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Path Clustering in Software Timing Analysis
Fabian Wolf, Rolf Ernst, Member, IEEE, and Wei Ye

Abstract—Verification of program running time is essential
in system design with real-time constraints. Simulation with
incomplete test patterns or simple instruction counting are not
appropriate for complex architectures. Software running times
of embedded systems are process state and input data dependent.
Formal analysis of such dependencies leads to software running
time intervals rather than single values. These intervals depend
on program properties, execution paths, and states of processes,
as well as on the target architecture. An approach to analysis
of process behavior using running time intervals is presented. It
improves our previous work by exploiting program segments with
single paths and by taking the execution context into account. The
example of an asynchronous transfer mode (ATM) cell handler
demonstrates significant improvements in analysis precision. Ex-
perimental results show the superiority of the presented approach
over well-established approaches.

Index Terms—Performance analysis, real-time systems, software
timing estimation, system level design.

I. INTRODUCTION

A CCURATE software running time analysis is key to opti-
mized system design. In general, imprecise estimation of

software running time increases the design risk or leads to in-
efficient designs. The necessity to consider running time inter-
vals for the design and verification of embedded digital systems
becomes evident when looking at the limits of software simula-
tion. Profiling and simulation are current practice in industrial
design but since exhaustive simulation is impractical for more
complex applications, simulation results can only cover part of
the system behavior. This leads to unknown coverage of worst
and best cases. Verification is a more complicated but attrac-
tive alternative. It provides lower and upper bounds reflecting
data dependent control flow as well as data dependent instruc-
tion execution. In the past, these bounds were very wide due to a
lack of efficient control flow analysis and architecture modeling
techniques. In recent years, there has been significant progress
in both areas such that formal software execution cost analysis
has become practical. Power consumption analysis can use very
similar techniques. It is crucial for battery lifetime prediction of
hand-held devices. We will, therefore, use the general termex-
ecution costin the following text.

Execution cost intervals depend to a certain extend on the
input data and the state of a process (if it contains internal states).
Input data and state values can be combined to define a process
execution context. In other words, execution cost intervals of
a process are context dependent. Fig. 1 gives an example of a
system of communicating processes. It shows a simplified set of
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Fig. 1. Context dependent flow of execution in a base station.

processes implementing the wireless internet protocol (IP) stan-
dard on a pico-cellular base station [1]. The solid lines represent
the paths on which different data packets are routed through the
process network running on the base station. Important ques-
tions the system architect can ask are the power consumption for
sending a data packet or the time to set up a connection in the
base station. This should take the system context into account
since, for each packet type and destination, the processes react
with a different control flow. Of course, simulation is always
possible and statistical power and timing analysis are feasible,
but the first approach is not reliable and the second one is just a
rough approximation of the complex hardware activities when
executing the software of a base station. We present an analysis
approach which works on the source code level. It provides re-
liable and narrow software execution cost intervals for context
dependent process execution with a minimum of user interac-
tion. It allows to explore different target architectures in a very
flexible way.

We explain a new approach to execution cost and path anal-
ysis in Section II while the architecture modeling techniques
are introduced in Section III. Experiments are presented in Sec-
tion IV before we conclude in Section V.

II. PROGRAM PATH ANALYSIS

A. Process Representation

A system of communicating processes as shown in Fig. 1 is
assumed. For simplicity, it is assumed that processes read data
in the beginning and write data in the end. The system property
intervals (SPI) model [2] is chosen as a system-level represen-
tation since it can consider process cost intervals.

B. Program Segments

In path analysis [3], a program is typically divided into
basic blocks (BBs)[4]. Any well structured program can be
partitioned into disjoint BBs. Then, the program structure is

1063–8210/01$10.00 © 2001 IEEE



774 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

represented as a directed control flow graph with BBs as nodes.
For each BB, a cost interval with respect to each property,
e.g., running time, can be determined. A longest and shortest
path analysis on the control flow graph is then used to identify
global intervals.

This procedure does not yet provide sufficient accuracy. For
acceptable analysis precision one must identify all feasible paths
through a program. A feasible program path or trace is a path in
this flow graph corresponding to a possible sequence of BBs
when the program is executed from the first to the last BB of a
program.

Definition 1: A program segment (PS)is a sequence of
nodes in a control flow graph.

