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ABSTRACT 

Continuity of service and cost-effectiveness are adding 
new challenges to life critical systems over and above the 
underlying safety concerns. The introduction of redundant 
components is a necessary condition for  increasing the 
overall system availability with respect to physical 
component failures. Here we consider redundancy by 
means of replicating fail-safe components in a distributed 
real-time system f o r  railway applications. In such a 
system, some functions cannot tolerate even a brief service 
interruption. These functions have to be replicated using 
active redundancy, and their outputs must be consolidated 
with the goal that the failure of one component has no 
effect on the delivered service. We formally investigate 
conditions fo r  preserving safety properties of fail-safe 
components when replicating them using active 
redundancy. We focus our analysis on duplex computers 
with two fail-safe units. Given some safety constraints, we 
show that inconsistency of replicated units can lead to 
safety degradation even if each replicated component 
(taken individually) satisfies the given safety constraints. 
Two solutions are studied: masking and detection of state 
or context inconsistency. The former leads to requirements 
on the output consolidation function and the latter to 
requirements on the redundancy management  
mechanisms. 
Keywords: fault tolerance, redundancy, safety, fail-safe 
systems, safety property preservation, output consolida- 
tion, real-time systems, railway applications. 

1. Introduction 
During the last decade, many applications of computer 

systems have emerged in the field of railway systems: 
automatic speed control (SACEM [ 111, Shinkansen [2]), 
interlocking systems (SMILE [ 11, CBI [ 131, ELEKTRA 
[12]), train route and traffic control (COMTRAC [lo]), 
fully automated train control (MAGGALY: Metro A 
Grand Gabarit de 1’Agglome‘ration LYonnaise) and others. 
Fault-tolerant computing systems are increasingly used to 
meet the stringent dependability requirements that, besides 
safety, extend to availability and to maintainability. 
Indeed, improvement of quality of service, continuity of 
service and cost-effective exploitation are adding new 

challenges to railway system designers beyond the 
underlying safety concerns [3]. 

Different architectural solutions have been used to 
ensure safety. These range from simplex and duplex to 
dual duplex and TMR architectures. Similarly, several 
approaches have been taken to satisfy the availability 
requirement. In particular, two different approaches can be 
identified: 

Ensure availability first and then address the safety 
issue globally. A typical example of such an approach 
is the electronic interlocking system ELEKTRA [ 121. 
This system has two TMR channels (VOTRICS node 
[IS]) in a ControlMonitor configuration implementing 
the “safety bag technique” [ 141. The control channel, 
or Interlocking Computer performs interlocking 
control functions whereas the monitor channel, or 
Safety Bag Computer ensures that safety conditions are 
respected. Thus, reliability and availability are 
achieved by using actively triplicated hardware in each 
channel while safety is achieved by inter-channel 
checking. 
Replicate safe building blocks to ensure availability; 
on the contrary to the previous approach, each basic 
block can ensure safety. Typical examples of such an 
approach are systems based on the “coded processor ” 
[8]. This is an informational redundancy technique 
associating arithmetic coding and signature checking. 
Since encoded data proccssing is uscd to mect the 
safety requirements, replication is only necessary for 
availability. 
In this paper, we consider the second approach above. 

The main problem we address is how to increase the 
availability of a system without degrading its safety. We 
have based our study on the fully automated train control 
system METEOR (METru Est Ouest Rapide), designed to 
control the new east-west subway line in Pans. 

This system consists of duplex computers intercon- 
nected by a network. Both units of the duplex computer 
are fail-safe and are based on the coded processor 
approach. In such a system, some functions cannot tolerate 
even a brief service interruption. An example of such a 
function is the high voltage control where any interruption 
of service leads to a system shutdown. Since a system 
shutdown has a very negative effect on system availability 
(restart can take a long time) such functions have to be 
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replicated using active redundancy. For this target system 
we define some safety constraints that are assumed to be 
satisfied by each redundant component. We consider 
output consolidation techniques that allow continuous 
service to be achieved. However, we show that state or 
context inconsistency of replicated components can lead to 
safety degradation even if each replicated component 
(taken individually) satisfies the given safety constraints. 
We  formally investigate the conditions for preserving 
safety properties of fail-safe components when replicating 
them using active redundancy within a safety constraints 
analysis framework. Two approaches are considered: 
masking and detection of inconsistency. 

