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Abstract 
W e  present  a f r a m e w o r k  f o r  building fail-safe hard 

real-t ime applications o n  t o p  of a n  asynchronous dis- 
tributed s y s t e m  subject t o  communica t ion  part i t ions,  
i .e.  using processors and  communica t ion  faci l i t ies  
whose real-t ime delays cannot  be guaranteed. T h e  ba- 
sic a s sumpt ion  behind o u r  approach as tha t  each pro- 
cessor has  a local hardware clock tha t  proceeds w i th in  
a l inear envelope of real-t ime. T h i s  allows t o  com- 
pu te  a n  upper  bound o n  t h e  actual  delays incurred by 
a part icular  processing sequence o r  message t ransmis -  
s ion.  Services  and applications can use  these com- 
puted bounds t o  detect  w h e n  t h e y  cannot  guarantee all 
t he i r  properties because of excessive delays. T h i s  al- 
lows a n  application t o  detect  w h e n  t o  switch t o  a fai l -  
safe mode.  

1 Introduction 
In recent years there has been a trend to use 

commercial-off-the-shelf (COTS) products such as 
real-time Unix and main-stream hardware platforms 
to build hard real-time systems. A system is hard real- 
t i m e  if the consequence of a non-masked performance 
failure can be catastrophic [13]. Hard real-time sys- 
tems can coarsely be classified into fai l -safe  and fail-  
operational systems. Fail-safe systems have at leaat 
one safe state and the system has to transit to such a 
state when a non-maskable component failure occurs. 
The motivation for using COTS is to cut costs while 
still using the latest technologies. From a technical 
point of view COTS usage is quite challenging with re- 
spect to  the construction of distributed hard real-time 
systems. To explain this, note that several recently 
built distributed hard real-time systems [11, 20, 12, 11 
rely on the guaranteed response paradigm [13]. This 
paradigm depends on the assumption that the maxi- 
mum number of failures per time unit is a priori known 
to guarantee that the real-time system reacts to events 
occurring in the controlled object within an a priori 
known time bound. However, if this fai lure as sump-  
t i o n  can be violated at run-time, the real-time system 
can be subject to  unpredictable behavior. To bound 
the number of performance failures per time unit, one 
has to  know an upper bound on the processor and net- 
work load. However, the usage of COTS software and 
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hardware does not necessarily allow to bound the peak 
processor and network load a priori because the load 
induced by these products is not known and can only 
be estimated using measurements. For example, due 
to interrupts, caching, and bus arbitration it is very 
difficult to  determine the worst case execution times 
for main-stream hardware platforms [17]. Moreover, 
the load induced by the application and middleware 
products depends also on the point of operation of 
the system and for many systems the envelope of op- 
eration is not well known. The occurrence of non- 
maskable performance failures is therefore difficult to 
avoid by design. We present an approach to address 
the problem of non-maskable performance failures. 

Due to the problems posed by the guaranteed re- 
sponse paradigm, many practical systems are based 
on the best effort  paradigm that does not guarantee 
that a real-time system always responds within the re- 
quired time bounds. However, the system has to  show 
in empirical tests that it statistically responds in a 
timely fashion. We describe a best effort approach to 
constructing fail-safe distributed hard real-time appli- 
cations for partitionable systems: fai l -awareness .  In 
a parti t ionable s y s t e m  the set of processes can split 
into disjoint subsets due to  network failures or exces- 
sive performance failures. Each such subset is infor- 
mally referred to as a ( communica t ion  part i t ion.  The 

as the number of failures per time unit experienced by 
the underlying communication and process services re- 
mains below a given bound, all services provide their 
standard synchronous (i.e. hard real-time) semantics 
and each server knows this fact; when the number of 
failures per time unit rises above that bound, a server 
is allowed to switch to  a specified exception semantics. 
Clients can learn if a server provides its standard or 
exception semantics by examining an exception indi-  
cator  provided by each server. An application can use 
the indicators of the servers it depends upon to switch 
the system to a safe state when the occurrence of non- 
maskable performance failures causes some underlying 
services to  switch to  their exception semantics. 

