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Abstract

Many embedde d systemsoperate under severe power

and energy constraints. V oltageclock scaling is one

mechanism by which energy consumption may be re-

duced: it is base d on the fact that power consumption

is a quadratic function of the voltage, while the speed

is a linear function. In this pap er, we show how volt-

age scaling can be sche dule dto reduc eenergy usage

while still meeting real-time deadlines.

1. Introduction
Many applications impose sev ere pow erand/or energy

constraints on embedded systems. Examples include

battery-pow ered devices and spacecraft relying on solar

or nuclear pow er.

V oltagecon trol isa pow erfulmechanism for reduc-

ing the energy consumption: the pow er consumption de-

clines as the square ofthe v oltage, while circuit delays

increase linearly . Since the cloc k frequency is propor-

tional to the inverse of the circuit dela y,w e have an

obvious tradeo� betw eenthe power consumed and the

speed of the circuit.

The idea of exploiting this tradeo� has attracted in-

creasing atten tion since the �rst paper was published

in 1994 [6]. In [1], a circuit may choose from among

multiple voltage lev els to reduce pow er consumption

while satisfying latency constraints. In [8], the Dhry-

stone 1.1 benchmarks were run on an arm7d processor

at two voltage-frequency combinations: (5.0V, 33 MHz)

and (3.3V, 20 MHz) yielding 185 MIPS/watt and 579

MIPS/watt, respectively. Y aoet al. deriv ed a voltage-

control heuristic to reduce energy consumption, assum-

ing that the pow er usage is a convex function of the clock

rate [7]. A benchmark suite and simulation environment

for voltage scaling are presented in [5].

In this paper, w efocus on hard real-time systems,

where meeting critical task deadlines is of paramount

importance [4]. Suc h systems are to be found in, for ex-

ample, 
y-by-wire aircraft and spacecraft. We show how

to schedule voltage settings so that energy consumption

is reduced, while still guaranteeing that all task deadlines

are met. Our algorithms consist of an o�ine phase, in

which voltage settings are picked to reduce energy con-

sumption assuming that tasks run to their worst-case ex-

ecution times (wcet). How ev er, many tasks �nish well

before their wcet, and we have an online phase which

adjusts the voltage settings on-the-
y to reclaim any re-

sources released by suc h tasks. Our numerical results

indicate that substantial energy savings are attained.

The paper is organized as follows. In Section 2, w e

outline our system model. This is follo w edin Section

3 by a scheduling algorithm which works for the case

where the tasks have a common period. In Section 4, ar-

bitrary task periods are allowed, and a somewhat more

complex algorithm is used. We also show how this algo-

rithm handles task sets whose phasings are not known

until run time.The paper concludes with a brief discus-

sion in Section 5.

2. System Model
Most real-time systems used in critical embedded appli-

cations use periodic workloads. That is, each task, Ti,

has a period, Pi, and an iteration of Ti is released each Pi
time units. The deadline of a task is equal to the period.

That is, a task iteration must be done by the time the

next iteration of that task is released. The worst-case

execution time of each task is assumed to be known.

There is a huge literature on the problem of alloca-

tion and scheduling of tasks in real-time systems; for

a surv ey,see [4]. The typical approach is to carry out

an allocation of tasks to processors and then to run a

uniprocessor scheduling algorithm on eac h of the pro-

cessors to decide when each task will execute.

In this paper, w e focus on the problem of unipro-

cessor scheduling. The task-sc hedulingalgorithms are

Cyclic and Earliest Deadline First (edf). Under a cyclic

schedule, a subset of tasks will be selected for execu-

tion in a minor frame while a set of minor frames iterate

periodically in a major frame [2]. As the term implies,

edf pic ks the task to run whose deadline is the earliest

among all the ready tasks. Ties are broken arbitrarily.