The rest of this paper is structured as follows. After 
defining the notion of a safety constraint, we show how 
context inconsistency of actively replicated components 
can lead to safety degradation even when each component 
is fail-safe. Afterwards, we formally investigate the 
conditions under which the safety properties are preserved. 
Both output consolidation and redundancy management 
mechanisms are studied. We then describe a protocol that 
ensures that the safety properties hold. 

2. Definition of safety constraints 
Given a fail-safe component, let X be the set of actions 

that this fail-safe component can undertake on its 
environment. These can be safety-related actions (e.g., 
high voltage control) or functional actions (e.g., sound 
alarm control). 
Definition 1-Dependency relation 
Given two actions x, y E X ,  we say that action x depends on 
action y if and only ifaction y is a necessary precondition 
for  action x. We note this relation y < x .  

Two actions x and y are dependent if they are linked 
by the dependency relation; if not, they are independent. 
The dependency relation defines a partial order on the set 
of actions X .  The dependency relation links actions that 
have to be undertaken in a given order to meet either 
safety or functional requirements. Undertaking such 
actions in a different order can lead to system failures 
ranging from benign to catastrophic. 
Definition 2-Safety constraint 
Given two dependent actions x ,  y E X such that y + x .  
There is a safety constraint between x and y if 
transgression of the dependency relation can lead to a 
catastrophic failure. 
It is important to note that two actions can be dependent 
without there being a safety constraint. 

Let p be the following predicate: 
p : X H {false ; true } 

with p(x)=trueif the action x is undertaken and p(x)=false 
if not, Vx E X .  

Given this predicate, the respect of the dependency 
relation for two actions x and y such that Y < x requires 
that p ( y )  be a valid consequence of p(x).  More formally, 
the formula p ( x )  + p ( y )  must always be true. In other 

words, the interpretation where p(x)=true and p(y) fa lse ,  
must be avoided. Therefore, the safety constraint between 
actions x and y can be stated formally by: 

( P b )  + P ( Y ) )  = true 

3. System Model 
The system consists of networked duplex controllers 

made up of two fail-safe units based on the coded 
processor. 

The units can conimunicate with each other and with 
remote units by messages sent over a network. The 
network is very reliable, but not enough for human lives to 
depend on it. Thus, from a safety viewpoint, we must 
assume that the network can loose or delay messages. 
However, message integrity is ensured by error-detecting 
codes. In the terminology of [4], messages sent over the 
network have omission/performance failure semantics. 
The local clocks of units are not synchronized. However, 
every unit checks the rate of drift of its local clock with 
respect to real-time and switches to the safe mode if the 
drift exceeds a predefined bound. Consequently, the local 
clock of an operational unit has a bounded rate of drift 
from real-time. Thus, the system satisfies the timed 
asynchronous model [6]. 

Since delayed messages can impair safety, a fail-aware 
datagram service similar to the one described in [7] is 
available for message delivery. Thus delayed messages 
can be thrown away. 

3.1 Replication 
Both availability <and safety are key issues in railway 

systems. To achieve the availability requirements, some 
functions are replicated on different components of the 
system. Three modes of replication can be considered: 
active replication (all the replicas receive inputs, update 
their internal state or  and apply outputs to the 
environment), semi-active replication (all the replicas 
receive inputs, updale their internal state, but only one 
replica-the primary replica-applies outputs to the 
environment) and passive replication (only one replica- 
the primary replica-]receives inputs and applies outputs to 
the environment). Active replication is necessary when the 
function cannot tolerate any service interruption, but 
requires a specific mechanism to combine redundant 
outputs into a single effect. Semi-active replication can be 
used when a short service interruption (due to switchover 
delay) can be tolerated. Passive replication is particularly 
well adapted to functions with no internal state since, in 
this case, there is no need for checkpointing. 

In the particular case where the primary (resp. 
secondary) replicas of all functions are allocated 
exclusively to the same unit, we call this unit the Primary 
(resp. Secondary) unit. Here, we consider the case where 
two fail-safe unit are used in a primary/secondary 
configuration to meet the availability requirement. 

