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Introduction

The purpose of this assignment was to partly model and simulate a continuous system influenced
by stochastic signals. To do this we had to use basic identification techniques on parameters that
were not specifically given, use basic control theory to design a simple autopilot to control the
system and implement a discrete Kalman filter for wave filtering and estimation of disturbances
by using both Matlab and Simulink.

This report is organized as follows: Section 1 contains the identification of the boat parame-
ters, section 2 the identification of the wave spectrum model where we found the estimate PSD
function and analytic PSD for ψw, plus an analytic expression of the transfer function of the
wave response model. Section 3 contains the control system design where we designed an au-
topilot for the ship, such that it would be able to follow a desired course. Section 4 we calculate
the observability matrices for different variations of the system and in section 5 we implemented
a discrete Kalman filter to estimate the bias, the heading and the high-frequency wave induced
motion on the heading. In addition to this the Appendix contains the Matlab code, Simulink
diagrams and the plots.
The conclusion for the lab report is that the Kalman filter gives us good enough estimations,
that we can make a good autopilot that works in rough weather conditions.
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Preliminary

Summary of the complete system

In the navigation of the cargo ship several reference frames are used. Here we only consider
two coordinate systems ’NED’ and ’BODY’. NED is a coordinate system which lies on top of
earths longitudinal and latitudinal axes with the z axis pointed downward into the center of the
earth. BODY is places along the ship, with the x-axis from aft to fore, and y-axis from port to
starboard side and z-axis from top to bottom. fig. 1 illustrates the BODY and NED reference
frames.

N

E
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yb

Figure 1: BODY and NED reference frames

A dynamical model of the ship is represented by eq. (0.1a) and eq. (0.1b) where the speed
is low, such that some nonlinear terms as negligible

η̇ = R(ψ)ν (0.1a)

Mν̇ + Cν +Dν = θ + w (0.1b)

where

• M - is the systems inertia matrix.

• C - is the Coriolis-centripetal matrix.

• τ - is the vector of control inputs.

• w - is the vector of environmental disturbances.

• η - is the vector of NED positions [x y ψ], where x is the position in the north direction,
y is the position in the east-direction, and ψ is the angle between the north direction and
the xb axis. ψ is positive clockwise.

• ν - is the vector of BODY velocities [u v r]. Where u is the velocity in the x-direction, v
the velocity in the y-direction and r is rotation velocity about the z-axis.

The disturbances we will implement in our system are waves and current. The waves are con-
sidered to be high-frequency disturbances (white noise), while the current is a slowly varying
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disturbance. The waves representation corresponds to a spectral factorization of the wave spec-
trum and cam be modelled as a damped harmonic oscillator[

ẋw1
ẋw2

]
=

[
0 1
−ω2

0 −2λω0

] [
xw1
xw1

]
+

[
0
Kw

]
ww

yw =
[
0 1

] [xw1
xw1

]
For the current, we will assume the only effect acting on it is the rudder angle bias. Which is
modelled as in eq. (0.3e) where wb is the Gaussian white noise. Here it is important to note that
the ship can only deviate from the reference heading with a limited number of degrees.

Making the system into a state-space form we get

ẋ = Ax + Bu+ Ew (0.2a)

y = Cx + v (0.2b)

with x = [ξw ψw ψ r b]T , u = δ and w = [ww wb]
T . ψ is the average heading, i.e. without

wave disturbance. ψw is a high-frequency component due to the wave disturbance, ˙ξw = ψw, r
is the rotation velocity about the z-axis in the BODY coordinate system, and b is the bias to
the rudder angle. T is the systems time constant and K is the gain constant. The model used
can be stated as

˙ξw = ψw (0.3a)

ψ̇w = −ω2
0ξw − 2λωwψw +Kwww (0.3b)

ψ̇ = r (0.3c)

ṙ = − 1

T
r +

K

T
(δ − b) (0.3d)

ḃ = wb (0.3e)
y = ψ + ψw + v (0.3f)
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1 Identification of the boat parameters

