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Abstract. We present a framework for building fail-safe hard real-time applications in timed asynchronous
distributed systems subject to communication partitions and performance, omission, and crash failures. Most
distributed systems built from commercial-off-the-shelf (COTS) processor and communication services are
subject to such partitions because their COTS components do not provide hard real-time guarantees. Also
custom designed systems can be subject to partitions due to unmaskable link or router failures. The basic
assumption behind our approach is that each processor has a local hardware clock that proceeds within a linear
envelope of real-time. This allows one to compute an upper bound on the actual delays incurred by a particular
processing sequence or message transmission. Services and applications can use these computed bounds to
detect when they cannot guarantee all their standard properties because of excessive delays. This allows an
application to be fail-aware, that is, to detect when it cannot guarantee all its safety properties and in particular,
to detect when to switch to a fail-safe mode.

Keywords: fail-safe systems, fail-awareness, timed asynchronous systems, synchronous systems

1. Introduction

In recent years there has been a trend towards the use of commercial-off-the-shelf
(COTS) components such as real-time Unix and main-stream hardware platforms to build
distributed hard real-time systems. A system is hard real-time if the consequence of a
non-masked performance failure can be catastrophic (Kopetz and Verissimo, 1993). Hard
real-time systems can coarsely be classified into fail-safe and fail-operational systems. A
typical real-time system system consists of a controlled object and a controlling
computing system. A safe state is a state of the controlled object in which no human life
is at risk, e.g., a railway crossing is in a safe state if the crossing arms are closed and it
can stay in this safe state even when the controlling computer system has stopped
working. In a fail-safe system, the controlled object has to transit to a safe state when a
non-maskable component failure in the controlling computing system occurs and the
controlled object has to be able to stay in this safe state without the help of the computing
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system. In the above railway crossing example, the crossing arms have to close
automatically if the controlling computing system suffers an unmaskable failure.

In a fail-operational system, the controlled object does not have a safe state in which
the controlled object can stay without the help of the controlling computing system. For
example, a fly-by-wire system without a (mechanical) backup system does not have a safe
state. However, a fly-by-wire system with a mechanical backup system can be viewed as
a fail-safe system: the controlled object includes the mechanical backup systems which
allows it to stay in a safe state even when the controlling computing system has failed.
The mechanical backup system can be viewed as a fail-operational system. Note that the
backup system does not have to be mechanical, it could also consist of a fail-operational
computing system. Many complex systems can in this way be composed into a set of fail-
operational and fail-safe sub-systems. In this paper, we propose an approach of how to
construct fail-safe (sub-)systems. However, one can use our approach to design fail-
operational systems in case the underlying communication and process management
service provide stronger properties (that is, if they are synchronous).

1.1. Problem: Unknown Failure Frequency

The motivation for using COTS to build hard real-time systems is to cut costs while still
using the latest technologies. From a technical point of view, COTS usage is quite
challenging with respect to the construction of distributed hard real-time systems. To
explain this, note that several recently built distributed hard real-time systems (Cristian
et al. 1996, Kopetz et al. 1989, Kopetz and Grunsteidl 1994, Verissimo et al. 1991) rely
on the guaranteed response paradigm (Kopetz and Verissimo, 1993). This paradigm
depends on the assumption that the maximum number of failures per time unit, that is, the
maximum failure frequency, is a priori known. Given this failure assumption is true, one
can guarantee by design that the real-time system responds to events occurring in the
controlled object within an a priori known time bound. Basically, the system has to have
a sufficient degree of redundancy to be able to mask all failures as long as the maximum
failure frequency is not exceeded. However, if this failure assumption can be violated at
run-time (i.e., the maximum failure frequency can be exceeded), the real-time system can
be subject to unpredictable behavior. Even in custom designed systems, it is extremely
hard to determine a maximum failure frequency. Since there is always a non zero
probability that the failure frequency in a system is higher than the assumed maximum
frequency, it makes sense not to assume that there exists such a maximum frequency. In
this paper, we show how one can cope with any failure frequency (as long as the types of
failures are known). In particular, we describe how to switch a system into a safe mode in
case the failure frequency becomes too high.

One major problem in determining a maximum failure frequency is the occurrence of
performance failures. A performance failure (Cristian, 1991b) occurs when a service
responds after an a priori given maximum time quantum has expired, e.g., a message m
suffers a performance failure if m is deliver after more than, say,  time units. To bound
the frequency of performance failures, one has to know an upper bound on the processor
and network load. However, the usage of COTS software and hardware does not
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necessarily allow to bound the peak processor and network load because the load induced
by these products is not known and can only be estimated using measurements. For
example, due to interrupts, caching, and bus arbitration it is very difficult to determine the
worst case execution times for main-stream hardware platforms (Stewart and Khosla,
1997). Moreover, the load induced by the application and middleware products depends
also on the point of operation of the system and for many systems the envelope of
operation is not well known.

1.2. Approach: Fail-Awareness

We present in this paper the fail-awareness paradigm. This paradigm emphasizes the
detection of failures to address the problem of the violation of safety properties caused by
non-maskable failures. A safety property is a property that has to hold all the time. Note
that a safety property does not necessarily state whether the system is safe (that is, no
human life is at risk). However, some safety properties might state when the system is
safe. For example, in a railway crossing, the system is safe if the following (informal)
safety property (ST) holds: at any time ¢, if there is a train in the railway crossing at ¢, the
crossing arms are down at ¢. Performance failures might not only delay the execution of a
program, they might also invalidate safety properties. For example, the delay of a
message m requesting to lower the crossing arms of a railway crossing might result in the
invalidation of property (ST) unless one can mask or detect the failure of m. A violation
of a safety property might also result in a contamination problem: late message deliveries
and slow processes might corrupt the state of processes and processes with corrupted state
might send messages that corrupt the state of the receiver processes. Fail-awareness
addresses the detection and containment of failures such that processes are aware when
certain safety properties are violated. This detection allows the avoidance of state
contamination.

We show in this paper that fail-awareness can be used on different levels of abstraction.
We assume that a system can be described as a set of services. Each service is typically
specified by a set of safety properties. Fail-awareness allows a higher level service S to
detect what safety properties of lower level services are violated and in turn allows the
service S to indicate to its clients which of its safety properties might be violated. On the
highest layer, it allows a fail-safe system to detect when to switch the controlled object
into a fail-safe state. In this paper, we concentrate on the design of fail-safe systems.
Nevertheless, the fail-awareness paradigm can also be advantageous for designing fail-
operational systems and at the interface between a fail-operational and a fail-safe sub-
system: (1) fail-awareness supports the detection of when a fail-operation sub-system has
to switch to a degraded mode, (2) it allows a fail-operation sub-system to detected when it
cannot depend on the services provided by a fail-safe sub-system, and (3) if the failure
frequency can be bounded in a subsystem, the fail-aware services in this sub-system are
guaranteed to be fail-operational (that is, no safety property is ever violated).

Due to the problems posed by the guaranteed response paradigm, many practical
systems are based on the best effort paradigm which emphasizes low latencies but does
not guarantee that a real-time system always responds within the required time bounds.
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However, the system has to show in empirical tests that it statistically responds in a
timely fashion. We describe in this paper the fail-awareness paradigm which can be
viewed as a middle of the road approach between the ‘‘guaranteed response’’ and the
“‘best effort’” paradigms. A system designed according to the fail-awareness paradigm
can provide the same properties like a system designed according to the guaranteed
response paradigm as long as the failure frequency does not exceed some given bound.
When the failure frequency rises above that bound, the services of the system provide
their properties on a best effort basis, i.e., try to keep its properties valid as long as
possible but there is no guarantee that a service actually succeeds to maintain all its
properties. In contrast to a best-effort and a guaranteed response service, a fail-aware
service allows its clients to determine which of its properties are currently valid and
which properties might currently be violated. We explain later how this can be achieved
by defining expiration times for properties and a client can determine if a safety property
might be violated since its expiration time has already passed.

When the failure frequency drops below the given bound again, all fail-aware services
will provide all their properties and also the clients learn that all properties are valid. The
main feature of a fail-aware service is that it and its clients can determine at any point in
time what properties are currently valid and what properties might be violated. Clients of
the service can use that knowledge to determine if they can currently depend upon that
service. Hence, fail-awareness allows to contain performance failures and to guard
against contamination problems.

The novelty of our approach is that instead of aiming for real-time support in an
asynchronous, partitionable setting only by providing high throughput (see Transis
(Dolev and Malki, 1996) and Totem (Moser et al., 1996)), we specify the standard hard
real-time semantics of services using real-time deadlines and provide mechanisms to
detect when an application cannot depend upon the hard real-time properties of lower
level services due to unmasked performance, omission, or crash failures. This detection is
essential for fail-safe applications that have to switch to a fail-safe service mode
whenever they cannot guarantee their hard real-time properties.

