
W CET Analysis of Probabilistic Hard Real-Time Systems *

Guillem Bernat Antoine Colin Stefan M. Petters
Real-Time Systems Research Group

Department of Computer Science
University of York, UK

{bernat,acolin,petters}@cs.york.ac.uk

Abstract

Traditional approaches for worst case execution time
(WCET) analysis produce values which are very pessimistic
if applied to modern processors. In addition. end to end
measurements as used in industry produce estimates of the
execution time that potentially underestimate the real worst
case execution time. We introduce the notion of probabilis­
tic hard real-time system as a system which has to meet
all the deadlines but for which a (high) probabilistic guar­
antee suffices. We combine both measurement and analyti­
cal approaches into a model for computing probabilistically
bounds on the execution time of the worst case path of sec­
tions of code. T he idea of the technique presented is based
on combining (probabilistically) the worst case effects seen

in individual blocks to build the execution time model of the
worst case path of the program (such case may have not
been observed in the measurements). We provide three al­
ternative operators for the combination based on whether
the information of their dependency is known. Experimental
evaluation of a two case study shows extremely low proba­
bilities of the values obtained by traditional analysis.
Keywords:' probabilistic analysis, hard real-time, worst case
execution time, execution profiles

1 Introduction

The use of embedded programmable units in everyday
life is constantly increasing. An obvious example for this are
modern cars. Wiring harnesses are replaced by bus systems,
switches by smart switches and engine controllers by pow­
erful CPUs. This allows for easy integration of additional
sensors and a more effective fault analysis in case of a mal­
function. The amount of electronics (and therefore software)
is expected to reach 25% of the total cost of production of

'The work presented in this paper is supported by the European Union
under Grant Next TTA "IST-2001-32111" and the French Department of
Defence.

© 2002 British Crown Copyright 279

mid sized cars by 2005 (cf. [3]). Since the units in a car have
to work under extteme conditions (as regards vibration and
temperature) with virtually no preventive maintenance, the
requirements on dependability are raised considerably. This
holds true not only for the hardware , but also the increasing
software share in such systems. Another constraint of indus­
try is the price. Since the number of cars of a certain make
is usually very large, saving a couple of pennies by using
a slightly less powerful processor or concentrating several
tasks in one processor instead of using a small 8 bit proces­
sor for each is very desirable. This leads to a major tradeoff
between reduced cost per delivered piece and the risk of hav­
ing to recall delivered products, the loss of customer satis­
faction or even the liability for a resulting accident. As these
systems are also real-time systems, the correctness of soft­
ware in such systems relies not only on functional correct­
ness but also on the timely delivery of the computed results.
The timing analysis (by schedulability analysis) as part of a
certification procedure relies on adequate knowledge of the
worst case execution time (WCET).

A major problem with modern and most probably future
processors as regards WCET estimation, is that the execu­
tion time of instructions is no longer constant. The sources
of the execution time deviation can be classified in two cat­
egories: data dependent or history dependent.

Classical examples for a data dependent execution time
are multiplication and division. Depending on the imple­
mentation in the hardware architecture, the execution of
such an instruction takes a fixed or data dependent time
for completion. History dependent execution times are pro­
duced for example by caches, pipelines and branch predic­
tion algorithms. Often the effects cannot be exactly dis­
tinguished. Typical sources of such a blending effect are
out-of-order execution of processors which are clocked in­
ternally higher than the peripheral units. In the latter case a
tiny deviation in the code determines whether a load instruc­
tion is executed on one or the other external cycle.

While the effects of these sources of variable execution
time can be observed in the real execution of a program, an
exact prediction is only partially possible. Additionally the

processor description published by the processor vendors is
often inaccurate or coarse to hide the intellectual property.

Current techniques for WCET analysis aim at finding the
absolute upper bound on the execution time. For modern
high performance processors with, for example, out-of-order
execution, these technique may produce estimates for the
WCET which are pessimistic due to the simplifications that
may need to be made and due to the inherent variability
of the execution time. As pure end-to-end measurements
of program execution times under a limited amount of test
cases are risky as regards the reliability of having observed
the worst case, this method is only partially trusted. In in­
dustry most engineers work with safety margins to cope with
the problem of uncertainty that the worst case is covered by
their experiments. However, the safety margins are not the
result of analytical reasoning, but of experiences in similar
type of applications. In contrast to this, the conservative and
analytical correct reasoning to bound the WCET is usually
extremely pessimistic.

To cope with the variable execution times of instructions
and the only coarse knowledge of its sources while avoiding
excessive overestimation, we base our analysis on the no­
tion of a grey box approach i.e.; the effects are understood in
principle, but can not be captured analytically without very
pessimistic simplifications and a cycle true simulation of all
possible program paths with all potential input data combi­
nations is inhibited by the complexity of the problem. We
address the complexity issue by describing smaller units of
the program in statistical terms utilising execution profiles
(EP) (cf. § 3) and reason on the WCET of the whole program
by combining probabilistically the worst case effects of the
individual units. Thus effectively providing an estimate of
a combination of effects possibly not seen in the end-ta-end
measurements providing the profiles for the individual units.

The concept of execution profile is not only applicable for
describing the worst case behaviour for analysing tasks run­
ning in isolation, but also, for example, for the description of
the interaction between concurrently running tasks in a pre­
emptive system. However, in this paper we limit ourselves
on the application for the WCET estimation and investigate
the further applicability in future work (cf. § 9).

This paper presents the following contributions:

Probabilistic hard real-time systems We introduce the
concept of probabilistic real-time systems for systems
where all deadlines must be met for which a probabilis­
tic argument of how likely a deadline missed is accept­
able. Typical target probabilities are 10-6, 10-12 etc.

