce energy consumption, assum-
ing that the pow er usage is a cow ex function of the clok
rate [7]. A benchmark suite and simulation environment
for voltage scaling are presented in [5].

In this paper, w efocus on hard real-time systems,
where meeting critical task deadlines is of paramount
importance [4]. Suc h systems are to be found in, for ex-
ample, fly-by-wire aircraft and spacecraft. We show how
to schedule voltage settings so that energy consumption
is reduced, while still guaranteeing that all task deadlines
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are met. Our algorithms consist of an offiine phase, in
which voltage settings are picked to reduce energy con-
sumption assuming that tasks run to their worst-case ex-
ecution times (WCET). How ever, mag tasks finish well
before their WCET, and we have an online phase which
adjusts the voltage settings on-the-fly to reclaim any re-
sources released by suchtasks. Our numerical results
indicate that substantial energy savings are attained.

The paper is organized as follows. In Section 2, w e
outline our system model. This is follow edin Section
3 by a scheduling algorithm which works for the case
where the tasks have a common period. In Section 4, ar-
bitrary task periods are allowed, and a somewhat more
complex algorithm is used. We also show how this algo-
rithm handles task sets whose phasings are not known
until run time. The paper concludes with a brief discus-
sion in Section 5.

2. System Model

Most real-time systems used in critical embedded appli-
cations use periodic workloads. That is, each task, Tj,
has a period, Py, and an iteration of Tj is released each P;
time units. The deadline of a task is equal to the period.
That is, a task iteration must be done by the time the
next iteration of that task is released. The worst-case
execution time of each task is assumed to be known.

There is a huge literature on the problem of alloca-
tion and scheduling of tasks in real-time systems; for
a surv ey see [4]. The typical approach is to carry out
an allocation of tasks to processors and then to run a
uniprocessor scheduling algorithm on each of the pro-
cessors to decide when each task will execute.

In this paper, w efocus on the problem of unipro-
cessor scheduling. The task-sc hedulingalgorithms are
Cyclic and Earliest Deadline First (EDF). Under a cyclic
schedule, a subset of tasks will be selected for execu-
tion in a minor frame while a set of minor frames iterate
periodically in a major frame [2]. As the term implies,
EDF pic ks the task to run whose deadline is the earliest
among all the ready tasks. Ties are broken arbitrarily.
The EDF algorithm is preemptive, and it is assumed that



preemption costs are negligible compared to the task run
times. It can be sho wnthat under such assumptions,
and for task sets whose deadlines equal their respective
periods, EDF is an optimal uniprocessor scheduling al-
gorithm. That is, if EDF cannot feasibly schedule some
task set, no other algorithm can, either. A periodic task
set with the deadline of each task equal to its period is
EDF-schedulable iff the task set utilization does not ex-
ceed 1; this is a ligh tw eigh schedulability test for the
EDF algorithm. Note that, for a cyclic schedule, it is fea-
sible if the task set utilization during every minor frame
does not exceed 1.
Our other assumptions are as follows:

A1l V oltage swithing consumes negligible overhead.

A2 There is a time-of-day clock available to the system,
with sufficient precision to time-stamp the comple-
tion of tasks and other significant events.

A3 T asks are independent: no task depends on the out-
put of any other task.

A4 The worst-case execution time of each task T;, ws,
is known. The actual execution time is not known,
ho wever, and may vary from one iteration to the
next:
Gi(-).

A5 The overhead ofthe sc heduling algorithm is negli-
gible when compared to the execution time of the
application workload.

it is a random variable with distribution

We now present tw o algorithms. The first deals with
the tasks scheduled in a minor cycle under a cyclic algo-
rithm. The second algorithm focuses in EDF algorithms.

3. Algorithm 1: Cyclic Scheduling

F or eac h minor frame, all skeduled tasks are released at
the beginning of the frame and must finish by the end of
that frame. We assume that the tasks have a predefined
order of execution.