1.1 Transfer function from δ to ψ

To start out this assignment we want to find the transfer function from δ to ψ, parameterized
by T and K. By assuming no disturbances (b = 0), the Laplace transformation of equation
eq. (0.3c) and eq. (0.3d) gives the following

L {ψ̈ = − 1

T
ψ̇ +

K

T
(δ)} (1.1)

⇒ s2ψ(s) + sψ(0) + ψ(0) +
s

T
ψ(s) + ψ(0) =

K

T
δ

and with using the zero initial condition we find

H(s) =
ψ(s)

δ(s)
=

K

s(Ts+ 1)
(1.2)

1.2 Parameters in smooth weather conditions

We now want to identify the parameters T and K in smooth weather conditions, this is with
all disturbances turned off. The input will be a sine function with amplitude 1 and frequency
ω1 = 0.005 and ω2 = 0.05.
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Figure 2: Output of the Compass with ω1 and ω2

After plotting the system, we calculated the average amplitude and got A1 = 29.354 and
A2 = 0.831. This put us in a position where we could solve the following equation for K and T.

|H(jω)| =
∣∣∣∣ K

jω(Tjω + 1)

∣∣∣∣
=

K

ω
√
T 2ω2 + 1

= A

(1.3)

where j =
√
−1 for ω1 and ω2. From this we find by, isolating K, an expression for T

K = A1ω1

√
T 2ω1 + 1 = A2ω2

√
T 2ω2 + 1 (1.4a)

6



T 2 =
A2

2ω
2
2 −A2

1ω
2
1

A2
1ω

4
1 −A2

2ω
4
2

(1.4b)

By changing the constants for their numbers the boat parameters are T ≈ 72.4264 and K ≈
0.1561.

1.3 Parameters with waves and measurement noise

In this problem we try to find the parameters K and T in rough weather condition. This
means the wave and measurement noise are turned on. To solve this task we followed the same
procedure as in the previous task.
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Figure 3: Compass comparison with ω1 and added noise, ω1= 0.005

For finding the average amplitude:

A1,1 =
65.34− 2.702

2
= 31.344

A1,2 =
65.47− 2.495

2
= 31.4875

The average of A1,1 and A1,2 then becomes 31.41575. With the noise added to the model it will
not be possible to obtain equally good estimations as it was in the previous task. This because
it is more challenging to get the right values for the amplitude.
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Figure 4: Compass comparison with ω2 and added noise

For ω= 0.05 it is nearly impossible to approximate good parameters. Figure 4 shows how
difficult it is to separate the noise from the desired signal. This will not make the model a good
approximation of the ship. A solution for this is to run the signals through a low-pass filter
before finding the values for the parameters.
After trying to find the average so that we can find a value for the amplitude we got

A1,1 =
5.384− 1.942

2
= 1.721

A1,2 =
6.36− 1.451

2
= 2.4545

A1,3 =
6.321− 0.2752

2
= 3.0229

Giving the average for A1 as 2.39946 which gave Tc = 290.67 and K = 0.1576. The new T
varied quite a bit from section 1.2. So we can conclude that tuning the ship in rough weather
conditions is not ideal.

1.4 Step response

For testing how good the approximation is, a step input of 1 degree to the rudder at t = 0 is
implemented. See fig. 19 in appendix B for the simulink implementation.
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Figure 5: Step response of the model compared to the step response of the ship

The comparison tells us that the model are close to the ship in the fist 600 second. But
after this the difference of the models increases. The bigger the deviations, will result in a non
optimal regulator. The result is acceptable, because an approximation will never exactly be like

the original system.
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2 Identification of wave spectrum model

2.1 Power Spectral Density estimate

In this subsection we want to find the Power Spectral Density (PSD) of the wave,ψw, Sψw(ω).
To calculate the PSD the matlabfunction pwelch was used. This function returns the Welch’s
PSD estimate, pxx, and a frequency vector, [7].
The following version was used [pxx, f ] =pwelch(x2, window, noverlap, nfft, fs). The noverlap
is used to overlap from segment to segment. The default of the noverlap is 50% of the window
length. Nfft is for specifies the numbers of discrete Fourier transform to use in the estimation. In
the Matlab code we made the input sequence to: psiw(2, :), this to get the data from wave.mat
that influence the waves have on the compass measurement. This data was given in degrees, so
to get it in radians it was multiplied with pi/180 since the fs is given in radians. The sample
frequency was given as 10 Hz and the window was 4096. The code used can be seen in listing 3.