Concept of execution profiles as a mechanism to capture
the variability of the execution time of paths of a sec­
tion of code. § 3 provides a detailed mathematical ana­
lysis of the properties of EPs.

Combination of profiles The combination of EPs of indi­
vidual blocks to the EP of a path utilising a probabilis-

280

tic timing schema is described in § 4.

Model of dependencies We distinguish three cases: Either
two EPs are independent (cf. § 4), or the dependencies
are known (cf. § 5) or no dependency information is
known (cf. § 6). For each of these cases a separate op­
eration to combine the EPs are provided that enable the
production of an integrated timing schema.

Experimental evaluation We have implemented a proto­
typing tool providing the necessary operations. In § 8
two case studies show the deployment of the method
and the effects of the different proposed mechanisms.

2 Related Work

Beside path based and implicit path enumeration based
approaches, the use of timing schemas are a main theme in
the area of WCET estimation research. As our method can
be used as an extension of the timing schema based approach
(cf. [12]), we provide a short introduction into this method.

A simple timing schema is based on a syntax tree repre­
sentation of the code. For each node of the tree, it computes
W(X) an integer that represents the worst case execution
time of X as a function of the execution time of its parts. The
leaves of the syntax tree correspond to basic blocks. The ex­
ecution time of these basic blocks is obtained in several ways
for instance by counting the cycles in each block. The basic
timing schema is therefore given by:

• W(X) = integer, when X is a basic block.

• W(X;Y) = W(X) + W(Y)

• W(if Z then X else Y) =
W(Z) + max{W(X), W(Y)}

• W(for Z loop X) = (n + l)W(Z) + nW(X)

Where we assume that the loop iterates at most n times. By
recursively applying these rules an estimate of the WCET of
an arbitrary section of code can be obtained. There are other
more sophisticated schemas for capturing peculiar features
of the programs or hardware architecture (see for instance
[6]). However , to illustrate the concepts this simple schema
suffices.

In the field of statistical real-time analysis we have to dis­
tinguish between statistical methods to analyse the interac­
tions of tasks in a system and those deployed to provide the
WCET. There has been some work on the area of probabilis­
tic methods for schedulability analysis, Gardener and Liu
focus in [II] on the schedulability analysis of soft real-time
systems. The target is to provide a statistical measure of the
amount of missed deadlines to be expected. The work by
[9] extends these results further to compute a profile of the
response times of tasks.

The work from Burns and Edgar in [5] applies extreme
value statistical analysis on end to end measurements of a
task to reason about the probability ofWCET being greater
than the largest execution time observed during any of the
tests of the program. Our approach uses a different strategy ,
we also obtain data from measurement but we analyse small
sections of code and provide a mechanism to combine to­
gether the worst cases of what has bcen observed for each of
the units.

3 Execution Profiles

An execution profile (or EP) associated with a piece of
code is a representation of the relative frequencies with
which some particular events happen. These events can be,
for example, reaching a number of instruction cache misses
during the execution of the piece of code. In this case the
cache miss EP represents the relative frequencies of obtain­
ing n cache misses for one execution this would allow for a
worst case cache miss analysis. Another possible "event" is
executing the piece of code within n cycles, which leads to
the EP of execution time.

In this paper, we focus on a particular use of EPs in the
domain ofWCET analysis. The "events" whuse frequencies
are represented by the execution profiles are the different
execution times that a piece of code may require to execute.
Such an execution profiles representing the relative frequen­
cies of execution times is an execution time profile (ETP for
short).

3.1 Obtaining execution profiles

There are several possible means to obtain the executiun
profile of a piece uf code.

• Measuring real executions using some probing system
on a real processor.

• Using a processor simulator which will execute the
piece of code and provide all the required information.

• Or using some analytical method.

Using the real processor to obtain execution profiles en­
sures that the measurements will capture all the effects of
the hardware. The drawback is that depending on the cho­
sen architecture, it may be difficult, if not impossible, to ob­
tain accurate measurements. It may also be necessary to add
some probing code into the program which will affect the
measurements (cf. [13J). Another encountered problem is
the variable execution time of some instructions depending
on the manipulated data (e.g. floating point multiplication).

On a simulator the probing problem does not exist as it
provides an extensive executiun trace. The drawback of this

281

method is the possible difference between the processor be­
haviour and its simulated one. This may be due to unsimu­
lated features or errors in the processor documentation used
to build the simulator. Some work has been done on validat­
ing processor simulators against real hardware [8, 10].

The EPs could also be provided by analytical methods as
the ones used in static WCET analysis. The methods ex­
posed in [2, 7], which respectively provide potentially dif­
ferent worst case number of cache misses and WCET for the
different loops in which a piece of code is included, could be
adapted to provide EPs. As these methods require an accu­
rate description of the hardware, they lead to the same issues.
as the use of simulators.

3.2 Granularity

Up to this point the units of the program described have
not been defined. In general any unit whose execution pro- .
file can be provided with sufficient confidence is a suitable
unit. While this condition is usually not met for end to
end measurements and simulations, describing individual
assembler instructions with execution profiles lead to un­
necessary pessimism in the general case. So, basic blocks
have been chosen as the building blocks and the terms "unit"
and "basic block" are used interchangeably. However, still
larger units may be possible, depending on the combination
of hardware and software to be analysed.