This definition implies a hierarchy of program segments.
Definition 2: Aprogram path segment (PPS)is a program

segment with at least one possible path.
A false program path is a path which cannot be executed

under any input condition. False path identification is essential
for programs with loops since loops correspond to cycles in the
graph, which can lead to an infinite number of potential paths
and resulting infinite cost intervals.

C. Previous Work

The approaches by Mok [5], Puschner and Koza [6], and Park
and Shaw [7] require iteration bounds for all loops in the pro-
gram, which the user must provide by loop annotation. While
making formal analysis feasible, loop bounding alone is not suf-
ficient for accurate path analysis. In nested loops, conditions
often depend on each other. These dependencies can be rather
complex. As a second step in the approaches by Li and Malik [3]
and Park and Shaw [7], the user is asked to annotate false paths.
The number of false paths can be very large. The approach by
Gong and Gajski [8] can partially consider false paths because
the user can specify the branching probabilities. Instead of enu-
merating false paths or, conversely, feasible paths, a language
for user annotation with regular expressions is introduced by
Park and Shaw [7]. Still, the number of required path annota-
tions can be extremely large in practice, as demonstrated with
even small examples. A major step forward was the introduction
of implicit path enumeration by Li and Malik [3].

This technique is based on the standard execution cost model
for static analysis approaches, the sum-of-basic-blocks model
(see, e.g., [9]). It can be used for timing as well as for power
consumption analysis [10]. Let a program consist ofBBs
with execution count of BB and execution cost (timing
or power). Then, thesum-of-basic-blocksmodel defines for its
execution cost interval

In implicit path enumeration, the execution count is
constrained by linear equations or inequations. Structural
constraints are derived from the program structure based on
the fact that the execution count of a BB equals the execution
count sum of all predecessors in the control flow. For each BB,
the following is inserted:

Structural equations only encode the structure of a program, but
not the feasible paths. Feasible paths have to be constrained
by the designer who provides so-called functional constraints
which are given as equations or inequations for a set of execu-
tion counts [3] such as the relative frequency of “then” and
“else” paths of an if statement. Together with the sum-of-basic-
blocks cost function, these equations and inequations form an
optimization problem. This problem is solved for the minimum
and for the maximum cost value using an integer linear program-
ming (ILP) solver. It provides a lower execution cost bound and
an upper execution cost bound.

Theiling et al. [11] use this approach. They additionally
apply abstract interpretation to the static prediction of cache
and pipeline behavior. Gustafsson and Ermedahl use abstract
interpretation to reduce excessive designer interaction for loop
bounding [12]. A related approach is proposed by Healyet al.
[13].

D. Execution Cost Model

The sum-of-basic-blocks model used in previous work is
based on the execution count and the execution cost per
BB . The execution cost can be determined by adding up the
running time for each instruction in a BB, possibly with upper
and lower bounds in case of data dependent running time,
e.g., for multiplication. This instruction cost addition (ICA)
approach leads to wide intervals in case of super scalar or
pipelined architectures. Instruction execution overlap has been
considered in recent work [14] modeling pipelined execution
when adding up the instructions. It is still assumed that all
executions of one BB take the same time.

Precise modeling of individual BBs only solves part of the
problem since pipelining and superscalar execution extend over
BB borders such that the running time depends on the pro-
gram path through a sequence of BBs. Previous approaches
must use very pessimistic intervals to be correct for all execu-
tions of one BB because empty pipelines have to be assumed,
even when loop bounds are automatically determined. In [15],
overlap blocks have been inserted between any two adjacent
blocks. In this case, the sum-of-basic-blocks equation must be
extended by the block transition frequency and cost [15]. This
works for short pipelines, but increases analysis complexity.

To obtain higher precision, the analysis should be extended
from BBs to longer program segments consisting of sequences
of BBs. Such an approach leaves us with the following two prob-
lems:

1) the identification of suitable longer program segments;
2) the extension of the cost model to program segments.
We propose a coherent approach that covers both problem do-

mains for very different architectures such as the StrongARM,
the SPARC, or the 8051. We will show that it provides substan-
tial precision improvements over previous work and, at the same
time, reduces the number of functional constraints to be defined
by the user.

