IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001 773

Path Clustering in Software Timing Analysis

Fabian Wolf, Rolf ErnstMember, IEEEand Wei Ye

Abstract—\erification of program running time is essential
in system design with real-time constraints. Simulation with
incomplete test patterns or simple instruction counting are not
appropriate for complex architectures. Software running times
of embedded systems are process state and input data dependent.
Formal analysis of such dependencies leads to software running
time intervals rather than single values. These intervals depend
on program properties, execution paths, and states of processes,
as well as on the target architecture. An approach to analysis
of process behavior using running time intervals is presented. [t =~ ®irssms
improves our previous work by exploiting program segments with -1,
single paths and by taking the execution context into account. The f-':w-_f{
example of an asynchronous transfer mode (ATM) cell handler h , s ——
demonstrates significant improvements in analysis precision. Ex- =

perimental results show the superiority of the presented approach o)
over well-established approaches. Fig. 1. Context dependent flow of execution in a base station.

o
I a1

L B %

) Qo

Index Terms—Performance analysis, real-time systems, software) _ _)
timing estimation, system level design. processes implementing the wireless internet protocol (IP) stan-

dard on a pico-cellular base station [1]. The solid lines represent
the paths on which different data packets are routed through the
process network running on the base station. Important ques-
CCURATE software running time analysis is key to optitions the system architect can ask are the power consumption for
mized system design. In general, imprecise estimation ©énding a data packet or the time to set up a connection in the
software running time increases the design risk or leads to lsase station. This should take the system context into account
efficient designs. The necessity to consider running time intefince, for each packet type and destination, the processes react
vals for the design and verification of embedded digital systemgth a different control flow. Of course, simulation is always
becomes evident when looking at the limits of software simulgossible and statistical power and timing analysis are feasible,
tion. Profiling and simulation are current practice in industridgdut the first approach is not reliable and the second one is just a
design but since exhaustive simulation is impractical for moreugh approximation of the complex hardware activities when
complex applications, simulation results can only cover part ekecuting the software of a base station. We present an analysis
the system behavior. This leads to unknown coverage of woggiproach which works on the source code level. It provides re-
and best cases. Verification is a more complicated but attrédigble and narrow software execution cost intervals for context
tive alternative. It provides lower and upper bounds reflectinfependent process execution with a minimum of user interac-
data dependent control flow as well as data dependent instrtion. It allows to explore different target architectures in a very
tion execution. In the past, these bounds were very wide due thexible way.
lack of efficient control flow analysis and architecture modeling We explain a new approach to execution cost and path anal-
techniques. In recent years, there has been significant progngsis in Section Il while the architecture modeling techniques
in both areas such that formal software execution cost analyai® introduced in Section Ill. Experiments are presented in Sec-
has become practical. Power consumption analysis can use \@ 1V before we conclude in Section V.
similar techniques. Itis crucial for battery lifetime prediction of
hand-held devices. We will, therefore, use the general tstm Il. PROGRAM PATH ANALYSIS
ecution cosin the following text.

Execution cost intervals depend to a certain extend on tﬁ\e
input data and the state of a process (if it contains internal states)A system of communicating processes as shown in Fig. 1 is
Input data and state values can be combined to define a procgssumed. For simplicity, it is assumed that processes read data
execution context. In other words, execution cost intervals fthe beginning and write data in the end. The system property
a process are context dependent. Fig. 1 gives an example ¢ftarvals (SPI) model [2] is chosen as a system-level represen-
system of communicating processes. It shows a simplified setafion since it can consider process cost intervals.

I. INTRODUCTION

Process Representation

Manuscript received April 7, 2000; revised November 3, 2000. B. Program Segments
The authors are with the Institut fiir Datentechnik und Kommunikationsnetze, | path analysis [3] a program is typically divided into

Technische Universitédt Braunschweig, Braunschweig D-38106, Germ%‘yi .
(e-mail: {wolf; ernst; ye}@ida.ing.tu-bs.de). sic blocks (BBs)[4]. Any well structured program can be
Publisher Item Identifier S 1063-8210(01)08441-4. partitioned into disjoint BBs. Then, the program structure is

1063-8210/01$10.00 © 2001 IEEE

774 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

represented as a directed control flow graph with BBs as nod8$tuctural equations only encode the structure of a program, but
For each BB, a cost interval with respect to each propertypt the feasible paths. Feasible paths have to be constrained
e.g., running time, can be determined. A longest and shortbgtthe designer who provides so-called functional constraints
path analysis on the control flow graph is then used to identifyhich are given as equations or inequations for a set of execu-
global intervals. tion countsz; [3] such as the relative frequency of “then” and
This procedure does not yet provide sufficient accuracy. Ftglse” paths of an if statement. Together with the sum-of-basic-
acceptable analysis precision one must identify all feasible patilecks cost function, these equations and inequations form an
through a program. A feasible program path or trace is a pathdptimization problem. This problem is solved for the minimum
this flow graph corresponding to a possible sequence of BBaed for the maximum cost value using an integer linear program-
when the program is executed from the first to the last BB ofraing (ILP) solver. It provides a lower execution cost bound and

program. an upper execution cost bound.
Definition 1: A program segment (P33 a sequence of Theiling et al. [11] use this approach. They additionally
nodes in a control flow graph. apply abstract interpretation to the static prediction of cache