Finally a definition of the execution profile as regards
to start and end points is needed. the Standard WCET ap­
proaches define the execution time of a basic block from the
point the first instruction of this block enters the pipeline
until the last instruction of the block leaves the pipeline.
This approach introduces either additional pessimism or ad­
ditional complexity as it needs a model to handle the overlay
due to pipelines. Instead we propose to pick a certain stage.
of a pipeline and assign the execution profile for the time
needed between thc first instruction of a unit entering this
stage of the pipeline (e.g. the execution stage) until the first
instruction of the next unit enters this stage of the pipeline.
All effects of overlapping pipeline stages are therefore cov­
ered inside the two execution profiles describing the consec­
utive units.

4 WCET Analysis of Independent Execution
Time Profiles

In § 3 we have introduced informally the concept of ex­
ecution time profiles. We now prescnt a more formal defi­
nition together with the analysis of their properties and op­
erations. The objective of § 4, § 5 and § 6 is to provide
an algebra of execution time profiles that alluws to derive a
probabilistic timing schema.

This section concentrates on the model that assumes that
all ETPs are independent. For such systems the main opera-

tion to combine profiles is the convolution. Please note that
this is not adequate if the execution time are not indepen­
dent. In the case of dependent execution times we propose
in § 5 lhe joint execution profile which captures such depen­
dencies. We also provide and an equivalent operator for the
convolution for such joint execution profiles. Finally. if nei­
ther independence can be proven, nor detailed dependence
information is known, then a safe (pessimistic) operator for
combining ETPs is provided in § 6. A final timing schema
that wraps up the different calculation methods is then dis­
cussed.

4.1 Basic Definitions

The execution time, X, of a section of code X, is a dis­
crete random variable [I]. It represents "the execution time
of the paths in X". The question we want to ask about X
is what is the probability of ever observing a run with exe­
cution time greater than a given time t. Moreover, we want
to provide a mechanism to combine two or more of such
random variables to produce an estimate of the longest exe­
cution time of sequences of sections of code.

Standard statistical techniques make a series of assump­
tions about the properties of such random variables. The
main one is to assume that the random variables are iid (in­
dependent and identically distributed) if this is the case there
is a massive body of work on properties and operations that
can be performed. However, we argue that execution times
of small sections of code are not iid. It is not independent be­
cause there may be a dependency between two consecutive
observations of the same block (for instance, the difference
between first and additional iterations of the loops may de­
pend on whcther mcmory rcferences are on cache). Also,
the random variable is not identically distributed as the dis­
tribution may change over time, the execution path depends
on the state of the program, which changes over time there­
fore changing the execution lime (consider for example two
nested triangular loops, the execution time of the inner loop
is a function of the induction variable of the outer loop, and
therefore its execution time distribution varies over time).
In addition, even if the random variable was identically dis­
tributed we don't know its distribution.

Our aim is to characterise the longest execution time of a
program by combining together the observed execution time
of its parts. This combination should be biased towards the
worst case and even pessimistic. Standard statistical meth­
ods model the central part of the distribution and therefore
are not suitable for this purpose. Extreme value statistics
address this particular issue by modelling the tails of thc dis­
tribution, however, the manipulation of such distributions is
very complex and limited. For instance, in order to combine
two random variables it is generally assumed that they are
mutually independent. One of the main hypothesis of our
work is that such assumption can not be made in the general

282

case as the execution times may be dependent.
For all these reasons we have provided in the rest of the

paper a mechanism to manipulate directly (and numerically)
the probability mass distribution function x(t) = P(X = t)
of random variable X, which is what we have called an
ETPI. An ETP is therefore a function with an integer do­
main and the operations on ETPs are operations on func­
tions. We use the accumulated probability mass function
x(t) = P(X � t). x(t) = p means that the probability of
X taking t time units is p, whereas x(t) = q means that the
probability of X taking at least t units is q. Note that x(t)
may be defined for negative values of t, meaning that there
is a non-zero probability of "gaining" some time.

We consider systems that have bounded execution times,
therefore we can define the two extremes of x, x+ =
max{tlx(t) > O}, x- = min{tlx(t) > O}.

Let k be a real number, and x, y two ETPs. Then a scaling
of x by a factor k is given by (k . x)(t) = k . x(t). We can
also add and subtract ETPs which corresponds to addition
and subtraction of functions. For instance, (x + y) (t) =
x(t) + y(t) and (x - y)(t) = x(t) - yet) have the usual
meaning. Based on this for example, a linear combination of
ETPs can be defined. One has to be careful when using these
operations as they may result in an invalid profile (not a valid
probability mass function, and therefore normalisation may
be required). We define the weight of x as Ixl = Lift x(t).
If Ixl = 1 we will say that the ETP is in normal form. The
normalised ETP Ilxll of x is therefore given by Ilxll = I�I'

The p-point of an ETP is the smallest t such that x(t) �
p. This is denoted by ll'(x, p). This is the rightmost point in
time where the weight to the right of t is at least p. Given an
ETP x the right cut-off of x at weight p, denoted by A<p> (x)
is a new ETP obtained from x by only selecting the right­
most points in x that add up to p. Formally:

{ x(t)
A<p>(X)(t) = � - x(t + 1)

ift>ll'(x,p)
if t =ll'(x,p)
otherwise.

A shift of d time units on x(t) corresponds to x(t - d).
The folded version of :r:(t) from the origin is the ETP x(-t).

4.2 Combining ETPs

The key component for deriving a timing schema is to
provide a mechanism for combining ETP. We first analyse
the problem from the perspective that no ETPs are depen­
dent. The formulation of the problem is as follows: given
two ETPs x, y that correspond to two pieces of code X
and Y, we are interested in defining the random variable
Z = X + Y which represents the execution profile of the
execution of X;Y;.

I We will use capital italics (X) to denote a random variable. sans serif
capitals (X) for its associated code and lower case italics (x) for its ETP.