2.2 Analytic expression for transfer function and PSD

In this subsection the task was to find an analytic expression for the transfer function of the wave
response model (from ww to ψw). Ans also find an analytic expression for the Power Spectral
Density function of ψw, that is Pψw(ω).

Using the same techniques as earlier to find the transfer function from ww to ψw using
eq. (0.3a)

ξw(s) =
ψw(s)

s

with ξw(0) = 0, inserting into eq. (0.3b) and using some algebra skills, we get

H(s) =
ψw(s)

ww(s)
=

sKw

s2 + 2λwws+ ω2
0

(2.1)

Then H(s) is a stable transfer function, and the PSD for ψw can be found through stationary
analysis by using the formula under from [1]

Pψw(ω) = |Ĥ(jω)|2Pωw(ω)

= H(jω)H(−jω)Pωw(ω)
(2.2)

The amplitude of ww is Pw(jω), which is white noise, that is a constant and here is equal to 1.

H(jω)H(−jω) =
jωKw

(jω)2 + 2λw0jω + ω2
0

∗ −jωKw

(−jω)2 − 2λw0jω + ω2
0

=
(ωKw)2

ω4 − 2ω2ω2
0 + 4λ2ω2

0ω
2 + ω4

0

(2.3)

Thus the PSD becomes

Pψw(ω) =
(ωKw)2

ω4 − 2ω2ω2
0 + 4λ2ω2

0ω
2 + ω4

0

(2.4)

2.3 Resonance frequency from estimated PSD

In this subsection the task was to find ω0, from the estimated PSD found in Power Spectral
Density estimate.
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The ω0 is the maximum of the power spectral density function, Sψw(ω), and describes the
frequency of waves that has the greatest impact on the head of the ship.
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Figure 6: Reading off ω0 from the estimated PSD found in 5.2.a

From the figure it was easy to determine that ω0 was

ω0 = 0.7823 (2.5)

2.4 Damping factor λ

For completing the model of the wave response, the damping factor was to be determent, λ. In
the task Kw was defined as 2λω0σ where σ2 was the peak value of Pψw(ω). To solve this task we
decided to use the trial and error method. By trying different values of λ that fitted the Pψw(ω)
to the estimate of the PSD, we have whats show in fig. 7 - 8. The final pick for λ was 0.07. In
listing 3 it is shown how the PSD function was plotted.
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Figure 7: To large values for λ

0 0.5 1 1.5 2 2.5

Frequency [Hz]

2

4

6

8

10

12

14

P
o
w

e
r 

d
e
n
s
it
y
 [
J
/r

a
d
]

10-4 Estimated with fitted PSD

pxx

P with chosen lambda

(a) λ = 0.07
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Figure 8: The best found values for λ
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3 Control System Design

In this section we want to design an autopilot for the ship. Which means we want to be able
to choose an angle ψr and the ship will follow this course. The model of the boat holds only
for small deviations for the compass value. This means the compass value cannot be more than
±35◦. We used ψr = 30 in all the following simulations. We chose not to put a saturation on
the output of the compass degree signal, this because we realized that the model always was
within a boundary of ± 35 degrees.

3.1 PD controller

In this subsection we start by designing a PD-controller in the form,

Hpd(s) = Kpd
1 + Tds

1 + Tfs
(3.1)

we base (3.1) on the transferfunction from δ to ψ and assume that the disturbances are negligible.
We let ωc and the phase margin, ϕ, of the open loop system, Hpd(s) ·Hship(s), be approximately
0.10 (rad/s) and 50 degrees respectively. The systems transferfunction then becomes

H0(s) = Hpd(s) ·Hship(s)

= Kpd
K +KTds

s3TTf + s2(T + Tf ) + s

(3.2)

We want Td to cancel out the transfer function time constant

1 + Tds = 1 + Ts

Td = T

The transferfunction becomes,

H0(s) = Kpd
K

(1 + Tfs)s
(3.3)