177 



32 Output consolidation 
We call output consolidation the process of combining 

redundant outputs from active replicas inta a single effect 
(Fig. 1). 
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Fig. 1 : Output consolidation device 

To fulfil the continuity of service requirement, the 
replica outputs must be consolidated with the goal that the 
failure of one replica has no effect on the expected service. 
Let us consider the control of the High Voltage (HV) 
power to the train track. We consider a duplex computer 
with two fail-safe units A and B. Since the loss of HV has 
a very negative effect on the system availability', this 
function has to be replicated using active replication. Each 
unit has an HV control output (AutHVA for A and AutHVB 
for B) which is true if the unit allows HV and false if not; 
with the safe position being when this control output is 
false. Since each unit is fail-safe, in the case of a detected 
failure, it always switches to the safe position by setting 
the given output to false. For this example the OR logic 
function can be used to allow continuous service. Indeed 
we have: 

where AutHV is the final control output to be applied to 
the environment. If the unit B fails, it sets AutHVB to false 
so one has : AutHV= AutHVA +false = AutHVA. 

AutHV = AutHVA + AutHVB 

4. Problem statement 
Redundancy introduces potential safety problems that 

would not exist in an unreplicated system. We state the 
problem by means of an example. In fully automated train 
systems, one of the critical procedures to be handled is the 
emergency evacuation of passengers. This procedure 
needs many actions to be undertaken on the environment. 
Two of these actions are: cut power to the rails (HV-Cut: 
setting AutHV to false)  and open doors of the train 
(Doors-Open). Since opening doors without cutting the 
High Voltage can lead to a catastrophic failure, according 
to Definition 2 ,  there is a safety constraint between 
HV-Cut and Doors-Open. Therefore, according to the 
previous predicate p ,  one has : 

@(Doors-Open)-+p(HV-Cut)) true 
Let us consider two fail-safe units (A and B) of a 

duplex computer (D) in a primaryhecondary configuration 
with unit A as Primary. We assume that the High Voltage 
control function is replicated using active redundancy with 

' A power cut brings all trains on the line to a halt Recovery from this 
situation requires a lengthy verification procedure including, for 
example, checking that no passengers have strayed from the immobile 
trains. 

OR-logic for output consolidation. However, since the 
door opening function can tolerate service interruption, 
this function can be replicated using semi-active or 
passive replication. Thus, we assume that only the primary 
applies the corresponding output to the system. Let pA 
(resp. pB, p D )  stand for the predicate p with respect to unit 
A (resp. unit B, duplex computer D). 

We consider a scenario in which, due to some 
transmission error, the states or contexts of unit A and B 
have become inconsistent, such that: 
6 A has detected an emergency evacuation situation, 
6 B has not (yet) detected the emergency. 
This leads to the following situation: 
For unit A which has detected the emergency evacuation: 
0 Set  the A u t H V A  to false to shutdown the HV: 

p,(HV-Cut) = true; 
Open train doors: p,(Doors-Open) = true; 
Thus: (p,(Doors_Open )-+ p,(HV-cut)) = true. 

For unit B which has not detected the emergency 
evacuation: 
* No HV shutdown, AutHVB=true: pB(HV-Cut) =false; 
0 No train door opening: p,(Doors-Open) =false; 

Thus: (pB(Doors-Open )-+ p,(HV-Cut)) = true. 
For the duplex computer D: 
0 Since the final output for HV is obtained by the OR 

logic function: AutHV = AutHVA + AutHVB, one has 
no HV shutdown: pD(HV-Cut) =false; 
Since unit A is the primary unit and the door opening 
function is replicated in semi-active replication mode, 
one has p,(Doors_Open) = true; 
Thus: (p,(Doors-Open )+ pD(HV-Cut)) =false. 

0 

Both units A and B individually satisfy the safety 
constraint, however the duplex computer D does not. This 
example shows how context inconsistency of redundant 
units can lead to safety degradation even when each unit is 
fail-safe. It can be shown that such situations arise if some 
or all actions result from actively-replicated functions. For 
simplicity, we choose here to consider only the case where 
the other action results from a semi-actively replicated 
function. 