0.3
0.2

X 0.1

0.3
0.2

Y 0.1

X0Y 0.21 O.

J I

I

" "

I
JI
, ' , '

'\�--------:1"':',1
" I \1 ",J

r ! 1 ;
y 1 I I I I I r y

1 2 3 4 5 6 7 8 9 1011 12131415

Figure 1. Convolution operation example.

4.2.1 Convolution

If X and Y are mutually independent, the execution profile
of Z, z is the convolution (z = x@y) of the probability mass
functions of X and Y [1]. Where the discrete convolution is
defined as:

(x @y)(t) = L x(s)y(t - s) (1)
'Is

A graphical interpretation helps to understand the way the
convolution is performed. Figure I shows the calculation of
(x @y)(t). Take for example (x @y)(12). It is made up of
the sum of all x(s)y(t) such that s + t = 12. If x and y are
independent then the probability of x(s) occurring as well
as y(t) is equal to x(s)y(t).

The convolution has some useful properties. It is (a) com­
mutative, x @ y = y @ x, (b) associative (x @ y) @ z =
XQ9 (YQ9z) and (c) distributive (x®y) + z = (x®z) + (y®z).
T he same figure helps to visualise one very important prop­
erty that relates to the extreme points. If z = x @ y, then
z- = x- + y- and z+ = x+ + y+. The smallest non-zero
e le me nt of z is at index x- + y- and the largest non-zero
element is at index x+ + y+, the worst case of the convolved
ETP corresponds to the addition of the worst cases of the in­
dividual ETP. Note that for practical implementations, then
the summation in (1) ranges from s E [x- + y- ,x+ + y+].
Also note that if Ixl = Iyl = 1 then Ix ® yl = 1.

There is one special profile of interest: the profile zero,
denoted by £5 given by:

6(t) = { � if t = 0
otherwise.

(2)

It has the property that for any profile x, x @ 6 = x. By
definition, we denote XO = 6.

Note that due to the mu ltip lic ative effect of the the con­
volution extremely low values of probabilities may be com­
puted. Values in the order of 10-100 appear frequently. It is
arguable whether these values really have a physical mean­
ing, however low they are they should be at least marked as
being. different than zero as there is a conceptual distinction
between non-zero and zero valued values of x(t).

283

4.2.2 Maximum

Given two profiles, x and y it is interes tin g to define the pro­
file of the maximum z = max{x, y}. This will be needed in
the analysis of if-then-else structures. It is given by the ad­
dition of the profiles of x and y so that the right end adds-up
to probability one. Formally:

max{x,y} = A<l>(X + Y) (3)
Note that ffiEl.X{ x, y} captures the longest execution paths

that are either in x or in y.

4.2.3 Power
We are also interested in modelling the profile of the repeti­
tive execution of a piece of code (loops). Given a profile x,
then exactly n convolutions of x, denoted by xn, is given by:

n
----­

xn = x0x @",@x (4)

There is an essential difference if the loop does n ot iterate
exactly n times but n is only the maximum number of itera­
tions. In this case we have to consider the maximum of the
profiles that correspond to 1 ,2 , ... n iterations. We denote
this case by x<n> and it is gi ven by

4.3 Timing Schema for Independent ETPs

(5)

We can now introduce a timing schema for mutually in­
dependent ETP. Lct W(X) denote the execution profile of
section of code X (it can represent a single instruction, basic
block or a full subtree of the syntax tree). Using the concepts
just defined the timing schema is then:

• W(X) = Execution Time Profile, whenXisabasicblock·

• W(XiY) = W(X) @ WCY)

• W(if Z then X else Y) =
W(Z) @ max{W(X), W(Y)}

• Iterates exactly n times:
W(for Z loop X) = W(Z) @ (W(X) @ w(z))n

• Iterates at most n times:
W(for Z loop X) =
max{W(Z), (W(X) ® w(z))<n>}

As with the traditional ti ming schema, the rules are ap­
plied in postorder on the syntax tree. When there are multi­
ple alternatives, the order is not important.

With the notions developed here it is then possible to de­
duce alternative formulations for these same constructs or
to define more specialised rules, for instance, to define a
schema for the switch statement, function calis, exception
handlers, etc.

5 Dependent ETPs

The description up to now has assumed that the ETP are
independent. The mathematical solution is very nice as we
can exploit the properties of the convolution. However, the
resulting computed execution profile is only an approxima­
tion of the real profiJe2. There are effects that are (possibly
highly) correlated and such correlation is ignored in the pre­
vious model. This section addresses the issue of providing
an alternative operator for the combination of profiles when
the precise information of the dependcncy bctwccn profiles
is known. The problems to address are:

• Obtaining information of the dependencies of the code
(what information needs to be extracted to bc ablc to
determine that there is a dependency of some form).
For example, computing correlation indexes from mea­
sured execution times or determining dependencies
from static code analysis, as well as standard statistical
non-parametric hypothesis test for independence [IJ.

• Representation mechanism. How to represent this in­
formation in a form that can be manipulated. For ex­
ample, as an array of correlations, array of individual
probabilities of combined scenarios, code annotations
to mark dependent paths, etc. There is a clear trade­
off between the amount of information captured, the
accuracy of the final result and the complexity of the
method.

• Calculation mechanism. Within the context of a timing
schema, the issue is to provide an alternative set of rules
to compute the profiles with these dependencies.