To find the coefficient Tf and Kpd, the cut-off frequency was given ωc = 0.10 (rad/s), we solved
the equation

1 = |H0(jωc)|
ϕ = 180− ∠H0(jωc)

(3.4)

giving the expression for Tf as

Tf =
1

ωc tan(ϕ ∗ pi/180)
= 8.39099 (3.5)

The value for Kpd is easily calculated from

Kpd =

√
ω2
c + T 2

f ω
4
c

K
= 0.836263 (3.6)

The open loop system can be show in a bode diagram, see fig. 9, with the phase margin approxi-
mately 50 degrees. Tf affects the magnitude and phase of the system, while the Kpd only affects
the magnitude. This means that a lower Tf make the response slower, while a bigger Tf would
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make the response oscillate, maybe giving an overshoot. This is because Tf limits the derivative
effect.
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Figure 9: Bode diagram with Tf = 8.391 and Kpd= 0.8363

3.2 Simulation with measurement noise

Simulating the system without disturbances, except for measurement noise, we see that the
autopilot manages to keep the reference, at 30◦. For the Simulink- diagrams, see appendix B.3
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Figure 10: Rudder and compass output of the system with measurement noise

In figure 10 we can observe that the compass course settles to 30 degrees pretty fast. The
same goes for the rudder input, it holds approximately 0 degrees. In the beginning of the plot
we can observe that the rudder input goes in saturation. The autopilot work in the desired way
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in smooth weather conditions. This was also expected because the system is an ideal model and
behave like the mathematical model.

The ship use 300 seconds to achieve 30 degrees, if the system should be faster then the Kpd

must be increased. But if this is done the phase margin will decrease, this can make the system
less stable. Notice that the rudder changes direction even though the system has reached its
reference. This is because the course changes so fast and would end in an overshoot, so the
derivative effect makes the system calm down by turning slower.

3.3 Simulation with current disturbance

The system simulated with a current disturbance, but no wave disturbances is shown in fig. 11
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Figure 11: Rudder and compass output of the system with measurement noise and current disturbance

In the figure 11, there is a standard deviation equal 3.5 degrees from the reference on the
compass course, and the rudder input is approximated 2.5 degrees. This is because the current
is model as a constant disturbance. The error in the compass course is not desirable for an
autopilot. The standard derivation in the compass is because the system has en PD regulator.
For an better autopilot, we would make an PID to integrate up the error and reach the desired
heading. But then we would have an other problem. Since the phase of the PID would bean at
180◦ and the system is not longer stable. An alternatives could be having another differentiation,
but we don’t see this as a optimal solution.

3.4 Simulation with wave disturbance

Simulating the system with a wave disturbance, but no current disturbances, we have a lot
of noise, making it harder for the autopilot. The rudder tries to counter the effect each wave
has on the ship. which means if will end up rapidly changing back and forth for each wave,
unnecessarily compensating for the wave noise.
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Figure 12: Rudder and compass output of the system with measurement noise and wave disturbance

The wave disturbance is high frequency so it make the compass course oscillating round the
reference point. In average the compass signal and rudder input, does not vary to much of the
reference, so the ship would come to the desired destination. But the signals of the rudder input
is not so precise in regards to the mechanical in the motor. To solve this we would recommend
to make state estimators for the internal states.
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4 Observability

Here we look at the matrices of the system to check the observability in different scenarios, such
as with and without different disturbances. The matrix’s was calculated in Matlab (4).