The edf algorithm is preemptive, and it is assumed that
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preemption costs are negligible compared to the task run

times. It can be sho wnthat under such assumptions,

and for task sets whose deadlines equal their respective

periods, edf is an optimal uniprocessor scheduling al-

gorithm. That is, if edf cannot feasibly schedule some

task set, no other algorithm can, either. A periodic task

set with the deadline of each task equal to its period is

edf-schedulable i� the task set utilization does not ex-

ceed 1; this is a ligh tw eight schedulability test for the

edf algorithm. Note that, for a cyclic schedule, it is fea-

sible if the task set utilization during every minor frame

does not exceed 1.

Our other assumptions are as follows:

A1 V oltage switching consumes negligible overhead.

A2 There is a time-of-day clock available to the system,

with suÆcient precision to time-stamp the comple-

tion of tasks and other signi�cant events.

A3 T asks are independent: no task depends on the out-

put of any other task.

A4 The worst-case execution time of each task Ti, !i,

is known. The actual execution time is not known,

ho wever, and may vary from one iteration to the

next: it is a random variable with distribution

Gi(�).

A5 The overhead of the sc heduling algorithm is negli-

gible when compared to the execution time of the

application workload.

We now present tw o algorithms. The �rst deals with

the tasks scheduled in a minor cycle under a cyclic algo-

rithm. The second algorithm focuses in edf algorithms.

3. Algorithm 1: Cyclic Scheduling
For eac h minor frame, all scheduled tasks are released at

the beginning of the frame and must �nish by the end of

that frame. We assume that the tasks have a prede�ned

order of execution.

3.1 Algorithm Description
The algorithm consists of tw o phases. In the o�ine (or

pre-processing) phase, so-called because it is executed

before the system is actually used, we simulate the task

execution, using the w orst-caseexecution times. The

purpose of the o�ine phase is to come up with a la-

belling of eac h task as either a high-voltage (hv) or a

low-voltage (lv) task. A task labelled hv (lv) will have

all of its iterations executed at high voltage (low volt-

age). The o�ine phase �nds, by a standard search al-

gorithm, the labellings that minimize the total energy

used over a task period, subject to the need to meet all

deadlines. We record, for these labellings (i.e., voltage

settings), the time at which each task executes. This

information, together with the lv and hv labellings, al-

low us at any time to compute the total un�nished work

remaining in the system at any time, t. Denote this

un�nished w orkby offline unf(t). Similarly, w ecan

obtain the voltage setting at time t: denote this by

offline setting(t).

Let us now consider the online phase of the algo-

rithm, i.e., the scheduling algorithm that is used dur-

ing actual execution. The system keeps track of the

w orst-case un�nished work remaining in the system (i.e.,

total un�nished w ork assuming eac h un�nished task

takes its w orst-case execution time). Denote this by

online unf(t).

The online scheduling algorithm is as follows.

� The task to be executed is chosen based on the

pre-de�ned order.

� At any time t, the processor is set at low voltage,

unless each of the following conditions is satis�ed:

{ online unf(t) = offline unf(t).
{ The voltage setting of the processor in the of-


ine phase at time t is high. (This does not

have to be stored separately: an examination

of the slope of the offline unf(t) line at t

pro vides this information).

Note that the algorithm does not need to keep track

of whether the online unf(t) < offline unf(t) con-

dition is satis�ed for every cloc k cycle (that w ouldbe

impossible). Instead, when a processor takes up a task,

it checks this condition. If the condition is true, and

the low-voltage setting is used, the system computes the

time � at which online unf(t) = offline unf(t). This

can be done easily , since w e know the rate of execu-

tion at high and low voltages, as also the rate at which

offline unf(t) declines with t. If the task is still execut-

ing at �, and the voltage setting at that instant in the

o�ine phase is high, the processor is switc hedat that

epoch, to high voltage.

It is not diÆcult to show that the scheduling algo-

rithm does not miss any deadlines if the original task set

is feasible: the proof of the following statements is left

to the reader.

Lemma 1 online unf(t) � offline unf(t), for all t.

