
Available Fail-Safe §ystems*

D. Essamk, J. Arlat, D. Powell

LAAS-CNRS
7, avenuc du Colonel Rochc

31077 Toulouse Cedex 4, France

ABSTRACT

Continuity of service and cost-effectiveness are adding
new challenges to life critical systems over and above the
underlying safety concerns. The introduction of redundant
components is a necessary condition for increasing the
overall system availability with respect to physical
component failures. Here we consider redundancy by
means of replicating fail-safe components in a distributed
real-time system f o r railway applications. In such a
system, some functions cannot tolerate even a brief service
interruption. These functions have to be replicated using
active redundancy, and their outputs must be consolidated
with the goal that the failure of one component has no
effect on the delivered service. We formally investigate
conditions fo r preserving safety properties of fail-safe
components when replicating them using active
redundancy. We focus our analysis on duplex computers
with two fail-safe units. Given some safety constraints, we
show that inconsistency of replicated units can lead to
safety degradation even if each replicated component
(taken individually) satisfies the given safety constraints.
Two solutions are studied: masking and detection of state
or context inconsistency. The former leads to requirements
on the output consolidation function and the latter to
requirements on the redundancy management
mechanisms.
Keywords: fault tolerance, redundancy, safety, fail-safe
systems, safety property preservation, output consolida-
tion, real-time systems, railway applications.

1. Introduction
During the last decade, many applications of computer

systems have emerged in the field of railway systems:
automatic speed control (SACEM [111, Shinkansen [2]),
interlocking systems (SMILE [11, CBI [131, ELEKTRA
[12]), train route and traffic control (COMTRAC [lo]),
fully automated train control (MAGGALY: Metro A
Grand Gabarit de 1’Agglome‘ration LYonnaise) and others.
Fault-tolerant computing systems are increasingly used to
meet the stringent dependability requirements that, besides
safety, extend to availability and to maintainability.
Indeed, improvement of quality of service, continuity of
service and cost-effective exploitation are adding new

challenges to railway system designers beyond the
underlying safety concerns [3].

Different architectural solutions have been used to
ensure safety. These range from simplex and duplex to
dual duplex and TMR architectures. Similarly, several
approaches have been taken to satisfy the availability
requirement. In particular, two different approaches can be
identified:

Ensure availability first and then address the safety
issue globally. A typical example of such an approach
is the electronic interlocking system ELEKTRA [121.
This system has two TMR channels (VOTRICS node
[IS]) in a ControlMonitor configuration implementing
the “safety bag technique” [141. The control channel,
or Interlocking Computer performs interlocking
control functions whereas the monitor channel, or
Safety Bag Computer ensures that safety conditions are
respected. Thus, reliability and availability are
achieved by using actively triplicated hardware in each
channel while safety is achieved by inter-channel
checking.
Replicate safe building blocks to ensure availability;
on the contrary to the previous approach, each basic
block can ensure safety. Typical examples of such an
approach are systems based on the “coded processor ”
[8]. This is an informational redundancy technique
associating arithmetic coding and signature checking.
Since encoded data proccssing is uscd to mect the
safety requirements, replication is only necessary for
availability.
In this paper, we consider the second approach above.

The main problem we address is how to increase the
availability of a system without degrading its safety. We
have based our study on the fully automated train control
system METEOR (METru Est Ouest Rapide), designed to
control the new east-west subway line in Pans.

This system consists of duplex computers intercon-
nected by a network. Both units of the duplex computer
are fail-safe and are based on the coded processor
approach. In such a system, some functions cannot tolerate
even a brief service interruption. An example of such a
function is the high voltage control where any interruption
of service leads to a system shutdown. Since a system
shutdown has a very negative effect on system availability
(restart can take a long time) such functions have to be

0

* This work was partially supported by Matra Transport Internationnal

176
1071-0485/97 $10.00 0 1997 IEEE

replicated using active redundancy. For this target system
we define some safety constraints that are assumed to be
satisfied by each redundant component. We consider
output consolidation techniques that allow continuous
service to be achieved. However, we show that state or
context inconsistency of replicated components can lead to
safety degradation even if each replicated component
(taken individually) satisfies the given safety constraints.
We formally investigate the conditions for preserving
safety properties of fail-safe components when replicating
them using active redundancy within a safety constraints
analysis framework. Two approaches are considered:
masking and detection of inconsistency.