This definition implies a hierarchy of program segments. and pipeline behavior. Gustafsson and Ermedahl use abstract
Definition 2: Aprogram path segment (PASh program interpretation to reduce excessive designer interaction for loop
segment with at least one possible path. bounding [12]. A related approach is proposed by Hedlsl.
A false program path is a path which cannot be execut§].
under any input condition. False path identification is essential
for programs with loops since loops correspond to cycles in the .
graph, which can lead to an infinite number of potential pattis Execution Cost Model

and resulting infinite cost intervals. The sum-of-basic-blocks model used in previous work is

based on the execution count and the execution cost per
BB ¢;. The execution cost can be determined by adding up the
The approaches by Mok [S], Puschner and Koza [6], and Pa{fning time for each instruction in a BB, possibly with upper
and Shaw [7] require iteration bounds for all loops in the proghg jower bounds in case of data dependent running time,
gram, which the user must provide by loop annotation. Whiley ' for multiplication. This instruction cost addition (ICA)
mqklng formal analysis feaS|bIe,_Ioop bounding alone is ”OFFLprroach leads to wide intervals in case of super scalar or
ficient for accurate path analysis. In nested loops, conditiogielined architectures. Instruction execution overlap has been
often depend on each other. These dependencies can be rai§gidered in recent work [14] modeling pipelined execution
complex. As a second step in the approaches by Liand Malik {3hen adding up the instructions. It is still assumed that all
and Park and Shaw [7], the user is asked to annotate false pathecutions of one BB take the same time.
'éhe numcti)eGr qf Iiglsée paths cgn”be verydlar%el. The ahpplr)oach b3|5rec:ise modeling of individual BBs only solves part of the
ong and Gajski [8] can partially consider false paths beca blem since pipelining and superscalar execution extend over

the user can specify the branching probabilities. Instead of e borders such that the running time depends on the pro-
merating false paths or, conversely, feasible paths, a langu 98

f . ith | . is introduced m path through a sequence of BBs. Previous approaches
or user annotation W'.t regular expressions 1s introduce ust use very pessimistic intervals to be correct for all execu-
Park and Shaw [7]. Still, the number of required path anno ons of one BB because empty pipelines have to be assumed,
tions can be extremely large in practice, as demonstrated with

I les. Amai ; q he introducti n when loop bounds are automatically determined. In [15],
e:clgn SIT"?‘ exsmp es. majotr)stLe.p OQNI\TI.“(NaSt eintro uc“%(}erlap blocks have been inserted between any two adjacent
of implicit path enumeration by Li and Malik [3]. blocks. In this case, the sum-of-basic-blocks equation must be

f This _technithug is based %n thehstandard fegecytigln CESt mo L.nded by the block transition frequency and cost [15]. This
or static analysis approaches, the sum-oi-basic-blocks MOG < for short pipelines, but increases analysis complexity.

(see, €.g. [9)). 1t can be used for timing as weII_as for power.l_o obtain higher precision, the analysis should be extended
consumption analysis [10]. Let a program consist\6fBBs -
from BBs to longer program segments consisting of sequences

with z; execution count of BBb; andc; execution cost (timing . .
or power). Then, theum-of-basic-blocksodel defines for its lognlfss. Such an approach leaves us with the following two prob-

execution cost interval

C. Previous Work

N 1) the identification of suitable longer program segments;
C = Z c; X x;. 2) the extension of the cost model to program segments.
i We propose a coherent approach that covers both problem do-
In implicit path enumeration, the execution counf is mains for very different architectures such as the StrongARM,
constrained by linear equations or inequations. Structutae SPARC, or the 8051. We will show that it provides substan-
constraints are derived from the program structure based @) precision improvements over previous work and, at the same
the fact that the execution count of a BB equals the executififhe, reduces the number of functional constraints to be defined
count sum of all predecessors in the control flow. For each BBy the user.
the following is inserted: We did not discuss the influence of caches. In general, cache
Z dinflow = Tiph = Z Aot fion - analysis working on BBs such as [3] can be extended to longer
) 7 program segments. The advantage is a reduced number of nodes

WOLF et al: PATH CLUSTERING IN SOFTWARE TIMING ANALYSIS 775

Fig. 2. Flow graph with a control structure hierarchy. (@ (b)

Fig. 3. (a) Paths of bubble sort. (b) Separation ofitheonstruct.

to be considered which has a drastic effect on analysis time [16].
Detailed investigations are currently being done [17]. to exactly one control structure. Each of the control constructs
has an associated condition that decides which of the paths is
executed. Control structures require BB nodes as well because

Program properties can be exploited to simplify path anain execution leading to a BB and, therefore, a node may be nec-
ysis for the determination of the execution cost through BB sgssary for the evaluation of a condition, e.g.,< 14.” As in
quences. Large parts of typical embedded system programs hayestructured programs are assumed so the HCFG can model
a single program path only. An finite impulse response (FIRhe hierarchy of the program control segments.
filter is a simple example and a fast Fourier transform (FFT) is Definition 5: Aprogram control segment (PCB)a pro-
a more complex one. There is only one path executed for agyam segment with exactly one control structure.
input pattern, even though this path may include many loops,Control flow can only enter or leave the PCS at the current
conditional statements, and even function calls that are usedfi@rarchy level with its associated control structure so SFP and
program structuring and compacting. MFP segments must be disjoint. The shaded areas in Fig. 2 are

Definition 3: A program segment hasingle feasible path the PCS with the associated BB and lower level hierarchical

(SFP)when paths through the program segment do not depefddes of this example. Each control structure of the PCS as well
on input data. as its nodes are classified as being either SFP or MFP at this

A program segment with an SFP is an SFP segment. Previgiigge.
approaches give more than one execution path for SFP segmengg SFP Identification: A depth first search algorithm on the
because they do not distinguish between input data depend&s graph using symbolic simulation of BBs [9] can be used to
control flow and program structuring aids. In the best case, thg@gtermine input data dependencies of conditions. Every control
may be accurate but require much designer interaction for Ssucture, which does not contain an input data dependent con-
segments and still do not deliver the sequence-of-basic-blogk§on must be SFP. Leaf nodes are SFP by definition. If adjacent
such as [3]. In case of SFP, execution chooses the one corRcs on one level of hierarchy or child PCS are classified as SFP,
path and sequence for any input pattern without designer tey are joined to achieve longer sequences. If conditions con-
teraction. Most practical systems also contain non-SFP pakin input data, or symbolic execution is not successful due to

E. Basic Path Classification

These have multiple feasible paths (MFPs). the complexity of symbolic expansions, the flow graph nodes
Definition 4: A program segment hadFPswhen paths are classified as MFP. It only means that different methods for
through the program segment depend on input data. the determination of execution cost have to be applied leading to