1.3. Partitionable Fail-Aware Services

The fail-awareness paradigm supports the design of partitionable fail-aware services to be
able to increase the service availability. In a partitionable system the set of processes can
split into disjoint subsets due to network failures or excessive performance failures. Each
such subset is informally referred to as a (communication) partition. Our fail-awareness
paradigm allows the servers in each partition to ‘‘make progress’’ independently of the
servers in other partitions, i.e., these servers can maintain all their safety properties and
hence increase the availability of the system.

Clients can learn whether a safety property of a server currently holds by examining an
exception indicator provided by the server. The implementation of an exception indicator
that we propose uses the fact that a server has typically to update its ‘‘output’’
periodically, e.g., it has to update its output every R clock time units. When a server
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cannot update its output within R time units, it knows that it cannot provide certain
properties anymore.

The indicators are also used to identify the partition of a server. We call a partition that
is identified by a fail-aware service a ‘‘logical partition’’. Later on, we will define the
notion of a ‘‘stable partition’’ that identifies the communication partitions in which the
failure frequency is bounded and in which we require the servers to make progress (that
is, these servers have to make sure and know that all their safety properties are valid). The
fail-aware services identify at least all stable partitions as logical partitions and give these
partition a name. A logical partition can actually be viewed as a synchronous sub-system,
that is, processes in the same logical partition can provide the same properties as the
processes of a synchronous system. When a server provides its safety properties, its
indicator(s) signal its clients to what logical partition it belongs. Otherwise, an indicator
signals that certain safety properties of the server might be violated.

2. System and Failure Model

The guaranteed response paradigm assumes that (1) the classes of likely failures, and (2)
their maximum failure frequency, that is, the maximum number of failures per time unit,
are a priori known. Using a sufficient amount of redundancy one can then mask all
failures that are likely to occur and one can therefore guarantee that a system meets all its
deadlines (as long as the two assumptions are valid). The fail-awareness paradigm also
assumes knowledge of the classes of likely failures, but does not assume any knowledge
about their maximum frequency of occurrence (since in many practical system the
number of performance failures per time unit cannot be bounded due to the use of COTS
components). That difference in the underlying assumptions results in the use of different
system models for the guaranteed response paradigm (i.e., use of a synchronous system
model (Cristian, 1991a)) and the fail-awareness paradigm (i.e., use of the timed
asynchronous system model (Cristian and Fetzer, 1999)). We review in this section the
basic differences between these two models.

2.1. Synchronous Systems

In a completely synchronous system the real-time delays of all processes and all
messages are within a priori known bounds and there is always a minimum number of
processes that are correct. One can generalize the notion of a synchronous system by
allowing a bounded number of performance failures per time unit. To define
performance failures, one first introduces thresholds for process scheduling (¢) and
message transmission delays (d). When the transmission delay of a message m is greater
than the maximum assumed message delay J, one says that m suffers a performance
failure. Otherwise, m is said to be timely. The scheduling delay of a process is the time
between a process is scheduled to execute some procedure in response to an event
occurrence and the time the execution actually starts. When the scheduling delay of a
process p is greater than the maximum assumed scheduling delay o, p suffers a
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performance failure. A process that does not suffer any performance failures in a given
time interval is said to be timely.

A failure model specifies what kind of failures are likely: these kind of failures have to
be considered in the design of a system and the probability that any other kind of failure
occurs is negligible given the overall stochastic requirements for the system (Cristian,
1991b). A typical failure model used in synchronous systems assumes that processes have
a crash/performance failure semantics and messages have an omission/performance
failure semantics (Cristian, 1991a):

e aprocess can take more than ¢ to react to an event ( performance failure), or a process
can crash, but one can neglect the probability that a process suffers any other type of
failure;

e messages can be dropped (omission failure) or can arrive after 0 time units
(performance failure), but one can neglect the probability that a message suffers any
other type of failure.

A failure assumption specifies an upper bound on the maximum frequency of
(performance, crash, and omission) failures. Thus, the failure assumption states that the
probability that the failure frequency is higher than that bound is negligible. Since most
distributed protocols are ‘‘round based’’ protocols, a failure assumption often states the
maximum number of failures per round instead of specifying an explicit failure
frequency.

A synchronous system requires that the classes of failures that can occur and the
maximum number of these failures per time unit be a priori known. Knowing what
classes of failures can occur (stated in the failure model) and knowing the maximum
number of these failures per time unit (stated in the failure assumption), one can use
a sufficient amount of redundancy to mask all failures that can occur by hypothesis.
Thus, when the failure model and failure assumption are correct, one can exclude
the occurrence of non-maskable failures, and hence, system failures, by design. In
other terms, the probability that the system masks all failures is at least as high as
the probability that the failure model and the failure assumption are valid (Powell,
1992).

To bound the maximum number of performance failures per time unit, one has to
bound the peak processor and network load. Using commercial software packages with
unknown peak load therefore increases the difficulty of deriving a well founded
maximum number of performance failures per time unit. For example, using a network of
workstations with a standard operating system like Unix does in many cases not allow a
‘“‘reasonable’’ failure assumption to be made. By ‘‘reasonable’’ we mean the probability
that the failure assumption is violated (that is, the experienced failure frequency is higher
than the assumed upper bound) is negligible. We use the timed asynchronous distributed
system model as the foundation of our work because it does not put any bound on the
number of failures per time unit. For a detailed, formal description and comparison with
other models like the quasi-synchronous model of Verissimo and Almeida (1995) see
Cristian and Fetzer (1999).
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2.2. Timed Asynchronous Systems

The timed asynchronous system model (Cristian and Fetzer, 1999) assumes that processes
have access to a local unsynchronized hardware clock with a bounded drift rate, i.e., the
clock proceeds within a linear envelope of real-time. It uses the following failure model:
processes have crash/performance failure semantics and messages have omission/
performance failure semantics. In what follows, when we use the generic term ‘‘failure’’
we mean a failure that belongs to one of these classes of failures. This model does not
assume any bound on the maximum failure frequency, i.e., it has no failure assumption. It
is an accurate description of existing distributed systems like a network of workstations
running Solaris, Linux or Windows. The model also allows the system to split into
partitions when all messages sent between processes (in different partitions) suffer
omission or performance failures. Unlike the synchronous system model, the timed
asynchronous model does not necessarily allow one to mask all failures that occur since
any amount of redundancy used to mask failures can be exceeded by the actual number of
failures that occur. The fail-aware protocols we have been designing have nevertheless
some resemblance to synchronous protocols because they behave like synchronous
protocols as long as the failure frequency is within some given bound. However, the fail-
aware protocols have to deal with situations when processes become partitioned,
partitions merge, or the failure frequency becomes too high.

3. Fail-Awareness

We assume that a distributed service is specified by a set of safety properties, that is,
properties that have to hold all the time. In this paper, we only consider services that are
implementable in completely synchronous systems, that is, system characterized by a
bounded failure frequency. Note that any service that is implementable in an
asynchronous or synchronous system is implementable in a completely synchronous
system since the completely synchronous system model provides stronger properties than
any other asynchronous or synchronous distributed system model. However, a service
that is implementable in a completely synchronous system is not necessarily
implementable in a weaker model like the timed asynchronous system model. Fail-
awareness allows one to transform a service specification that is implementable in a
completely synchronous system such that it becomes implementable in timed
asynchronous systems.

A fail-aware service is implemented by a set of fail-aware servers. Each fail-aware
server maintains one or more (exception) indicators (see Figure 1). The indicators enable
a client of the services to determine which properties of the service do currently hold and
which might currently be violated (see Section 5.3 for how to implement indicators). For
example, a time server could provide two indicators: one indicator signals if the local
clock is currently synchronized with real-time while the second indicator shows if the
clock is currently synchronized with the clocks of the other time servers.

When too many failures occur, a server cannot necessarily provide all its properties
anymore. A fail-aware server signals such conditions by one or more indicators. To avoid
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Figure 1. A fail-aware service is implemented by a set of fail-aware servers. Each fail-aware server maintains
one or more indicators. An indicator enables a client to detect if certain properties might be violated.

trivial service implementations in which a server indicates all the time that it cannot
maintain its properties, we introduce an integration requirement: whenever the failure
frequency is not higher than some given threshold for some minimum time, none of the
server’s indicators can signal an exception and hence, all properties are required to be
valid.

3.1. Example: Internal Clock Synchronization

Let us give an example of how to transform a synchronous service specification into a
“‘primary-partition’’ fail-aware service specification. By primary-partition we mean that
only processes in at most one partition can make progress. In Section 3.3 we will continue
this example to show how one can transform this primary-partition fail-aware service into
a partitionable fail-aware clock synchronization service.