We did not discuss the influence of caches. In general, cache
analysis working on BBs such as [3] can be extended to longer
program segments. The advantage is a reduced number of nodes
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Fig. 2. Flow graph with a control structure hierarchy.

to be considered which has a drastic effect on analysis time [16].
Detailed investigations are currently being done [17].

E. Basic Path Classification

Program properties can be exploited to simplify path anal-
ysis for the determination of the execution cost through BB se-
quences. Large parts of typical embedded system programs have
a single program path only. An finite impulse response (FIR)
filter is a simple example and a fast Fourier transform (FFT) is
a more complex one. There is only one path executed for any
input pattern, even though this path may include many loops,
conditional statements, and even function calls that are used for
program structuring and compacting.

Definition 3: A program segment has asingle feasible path
(SFP)when paths through the program segment do not depend
on input data.

A program segment with an SFP is an SFP segment. Previous
approaches give more than one execution path for SFP segments
because they do not distinguish between input data dependent
control flow and program structuring aids. In the best case, they
may be accurate but require much designer interaction for SFP
segments and still do not deliver the sequence-of-basic-blocks
such as [3]. In case of SFP, execution chooses the one correct
path and sequence for any input pattern without designer in-
teraction. Most practical systems also contain non-SFP parts.
These have multiple feasible paths (MFPs).

Definition 4: A program segment hasMFPswhen paths
through the program segment depend on input data.

A program segment with MFP is an MFP segment. Isolation
of SFP and MFP segments helps to exploit SFP by finding SFP
and MFP nodes in the control flow graph. Embedded MFP are
cut out and analyzed separately using ILP solving [3]. SFP are
analyzed by simulating the running time or power consumption
of the single path.

F. SFP Identification and Path Clustering

1) Hierarchical Flow Graph: For partitioning of SFP and
MFP segments, the input program is mapped to ahierarchical
control flow graph(HCFG) like the bubble sort example in
Fig. 2. In this control flow graph, every control structure, such
as and is a hierarchical node. Its associated BBs or hier-
archical nodes on lower levels are dependent nodes, which refer

(a) (b)

Fig. 3. (a) Paths of bubble sort. (b) Separation of theif construct.

to exactly one control structure. Each of the control constructs
has an associated condition that decides which of the paths is
executed. Control structures require BB nodes as well because
an execution leading to a BB and, therefore, a node may be nec-
essary for the evaluation of a condition, e.g., “ .” As in
[3], structured programs are assumed so the HCFG can model
the hierarchy of the program control segments.

Definition 5: Aprogram control segment (PCS)is a pro-
gram segment with exactly one control structure.

Control flow can only enter or leave the PCS at the current
hierarchy level with its associated control structure so SFP and
MFP segments must be disjoint. The shaded areas in Fig. 2 are
the PCS with the associated BB and lower level hierarchical
nodes of this example. Each control structure of the PCS as well
as its nodes are classified as being either SFP or MFP at this
stage.

2) SFP Identification: A depth first search algorithm on the
flow graph using symbolic simulation of BBs [9] can be used to
determine input data dependencies of conditions. Every control
structure, which does not contain an input data dependent con-
dition must be SFP. Leaf nodes are SFP by definition. If adjacent
PCS on one level of hierarchy or child PCS are classified as SFP,
they are joined to achieve longer sequences. If conditions con-
tain input data, or symbolic execution is not successful due to
the complexity of symbolic expansions, the flow graph nodes
are classified as MFP. It only means that different methods for
the determination of execution cost have to be applied leading to
wider cost intervals as explained in Section II-C. This algorithm
assigns a classification to each hierarchical node. PCS with MFP
child nodes are classified as MFP because the multiple paths
also enter and leave this hierarchical node when their control
structure is independent of input data.

3) SFP Clustering:A conservative analysis assumes that the
program paths branch at the and the statements [3] such
that all the corresponding program control segments have the
MFP property. In Fig. 3(a), two possible paths for every itera-
tion of the loop can be seen, one of which is being taken for every
iteration. When the condition in the statement is evaluated, it
can be recognized that values inare not known, meaning two
potential paths for every loop iteration leading to
potential paths through the program. The first major step is to
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Fig. 4. Node classifications follow program control segments.