3.1 Algorithm Description

The algorithm consists of tw o phases. In the offline (or
pre-processing) phase, so-called because it is executed
before the system is actually used, we simulate the task
execution, using the w orst-caseexecution times. The
purpose of the offline phase is to come up with a la-
belling of each task as either a high-voltage (hv) or a
low-voltage (1v) task. A task labelled hv (1v) will have
all of its iterations executed at high voltage (low volt-
age). The offline phase finds, by a standard search al-
gorithm, the labellings that minimize the total energy
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used over a task period, subject to the need to meet all
deadlines. We record, for these labellings (i.e., voltage
settings), the time at which each task executes. This
information, together with the lv and hv labellings, al-
low us at any time to compute the total unfinished work
remaining in the system at any time, t. Denote this
unfinished w orkby offline_unf(t). Similarly, w ecan
obtain the voltage setting at time t: denote this by
offline_setting(t).

Let us now consider the online phase of the algo-
rithm, i.e., the scheduling algorithm that is used dur-
ing actual execution. The system keeps track of the
w orst-case unfinished wrk remaining in the system (i.e.,
total unfinished w ork assuming each unfinished task
takes its w orst-caseexecution time). Denote this by
online_unf(t).

The online scheduling algorithm is as follows.

e The task to be executed is chosen based on the

pre-defined order.

e At any time t, the processor is set at low voltage,

unless each of the following conditions is satisfied:

— online_unf(t) = offline_unf(t).

— The voltage setting of the processor in the of-
fline phase at time t is hzgh. (This does not
have to be stored separately: an examination
of the slope of the offline_unf(t) line at t
pro vides this information).

Note that the algorithm does not need to keep track
of whether the online_unf(t) < offline_unf(t) con-
dition is satisfied for every clock cycle (that w ouldbe
impossible). Instead, when a processor takes up a task,
it checks this condition. If the condition is true, and
the low-voltage setting is used, the system computes the
time T at which online_unf(t) = offline_unf(t). This
can be done easily, since w eknow the rate of execu-
tion at high and low voltages, as also the rate at which
offline_unf(t) declines with t. If the task is still execut-
ing at 7, and the voltage setting at that instant in the
offline phase is high, the processor is switc hedat that
epoch, to high voltage.

It is not difficult to show that the scheduling algo-
rithm does not miss any deadlines if the original task set
is feasible: the proof of the following statements is left
to the reader.

Lemma 1 online_unf(t) < offline_unf(t), for all t.

Theorem 1 No deadlines are missed by the online
algorithm.



3.1.1 Example

We illustrate this algorithm by w alkingthrough a s-
ingle simulation. The task set consists of three tasks,
To, T1, T, all with period 10, and with worst-case high-
voltage execution times 1.933, 3.678, and 1.888, respec-
tively. If all tasks are run at high voltage, the proces-
sor utilization would be 0.75. Let the actual task high-
voltage execution times be uniformly distributed over
the respective intervals: [WCET/2, WCET], and assume
that the system works 50% slow er at lav voltage.

The offline algorithm determines that the best offline
voltage assignmernt is low for tasks Ty and Ty, and high
for T;. If tasks take their worst-case execution times, the
processor utilization is 0.941. The reader should note
how close this is to 1, which assures us that this simple
algorithm would be close to optimal if all tasks consume
their worst-case execution times.

By simulating this algorithm, it is easy to obtain
offline_unf(t) (see Figure 1). offline_unf(t) consists
of a set of straigh t-linesegments: by storing the end-
points of these segments, the value of the function at
any t can quickly be computed. The offline part of the
algorithm is now over.

Consider now the operation of the online part. Sup-
pose, in an execution, the actual high-voltage execu-
tion times of Ty, Ty, T2 were 1.53,2.57,1.87, respectively.
The corresponding low-voltage times are 2.30, 3.86, 2.80,
respectively. Since the processor is not an oracle, it
cannot know these execution times un tilafter the re-
spective tasks have completed execution. (This means
that online_unf(t) has potential downw ardjumps at
the epochs of task completion). T askT, starts execut-
ing, at low voltage, and completes at time 2.30. At
this time, the algorithm knows that online_unf(t) <
offline_unf(t) for t = 2.30.
execute Ty at low voltage up to time T, at which
offline_unf(t) = offline_unf(t). It is easy to see that
T=4.10. A t that instan, the system switches from low
to high voltage, and completes T; at time 5.47. At this
time, T, can be run at low voltage to its own comple-
tion, at time 8.27. The execution trajectory is shown in
Figure 1.