The rest of this paper is structured as follows. After
defining the notion of a safety constraint, we show how
context inconsistency of actively replicated components
can lead to safety degradation even when each component
is fail-safe. Afterwards, we formally investigate the
conditions under which the safety properties are preserved.
Both output consolidation and redundancy management
mechanisms are studied. We then describe a protocol that
ensures that the safety properties hold.

2. Definition of safety constraints
Given a fail-safe component, let X be the set of actions

that this fail-safe component can undertake on its
environment. These can be safety-related actions (e.g.,
high voltage control) or functional actions (e.g., sound
alarm control).
Definition 1-Dependency relation
Given two actions x, y E X , we say that action x depends on
action y if and only ifaction y is a necessary precondition
for action x. We note this relation y < x .

Two actions x and y are dependent if they are linked
by the dependency relation; if not, they are independent.
The dependency relation defines a partial order on the set
of actions X . The dependency relation links actions that
have to be undertaken in a given order to meet either
safety or functional requirements. Undertaking such
actions in a different order can lead to system failures
ranging from benign to catastrophic.
Definition 2-Safety constraint
Given two dependent actions x , y E X such that y + x .
There is a safety constraint between x and y if
transgression of the dependency relation can lead to a
catastrophic failure.
It is important to note that two actions can be dependent
without there being a safety constraint.

Let p be the following predicate:
p : X H {false ; true }

with p(x)=trueif the action x is undertaken and p(x)=false
if not, Vx E X .

Given this predicate, the respect of the dependency
relation for two actions x and y such that Y < x requires
that p (y) be a valid consequence of p(x). More formally,
the formula p (x) + p (y) must always be true. In other

words, the interpretation where p(x)=true and p(y) fa lse ,
must be avoided. Therefore, the safety constraint between
actions x and y can be stated formally by:

(P b) + P (Y)) = true

3. System Model
The system consists of networked duplex controllers

made up of two fail-safe units based on the coded
processor.

The units can conimunicate with each other and with
remote units by messages sent over a network. The
network is very reliable, but not enough for human lives to
depend on it. Thus, from a safety viewpoint, we must
assume that the network can loose or delay messages.
However, message integrity is ensured by error-detecting
codes. In the terminology of [4], messages sent over the
network have omission/performance failure semantics.
The local clocks of units are not synchronized. However,
every unit checks the rate of drift of its local clock with
respect to real-time and switches to the safe mode if the
drift exceeds a predefined bound. Consequently, the local
clock of an operational unit has a bounded rate of drift
from real-time. Thus, the system satisfies the timed
asynchronous model [6].

Since delayed messages can impair safety, a fail-aware
datagram service similar to the one described in [7] is
available for message delivery. Thus delayed messages
can be thrown away.

3.1 Replication
Both availability <and safety are key issues in railway

systems. To achieve the availability requirements, some
functions are replicated on different components of the
system. Three modes of replication can be considered:
active replication (all the replicas receive inputs, update
their internal state or and apply outputs to the
environment), semi-active replication (all the replicas
receive inputs, updale their internal state, but only one
replica-the primary replica-applies outputs to the
environment) and passive replication (only one replica-
the primary replica-]receives inputs and applies outputs to
the environment). Active replication is necessary when the
function cannot tolerate any service interruption, but
requires a specific mechanism to combine redundant
outputs into a single effect. Semi-active replication can be
used when a short service interruption (due to switchover
delay) can be tolerated. Passive replication is particularly
well adapted to functions with no internal state since, in
this case, there is no need for checkpointing.