The two main sources of dependencies result from low­
level hardware optimisation features, and high level path
dependencies. Low level features result for example from

effects of caches and pipelines. These dependencies have
an impact on close neighbouring blocks and in the gen­
eral case the dependency decreases for more distant blocks.
High level features result for instance from data dependent
paths and mutually exclusive paths. The approach presented
in this section addresses the low level issues by exploiting
known dependencies in neighbouring blocks, the high-level
dependencies are addressed more satisfactorily through ade­
quate timing schema, for instance by defining timing schema
for mutually exclusive paths [6J.

Using two examples we first analyse the reason why the
hypothesis of independence can result either in pessimistic

2 We do not know, in the general case how the real execution profile
looks like (otherwise we would not need to do this analysis!). However, we

have build smaIl test cases for which an exhaustive measurement approach
is able to produce the real ETP. We can then compare them against the
computed profiles as well as less exhaustive measurement approaches. One
of the main hypothesis of this paper is that in the general case end to end
measurements do not capture the worst case.

284

or optimistic estimates. We then discuss the three problems
in turn for the case of a sequences of blocks.

5.1 Optimism and Pessimism of the Hypothesis of
Independence

Assuming independent execution of sections of codc may
be pessimistic or optimistic. To illustrate this cases assume a
simple example of a sequence of blocks X;Y; with execution
profiles x and y.

An example of an optimistic estimate is the case when
there may be a strong positive correlation between the ex­
ccution times of certain pairs of execution blocks. It may
be the case that when X runs for, say t time units, Y always
runs for s time units. Then P(X = t 1\ Y = s) 01 P(X =
t)P(Y = s), which is the hypothesis made by the convolu­
tion. The stronger the dependency the larger the error. We
have observed that each basic block has most of the times
two peaks in its ETP, this is usually because the first time
it runs it may generate some cache misses. In a sequence
of blocks X;Y; where X and Y may generate a cache miss
each, it is very likely that when X suffers its cache miss, Y
also suffers a cache miss too. In some cases Y only gets a
cache miss after X has suffered it. An approach that is not
biased towards finding such dependency will be optimistic
and could lead to an underestimation of the case when both
X and Y suffer from cache misses. Taking into consideration
that a cache miss has a large impact in the processor (even
100 cycles) this impact can be significant.

An example of pessimism is the case when (in the same
code X;) X and Y share a variable and therefore it is not
possible for X generating a cache miss and then also Y gen­
erating a cache miss too (as it has just been loaded). If we
assume independence, the resulting computed ETP consid­
ers the case when both generate a cache miss which is un­
necessarily pessimistic.

5.2 Capturing and modelling dependencies: Joint
Execution Profiles (JEP)

To help this discussion we assume a measurement based
approach in which timing information of the execution time
of each basic block in each run is available (see evaluation
section for more details). The ETPs are taken from the anal­
ysis of a cycle accurate trace obtained by a processor simula­
tor. In this case dependencies can be discovered by looking
at the dependencies in each trace.

Consider a sequence of n basic blocks Xl; X2; . . • ; Xn;,
with ETPs x,. The measurement based approach generates
a set of runs T j where each run has the execution time of
each block in the run Tj = {Tj,ih=l..n, where Tj,i is the
execution time of block Xi in run j. The total execution
time of run Tj is simply obtained by 1::1 Tj,;. The ETP Xi

is obtained by building the probability mass function of the
set of samples {rj,d for all j.

This process of building the profiles discards the potential
information available in the rj,i matrix. We define the join
execution profile (JEP) as a bidimensional profile w between
two blocks X and Y where wet, s) = P(X = t A Y = s). If
x is the ETP of X and y the ETP ofY, w defines explicitly the
probability of the case that X runs for t time units and Y runs
for s time units. The range of w is (x- ... x+) * (y- . . . y+).

The sum of all the rows (resp. columns) of w, is given by
w(t, ·) = 2::vs wet, s) (resp. w(·, s) = 2::Vt wet, s». Given
a JEP wand two ETP x, y we will say that w is consistent
with x and y if w(t,·) = x and w(., t) = Y (this also implies
that the dimensions of ware adequate).

Operating with JEPs is very similar to operating with pro­
files. The important realisation is that we can now provide
an alternative to the convolution based on the JEP. Given a
JEP w by cxtcnsion of the convolution, we define the con­
volution of w, O"(w) as the ETP where Cl(W) (t) is thc sum
of the probabilities of the elements of the SW-NE diagonal
ofw:

Cl(W)(t) = 2:)w(s, u)ls + u = t} (6)

Note that this is effectively the same operation as the con­
volution of cquation (I) replacing the product x(t)y(s) by
wet, s). If x and yare indepcndcnt, then its JEP W has the
property O"(w) = x 12:> y.

The main problem with the JEP approach is that it does
not have the same properties as the convolution in the gen­
eral case. The convolution of JEP is not closed, as a(w)
results in an ETP. However, it provides the foundation for
replacing some convolutions between ETP by its JEP coun­
terpart.

5.2.1 Dependency tests

We have identified two problems related to the dependency
between profiles. The first one is to determine whether two
ETPs are independent (is P(X = t A Y = s) = P(X =
t)P(Y = s)'?). The second problem is, independently of
the previous result, can we order JEPs according to their de­
gree of dependency; i.e. provide a relational operator W 2': v
meaning that w captures more dependency information than
v for two arbitrary JEPs w, v (possibly referring to different
pairs of ETP).

The first problem is a statistical test of independence. As
we do not make any assumption of the underlying distribu­
tion we need to use a non-parametric test , for example a chi­
squared test [IJ. The test hypothesis HO is P(X = t A Y =
s) = P(X = t)P(Y = s) and the alternative hypothesis is
P(X = t A Y = s) # P(X = t)P(Y = s). With some
confidence level Q the test accepts or rejects the hypothesis
HO. If so, then for the combination of X and Y the standard
discrete convolution is adequate. Otherwise a convolution

285

based on the JEP (see below) or a pessimistic combination
(next section) should be used.