4.1 State space model matrices A, B, C and E

Using the system in eq. (0.2) with x, u and w as given, we get

A =


0 1 0 0 0
−ω2

0 −2λω0 0 0 0
0 0 0 1 0

0 0 0 − 1
T −K

T
0 0 0 0 0

 , B =


0
0
0
K
T
0

 , E =


0 0
Kw 0
0 0
0 0
0 1

 (4.1)

C =
[
0 1 1 0 0

]
(4.2)

4.2 Without disturbances

For section 4.1 - section 4.5, the observability matrix is used to study observability. It is defined
as

O =



C
CA
CA2

...
CAn−2

CAn−1


where n is the number of state variables. In listing 4, is the code used to calculate the observer
matrix observability using obsv(A,C) and rank(O). Examining the observability without dis-
turbances, we see that all states affected by the disturbances disappear, and the remaining are
ψ and r. This gives the states space matrices as

A =

0 1 0

0 − 1
T −K

T
0 0 0

 , B =

 0
K
T
0

 C =
[
1 0 0

]
(4.3)

which gives the observability matrix as

O =

[
1 0
0 1

]
(4.4)

From that we can see that the rank is equal to 2, and thus the system without disturbances is
observable.

4.3 Current disturbance

Examining the observability only counting the disturbances from the current, we see that all
states affected by the disturbances disappear and we are left with ψ, b and r giving

A =

0 1 0
0 −0.0138 −0.0022
0 0 0

 , B =

 0
0.0022

0

 , E =

0 0
0 0
0 1

 (4.5)
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C =
[
1 0 0

]
(4.6)

The observability matrix the becomes

O =

1 0 0
0 1 0
0 −0.0138 −0.0022

 (4.7)

which has a rank equal to 3, meaning it is observable with full rank.

4.4 Wave disturbance

Examining the observability only counting the disturbances from the waves, we see that all
states affected by the disturbances disappear and we are left with ψ, ψw, ξw and r giving

A =


0 1 0 0

−0.612 −0.1095 0 0
0 0 0 1
0 0 0 −0.0138

 , C =
[
0 1 1 0

]
(4.8)

with observability matrix as

O =


0 1 1 0

−0.612 −0.1095 0 1
0.067 −0.6 0 −0.0138
0.3672 0.1327 0 0.0002

 (4.9)

which from we can easily observe that the rank is equal to 4, making the system observable with
full rank.

4.5 Wave and current disturbances

Using both disturbances and the state space matrices in eq. (4.1) and eq. (4.2) we have the
observability matrix as

O =


0 1 1 0 0

−0.612 −0.1095 0 1 0
0.067 −0.6 0 −0.0138 −0.0022
0.3672 0.1327 0 0.0002 0
0.0812 0.3527 0 0 0

 (4.10)

and the rank equal to 5, making the system observable with both wave and current disturbances.
Having all there observability matrices with full rank means that its is possible to estimate the
state from the output for each of them. This in turn means that making a Kalman filter is
possible for all weather conditions.
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5 Discrete Kalman Filter

In this part a discrete Kalman filter is implemented to estimate the bias b and the heading ψ.
The high-frequented wave induced motion ψm is also estimated, but this must be removed from
the control loop to avoid wear and tear on the actuator system. We continue to be careful not
to make ψ bigger than ±35◦ and small deviations in compass value. Since the rudder angle is
constrained to ±45◦ an saturation block was placed on the input of the rudder signal. (See 13).

Kalman filtering applies a recursive method for estimation of a random process. The op-
timization criterion used is minimization of the mean-squared estimation error of the random
variable x.

5.1 Exact discretization

To use a discrete Kalman filter, a discretized system is needed. The matrices A, B and E found
in 4.1 was put into Matlab and the function c2d with sampling frequency of 10 Hz was used to
get an exact discretization of the system Ad, Bd and Ed (see code below). The c2d function
uses zero-order hold to get a discrete counterpart to the continous system, and had to be used
twice as the function only discretize two matrices at the time. The matrices Cd and Dd are the
same as C and D as shown in page 110 in [2].

1 Fs = 10 ; %Hz
2 Ts = 1/Fs ;
3

4 % d i s c r e t i z a t i o n
5 [Ad, Bd ] = c2d (A,B, Ts ) ;
6 [Ad, Ed ] = c2d (A,E, Ts ) ;

5.2 Estimate of measurement noise variance

To find the estimate of the variance of the measurement noise we used the Matlab function var
on the measured compass course. This data was imported from Matlab and transformed from
degrees to radians before taking the mean variance. The variance was found to be = 6.0813∗10−7.