The novelty of our approach is that  instead of aim- 
ing for real-time support in an asynchronous, parti- 
tionable setting onky by providing high throughput 
see Transis [3] and Totem [15]), we specify the stan- 6 ard semantics of services using real-time deadlines 

and provide mechanisms to  detect when an applica- 

general goal of our approach is as r’ ollows: as long 
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tion cannot depend upon the standard semantics of 
services due to unmasked performance (or omission or 
crash) failures. This detection is essential for fail-safe 
applications that have to switch to a fail-safe mode 
whenever they cannot guarantee their standard syn- 
chronous properties. Our approach allows the servers 
in each partition to “make progress” independently of 
the servers in other partitions, i.e. these servers can 
provide their standard semantics and hence, increase 
the availability of the system. In this paper we give 
an overview of several fail-aware partitionable services 
that we have designed such as clock synchronization, 
membership, and atomic broadcast to illustrate our 
approach. 

2 Model Rationale 
The guaranteed response paradigm is based on the 

assumption that the classes of likely failures and their 
maximum number per time unit is a priori known. The 
fail-awareness paradigm also assumes knowledge of the 
classes of likely failures, but does not assume aything 
about their maximum frequency of occurrence (since 
the number of performance failures per time unit can- 
not be bounded due to the use of COTS products). 
That difference in the underlying assumptions results 
in the use of different system models for the guaran- 
teed response paradigm (i.e. use of a synchronous sys- 
tem model) and the fail-awareness paradigm (i.e. use 
of the timed asynchronous system model [a]). We re- 
view in this section the basic differences between these 
two models. 

In a completely synchronous system the real-time 
delays of all processes and all messages are within a 
priori known bounds. One can generalize the notion 
of a synchronous system by allowing a bounded num- 
ber of “performance failures” per time unit. To define 
performance failures, one first introduces thresholds 
for process scheduling ( U )  and message transmission 
delays (5). When the transmission delay of a mes- 
sage m is greater than the maximum assumed mes- 
sage delay 5,  one says that m suffers a performance 
failure. Otherwise, m is said to be timely. Similarly, 
when the scheduling delay of a process p is greater 
than the maximum assumed scheduling delay c, p suf- 
fers a performance failure. A process that does not 
suffer any performance failures in a given interval is 
said to be timely. A failure model specifies what kind 
of failures have to be considered in the design of a 
system, i.e. the probability that any other kind of 
failure occurs is negligible. A typical failure model 
used in synchronous systems assumes that processes 
have a crash/performance failure semantics and mes- 
sages have an omission/performance failure semantics. 
A failure assumption states the maximum number of 
(performance, crash, and omission) failures that can 
occur per time unit, i.e. the probability that more fail- 
ures occur is negligible. Since most distributed proto- 
cols are “round based ,  a failure assumption typically 
states the maximum number of failures per round, i.e. 
a “time unit” is the maximum length of a round. 

A synchronous system requires that the classes of 
failures that can occur and the maximum number of 
these failures per time unit be a priori known. Know- 

ing what classes of failures can occur (stated in the 
failure model) and knowing the maxzmum number of 
these failures per time unit (stated in the failure as- 
sumption), one can use a sufficient amount of redun- 
dancy to mask all failures that can occur by hypoth- 
esis. Thus, when the failure model and assumptions 
are correct, one can exclude the occurrence of non- 
maskable failures, that is, system failures, by design. 
In other terms, the probability that the system masks 
all failures is at least a,s high as the probability that 
the failure model and the failure assumption are valid 

To bound the maximum number of performance 
failures per time unit, one has to bound the peak 
processor and network load. Using commercial soft- 
ware packages with unknown peak load therefore in- 
creases the difficulty of deriving a well founded max- 
imum number of performance failures per time unit. 
For example, using a network of workstations with 
a standard operating system like Unix does in many 
cases not allow a reasonable failure assumption to be 
made in the sense that the probability that the failure 
assumption can be violated will be negligible. We use 
therefore the timed asynchronous system model as the 
foundation of our work since it does not put any bound 
on the number of failures per time unit. For a detailed 
description and comparison with other models like the 
quasi-synchronous model of [19] see [2]. 