One solution to this problem would be to implement an 
atomic broadcast service to ensure that replicas agree on a 
consistent context. Given a team of n units and 
dynamically-formed groups, Cristian identifies three 
different specifications for replica consistency in timed 
asynchronous systems [SI: 
0 Group agreement which ensures that all members 

joined to the same group agree on a history of updates. 
0 Majority agreement which ensures that all members 

joined to a majority group (a group with more than half 
of the team's members) agree on a history of updates. 

0 Strict agreement which ensures that all team members 
agree at any time on a unique history of updates. 
Unfortunately, none of these forms of agreement 

solves the inconsistency problem for a duplex controller (a 
team with two members). With the Group agreement 
specification, in case of communication failure, the team 
will be divided into two groups allowing replica updates to 

178 



occur in parallel with the possibility of context 
inconsistency. Majority and Strict agreement are also 
unsuitable since in case of communication failure, it is 
impossible to obtain a majority group. It has in fact been 
shown that it is impossible for two units to agree if 
messages between them can be lost (see the "two-generals 
problem" in [9]). 

Given that context inconsistency cannot be avoided in 
duplex controllers interconnected according to the timed 
asynchronous model, we now focus our study on how to 
preserve safety constraints by to lera t ing  context 
inconsistency. We address the problem by means of 
context inconsistency masking and context inconsistency 
detection. 

5. Safety constraint preservation 
To enhance the fail-safe property of a unit U such that 

U E {A,B}, we introduce a boolean variable U (i.e., a for 
unit A and b for unit B) which is equal to true if it is 
providing its nominal service and to f a l se  if the unit 
switches to the safe mode. When a unit is in the safe 
mode, all its safety outputs are in their safe position and 
no control outputs are sent to the environment. When a 
failure occurs, the fail-safe property guarantees that the 
unit always switches to the safe mode. 

Given x,  y E X ,  two dependent actions such that y < x 
with a safety constraint, we can state the following axiom 

ab -+ PD(Y) = P B ( Y )  

Both statements can be summarized formally by the 

OCsa : pD(.)  = ~ . p ~ ( ~ ) + i ? . b . p , ( n )  
For active replication (action y ) ,  the first requirement 

If one unit switches to the safe mode (a=false or 
b=false) then responsibility for action y will be 
transferred immedliately to the other unit: 

following property: 

is continuity of service: 
1, 

a6 + P d Y )  = P A ( ] ? )  

ab -3 PD(Y) = P h i )  
While both units are providing their nominal service, 

we successively consider the following exclusive 
statements: 
2,e When both units are providing their nominal service, 

the action y is undertaken by the duplex computer D 
if e r  unit decides: 

2,b When both units are providing their nominal service, 
the action y is undertaken by the duplex computer D 
if both units decide: 

ab -3 P J Y )  = PA(Y 1 + PB(Y) 

ab -3 PD(Y) = PA(Y).PB(Y) 
As for semi-active replication, these statements can be 

summarized formally by the following two properties, 
when combined with the requirement 1,: 
OCe : p ~ ( y )  = a . b ' p A ( ) ' ) + a ' b . ~ B ( y ) + a . b . ( ~ A ( y ) + p , ( y ) )  - 

for a fail safe unit U, with U E {A,B}: = U.PA(.Y)  +b.PB(Y) 
OCb: P,(Y) = a.&?h) + Z.b.P,(Y) + a.b.p,(y).p,(y) 

- = (a'b + a P A  (y))('.' + b'PB( Y ) )  satisfied by a fail-safe unit U ,  i.e. p U ( x ) . p u ( y )  = true 

to unit U. 
Both A and B are fail-safe, so we assume that all 

outputs towards the environment are put into a safe state if 

We now consider the consequences of these two 
where PU stands for  the Previous predicate P with respect approaches (OCe and OCb) on the safety constraints of the 

duplex computer D. 
1"case: p D ( y )  = u.pA('y)+ b.p,(y) 

both units should fail. Thus, we can henceforth neglect the 
case a=b=false. 