Fig. 5. Single feasible path with embedded multiple feasible path.

split the program into segments, the construct and the rest.
The two paths through are now considered to be merged
into a single MFP segment. As a consequence, the paths of
Fig. 3(a) are merged into a single path through the segments

and in Fig. 3(b), which winds around the two fixed
and, hence, input data independent loops in Fig. 4.

In other terms, and become an SFP seg-
ment (SFP–PCS) which includes the MFP segment
(MFP–PCS). The MFP segment is isolated in the graph and
then analyzed as a separate graph. The remaining SFP segment
is analyzed using one of the cost models discussed before. The
isolated MFP segment is now analyzed in the same way. This
continues until we finally reach SFPs, at least at the level of
BBs which are SFP by definition. For each isolated PCS, the
execution cost is calculated.

In Fig. 5, only two subgraphs will remain, an MFP–PCS con-
sisting of the condition BB, the comparison and the , and a
single SFP segment consisting of the loops. The cut points con-
tain the conservative overheads for merging different entry and
exit paths each. In [18], we give a more formal algorithm and
show that the resulting set of PCSs can be used to compute the
execution cost with the same ILP approach as for BBs. In other
words, we can apply the same implicit path enumeration tech-
nique, but on much larger and fewer blocks, namely PPS, than
in the case of individual BBs.

Fig. 6. Path selecting property of the OAM process mode.

Fig. 7. PCS in the HCFG of the ATM switch component.

G. Context Dependent Control Flow

The analysis quality can further be improved. In the intro-
duction, we have argued that the designer is often interested in
a context dependent process behavior. Here, context is defined
to be a subset of input data and/or a subset of possible process
states, often called process modes. In each context, only a subset
of paths through a program segment can be executed. This po-
tentially means reduced cost bounds which could be exploited
for analysis. Global process representation models [2], [19] can
support process modes such that the distinguishable contexts are
known for cost analysis. A simple example for context depen-
dent control flow that increases analysis precision in an ATM
switch component is given.

One function of the ATM switch is to identify some of the
cells in the data cell stream as so-called operation administration
and maintenance cells (OAM), which control the ATM connec-
tion [20]. These cells do not carry user data so they are irrelevant
for data transmission. Fig. 6 shows a code fragment to handle
the OAM component of the switch. The control flow graph is
shown in Fig. 7. In this “OAM mode,” the shaded pro-
gram segment in Fig. 6 cannot be reached. It should not be in-
cluded in further analysis of the OAM mode while in the “USER
mode” only the path is executed. For a given context, the
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node BB2 has a single path only. In other words, the con-
texts “VCI ” corresponding to the OAM mode and “not
(VCI )” corresponding to the USER mode turn an MFP-PCS
into a PCS with a single path.

Definition 6: A context dependent path (CDP)is a path
through a PCS with control structures which only depend on
context dependent input data.

For analysis of the given context, the CDP is treated like an
SFP–PCS. Where this approach is not applicable, the reduced
path set of a given context can further be exploited via additional
structural and functional constraints [3]. In both cases, context
dependent behavior can be analyzed using the same techniques
as described before. CDP segments are only found in segments
formerly defined as MFP. At the transitions between SFP and
CDP segments, PPS containing both SFP–PCS and CDP–PCS
can be defined.

In general, the different contexts can lead to different CDPs
and, therefore, a different set of equations. So, the ILP analysis
for upper and lower bound must be repeated for each context.
Currently values for contexts are read from annotation files that
are obtained by using process modeling on the system level [2],
[19].

The path analysis approach presented up to this point is target
architecture independent as this can only influence local PPS
cost. It is a general approach that improves state-of-the-art path
analysis by an automatic detection of program properties and
the consideration of process modes.

III. A RCHITECTUREMODELING

The execution cost for an instruction, BB, SFP or PPS can be
determined by simulation for a target architecture using one of
the following two techniques.

A. Instruction Cost Addition

Instruction cost addition (ICA) uses a generalization of the
standard sum-of-basic-block approach to calculate the execu-
tion cost of PPS consisting of SFP–PCS, CDP–PCS and BBs.
For this purpose, the PPS just needs to be executed on a host
system to derive the execution count for all BBs in the PPS.
Since there is only a single path through the PPS, these instruc-
tion counts are unique. A sum-of-basic-blocks calculation pro-
vides the total cost of one PPS execution by using a cross com-
piler and instruction cost tables. This leads to accurate results
for simple architectures without overlapping BBs effects, e.g.,
caused by pipelines or caches.