Consider the specification of an internal clock synchronization service for a
synchronous system consisting of two safety properties: a bounded drift and a bounded
deviation property. Let predicate crashed,(t) be true if and only if server p is crashed at
time 7. The bounded drift property (S1) states that the drift rate of the clock C, of a non-
crashed server p stays bounded by an a priori known constant, say, p << 1 as long as p
does not crash:

Vt,Vs,s<t,Vp : ~crashed,(s) A ~crashed,(t)
= (1=9)(1=p) <C,(1) = Cp(s) < (1 = 5)(1 + p) (S1)

The bounded deviation property (S2) states that at any time ¢ the deviation between two
clocks C,, and C, of two non-crashed servers p and ¢ is bounded by a known constant,

say, ji:
Vt,Vp,Vq : ~crashed,(t) A —crashed,(t)
= |Cp(t) - Cq(t)| Su (Sz)
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Internal clock synchronization (S1, S2) is implementable in synchronous systems but
not in timed asynchronous systems. To implement its clock C,,, a server p can use its local
hardware clock that has already a bounded drift rate. However, since two hardware clocks
can drift apart from each other, the servers have to communicate to ensure property (S2).
Since the processes can partition in a timed asynchronous system, servers might not be
able to communicate for an arbitrary amount of time and hence, cannot necessarily keep
their clocks synchronized within u.

In a fail-aware internal clock synchronization service, each clock C[, is associated with
a Boolean indicator /,,. The informal meaning of /,() = true is that server p provides the
same properties as a non-crashed server in a synchronous system, i.e., its clock has a
bounded drift rate and it is synchronized with all other clocks (unless a clock C, signals
that it is out-of-sync by setting /,(¢) = false).

Safety properties (S1, S2) are replaced by the following properties (F1, F2) in which
we replaced the term —crashed, by indicator /5:

Ve, Vs, s <t,¥p : 1,(s) AL, (1)

= (1=9)(1=p) <C,(1) = Cp(s) < (1 = 5)(1 + p) (F1)
Vt,Yp,Vq : 1,(t) A1 (1)
=[G, (1) = Co(n)] < (F2)

Note that (F1, F2) are safety properties since they hold for any time 7. However, they
do permit that something bad can happen (i.e., the deviation of two clocks are more than
U, or the drift rate of a clock is greater than p) as long as the indicators say that something
bad might happen (i.e., I,(t) = false).

The integration requirement is defined as follows: given a constant RT that denotes the
‘““‘maximum resynchronization time’’ of a clock, we require that:

Vt,Yp : “failure frequency bounded in [t — RT, 1]
A —crashed,(t) = 1,(t) (F3)

The indicator /, of a crashed server p is assumed to be false. Since a synchronous
server p has to synchronize its clock whenever a fail-aware server has to do that (because
1,(t) = —crashed,(t)), the new properties (F1, F2, F3) are strictly weaker then the
original properties (S1, S2). In particular, properties (F1, F2, F3) are implementable in
timed asynchronous systems because a server can reset its indicator when it fails to
synchronize its clock.'

We weakened the specification (S1, S2) to make it implementable in timed
asynchronous systems. We claim that the resulting specification (F1, F2, F3) is still
sufficiently strong. Consider that a system consists of a hierarchy of fail-aware services
(see Figure 2). A failure in a lower level server S (see server 2 in Figure 2) might result in
the indication of a property violation of this server. Servers that depend upon S might still
be able to maintain their properties without S (see servers 3 and 6) while other servers
have to signal a property violation themselves (see server 4). On the highest level there
might be servers that have to decide whether to switch the system to a safe mode in case
the safety of the system cannot be guaranteed anymore (see Section 6). In summary, a
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violation of a service property is acceptable since higher level servers can either mask
them or signal a property violation themselves.

To explain how a client can mask a violation of the bounded deviation property by
using the indicator of a server, consider a leader election problem. The leader election
problem is characterized by the property that there is at most one leader at a time. One
can use an internal clock synchronization service (S1, S2) to define non-overlapping time
slots during which exactly one process is the ‘‘dedicated leader’’ and a process can use its
local clock to decide whether it is currently the leader. One can also use properties (F1,
F2) to ensure that there exists at most one leader at a time. If a process ¢ reads the clock
C, of server p, it reads at the same time the value of the indicator /,. This enables g to
determine if the clock C,, is synchronized. Process ¢ is only leader in one of its time slot if
clock C,, is synchronized. Since a process p can only become leader if its local clock C), is
synchronized and synchronized clocks are at most y apart from each other, one can
guarantee by assigning processes non-overlapping time-slots (that is, slots are more than
u apart from each other) that there is at most one leader at a time.

Note that it makes sense that a service provides more than one indicator if a server S
can maintain some property P, independently of another property P, (that is, sometimes
S might be able to provide P; while it cannot maintain P,, and vice versa). For example,
consider that the fail-aware clock synchronization service also tries to synchronize the
clocks externally, e.g., with GPS time. Sometimes the service might fail to achieve
external clock synchronization, e.g., if the GPS receiver has failed. Since services like a
leader election service do not depend upon the property that a clock is externally
synchronized, it make sense to introduce in this case a second indicator that signals
whether a clock is externally synchronized.

}

Server 6

S

Server 3 Server 4 Server 5

T L'J — Property

violation
Server 1 Server 2 Properties

valid

Figure 2. The violation of a safety property of a lower level server can result in the invalidation of properties of
higher level servers. Higher level servers have to indicate property violations if they are not able to mask
property violations of lower level servers.



FAIL-AWARENESS: AN APPROACH TO CONSTRUCT FAIL-SAFE SYSTEMS 213

3.2. Specification Transformation

The specifications of the fail-aware services we have designed so far are typically derived
from the specifications of the corresponding synchronous services, that is, services that
were originally specified to be implemented in synchronous systems. We show how to
transform the specification S of a synchronous service into a new, but similar,
specification FA so that FA becomes implementable in timed asynchronous systems that
are characterized by having no bound on the failure frequency and the possibility of
communication partitions.

The idea behind the support of partitionable fail-aware services is as follows. The
properties of a synchronous service are defined for all non-crashed processes in the
system. We want to transform these properties such that they are defined for all processes
in the same communication partition. For example, instead of requiring that all clocks of
non-crashed processes are synchronized with each other, we only require that the clocks
in the same communication partition are synchronized with each other. There are two
difficulties in restricting properties to a communication partition. First, we cannot require
that properties be holding in communication partitions in which processes experience a
too high failure frequency. Second, we must be able to express that two processes are in
the same communication partition. We address the first issue by introducing the notion of
a stable partition, that is, a communication partition in which the failure frequency is
bounded. Only processes in stable partitions have to provide all their properties. We
address the second issue by identifying at least all stable partitions and requiring that if a
server is part of a stable partition, its indicators be showing the name of this partition.
Hence, we can express that a property P has to hold for all processes in a communication
partition by stating that P has to hold for all processes whose indicators show the same
partition name.

The naming of a communication partition is typically done by one service in the
system and all other services use the same names for partitions. We describe in Fetzer and
Cristian (1999b) how one can name partitions. The basic idea is that one can elect a
leader in each stable communication partition and if a process is elected as the local
leader of a communication partition, it gives this communication partition a unique name.
We call a communication partition that is named a logical partition (Fetzer and Cristian,
1999b). Since all stable partitions are named, they are also logical partitions. However,
there might exist logical partitions that are not stable partitions.

Let us assume that the specification § = {SP,...,SP,} of a synchronous service
consists of k safety properties and each safety property SP; is of the form Vr: P,(¢).
Hence, safety property SP; says that property P; has to hold for all times . We show how
one can transform the specification S into a specification FA of a fail-aware partitionable
service implementable in timed asynchronous systems. The idea is that we introduce an
indicator / and each server p maintains an instance /,, of the indicator. If the indicator /, of
a server p shows the name LP of a logical partition at time ¢, the clients of p can learn by
querying /, that p maintains all its properties and its properties are defined with respect to
the processes in LP. As we mentioned before, to permit a better detection of what
properties currently hold and what not, a service might provide more than one indicator.
The transformation of S into FA using one indicator can be performed as follows.
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e The interface of FA is augmented with an indicator /. Each server p of the service has
to maintain an instance /,, of indicator /. We denote the value of p’s indicator / at real-
time 7 by I, (#). To signal that a server cannot provide its properties, it sets its indicator
to some value L.

e For each property SP; = VP,(t) in S we define a new property FP;. In FP; we
introduce a new variable L, quantify L over all logical partitions (VL% L), and
replace terms of the form “crashed,,(t)” by “I,#L’ .2 Informally, if SP; states that a
property has to hold for some non-crashed processes py,...,p,,, FP; states that this
property has to hold for some processes py, ..., p,, whose indicators show that they in
the same logical partition. If a server p cannot maintain some property P, it has to
signal this by setting its indicator to L.

e We extend FA by an integration requirement that restricts the naming of stable
partitions. The indicator of a server p in a communication partition SP must signal that it
is part of some logical partition that contains SP whenever the communication and
process services in SP exhibit ‘‘synchronous behavior’’, that is, the failure frequency
within SP is not higher than some a priori given bound. We call SP a stable partition.