5.1 Context inconsistency masking 
Let us suppose that action x is the result of a function 

replicated in semi-active mode while the action y is the 
result of a function replicated in active mode. Each output 
consolidation is defined in terms of the properties that it 
ensures. Here we give such properties for semi-active and 
active replication modes. We assume that unit A is the 
current Primary. 

When semi-active replication is used (action x ) ,  one 
expects that the following two exclusive and complete 
statements be ensured: 
l,, As long as the Primary unit A provides its nominal 

service (a=true) then it ensures the action x: 

If the Primary switches to the safe mode @=false) 
then the action x will be ensured in a bounded delaf 
by the Secondary unit (B) if it does not fail (b=true): 

a -j P J Y )  = PA(Y) 
2,, 

For simplicity, we do not formalize here the temporal aspects of the 
problem. 

which gives by developing and using axiom 1: 
- 

PO(X).PD(Y) = 

= jU1SC = fUbr  

and finally: l--p,o.p,(y)l (1) 

In the first case, the safety constraint always holds, 
while in the second, we must either have one unit switched 
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to the safe position (a=false or b=false) or p,(y) = p , ( y )  
(no context inconsistency: both units must reach the same 
decision) for the safety constraint to hold. 

In conclusion, an output consolidation function 
ensuring property OCb is not sufficient to tolerate context 
inconsistency. This was the case of the OR-logic function 
described in the previous example with: 

For the action y = HV-Cut, this gives: 

which can be shown to satisfy OCb, but not OCe. 
When such an output consolidation technique is used, 

it is necessary to avoid context inconsistency to preserve 
the safety constraint. However,  with an output 
consolidation function ensuring property OCe, there is no 
need to give an absolute guarantee on context consistency, 
to preserve the safety constraint, since such an output 
consolidation function effectively tolerates inconsis- 
tencies. It can be shown that property OCe is satisfied by 
the following function: 
AutHV = a.b.AutHVA i- Zi.b.AutHVB i- a.b.AutHVA.AutHVB 
which achieves both continuity of service (when one unit 
fails) and safe operation in case of inconsistency. 

5 2  Context inconsistency detection 
We have shown in the previous section that an output 

consolidation technique fulfilling OCe can tolerate context 
inconsistency. Unfortunately, a fail-safe implementation 
of such a function would be quite expensive in practice. 
Here we present an alternative solution that allows the 
safety constraints to hold even if the output consolidation 
technique does not fulfil O C e .  The key idea of our 
approach is to detect context inconsistency and switch the 
duplex controller to a configuration which allows the 
safety constraint to hold. 

We define four states for each fail-safe unit: primary, 
standby, quarantine and failed. When the unit is in the 
quarantine or failed states, it is said to be in the non- 
operational or safe mode, in which it cannot deliver 
outputs to the environment. A unit in the primary or 
standby states is in the operational mode (Fig. 2 ) .  

AutHV=a.AutHVA i- b.AutHVB 
- - -  
PD(Y)  = a 'pA(y)  +b'p,Y(y) 

Operational mode 

Redundancy swapping 

- - 

Fig. 2 : State graph of a fail-safe unit 
A unit is in the pr imary  state when it is the current 
Primary. The current Secondary unit can be in the standby 

state, if its context is consistent with the current Primary's 
context. Otherwise, it is in the quarantine state. The 
quarantine state is an intermediate state that is introduced 
for safety purposes: the Secondary unit is put in quarantine 
when its context is inconsistent with the Primary's 
context. When a unit is in quarantine, it switches to the 
safe mode. Toward this goal, we can state the following 
objective for safe 0peration:The protocol that manages the 
redundant pair of units must either ensure that their 
contexts are kept consistent or else force the Secondary 
unit into the quarantine state. 