In the particular case where the primary (resp.
secondary) replicas of all functions are allocated
exclusively to the same unit, we call this unit the Primary
(resp. Secondary) unit. Here, we consider the case where
two fail-safe unit are used in a primary/secondary
configuration to meet the availability requirement.

177

32 Output consolidation
We call output consolidation the process of combining

redundant outputs from active replicas inta a single effect
(Fig. 1).

* m 0 "

2%
t i e !
T g
$ 2
(np.

Fig. 1 : Output consolidation device

To fulfil the continuity of service requirement, the
replica outputs must be consolidated with the goal that the
failure of one replica has no effect on the expected service.
Let us consider the control of the High Voltage (HV)
power to the train track. We consider a duplex computer
with two fail-safe units A and B. Since the loss of HV has
a very negative effect on the system availability', this
function has to be replicated using active replication. Each
unit has an HV control output (AutHVA for A and AutHVB
for B) which is true if the unit allows HV and false if not;
with the safe position being when this control output is
false. Since each unit is fail-safe, in the case of a detected
failure, it always switches to the safe position by setting
the given output to false. For this example the OR logic
function can be used to allow continuous service. Indeed
we have:

where AutHV is the final control output to be applied to
the environment. If the unit B fails, it sets AutHVB to false
so one has : AutHV= AutHVA +false = AutHVA.

AutHV = AutHVA + AutHVB

4. Problem statement
Redundancy introduces potential safety problems that

would not exist in an unreplicated system. We state the
problem by means of an example. In fully automated train
systems, one of the critical procedures to be handled is the
emergency evacuation of passengers. This procedure
needs many actions to be undertaken on the environment.
Two of these actions are: cut power to the rails (HV-Cut:
setting AutHV to false) and open doors of the train
(Doors-Open). Since opening doors without cutting the
High Voltage can lead to a catastrophic failure, according
to Definition 2 , there is a safety constraint between
HV-Cut and Doors-Open. Therefore, according to the
previous predicate p , one has :

@(Doors-Open)-+p(HV-Cut)) true
Let us consider two fail-safe units (A and B) of a

duplex computer (D) in a primaryhecondary configuration
with unit A as Primary. We assume that the High Voltage
control function is replicated using active redundancy with

' A power cut brings all trains on the line to a halt Recovery from this
situation requires a lengthy verification procedure including, for
example, checking that no passengers have strayed from the immobile
trains.

OR-logic for output consolidation. However, since the
door opening function can tolerate service interruption,
this function can be replicated using semi-active or
passive replication. Thus, we assume that only the primary
applies the corresponding output to the system. Let pA
(resp. pB, p D) stand for the predicate p with respect to unit
A (resp. unit B, duplex computer D).

We consider a scenario in which, due to some
transmission error, the states or contexts of unit A and B
have become inconsistent, such that:
6 A has detected an emergency evacuation situation,
6 B has not (yet) detected the emergency.
This leads to the following situation:
For unit A which has detected the emergency evacuation:
0 Set the A u t H V A to false to shutdown the HV:

p,(HV-Cut) = true;
Open train doors: p,(Doors-Open) = true;
Thus: (p,(Doors_Open)-+ p,(HV-cut)) = true.

For unit B which has not detected the emergency
evacuation:
* No HV shutdown, AutHVB=true: pB(HV-Cut) =false;
0 No train door opening: p,(Doors-Open) =false;

Thus: (pB(Doors-Open)-+ p,(HV-Cut)) = true.
For the duplex computer D:
0 Since the final output for HV is obtained by the OR

logic function: AutHV = AutHVA + AutHVB, one has
no HV shutdown: pD(HV-Cut) =false;
Since unit A is the primary unit and the door opening
function is replicated in semi-active replication mode,
one has p,(Doors_Open) = true;
Thus: (p,(Doors-Open)+ pD(HV-Cut)) =false.