Note, we do not try to automate or formalize this transformation. This transformation is
intended as a guideline for designers of distributed services. While the sketched
transformation steps have worked for all synchronous services we have considered so far,
these steps do not apply to specifications that are defined without the use of predicate
crashed (or, some ‘‘equivalent’ predicate like ‘‘correct’’). Such specifications can still
be translated into a fail-aware specification. However, a designer has to extend
“‘manually’’ at least all properties by an indicator that are not implementable in timed
systems. This requires the skill to determine what is possible to implement in a timed
system and what is not. We have no rule how to determine this.

Due to uncertainties in a distributed system (e.g., a process cannot measure the exact
transmission delay of a message), a process cannot always correctly decide whether it is
member of a stable partition. However, a server does not actually have to decide whether
it is in a stable partition since

e aserver has to guarantee by design (that is, by being able to mask a certain number of
failures) that it provides all its properties as long as it is part of a stable partition,

e it has to detect when it cannot mask all failures and hence, cannot provide all its
properties anymore (that is, by design this can only happen when it is not part of a
stable partition), and

e a server typically provides its standard semantics as long as it masks all failures even
though it might not be part of a stable partition.

Section 5 describes our implementation of an exception indicator: an indicator has to
enable clients to detect that a server cannot provide all its properties even when the server
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suffers performance failures. This is necessary to permit the watch-dog processes to
monitor the safety of the system (and switch the system to a fail-safe mode if needed).
They can check at any point in time if some properties of a server might be violated.

3.3. Example: Partitionable Fail-Aware Clock Synchronization

We show in this section how the specification (F1, F2, F3) of a primary partition fail-
aware internal clock synchronization service (see Section 3.1) can be transformed into a
partitionable fail-aware service specification (P1, P2, P3). In the primary partition
specification, any two clocks that are synchronized, are at most u apart from each other.
In the new specification (P1, P2, P3), the deviation between two clocks in the same
partition has to be at most u. However, the deviation between clocks in two separate
partitions is not bounded. To know which processes are in the same partition and which
are in different partitions, the indicator of a server shows the name of the partition, if a
server can keep its clock synchronized. Otherwise, the indicator shows a special value L
to indicate that its clock is out of sync. We have to make sure that if two processes are in
the same stable partition, they name the partition in the same way to make sure that they
have to synchronize their clocks.

The new integration property states that if two processes are in the same stable
partition for at least RT time units, then their indicators say that they are in the same
logical partition, i.e.,

Vt,3s <t —RT,Vp,Vq :
“p and q are in the same stable partition in [s,t]”

= L0 =1,00) # L (P3)

The new bounded drift condition (P1) states that the drift rate of a server has to be
bounded by p between any two times for which the process is in the same partition, that
is, the value of its indicator is the same,

Vt,VL,L # L,Vs,s<t,Vp:1,(s) =LAl,(t)=L
= (1= 5)(1 = p) < (1) = Cyls) < (1= 5)(1 + p) (1)

The deviation between the clocks of two processes in the same logical partition is at

most /i,
Vt,VL,L # L,Vp,Vq :1,(t) =LAIL(t) =L

t)
=G, () = C (1) < (P2)

3.4. Stable Partitions

To support partitionable operations, we do not require the existence of a global maximum
acceptable failure frequency. Instead, we distinguish those parts of a system that have a
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maximum acceptable failure frequency as stable partitions. Informally, a set of processes
SP forms a stable partition when

e all processes in SP are timely (i.e., they do not miss any deadlines),

e all but a bounded number of messages sent between these processes per ‘‘round’’ are
delivered in a timely manner, and

e from any other partition either no or only ‘‘old’’ messages arrive.

Formally, we define a stable partition by a stability predicate. For concreteness, let us
introduce the stability predicate A-I-partition that we use in the described fail-aware
service implementations. To this end, we first define the concepts of 1-connected
processes and of A-disconnected processes, which generalize the notions of
connectedness and disconnectedness introduced in Cristian and Schmuck (1995).

Two processes are /-connected in [s, 1] iff (1) p and g are timely in [s, 7], and (2) all but
at most one message sent between the two processes in [s, ] are delivered in a timely
manner, that is, within at most J time units (see Figure 3). We denote the fact that p and ¢
are 1-connected in [s, 7] by the predicate /-connected(p,q,s,1).

A process p is disconnected from a process ¢ in a time interval [ iff p does not receive
any message from ¢ during / (Cristian and Schmuck, 1995). We generalize the notion of
disconnectedness by allowing situations in which p receives old messages from ¢ during
I. These old messages typically contain out-of-date information and thus, have to be
rejected by p. In Section 4, we have given an overview of a fail-aware datagram service
that classifies all messages with a transmission delay greater than some A > ¢ as ‘‘slow’’
and messages with a transmission delay of at most 0 as ‘‘fast’’. The second constant A
was introduced because a receiver of a message m can only determine the transmission
delay of m with some error (Fetzer and Cristian, 1996). The following definition of *‘A-
disconnected’’ is based on the fact that processes can identify ‘‘slow’ messages: a
process p is A-disconnected from a process ¢ in a time interval [s, #] iff every message m
that p receives in [s, 7] from ¢ has a transmission delay of more than A > ¢ time units (see
Figure 4). Common situations in which two processes are A-disconnected are when the

L <8 .

} Real time

Figure 3. Two timely processes p and g are 1-connected in [s, #] iff at most one message sent between p and ¢ in
[s,7] suffers an omission/performance failure and all other messages are delivered within J time units.
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Real-time_

Figure 4. Process p is A-disconnected from ¢ in [s, 7] when all messages that p receives from ¢ in [s, 7] have a
transmission delay of more than A. Note that ¢ might receive messages from p with a delay of less than A.

network between them is overloaded, or an intermediate router or link is down. We use
the predicate A-disconnected(p, q,s,t) to denote that p is A-disconnected from ¢ in [s, 7].

Let £ be the set of all processes. We say that a non-empty set of processes S is a A-1-
partition in an interval [s, ¢] iff all processes in S are 1-connected in [s, 7] and the processes
in § are A-disconnected from all other processes (see Figure 5):

A-1-partition(S, s, t) 2

AS#D
AVp,q € S : 1-connected(p,q, s,t)
AVp e §,Vr e # — S : A-disconnected(p,r,s,t)

We say that S is a stable partition (in [s, #]) iff predicate A-1-partition(S, s, t) holds. We
use the predicate A-1-partition in the specifications of round based protocols such that the
interval [s, 7] encompasses one round. This typically implies that these protocols have to
mask at least one message failure per round and process pair. The extension of the
definitions to F-connected and A-F-partition (that is, up to Fe{0,1,...} messages per
process pair and round can suffer a failure) is straightforward.

4. Fail-Aware Services

We have designed and implemented a hierarchy of fail-aware services to support the
design and implementation of fail-safe real-time applications (see Figure 6) (Fetzer and

(” > Ommme(y | -cONNECted

o o A-disconnected
| o o disconnected

1]

)

A-1-partition {p.q. r} A-1-partition {n. o}

Figure 5. All processes in a A-1-partition are 1-connected and all messages from outside the partition have a
transmission delay of more than A. Note that the A-disconnected relation is actually symmetric for any two
processes (like ¢ and n) that are in two different A-1-partitions.
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Fail-aware broadcast —= Depends upon
Fail-aware membership

Fail-aware clock synchronization

‘ T Local leader election
Fail-aware clock reading

‘ «+—"Independent assessment
Fail-aware datagram

/

Timed asynchronous system

Figure 6. Hierarchy of fail-aware services to support the design of fail-safe partitionable real-time applications.

Cristian, 1997b). The foundations of the hierarchy are an asynchronous datagram service
and a process management service that provide the semantics assumed by the timed
asynchronous system model, i.e., messages have omission/performance and processes
have crash/performance failure semantics. We give an overview of the goals of the
different fail-aware services in the presence of partitions.

4.1. Partitionable Systems

When it comes to designing distributed protocols, the ideal underlying system is one that
is completely synchronous: each pair of non-crashed processes p and g is 0-connected,
that is, p and ¢ are timely, and each message sent between p and ¢ is timely. Since
processes and messages do not suffer performance failures, this greatly simplifies the
protocol design. In practice, systems are often not completely synchronous, in particular,
we are considering systems in which the probability that partitions occur is not negligible.
When a system splits into partitions, the ideal situation (with respect to simplifying the
design of protocols) would be that each partition shows completely synchronous behavior
(see Figure 7): all process pairs in a partition are O-connected and they are disconnected
from processes outside their partition, i.e., they do not receive any messages from other
partitions. If a system only splits into such ‘‘ideal partitions’’, the design of protocols
would be reasonably simple since the protocols do not have to handle situations like the

O

— 0-Connected o Timely process < Ideal partition

Figure 7. Ideally all processes in a partition should be mutually O-connected with all processes in the same
partition and be disconnected from all processes in other partitions.
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Figure 8. Real partitions are not always ‘‘ideal’’: slow connections, one-way connections, and non transitivity
of the connected-relation complicate the protocol design.

inability of some processes to communicate with other processes in the same partition, or
sporadic message arrivals from other partitions.