The timed asynchronous model assumes that pro- 
cesses have access to a local unsynchronzzed hard- 
ware clock with a bounded drift rate, i.e. they 
proceed within a lineatr envelope of real-time. It 
uses the following failure model: processes have 
crash/performance failure semantics and messages 
have omission/performance failure semantics. In what 
follows, when we use the generic term “failure” we 
mean a failure that belongs to one of these classes of 
failures. This model does not define any bound on the 
maximum number of failures per time unit, i.e. it has 
no failure assumption. It is an accurate description of 
existing distributed systems like a network of worksta- 
tions running Unix or Windows NT. The model also 
allows the system to split into partitions when all mes- 
sages sent between processes (in different partitions) 
suffer omission or performance failures. Unlike in the 
synchronous system model, the timed asynchronous 
model does not necessarily allow to mask all failures 
that occur since any amount of redundancy used to 
mask failures can be exceeded by the actual number of 
failures that occur. The fail-aware protocols we have 
been designing have nevertheless some resemblance to 
synchronous protocols because they behave like syn- 
chronous protocols as long as the number of failures 
per time unit is within some give bound. However, the 
fail-aware protocols have to deal with situations when 
processes become partitioned, partitions merge, or the 
number of failures per round becomes that high that 
servers have to switch to their exception semantics. 

3 Fail-Awareness 
Since our main interest is in fail-safe applications, 

we base our approach on  the following idea: instead 
of depending on the assumption that the number of 

P I .  
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failures per time unit never rises above a given bound, 
we require that 

0 services mask all failures as long as the the num- 
ber of failures per time unit is within some given 
threshold, and 

0 a server detects when it cannot provide its stan- 
dard (synchronous) semantics anymore (because 
the number of failures is above the threshold) and 
signals that condition to  its clients using an (ex- 
ception) indicator (see also Section 5.2), i.e. the 
servers are fail-aware. 

Typically, some processes of an application will 
monitor the servers the application depends upon and 
switch the system to a safe state when “too many” 
servers cannot provide their standard semantics any- 
more. The communication between these processes to  
coordinate the switch to  a safe state should - when- 
ever possible - use communication based on measuring 
the passage of time. This ensures that communication 
takes place between these processes even when the net- 
work is overloaded or partitioned (see Section 6 and 
[8] for examples). We will refer to  this type of com- 
munication as communication b y  time. In our designs 
we mainly use a (time) locking mechanism to facili- 
tate communication by time between processes (see 
Section 5.3).  

The specifications of the fail-aware services we have 
designed so far are typically derived from the spec- 
ifications of the corresponding synchronous services, 
i.e. services that were originally specified to be im- 
plemented in synchronous systems. We transform the 
specification S of a synchronous service into a new, 
but similar, specification F A  so that F A  becomes im- 
plementable in timed asynchronous systems that are 
characterized by having no bound on the number of 
failures per time unit and the possibility of commu- 
nication partitions. Fail-awareness for partitionable 
systems is based on the concept of a logical partition 
[9] to  represent communication partitions: a logical 
partition consists of a unique id and a sequence of 
memberships [5]. 

The transformation of a synchronous specification 
S into a fail-aware specification F A  is done in four 
steps: 

the interface of F A  is augmented with an excep- 
tion indicator] 

an F A  server is required to  provide its standard 
semantics, defined to  be identical or very close to 
the synchronous semantics S ,  whenever its indi- 
cator signals that it is part of a logical partition, 

otherwise] when the indicator signals that a server 
is not part of a logical partition, it has to  provide 
a specified exception semantics] and 

the indicator of a server p in a communication 
partition S P  must signal that it is part of some 
logical partition that contains SP whenever the 
communication and process services in S P  exhibit 
“synchronous behavior”, that  is, the number of 

failures per time unit within SP is within some a 
priori given bound. We call S P  a stable partition. 
A formal definition of a stable partition can be 
found in [a]. 