We need a simple approach for sorting JEP according to
their degree of independence, a simple indicator based on
the chi-squared test suffices for our needs. We introduce the
dependency index of a JEP, denoted by lI:(w), as:

II:(W) = "'" (w(t,s) -w(t , ·)W(· , S))2

L..t w(t,.)w(. , s) (7)
'lit,s

Given two JEPs (possibly not independent) w, v we say
that w captures more dependencies than v if 11:(w) > 11:(v) .

In our experiments we compute the JEP from measured
data, however there is no reason why these JEP can not be
obtained or determined by different means, for instance by
static code analysis, or by a combination of both.

5.3 Revised Timing Schema for Dependent Blocks

We can now introduce an specialised rule in our set of
timing schema that captures the special case of a sequence
of basic blocks with known dependencies: Xl; X2; ... ; Xp.
Let 'Wi,j be the JEP of the blocks Xi and Xj in the se­
quence. The problem is to provide a new timing schema
of W(XI; X2; ... ; Xp).

If the blocks were independent , then the ETP of the se­
quence would be v = Xl ® X2 12:> ••• 12:> xp where Xi is the
ETP of Xi. The idea behind this method is to replace pairs of
convolutions Xj ® Xk by the convolution of its JEP (J'(Wj,k).
There are q = Lp /2 J of such pairs. The issue is to decide
which q pairs of w',J to replace, It is reasonable to replace
the q pairs that account for the maximum dependency infor­
mation which is captured by the 11:(w) function. The method
can then be expressed in algorithmic form as follows:

2. Define a permutation ¢ to reorder the Xi
X¢(l)' X¢(2), ... , x¢(p) according to the degree
of independence so that II:(Wq,(2i-I),¢(2i» 2':
K(W¢(2i+1),¢(2i+2)) for i = l..lp/2J. The ele­
ments Xi are now grouped in pairs and each pair
sorted in order of dependency. We can now provide an
alternative combination of the sequence, by replacing
l.P /2 J pairs of convolutions between basic blocks by
their JEP counterpart:

3. if p is even, then W(XI; ... ; Xp) =

0"(Wq,(I),q,(2» 12:> ••• 0 O"(W¢(p_I),q,(p» (8)

If p is odd, then W(X1; ... ; Xp) =

<T(w¢(I),¢(2») 12:> ••• 12:> <T(Wq,(p-2),1>(p-1j) 12:> x1>(p) (9)

0.3 e------<>-----------
0.2 �---<?-+-...,I .-------­

X 0.1 f----,I--.---II'-+--jl'----<r-I��-��

X 181 Y 0.2 f--�---' ,..-\---'-.-.. -... -... -'c� •• �._.__ 1----+\ -9-�1 ---n 0.1 J 1 I 1 1 -T
1 2 3 4 5 6 7 8 9 1011 12131415

Figure 2. Biased convolution example.

6 Unknown Dependencies between ETPs

The convolution is an adequate operator when we can
make the assumption that the ETP are independent. How­
ever, it has been shown earlicr that this can result in opti­
mistic estimates. If information is known about the specific
dependencies between blocks (i.e IEP) then the JEP convo­
lution can be used. However, if neither the dependency, nor
the independence can be asserted , an operator to combine
ETPs is required such that it ensures that the combination is
safe (it does not result in an underestimate). For this reason
we now present a particular JEP between two profiles x and
y, called the worst JEP, and denoted by w that is consistent
with x and y and that is safe.

The way to determine whether a IEP is the worst one, is
to define a metric on JEPs and take the IEP that maximises

such metric. We define the bias function (3(w) as the mea­
sure of how biased is a JEP towards the worst case. It is
defined as (3(w) = L:Vt t2a(w)(t). The meaning of (3(w)
is to take the contribution of (J(w)(t) and weight it quadrat­
ically. The more the weight of 0'(w) is to the right the larger
(3(w) . The worst IEP for a pair of ETP x, Y is the JEP that
is consistent with x and y and that has maximum (3 among
all the possible JEPs consistent with x and y

For notation purposes, we will call the convolution of the
worst IEP of two profiles x and y a biased convolution, it is
denoted by x � y = 0'(111). It is easy to show that the biased
convolution operator is also commutative, associative and
distributive.

The worst IEP corresponds to a JEP with a strong positive
correlation and where the probability of the rightmost ele­
ments of x and rightmost of y is as high as possible. An al­
gorithm to compute such JEP is described below. It is based
on taking the two rightmost elements in x, s, and y, t, and
determining the maximum probability that sand t may hap­
pen which is p = min(x(s), y(t)). This is the probability as­
signed to the case w(s, t) = p. The process is repeated with
the remaining ETP. The procedure is illustrated with an ex­
ample in figure 2. The probability P(x = 7 !\ Y = 8) = O.l.
That would assume a total correlation in the worst case.

286

Then, P(x = 6 /\ Y = 7) = 0.2, P(x = 5/\ Y = 6) = 0.2
because is the only assignment consistent with the fact that
y(6) = 0.2. We have now 0.1 units of probability left from
x(5) that are used to combine with y(5), etc.