Real communication partitions do not behave in the ideal manner described above. For
example, for some time interval, a process r might be linked to a process ¢ by a ‘one-
way connection’’, that is, a connection that allows r to send timely messages to ¢ but does
not allow r to receive timely messages from ¢ (see Figure 8). Due to local network
overload, two processes n and o might be linked by a ‘‘slow-connection’’, that is, all
messages sent between #n and o suffer performance failures. Instead of each process pair
(p,q) in a partition being 0-connected, they could only be F-connected (Cristian and
Fetzer, 1999) for some F > 0, that is, p and ¢ are timely and up to F messages per time
unit sent between p and ¢ suffer omission/performance failures. In what follows, we use
the term ‘‘connected’’ to denote ‘‘F-connected’’ for some fixed F. Note that the
connected-relation in a partition might also not be transitive, that is, each of the process
pairs (0, k) and (k, q) might be connected while process pair (0,q) is not connected (see
Figure 8).

The goal of the fail-aware protocol hierarchy is to provide—whenever possible—an
application with an abstraction similar to that of an ideal partition to reduce the
complexity of programming distributed real-time applications for partitionable systems: a
logical partition. When a server is not part of a logical partition, it has to signal an
exception by setting its indicator to L. To make logical partitions similar to ideal
partitions, we require that logical partitions never overlap, all processes in a logical
partition be able to communicate via atomic broadcasts with all processes in their logical
partition in a timely manner and that they be ‘broadcast-disconnected’” from processes
in other logical partitions, i.e., they only receive broadcasts that were sent by processes
within their logical partition. Thus, the fail-aware services have to provide an application
with a view of the system in which the connected-relation (with respect to atomic
broadcasts) is transitive. There are two main approaches to achieve this goal:

® Message forwarding: A process o can send messages via process k to destination g
when o is disconnected from ¢ while k is connected to ¢ (see Figure §). One way to
implement message forwarding is message diffusion, i.e., a sender of a message m
sends m to all connected processes unless ¢ is the destination of m or g has already
forwarded m. Message diffusion can be prohibitively expensive for many
applications.
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® Removing connections: Even though two processes p and ¢ can communicate via
datagram messages, higher level protocols are forbidden to send broadcast messages
between p and ¢ since they are in different logical partitions. Removing ‘‘too many”’
connections could however split the system in partitions ‘‘too small’’ to do useful
work.

Our approach tries to combine these two extreme approaches: (1) we use a limited
amount of forwarding at the level of the broadcast service, and (2) we logically
disconnect (when necessary) some processes even though they are capable of
communicating with each other.

4.2. Service Hierachy

The foundation of our fail-aware protocol stack is the fail-aware datagram service (Fetzer
and Cristian, 1999a). Its purpose is to reject messages that arrive via slow or one-way
connections (see Figure 9). This service computes an upper bound on the transmission
delay of each message it delivers (see Section 5.1). The implementation of this service
only depends upon the fact that hardware clocks proceed within a known linear envelope
of real-time; the service does not need synchronized clocks. The calculated upper bound
for a timely message (whose transmission delay is <) is at most some known A ( > ),
that is, the maximum error of the upper bound for a timely message is at most A — §. The
upper bound calculated for a message sent via a one-way or a slow connection is greater
than A. Higher level services, such as local leader election, reject messages with a
calculated upper bound greater than A time units.

The next step is to group processes into logical partitions. This is the goal of the local
leader election service (Fetzer and Cristian, 1999b). It has to create logical partitions such
that all processes in some set S that are mutually connected (that is, each two processes in
S are connected) are in the same logical partition. For example, all processes in LP] of
Figure 10 are mutually connected and therefore have to be in the same logical partition.
To create logical partitions, the local leader protocol tries to elect a process in each

—— Connected ® Timely process

-é— -Disconnected by fail-aware datagram service

Figure 9. The fail-aware datagram service allows a receiver process to reject messages that arrive via one-way
or slow links.
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communication partition as local leader (see Fetzer and Cristian (1999b) for details): a
process r supports the election of the process / only if I’s identification is smaller than the
identifier (id) of any other process that r is connected with. A process / becomes local
leader only if it has the support of all processes it is connected with. A local leader /
creates a logical partition LP that contains all processes that support I’s election. The id of
LP is unique. For example, in the situation illustrated in Figure 10 the protocol elects
processes n, k, and r as local leaders (assuming the following ordern < o < --- < u < ).
Because processes ¢, o and k support k’s election, k creates a logical partition (LP2)
consisting of the processes o, ¢ and k. The local leader election service ensures that at no
point in time two logical partitions overlap, that is, at any point in time a process is in at
most one logical partition. This non-overlapping is ensured using the time locking
mechanism (Section 5.4): a process p stays in a logical partition LP for only a bounded
amount of time and thus, p can use its local hardware clock to make sure that it is
removed from all logical partitions before it joins a new logical partition (Fetzer and
Cristian, 1999b). Since the set of processes of a communication partition can change by
processes joining or leaving the partition, processes can leave and join a logical partition.
The fail-aware clock synchronization service ensures that the deviation between the
clocks provided by each of the servers within the same logical partition is bounded by
some a priori given constant . The membership service (Fetzer and Cristian, 1997a)
keeps track of the set of processes in a logical partition and guarantees that all processes
in a logical partition agree (at any point in clock time) on the current members of that
logical partition.

The next problem we address is that the connected relation of a logical partition is not
necessarily transitive. It is the goal of the fail-aware atomic broadcast service to ensure
that a broadcast in a logical partition LP is delivered to all processes in LP and to no
process outside of LP. To ensure that all these processes get all broadcasts, the local
leader k of a logical partition forwards a broadcast message m to a process ¢ when m is
sent by some process o that is not connected to ¢g. When the forwarding also fails, the
processes that cannot deliver all broadcasts are removed from the logical partition and
these processes have to switch to their exception semantics. The broadcast service
connects all processes in a logical partition via broadcast messages, making the b-
connected (‘‘broadcast connected’’) relation transitive (see Figure 11).

W Local leader
f’ “‘h‘ \\
‘L@,

T LP3

— Connected ® Timely process 2 Logical partition

Figure 10. The local leader election service elects local leaders and creates non-overlapping logical partitions,
each consisting of ‘‘supporters’” of a local leader.
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Figure 11. The broadcast service connects all processes in a logical partition and disconnects them from the
processes in all other partitions.

4.3. Fail-Awareness Properties

All fail-aware services of our protocol stack provide properties that are similar to that of
the corresponding synchronous services. We will only sketch a few properties of some of
the fail-aware service (for a detailed description of their semantics and implementations
see Fetzer and Cristian, 1997a, 1998, 1999a and b).

The fail-aware membership service takes the logical partition LP created by the local
leadership service (Fetzer and Cristian, 1999b) and maintains agreement on the
membership of LP among the members of LP (see Fetzer and Cristian, 1998, for a
detailed description of the semantics). Each server p maintains an indicator MS, that
shows the id of p’s current logical partition and a set mset, that shows the current
members of p’s logical partition. The service ensures that at any clock time T when the
indicators MS, and MS,, of two servers p and g show the same logical partition id LP, then
the two servers agree on the membership of LP:

MS,(T) = MS,(T) = mset,(T) = mset,(T)

A fail-aware membership service ensures that departures and joins of servers are
detected and result in a new membership of the logical partition within a known amount
of time. In particular, the fail-aware membership service has also to ensure that

e whenever a server can keep up with the servers in some logical partition LP (that is,
the server agrees with the processes in LP on the membership of LP), it will be
included in the membership of LP, and

e whenever a server cannot keep up with the other servers in LP (that is, its indicator
shows L, it is crashed or slow, or in an other communication partition), it is removed
from the membership of LP.

Since servers agree on the membership of their logical partition LP at any point in
clock time, they agree of course on the order in which servers are included in or removed
from the membership of LP. Each server ¢ that cannot update its membership in time
(only allowed when ¢ is not part of a stable partition) has to set its indicator to L to



FAIL-AWARENESS: AN APPROACH TO CONSTRUCT FAIL-SAFE SYSTEMS 223

signal to its clients that its membership information is out-of-date. The service has to
guarantee that at any time a process is in the membership of at most one logical partition,
that is, the memberships of two logical partitions never overlap. Our implementation of
the membership service (Fetzer and Cristian, 1997a) uses the messages sent by the local
leader election service to reach agreement on the members of a logical partition and the
time locking mechanism (see Section 5.4) to guarantee that the memberships of two
logical partitions do not overlap.