Let C, be the context of unit U, with U E {A,B} and 
ELI its state, with ELI E {przmary,standby, quarantine, failed} 

Here we define two safety properties for the 
redundancy management protocol and show that these 
properties are sufficient to guarantee fail-safe behaviour of 
a redundant pair. For i , j  E { A , B } ,  i # j 

Unique Primary property (UP): 

Quarantine property (Q): 
(E, = primary) + (E, + primary) 

(E, = primary) A (s, # s,) + (E, # standby) 
With the UP requirement we prohibit the possibility of 

having two Primary units. This is for safety, since we need 
only one leader at any given instant. The Q requirement 
states that the Secondary unit must not become or remain 
in the standby state if its context is inconsistent with the 
current Primary. We now show formally how these 
requirements can circumvent the context inconsistency 
problem identified before. For the proof, we need the 
following axiom which emphasizes the deterministic 
behaviour of each fail-safe unit. 

time t an event which should cause it to undertake an 
action, then if the unit does not fail, this action will be 
undertaken by time t + t , .  

and B. If there exists in D a mechanism- that guarantees 
UP and Q then every safety constraint that holds on A and 
B also holds on D even if the output consolidation 
ficnction does not achieve OCe. 
Proof 
Let us consider X, y E X ,  two dependent actions such that 
y + x with a safety constraint. Let us also assume that the 
action x is the result of a function replicated in semi-active 
mode while the action y is the result of a function 
replicated in active mode. Assuming that unit A is the 
Primary and that the output consolidation functions for x 
and y satisfy respectively OCsa and OCb, we have shown 
that the safety constraint for D is given by (1): 

- __ 
pD(')PD(Y) = a+b+ PA(')PB(Y) 

Let's CA (resp. C,) be the context of unit A (resp. B) .  
Unit A is the Primary so EA =primary, property U P  
gives by the modus: E,  + primary or, equivalently: 
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( EB = standby) v ( EB = quarantine) v (EB = failed) 
If b=true (unit B in operational mode) then the quarantine 
and failed states can be excluded since they belong to the 
non operational mode. Therefore: EB = standby. Then, by 
applying modus tollens on property Q we obtain: c, = CA. 
Moreover, Axiom 2 guarantees that if C, = C, at time t 
then at most at time t + rd one has p B  ( y )  = pa ( y )  if unit B 

- 

does not fail. Therefore, since: - - 
P,(X)P,(Y) = a + g + P A ( x ) P B ( y )  

SP; 
FS: 

then, at time t + td : 
-if unit B does not fail (b=true): 

-or if unit B fails (b=false): 

- - 
p,(x)p,(y) = a+ pA(x)pA(y) = true (from Axiom 1) 

- - 
PD(x)PO(Y) = true + ‘+ PA(x)PB(Y) = 

If C, # CA at time t (context inconsistency) then under the 
assumption that unit A is the Primary ( E A  = primary), 
property Q gives by modus ponens: EB # standby. Since 
the property UP gives by modus ponens: EB # primary, 
we conclude that the Secondary unit B will be in the non 
operational mode, (EB = quarantine) v ( EB = failed),  and 
thus switched to safe mode, implying b=false. Therefore, - - 
since: P O ( x ) P O ( Y )  = pA(x)PB(y) - 
we have: Po ( X ) P D  ( Y )  = true 

6. A duplex fail-safe controller 
In this section, we describe a redundancy management 

protocol for networked fault-tolerant duplex controllers 
that provide high availability while ensuring the safety 
properties Q and UP of the previous section. 

We consider controllers made up of two fail-safe units. 
Each unit provides a failure-status output indicating 
whether it is in the operational or safe mode. The U P  
requirement is ensured by hardware using a bistable safety 
relay controlled by the failure-status outputs of each unit 
(Fig. 3). - 

Network 

Duplex 

Set Primary 
Failure Status 

Fig. 3 Duplex controller 

6.1 Protocol overview 
The purpose of the protocol is to ensure, if possible, 

that messages received over the network are delivered to 
both units. If a transmission error should occur that 
prevents the message from being delivered to both units, 
then a context inconsistency can occur. In this case, the 

protocol must ensure that property Q holds by forcing the 
Secondary unit to switch to the quarantine state. While a 
unit is in the quarantine state, it cannot deliver outputs to 
the controlled process. Moreover, it is unable to replace 
the other unit should the latter fail. Consequently, to 
provide availability, the protocol must attempt to bring the 
unit in the quarantine state back to the secondary state. 