Theorem 1 No deadlines are missed by the online

algorithm.
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3.1.1 Example
We illustrate this algorithm by w alking through a s-

ingle simulation. The task set consists of three tasks,

T0; T1; T2, all with period 10, and with worst-case high-

voltage execution times 1.933, 3.678, and 1.888, respec-

tively. If all tasks are run at high voltage, the proces-

sor utilization would be 0.75. Let the actual task high-

voltage execution times be uniformly distributed over

the respective in tervals: [wcet/2, wcet], and assume

that the system works 50% slow er at low voltage.

The o�ine algorithm determines that the best o�ine

voltage assignment is low for tasks T0 and T2, and high

for T1. If tasks take their worst-case execution times, the

processor utilization is 0.941. The reader should note

how close this is to 1, which assures us that this simple

algorithm would be close to optimal if all tasks consume

their worst-case execution times.

By simulating this algorithm, it is easy to obtain

offline unf(t) (see Figure 1). offline unf(t) consists

of a set of straigh t-linesegments: by storing the end-

points of these segments, the value of the function at

any t can quickly be computed. The o�ine part of the

algorithm is now over.

Consider now the operation of the online part. Sup-

pose, in an execution, the actual high-voltage execu-

tion times of T0; T1; T2 were 1:53; 2:57; 1:87, respectively.

The corresponding low-voltage times are 2:30; 3:86; 2:80,

respectively. Since the processor is not an oracle, it

cannot know these execution times un tilafter the re-

spective tasks have completed execution. (This means

that online unf(t) has potential downw ardjumps at

the epochs of task completion). T askT0 starts execut-

ing, at low voltage, and completes at time 2:30. A t

this time, the algorithm knows that online unf(t) <

offline unf(t) for t = 2:30. As a result, it can

execute T1 at low voltage up to time �, at which

offline unf(�) = offline unf(�). It is easy to see that

� = 4:10. A t that instant, the system switches from low

to high voltage, and completes T1 at time 5:47. At this

time, T2 can be run at low voltage to its own comple-

tion, at time 8:27. The execution trajectory is shown in

Figure 1.

3.2 Perfo rmanceModel
In this section, we derive models to compute the energy

savings for our algorithm. First, we present a simple 
u-

id approximation that provides us with a low er bound

on the energy consumed. Then, we presen t a more ex-

act analysis for a system consisting of a �nite number of

tasks.

We start by de�ning some notation. Note that al-

l w orkloadsare de�ned by the time tak en to execute

them at high voltage.

�offA (t) V oltage setting at timet, speci�ed

by the o�ine phase, for task setA.

Tworstoff (A) T otal execution time for task setA,

under the schedule developed by the

o�ine algorithm, if all tasks run

to their worst-case execution times.

Tactualon (A) T otal execution time for task setA,

under the online algorithm.

Wworst(A) Total workload due to task set A

if all tasks run to their

w orst-case times.

Wactual(A) Actual total workload due to

task set A.

Eactualoff (A); Eworstoff (A) Actual and worst-case

energy consumed, respectively, if

the tasks in set A run to the settings

prescribed by the o�ine algorithm.

Eactualon (A); Eworston (A) Actual and worst-case

energy consumed by tasks in set A.

Uworst
H (A) w orst-case processor utilization if all

tasks in task set A are run at high

voltage.

P Common period of all the tasks.

� Power consumption at low voltage
Power consumption at high voltage

� Clock rate at high voltage
Clock rate at low voltage

Where the task set is ob vious fromthe context, no

argument is provided to functions. For example, if w e

are talking about just one task set, Uworst
H would be the

w orst-case processor utilization for that task set.

Throughout, w e assume that �=� < 1; otherwise,

there would be no point in running anything at low volt-

age!

3.2.1 Fluid Approximation
In this model, we assume that the workload consists of

tasks whose execution times are independent and iden-

tically distributed, with w orst-caseexecution time (at

high voltage), �. The number of tasks, ntasks ! 1
and �! 0 in such a way that the total worst-case work-

load, ntasks� = W, a constant. Uworst
H = W=P, where

Uworst
H is the worst-case processor utilization if all tasks

are run at high voltage. Let Wactual be the actual total

workload.