The fail-aware atomic broadcast service delivers messages within a constant Q clock
time delay after they are sent and uses their send time stamps and their sender’s id to
totally order all delivered messages. A broadcast message is time-stamped by reading
the synchronized clock C, of the sender p. Thus, the broadcast service guarantees
causal delivery even in the presence of a hidden channel like a file-system whenever
the delay of the channel is greater than the maximum deviation between clocks
(Lamport, 1978) (which is of the order of a few milliseconds in our implementation).
The service ensures the atomicity property that either all servers or no server in a
logical partition deliver a broadcast message. A server that (1) does not deliver all
broadcasts in time, or (2) has broadcasted a message that is not delivered in its logical
partition, has to signal to its clients that it is out-of-date. Each server p maintains
therefore an indicator BI,. More precisely, when a server g broadcasts a message m at
clock time 7, then either (A) all processes in LP deliver m by T+ Q (that is, the
indicators of all processes that have not delivered m by T+ Q must not show LP by
T+ Q), or (B) no process delivers m and ¢ signals by T+ Q to its clients that not all
messages it has broadcasted are delivered in LP by setting its indicator to L. When
server p’s indicator shows LP at clock time T, i.e., BI,(T) = LP, p knows that it has
delivered all broadcast messages delivered in LP no later than 7 and that all messages
it has broadcasted before T — Q are delivered by all processes in LP. When a process p
cannot keep its broadcast indicator up-to-date, it is removed from the membership of
its previous logical partition LP within a bounded amount of time, i.e., all processes in
LP learn that p has not necessarily delivered in a timely fashion all broadcasts that are
delivered in LP.

The broadcast service uses fail-aware datagram broadcasts to send broadcast messages
to the other servers. A local leader / decides what broadcast messages are delivered in its
logical partition and in what order. It piggy-backs that ordering information on the
datagrams sent by the leader election protocol. When the ‘‘early delivery option’’ of the
broadcast service is activated, the local leader broadcasts additional ordering datagrams
to allow the servers an earlier delivery of broadcast messages. The local leader rejects all
broadcast messages from other logical partitions and all broadcasts that arrive in slow
datagrams, i.e., with a transmission delay greater than A. Since the broadcasts are ordered
with respect to their send time stamps, the local leader waits for A + ¥ before it orders a
broadcast message to make sure that no broadcast message with an earlier send time
stamp arrives. When the local leader detects that some server has not received all
broadcast messages, it forwards these messages to that server. A server that does not
deliver all broadcast messages in time has to set its exception indicator to L. A local
leader can re-integrate such out-of-date servers by transferring them the current state of
the logical partition that it maintains.
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5. Mechanisms

Most of the fail-aware protocols we have designed use time redundancy to mask a
bounded number of performance failures per time unit (or, ‘‘round’’). Because the
number of failures per time unit cannot be bounded a priori, not all performance failures
are necessarily maskable. Since such non-maskable failures can lead to system failures,
fail-safe applications need to detect these failures so that they can switch to their safe
state. We review some of the mechanisms we use to detect performance failures and to
implement indicators.

5.1. Fail-Aware Datagrams

The fail-aware datagram service (Fetzer and Cristian, 1999a) calculates upper bounds on
the transmission delays of one-way messages by using round trip delay measurements
(Cristian, 1989). For example, to compute an upper bound on the transmission of m, it
uses the four time-stamps (each taken with local unsynchronized hardware clock) of the
round-trip n, m (see Figure 12). The service makes sure that two connected processes p
and ¢ exchange periodically messages so that when p sends a message m to ¢ it can
piggy-back the time stamps of some message n that p has previously received from gq.
This enables ¢, on the reception of m, to calculate an upper bound for m. Since the drift
rates of hardware clocks are in general very small (of the order of 10~¢), even when p
has received n several seconds before sending m, the increase of the upper bound for m
due to the maximum hardware clock drift rate is very small.

5.2. Detecting Process Performance Failures

Detecting performance failures is vital to many of our protocols to ensure their safety and
timeliness properties. Our protocols read the local hardware clock at certain points during
the protocol execution. For example, all our protocols read the local hardware clock when
a process (1) receives a message, (2) sends a message, (3) reads an indicator, or (4) is
awakened by the operating system. Consider the situation shown in Figure 13 and let us
assume that the standard execution can be stopped as soon as one of the bounds a, B, C,
or d is violated. Process ¢ reads its clock at real-times ¢, u, and v and its hardware clock

B Local (hardware clock) time

r f ok
" m
A Local (hardware clock) time D
T T

q

td(m) < D-A-(C-B)

Figure 12. When the drift rate of hardware clocks can be neglected, the transmission delay of m can be bounded
by (D —A) — (C — B) even though p’s and ¢’s hardware clocks are not synchronized.
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Figure 13. Processes use hardware clock time stamps to detect performance failures.

returns the values 7, U, and V, respectively. Process ¢ checks in interval [f,u] if the
transmission delay of n was at most a real-time units (using the fail-aware datagram
service) while it checks in [u, v] that the processing time between ¢ and u was at most B
clock time units. The latter is easy to achieve because g can use the time stamps 7, U to
test if U — T > B. Similarly, ¢ can check if V — U > C. When ¢ detects that at least one of
the three bounds a, B, or C is violated, it does no longer send m.

5.3. Indicators

Real-time communication protocols can be divided into two broad classes (Kopetz and
Verissimo, 1993): time triggered and event triggered. Event triggered systems react to
events directly while time-triggered systems react only at predefined points in time.
Orthogonal to the above classification, protocols can also be classified as clock-driven or
timer-driven (Verissimo, 1993). Clock-driven protocols rely on synchronized clocks
while timer-driven protocols rely on (unsynchronized) timers. All our fail-aware
protocols are event-triggered and all protocols above the fail-aware clock synchronization
layer are clock-driven (see also Figure 6). We chose event-triggered protocols since
operating systems like Unix have relatively good reaction times to events like a message
reception but they have poor real-time scheduling support. The protocols are clock-driven
because clock-driven protocols simplify the implementation of indicators: a process
knows the clock time beyond which it cannot provide all its properties anymore, unless
“‘something good’’ happens before that deadline. Our indicator design relies on this
knowledge to signal when a server starts providing its exception semantics.

To explain how clock-driven protocols help to maintain indicators, consider a simple
fail-aware clock synchronization protocol. A process p has to adjust a clock C,
periodically, say, before its local hardware clock shows values S, S+ D, S+2D, ..., to
keep its clock synchronized (see Figure 14). When process p does not adjust its clock
before a given deadline, its clock C,, may no longer be synchronized to the other clocks.
Let process ¢ be another process that is executed on the same computer node as p (p and
g use the same hardware clock H), = Hq). When process ¢ tries to read C,, between S + D
and U (measured by H,,), ¢ has to detect that C,, is out of sync. We achieve that by using
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Figure 14. Process p has to adjust its clock before hardware clock times S, S+ D, and S+2D. It actually
performs the adjustments at times 7, U, and V. Since p misses deadline S+ D < U, a process ¢ that reads p’s
clock between [S + D, U] has to detect that C, might not be synchronized.

the following mechanism (see Figure 15). An indicator /,, of a process p consists of two
parts: (1) the identification of p’s logical partition (Ipartition), and (2) the expiration time
(expTime) beyond which the indicator has to signal that p provides its exception
semantics. When process ¢ evaluates /,, it first reads the local hardware clock Hp. If its
hardware clock shows at most time expTime, the value of I, is Ipartition. Otherwise, the
value of I, is out-of-date (L) which tells g that p provides its exception semantics.
Process p updates its indicator periodically, e.g., at time T it sets the expiration time to its
next deadline S+ D (see Figure 14). When p suffers a performance failure, it does not
update its indicator in time and hence, any client that reads the indicator will evaluate I,
to out-of-date. For example, when ¢ evaluates [, during interval (S+D, U), the
expiration time is S + D while Hp shows a value greater than S + D. Thus, Ip returns value
out-of-date that allows ¢ to detect that C, is not in sync anymore.

A process ¢ that reads [, might itself suffer a performance failure while evaluating the
current value of /,. An indicator /, therefore returns the hardware clock time stamp used
at the time its evaluation was requested. This allows the detection of performance failures
that occur during the evaluation of /, or during the usage of the value returned by /,,.

5.4. Locking Mechanism

Several of our protocols, e.g., the leader election service, use a locking mechanism to
communicate by measuring the passage of time. This mechanism is similar to the
“‘leases’” mechanism of Gray and Cheriton (1989) which was introduced to ensure cache
consistency in distributed file systems. The locking mechanism requires only one fail-

2]
Ipartition E
. .
I u out-of-date
I, =(Ipartition, expTime) = C—FIUCk
p= partation, exp lumne :m- ime

Figure 15. The indicator of a process p consists of the logical partition /partition of p and an expiration time
expTime, that is, the time when the indicator will become out-of-date.
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Figure 16. A process p guarantees not to change its variable LV for at least lockTime time units. Process p
knows that ¢ will use this information (transmitted in »72) at most to some time u < ¢ + lockTime and hence, p can
change LV after time ¢+ lockTime without any further message based communication with q.

aware datagram message instead of a round-trip message pair (or synchronized clocks)
used in the leases mechanism.

The advantage of using time for interprocess communication is that—when applied
properly—this communication is possible even when the communication partners
become partitioned. This mechanism is particularly useful for the coordination of the
processes that switch the system to a safe mode (see Sections 6 and 7).