To ensure availabi:lity, two progress properties must 
therefore be respected, but only in the absence of failures : 
0 Agreement (A).  Every message accepted by one unit at 

time t must have been or be accepted by the other unit 
within the interval [,t - 5 t + 21 
Limited quarantine (LQ). A unit in the quarantine state 
must eventually switch back to the standby state 
(subject to the safety property Q )  
Property LQ prevenlts the trivial solution in which one 

unit always remains in the quarantine state. Property A 
prevents useless solutions in which the unit in the standby 
state immediately switches to the quarantine state. 

For safety, there is no obligation for the protocol to 
achieve consistency or to maintain both units in the 
operational mode since those are availability needs. 
However there is an obligation to put and keep the 
Secondary unit in quarantine while its context is 
inconsistent with the Primary’s state. 

62 Protocol description 
We successively describe the cases where i) both units 

are in operational mode, and ii) the Secondary unit is in 
quarantine. 
Both units are in operational mode 

When both units are in operational mode, safety is the 
key issue. The main idea is to attempt to ensure context 
consistency through broadcasting inputs to both units 
atomically. If atomicity cannot be ensured, the Secondary 
unit is put into quarantine, to ensure safety property Q. 
The principle used is the following: 
a) Primary 

Send, periodically, a message to the Secondary “Don’t 
switch to quarantine”. 
Each time an input message is received from a remote 
controller, forward tlhis message to the Secondary, set a 
time-out and wait for an acknowledgement : 
0 if the acknowledgement is received before the time- 

out expires, acceipt the message; 
if the time-out expires then: 

stop scnding “Don’t switch to quarantine” 
messages, 

0 stop forwarding input messages to the 
Secondary, 
accept the message. 

If the Primary fails, the safety relay will switch the 
current Secondary to the primary state. 

b) Secondary 
Wait for the periodic “Don’t switch to quarantine” 
message. If there is no such message within a given 
time interval, then switch to the quarantine state. 
Each time an input rnessage is received directly from a 
remote controller, fcrward this message to the Primary 
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(when the Primary receives this message, it behaves as 
previously). 

+ Each time an input message is received from the 
Primary, send an acknowledgement to the Primary and 
accept the message. (Note that the message can be 
accepted immediately by the Secondary since the 
Primary has seen the same message, so the latter will 
either accept the message in a bounded time or cause 
the Secondary to switch to the quarantine state.) 

+ The failure of the Secondary has no immediate effect. 
The Primary will be informed of the failure when it 
next attempts to forward a message since it will not 
receive an acknowledgement. 

The Secondary unit is in quarantine 
Here the key issue is availability since, while it is in 

quarantine, the Secondary is not in a position to replace 
the Primary should the latter fail. For availability, the 
context of the Secondary has to be made consistent with 
that of the Primary so that it can revert to its backup role. 
This is done by executing a protocol that transfers the 
context of the Primary to the Secondary. During context 
transfer, a specific mechanism is used to detect and 
propagate concurrent context modifications. The last 
context transfer message is identified as such by the 
Primary. The Secondary must remain in quarantine until 
context transfer has been successfully completed. 

The protocol can be summarized as follows: 
a) Primary 
+ Transfer context to Secondary. When the last context 

transfer message has been acknowledged by the 
Secondary: 

resume sending “Don’t switch to quarantine” 

resume forwarding input messages. 
b) Secondary 
+ Wait for last context transfer message and switch to the 

standby state. 
For improved availability, messages and message 

acknowledgements can be repeated. 
This protocol has been described and modelled with 

Petri nets. Some properties have been proved. 
Specifically, we have shown that this protocol ensures the 
agreement property A in the absence of failures. If both 
units accept the same inputs from the same initial state 
within a given time interval then they will carry out 
identical context changes within this time interval, or fail 
safely. The principle which consists of sending the “Don’t 
switch to quarantine” messages ensures that if the 
agreement may not be reached (because of failure(s)), the 
Secondary will switch to the safe mode in a bounded time 
interval. This ensures the safety property Q. 

7. Conclusion 
In order to tolerate context inconsistency in a duplex 

fail-safe controller, two approaches have been studied in 
this paper: masking and detection of context 
inconsistency. For the latter a protocol is given. The key 
idea of the protocol is to try to keep both units consistent 

messages, 

by attempting to agree on input messages; however if this 
agreement fails, it switches the duplex controller to a 
mode ensuring safe operation. 
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