The main advantage compared to previous work is that there
are no functional constraints required for SFP–PPS, alleviating
the user in the error prone and tedious task of functional
constraint definition. The user will only provide functional
constraints for the remaining MFP. The experiments will show,
however, that this is hardly ever necessary.

ICA faces the same issues for cache analysis and data depen-
dent instruction execution times as standard basic-block-based
path enumeration and the same solutions apply. If we use a cache
tracing tool [21] with the target cache model when running the
PPS on the host system, then even the instruction cache is mod-
eled correctly within the PPS and can be used in cache analysis

[3], [17]. This leads to a significantly smaller problem size since
the number of PPS containing SFP and BBs is much smaller
than the number of BBs as we can see in Section IV.

B. Program Segment Simulation

An alternative approach to execution cost analysis is to exe-
cute the PPS either by simulation or on the target architecture.
Since the PPS execution path is fixed like in a BB, the execution
costs are unique such that simulation with a single input data
set is sufficient to determine the execution costs. This approach
can consider overlapping BB effects. A conservative overhead
is added to cover the worst case of all different entry paths into
the PPS, which can represent different states for register allo-
cation, pipelines, and caches. Greater overheads are needed to
cover conservative PPS simulation startup for superscalar exe-
cution or branch prediction.

This overhead is also needed for single BBs so SFP improve
analysis precision because the BBs are extended to PPS and
intermediate overheads can be removed as the entry edge is
known. As discussed before, target architecture simulation or
execution can provide much higher precision since it correctly
models the architecture. In case of data dependent instruction
execution times, the result must be corrected for each execution
of a data dependent instruction to obtain the correct cost interval.

Caches can be treated in the same way as in the ICA
approach, either using a cache tracing tool or the target system
cache model. An overhead for the PPS start assuming first
misses is included. Both ICA and PSS require program execu-
tion. The input patterns must be selected such that all PPS are
executed at least once. In a reasonable program test, the test
patterns should have this property. Here, it does not matter if a
program must be executed several times to reach all PPS since
only a single PPS execution is regarded. When a PPS is not
reached in simulation it is extracted and simulated separately.
The pretty complex test environment which includes a flexible
interface for off-the-shelf simulators and evaluation kits is
presented in [22].

C. Software Power Consumption

The software power consumption of a PPS can be simulated
using a simplification of the methodology presented in [10].
It proposes an ICA approach with base and transition energy
values for a sequence of instructions given by host simulation.
For reduced instruction set computer (RISC) architectures, ex-
periments show that the simulation matches the measured power
consumption. Influences of data values or cache behavior can
be modeled via additional processor cycles that add to the in-
struction energy consumption. Details about recent trace-based
or higher level software power analysis approaches are consid-
ered to be beyond the scope of this work. Software power anal-
ysis using such a recent approach can be integrated into our tool
suite.

SFP identification improves software power analysis by re-
moving conservative overhead assumptions like empty caches
for BB beginnings and the resulting number of bus cycles for the
misses. So it has a major impact on the global analysis of soft-
ware power consumption because potentially dominant over-
heads are removed.
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D. Cycle True SPARC Simulation

A cycle true processor model for a 32 bit superscalar SPARC
RISC processor with four stage pipeline and floating point op-
erations has been introduced in [15]. It implements PSS as ex-
plained before and is used in the experiments in Section IV. A
GNU compiler translates PPS source code to assembly code for
the simulator. Local cache simulation for PPS can be included
by using [21] for the given address traces when a PPS is exe-
cuted.

E. Instruction Cost Addition for i8051

The ICA approach has been implemented for a simple Intel
eight bit 8051 processor. ICA is well suited for this architec-
ture as no caches or pipelines are present. The sum-of-basic-
blocks model delivers accurate results because no overlapping
basic-block execution due to sophisticated architecture proper-
ties is present. We also do not encounter data dependent exe-
cution times. Such processors are widely used in microcontrol
systems. A commercial cross compiler on a PC delivers the as-
sembly code of the PPS while debug information is used to iden-
tify BBs in the assembly code. Profiling is running on a work-
station that sets up a connection to the PC running the compiler.
Results generated by ICA have been compared to the results of
the commercial PSS simulator showing high precision for the
ICA approach.