A program segment with MFP is an MFP segment. Isolatianider cost intervals as explained in Section 1I-C. This algorithm
of SFP and MFP segments helps to exploit SFP by finding SEBsigns a classification to each hierarchical node. PCS with MFP
and MFP nodes in the control flow graph. Embedded MFP aggild nodes are classified as MFP because the multiple paths
cut out and analyzed separately using ILP solving [3]. SFP aiRo enter and leave this hierarchical node when their control
analyzed by simulating the running time or power consumptigtructure is independent of input data.
of the single path. 3) SFP Clustering: A conservative analysis assumes that the

o . program paths branch at tier and theif statements [3] such
F. SFP Identification and Path Clustering that all the corresponding program control segments have the

1) Hierarchical Flow Graph: For partitioning of SFP and MFP property. In Fig. 3(a), two possible paths for every itera-
MFP segments, the input program is mapped hiegarchical tion of the loop can be seen, one of which is being taken for every
control flow graph(HCFG) like the bubble sort example initeration. When the condition in thief statement is evaluated, it
Fig. 2. In this control flow graph, every control structure, sucban be recognized that valuesih are not known, meaning two
asif andfor is a hierarchical node. Its associated BBs or hiepotential paths for every loop iteration leading@ltee iterations
archical nodes on lower levels are dependent nodes, which rgfetential paths through the program. The first major step is to

776 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

4nn | w5 |16 | 4 e | w3 | 48 Byte Payload

- Context: VI =1

int mvecior [1E];
int VIT;)
OAM Mode Switch Code
o vanid maini)
e if (V=)
if {ovpe = 1M
i=VPlehle [VET];
ATM Switch e
Simulation [H_perf momitoring (; |
— L procoss_tiser_ce

Fig. 6. Path selecting property of the OAM process mode.

. (SEF]
feri imfly “ for Lm0

L£14; I [ETH

L¥+ | .

foc | j=i+1;
bt &
J++ § pot Point Coak
I‘-

Lol Melnt Coat

i-vereaic ve |

‘___- -ui:';r:n;l::l .
“ P

} S5FF Cort Siauiailon

Fig. 5. Single feasible path with embedded multiple feasible path.

Fig. 7. PCS in the HCFG of the ATM switch component.
split the program into segments, the construct and the rest.
The two paths througl#S, are now considered to be merged
into a single MFP segment. As a consequence, the pathsGof Context Dependent Control Flow
Fig. 3(a) are merged into a single path through the segment§he analysis quality can further be improved. In the intro-
PS; and PS5 in Fig. 3(b), which winds around the two fixedduction, we have argued that the designer is often interested in
and, hence, input data independent loops in Fig. 4. a context dependent process behavior. Here, context is defined

In other terms, PS; and PS; become an SFP seg-to be a subset of input data and/or a subset of possible process
ment (SFP—PCS) which includes the MFP segmétfi; states, often called process modes. In each context, only a subset
(MFP-PCS). The MFP segment is isolated in the graph anfipaths through a program segment can be executed. This po-
then analyzed as a separate graph. The remaining SFP segreanially means reduced cost bounds which could be exploited
is analyzed using one of the cost models discussed before. Ttreanalysis. Global process representation models [2], [19] can
isolated MFP segment is now analyzed in the same way. TRigpport process modes such that the distinguishable contexts are
continues until we finally reach SFPs, at least at the level khown for cost analysis. A simple example for context depen-
BBs which are SFP by definition. For each isolated PCS, tldent control flow that increases analysis precision in an ATM
execution cost is calculated. switch component is given.

In Fig. 5, only two subgraphs will remain, an MFP—PCS con- One function of the ATM switch is to identify some of the
sisting of the condition BB, the comparison and #lwap, and a cells in the data cell stream as so-called operation administration
single SFP segment consisting of the loops. The cut points camd maintenance cells (OAM), which control the ATM connec-
tain the conservative overheads for merging different entry atidn [20]. These cells do not carry user data so they are irrelevant
exit paths each. In [18], we give a more formal algorithm anfdr data transmission. Fig. 6 shows a code fragment to handle
show that the resulting set of PCSs can be used to computettiee OAM component of the switch. The control flow graph is
execution cost with the same ILP approach as for BBs. In oth&rown in Fig. 7. In this “OAM mode,” the shadedse pro-
words, we can apply the same implicit path enumeration tearam segment in Fig. 6 cannot be reached. It should not be in-
nique, but on much larger and fewer blocks, namely PPS, thelnded in further analysis of the OAM mode while in the “USER
in the case of individual BBs. mode” only theelse path is executed. For a given context, the

WOLF et al: PATH CLUSTERING IN SOFTWARE TIMING ANALYSIS 77

if node BB2 has a single path only. In other words, the cof8], [17]. This leads to a significantly smaller problem size since
texts “VCI = 3” corresponding to the OAM mode and “notthe number of PPS containing SFP and BBs is much smaller
(VCI = 3)"corresponding to the USER mode turn an MFP-PCtan the number of BBs as we can see in Section IV.
into a PCS with a single path.) _

Definition 6: A context dependent path (CDR)a path B- Program Segment Simulation
through a PCS with control structures which only depend on An alternative approach to execution cost analysis is to exe-
context dependent input data. cute the PPS either by simulation or on the target architecture.

For analysis of the given context, the CDP is treated like &ince the PPS execution path is fixed like in a BB, the execution
SFP-PCS. Where this approach is not applicable, the reducests are unique such that simulation with a single input data
path set of a given context can further be exploited via additiorsdt is sufficient to determine the execution costs. This approach
structural and functional constraints [3]. In both cases, contexin consider overlapping BB effects. A conservative overhead
dependent behavior can be analyzed using the same techniqsiegided to cover the worst case of all different entry paths into
as described before. CDP segments are only found in segmehésPPS, which can represent different states for register allo-
formerly defined as MFP. At the transitions between SFP aggtion, pipelines, and caches. Greater overheads are needed to
CDP segments, PPS containing both SFP—PCS and CDP-RG%er conservative PPS simulation startup for superscalar exe-
can be defined. cution or branch prediction.