1 % var iance o f measurement no i s e
2 load ( ' data . mat ' ) ;
3 compass_data = data ( 2 , : ) ; %compass ( deg )
4 mes_var = var ( compass_data∗ p i /180) ; % Measurment no i c e in rad ians

5.3 Implementation of discrete Kalman filter

To implement the discrete Kalman filter we chose to use a Matlab function block in Simulink.
To initialize the filter the following was given from the assignment

w = [ww wb]
T , E{wwT } = Q =

[
30 0
0 10−6

]
(5.1)

P−
0 =


1 0 0 0 0
0 0.013 0 0 0
0 0 π2 0 0
0 0 0 1 0
0 0 0 0 2.5 · 10−3

 , x−
0 =


0
0
0
0
0

 (5.2)
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w is the process noise, Q is the process noise covariance, x̂−
0 is the initial a priori state esti-

mate and P−
0 is the initial a priori estimate error covariance. E(v2) = R = variance

Ts
where the

variance was found in the previous section and Ts was 1
Fs
. This is because the process is sampled.

Now with the initial phase defined the equations from [2] was used to create the Kalman filter.
The first step of the Kalman filter is to calculate the new Kalman gain, K.

K = P−CT
d (CdP

−CT
d +R)−1; (5.3)

With this new gain it is now possible to move to the second step which is to update to our new
state x̂ and our new estimate error covariance P , also known as x̂ and P a posteriori. The y
used here is the measured compass course.

x̂ = x̂− +K(y −Cdx̂
−) (5.4)

P = (I −KCd)P
−(I −KCd)

T +KRKT ; (5.5)

The third step is to project ahead and create what will become the new x and P a priori.

x̂−
k+1 = Adx̂+Bdu (5.6)

P̂
−
k+1 = AdPAd

T +EdQEd
T ; (5.7)

All of these functions plus the initialization was implemented in Matlab as seen 6. The new
estimated compass course ψ, here called y_est, and the bias b was updated at the end to be
used in the controll loop.

The Simulink implementation of this part can be seen in 22.Here a Zero Order Hold block
was used to make the signal discrete. This was necessary to do since the design was a discrete
Kalman filter.
The Kalman filter depends on the control input, but the input of the Kalman filter depends on
the output for the Kalman filter. This does that Simulink is not able to determine the initial
values and blame on an algebraic loop. This is solved by adding a Memory block on the output
of the Kalman filter.
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Figure 13: Signal with and without Kalman filtering

As seen in the fig. 13 the signal that is filtered form the Kalman filter use some seconds to
adjust to the correct values. This is not a big concern when the deviation is approximately 2
degrees, and over some seconds.

5.4 Simulation with current disturbance with feed forward

For testing the Kalman filter and the performance of the autopilot a simulation with ψr = 30
was used. The figure 14 shows the values in the simulation.
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Figure 14: Autopilot with Kalman filtering and current disturbance

The biggest difference is that the compass course contains 30 degrees. This is because the
rudder bias that is estimates is accurate enough to cancel out the real rudder bias. Hence, we
have a better performance of the autopilot then in section 3.3.

5.5 Simulation with wave and current disturbance and wave filtering

In this subsection we are simulatin with both wave and current disturbance. Instead of the
measured compass couse we use the wave filtered ψ signal.
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Figure 15: Autopilot with Kalman filtering with wave and current disturbance

In figure 15 is the simulation with wave and current disturbance. A big difference from the
autopilot in section 3.4 is that the rudder input does not fluctuate as much. This is a desirable
because the system would must likely be less damaged by the oscillation from the rudder signal.
The estimated compass course is the filtered compass course from the Kalman filter, we see here
that the signal is better that without the Kalman filter.
An alternative could we using a low-pass filter on the compass measurement. This would prob-
ably removed some of the ψω, but not the wave disturbance. The conclusion is that with the
Kalman filter we get a more robust and reliable system.