The detection that a server cannot provide its stan- 
dard semantics anymore is based on several mecha- 
nisms that we detail in Section 5. Note that a server 
does not actually have to  decide if it is in a stable 
partition or not since (1) a server has to  guarantee 
by design (i.e. by masking failures) that it provides 
its standard semantics as long as it is part of a stable 
partition, $2h it has to detect when it cannot mask all 
failures an ence, cannot provide its standard seman- 
tics anymore (i.e. by design this can only happen when 
it is not part of a stable partition)] and (3) a server 
typically provides its standard semantics as long as it 
masks all failures even though it might not be part 
of a stable partition. Section 5 also describes our im- 
plementation of an exception indicator: an indicator 
has to  enable clients to  detect that a server cannot 
provide its standard semantics even when the server 
suffers performance failures. This allows the processes 
that monitor the servers (and switch the system to a 
fail-safe mode) to  query the current semantics of a 
server at any point in time. 

4 Fail-Aware Services 
We have designed and implemented a hierarchy of 

fail-aware services to support the design and imple- 
mentation of fail-safe real-time applications (see Fig- 
ure 1) [$]. The foundations of the hierarchy are an 
asynchronous datagram service and a process man- 
agement service that provide the semantics assumed 
by the timed asynchronous system model, i.e. mes- 
sages have omission/performance and processes have 
crash/performance failure semantics. We give an 
overview of the goals of the different fail-aware services 
in the presence of partitions. We refer the reader to  
[8] for a description and performance measurements of 
our implementation of the protocol stack. 

fail-aware broadcast -+ depends upon 

fail-aware membership 

fail-aware clock synchronization 

fail-aware clock reading 

fail-aware datagram 

timed asynchronous system 

+ + 
1- 

+ 
local leader election + 4 4--+---- independent assessment 

Figure 1: Hierarchy of fail-aware services to  support 
the design of fail-safe partitionable real-time applica- 
tions. 

4.1 Partitionable Systems 
When it comes to  designing distributed protocols, 

the ideal underlying system is one that is completely 
synchronous: each pair of non-crashed processes p and 

284 



q is O-connected, i.e. p and q are timely and each mes- 
sage sent between p and q is timely (see [2] for a for- 
mal definition). Since processes and messagees do not 
suffer performance failures, this greatly simplifies pro- 
tocol design. In practice, systems are often not com- 
pletely synchronous, in particular, we are considering 
systems in which the probability that partitions occur 
is not negligible. When a system splits into partitions, 
the ideal situation (with respect to  the design of pro- 
tocols) would be that each partition shows completely 
synchronous behavior (see Figure 2 : all process pairs 

nected from processes outside their partition, i.e. they 
do not receive any messages from other partitions (see 
[2] for a formal definition). If a system only splits into 
such “ideal partitions”, the design of protocols would 
be reasonably simple since the protocols do not have 
to  handle situations like the inability of some processes 
to communicate with other processes in the same par- 
tition, or sporadic message arrivals from other parti- 
tions. 

in a partition are O-connected an d they are discon- 

1 - O-connected timely urocesso ideal partition) 

Figure 2: Ideally all processes in a partition should be 
mutually O-connected with all processes in the same 
partition and be disconnected from all processes in 
other partitions. 

Real communication partitions are not always ideal 
in the above sense. For example, for some time inter- 
val a process r might be linked to a process q by a 
“one-way connection”, i.e. a connection that allows 
r to  send timely messages to  q but does not allow 
r to receive timely messages from q (see Figure 3).  
Due to local network overload, two processes n and o 
might be linked by a “slow-connection”, i.e. all mes- 
sages sent between n and o suffer performance fail- 
ures. Instead of each process pair p,q in a partition 
being O-connected, they could only be F-connected [a] 
for some F > 0, i.e. p and q are timely and at  most 
F messages per time unit sent between p and q suf- 
fer omission/performance failures. In what follows, we 
use the term “connected” to  denote “F-connected” for 
some fixed F .  Note that the connected-relation in a 
partition might also not be transitive, i.e. each of the 
process pairs (0, k )  and ( k ,  q )  might be connected while 
process pair (0, q )  is not connected (see Figure 3). 

