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1. Practical information

• The assignment is mandatory and will account for 20% of the total grade.

• The assignment shall be carried out in groups of two (or three) students.

• The project is to be carried out independently by each group.

• The amount of time to complete the assignment is estimated at 30 hours.
Each group will get 12 hours of guidance.

• The time schedule can be found on the group registration page (the webpage
of the course).

• The file Boat_files.zip can be downloaded from It’s Learning.

2. Report

• The final report is due in week 47, the exact time will be posted on It’s
Learning. The report should include

– The deductions, reasoning and calculations for each exercise. Make sure
that it is easy to follow how you obtained your result. It is not enough
to list the MATLAB functions you used; give a short description of
what the MATLAB function do and explain why you used them.

– Simulation results for each exercise. Make sure that your plots clearly
illustrate your obtained results. Moreover, describe (in words) what can
be observed in the plots.

– A short discussion of the results. Discuss what implications your results
have. In addition, suggest alternatives that may improve the obtained
results.

– Attachments, copies of the m-files and Simulink diagrams. The code
and diagrams should be easy to understand. Add comments if necessary.

• It should be easy to look up where your answer to each part of the assignment
can be found, so clearly mark out to which part of the assignment each section
in the report belongs.

• Make sure that you give an answer to each question in the assignment. Your
answer should be concise. However, if your answer is not in the report, you
do not get points for it.
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3. Purpose of the assignment

The objectives of the assignment can be summarized as:

• To partly model and simulate a continuous system influenced by stochastic
signals.

• To use basic identification techniques on parameters that are not explicitly
given.

• To use basic control theory to design a simple autopilot.

• To implement a discrete Kalman filter for wave filtering and estimation of
disturbances using MATLAB and Simulink.

4. Background material

4.1. Coordinate systems

4.1.1. Reference frames

In navigation several reference frames are used. By a reference frame we mean a
coordinate system, or frame, a vector is described relatively to. We only consider
two coordinate systems in this assignment, “NED” and “BODY”.

• NED is a coordinate system in which the x-axis point to the north, the y-axis
points east and the z-axis points towards the center of the earth (down).

• BODY is a coordinate system where the x-axis is along the longitudinal axis
of the ship (from aft to fore). The y-axis is along the transversal axis (to
starboard) and the z-axis along the normal axis (from top to bottom).

Figure 1 illustrates the BODY and NED reference frames. In Figure 1 the
heading ψ is depicted. ψ is the compass measurement.

4.1.2. Transforming vectors between different reference frames

This section is not intended as a complete description of the subject, but a short
introduction to how transformations are carried out. Given a vector vb, where the
superscript b denotes that v is described in the BODY reference frame. We can
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Figure 1: BODY and NED reference frames.

transform this vector such that it is described in the NED reference frame. In the
horizontal plane this becomes:

vn = Rn
b (ψ)vb (1)

Rn
b =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(2)

The transformation can also be reversed:

vb = Rb
n(ψ)vn = Rn

b (ψ)Tvn (3)

since RT = R−1 when R is a rotation matrix. To clarify we will give an example:

Example 1 (Rotation of a vector) Let ψ = π
4
and vb = [0 1]T . Carrying out

the calculation as described in (1) yields a vector vn = [− 1√
2

1√
2
]T . Figure 2 depicts

the two vectors. The transformation from NED to BODY can be carried out to see
that vb = [0 1]T .

4.2. System description

We shall look at a model of a ship, influenced by both current and waves. The
three following sections present the necessary background material to complete the
project. We will model the system as if the waves only affect the heading of the
ship and try to find an estimate of the course angle without considering the wave
disturbance.
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Figure 2: The same vector in different frames.

4.2.1. The ship

A nonlinear dynamical model of a ship can be represented as:

η̇ = R(ψ)ν (4)
Mν̇ +C(ν)ν + D(ν)ν = τ + w (5)

where

• M - System inertia matrix.

• C - Coriolis-centripetal matrix.

• D - Damping matrix.

• τ - Vector of control inputs.

• w - Vector of environmental disturbances.

• η - NED positions [x, y, ψ]. Where x is the position in the north-direction,
y is the position in the east-direction, and ψ is the angle between the north
direction and the xb axis. ψ is positive clockwise.

• ν - BODY velocities [u, v, r]. Where u is the velocity in the x-direction, v
the velocity in the y-direction and r is rotation velocity about the z-axis.