The algorithm to compute the worst IEP is as follows:

Computation of w of x and y
w(i,j):= 0 Vi,j;
'i := x+; j:= y+ ;
px := x(i); py:= y(j);
while (px > 0 V py > 0)
{ p:= min{px, py};

}

w(i,j) := p;
px := px - p; py:= py - p;
while (px = 0 /\ i > x-)

{ i:= i-I; px := x(i); }
while (py=O /\ j>y-)

{ j:= j - 1; py := y(j); }

To prove that this algorithm produces the worst JEP we
first need to show that such JEP exists. This is based on
a constructive proof. Given any JEP w which is consistent
with x and y, consider the following transformation of w
into Wi. Select two rows, rand s, and two columns c and
d, such that r < s, c < d and w(s, c) > 0, w(r, d) > O.
Let e = min(w(s, c), w(r, d)). Then the new JEP w' which
identical to w except that w'(r, c) = w(r, c) + e, w'(s, d) =
w(s, d)+c, w'(s, c) = w(s, c) -e and w' (r, d) = w(r, d)-e
is also consistent with x and y and (3(w') > (3(w) (it is left
as an exercise to the reader to show that (3(w') = f3(w) +
2e). By repeatedly applying such transformation a JEP with
maximum (3 is found. This JEP is unique, and it is easy to
show that it is not possible to apply the transformation to

the IEP produced by the algorithm, therefore the algorithm
produces the worst JEP.

The same timing schema can be used replacing the stan­
dard convolution or JEP convolution by the biased convolu­
tion. The following section describes in more detail how to
select the right operator and how to combine them.

7 Calculation Procedure

The development done up to now allows us to provide the
final algorithm for applying the rules of the timing schema
that considers programs where for some sections we do not
have information of their dependency, for other sections
we know (or assume) that they are independent whereas
for other blocks detailed information of their dependence
is known. We assume that we have the ETP of each basic
block Xj, and may have the JEP for a subset of the pairs of
blocks (Wi,j)'

The objective is to determine in sequences of operations
where the convolution is used, which type of convolution

(a) I �=��-�-------,
0.1

om
0.001

0.0001
I�S
1e--06
le-07
1e-08
le-09

.... , " . " ' �
biased convolution __ . __ .

..
....... ,

in��:�ti�:�;6}il� .-_ .. -._- "'\
simple convolution

measurement -
le-IO

IL25�()()-:------;1-';;3 OOO�----;1::;35;;;:00;;---:1c':4 ooo:=--1:-':4-:;500::;--:-!ISOOO

(b) easurements - - _.­
simple convolution . .. ,,_ (c) Source code of (b)

for (i = O;i < VSIZE;i++) {
for (j = O;j < HSIZE;j++) {
if (out[i) [j] > 255)

{out[i] [j] � 255;}
if (out[i] [j] < 0)

{out[i][j] � O;}
in[i][j]=

}
}

(unsigned char)out[i] [j];

Figure 3. ETPs of two sample programs

operator to use. The whole procedure of applying the timing
schema is summarised as follows:

1. Compute the ETP of sequences of basic blocks
Xl;" . ; Xp. According to the dependency informa­
tion available the method to calculate W(X1; . . . ; Xp)
is done in one of three ways:

(a) if dependency information is known then the con­
volution of JEPs shall be used as described in
equation (8).

(b) else, if the blocks are independent (test of inde­
pendence, or assumed explicitly by the analysis)
then standard convolution of equation (1) is used.

(c) Otherwise, no independence assumption can be
made and a pessimistic approach shall be used
with the biased convolution (C8:J).

2. For the combination of blocks which are not leafs of
the syntax tree:

(a) For loops: an independence test across loop itera­
tions is applied. If executions times are indepen­
dent then use the standard convolution operator in
the calculation of xn or x<n>, otherwise use the
biased convolution in the the calculation of the
power.

(b) Conditional constructs: no dependency informa­
tion is used and the max of ETP of equation (3) is
used.

(c) For the combinations of sequence of higher level
structures (e.g. successive execution of two loops)
also an independence test is applied. As before, if
they are independent, then the standard convolu­
tion can be used, otherwise the biased convolution
shall be used.

Alternative or complementary timing schema rules can
be defined using the same principles, for instance to model
more accurately the difference between the first instance of
the execution of a block compared with the rest of the exe­
cutions, occurrence of cache misses, etc.

287

8 Case Studies

The examples presented in this section show how WCET
analysis can be conducted using ETPs, and the different kind
of results obtained by combining ETPs using the methods
presented in sections 4, 5 and 6.

The first example (cf. figure 3.a) is a single loop in which
pairs of element in an array are accessed randomly. This
program has a particular behaviour regarding the data cache.
When the access to the first element of a pair is a miss,
then accessing the other element will cause a miss. The
ETPs of basic blocks used in this experiment, as well as the
end-to-end ETPs of the program have been obtained by run­
ning the program 10000 times on the simplescalar simulator
[4]. As the execution path is fixed in this example, the only
sources of variability are architectural features (mainly the
data cache).

The graphs presented in 3.a show the different end-to­
end ETPs (measured and computed). All ETPs are plotted
in a negative cumulative way (starting with I and ending at
0). A logarithmic scale is used on the vertical axis. The
first graph is the measured ETP. It shows that within 10000
runs the worst observed execution time for this program is
13081 cycles and have been observed once. Because of the
logarithmic scale ranging from I to 10-10 the graph of the
measured ETP appears at this point as a vertical line. The
second graph is the ETP computed using the simple convolu­
tion technique presented in § 4, assuming independent ETPs
for the basic blocks. As we know that the two memory ac­
cesses are positively correlated, the assumption of indepen­
dence is wrong. Using the biased convolution as presented
in § 6 leads to very pessimistic results. Induced by the mini­
mum granularity of 1/10000, the biased convolution retains
this probability up to the theoretical WCET bound at 61015
cycles. A way to describe it more accurately, but without
having exact correlation information, would be to consider
the blocks inside the loop with the biased convolution, but
the loop iterations itself as independent. This provide the
curve labelled "mixed convolution".