0

Both units A and B individually satisfy the safety
constraint, however the duplex computer D does not. This
example shows how context inconsistency of redundant
units can lead to safety degradation even when each unit is
fail-safe. It can be shown that such situations arise if some
or all actions result from actively-replicated functions. For
simplicity, we choose here to consider only the case where
the other action results from a semi-actively replicated
function.

One solution to this problem would be to implement an
atomic broadcast service to ensure that replicas agree on a
consistent context. Given a team of n units and
dynamically-formed groups, Cristian identifies three
different specifications for replica consistency in timed
asynchronous systems [SI:
0 Group agreement which ensures that all members

joined to the same group agree on a history of updates.
0 Majority agreement which ensures that all members

joined to a majority group (a group with more than half
of the team's members) agree on a history of updates.

0 Strict agreement which ensures that all team members
agree at any time on a unique history of updates.
Unfortunately, none of these forms of agreement

solves the inconsistency problem for a duplex controller (a
team with two members). With the Group agreement
specification, in case of communication failure, the team
will be divided into two groups allowing replica updates to

178

occur in parallel with the possibility of context
inconsistency. Majority and Strict agreement are also
unsuitable since in case of communication failure, it is
impossible to obtain a majority group. It has in fact been
shown that it is impossible for two units to agree if
messages between them can be lost (see the "two-generals
problem" in [9]).

Given that context inconsistency cannot be avoided in
duplex controllers interconnected according to the timed
asynchronous model, we now focus our study on how to
preserve safety constraints by to lera t ing context
inconsistency. We address the problem by means of
context inconsistency masking and context inconsistency
detection.

5. Safety constraint preservation
To enhance the fail-safe property of a unit U such that

U E {A,B}, we introduce a boolean variable U (i.e., a for
unit A and b for unit B) which is equal to true if it is
providing its nominal service and to f a l se if the unit
switches to the safe mode. When a unit is in the safe
mode, all its safety outputs are in their safe position and
no control outputs are sent to the environment. When a
failure occurs, the fail-safe property guarantees that the
unit always switches to the safe mode.

Given x, y E X , two dependent actions such that y < x
with a safety constraint, we can state the following axiom

ab -+ PD(Y) = P B (Y)

Both statements can be summarized formally by the

OCsa : pD(.) = ~ . p ~ (~) + i ? . b . p , (n)
For active replication (action y) , the first requirement

If one unit switches to the safe mode (a=false or
b=false) then responsibility for action y will be
transferred immedliately to the other unit:

following property:

is continuity of service:
1,

a6 + P d Y) = P A (] ?)

ab -3 PD(Y) = P h i)
While both units are providing their nominal service,

we successively consider the following exclusive
statements:
2,e When both units are providing their nominal service,

the action y is undertaken by the duplex computer D
if e r unit decides:

2,b When both units are providing their nominal service,
the action y is undertaken by the duplex computer D
if both units decide:

ab -3 P J Y) = PA(Y 1 + PB(Y)

ab -3 PD(Y) = PA(Y).PB(Y)
As for semi-active replication, these statements can be

summarized formally by the following two properties,
when combined with the requirement 1,:
OCe : p ~ (y) = a . b ' p A () ') + a ' b . ~ B (y) + a . b . (~ A (y) + p , (y)) -

for a fail safe unit U, with U E {A,B}: = U.PA(.Y) +b.PB(Y)
OCb: P,(Y) = a.&?h) + Z.b.P,(Y) + a.b.p,(y).p,(y)

- = (a'b + a P A (y))('.' + b'PB(Y)) satisfied by a fail-safe unit U , i.e. p U (x) . p u (y) = true

to unit U.
Both A and B are fail-safe, so we assume that all

outputs towards the environment are put into a safe state if

We now consider the consequences of these two
where PU stands for the Previous predicate P with respect approaches (OCe and OCb) on the safety constraints of the

duplex computer D.
1"case: p D (y) = u.pA('y)+ b.p,(y)

both units should fail. Thus, we can henceforth neglect the
case a=b=false.