Assuming that the speed is low such that some of the nonlinear terms are neg-
ligible, the equations are reduced to:

η̇ = R(ψ)ν (6)
Mν̇ + Cν + Dν = τ + w (7)
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Note that w is actually given in the NED reference frame, so we assume that we
only have small changes in the heading of the ship in this model. We now have a
linear equation for the BODY velocities. But equation (6) is still non-linear. This
will be simplified later. Assume that the forward speed u is constant, i.e. u = u0.
We then simplify the model by only considering the sway(v)-yaw(r) dynamics.
Also letting τ = Bδ, where δ is the rudder angle relative to the BODY frame, we
get the equation:

Mν̇ + N(u0)ν = Bδ + wwaves + wcurrent (8)

where ν = [v r]T and N(u0) = C(u0) + D(u0).
If we are only interested in ψ, we get the following equation for η:

η̇ = ψ̇ = r (9)

4.2.2. Waves

The waves are considered to be high-frequency disturbances. The response to the
waves can be modelled as a damped harmonic oscillator:[

ẋw1
ẋw2

]
=

[
0 1
−ω2

0 −2λω0

] [
xw1
xw2

]
+

[
0
Kw

]
ww (10)

yw =
[
0 1

] [xw1
xw2

]
(11)

where ww is a zero mean white noise process with unity variance. This represen-
tation of the waves corresponds to a spectral factorization of the wave spectrum.
How to add this to the model is shown in Section 4.2.4.

4.2.3. Current

The current is a slowly varying disturbance. We will assume that the only effect
of the current is a rudder angle bias b. This bias is modelled as:

ḃ = wb (12)

where wb is Gaussian white noise. Note also here that this assumes only small
deviation from the reference heading of the ship.

4.2.4. The complete system

In the model of the system (not the actual process) that will be used in the rest
of the assignment the state vector is given by: [ξw ψw ψ r b]

T , where
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• ψ - Is the average heading, i.e. without wave disturbance.

• ψw - Is a high-frequency component due to the wave disturbance.

• ξ̇w = ψw

• r - As described above.

• b - Bias to the rudder angle.

See Figure 3 for an illustration of ψ and ψw.

ψ
ψ+ψw

t

Figure 3: Average heading and high frequency wave disturbance.

The model which will be used can be stated as:

ξ̇w = ψw (13a)
ψ̇w = −ω2

0ξw − 2λω0ψw +Kwww (13b)
ψ̇ = r (13c)

ṙ = − 1

T
r +

K

T
(δ − b) (13d)

ḃ = wb (13e)
y = ψ + ψw + v (13f)

where y is the measured heading (compass measurement). wb, ww, and v are white
noise processes. Also note that the model in Section 4.2.1 is simplified to a 1st
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order Nomoto-approximation in equations (13c)-(13d), with Nomoto time and gain
constants, T and K. The Nomoto model is common for modelling yaw in marine
systems.
Clearly, the system can be written as:

ẋ = Ax + Bu+ Ew, y = Cx + v (14)

with x = [ξw ψw ψ r b]T , u = δ and w = [ww wb]
T . The purpose of this model

is to estimate the course angle without the wave disturbance. Thus, we model
the ship as a system not affected by waves and include the disturbance only in
the measurement. Further, the current only affects the rudder angle in the model.
This is of course not the case for an actual ship, but it simplifies the Kalman filter
design.

5. Assignment

Unzip the files from Boat_files.zip to a desired directory. The files in Boat_files.zip
are:

• ship.mdl: Simulink file representing a cargo ship.

• wave.mat: The wave disturbance, ψw.

• Sfunctionshell.m: A partially complete discrete Kalman filter.

Open the mdl file ship.mdl. You will see a block which represents the actual
ship (a cargo ship). The output of the model is compass, x, and y. The ship is
assumed to have a constant forward speed u = u0. The input to the ship is the
rudder set-point, which is given in degrees. Clicking on the ship model opens a
dialog box in which currents, waves and measurement noise can be turned on and
off. Note that the rudder angle is constrained to ±45 degrees.

5.1. Identification of the boat parameters

a) Assume that there are no disturbances. Calculate the transfer function from δ
to ψ, H(s), parameterized by T and K.

b) Turn off all disturbances in the model. This corresponds to identifying the pa-
rameters in smooth weather conditions. We want to identify the boat parame-
ters T and K. Apply a sine input with amplitude 1 and frequency ω1 = 0.005
(rad/s). Then apply a sine input with amplitude 1 and frequency ω2 = 0.05
(rad/s). The amplitude of the sine waves on the output equals |H(jω1)| and
|H(jω2)|, respectively. This gives us two equations with two unknowns.
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c) Repeat part b) with waves and measurement noise turned on. This corresponds
to identifying the parameters in rough weather conditions. Is it possible to get
good estimates of the boat parameters in this case?

d) Apply a step input of 1 degree to the rudder at t = 0 and compare the step
response of the model with the response of the ship. Is the model a good
approximation?