In general, the different contexts can lead to different CDPs This overhead is also needed for single BBs so SFP improve
and, therefore, a different set of equations. So, the ILP analyasisalysis precision because the BBs are extended to PPS and
for upper and lower bound must be repeated for each conténtermediate overheads can be removed as the entry edge is
Currently values for contexts are read from annotation files thatown. As discussed before, target architecture simulation or
are obtained by using process modeling on the system level [@ecution can provide much higher precision since it correctly
[19]. models the architecture. In case of data dependent instruction

The path analysis approach presented up to this point is targeécution times, the result must be corrected for each execution
architecture independent as this can only influence local PBfa data dependent instruction to obtain the correct costinterval.
cost. Itis a general approach that improves state-of-the-art patiCaches can be treated in the same way as in the ICA
analysis by an automatic detection of program properties aagproach, either using a cache tracing tool or the target system

the consideration of process modes. cache model. An overhead for the PPS start assuming first
misses is included. Both ICA and PSS require program execu-
lIl. ARCHITECTUREMODELING tion. The input patterns must be selected such that all PPS are

h . ‘ .) executed at least once. In a reasonable program test, the test
The execution cost for an instruction, BB, SFP or PPS can B&erns should have this property. Here, it does not matter if a

determined by simulation for a target architecture using one gf, o m must be executed several times to reach all PPS since

the following two techniques. only a single PPS execution is regarded. When a PPS is not
. N reached in simulation it is extracted and simulated separately.

A. Instruction Cost Addition The pretty complex test environment which includes a flexible

Instruction cost addition (ICA) uses a generalization of thigterface for off-the-shelf simulators and evaluation kits is
standard sum-of-basic-block approach to calculate the exeptesented in [22].
tion cost of PPS consisting of SFP-PCS, CDP—-PCS and BBs.)

For this purpose, the PPS just needs to be executed on a ffostoftware Power Consumption

system to derive the execution count for all BBs in the PPS. The software power consumption of a PPS can be simulated
Since there is only a single path through the PPS, these instrusing a simplification of the methodology presented in [10].
tion counts are unique. A sum-of-basic-blocks calculation prit-proposes an ICA approach with base and transition energy
vides the total cost of one PPS execution by using a cross coratues for a sequence of instructions given by host simulation.
piler and instruction cost tables. This leads to accurate resuis reduced instruction set computer (RISC) architectures, ex-
for simple architectures without overlapping BBs effects, e.gperiments show that the simulation matches the measured power
caused by pipelines or caches. consumption. Influences of data values or cache behavior can

The main advantage compared to previous work is that thdre modeled via additional processor cycles that add to the in-
are no functional constraints required for SFP—PPS, alleviatisfguction energy consumption. Details about recent trace-based
the user in the error prone and tedious task of functionai higher level software power analysis approaches are consid-
constraint definition. The user will only provide functionalered to be beyond the scope of this work. Software power anal-
constraints for the remaining MFP. The experiments will showsis using such a recent approach can be integrated into our tool
however, that this is hardly ever necessary. suite.

ICA faces the same issues for cache analysis and data depeiBFP identification improves software power analysis by re-
dent instruction execution times as standard basic-block-basgedving conservative overhead assumptions like empty caches
path enumeration and the same solutions apply. If we use a cafdvéBB beginnings and the resulting number of bus cycles for the
tracing tool [21] with the target cache model when running thaisses. So it has a major impact on the global analysis of soft-
PPS on the host system, then even the instruction cache is medre power consumption because potentially dominant over-
eled correctly within the PPS and can be used in cache analysisds are removed.

778 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

D. Cycle True SPARC Simulation TABLE |
. EXPERIMENTAL RESULTS FORPATH CLUSTERING
A cycle true processor model for a 32 bit superscalar SPARC

RISC processor with four stage pipeline and floating point 0] Benchmark | CFG Nodes | PPS Nodes | Reduction | C Lines

erations has been introduced in [15]. It implements PSS as « 3D-image 94 10 89% 164
plained before and is used in the experiments in Section |V, diesel 65 1 98% 160
GNU compiler translates PPS det bly code 8 : 9% 15
‘compiler translates PPS source code to assembly code oo 3 = 507 7%

the simulator. Local cache simulation for PPS can be includ ‘smooth 48 10 79% 86
by using [21] for the given address traces when a PPS is e blue 80 28 65% 127
cuted check-data 18 18 0% 44
: whetstone 122 1 59% 251

line T01 83 18% 250

E. Instruction Cost Addition for i8051

The ICA approach has been implemented for a simple Intel) o)
eight bit 8051 processor. ICA is well suited for this architec?ificantly improves measurement precision because the instru-

ture as no caches or pipelines are present. The sum-of-bag?g_-mation overhead caused I_Jy trigger points is reduced. Trigger
blocks model delivers accurate results because no overlapgdts are detected by a logic state analyzer and saved with a
basic-block execution due to sophisticated architecture propifiestamp. Any commercial evaluation kit can be used for this
ties is present. We also do not encounter data dependent édfP0Se. Automatic download and measurement abstracts the
cution times. Such processors are widely used in microcontfdfluation kit to the same level as a software simulator. The ap-
systems. A commercial cross compiler on a PC delivers the 850ach is considered to be an enabling technology for static soft-
sembly code of the PPS while debug information is used to idef{are analysis.

tify BBs in the assembly code. Profiling is running on a work-

station that sets up a connection to the PC running the compiler. IV. EXPERIMENTS

Results generated by ICA have been compared to the results ofhe methodologies have been implemented in a tool suite
the commercial PSS simulator showing high precision for tRgmbolic timing analysis (SYMTA) that has been applied in a
ICA approach. variety of experiments.