5.1 Context inconsistency masking
Let us suppose that action x is the result of a function

replicated in semi-active mode while the action y is the
result of a function replicated in active mode. Each output
consolidation is defined in terms of the properties that it
ensures. Here we give such properties for semi-active and
active replication modes. We assume that unit A is the
current Primary.

When semi-active replication is used (action x) , one
expects that the following two exclusive and complete
statements be ensured:
l,, As long as the Primary unit A provides its nominal

service (a=true) then it ensures the action x:

If the Primary switches to the safe mode @=false)
then the action x will be ensured in a bounded delaf
by the Secondary unit (B) if it does not fail (b=true):

a -j P J Y) = PA(Y)
2,,

For simplicity, we do not formalize here the temporal aspects of the
problem.

which gives by developing and using axiom 1:
-

PO(X).PD(Y) =

= jU1SC = fUbr

and finally: l--p,o.p,(y)l (1)

In the first case, the safety constraint always holds,
while in the second, we must either have one unit switched

179

to the safe position (a=false or b=false) or p,(y) = p , (y)
(no context inconsistency: both units must reach the same
decision) for the safety constraint to hold.

In conclusion, an output consolidation function
ensuring property OCb is not sufficient to tolerate context
inconsistency. This was the case of the OR-logic function
described in the previous example with:

For the action y = HV-Cut, this gives:

which can be shown to satisfy OCb, but not OCe.
When such an output consolidation technique is used,

it is necessary to avoid context inconsistency to preserve
the safety constraint. However, with an output
consolidation function ensuring property OCe, there is no
need to give an absolute guarantee on context consistency,
to preserve the safety constraint, since such an output
consolidation function effectively tolerates inconsis-
tencies. It can be shown that property OCe is satisfied by
the following function:
AutHV = a.b.AutHVA i- Zi.b.AutHVB i- a.b.AutHVA.AutHVB
which achieves both continuity of service (when one unit
fails) and safe operation in case of inconsistency.

5 2 Context inconsistency detection
We have shown in the previous section that an output

consolidation technique fulfilling OCe can tolerate context
inconsistency. Unfortunately, a fail-safe implementation
of such a function would be quite expensive in practice.
Here we present an alternative solution that allows the
safety constraints to hold even if the output consolidation
technique does not fulfil O C e . The key idea of our
approach is to detect context inconsistency and switch the
duplex controller to a configuration which allows the
safety constraint to hold.

We define four states for each fail-safe unit: primary,
standby, quarantine and failed. When the unit is in the
quarantine or failed states, it is said to be in the non-
operational or safe mode, in which it cannot deliver
outputs to the environment. A unit in the primary or
standby states is in the operational mode (Fig. 2) .

AutHV=a.AutHVA i- b.AutHVB
- - -
PD(Y) = a 'pA(y) +b'p,Y(y)

Operational mode

Redundancy swapping

- -

Fig. 2 : State graph of a fail-safe unit
A unit is in the pr imary state when it is the current
Primary. The current Secondary unit can be in the standby

state, if its context is consistent with the current Primary's
context. Otherwise, it is in the quarantine state. The
quarantine state is an intermediate state that is introduced
for safety purposes: the Secondary unit is put in quarantine
when its context is inconsistent with the Primary's
context. When a unit is in quarantine, it switches to the
safe mode. Toward this goal, we can state the following
objective for safe 0peration:The protocol that manages the
redundant pair of units must either ensure that their
contexts are kept consistent or else force the Secondary
unit into the quarantine state.