The last figure (16 represent the comparison of the actual wave influence and estimated wave
influence on the ship. As the figure shows the estimation is good, even sometimes the estimation
wave is to small.But we are happy with the result.
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A MATLAB Code

A.1 Part 1

Listing 1: Matlab code showing how the tack in part 1 was solved

1 c l c ;
2 c l e a r a l l ;
3 c l o s e a l l ;
4

5 % I n i t i a l i z a t i o n
6 om1 = 0 . 0 0 5 ;
7 om2 = 0 . 0 5 ;
8

9 % b) c a l c u l a t i n g paramteres K and T
10

11 % Observed ampl itudes f o r omega_1 and omega_2 :
12 A1 = 29 . 3 54 ; A2 = 0 . 8 3 1 ;
13

14 %Calcu l a t ing T and K with ba s i c a lgebra
15 T_sqr = (A2^2∗om2^2 − A1^2∗om1^2) / (A1^2∗om1^4 − A2^2∗om2^4) ;
16 T = sqr t (T_sqr ) ;
17

18 K = A1∗om1∗ sq r t (T^2∗om1^2 + 1) ;
19

20 % c ) parameters with no i s e
21

22 % Average ampl itudes
23 A1_C = 31 .41575 ; A2_C = 2 .39946 ;
24

25 % New va lues f o r T and K
26 T_sqr_C = (A2_C^2∗om2^2 − A1_C^2∗om1^2) / (A1_C^2∗om1^4 − A2_C^2∗om2

^4) ;
27 T_C = sqr t (T_sqr_C) ;
28

29 K_C = A1_C∗om1∗ sq r t (T_C^2∗om1^2 + 1) ;

A.2 Part 2

Listing 2: Matlab code showing how the PSD function was calculated

1 % Part 2
2 load ( 'wave .mat ' ) ;
3 Fs = 10 ;
4 window_size = 4096 ;
5

6 [ pxx , f ] = pwelch ( psi_w ( 2 , : ) ∗( p i /180) , window_size , [ ] , [ ] , Fs ) ;
7 omega= 2∗ pi ∗ f ; %rad/ s ]
8 pxx= pxx . / ( 2∗ p i ) ; %[ s / rad ]
9

10 f i g u r e
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11 p lo t ( omega , pxx ) ; hold on ;
12 %w_0 was i d en t i f y d by the p l o t
13 w_0 = 0 . 7823 ;
14

15 %Calcu l a t ing sigma , sigma^2 was the peak value og the p l o t
16 sigma= sq r t (0 . 001484) ;
17

18 %Finding lamda
19 lambda = 0 . 0 8 ;
20 Kw = 2∗lambda∗w_0∗sigma ;
21

22 s s = (Kw^2∗omega .^2) . / ( omega.^4+w_0^4 +2∗omega .^2∗w_0^2∗(−1+2∗lambda
^2) ) ;

23 p lo t ( omega , s s ) ;
24 x l ab e l ( ' Frequency [Hz ] ' ) ; y l ab e l ( 'Power dens i ty [ J/ rad ] ' ) ;
25 t i t l e ( ' Estimated with f i t t e d PSD ' ) ; l egend ( ' pxx ' , 'P with chosen

lambda ' ) ;

A.3 Part 3

Listing 3: Matlab code showing the code for part 3

1 %Part 3
2 K_pd = 0 . 8633 ;
3 T_f = 8 . 3909 ;
4 T_d = T;
5

6 %Bode
7 s = t f ( ' s ' ) ;
8 H = K_pd∗K/ (T_f∗ s ^2 + s ) ;

A.4 Part 4

Listing 4: Matlab code showing the calculation for showing the observability

1 %Part 4
2 A = [0 1 0 0 0 ; −w_0^2 −2∗lambda∗w_0 0 0 0 ;
3 0 0 0 1 0 ; 0 0 0 −1/T −K/T; 0 0 0 0 0 ; ] ;
4 B = [0 0 0 K/T 0 ] ' ;
5 E = [0 0 ; K_w 0 ; 0 0 ; 0 0 ; 0 1 ] ;
6 C = [ 0 1 1 0 0 ] ;
7

8 % No distubance
9 A_b = [0 1 ; 0 −1/T ] ;

10 B_b = [0 K/T] ' ;
11 C_b = [1 0 ] ;
12 obs_b = obsv (A_b, C_b) ;
13 rank (obs_b) ;
14

15 %With cur rent
16 A_c = [0 1 0 ; 0 −1/T −K/T; 0 0 0 ; ] ;
17 B_c = [0 K/T 0 ] ' ;