F. Cost Simulation Approach for StrongARM

As an example for PSS a StrongARM simulator core has been
combined with the DINERO simulator [21] delivering both in-
struction and data cache behavior. Both source codes have been
recompiled to one simulator to achieve better performance. The
StrongARM cross compiler and the simulator source code have
been given by Cygnus. Architecture modeling regarding timing
has been derived from [23] while the energy dissipation model
has been taken from [24] and [10]. The results for a PPS re-
garding timing and power are already intervals because data de-
pendent instruction execution can be present. Cache simulation
starts from both first hit or miss for the interval, representing the
PPS overhead. Instruction cost tables and host tracing are also
available to implement an ICA approach, which is, of course,
less accurate due to the overlapping BB effects on a StrongARM
RISC processor. The complete StrongARM tool suite can be
used for simulation with test patterns given by the designer as
well as for the simulation of an instrumented program.

G. Prototyping Approach for SPARClite

Processor simulators for the determination of the PPS execu-
tion cost are often slow, inaccurate or even not available. So the
possibility of using commercial evaluation kits has been investi-
gated. Details presented in [25] are out of scope of the presented
approach while the results for the PPS are used. A Cygnus cross
compiler translates PPS to assembly code. Timing and power
consumption of a PPS are measured on a commercial SPARClite
evaluation kit by inserting trigger points at PPS starts and ends.
A trigger point is implemented by a store of the source code line
number information to a defined trigger address in a noncached
part of the memory space. The extension from BBs to PPS sig-

TABLE I
EXPERIMENTAL RESULTS FORPATH CLUSTERING

nificantly improves measurement precision because the instru-
mentation overhead caused by trigger points is reduced. Trigger
points are detected by a logic state analyzer and saved with a
timestamp. Any commercial evaluation kit can be used for this
purpose. Automatic download and measurement abstracts the
evaluation kit to the same level as a software simulator. The ap-
proach is considered to be an enabling technology for static soft-
ware analysis.

IV. EXPERIMENTS

The methodologies have been implemented in a tool suite
symbolic timing analysis (SYMTA) that has been applied in a
variety of experiments.

A. Path Clustering

In a first experiment, the reduction in analysis complexity
through path clustering by SFP identification has been investi-
gated. The first column in Table I shows experiments for bench-
marks taken from [3] and [9]. The second column shows the
number of BB and control nodes in the control flow graph which
is reduced to the number of PPS including SFP–PCS and BBs in
the third column. The fourth column gives the reduction of the
complexity of the graph while the fifth column gives the number
of lines in the source code. We have only analyzed the SFP and
MFP properties of the graph, no execution cost or context de-
pendency has been determined in this experiment.

The experiment reveals that many parts of programs contain
SFP segments and can be clustered to PPS which can precisely
be analyzed using simulation (PSS). We notice that through the
identification of many SFP within the loops like in the “diesel”
or the “FFT” benchmark the graphs lose most of their com-
plexity. When only one PPS remains, the complete cost can be
determined by simulation.

B. Timing Bound Analysis

In the following experiment, the timing bounds have been an-
alyzed using SYMTA and have been compared to the results of
accurate simulation. For this reason, we have selected programs
where best-case and worst-case input data can be determined by
hand to deliver the real bounds.

In Table II, only SFP identification without CDP identifica-
tion or mode annotation has been applied for now. Program seg-
ments were simulated using a cycle true SPARC simulator to
demonstrate PSS and an i8051 simulator to demonstrate ICA.
No caches have been assumed for SPARC. For i8051, results
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TABLE II
EXPERIMENTAL RESULTSUSING SFP IDENTIFICATION ONLY

are given in instruction cycles one of which consists of 12 clock
cycles. The first column shows the benchmark under investiga-
tion followed by the measured cost bounds which are followed
by the analyzed cost bounds. Analyzed bounds are tight while
staying conservative with respect to simulated bounds.