Let C, be the context of unit U, with U E {A,B} and
ELI its state, with ELI E {przmary,standby, quarantine, failed}

Here we define two safety properties for the
redundancy management protocol and show that these
properties are sufficient to guarantee fail-safe behaviour of
a redundant pair. For i , j E { A , B } , i # j

Unique Primary property (UP):

Quarantine property (Q):
(E, = primary) + (E, + primary)

(E, = primary) A (s, # s,) + (E, # standby)
With the UP requirement we prohibit the possibility of

having two Primary units. This is for safety, since we need
only one leader at any given instant. The Q requirement
states that the Secondary unit must not become or remain
in the standby state if its context is inconsistent with the
current Primary. We now show formally how these
requirements can circumvent the context inconsistency
problem identified before. For the proof, we need the
following axiom which emphasizes the deterministic
behaviour of each fail-safe unit.

time t an event which should cause it to undertake an
action, then if the unit does not fail, this action will be
undertaken by time t + t , .

and B. If there exists in D a mechanism- that guarantees
UP and Q then every safety constraint that holds on A and
B also holds on D even if the output consolidation
ficnction does not achieve OCe.
Proof
Let us consider X, y E X , two dependent actions such that
y + x with a safety constraint. Let us also assume that the
action x is the result of a function replicated in semi-active
mode while the action y is the result of a function
replicated in active mode. Assuming that unit A is the
Primary and that the output consolidation functions for x
and y satisfy respectively OCsa and OCb, we have shown
that the safety constraint for D is given by (1):

- __
pD(')PD(Y) = a+b+ PA(')PB(Y)

Let's CA (resp. C,) be the context of unit A (resp. B) .
Unit A is the Primary so EA =primary, property U P
gives by the modus: E, + primary or, equivalently:

180

(EB = standby) v (EB = quarantine) v (EB = failed)
If b=true (unit B in operational mode) then the quarantine
and failed states can be excluded since they belong to the
non operational mode. Therefore: EB = standby. Then, by
applying modus tollens on property Q we obtain: c, = CA.
Moreover, Axiom 2 guarantees that if C, = C, at time t
then at most at time t + rd one has p B (y) = pa (y) if unit B

-

does not fail. Therefore, since: - -
P,(X)P,(Y) = a + g + P A (x) P B (y)

SP;
FS:

then, at time t + td :
-if unit B does not fail (b=true):

-or if unit B fails (b=false):

- -
p,(x)p,(y) = a+ pA(x)pA(y) = true (from Axiom 1)

- -
PD(x)PO(Y) = true + ‘+ PA(x)PB(Y) =

If C, # CA at time t (context inconsistency) then under the
assumption that unit A is the Primary (E A = primary),
property Q gives by modus ponens: EB # standby. Since
the property UP gives by modus ponens: EB # primary,
we conclude that the Secondary unit B will be in the non
operational mode, (EB = quarantine) v (EB = failed), and
thus switched to safe mode, implying b=false. Therefore, - -
since: P O (x) P O (Y) = pA(x)PB(y) -
we have: Po (X) P D (Y) = true

6. A duplex fail-safe controller
In this section, we describe a redundancy management

protocol for networked fault-tolerant duplex controllers
that provide high availability while ensuring the safety
properties Q and UP of the previous section.

We consider controllers made up of two fail-safe units.
Each unit provides a failure-status output indicating
whether it is in the operational or safe mode. The U P
requirement is ensured by hardware using a bistable safety
relay controlled by the failure-status outputs of each unit
(Fig. 3). -

Network

Duplex

Set Primary
Failure Status

Fig. 3 Duplex controller

6.1 Protocol overview
The purpose of the protocol is to ensure, if possible,

that messages received over the network are delivered to
both units. If a transmission error should occur that
prevents the message from being delivered to both units,
then a context inconsistency can occur. In this case, the

protocol must ensure that property Q holds by forcing the
Secondary unit to switch to the quarantine state. While a
unit is in the quarantine state, it cannot deliver outputs to
the controlled process. Moreover, it is unable to replace
the other unit should the latter fail. Consequently, to
provide availability, the protocol must attempt to bring the
unit in the quarantine state back to the secondary state.