If all tasks run to their w orst-caseexecution times
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and we use the schedule and voltage settings generated

by the o�ine phase of the algorithm, the total busy time

for the processor over the period is given b y

Tworstoff = minfWwor st�; Pg:

Since we have an in�nite number of tasks, with proba-

bilit y 1, the online algorithm will consume

Tactualon = minfWactual�; Tworstoff g:

We now have tw o cases.

Case 1: Wac tual� � Tworstoff : In this case, with proba-

bilit y 1, the online algorithm will keep the entire w ork-

load at low voltage, and so the energy consumed will be

E = 100��% of that at high voltage.

Case 2: Wac tual� > Two rst
off : Some of the workload will

have to be run at high voltage. Let th and t` be the time

over which the processor is run at high and low volt-

age, respectively. Clearly, th + t` = Two rst
off = P when

Wactual� > Tworstoff .

The total workload is Wactual seconds at high volt-

age. Since the processor runs � times slower at low

voltage, we must have

Wactual = t`=� + th

) t` =
�

�- 1
(P -Wactual) since th + t` = P

The energy consumed, as a percentage of the all-high-

voltage setting, is therefore given b y

E =
�t` + th

Wactu al
� 100

=
(�� - 1)P +�(1 - �)Wact ual

� - 1
� 100

This analysis provides us with a lower bound to the en-

ergy consumed under this algorithm for a total actual

w orkloadof Wac tua l. We now pro vethat this is the

case.

Lemma 2 L et A and B be two task sets such

that Wworst(A) = Wworst(B) and Wac tual(A) =

Wactual(B). A has a �nite number of tasks; B follows

the in�nite-taskmo del. Then,

Tworstoff (A) � Tworstoff (B):

Proof: We proceed by contradiction. Suppose the lem-

ma is false, and there do exist task sets A and B which

constitute a counter-example.

The o�ine scheduling algorithm picks the voltage

settings per task to minimize the energy consumed, un-

der the constraint that the entire task has to be exe-

cuted at the prescribed voltage setting (e.g., one cannot

execute half a task at high and the other half at low

settings).

If Tworstoff (A) > Tworstoff (B), then Eworstoff (A) <

Eworstoff (B) (since Wworst(A) = Wwor st(B)).

Now, suppose we run task set B using setting �A(t)

at time t. We can do this because the tasks in B are in-

�nitely short, and so the voltage setting can be switched

at any time by the o�ine algorithm.

This will result in task set B taking exactly the same

w orst-case execution time as task setA. In such a case,

B will use less energy than it did under the �B(t) o�ine

voltage setting. This contradicts the fact that the o�ine

algorithm picks v oltage settings to minimize the energy

consumed. QED

Theorem 2 Suppose task sets A and B are as de�ned

in Lemma 2. Then, Eactualon (A) � Eactualon (B).

Proof: F rom the algorithm, Tac tua l
on (A) �

minfWactual(A)�; Tworstoff (A)g and Tactualon (B) =

minfWactual(B)�; Tworstoff (A)g. Since Wac tual(A) =

Wactual(B) and Tworstoff (A) � Tworstoff (B) (from Lemma

3), Eactualon (A) � Eactualon (B). QED

3.2.2. Relaxing the In�nite-Task Assumption
Relaxing the in�nite-task assumption complicates the

analysis. We would then ha vea model with a �nite

number of tasks, each with a certain execution time dis-

tribution. One can construct a model which can then be

solv ed n umerically.

The most practical approach is to construct, given

the worst-case execution times, the o�ine schedule. This

yields us a plot of the un�nished work over time that

is used as a template by the online algorithm. Then,

one conditions on the actual execution times of the on-

line tasks: giv en thesetimes, a numerical evaluation is

carried out to determine the voltage settings over time

for the online phase, and thus compute the energy con-

sumed. That is, if zi is the actual execution time of

task Ti, w ewill obtain E(z1; � � � ;zntasks); the energy

consumed under these conditions.