F. Cost Simulation Approach for StrongARM A. Path Clustering

As an example for PSS a StrongARM simulator core has beenn a first experiment, the reduction in analysis complexity
combined with the DINERO simulator [21] delivering both inthrough path clustering by SFP identification has been investi-
struction and data cache behavior. Both source codes have hga&ted. The first column in Table | shows experiments for bench-
recompiled to one simulator to achieve better performance. Timarks taken from [3] and [9]. The second column shows the
StrongARM cross compiler and the simulator source code havember of BB and control nodes in the control flow graph which
been given by Cygnus. Architecture modeling regarding timirig reduced to the number of PPS including SFP—PCS and BBs in
has been derived from [23] while the energy dissipation modgle third column. The fourth column gives the reduction of the
has been taken from [24] and [10]. The results for a PPS remplexity of the graph while the fifth column gives the number
garding timing and power are already intervals because data dfines in the source code. We have only analyzed the SFP and
pendent instruction execution can be present. Cache simulati@RP properties of the graph, no execution cost or context de-
starts from both first hit or miss for the interval, representing thgendency has been determined in this experiment.

PPS overhead. Instruction cost tables and host tracing are alsbhe experiment reveals that many parts of programs contain
available to implement an ICA approach, which is, of cours§FP segments and can be clustered to PPS which can precisely
less accurate due to the overlapping BB effects on a StrongARJM analyzed using simulation (PSS). We notice that through the
RISC processor. The complete StrongARM tool suite can lgentification of many SFP within the loops like in the “diesel”
used for simulation with test patterns given by the designer asthe “FFT” benchmark the graphs lose most of their com-
well as for the simulation of an instrumented program. plexity. When only one PPS remains, the complete cost can be

determined by simulation.
G. Prototyping Approach for SPARClite

Processor simulators for the determination of the PPS exe&- Timing Bound Analysis
tion cost are often slow, inaccurate or even not available. So theén the following experiment, the timing bounds have been an-
possibility of using commercial evaluation kits has been investityzed using SYMTA and have been compared to the results of
gated. Details presented in [25] are out of scope of the presenéedurate simulation. For this reason, we have selected programs
approach while the results for the PPS are used. A Cygnus cragere best-case and worst-case input data can be determined by
compiler translates PPS to assembly code. Timing and poviand to deliver the real bounds.
consumption of a PPS are measured on acommercial SPARCIitén Table II, only SFP identification without CDP identifica-
evaluation kit by inserting trigger points at PPS starts and entisn or mode annotation has been applied for now. Program seg-
A trigger point is implemented by a store of the source code limeents were simulated using a cycle true SPARC simulator to
number information to a defined trigger address in a noncachgéeimonstrate PSS and an i8051 simulator to demonstrate ICA.
part of the memory space. The extension from BBs to PPS shde caches have been assumed for SPARC. For i8051, results

WOLF et al: PATH CLUSTERING IN SOFTWARE TIMING ANALYSIS 779

TABLE I are triggered. In this example, the OAM mode implies context
EXPERIMENTAL RESULTSUSING SFP DENTIFICATION ONLY dependent input data for the VCI.

Measured Bounds Analyzed Bounds |Ijl Table IV, the different a_naIyS|s approache_s are evaluated by
Benchmark Cmin] P Cmin | e their worst-case bounds with respect to running time or power

SPARC clock cycles using PSS consumption for the given architectures as only worst-case as-
3D-image 34908 37848 33874 38037 sumptions have been used for program segment cost determi-
diesel 62944 62994 61445 63333 nation. The results are given for the OAM mode of the compo-
i 1498817 1499176 | 1494650 1499290 : N g . P
Beort 3493 3038 416 5938 nent, the switch itself has not been included and the USER mode
smooth 3635651 4846511 | 3570227 4881135 has not been investigated. Architecture modeling has been done
Z’}ll‘é‘c’k_ — 3564933 31686522} 33450‘:5; 34654112‘; using StrongARM simulation, SPARClite software emulation
whelstons 5998459 3369450 | 2880230 3373008 and measurement as well as SPARC simulation. For all proces-
line 514 1619 381 2035 sors, core speeds of 80 MHz, bus speeds of 40 MHz and memory
%051 inst-cycles using ICA, one inst-cycle equals 12 clock cycles cycle times of 25 ns have been assumed to get comparable re-

t 26421460 | 26421460 | 26419338 | 26488288 : : :

oot 5347 5545 =204 8167 sults. Caches have b(.aenllnte.ntlo.nally sw.ltched off for program
smooth 9737378 9737516 | 9737469 9737522 segment cost determination in this experiment.
check-data 68 559 63 588 In the first line, results have been determined with the

methodology proposed by Li and Malik in [3] that is based on
) o]]) the analysis granularity of BBs using the sum-of-basic-blocks
are given in instruction cycles one of which consists of 12 clogk.ecution cost model. The control flow defined by the OAM

cycles. The first column shows the benchmark under investigasge has been annotated using a functional constraint for the
tion followed by the measured cost bounds which are followegoding control structure. In the second line, the methodology
by the analyzed cost bounds. Analyzed bounds are tight Whgsing on SFP clusters (SFP) [9] has been applied. The OAM
staying conservative with respect to simulated bounds. mode has been annotated using a functional constraint, too. In
the third line, the context sensitive methodology (CGESFP)
has been applied in addition to SFP identification. The OAM
The state-of-the-art approach presented in [3] and the curremdde can be considered without using functional constraints
approach are compared by their estimation errors in Table lecause it defines context dependent input data for the control
In the first three columns, estimation errors for SYMTAstructure. In the last line, the result for simulation with given
using PSS for SPARC are given followed by estimation errovgorst case data as a reference is shown.
for SYMTA using ICA for i8051. In the last four columns, For the analysis of the OAM mode, SFP clustering delivers
results from [3] for i960 including estimation errors and théighter bounds than the BB-based approach because original
number of functional constraints given by the designer apipeline behavior for the SFP can be modeled. The context sen-
presented. Caches have not been considered in this experimsitive approach delivers even tighter bounds. This is caused by
They would lead to much higher BB and PPS simulatiothe possibility to consider the BB sequence across the context
startup overheads. No functional constraints are needed dl@pendent control structure where the context dependent input
the SYMTA approach, only program properties are exploitathta is defined by the OAM mode.
by SFP identification. Given functional constraints for the
approach from [3] are an optimal selection which is hard fo. Case Study: Filter on Packet Data