As a result, it can

3.2 Perfo rmance Model

In this section, we derive models to compute the energy

savings for our algorithm. First, we present a simple flu-

id approximation that provides us with a low er bound
on the energy consumed. Then, we preen t a more ex-

act analysis for a system consisting of a finite number of
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tasks.

We start by defining some notation. Note that al-
1 w orkloadsare defined by the time takento execute
them at high voltage.

o (t) V oltage setting at timet, specified
by the offline phase, for task set A.
TX9™sY(A) T otal execution time for task setA,
under the schedule developed by the
offline algorithm, if all tasks run
to their worst-case execution times.
Tactual(A) T otal execution time for task setA,
under the online algorithm.
Wworst(A) Total workload due to task set A

if all tasks run to their
w orst-case times.
weetuwal(A) Actual total workload due to
task set A.
Egciual(A) EWGTST(A) Actual and worst-case
energy consumed, respectively, if
the tasks in set A run to the settings
prescribed by the offline algorithm.
Eactual(A) Eworst(A) Actual and worst-case

energy consumed by tasks in set A.

Uy °™st(A) w orst-case processor utilization if all
tasks in task set A are run at high
voltage.

P Common period of all the tasks.

A Power consumption at low voltage
Power consumption at high voltage

(b Clock rate at high voltage

Clock rate at low voltage

Where the task set is ob vious fromthe context, no
argument is provided to functions. For example, if w e
are talking about just one task set, U}{°"** would be the
w orst-case processor utilization for that task set.

Throughout, w eassume that A/¢ < 1; otherwise,
there would be no point in running anything at low volt-
age!

3.2.1 Fluid Approximation
In this model, we assume that the workload consists of
tasks whose execution times are independent and iden-
tically distributed, with w orst-caseexecution time (at
high voltage), p. The number of tasks, Nniqsks — 0
and p — 0 in such a way that the total worst-case work-
load, niqsksit = W, a constant. U{‘l’or“ = W/P, where
UY°Tst is the worst-case processor utilization if all tasks
are run at high voltage. Let W e¢t%“al be the actual total
workload.

If all tasks run to their w orst-caseexecution times



and we use the schedule and voltage settings generated
by the offline phase of the algorithm, the total busy time
for the processor over the period is given b y

T2t = min{W™°T b, P},

Since we have an infinite mimber of tasks, with proba-
bility 1, the online algorithm will consume

actual __ : actual worst
TS = min{W b, T .
We now have tw o cases.

Case 1: Wactualy < Tworst: [n this case, with proba-
bility 1, the online algorithm will keep the entire w ork-
load at low voltage, and so the energy consumed will be
E =100Ad% of that at high voltage.

Case 2: Woactualp > TWe rst3ome of the workload will
have to be run at high wltage. Let t, and t; be the time
over which the processor is run at high and low volt-
age, respectively. Clearly, tn + t¢ = TG "'= P when
Wactuald) > T;vf?cht.

The total workload is Wect*e! seconds at high volt-

age. Since the processor runs ¢ times slower at low
voltage, we must have
Wactual — t2/¢+th

St = L(P —weaetualy since ty, +ty =P

¢ —1

The energy consumed, as a percentage of the all-high-
voltage setting, is therefore given b y

Ate + th
Wactu alx 100

AD —1 _ actual
_ e -1P+ (0 -AW < 100

¢ —1

This analysis provides us with a lower bound to the en-
ergy consumed under this algorithm for a total actual
w orkloadof We¢ @l We now pro vethat this is the
case.

& =

Lemma 2 Let A and B be two task sets such
that Wworst(A) — Wworst(B) and Wactual(A) —
weetwalBY A has a finite number of tasks; B follows
the infinite-tasko del. Then,

T;\?f’rSt(A) S T;‘?f)rSt(B).

Proof: We proceed by contradiction. Suppose the lem-
ma is false, and there do exist task sets A and B which
constitute a counter-example.

0-7695-0713-1/00 $10.00 ® 2000 IEEE

The offline scheduling algorithm picks the voltage
settings per task to minimize the energy consumed, un-
der the constraint that the entire task has to be exe-
cuted at the prescribed voltage setting (e.g., one cannot
execute half a task at high and the other half at low
settings).