The locking mechanism works as follows (see Figure 16). A process p sets some local
variable LV to a value V and sends a message m to a process ¢ at real-time ¢ telling ¢ that it
will not change the value of LV for at least lockTime real-time units. When process g
receives m at s, it knows that p will not change LV for at least lockTime — td(m) time
units, where td(m)=s—t is the transmission delay of m. Process ¢ can use the upper
bound ub(m) > td(m) calculated by the fail-aware datagram service to determine a lower
boAund for the time p will not change LV, that is, at least until time
u=s — ub(m) + lockTime. The interesting part is that at time ¢+ lockTime process p
can change the value of LV without having to notify ¢ about the change because g will not
use its knowledge that LV equals V beyond time u < ¢ 4 lockTime. For example, consider
that p lets ¢ know by sending m that p wants to be part of ¢’s logical partition LP until at
most time ¢ + lockTime, then p can try after time ¢+ lockTime to become part of another
logical partition without sending g another message since ¢ will remove p from LP before
t + lockTime. In other words, the locking mechanism can be used (among other things) to
guarantee that a process is at any point in real-time in at most one logical partition. We
describe in Section 7 how this locking mechanism can be used to coordinate the switch to
a safe mode in a traffic signaling application.

6. Switching to a Safe Mode

Switching a system to a safe mode is an important and challenging task: one has to detect
when a system has to be switched and then one has to be able to perform this switch even
if there are failures in the system. We explain in this section how fail-awareness can help
in the detection and also in the actual switch. For concreteness, we will explain our
approach using a simple railway crossing example.

Whether a system is safe is typically specified by one or more safety properties. For
example, in Section 1.2, we stated such a property (ST) for a railway crossing: at any time
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t, if there is a train in the railway crossing at 7, the crossing arms are down at z. We can
formalize this using a predicate TrainInCrossing and GatesDown:

Vt : TrainInCrossing(t) = ArmsDown(t) (ST)

Of course, one would like to specify that whenever there is no train in the crossing, one
wants to open the crossing arms. Let predicate OpenArms(t) denote that the computing
system requests to open the crossing arms. One can specify a liveness condition (L) that
states that if there has not been a train in the crossing for some time RD (reaction delay)
and there will not be a train in the crossing for RD, the system requests to open the
crossing arms:

Vi: (Yu e [t—RD,t+RD] :
—TrainInCrossing(u)) = OpenArms(t) (L)

To enforce these properties (ST, L), one has to make sure that whenever a train
approaches the crossing, it is detected sufficiently early to be able to close the crossing
arms before the train reaches the crossing. One can use sensors to detect an approaching
train. Consider that the sensor data has to be sent from the sensor nodes via messages to
some remote nodes that have to determine if a train is approaching. One has to make sure
that even if sensor messages (or their processing) are delayed, one can reliably detect an
approaching train.

In synchronous systems, one typically makes the assumption that at most F' out of
F + 1 messages are delayed or dropped, where F is a small, a priori known constant. One
can then send a message F + 1 times to make sure that each sensor message is delivered
in a timely manner. In this work, we do not want to make such an assumption because
there is always the possibility that all F 4 1 messages are lost or delayed (e.g. in case all
network cables are cut by some accident). Furthermore, such an assumption is not
necessary to ensure the safety of the system, i.e. (ST).

Since we cannot assume that messages are timely, a computing system cannot always
determine if there is a train approaching. The solution to this problem is to use a Boolean
indicator 7 such that only if I(¢) is true, a process can trust that the computed value of
TraininCrossing(t) is valid. In other words, one can implement to following liveness
condition:

Vt:(Vue[t—RD,t+RD]:
I(u) A —~TrainInCrossing(u)) = OpenArms(t) (FL)
The crossing arms have to be closed if indicator / signals that the computation of
TrainInCrossing might not be correct. In a system that supports hard real-time processes, a
hard real-time process could check the indicator / periodically and then requests the arms to

be closed if needed. In systems without hard real-time scheduling, we suggest the following
interface to the external world (see Figure 17). The controlling computing system exports

e the current local time which is defined by local hardware clock,

e a Boolean ArmsUp that is true if the controlling computing system requests the
crossing arms to be opened, and
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Figure 17. Fail-aware interface of a computing system.

e an expiration time (defined by indicator /) that states when ArmsUp expires, that is,
when the arms should be closed.

As Figure 17 shows, one can use a comparator and an and-gate to make sure that the
arms are closed in case the controlling computing system has no up-to-date information.

To implement the indicator /, sensors have to send their current state periodically to a
process p that maintains the expiration time of /. If p receives a sufficient number of
timely sensor messages, it can extend the expiration time for a certain time. In other
words, as long as a sufficient number of timely messages are delivered in time, the system
can maintain the liveness property. However, if too many failures occur or sensors
become disconnected, the system is automatically switched to a safe mode.

In some systems, processes might need more information (e.g., some sensor data) to
switch the system to a safe mode. To address this problem, processes should exchange the
needed information S/ periodically such that each process that participates in the switch
has always an up-to-date SI. Only, if a sufficient number of processes can keep SI up-to-
date, the system can be prevented from switching to a fail-safe mode. In case too many
processes fail to update S/, the system switches to safe mode using the still up-to-date
information SI.

7. Traffic Signaling Example

In this section, we give a more detailed example of how fail-aware services could be used
in a practical setting in which computer controllers that are physically close to sensors or
actuators are linked by a communication network. Such systems of distributed controllers
are common in factory floor control applications. We will illustrate the use of fail-
awareness on an example that has a more complex switch to safe mode: a synchronized
traffic signaling application. For a real-world, fully automated train system that uses fail-
awareness please see Essame et al. (1999).

We consider a system with two intersections (see Figure 18). There are four traffic
lights per intersection. Each of the four directions of an intersection is sensed by a pair of
sensors. During normal operation at least one of the two sensors of each pair has to be
‘‘operational’’, otherwise, the subsystem controlling the intersection has to switch to a
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Figure 18. The traffic lights (L1-L8) of two intersections have to be synchronized. There are two sensors (S?a,
S?b) for each traffic light (L?) (and there are two redundant controllers for each of the two intersections).

“‘round robin’> mode to guarantee a certain amount of fairness for all cars. For each
intersection there are two safe states: (A) all four traffic lights show red, or (B) all four
traffic lights flash red. The system should only transition to safe state (A) for a bounded
amount of time before it transitions to state (B). During non-partitioned operation the
traffic lights of the two intersections have to be synchronized to maximize the flow of
cars. When the system partitions, the intersections are allowed to be controlled
independently of each other.

The distributed subsystem that controls an intersection consists of (1) one pair of
redundant intersection controllers, (2) eight sensor nodes, and (3) four traffic light
actuator nodes, one per traffic light (see Figure 19). The sensors broadcast periodically
their sensor information. During normal operation all controllers get the same sensor
broadcasts in the same order. We assume that the controllers are implemented by a
deterministic algorithm. Hence, the controllers of an intersection implicitly agree on the
commands to send to the traffic lights. Since the controllers get also the sensor
information from the other intersection when the system is not partitioned, they can
synchronize the traffic lights of the two intersections without any further communication.

When a sensor S becomes partitioned from a controller C or the sensor broadcasts of S
are not delivered to C in a timely manner, then C and S cannot be in the same logical
partition. To guarantee the fairness condition (at least one of the two sensors of each
sensor pair has to be operational), it is sufficient that when the membership of the logical
partition of a controller C does not contain at least one sensor for each direction of C’s
intersection, C switches to a ‘‘round robin’” mode. To avoid that the two controllers of an

[t |-[ra] [sta]|-[sa] [a] [ 2]

[ L5 |-[ 18 | [s5a|-[s8] [ 3] [ ca]

Figure 19. The computer system has one node for each traffic light (L?) and sensor (S?a, S?b). There are also
two controllers (C1, C2) and (C3, C4) for each intersection.
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intersection send conflicting commands to the traffic light actuators, a controller only
broadcasts commands to the traffic lights when at least all four traffic light actuators of its
intersection are in the membership of its logical partition: when both controllers have all
traffic light actuators in their membership, both controllers are in the same logical
partition (because at any point in real-time a process is in at most one logical partition).
Hence, both controllers receive the same sensor broadcasts in the same order and thus,
implicitly agree on the commands they send to the traffic light actuators.

The traffic light actuator has to switch to a safe mode whenever it cannot be guaranteed
that the four traffic light actuators receive the same sequence of commands in a timely
manner. Since the broadcast indicator of a broadcast server p signals whenever p has not
delivered all broadcasts in a timely manner, by monitoring its broadcast indicator a traffic
actuator node can determine when it has missed a broadcast from a controller unit and it
has to switch to a fail-safe mode. To detect when one or more of the other three traffic
light actuators of an intersection do not get all broadcasts sent by the controllers, a traffic
light actuator can simply check that all four actuators are in its current membership
because a process that does not get all broadcasts will be removed from the membership
from a logical partition within a bounded amount of time. Therefore, it is sufficient that
each traffic light node p has a high priority watchdog process that switches it to a safe
state when (1) p’s broadcast indicator signals that it has not received all broadcasts, or (2)
p’s membership does not contain at least one of the two controllers and all four traffic
light actuators of the intersection. Note that a simple hardware circuit that checks if the
indicator of a server is up-to-date (similar to that depicted in Figure 17) could be used to
eliminate the high priority watchdog process.