find for the designer. Estimation erronsare calculated for the The software execution cost analysis approach has been ap-
upper bounds followed by the lower bounds in the second pgffed to a single process, which reads a packet and loads a pic-
of the table. ture. If the picture is addressed to the system component under
The SYMTA approach leads to tight estimation boundgyestigation, it performs an “unlikely dot” filter on the picture
without any functional constraints even for the MFP segmenigata and sends it to another buffer. The significant parts of the
It only exploits the program structure that implies most agyrce code are given in Fig. 8. The relevant program segments
the functional constraints. The designer is not burdened wiihe marked using their original C source-code line numbers.
error prone implicit path enumeration. For most benchmarks, pjferent potentially context dependent control structures are
estimated bounds are tighter than bounds delivered by @@sent. For the program segment in line 89, the loop bounds
optimal selection of functional constraints because overlappiagpend on the number of pixels that can be context dependent.
BB execution can exactly be modeled for SFP segments Usifigese context dependent input data can be selected by a process
target architecture simulation. mode, e.g., the processing of a “large” or a “small” picture. If
there is no such information for an execution of the process,
D. Case Study: OAM Component loop bounds assuming designer knowledge about packet and
The source code [20] of the top level of an ATM F4 impicture size are annotated as functional constraints. They avoid
plementation has been investigated with the proposed methad-infinite cost interval for the resulting multiple feasible paths
ology. Two modes for this process exist. In the USER mode, thequiring BB-based analysis [3]. The same discussion applies to
ATM cells are simply forwarded to the switch. In the OAM in-the program segment in line 124.
dicated by a special virtual channel identifier (VCI) in the cell, For the program segment in line 122, input data for the ad-
no user data is processed but special administration functiahiess can be context dependent when the address is known for a

C. Improvements to Previous Work

780 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

TABLE 1lI
COMPARISON OFSYMTA WITH LI AND MALIK BY IMPRECISION7

Benchmark SYMTA-Approach SYMTA-Approach ILP with (in)equations
SPARC(cycles) 8051 (instruction cycles) i960 (cycles)

Upper Bounds || eezact | capalvzed n | cemact | enalvzed n | eezact | canalvzed n | fun const [3]
bsort 8938 8938 0.0% 15045 18167 | 20.75% [9.99e6 27.8e6 179% 6

it 1499176 1499290 0.01% | 26421460 | 26488288 0.25% | 2.20e6 2.63e6 19% 11
check-data 431 435 0.93% 559 588 5.20% 430 471 10% 10
whetstone 3369459 3378098 0.26% n.e. n.e. n.e. [6.93e6 10.5e6 52% 14
line 1619 2035 | 20.44% n.e. n.e. n.e. 4836 6088 26% 2
Lower Bounds [| cgzect [cgnaW==d | n [et [Tme*ed [~ g [cpmact [c2no®ed [y [fun const 3]
bsort 4423 4423 0.0% 9347 7804 | 16.51% 16942 13965 18% 6

tt 1498817 1494650 0.03% | 26421460 | 26419338 0.08% | 1.72e6 1.59e6 8% 11
check-data 80 65 18.8% 68 63 7.35% 35 35 0% 10
whetstone 2928459 2880230 1.65% n.e. n.e. n.e. | 6.94e6 5.97e6 14% 14
line 514 381 25.9% n.e. n.e. n.e. 929 776 17% 2

n.e.: the code is not executable on the i8051 architecture due to a missing floating point unit and other restrictions
7(%): Imprecision = abs(canalv#ed . cezact) / cezact » 100% deviation for BCET and WCET

TABLE IV TABLE V
UPPEREXECUTION COST BOUNDS FOR THEOAM M ODE COSTINTERVALS [€; min: €1 max] WITHOUT MODES ORANNOTATION

Approach |SPARC]StrongARM[StrongARM [Sparclite] Sparclite Line] PCS| Timing [ms] | Energy [mWs] [Sent kb[Rec. kb

BB 1316 ns| 11986 ns 1282 nWs | 18.4 us {26.5 uWs 89 [MFP| [4.92,38.0] [2.0,8.5] 0,0] {[6.2,25.0]

SFP 1303 ns| 11836 ns | 1261 nWs [18.1 us [26.1 uWs 122 [MFP [[413ns,2475ns]|[50nWs,178nWs]| [0,0 0,0

CDP+SFP|1164 ns| 9505 ns 911 nWs | 14.9 us [17.8 uWs 124 |MFP 39.5,329 17.5,72.6 0,0 0,0

Exact [1128 ns| 9471 ns | 903 nWs | 13.7 us [16.4 uWs 143 IMFP| [1.54,131 0.65,14.7 0,0 0,0
151 [MFP 16.7,182 2.85,20.4 [0,24.4] 0,0
SFP| - 14.955,680.8] 2.099,116.2 0,24.4]([6.2,25.0
BB - [2.773,6368.0] | 11.855,582.2 0,24.4]([6.2,25.0

/* Pseudo code of a packet receiver with filtering ~ */
89: header = receive(INPUT, HEADER_SIZE);

for all pixels /* Picture size */
i = ive (INPUT, 1); , -
1220 tecamrre L et) radress maten +; has been done. The first column shows the beginnings of rel-
124: for all pixels{ . evant PCS identified by their first line numbers in the code;
for a 3*3 pixel window . o .
143: 1f (without_center) /* center calculation +/ N S€CONd column shows their classifications. As the SFP pro-
average = sum/8; gram segments are not displayed in this table and no modes
3 else average = sun/9; have been considered up to this point, only MFP classifica-
151: if (abs(picturely] [x]-average)>threshold) tions are present. The next four columns give the cost intervals
send (OUTPUT, average, 1); with respect to timing, power consumption of the processor core
else send(QUTPUT, picture{y](x], 1); . .
} and communicated data. The last but one line (SFP) shows the
} overall process cost intervals for this approach including SFP
_ _ identification while the last line (BB) shows the results without
Fig. 8. Pseudacode of the packet data filter. SFP identification using the granularity of BBs.