C. Improvements to Previous Work

The state-of-the-art approach presented in [3] and the current
approach are compared by their estimation errors in Table III.
In the first three columns, estimation errors for SYMTA
using PSS for SPARC are given followed by estimation errors
for SYMTA using ICA for i8051. In the last four columns,
results from [3] for i960 including estimation errors and the
number of functional constraints given by the designer are
presented. Caches have not been considered in this experiment.
They would lead to much higher BB and PPS simulation
startup overheads. No functional constraints are needed for
the SYMTA approach, only program properties are exploited
by SFP identification. Given functional constraints for the
approach from [3] are an optimal selection which is hard to
find for the designer. Estimation errorsare calculated for the
upper bounds followed by the lower bounds in the second part
of the table.

The SYMTA approach leads to tight estimation bounds
without any functional constraints even for the MFP segments.
It only exploits the program structure that implies most of
the functional constraints. The designer is not burdened with
error prone implicit path enumeration. For most benchmarks,
estimated bounds are tighter than bounds delivered by an
optimal selection of functional constraints because overlapping
BB execution can exactly be modeled for SFP segments using
target architecture simulation.

D. Case Study: OAM Component

The source code [20] of the top level of an ATM F4 im-
plementation has been investigated with the proposed method-
ology. Two modes for this process exist. In the USER mode, the
ATM cells are simply forwarded to the switch. In the OAM in-
dicated by a special virtual channel identifier (VCI) in the cell,
no user data is processed but special administration functions

are triggered. In this example, the OAM mode implies context
dependent input data for the VCI.

In Table IV, the different analysis approaches are evaluated by
their worst-case bounds with respect to running time or power
consumption for the given architectures as only worst-case as-
sumptions have been used for program segment cost determi-
nation. The results are given for the OAM mode of the compo-
nent, the switch itself has not been included and the USER mode
has not been investigated. Architecture modeling has been done
using StrongARM simulation, SPARClite software emulation
and measurement as well as SPARC simulation. For all proces-
sors, core speeds of 80 MHz, bus speeds of 40 MHz and memory
cycle times of 25 ns have been assumed to get comparable re-
sults. Caches have been intentionally switched off for program
segment cost determination in this experiment.

In the first line, results have been determined with the
methodology proposed by Li and Malik in [3] that is based on
the analysis granularity of BBs using the sum-of-basic-blocks
execution cost model. The control flow defined by the OAM
mode has been annotated using a functional constraint for the
according control structure. In the second line, the methodology
basing on SFP clusters (SFP) [9] has been applied. The OAM
mode has been annotated using a functional constraint, too. In
the third line, the context sensitive methodology (CDPSFP)
has been applied in addition to SFP identification. The OAM
mode can be considered without using functional constraints
because it defines context dependent input data for the control
structure. In the last line, the result for simulation with given
worst case data as a reference is shown.

For the analysis of the OAM mode, SFP clustering delivers
tighter bounds than the BB-based approach because original
pipeline behavior for the SFP can be modeled. The context sen-
sitive approach delivers even tighter bounds. This is caused by
the possibility to consider the BB sequence across the context
dependent control structure where the context dependent input
data is defined by the OAM mode.

E. Case Study: Filter on Packet Data

The software execution cost analysis approach has been ap-
plied to a single process, which reads a packet and loads a pic-
ture. If the picture is addressed to the system component under
investigation, it performs an “unlikely dot” filter on the picture
data and sends it to another buffer. The significant parts of the
source code are given in Fig. 8. The relevant program segments
are marked using their original C source-code line numbers.

Different potentially context dependent control structures are
present. For the program segment in line 89, the loop bounds
depend on the number of pixels that can be context dependent.
These context dependent input data can be selected by a process
mode, e.g., the processing of a “large” or a “small” picture. If
there is no such information for an execution of the process,
loop bounds assuming designer knowledge about packet and
picture size are annotated as functional constraints. They avoid
an infinite cost interval for the resulting multiple feasible paths
requiring BB-based analysis [3]. The same discussion applies to
the program segment in line 124.

For the program segment in line 122, input data for the ad-
dress can be context dependent when the address is known for a
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TABLE III
COMPARISON OFSYMTA WITH LI AND MALIK BY IMPRECISION�

TABLE IV
UPPEREXECUTION COST BOUNDS FOR THEOAM MODE

Fig. 8. Pseudocode of the packet data filter.

mode. Two possibilities are a packet for another destination or
an address match. No information about modes results in mul-
tiple feasible paths requiring BB-based analysis without further
functional constraints for this control structure. For the program
segment in line 143, these possibilities are the calculation of the
average luminance including or excluding the center pixel.