Include plots for the results for the above problems in your report. In the rest of
the problems the measurement noise shall be turned on.

5.2. Identification of wave spectrum model

a) Load the wave.mat file. The second row in the resulting matrix psi_w contains
the influence the waves have on the compass measurement, that is ψw. NB! ψw
is given in degrees in the file. The first row is the time instants the elements of
ψw are applied to the system. Find an estimate of the Power Spectral Density
(PSD) function of ψw, Sψw(ω). The sampling frequency is 10 Hz. Use the MAT-
LAB function [pxx,f] = pwelch(x,window,noverlap,nfft,fs). (Hint: type
doc pwelch for help.) Use a window size of 4096. You do not need to specify
the other parameters (noverlap, nfft). Note: if the input fs is given in Hz,
then the units of the outputs pxx and f are power per Hz and Hz, respectively.
The scaling factors 1

2π
and 2π need to be applied to convert the outputs to the

required units power s/rad and rad/s, respectively.

b) Find an analytical expression for the transfer function of the wave response
model (from ww to ψw). Also find an analytical expression for the Power Spec-
tral Density function of ψw, that is Pψw(ω).

c) Find ω0 from the estimated Sψw(ω) in part a).

d) To have a complete model for the wave response we need to identify the damping
factor λ. Define Kw = 2λω0σ where σ2 is the peak value of Pψw(ω). Find
λ by fitting the Pψw(ω) to the estimate of the PSD, Sψw(ω). Use trial and
error. Alternatively, you may use curve-fitting methods in MATLAB (Hint:
doc lsqcurvefit). Include plot for comparison manner.

5.3. Control system design

In this section we want to design an autopilot for the ship. That is, we want to
be able to give a desired course angle ψr, and get the ship to follow this course.
(Note that the ship model in the simulation only holds for small deviations in
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compass value ψ, so leave ψ inside a boundary of ±35 deg. Use ψr = 30 in all the
simulations done in this part of the report. Make sure to address this constraint
in your simulations in part b), c), and d).)

a) Design a PD controller, Hpd(s) = Kpd
1+Tds
1+Tf s

, based on the transfer function
from δ to ψ without disturbances. Let the ωc and the phase margin of the open
loop system, Hpd(s) · Hship(s), be approximately 0.10 (rad/s) and 50 degrees,
respectively. Choose the derivative time constant, Td, such that it cancels the
transfer function time constant.

b) Simulate the system without disturbances (only measurement noise). Does the
autopilot work? Include plots of compass course and rudder input.

c) Simulate the system with a current disturbance (and without wave distur-
bance). Does the autopilot work in this case? Include plots of compass course
and rudder input.

d) Simulate the system with wave disturbance (and without the current distur-
bance), does the system work satisfactory? Include plots of compass course and
rudder input.

5.4. Observability

In this assignment, include all relevant information in order to justify your answer.
Yes or no is not an appropriate answer.

a) Find the matrices A, B, C and E in equation (14).

b) Is the system observable without disturbances?

c) Is the system observable with the current disturbance?

d) Is the system observable with the wave disturbance?

e) Is the system observable with both current and wave disturbance?

5.5. Discrete Kalman filter

In this section we shall implement a discrete Kalman filter to estimate the bias b,
the heading ψ and the high-frequency wave induced motion on the heading ψw.
ψw must be removed from the control loop to avoid wear and tear on the actuator
system. That is, we do not want the rudder to compensate for ψw. Hence, we
use only the estimated ψ in the control law. This is referred to as wave filtering.
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(Note that the ship model in the simulation only holds for small deviations in
compass value ψ, so leave ψ inside a boundary of ±35 deg. Make sure to address
this constraint in your simulations in parts d) and e).)

a) Discretize the model found in problem 5.4 part a) using exact discretization.
Use a sample frequency of 10 Hz.

b) Find an estimate of the variance of the measurement noise. (Hint: MATLAB-
function var.)

c) Now let

w = [ww wb]
T , E{wwT} = Q =

[
30 0
0 10−6

]
, (15)

P−0 =


1 0 0 0 0
0 0.013 0 0 0
0 0 π2 0 0
0 0 0 1 0
0 0 0 0 2.5 · 10−4

 , x̂−0 =


0
0
0
0
0


where w is the process noise, Q is the process noise covariance, P−0 is the
initial a priori estimate error covariance and x̂−0 is the initial a priori state
estimate. Since the process is sampled, E{v2} = R equals the measurement
noise variance found in part b) divided by the sample interval. There are many
ways to implement the discrete Kalman filter. Two recommended ways are:

• Writing an s-function, which can be called from Simulink. You can imple-
ment the s-function either as an m-file (using the MATLAB programming
language) or write it in the C programming language. See Appendix A.