Due to the loop bounds given by functional constraint annota-
mode. Two possibilities are a packet for another destinationtawn, the minimum, and maximum numbers of pixels are known
an address match. No information about modes results in mbit the PCS in line 124 stays an MFP segment. Intervals are
tiple feasible paths requiring BB-based analysis without furtheside because worst cases imply cache misses for the beginning
functional constraints for this control structure. For the prograof the segment while best cases imply cache hits to deliver PSS
segment in line 143, these possibilities are the calculation of tstartup overhead. Without using SFP identification, intervals are
average luminance including or excluding the center pixel. far wider because of the BB analysis overheads in the nested

For PSS, the StrongARM processor simulator with 80-MHIpops.
core frequency, 40-MHz bus frequency, and 25-ns memoryln Table VI, a process mode has been annotated. For this
cycle time including local cache simulation has been applieghode, an “address match” is considered which leads to context
Conservative first miss/hit scenarios have been assumed dependent input data for the PCS in line 122. The picture size
local simulation. Communicated data, i.e., the number of sast‘large,” which leads to context dependent input data being
and received bytes is delivered by the sum-of-basic-blockt®e loop bounds in the PCS in line 89 and 124. The calcula-
model and the amount of data communicated by an instructidion of the luminance is done “with” the center pixel leading

In Table V, execution cost intervals without any mode annde context dependent input data for the program segment in line
tation or a resulting identification of context dependent contr@43. All the according PCS become CDP-PCS because the con-
flow are given, only the identification of SFP program segmentsxt dependent input data is defined by the process mode. The

WOLF et al: PATH CLUSTERING IN SOFTWARE TIMING ANALYSIS

TABLE VI
COSTINTERVALS [€; min> Ci,max] WITH MODE ANNOTATION

Line [PCS| Timing [ms] [Energy [nWs]| Sent kb | Rec. kb

781

target architecture independent. We have presented techniques
for running time and power analysis of such program segments.
Experiments on a variety of different processor architectures
and different environments demonstrate a significantly higher
precision and far less designer interaction than in previous ap-
proaches. They emphasize the superiority of our approach ex-
ploiting program properties and process modes.

REFERENCES

89 CDP| [19.2,38.0] 18.4,8.5] 0,0 [25.0,25.0]
122 |CDP [164,329] [72.6,72.6] 0,0 0,0
143 [CDP| [15.7,22.6] [4.4,5.00] 0,0 0,0
151 |MFP| [64.9,182] [11.8,20.3] [[24.4,24.4] 0,0
Mode| - [[264.60,572.01][[97.31,106.51] [[24.4,24.4][25.0,25.0]
SFP - [4.955,680.8] | [2.099,116.2 0,24.4 6.2,25.0
BB - | [2.773,6368.0] | [1.855,582,2 0,24.4 6.2,25.0

[1]

TABLE VIl
COSTINTERVALS [€; min» Ci .max] WITH DIFFERENTPROCESSMODES [2]

Modes | Timing [ms] [Energy [mWs][Sent kb | Rec. kb
SEFP {4.955,680.8] | [2.099,116.2 0,24.4 6.2,25.0 3]
BB [2.773,6368.0]]]1.855,582,2 0,24.4 6.2,25.0
Small Picture |{4.955,66.71] | {2.099,24.61 [0,5.9] [6.2,6.2] [4]
Large Picture | [19.24,575.1] | [8.474,107.5] | [0,24.4] [[25.0,25.0]
Address match| [38.49,660.2] | [21.03,112.1] [[5.9,24.4] [6.2,25.0] [5]
Small+match | [38.49,63.62] | [21.03,23.61] [[5.9,5.9] | [6.2,6.2]
TLarge+match | [264.6,572.0] | [97.3,106.5] [[24.4,24.4]][25.0,25.0]

[6]

CDP-PCS in line 124 is clustered to a PPS with the CDP—PC§7]
in line 122 and the SFP—PCS for the pixel window. All PCS
except the MFP—PCS in line 151 can be clustered to PPS all8l
lowing execution cost determination by local simulation. This
leads to tighter intervals for the mode because the execution pat}e]
through the filter is known as well as the loop bounds for the pic-
ture leading to CDP—-PCS. The only MFP—PCS is caused by t"t?o
nested control structure depending on picture data. The results
for the SFP approach and the BB-based approach are still in-
cluded as a reference. [11]
In Table VII, different scenarios for disjunct process modes
have been explored. These lead to different context dependelé]
input data for the control structures under investigation. The first
column shows the given mode in which the process is executefi.3]
The next four columns show the behavioral intervals with re-
spect to running time, energy consumption and communicated
data. [14]
Compared to the BB-based analysis approach and the
approach using SFP identification without considering proces@g’]
modes, it can be noticed that modes deliver tighter specific
intervals because of a more accurate path analysis. Even f&
worst-case modes, intervals are tightened because the control
flow can be predicted for the corresponding control structureq17]
Thus, overheads at the transitions between program segments
can be removed. The remaining inaccuracy is caused by tqs_;S]
remaining MFP—PCS in the loop nest, where a conservative
first hit/miss scenario for the cache has to be assumed. 1]
V. CONCLUSION

A static approach to software running time and power con$20]
sumption analysis has been presented. It is an extension to tPﬁ]
well known sum-of-basic-blocks approach with implicit path
enumeration. The most important result is the transition fromz22]
BB analysis to the analysis of complete program segments with
a single execution path. This can be either input data indeper[123]
dentor context dependent. The general path analysis approach is

J. Liu, G. Maguire, M. Mateescu, A. Schmidt, and R. Ruppelt, “Doc-
ument of network architecture strategies and tradeoffs,” Esprit Media ,
Stockholm, Sweden, 1999.