If THOSYA) > TWsYB), then EVSSHA) <
Egvf%rst(B) (since Wworst(A) — wweor SEB))

Now, suppose we run task set B using setting o (t)
at time t. We can do this because the tasks in B are in-
finitely short, and so the voltage setting can be switched
at any time by the offline algorithm.

This will result in task set B taking exactly the same
w orst-case execution time as task setA. In such a case,
B will use less energy than it did under the og(t) offline
voltage setting. This contradicts the fact that the offline
algorithm picks v oltage settings to minimize the energy
consumed. QED

Theorem 2 Suppose task sets A and B are as defined
in Lemma 2. Then, ESCtual(A) > pactual(B),

Proof:  From the algorithm, TactuafA)
min{W U A)p, TIEHA)} and  TERHel(B)
min{wactual(B)(b‘ T(v’\])(cf)rst(A)}‘ Since Weac¢ tuaI(A)
wactual(B) and TMOTsHA) < TX9"sYB) (from Lemma

3), Eactual(A) > Eactuel(B). QED

A

3.2.2. Relaxing the Infinite-Task Assumption
Relaxing the infinite-task assumption complicates the
analysis. We would then ha vea model with a finite
numnber of tasks, each with a certain execution time dis-
tribution. One can construct a model which can then be
solv ed n umerically

The most practical approach is to construct, given
the worst-case execution times, the offline schedule. This
yields us a plot of the unfinished work overtime that
is used as a template by the online algorithm. Then,
one conditions on the actual execution times of the on-
line tasks: given theséimes,
carried out to determine the voltage settings over time

a numerical evaluation is

for the online phase, and thus compute the energy con-
sumed. That is, if F; is the actual execution time of
task Ti, w ewill obtain E(F1,- -, Fn,,...), the energy
consumed under these conditions.

Then, we uncondition on the actual execution times,
obtaining the overall energy consumed as:

o} Q“tusks
[ )G ()
F1=0 F“tusks:O

~+-dGa(F 1)



This integral can be evaluated either through numerical
means or simulation.

It only remains for us to show how to derive
E(F1v"' ’Fnlusks)'

We will need some further notation for this.

Y (i) slack time available at the end of the task T;
execution, i =1, ,Nqsks- That is,
if task T; ends at time T;, the slack is the
time remaining to when T; completes
in the offline schedule,
i.e., Yi :Q] +"'+Q1—T1’_.
For convenience, define Yy = 0.

P ow er consumption at w voltage

P ow er consumption at highaltage

D 1 if offline voltage setting is low for T;
' ¢ otherwise

”l.ow
Mhigh

Ti  Pinishing time of T; in the online schedule,
i=1,--+ Ntasks. For comenience,
define 9 = 0.

¢i  Energy consumed by T; in the online schedule.

We have tw o cases.

Case 1: Offline setting of task T; is low: In suc h a case,
task T; will also be executed at low voltage in the online
schedule. Then we can immediately write:

ei = Fidllow
o= Tia+Fid
i
Yi = Z Qiq)i — T
i

Case 2: Offline setting of task T; is high: The total
time availableto execute T; is Qi + Yi_7. Since the
task may inwlve up to Q; units of high-voltage work,
w eha veto compute ho wmuch of the task can safely
be done at low-voltage and still leave enough time for it
to be completed, even if it runs to its worst-case time.
Let &y be the maximum time that it can be run at low
voltage without being in danger of missing its deadline.
Now, define &; to satisfy the following equations:

Eo/ P+ &
Eo+& =

Q4
Qi +Vi

From these equations, the reader can easily recognise
that max{£, 0} is the time available for high-wltage ex-
ecution, should that prove necessary.
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Solving these equations yields:

& = Yiqd)di]
B Vi
EJ - Ql (I)_]

We will run T; for up to &y at low voltage: if it still has-
n't finished, we will run it to completion at high voltage.