• Write a normal Matlab function within the Matlab function Simulink
block. See Appendix B

Traditionally, s-functions are better suited for dynamic systems since they facil-
itate initialization, termination and updates at a given frequency. The Matlab
function block is designed for static systems, so it does not have the same
overhead as s-functions. This makes Matlab function seem easier, but it also
require some additional work to set up the initialization of the Kalman filter.
Hint: Let the compass measurement and the rudder input be input to the
Kalman filter function and the output be the a posteriori estimate of ψ and b.
Also put a zero order hold on the compass measurement and the rudder com-
mand, since the process and controller are continuous. Use the same sampling
frequency as above. Use the update expression (4.2.11) in Brown&Hwang.
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d) Make a feed forward from the estimated bias such that the bias is cancelled. Use
ψr=30. Simulate the system with the current disturbance. Does the autopilot
have a better performance than the equivalent simulation in problem 5.3 part
c)? Include plots of measured compass course, rudder input and estimated bias.

e) Use the wave filtered ψ instead of the measured heading in the autopilot. Sim-
ulate the system with wave and current disturbance. Does the autopilot have
a better performance than the equivalent simulation in problem 5.3 part d)?
Include plots of both measured and filtered compass course, rudder input and
estimated bias. Also include plots of actual wave influence and estimated wave
influence.

A. S-function hints

We start by looking at the structure of an s-function, and we will only consider
the elements which are of relevance to this assignment. The s-function is called
by Simulink with parameters x, u, t and flag, where x is the current state, u is
the input, t is the time and flag decides which part of the s-function that shall be
executed. The execution flow for the s-function in this assignment is depicted in
figure 4.

Start of simulation

mdlInitializeSizes

mdlUpdate

mdlOutputs

mdlTerminate

End of simulation

Figure 4: Execution flow of an S-function.
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• mdlInitializeSizes: Simulink calls this function only at the start of the
simulation. Here the system struct is initialized. That is, the number of
discrete/continuous states, inputs, outputs are defined. Sample times and
initial conditions are also specified.

• mdlUpdate: The discrete states are updated when Simulink calls this func-
tion. We can look at the update function as:

x(t+ ∆t) = f(x(t),u(t), t) (16)

where ∆t is the sampling interval. Example: For a linear time invariant
system we have x(t+ ∆t) = Ax(t) +Bu(t). In the s-function syntax we get:
sys=A*x+B*u;

• mdlOutputs: When Simulink calls this function, the output of the s-function
is calculated. We can look at the output function as:

y(t) = h(x(t),u(t), t) (17)

Example: For a linear time invariant system this the function reduces to:
y(t) = Cx(t) + Du(t). In the s-function syntax we get: sys=C*x+D*u;

• mdlTerminate: Simulink only calls this function when the simulation termi-
nates.

It also possible to define additional parameters as input to the s-function.
Clearly, we can write the discrete Kalman filter with use of the update and

output function. There are many ways of implementing the filter. We will describe
two approaches below.

1. One can define all the matrices, that is, A, B, C, E, Q, R, and P as
global variables. Then let the a priori and the a posteriori estimates be state
variables. Define the output to be the a posteriori estimates and the input
to be the compass measurement and the rudder input. However, usually we
want to avoid use of global variables.