To ensure availabi:lity, two progress properties must
therefore be respected, but only in the absence of failures :
0 Agreement (A). Every message accepted by one unit at

time t must have been or be accepted by the other unit
within the interval [,t - 5 t + 21
Limited quarantine (LQ). A unit in the quarantine state
must eventually switch back to the standby state
(subject to the safety property Q)
Property LQ prevenlts the trivial solution in which one

unit always remains in the quarantine state. Property A
prevents useless solutions in which the unit in the standby
state immediately switches to the quarantine state.

For safety, there is no obligation for the protocol to
achieve consistency or to maintain both units in the
operational mode since those are availability needs.
However there is an obligation to put and keep the
Secondary unit in quarantine while its context is
inconsistent with the Primary’s state.

62 Protocol description
We successively describe the cases where i) both units

are in operational mode, and ii) the Secondary unit is in
quarantine.
Both units are in operational mode

When both units are in operational mode, safety is the
key issue. The main idea is to attempt to ensure context
consistency through broadcasting inputs to both units
atomically. If atomicity cannot be ensured, the Secondary
unit is put into quarantine, to ensure safety property Q.
The principle used is the following:
a) Primary

Send, periodically, a message to the Secondary “Don’t
switch to quarantine”.
Each time an input message is received from a remote
controller, forward tlhis message to the Secondary, set a
time-out and wait for an acknowledgement :
0 if the acknowledgement is received before the time-

out expires, acceipt the message;
if the time-out expires then:

stop scnding “Don’t switch to quarantine”
messages,

0 stop forwarding input messages to the
Secondary,
accept the message.

If the Primary fails, the safety relay will switch the
current Secondary to the primary state.

b) Secondary
Wait for the periodic “Don’t switch to quarantine”
message. If there is no such message within a given
time interval, then switch to the quarantine state.
Each time an input rnessage is received directly from a
remote controller, fcrward this message to the Primary

181

(when the Primary receives this message, it behaves as
previously).

+ Each time an input message is received from the
Primary, send an acknowledgement to the Primary and
accept the message. (Note that the message can be
accepted immediately by the Secondary since the
Primary has seen the same message, so the latter will
either accept the message in a bounded time or cause
the Secondary to switch to the quarantine state.)

+ The failure of the Secondary has no immediate effect.
The Primary will be informed of the failure when it
next attempts to forward a message since it will not
receive an acknowledgement.

The Secondary unit is in quarantine
Here the key issue is availability since, while it is in

quarantine, the Secondary is not in a position to replace
the Primary should the latter fail. For availability, the
context of the Secondary has to be made consistent with
that of the Primary so that it can revert to its backup role.
This is done by executing a protocol that transfers the
context of the Primary to the Secondary. During context
transfer, a specific mechanism is used to detect and
propagate concurrent context modifications. The last
context transfer message is identified as such by the
Primary. The Secondary must remain in quarantine until
context transfer has been successfully completed.

The protocol can be summarized as follows:
a) Primary
+ Transfer context to Secondary. When the last context

transfer message has been acknowledged by the
Secondary:

resume sending “Don’t switch to quarantine”

resume forwarding input messages.
b) Secondary
+ Wait for last context transfer message and switch to the

standby state.
For improved availability, messages and message

acknowledgements can be repeated.
This protocol has been described and modelled with

Petri nets. Some properties have been proved.
Specifically, we have shown that this protocol ensures the
agreement property A in the absence of failures. If both
units accept the same inputs from the same initial state
within a given time interval then they will carry out
identical context changes within this time interval, or fail
safely. The principle which consists of sending the “Don’t
switch to quarantine” messages ensures that if the
agreement may not be reached (because of failure(s)), the
Secondary will switch to the safe mode in a bounded time
interval. This ensures the safety property Q.

7. Conclusion
In order to tolerate context inconsistency in a duplex

fail-safe controller, two approaches have been studied in
this paper: masking and detection of context
inconsistency. For the latter a protocol is given. The key
idea of the protocol is to try to keep both units consistent

messages,

by attempting to agree on input messages; however if this
agreement fails, it switches the duplex controller to a
mode ensuring safe operation.