27



18 E_c = [ 0 0 ; 0 0 ; 0 1 ] ;
19 C_c = [1 0 0 ] ;
20 obs_c = obsv (A_c, C_c) ;
21 rank ( obs_c ) ;
22

23 %With wave d i s turbance
24 A_d = [0 1 0 0 ; −w_0^2 −2∗lambda∗w_0 0 0 ;
25 0 0 0 1 ; 0 0 0 −1/T ; ] ;
26 c_d = [0 1 1 0 ] ;
27 obs_d = obsv (A_d, c_d) ;
28 rank (obs_d) ;
29

30 %With cur rent and wave d i s turbance
31 obs_d = obsv (A,C) ;
32 rank (obs_d) ;

A.5 Part 5

Listing 5: Matlab code showing the Kalman function

1 f unc t i on [ phi , b ] = kalman ( r , cm, ks )
2 p e r s i s t e n t i n i t x_pri P_pri y_pri Ad Bd C Ed Q I R
3

4 i f isempty ( i n i t )
5 %I n i t i a l i z i n g cons tant s
6 Ad=ks .Ad ; Bd=ks .Bd ; C=ks .C; Ed=ks .Ed ;
7 I=ks . I ; R=ks .R; Q=ks .Q; y_pri=ks . y_pri ;
8 % I n i t i a l i z i n g f i r s t s tep
9 P_pri = ks . P0_pri ;

10 x_pri = ks . x0_pri ;
11 % Making sure i n i t i a l i z i n g only once
12 i n i t = 1 ;
13 end
14 % Updating the Kalman f i l t e r
15 K_post = P_pri∗C' ∗ inv (C∗P_pri∗C'+R) ;
16 x_post = x_pri+K_post∗(cm−y_pri ) ;
17 P_post = ( I−K_post∗C) ∗P_pri ∗( I−K_post∗C) '+K_post∗R∗K_post ' ;
18

19 %Pro j ec t ahead
20 P_pri = Ad∗P_post∗Ad'+Ed∗Q∗Ed ' ;
21 x_pri = Ad∗x_post+Bd∗ r ;
22 y_pri = C∗x_post ;
23

24 % Set t ing the output
25 phi = x_post (3 ) ; b = x_post (5 ) ;
26 end

Listing 6: Matlab code showing implantation for Kalman filter

1 %Part 5
2 % c )
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3 R = mes_var/Ts ;
4 P0_pri = [ 1 0 0 0 0 ; 0 0 .013 0 0 0 ; 0 0 p i ^2 0 0 ;
5 0 0 0 1 0 ; 0 0 0 0 2 .5 e−3] ;
6 x0_pri = [ 0 0 0 0 0 ] ' ;
7 Q = [30 0 ; 0 1e−6] ;
8 I = eye (5 ) ;
9 ks = s t r u c t ( 'Ad ' ,Ad, 'Bd ' ,Bd , 'C ' ,C, 'Ed ' ,Ed , 'R ' ,R, 'Q ' ,Q, ' I ' , I , ' P0_pri ' ,

P0_pri , ' x0_pri ' , x0_pri ) ;
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B Simulink Diagram
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Figure 17: System for part 1 b)
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Figure 18: System for part 1 c)
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Figure 19: System for part 1 d)

B.2 Part 2
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Figure 20: System for part 2
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B.3 Part 3
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Figure 21: System for part 3

B.4 Part 5
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Figure 22: System for part 5 c)

32



Saturation

30

Constant

D2R

d2r

R2D

r2d

ref control signal

PD regulator

Scope

North-East

delta (deg)

compass (deg)

y

x

Cargo ship

data.mat

To File

kalman

u

y

y_est

b

MATLAB Function

Memory

Memory1

zoh

zoh1

R2D

r2d2

R2D

r2d1

D2R

d2r1

D2R

d2r2

Figure 23: System for part 5 d)
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Figure 24: System for part 5 e)
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Figure 25: System for part 5 e, finding wave influence)
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