The switch to a safe state of the four traffic lights of an intersection has to be
synchronized in the sense that (1) when one is flashing red the other lights have to show
red or have to flash red, and (2) after switching to a fail-safe mode all lights have to flash
red within a bounded amount of time. Let us now describe how the time locking
mechanism can be used to coordinate the switch to a safe state even when all four traffic
lights are partitioned from each other. For simplicity of exposition, let us assume that
there are only two lights L1 and L2. To achieve an coordinated switch, L1 and L2 send
each other periodic fail-aware unicast messages during their normal operation which lets
the other traffic light know that the sender will not switch to the ‘‘flash state’’ for at least
It time units. L1 can switch to flash state whenever it has not sent such a message for at
least /¢ time units (see Figure 20). When L2 does not receive at least every /f time units a

I
|
i Flash
|
I

! I
Normal , red
L2 | Coed I Flash

a he— [ —® ¢

Figure 20. The two lights coordinate their switch to the flash state using a locking mechanism. L1 can switch to
the flash state at d because it knows that L2 cannot assume after ¢ < d that L1 is in the normal state. L2 cannot
switch to the flash state until time e since it has sent n ensuring that it will not switch to the flash state before e.
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message from L1, it first switches to red and when it is sure that L1 shows red or flashes
red, it transitions to flash red. L1 knows that at least /r time units after its last message to
L2 that L2 has to switch to red or flash state. Note that L2 has to stay in the red state for at
most It time units before it can switch to the flash state.

8. Performance

We measured the performance of our services on a 10 MBit Ethernet connecting several
relatively slow SUN IPX workstations running SunOs 4.1.2.

The fail-aware datagram service calculates an upper bound ub(m) on the transmission
delay td(m) of each message the service delivers, i.e., ub(m)>td(m). In our first
measurement we determine an upper bound on the error ub(m) — td(m) of the calculated
upper bound (see Figure 21). Since we cannot measure the exact one-way transmission
delay td(m) of a message, we approximate the error made by the fail-aware datagram
service by the difference between the calculated upper bound and a known lower bound
for the message transmission delay 0,;,, i.e., we plot ub(m) — J,,;,. Note that this is a
conservative approximation, in that the real error is always smaller than our
approximation, i.e., ub(m) — 0., > ub(m) — td(m). This measurement is based on
20,000 round-trips of unicast message with a length of 248 bytes.

The next plot, shown in Figure 22, shows the measured times needed to elect a local
leader (Fetzer and Cristian, 1999b) (these local leaders are instrumental in defining the
logical partitions mentioned earlier). The measurements were based on 100,000 elections.
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Figure 21. Measured error for the calculated upper bound on the transmission delay of unicast messages.
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Figure 22. The average election time and 99% election time for 1 to 7 participating processes.

The election time increases linearly with the number of processes participating in the
election: the average election time and the 99% election time, i.e., a process succeeds
with a 99% probability to become leader within that time, are shown in Figure 22.

The next measurement determines the deviation between synchronized clocks within a
logical partition. The clock synchronization protocol synchronizes the clocks within a
logical partition to the hardware clock of the local leader of the logical partition. Figure
23 plots an upper bound calculated for the deviation between the hardware clock of a
local leader / and the synchronized clock of a process in I’s logical partition.
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Figure 23. Measured deviation between the hardware clock of a local leader and the virtual clock of one of its
supporters.
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Figure 24. Measured removal times of a crashed process by a fail-aware membership protocol. Processes have
to send an ‘‘alive-msg’’ at least every 80 ms and get a ‘‘second chance’’ in case such a message is delivered late.

We also measured the time needed to remove a crashed process from the membership
of a logical partition (see Figure 24). During this experiment the membership was
updated every 80ms. Because the membership protocol gives a process a ‘‘second
chance’’ to prove that it is still in the same partition, it takes typically between 80 and
160ms to remove a crashed process from the membership (see Fetzer and Cristian,
1997a, for details).

The last measurement shows the delivery times of atomic broadcasts that are ordered
according to their send time stamps (see Figure 25). We used the early delivery option
that orders a broadcast message m as soon as the local leader knows that no other message
has to be delivered before m. In our measurements a local leader had to wait for about
10 ms after it received a message and before it was able to order the message. The width
of the experienced delivery times (13 ms,23 ms) is about 10ms, which reflects the
scheduling resolution of the operating system that is also 10 ms.

9. Related Work

Much of the research in distributed real-time systems has focused on the simpler,
guaranteed response paradigm. Some systems designed according to that paradigm are
Mars (Kopetz et al., 1989), XPA (Verissimo et al., 1991), TTP (Kopetz and Grunsteidl,
1994), and the Advanced Automation System family (Cristian et al., 1996). Recently,
some of the research has focused on adaptive real-time systems. Research on detecting
performance failures in ‘‘quasi-synchronous’’ systems is described by Almeida and
Verissimo (Verissimo and Almeida, 1995). Their approach depends on the existence of a
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Figure 25. Measured delivery times of atomic broadcasts.

lower level synchronous communication channel to detect such failures. In contrast, our
approach does not require such a basic channel, but uses unsynchronized local clocks
with bounded drift rates to detect performance failures. There also exist at least two
systems that support the construction of partitionable fault-tolerant distributed
applications on top of a network of workstations and that aim to provide real-time
support by providing high throughput and predictable latency: Transis (Dolev and Malki,
1996) and Totem (Moser et al., 1996). In contrast to these systems, our approach aims to
support the design of real-time systems by simplifying the detection of situations when
the delays of messages and processes become so high that not all performance failures
can be masked and an application has to switch to a fail-safe mode.

We introduced the concept of fail-awareness in Fetzer and Cristian (1996) as a general
method of transforming synchronous service specifications into weaker, fail-aware
service specifications that are implementable in timed asynchronous systems (Cristian
and Fetzer, 1999). In our earlier work on fail-awareness (Fetzer and Cristian, 1996) we
did not address the issue of partitionable operation: only servers in the partition that
contains a majority of processes were allowed to make progress. The main contribution of
this paper is to show how fail-awareness can be extended so that servers in multiple
partitions can make progress (and hence, can increase the availability of the system) by
introducing the concept of logical partition. The protocols presented in this paper support
both operations, that is, they allow us to either force only the servers of a majority
partition to make progress, or to force servers to make progress even when they are in a
minority partition. A service that can be viewed as an early example of a fail-aware
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service is the probabilistic clock synchronization service proposed in Cristian (1989) for
timed asynchronous systems: that service has a Boolean variable ‘‘synchronized’’, that is
true only when a clock is synchronized and is false when the clock may be out of synch.

10. Conclusion

The guaranteed response paradigm (Kopetz and Verissimo, 1993), which aims at
guaranteeing timely responses, depends on the use of synchronous services, which in turn
depend in a fundamental way on the assumption that the maximum number of failures per
time unit is known at design time. If this failure assumption, basic to all synchronous
service implementations, can be violated at run-time, these implementations can be
subject to unpredictable behavior (due to delays and in particular, state contaminations).
It is very difficult to guarantee such a failure assumption, in particular, for much of the
off-the-shelf hardware and software. To address the current trend towards using off-the-
shelf components in system design, fail-awareness no longer depends on a failure
assumption: as long as the number of failures per time unit stays bounded, a fail-aware
service provides properties like a synchronous service and when too many failures occur
per time unit, the service lets its client know—in a timely manner—that it cannot
guarantee its properties anymore. Fail-awareness allows the containment of failures by
detecting when properties become invalidated due to excessive performance/crash/
omission failures.

The target application domain of the fail-aware services we have designed are hard
real-time applications built from COTS hardware and software that naturally have a safe
state. Applications can use the indicators of the servers to detect when it is necessary to
switch to a safe state. We believe that our fail-awareness approach is also advantageous in
the construction of custom designed systems and for fail-operational systems.

Notes

1 An implementation of (F1, F2, F3) that cannot change the speed of the hardware clocks needs access to a
stable storage to guarantee (F1). If a process p crashes, it loses the information of how far the synchronized
clock C,, is apart from the local hardware clock. This offset is needed to guarantee a bounded drift rate during
reintegration of the clocks after a total system failure. Later we will transform (F1, F2, F3) for partitionable
systems such that one does not need a stable storage.

2 One does not necessarily want to replace all crashed,,(t) terms. Typically, one wants to keep the original terms
crashed,(t) if (1) the resulting specification is still implementable in timed asynchronous systems and (2) it
still permits processes in different partitions to make progress.
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