References
H. K. Akita, T. Watanabe and I. Okumura, “Computerized
Interlocking System for Railway Signaling Control :
Smile”, IEEE Transactions on Industry Applications, 1 A-

K. Akita and H. Nakamura, “Safety and fault-tolerance in
computer-controlled railway signalling systems”, in
Dependable Computing for Critical Applications, (C. E.
Landwhehr, B. Randell and L. Simoncini, Eds.), 3, pp.107-
13 1, Springer-Verlag, New-York, 1993.
J. Arlat, N. Kanekawa, A. M. Amendola, J.-L. Dufour, Y.
Hirao and J. A. Profeta, “Dependability of Railway Control
Systems”, in Proc. 26th Int. Con$ on Fault-Tolerant
Computing (FTCS-26), (Sendai, Japan), pp. 150- 155, IEEE
CS Press, 1996.
F. Cristian, “Understanding Fault-Tolerant Distributed
Systems”, Comm. ACM, 34 (2) , pp.56-78, 1991.
F. Cristian, “Group, Majority, and Strict Agreement in
Timed Asynchronous Distributed Systems”, in Proc. 26th
Int. Con$ on Fault-Tolerant Computing (FTCS-26).
(Sendai, Japan), pp.178-187, IEEE CS Press, 1996.
F. Cristian, “Syncronous and Asynchronous Group
Communication”, Comm. ACM, 39 (4), pp.88-97, 1996.
C. Fetzer and F. Cristian, “Fail-Awareness in Timed
Asynchronous Systems”, in Proc. 15th ACM Symp. on
Principles of Distributed Computing, (Philadelphia, USA),
pp.314-321, May 1996.
P. Forin, “Vital Coded Microprocessor : Principles and
Application for Various Transit Systems”, in Proc. IFAC-
GCCT, (Paris, France), pp.79-84, September 1989.
J . Gray, “Notes on Database Operating Systems”, in
Operating Systems: An Advanced Course, (R. Bayer, R. M.
Graham and G. Seegmuller, Eds.), Lecture Notes in
Computer Science, 60, Springer-Verlag, Berlin, 1978.
A. Hachiga, K. Akita and Y. Hasegawa, “The Design
Concepts and Operational Results of Fault-Tolerant
Computer Systems for the Shinkansen Train Control”, in
Proc. 23rd Int. Con5 on Fault-Tolerant Computing (FTCS-
23), (Toulouse, France), pp.78-87, IEEE CS Press, 1993.
C. Hennebert and G. Guiho, “SACEM: A Fault-Tolerant
System for Train Speed Control”, in Proc. 23rd Int. Con$
on Fault-Tolerant Computing (FTCS-23), (Toulouse,
France), pp.624-628, IEEE CS Press, 1993.
H. Kantz and C. Koza, “The ELEKTRA Railway
Signaling-System : Field Experience with an Actively
Replicated System with Diversity”, in Proc. 25th Int. Con$
on Fault-Tolerant Computing (FTCS-25), (Pasadena,

G. Mongardi, “Dependable Computing for Railway
Control Systems”, in Dependable Computing for Critical
Applications, (C. E. Landwhehr, B. Randell and L.
Simoncini, Eds.), 3, pp.255-277, Springer-Verlag, New
York, 1993.
M. Mulazzani, “Reliability and safety in electronic
interlocking”, in Proc. IFAC Control in Transportation
Systems, (Vienna, Autria), pp.321-328, 1986.
G. Wirthumer, “VOTRICS-Fault Tolerance Realized in
Software”, in Proc. IFAC SafeCom, (Vienna, Austria),

32 (4), pp.826-834, 1985.

Califomia), pp.453-158, IEEE C S Press, June 1995.

pp. 135-140, 1989.

182