The goal of the fail-aware protocol hierarchy is to  
provide - whenever possible - an application with an 
abstraction similar to that of an ideal partition to  re- 
duce the complexity of programming distributed real- 
time applications for partitionable systems: a logical 
partition. When a server is not part of a logical par- 
tition, it has to  switch to its exception semantics. To 
make logical partitions similar to  ideal partitions, we 

- connected timely process 
- - slow connection -e- one-way connection 

Figure 3: Real partitions are not always ‘ideal’: slow 
connections, one-way connections, and non transitiv- 
ity of the connected-relation complicate the protocol 
design. 

require that logical partitions do not overlap and all 
processes in a logical partition be able to  communi- 
cate via a tomic  broadcasts with all processes in their 
logical partition in a timely manner and that they 
be “broadcast-disconnected” from processes in other 
logical partitions, i.e. they only receive broadcasts 
that were sent by processes within their logical par- 
tition. Thus, the fail-aware services have to  provide 
an application with a view of the system in which 
the connected-relation (with respect to atomic broad- 
casts) is transitive. There are two main approaches to 
achieve this goal: 

message forwarding:  a process o can send mes- 
sages via process k to destination q when o is dis- 
connected from q while k is connected to  q (see 
Figure 3). One way to implement message for- 
warding is message diffusion, i.e. a sender of a 
message m sends ”z to all connected processes 
and each process q that receives m sends m to 
all connected processes unless q is the destina- 
tion of m or q has adready forwarded m. Message 
diffusion can be prohibitively expensive for many 
applications. 

e removing  connections: even though two processes 
p and q can communicate via datagram messages, 
higher level protocols are forbidden to  send broad- 
cast messages between p and q since they are in 
different logical partitions. Removing “too many” 
connections could however split the system in par- 
titions “too small” to  do useful work. 

Our approach tries to  combine these two extreme 
approaches: (1) use a limited amount of forwarding 
at the level of the broadcast service, and (2) log- 
ically disconnects (when necessary) some processes 
even though they are capable of communicating with 
each other. 

The foundation of our fail-aware protocol stack is 
the fai l -aware datagram service [7]. Its purpose is to 
reject messages that arrive via slow or one-way con- 
nections (see Figure 4). This service computes an up- 
per bound on the transmission delay of each message 
it delivers (see Section !5.1). The implementation of 
this service only depends upon the fact that hardware 
clocks proceed within a known linear envelope of real- 
time; the service does not need synchronized clocks. 
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- connected timely process 
disconnected by fail-aware datagam service 

Figiire 4: The fail-aware datagram service allows to 
reject messages that arrive via one-way or slow links. 

The calculated upper bound for a timely message (i.e. 
the transmission delay is 56) is at most some known 
A (>6), while the upper bound for a message sent 
via a one-way or a slow connection is greater than A. 
Higher level services, such as local leader election, re- 
ject messages with a calculated upper bound greater 
than A time units. 

i;iH: :I .,’“ qA, W local leader 

- connected timely process : i logical partition 

< ’W. \ 
I - r , j  

- -LP3 

LPt LP2j 
\ \  , ’ O  .: U -..!-.w: !., .- ., -I - - .- ... . I 

Figure 5: The local leader election service elects local 
leaders and creates non-overlapping logical partitions 
each consisting of the ‘supporters’ of a local leader. 

The next step is to combine processes into logical 
partitions. This is the goal of the local leader elec- 
t i o n  service [9]. It has to create logical partitions such 
that each set S of processes that are mutually con- 
nected (i.e. each two processes in S are connected) 
is in the same logical partition. For example, all pro- 
cesses in LP1 of Figure 5 are mutually connected and 
therefore have to  be in the same logical partition. To 
create logical partitions, the local leader protocol tries 
to elect a process in each communication partition as 
local leader (see [9] for details): a process T supports  
the election of the process l only if 2’s identification 
is smaller than the id of any other process that r is 
connected with. A process 1 becomes local leader only 
if it has the support of all processes it is connected 
with. A local leader l creates a logical partition L P  
that contains all processes that support I’s election. 
The id  of LP is unique. For example, in the situ- 
ation illustrated in Figure 5 the protocol elects pro- 
cesses n ,  I C ,  and r as local leaders (assuming the fol- 
lowing order n<o< ... <u<u).  Because processes q ,  o 
and IC support k’s  election, k creates a logical parti- 
tion ( L P 2 )  consisting of the processes 0, q and k. The 
local leader election service ensures that at no point 
in time two logical partitions overlap, that is, at any 
point in time a process is in at most one logical parti- 
tion. This non-overlapping is ensured using the time 
locking mechanism (Section 5.3): a process p stays in 