For PSS, the StrongARM processor simulator with 80-MHz
core frequency, 40-MHz bus frequency, and 25-ns memory
cycle time including local cache simulation has been applied.
Conservative first miss/hit scenarios have been assumed for
local simulation. Communicated data, i.e., the number of sent
and received bytes is delivered by the sum-of-basic-blocks
model and the amount of data communicated by an instruction.

In Table V, execution cost intervals without any mode anno-
tation or a resulting identification of context dependent control
flow are given, only the identification of SFP program segments

TABLE V
COSTINTERVALS [c ; c ] WITHOUT MODES ORANNOTATION

has been done. The first column shows the beginnings of rel-
evant PCS identified by their first line numbers in the code;
the second column shows their classifications. As the SFP pro-
gram segments are not displayed in this table and no modes
have been considered up to this point, only MFP classifica-
tions are present. The next four columns give the cost intervals
with respect to timing, power consumption of the processor core
and communicated data. The last but one line (SFP) shows the
overall process cost intervals for this approach including SFP
identification while the last line (BB) shows the results without
SFP identification using the granularity of BBs.

Due to the loop bounds given by functional constraint annota-
tion, the minimum, and maximum numbers of pixels are known
but the PCS in line 124 stays an MFP segment. Intervals are
wide because worst cases imply cache misses for the beginning
of the segment while best cases imply cache hits to deliver PSS
startup overhead. Without using SFP identification, intervals are
far wider because of the BB analysis overheads in the nested
loops.

In Table VI, a process mode has been annotated. For this
mode, an “address match” is considered which leads to context
dependent input data for the PCS in line 122. The picture size
is “large,” which leads to context dependent input data being
the loop bounds in the PCS in line 89 and 124. The calcula-
tion of the luminance is done “with” the center pixel leading
to context dependent input data for the program segment in line
143. All the according PCS become CDP–PCS because the con-
text dependent input data is defined by the process mode. The
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TABLE VI
COST INTERVALS [c ; c ] WITH MODE ANNOTATION

TABLE VII
COST INTERVALS [c ; c ] WITH DIFFERENTPROCESSMODES

CDP–PCS in line 124 is clustered to a PPS with the CDP–PCS
in line 122 and the SFP–PCS for the pixel window. All PCS
except the MFP–PCS in line 151 can be clustered to PPS al-
lowing execution cost determination by local simulation. This
leads to tighter intervals for the mode because the execution path
through the filter is known as well as the loop bounds for the pic-
ture leading to CDP–PCS. The only MFP–PCS is caused by the
nested control structure depending on picture data. The results
for the SFP approach and the BB-based approach are still in-
cluded as a reference.

In Table VII, different scenarios for disjunct process modes
have been explored. These lead to different context dependent
input data for the control structures under investigation. The first
column shows the given mode in which the process is executed.
The next four columns show the behavioral intervals with re-
spect to running time, energy consumption and communicated
data.

Compared to the BB-based analysis approach and the
approach using SFP identification without considering process
modes, it can be noticed that modes deliver tighter specific
intervals because of a more accurate path analysis. Even for
worst-case modes, intervals are tightened because the control
flow can be predicted for the corresponding control structures.
Thus, overheads at the transitions between program segments
can be removed. The remaining inaccuracy is caused by the
remaining MFP–PCS in the loop nest, where a conservative
first hit/miss scenario for the cache has to be assumed.

V. CONCLUSION

A static approach to software running time and power con-
sumption analysis has been presented. It is an extension to the
well known sum-of-basic-blocks approach with implicit path
enumeration. The most important result is the transition from
BB analysis to the analysis of complete program segments with
a single execution path. This can be either input data indepen-
dent or context dependent. The general path analysis approach is

target architecture independent. We have presented techniques
for running time and power analysis of such program segments.
Experiments on a variety of different processor architectures
and different environments demonstrate a significantly higher
precision and far less designer interaction than in previous ap-
proaches. They emphasize the superiority of our approach ex-
ploiting program properties and process modes.
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