Then, we uncondition on the actual execution times,

obtaining the overall energy consumed as:Z
1

z1=0

� � �

Z
ntasks

zntasks
=0

E(z1; � � � ;zntasks)dGntasks(zntasks)

� � �dG1(z1)
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This integral can be evaluated either through numerical

means or simulation.

It only remains for us to sho w ho w to deriv e

E(z1; � � � ;zntasks).

We will need some further notation for this.

�(i) slack time available at the end of the task Ti
execution, i = 1; � � � ; ntasks. That is,

if task Ti ends at time �i, the slack is the

time remaining to when Ti completes

in the o�ine schedule,

i.e., �i = 
1 + � � �+
i - �i.

For convenience, de�ne�0 = 0.

�low P ow er consumption at low voltage

�high P ow er consumption at high voltage

�i

�
1 if o�ine voltage setting is low for Ti
� otherwise

�i Finishing time of Ti in the online schedule,

i = 1; � � � ; ntasks. F or convenience,

de�ne �0 = 0.

"i Energy consumed by Ti in the online schedule.

We have tw o cases.

Case 1: O�ine setting of task Ti is low: In suc h a case,

task Ti will also be executed at low voltage in the online

schedule. Then we can immediately write:

"i = zi��low

�i = �i-1 +zi�

�i =

iX
i=1


i�i - �i

Case 2: O�ine setting of task Ti is high: The total

time available to execute Ti is 
i + �i-1. Since the

task may involve up to 
i units of high-voltage work,

w eha veto compute ho wmuc h of the task can safely

be done at low-voltage and still leave enough time for it

to be completed, even if it runs to its worst-case time.

Let �0 be the maximum time that it can be run at low

voltage without being in danger of missing its deadline.

Now, de�ne �1 to satisfy the following equations:

�0=�+ �1 = 
i

�0 + �1 = 
i + �i-1

F rom these equations, the reader can easily recognise

that maxf�1; 0g is the time available for high-voltage ex-

ecution, should that prove necessary.

Solving these equations yields:

�0 = �i-1
�

� - 1

�1 = 
i -
�i-1

� - 1

We will run Ti for up to �0 at low voltage: if it still has-

n't �nished, we will run it to completion at high voltage.

We have two subcases:

Case 2a. zi � �0=�: In this case, the entire execution

of Ti can be done at low voltage. We can therefore write:

�i = �i-1 +zi�

"i = zi��low

�i = 
1 + � � � +
i - �i

Case 2b. zi > �0=�: In suc h a case, we �rst execute

Ti for �0 seconds at low voltage, and then switch to high

voltage for the rest of the execution. We therefore have:

�i = �i-1 + �0 +zi - �0=�

= �i-1 + �0
� - 1

�
+zi

"i = �0�low + (zi - �0=�)�high

�i = 
1 + � � � +
i - �i

The total energy consumed is then given b y

E(z1; � � � ;zntasks) = "1 + � � � "ntasks

3.3 Simulation Results
We present here results of a simulation written from �rst

principles. In our experiments, we assumed that at high

voltage, the pow er consumption was 0.165 watts and at

low voltage, it was 0.033 watts. The clock rate at high

voltage is 50% higher than at low voltage. All execution

times are speci�ed in terms of the high-voltage setting.

We assumed that the actual execution time of task Ti
varies uniformly in the interval [a!i;!i], where a is a

constant and !i is the worst-case execution time of Ti.

The common period was set to 10.

Given the processor utilization at high-voltage (i.e.,

the utilization if all the workload was executed at high

voltage), the task execution times were generated ran-

domly to meet this requirement.