a logical partition LP for only a bounded amount of 
time before p has to  acknowledge that it wants to  stay 
in L P  and thus, p can use its local hardware clock to 
make sure that i t  is removed from all logical partitions 
before it joins a new logical partition [9]. Like the set 
of processes that form a communication partition can 
change by processes joining or leaving the partition, 
processes can leave and join a logical partition. The 
fail-aware clock synchronization service ensures that 
the deviation between the clocks provided by each of 
the servers with the same logical partition is bounded 
by some a priori given constant Q. The membership 
service [5] keeps track of the set of processes in a log- 
ical partition and guarantees that all processes in a 

the current members o 
logical partition agree any point in clock time) on 

logical partition. 

-- b-connected -timely process :- :logical partitior 

Figure 6: The broadcast service connects all processes 
in a logical partition and disconnects them from the 
processes in all other partitions. 

The next problem we address is that the connected 
relation of a logical partition is not necessarily transi- 
tive. It is the goal of the fail-aware a t o m i c  broadcast 
service to ensure that a broadcast in a logical parti- 
tion LP is delivered to  all processes in LP and to no 
process outside of LP.  To ensure that all these pro- 
cesses get all broadcasts, the local leader IC of a logical 
partition forwards a broadcast message m to a process 
q when m is sent by some process o that is not con- 
nected to q .  When the forwarding also fails, the pro- 
cesses that cannot deliver all broadcasts are removed 
from the logical partition and these processes have to  
switch to  their exception semantics. The broadcast 
service connects all processes in a logical partition via 
broadcast messages, making the b-connected (“broad- 
cast connected”) relation transitive (see Figure s). 
4.2 Fail- Awareness Properties 

All fail-aware services of our protocol stack have a 
standard semantics that  is similar to  that of the cor- 
responding synchronous services. Due to  space con- 
straints we can only sketch a few properties of some 
of the fail-aware service (for a detailed description of 
their semantics and implementations see [4, 5, 9, 71). 
The fail-aware clock synchronizat ion service synchro- 
nizes the clocks of all clock servers in a logical par- 
tition. Each server p provides an exception indicator 
I . The indicator tells p’s clients if p’s clock C, is syn- 
cironized or not: Ip  shows the id of p’s logical parti- 
tion when C, is synchronized, and otherwise, it shows 
out-of-date (denoted by I). The service provides the 
following property: (BD) when two servers p and p 
are in the same logical partition at real-time t ,  their 
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clocks are at  most \li apart from each other, where Q 
is an a priori given constant, 

Our implementation of the service ma es sure that the 
indicator Ip  of server p will show I before p’s clock can 
be more than Q apart from the other clocks in p’s cur- 
rent logical partition. We will show in Section 5 how 
to achieve that even when p suffers a performance fail- 
ure. 

The fail-aware membershap service takes the logical 
art ition L P created by the local leadership service 

b l  and maintains agreement on the membership of 
L P  among the members of LP (see [4] for a detailed 
description of the semantics). Each server p maintains 
an indicator M S p  that shows the id of p’s current log- 
ical partition and a set msetp that shows the current 
members of p’s logical partition. The service ensures 
that at any clock time T when the indicators M S p  
and MS,. of two servers p and q show the same logi- 
cal partition id L P ,  then the two servers agree on the 
membership of LP:  