D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele, “Com-
bining multiple models of computation for scheduling and allocation,”
in Proc. 6th Int. Workshop Hardware/Software Codesi@eattle, WA,
Mar. 1998, pp. 9-13.

Y. Liand S. Malik, Performance Analysis of Real-Time Embedded Soft-
ware Norwell, MA: Kluwer, 1999.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques
and Tools. Reading, MA: Addison-Wesley, 1988, to be published.

A. Mok, “Evaluating tight execution time bounds of programs by anno-
tations,” inProc. Workshop Real Time Operating Systems and Software
Pittsburgh, PA, 1989, pp. 74-80.

P. Puschner and C. Koza, “Calculating the maximum execution time of
real-time programs,J. Real-Time Systvol. 1, no. 2, pp. 160-176, 1989.

C. Y. Park and A. C. Shaw, “Experiments with a program timing tool
based on source-level timing scheme,”Aroc. 11th IEEE Real-Time
System SympOrlando, FL, 1990, pp. 72-81.

J. Gong, D. Gajski, and S. Narayan, “Software execution from exe-
cutable specification,J. Computer and Software Engineerjngl. 2,

no. 3, pp. 239-258, 1994.

W. Ye and R. Ernst, “Embedded program timing analysis based on path
clustering and architecture classification,Rroc. IEEE Int. Conf. Com-
puter-Aided Design (ICCAD '97CA, 1997, pp. 598-604.

] V. Tiwari, S. Malik, and A. Wolfe, “Instruction level power analysis and

optimization of software,J. VLSI Signal Processingol. 13, no. 2/3,

pp. 223-238, Aug. 1996.

H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separate cache and path analyse&eal-Time Systvol.

18, no. 2/3, May 2000.

J. Gustafsson and A. Ermedahl, “Automatic derivation of path and
loop annotations in object-oriented real-time progranis,Parallel
Distributed Computing Practicesol. 1, no. 2, June 1998.

C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. v. Engelen,
“Supporting timing analysis by automatic bounding of loop iterations,”
J. Real-Time Syst.—Special Issue Worst-Case Execution-Time Analysis
pp. 129-158, May 2000.

T. M. Conte and C. E. Gimar&ast Simulation of Computer Architec-
tures Norwell, MA: Kluwer, 1995.

W. Ye, R. Ernst, T. Benner, and J. Henkel, “Fast timing analysis for hard-
ware-software cosynthesis,” Proc. |IEEE Int. Conf. Computer Design
(ICCD '93), Cambridge, MA, 1993, pp. 452-457.

A. Hergenhan and W. Rosenstiel, “Static timing analysis of embedded
software on advanced processor architecturesPrioc. Design, Au-
tomation, Test Eur. (DATE '0Q)aris, France, Mar. 2000, pp. 552-559.
F. Wolf and R. Ernst, “Data flow based cache prediction using local
simulation,” inProc. High-Level Design Validation and Test Workshop
Berkeley , CA, 2000, pp. 155-160.

——, “Execution cost interval refinement in static software analysis,”
J. Syst. Architecture—Special Issue Modern Methods Tools Digital Syst.
Design vol. 47, no. 3-4, pp. 339-356, Apr. 2001.

D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, and R. Ernst, “Interval-
based analysis of software processes,Pmc. ACM Workshop Lan-
guages, Compilers and Tools for Embedded Syst&mewbird, UT,
June 2001, pp. 94-101.

A. Doboli, J. Hallberg, and P. Eles, “A simulation model for the OAM
functionality in ATM switches,” Linkdping, Sweden, 1995.

M. Hill, “DINERO Il cache simulator: Source code, libraries, and doc-
umentation,”, www.ece.cmu.edu/ ece548/tools/dinero/src/, 1998.

F. Wolf and R. Ernst, “Software timing and power estimation of telecom
systems,” ESPRIT MEDIA Rep., Tech. Univ. Braunschweig , Germany,
1999.

S. FurberARM System Architecture Reading, MA: Addison-Wesley,
1996.

782 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

[24] J. Montanaro, “A 160-MHz, 32-b, 0.5W CMOS RISC microprocessor,
The IEEE J. Solid State Circuitgol. 31, pp. 1703-1714, Nov. 1996.

[25] F. Wolf, J. Kruse, and R. Ernst, “Segment-wise timing and powe
measurement in software emulation,’Rmc. Design, Automation, and
Test Eur. Conf., Designers’ ForyrMunich, Germany, Mar. 2001, pp.
165-169.

Rolf Ernst (M'89) received the Diploma degree
in computer science and the Ph.D. degree in
electrical engineering, both from the University of
Erlangen-Nuremberg, Germany, in 1981 and 1987,
respectively.

He was a Member of the Technical Staff at AT&T
Bell Laboratories, Allentown, PA, from 1988 to 1989.
Since 1990, he has been a Professor in the Depart-
ment of Electrical Engineering at the Technical Uni-
versity of Braunschweig, Germany, where he heads
the Institute of Computer and Communication Net-

work Engineering. His main research interests are in embedded system design
and embedded system design automation.

Fabian Wolf received the Diploma degree in elec-
trical engineering from the Technical University of
Braunschweig, Germany, in 1996.

Since 1996, he has been a Research Staff Memb
at the Technical University of Braunschweig, Ger-
many. He is currently working on the development
of SYMTA, an experimental system for static anal-
ysis of software running time and power consump:
tion. His current research interests include softwar:
timing and power analysis as well as software em
lation and cache analysis.

@

Wei Ye received the Diploma degree in computer
engineering from the Technical University of
Huazhong, China, in 1985.

He was a Research Staff Member with the
Technical University of Braunschweig, Germany,
from 1991 to 1997. Since 1998, he has been
working as a Computer Engineer for Siemens AG in
Erlangen-Nuremberg, Germany. His main research
interests are in timing analysis of real-time systems,
architecture modeling, processor emulation, and
cache analysis.