Figure 2 shows the energy consumption for an 8-task

system for various processor utilizations at high voltage,

UH. By \percentage online consumption" we mean the

energy consumed by the online algorithm as a percent-

age of the consumption of the processor if ev erything

were run at high voltage.
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T able 1 shows some experimental results on the aver-

age processor utilization,U, that would result from using

the voltage settings generated by theo�ine algorithm,

if eac h task ran to its worst-case time. Except when all

tasks can be run at low voltage, U is extremely close to

1 even for small task sets. U is a measure of how close

the o�ine algorithm is to optimal: in the optimal case,

we would have the processor utilized 100% at worst-case

execution times.

Figure 3a is a plot of the energy consumption of the

online schedule as a percentage of that obtained by us-

ing just the settings of the o�ine phase of the algorithm.

It indicates the gains that are possible when the sched-

uler reclaims resources after a task has completed before

its w orst-case execution time would predict. When the

utilization of the task set is small, everything can be ex-

ecuted at low voltage, and there is nothing to be gained

from the online phase. As the utilization increases be-

yond this region, the savings of the online phase steadily

increase. Resource reclaiming is greatest when a = 0,

and decreases as a increases. Clearly, when a = 1, there

is no resource reclaiming possible and the online energy

consumption is the same as that using just the o�ine

settings.

We next consider the impact of the size of the task

set. As the number of tasks increases, tw o things hap-

pen. First, the o�ine algorithm has more 
exibility in

making its pow ersettings, and consequently is able to

get the w orst-caseprocessor utilization with its power

settings closer to 1. We have alrady seen this in Table 1.

Also, the resource reclaiming opportunities increase with

the number of tasks. (T otake an extreme example, if

the entire task set consists of just one task, there can be

no reclaiming. If it consists of tw o tasks, the reclaimed

time from just one task can be used.) As a result, the

online energy consumption as a percentage of the corre-

sponding o�ine energy consumption decreases with the

number of tasks. This is shown in Figure 3(b).

4. Algorithm 2: EDF Scheduling
In this section, w ediscuss voltage-clock scheduling for

the edf algorithm. In addition to Assumptions A1 to

A5, we have:

A6 T ask phasings are known in advance.

This extra assumption can be relaxed as we show at the

end of the section.

Algorithm 2 is very similar to Algorithm 1, except

in the data that are collected. It consists of o�ine and

online parts.

The o�ine part consists of selecting the voltage set-

tings that will minimize the total energy used over

the LCM of the periods, while still maintaining EDF-

schedulability. Following this, the schedule, using the

EDF algorithm and the w orst-case execution times,

is generated, and the functions offline unf(i; t) are

computed. offline unf(i; t) denotes the un�nished

w ork under the o�ine schedule of task i at time t.

offline unf(i; t) consists of straigh t-linesegments for

each task i, and so only the end-points of these seg-

ments must be stored. Also stored is offline task(t),

which is the task which is executing at time t. When

these functions have been obtained up to the LCM of

the task periods, the o�ine phase ends.

The online part also uses the EDF scheduling algo-

rithm. At any time t, the voltage setting is at low unless

each of the following conditions is satis�ed (i is the on-

line executing task):

� i = offline task(t).

� The un�nished work of the executing task (based

on the worst-case execution times) at time t is e-

qual to that of offline unf(i; t).

� offline setting(i) = high.

If each of these conditions is true, the voltage setting is

high at time t.

4.1 Proof of Correctness
Denote the online executing task at time t by

online task(t). De�ne iteri(t) = bt=Pic, where Pi is

the period of task Ti. De�ne T
0

i;m as the m 0 iteration of

task Ti.

Lemma 3 If online task(t) 6= offline task(t),

then the online schedule has already complet-

ed the iterofflinetask(t)(t)
0th execution of task

offline task(t).

Proof: Suppose this lemma is not true. We have,

from the de�nition of the model, that online task(0) =

offline task(0), so if the lemma is un true, there ex-

ists some t > 0 which the earliest time at which

online task(t) 6= offline task(t) but the online sched-

ule has not yet �nished the iterofflinetask(t)(t)
0th exe-

cution of task offline task(t).