MSp (T)=MS, (T) =+ msetp (T)=mset (T). 
A fail-aware membership service ensures tkat depar- 
tures and joins of servers are detected and result in 
a new membership of the logical partition within a 
known amount of time. In particular, the fail-aware 
membership service has also to ensure that (1) when- 
ever a server can keep up with the servers in some 
logical partition LP i.e. the server agrees with the 

be included in the membership of L P ,  and (2) when- 
ever a server cannot keep up with the other servers 
in LP (i.e. its indicator shows I, it is crashed, or 
in an other communication partition), it is removed 
from the membership of LP.  Since servers agree on 
the membership of their logical partition LP at any 
point in clock time, they agree of course on the order 
in which servers are included in or removed from the 
membership of LP.  Each server q that cannot update 
its membership in time has to set its indicator to  1 to 
signal to  its clients that its membership information is 
out-of-date. The service has to  guarantee that at any 
point in real-time a process is in the membership of at 
most one logical partition, i.e. the memberships of two 
logical partitions never overlap. Our implementation 
of the membership service [5] uses the messages sent 
by the local leader election service to  reach agreement 
on the members of a logical partition and the time 
locking mechanism (see Section 5.3) to  guarantee that 
the memberships of two logical partitions do not over- 
lap. 

The faal-aware atomic broadcast service delivers 
messages within a constant R clock time delay after 
they are sent and uses their send time stamps and 
their sender’s id to  totally order all delivered mes- 
sages. A broadcast message is time-stamped by read- 
ing the synchronized clock Cp of the sender p .  Thus, 
the broadcast service guarantees causal delivery even 
in the presence of a hidden channel like a file-system 
whenever the delay of the channel is greater than the 
maximum deviation between clocks [14] (which is of 
the order of a few milliseconds in our implementation). 
The service ensures the atomicity property that either 

IP N=Iq (t)#I * I CP (t)- cq pl5 Q . 

processes in LP on t 6 e membership of L P ) ,  it will 

all servers or no server in a logical partition deliver 
a broadcast message. A server that (1) does not de- 
liver all broadcasts in time, or (2) has broadcasted a 
message that is not delivered in its logical partition, 
has to signal to  its clients that it is out-of-date. Each 
server p maintains therefore an indicator BIp.  More 
precisely, when a server q broadcasts a message m at 
clock time T ,  then either (A) all processes in LP de- 
liver m by T + C2 (i.e. the indicators of all processes 
that have not delivered m by T + R must not show 
LP by T + a), or (B) no process delivers m and q 
signals by T + R to its clients that not all messages 
it has broadcasted are delivered in LP by setting its 
indicator to 1. When server p’s indicator shows LP 
at clock time T ,  i.e. BIp(T)  = LP,  p knows that it 
has delivered all broadcast messages delivered in LP 
no later than T and that all messages it has broad- 
casted before T - R are delivered by all processes in 
LP.  When a process p cannot keep its broadcast indi- 
cator up-to-date, it is removed from the membership 
of its previous logical partition LP within a bounded 
amount of time, i.e. all processes in LP learn that 
p has not necessarily delivered in a timely fashion all 
broadcasts that are delivered in LP.  

The broadcast service uses fail-aware datagram 
broadcasts to  send broadcast messages to  the other 
servers. A local leader 1‘ decides what broadcast mes- 
sages are delivered in its logical partition and in what 
order. It piggy-backs that ordering information on the 
datagrams sent by the leader election protocol. When 
the “early delivery option” of the broadcast service is 
activated, the local leader broadcasts additional or- 
dering datagrams to  allow the servers an earlier de- 
livery of broadcast messages. The local leader rejects 
all broadcast messages from other logical partitions 
and all broadcasts that  arrive in slow datagrams, i.e. 
with a transmission delay greater than A. Since the 
broadcasts are ordered with respect to their send time 
stamps, the local leader waits for A + 9 before it or- 
ders a broadcast message to make sure that no broad- 
cast message with an earlier send time stamp arrives. 
When the local leader detects that some server has 
not received all broadcast messages, it forwards these 
messages to that server. A server that does not deliver 
all broadcast messages in time has to set its exception 
indicator to  1. A local leader can re-integrate such 
out-of-date servers by transferring them the current 
state of the logical partition that it maintains. 