We have two subcases:
Case 2a. Fi < &p/d: In this case, the entire execution

of T; can be done at low voltage. We can therefore write:

o= Tia+Fid
e = FidlMow
Vi = O+ +0Qi—m

Case 2b. Fi > &p/d: In suc h a case, w first execute
T; for &y seconds at low voltage, and then switch to high
voltage for the rest of the execution. We therefore have:

T o= T1+&+Fi—&/

= Tif1+5o¢d; +Fi
€4 EolTiow + (Fi — &0/ P)Thigh
Ti = U +--+Qi—7

The total energy consumed is then given b y

E(F1"" ’Fﬂtusks):€1 T Enasks

3.3 Simulation Results

We present here results of a simulation written from first
principles. In our experiments, we assumed that at high
voltage, the pow er consumption vas 0.165 watts and at
low voltage, it was 0.033 watts. The clock rate at high
voltage is 50% higher than at low voltage. All execution
times are specified in terms of the high-voltage setting.
We assumed that the actual execution time of task T;
varies uniformly in the interval [aw;, w;i], where a is a
constant and w; is the worst-case execution time of T;.
The common period was set to 10.

Given the processor utilization at high-voltage (i.e.,
the utilization if all the workload was executed at high
voltage), the task execution times were generated ran-
domly to meet this requirement.

Figure 2 shows the energy consumption for an 8-task
system for various processor utilizations at high voltage,
Uy,. By “percentage online consumption” we mean the
energy consumed by the online algorithm as a percent-
age of the consumption of the processor if everything
were run at high voltage.



T able 1 shavs some experimental results on the aver-
age processor utilization, U, that would result from using
the voltage settings generated by theoffline algorithm,
if each task ran to its worst-case time. Except when all
tasks can be run at low voltage, U is extremely close to
1 even for small task sets. U is a measure of how close
the offline algorithm is to optimal: in the optimal case,
we would have the processor utilized 100% at worst-case
execution times.

Figure 3a is a plot of the energy consumption of the
online schedule as a percentage of that obtained by us-
ing just the settings of the offline phase of the algorithm.
It indicates the gains that are possible when the sched-
uler reclaims resources after a task has completed before
its w orst-case execution time wuld predict. When the
utilization of the task set is small, everything can be ex-
ecuted at low voltage, and there is nothing to be gained
from the online phase. As the utilization increases be-
yond this region, the savings of the online phase steadily
increase. Resource reclaiming is greatest when a = 0,
and decreases as a increases. Clearly, when a = 1, there
is no resource reclaiming possible and the online energy
consumption is the same as that using just the offline
settings.

We next consider the impact of the size of the task
set. As the number of tasks increases, tw o things hap-
pen. First, the offline algorithm has more flexibility in
making its pow ersettings, and consequently is able to
get the w orst-caseprocessor utilization with its power
settings closer to 1. We have alrady seen this in Table 1.
Also, the resource reclaiming opportunities increase with
the number of tasks. (T otake an extreme example, if
the entire task set consists of just one task, there can be
no reclaiming. If it consists of tw o tasks, the reclaimed
time from just one task can be used.) As a result, the
online energy consumption as a percentage of the corre-
sponding offline energy consumption decreases with the
numnber of tasks. This is shown in Figure 3(b).

4. Algorithm 2: EDF Scheduling

In this section, w ediscuss voltage-clodk scheduling for
the EDF algorithm. In addition to Assumptions Al to
A5, we have:

A6 T ask phasings are knavn in advance.

This extra assumption can be relaxed as we show at the
end of the section.

Algorithm 2 is very similar to Algorithm 1, except
in the data that are collected. It consists of offline and
online parts.
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The offline part consists of selecting the voltage set-
tings that will minimize the total energy used over
the LCM of the periods, while still maintaining EDF-
schedulability. Following this, the schedule, using the
EDF algorithm and the w orst-case execution times,
is generated, and the functions offline_unf(i,t) are
computed. offline_unf(i,t) denotes the unfinished
w ork under the offline schedule of task i at time t.
offline_unf(i,t) consists of straigh t-linesegments for
each task i, and so only the end-points of these seg-
ments must be stored. Also stored is offline_task(t),
which is the task which is executing at time t. When
these functions have been obtained up to the LCM of
the task periods, the offline phase ends.

The online part also uses the EDF scheduling algo-
rithm. At any time t, the voltage setting is at low unless
each of the following conditions is satisfied (i is the on-
line executing task):

e i = offline_task(t).

e The unfinished work of the executing task (based

on the worst-case execution times) at time t is e-
qual to that of offline_unf(i,t).

e offline_setting(i) = high.

If each of these conditions is true, the voltage setting is
high at time t.