Let offline task(t) = T 0

j;n and online task(t) =

T 0

i;m. By de�nition of t, T
0

j;n is not yet done in the online

schedule at time t. Since T 0

i;m is being executed instead

by the online schedule at t, w emust ha veT 0

i;m � T 0

j;n

(A � B means that A has higher priority than B).
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By de�nition of t, 8� < t, if online task(�) 6=

offline task(�), then the online schedule has already

�nished offline task(�) by time�.

Note that w e cannot ha ve online task(x) =

offline task(x) 8x < t. If this w ereto happen, then

the o�ine and online schedules w ouldboth be exact-

ly parallel until time t. In particular, task T 0

i;m w ould

execute at precisely the same intervals in both the of-


ine and online schedules prior to t. But, since T 0

i;m is

done by the o�ine schedule before t, it follows from the

voltage-selection rule in Algorithm 2 that it would also

be done in the o�ine schedule before t, which con tra-

dicts the assumption that online task(t) = T 0

i;m.

The assumption that the lemma is false therefore

requires that there must be some time y < t suc h

that online task(y) 6= offline task(y). But, from

the de�nition of t, w e must have for every z < t,

online task(z) = T 0

i;m whenever offline task(z) =

T 0

i;m: otherwise, by the de�nition of t, T 0

i;m w ould have

been completed before t in the online schedule. Let us

now consider tw o cases:

Case 1. The o�ine voltage setting of Ti is low.

In this case, since the o�ine schedule �nishes executing

T 0

i;m by time t, so must the online schedule, since the

o�ine schedule assumes worst-case execution times. So,

Case 1 cannot happen.

Case 2. The o�ine voltage setting of Ti is high.

During times when both the o�ine and online sched-

ules are executing T 0

i;m, the online schedule will on-

ly use a low-voltage setting at some time u when

online unf(i; u) < offline unf(i; u). From this, and

the fact that T 0

i;m is executed in the online schedule

whenever it is executing in the o�ine schedule, it fol-

lows that T 0

i;m must have �nished in the online schedule

before t.

We therefore have a contradiction: no such t exists,

and so the proof is complete. QED

Lemma 4 Every iteration is completed in the online

schedule no later than when it is completed in the

o�ine schedule.

Proof: Suppose this is not true, i.e., that there exists

some iteration T 0

i;m which completes in the o�ine sched-

ule before it has completed in the o�ine schedule.

Let t be the time at which T 0

i;m completes in the

o�ine schedule. By the preceding Lemma, T 0

i;m will

execute in the online schedule whenever it does so in

the o�ine schedule (since otherwise it would be done in

the online schedule ahead of t). The result follows im-

mediately from this and the voltage-setting rule of the

algorithm. QED

F rom Lemmas 3 and 4, we have the following theo-

rem:

Theorem 3 A ll task deadlines are met by the online

algorithm.

4.2 Analysis
An analysis of Algorithm 2 can be done along the same

lines as for Algorithm 1. How ever, since task periods

can be di�erent, the number of special cases that have

to be considered is very large. Analysis is only useful

when it either produces a compact expression that o�ers

insight into performance, or when it allows for faster per-

formance evaluation than simulation. The analysis for

Algorithm 2 would be so complex that it w ouldlikely

satisfy neither requirement. Accordingly, w eha vere-

stricted ourselves to simulation for studying the perfor-

mance of Algorithm 2.

4.3 Numerical Results
The experimental setup for these runs has been brie
y

described earlier. The only di�erence is that the task

periods are chosen randomly to be integers betw een1

and 11. Figure 4 shows the energy consumption for an

8-task system for various processor utilizations at high

voltage,UH.

Figure 5 mirrors Figure 3 of the previous section, and

has similar characteristics.

4.4 Relaxing Assumption A6
Let us no w relax A6, and assume that task phasings

are not known in advance. As before, we can compute

the o�ine voltage settings, since thesedepend only on

the need to keep worst-case execution times so that the

task set utilization does not exceed 1. How ever, we can-

not precompute the o�ine schedule. Instead, the o�ine

schedule must be generated on-the-
y, as tasks arrive.