2. Let a struct which contains the matrices A, B, C, E, Q, R, P−0 , and x̂−0 be
a parameter sent to the s-function. The matrices can then be used in all the
sub-routines of the s-function. Let the state vector be given by the a priori
estimates, the a posteriori estimates and the elements of the error covariance
matrix, that is:

x = [x̂−, x̂, P11, . . . P15, P21, . . . , P55]
T (18)

See Appendix D for convertions of P− from a matrix to a vector and vice
versa.
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B. Matlab function hints

Like any other function, the Matlab function block does not remember its vari-
ables from one call to the next. This is unfortunate, since we would like to keep
some of the variables in the Kalman filter for the next iteration. An elegant solu-
tion to this is to declare the variables persistent. Persistent variables are retained
in memory from call to call, and are local to the function they are declared in,
much like static variables in a C function. Listing 1 shows how to declare the
variables init_flag and acc_sum persistent.
Since the Matlab function block has no notion of whether it is called for the

first time, or for the n’th time, we have to program this notion. One way to
do this is to have a flag that is set when the function is called, and then check
the status of this flag to determine if the function has been called before. If the
function has not been called before, we should do an initialization. This concept is
illustrated below, where a function takes an input and adds it to the accumulating
sum. Calling this function with input 5, 1 and 3 would return 5, 6 and 9.

Listing 1: Illustration of persistent and initialization
function output = dummy_func( in )
p e r s i s t e n t acc_sum in i t_ f l a g

i f isempty ( i n i t_ f l a g )
i n i t_ f l a g = 1 ;
acc_sum = 0 ;

end
acc_sum = A + in ;
output = acc_sum ;
end

It is important to use the isempty function, since this allows to check a variable
that potentially has not yet been initialized.
The final modification that is needed for the Matlab function block to work

in this setting is to avoid an algebraic loop. When Simulink starts up, it tries to
determine the states from the initial values. In this case, the Kalman filter depends
on the control input, but due to the feedback the control input also depends on the
output from the Kalman filter. Therefore, Simulink is unable to determine some
of the initial values and blames an algebraic loop. To solve this, we have to add a
Memory block to the outputs of the Kalman filter, which will allow initialization of
the variables used in the feedback.

14



C. PSD function hints

In newer versions of MATLAB, i.e. MATLAB 7.0, the command help psd does
not work. This is because psd has been replaced by spectrum.welch. But the
command psd still works. Below we list the help-text for using this command in
Power Spectral Density estimates.

>> help psd

PSD Power Spectral Density estimate.
Pxx = PSD(X,NFFT,Fs,WINDOW) estimates the Power Spectral Density of
a discrete-time signal vector X using Welch’s averaged, modified
periodogram method.

X is divided into overlapping sections, each of which is detrended
(according to the detrending flag, if specified), then windowed by
the WINDOW parameter, then zero-padded to length NFFT. The magnitude
squared of the length NFFT DFTs of the sections are averaged to form
Pxx. Pxx is length NFFT/2+1 for NFFT even, (NFFT+1)/2 for NFFT odd,
or NFFT if the signal X is complex. If you specify a scalar for
WINDOW, a Hanning window of that length is used. Fs is the sampling
frequency which doesn’t affect the spectrum estimate but is used
for scaling the X-axis of the plots.

[Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP) returns a vector of frequen-
cies the same size as Pxx at which the PSD is estimated, and overlaps
the sections of X by NOVERLAP samples.

[Pxx, Pxxc, F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP,P) where P is a scalar
between 0 and 1, returns the P*100% confidence interval for Pxx.

PSD(X,...,DFLAG), where DFLAG can be ’linear’, ’mean’ or ’none’,
specifies a detrending mode for the prewindowed sections of X.
DFLAG can take the place of any parameter in the parameter list
(besides X) as long as it is last, e.g. PSD(X,’mean’);

PSD with no output arguments plots the PSD in the current figure window,
with confidence intervals if you provide the P parameter.

The default values for the parameters are NFFT = 256 (or LENGTH(X),
whichever is smaller), NOVERLAP = 0, WINDOW = HANNING(NFFT), Fs = 2,
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P = .95, and DFLAG = ’none’. You can obtain a default parameter by
leaving it off or inserting an empty matrix [], e.g. PSD(X,[],10000).

NOTE: For Welch’s method implementation which scales by the sampling
frequency, 1/Fs, see PWELCH.

See also PWELCH, CSD, COHERE, TFE.
ETFE, SPA, and ARX in the System Identification Toolbox.

Use the default values for the parameters in the exercise, i.e

[Sx,Fx]=psd(psi_wsig,[],samp_freq);

where psi_wsig is the signals of wave influence on the compass measurement, in
rad.

D. Vector/Matrix conversions

You may find it useful in your S-Function to convert between a matrix and a vector
to represent the covariances. Take a look at the following example:

>> v = 0:8
v =

0 1 2 3 4 5 6 7 8
>> vmat = reshape(v,sqrt(length(v)),sqrt(length(v)))
vmat =

0 3 6
1 4 7
2 5 8

>> vvec = vmat(:)’
vvec =

0 1 2 3 4 5 6 7 8
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