4.1 Proof of Correctness

Denote the online executing task at time t by
online_task(t). Define iteri(t) = [t/Pi|, where P; is
the period of task T;. Define T , as the m’ iteration of
task Tj.

Lemma 3 If online_task(t)
then the online schedule
ed the iterofﬂinetask(t)(t)lth
offline_task(t).

£

has

offline_task(t),
already complet-
ezecution of task

Proof: Suppose this lemma is not true. We have,
from the definition of the model, that online_task(0) =
offline_task(0), so if the lemma is un true,there ex-
ists some t > O which the earliest time at which
online_task(t) # offline_task(t) but the online sched-
ule has not yet finished the iter,ffiine, ask(r)(t) th exe-
cution of task offline_task(t).

Let offline_task(t) = Tj’)n and online_task(t) =
T{ .- By definition of t, T/ ,, is not yet done in the online
schedule at time t. Since T/ | is being executed instead
by the online schedule at t, w emust havel{ > Tj’)n
(A > B means that A has higher priority than B).



By definition of t, V& < t, if online_task(§) #
offline_task(¢), then the online schedule has already
finished offline_task(§) by timeé.

Note that we cannot have online_task(x) =
offline_task(x) Vx < t. If this w ereto happen, then
the offline and online schedules w ouldboth be exact-
ly parallel until time t. In particular, task T{)m w ould
execute at precisely the same intervalsin both the of-
fline and online schedules prior to t. But, since T} is
done by the offline schedule before t, it follows from the
voltage-selection rule in Algorithm 2 that it would also
be done in the offline schedule before t, which con tra-
dicts the assumption that online_task(t) =T/ .

The assumption that the lemma is false therefore
requires that there must be some time y < t such
that online_task(y) # offline_task(y). But, from
the definition of t, w e must have for every z < t,
online_task(z) = T{,m whenever offline_task(z) =
T{ ,,: otherwise, by the definition of t, T{ ,, w ould hare
been completed before t in the online schedule. Let us
now consider tw o cases:

Case 1. The offline voltage setting of T; is low.

In this case, since the offline schedule finishes executing
Ti’,m by time t, so must the online schedule, since the
offline schedule assumes worst-case execution times. So,
Case 1 cannot happen.

Case 2. The offline voltage setting of T; is high.

During times when both the offline and online sched-
ules are executing Ti’,m, the online schedule will on-
ly use a low-wltage setting at some time u when
online_unf(i,u) < offline_unf(i,u). From this, and
the fact that T/
whenever it is executing in the offline schedule, it fol-
lows that T/, must have finished in the online schedule
before t.

We therefore have a cortradiction: no such t exists,
and so the proof is complete. QED

is executed in the online schedule

Lemma 4 Every iteration s completed in the online
schedule no later than when it i1s completed in the
offline schedule.

Proof: Suppose this is not true, i.e., that there exists
some iteration T/ = which completes in the offline sched-
ule before it has completed in the offline schedule.

Let t be the time at which T/, completes in the
offline schedule. By the preceding Lemma, T/ = will
execute in the online schedule whenever it does so in
the offline schedule (since otherwise it would be done in
the online schedule ahead of t). The result follows im-
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mediately from this and the voltage-setting rule of the
algorithm. QED

From Lemmas 3 and 4, we have the following theo-
rem:

Theorem 3 A Ul task dedlines are met by the online
algorithm.

4.2 Analysis

An analysis of Algorithm 2 can be done along the same
lines as for Algorithm 1. How ewer, since task periods
can be different, the number of special cases that have
to be considered is very large. Analysis is only useful
when it either produces a compact expression that offers
insight into performance, or when it allows for faster per-
formance evaluation than simulation. The analysis for
Algorithm 2 would be so complex that it w ouldlikely
satisfy neither requirement. Accordingly, w eha vere-
stricted ourselves to simulation for studying the perfor-
mance of Algorithm 2.

4.3 Numerical Results
The experimental setup for these runs has been briefly
described earlier. The only difference is that the task
periods are chosen randomly to be integers betw eenl
and 11. Figure 4 shows the energy consumption for an
8-task system for various processor utilizations at high
voltage, Uy.

Figure 5 mirrors Figure 3 of the previous section, and
has similar characteristics.