In other words, the system builds up the o�ine schedule

as tasks arrive, assuming that the o�ine voltage settings

are used and that each task runs to its worst-case time.

As the o�ine schedule is generated, the system can fol-

low Algorithm 2 to pick the appropriate voltage setting.

T o combine the simulation of an o�ine on-the-
y

schedule and the voltage-clock schedule, w ecan adopt

a slack-time queue (ST-Queue) to track the slack times

resulting from early task completions. Note that a task

can execute during the slack time of a �nished task or

during the period assigned to it in the o�ine schedule.

In the normal edf task queue (TK-Queue), w euse t-
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wo variables to keep track of the computation times for

each task. The �rst one, cti, speci�es the computation

time that task Ti has consumed during its scheduled pe-

riod of the o�ine schedule. This allows us to compute

a task's slack time when it �nishes. The second vari-

able, csti, indicates how long a hv-mode task can stay

in lv-mode execution after it steals slack time. As in the

TK-Queue, the slac k times of the completed tasks are

ordered according to a task's deadlines in the slack-time

queue.

The steps to perform voltage-clock scheduling are as

follows:

S1 When task Ti arriv es, it is inserted into TK-Queue.

The variables csti and cti are set to 0.

S2 When task Ti completes, a slack time sti = !i- cti
is inserted into ST-Queue if the di�erence is

greater than 0.

S3 When the processor is idle (i.e. TK-Queue is emp-

ty), the slack time at the head of ST-Queue de-

creases ev ery unit of time. Once it reac hes zero,

the slac k time is deleted fromST-Queue.

S4 When a task Ti is dispatched (under edf), it can

consume slack time stj at the head of ST-Queue,

if task Ti has a deadline greater than task Tj. If

offline setting(i) = high, we can switch the set-

ting to low for an additional period stj
�

�-1
(to be

accumulated in csti).

S5 When a task Ti cannot �nd any available slack time

for its execution, it is executed at the voltage-clock

mode offline setting(i) if csti = 0 or at lv-mode

if csti > 0. Also, the time used in its computation

is then accumulated in cti.

It can be shown that, at step S5, i = offline task(t)

when a task Ti cannot �nd any available slack time for its

execution. Thus, the slack time due to an early comple-

tion can be computed correctly by sti = !i- cti. Also,

if csti = 0 at time t and offline setting(i) = high,the

un�nished work of the executing task Ti (based on the

w orst-case execution times) at timet is equal to that of

offline unf(i; t).

5. Conclusion
In this paper, w eha ve described simple algorithms for

voltage scaling in real-time systems. These algorithms

exploit the fact that pow er consumption tends to drop

quadratically with voltage, while circuit delays (and thus

the clock period) increase only linearly. Our algorithms

have o�ine and online components. The o�ine com-

ponent assumes that the tasks run to their worst-case

execution times, and computes the voltage settings to

minimize energy consumption. The online componen-

t starts with the o�ine voltage settings as a base, and

then reclaims any time resources that are released by

tasks which �nish ahead of their predicted worst-case ex-

ecution times, thus making for a further round of energy

savings. Our results indicate that signi�cant energy sav-

ings are made possible, while guaranteeing that all tasks

will continue to meet their deadlines.
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Figure 3: Online as a Percen tage of O�ine Energy Consumption
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Figure 5: Online as a Percen tage of O�ine Energy Consumption

UH No of Tasks

2 4 6 8

0.60 0.900 0.900 0.900 0.900

0.65 0.975 0.975 0.975 0.975

0.70 0.893 0.975 0.992 0.997

0.75 0.892 0.979 0.995 0.999

0.80 0.924 0.982 0.996 0.999

0.85 0.898 0.974 0.994 0.999

0.90 0.916 0.968 0.991 0.998

0.95 0.953 0.967 0.983 0.993

Note: All utilizations are for worst-case task run times.

T able 1.Average Processor Utilization with O�ine Settings
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