The joint execution profile reduces considerably the over­
estimation. If the blocks were negatively correlated, the joint
execution profile curve would be even below that of the nor-

mal convolution. Beside the biased convolution, all other
techniques provide qui�kly a probability of 10-300.

The second example is an image processing algorithm.
The non deterministic execution time of this program is
mainly due to the piece of code presented in figure 3.c. As
opposed to the first example, where the executed sequence
of basic blocks is always the same, this is not the case in
th is code. As this image processing program contains some
conditional structures, the executed sequence of basic blocks
may differ from one run to an other.

The computed end-to-end ETPs take into account the
fact that the two conditional statements shown in figure 3.c
are mutually exclusive. As in the previous cxamp\c, the
measured and computed ETPs are shown in the graph di­
rectly below the code. The WCET bound using conservative
WCET estimation approaches would be in this case 809649
cycles . It becomes obvious in this example that the conven­
tional convolution underestimates the execution time to a se­
rious degree compared to the end to end measurements and
should therefore be replaced by one of the other operators.

9 Conclusions and Future Work

The use of probabilistic methods in real-time and es­
pecially worst case execution time analysis allows to
strongly reduce the overestimation produced by traditional
approaches. A precondition for their deployment is the no­
tion of probabilistic hard real-time systems. For such sys­
tems, it is not mandatory to meet all its deadlines, but a
probabilistic guarantee close to 1 00% suffices.

We have introduced the concept of execution profiles
to describe the statistical properties of a section of code.
Throughout this paper we have concentrated on the use
of execution profiles to describe the WCET of a program.
While the profiles of a section of code may be gathered using
a variety of existing methods, the presented enhanced timing
schema allows for thc combination of these sections to pro­
vide a model for the longest execution time of a program as
a whole. Depending on the knowledge available as regards

the dependencies between the EPs of different sections of
the code, different join operators are defined for indepen­
dent sections, sections with known dependency and sections
Jacking this dependency information at all .

While the first two join operators allow for a close mod­
elling of the execution time, the operator for unknown de­
pendencies uses a pessimistic worst case scenario. The re­
sults in the case studies show, that a partially known depen­
dencies between sections of code, enhance the properties of
the resulting execution profile of a program considerably.

The future work will focus on the use of execution pro­
files to describe the effects in the acceleration units like
branch prediction and caches of the program. Finally the
consequent extension of the model towards schedulability
analysis is intended.

288

Acknowledgements

The authors would like to thank Martin Newby and
Veronica Lima for helpfull discussions on early versions of
the paper. Additionally the reviewers of RTSS deserve a
large "Thank You" for the quality of their comments.

References

[I] A. O. Allen. Probability, Statistics, and Queueing Theory.
Academic Press, [nc., I I I Fifth Avenue, New York, 1 978.

[2] R. Arnold, F. Miiller, D. Whalley, and M. Harmon. Bound­

ing worst-case instruction cache performance. In Proc. of

the IEEE Real-Time Systems Symposium (RTSS'94). IEEE
Computer Society Press, Dec. 1 994.

[3] I. Berger. Can you trust your car? IEEE Spectrum, 39:40--45,

Apr. 2002.
[4] D. Burger and T. M. Austin. The simplescalar tool set, ver­

sion 2.0. Computer A rchitecture News, 25, June 1 997.
[5] A. Bums and S. Edgar. Statistical analysis of WCET for

scheduling. In Proc. of the IEEE Real-Time Systems Sympo­
sium (RTSS 'Ol), London, United Kingdom, Dec. 4--6 200 1 .

[6] A . Colin and G . Bernat. Scope-tree: a program represen­

tation for symbolic worst-case execution time analysis. In

Proceedings of the 14th Euromicro Conference on Real-Time
Systems, Vienna, Austria, June 1 9-2 1 2002.

[7] A. Colin and I. Puaut. A modular and retargetable frame­
work for tree-based weet analysis. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems, pages 37-44,

Delft, Netherlands. June 1 3- 1 5 200 1 .
[8] R. Desikan, D . Burger, and S . W. Keckler. Measuring exper­

imental error in microprocessor simulation. In Proceedings
oj the 28th International Symposium on Computer Architec­

ture, July 200 I .
[9] J . L . Diaz, D . F. Garcia, K . Kim, C . Lee, L. Lo Bello, 1. M.

Lopez, S. L. Min, and O. Mirabella. Stochastic analysis of
periodic real-time systems. In Proceedings of the 23rd Real­
Time Systems Symposium RTSS 2002, Austin, Texas, USA,
Dec. 3-5 2002.

[10] J. Engblom. On hardware and hardware models for embed­

ded real-time systems. In Proceedings of the 1st Real-Time
Embedded Systems Workshop (RTES 'Ol), London, UK, Dec.
3 200 I . IEEE.

[I I] M. K. Gardner and W. Liu. Analyzing stochastic fixed­
priority real-time systems. In Proceedings oJthe Fifth Inter­
national Conference on Tools and Algorithms for the Con­

struction and Analysis of Systems, Lecture Notes in Com­

puter Science, Amsterdam, Netherlands, March 22-26 1 999.
Springer-Verlag.

[1 2] c. Park and A. Shaw. Experiments with a program timing
tool based on source-level timing schema. IEEE Transac­

tions on Computers, 24(5):48-57, May 1 99 1 .
[1 3] S . M. Petters. Worst Case Execution Time Estimation for

Advanced Processor Architectures. PhD thesis, Institute
for Real-Time Computer Systems, Technische Universitat

Miinchen, Munich, Germany, Sept. 2002.