4.4 Relaxing Assumption A6
Let us no wrelax A6, and assume that task phasings
are not known in advance. As before, we can compute
the offline voltage settings, since thedepend only on
the need to keep worst-case execution times so that the
task set utilization does not exceed 1. How ewer, we can-
not precompute the offline schedule. Instead, the offline
schedule must be generated on-the-fly, as tasks arrive.
In other words, the system builds up the offline schedule
as tasks arrive, assuming that the offline voltage settings
are used and that each task runs to its worst-case time.
As the offline schedule is generated, the system can fol-
low Algorithm 2 to pick the appropriate voltage setting.
T ocombine the simulation of an offline on-the-fly
schedule and the voltage-clodk schedule, w ecan adopt
a slack-time queue (ST-QUEUE) to track the slack times
resulting from early task completions. Note that a task
can execute during the slack time of a finished task or
during the period assigned to it in the offline schedule.
In the normal EDF task queue (TK-QUEUE), w euse t-



wo variables to keep track of the computation times for
each task. The first one, ct;, specifies the computation
time that task T; has consumed during its scheduled pe-
riod of the offline schedule. This allows us to compute
a task’s slack time when it finishes.
able, csty, indicates how long a hv-mode task can stay
in lv-mode execution after it steals slack time. As in the
TK-QUEUE, the slac k times of the completed tasks are
ordered according to a task’s deadlines in the slack-time
queue.

The steps to perform voltage-clock scheduling are as
follows:

The second vari-

S1 When task T; arriv es, it is inserted irto TK-QUEUE.
The variables cst; and ct; are set to 0.

S2 When task T; completes, a slack time st; = w; —ct;
is inserted into ST-QUEUE if the difference is
greater than 0.

S3 When the processor is idle (i.e. TK-QUEUE is emp-
ty), the slack time at the head of ST-QUEUE de-
creases every unit of time. Once it reac hes zero,
the slac k time is deleted fromST-QUEUE.

S4 When a task T; is dispatched (under EDF), it can
consume slack time st; at the head of ST-QUEUE,
if task T; has a deadline greater than task T;. If
offline_setting(i) = high, we can switch the set-
ting to low for an additional period st; % (to be
accumulated in cst;).

S5 When a task T; cannot find any available slack time
for its execution, it is executed at the voltage-clock
mode offline_setting(i) if cst; = 0 or at lv-mode
if csty > 0. Also, the time used in its computation
is then accumulated in ct;.

It can be shown that, at step S5, 1 = offline_task(t)
when a task T; cannot find any available sladk time for its
execution. Thus, the slack time due to an early comple-
tion can be computed correctly by st; = w; —ct;i. Also,
if csty = 0 at time t and offline_setting(i) = high,the
unfinished work of the executing task T; (based on the
w orst-case execution times) at timet is equal to that of
offline_unf(i, t).

5. Conclusion
In this paper, w eha ve described simple algorithms for
voltage scaling in real-time systems. These algorithms
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exploit the fact that pow er consumption tends to drop
quadratically with voltage, while circuit delays (and thus
the clock period) increase only linearly. Our algorithms
have offline and online components.
ponent assumes that the tasks run to their worst-case
execution times, and computes the voltage settings to
minimize energy consumption. The online componen-
t starts with the offline voltage settings as a base, and
then reclaims any time resources that are released by
tasks which finish ahead of their predicted worst-case ex-
ecution times, thus making for a further round of energy
savings. Our results indicate that significant energy sav-
ings are made possible, while guaranteeing that all tasks
will contin ue to meet their deadlines.

The offline com-
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Uy No of Tasks

2 4 6 8
0.60 | 0.900 | 0.900 | 0.900 | 0.900
0.65 | 0.975 | 0.975 | 0.975 | 0.975
0.70 | 0.893 | 0.975 | 0.992 | 0.997
0.75 | 0.892 | 0.979 | 0.995 | 0.999
0.80 | 0.924 | 0.982 | 0.996 | 0.999
0.85 | 0.898 | 0.974 | 0.994 | 0.999
0.90 | 0.916 | 0.968 | 0.991 | 0.998
0.95 | 0.953 | 0.967 | 0.983 | 0.993

Note: All utilizations are for worst-case task run times.

T able 1. Average Processor Utilization with Offline Settings
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