5 Mechanisms 
Most of the fail-aware protocols we have designed 

use time redundancy to  mask a bounded number of 
performance failures per time unit (“round”). Be- 
cause the number of failures per time unit cannot be 
bounded a priori, not all performance failures are nec- 
essarily maskable. Since such non-maskable failures 
can lead to  system failures, fail-safe applications re- 
quire their detection so that they can switch to a safe 
state. We review some of the mechanisms we use to  
detect performance failures. 
5.1 Fail-Aware Datagrams 

The fail-aware datagram service [7] calculates an 
upper bound on the transmission delay of some mes- 
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Figure 7: When the drift rate of hardware clocks 
can be neglected, the transmission delay of m can be 
bounded by ( D  - A)  - (C - B )  even though p’s and 
q’s hardware clocks are not synchronized. 

sage m using the four time-stamps (each taken with 
local unsynchronized hardware clock) of some round- 
trip n ,  m (see Figure 7). The service makes sure that 
two connected processes p and q exchange periodically 
messages such that when p sends a message m to  q it 
can piggy-back the time stamps of some message n 
that p has previously received from q .  This enables q 
on the reception of m to  calculate an upper bound for 
m. Since the drift rates of hardware clocks are in gen- 
eral very small (in the order of even when p has 
received n multiple seconds before sending m, the in- 
crease of the upper bound for m due to  the maximum 
hardware clock drift rate is very small. 

T S  
P 

... _I 

standard E standard 
semantics 2 Semantics 

‘CA 9 

Figure 8: Process p has to  adjust its clock before hard- 
ware clock times S, S + D ,  and S + 2 0 .  It actually 
performs the adjustments at times T ,  U ,  and V .  Since 
p misses deadline S + D < U ,  a process q that reads 
p’s clock between [S + D ,  U ]  has to  detect that C, is 
not synchronized. 

5.2 Indicators 
Real-time communication protocols can be divided 

into two broad classes [13]: t i m e  triggered and event  
triggered. Event triggered systems react to events di- 
rectly while time-triggered systems react only at pre- 
defined points in time. Orthogonal to  the above classi- 
fication, protocols can also be classified as clock-driven 
or t imer -dr i ven  [lS]. Clock-driven protocols rely on 
synchronized clocks while timer-driven protocols rely 
on (unsynchronized) timers. All our fail-aware pro- 
tocols are event-triggered and all protocols above the 
fail-aware clock synchronization layer are clock-driven. 
We chose event-triggered protocols since operating 
systems like Unix have relatively good reaction times 
to  events like a message reception but they have poor 
real-time scheduling support. The protocols are clock- 
driven because clock-driven protocols simplify the im- 
plementation of indicators: a process knows the clock 

deadline beyond which it cannot provide its standard 
semantics anymore, unless ‘something good’ happens 
before that deadline. Our indicator design relies on 
this knowledge to signal when a server starts provid- 
ing its exception semantics. 

To explain how clock-driven protocols help to  main- 
tain indicators, consider a simple fail-aware clock syn- 
chronization protocol. A process p has to  adjust a 
clock C, periodically, say, before its local hardware 
clock shows values S ,  S + D ,  ... to  keep its clock syn- 
chronized (see Figure 8). When process p does not 
adjust its clock before the given deadlines, its clock 
C, is not necessarily synchronized to the other clocks. 
Let process q be another process that is executed on 
the same computer node as p ( p  and q use the same 
hardware clock H p ) .  When process q tries to  read C, 
between S + D and U (measured by H p ) ,  q has to  de- 
tect that C, is out of synchrony. We achieve that by 
using the following mechanism (see Figure 9). An in- 
dicator I, of a process p consists of two parts: (1) the 
identification of p’s logical partition ( lpar t i t i on ) ,  and 
(2) the expiration time ( e x p T i m e )  beyond which the 
indicator has to  signal that p provides its exception 
semantics. When process q evaluates I,, it first reads 
the local hardware clock H,. If its hardware clock 
shows at most time e x p T i m e ,  the value of I, is Ipar- 
t i t i on .  Otherwise, the value of I, is out-of-date (I) 
which tells q that p provides its exception semantics. 
Process p updates its indicator periodically, e.g. at 
time T it sets the expiration time to  its next deadline 
S + D (see Figure 8). When p suffers a performance 
failure, it does not update its indicator in time and 
hence, any client that reads the indicator will evalu- 
ate I, to out-of-date.  For example, when q evaluates 
I during interval ( S  + D ,  U ) ,  the expiration time is 
$+ D while H, shows a value greater than S + D.  
Thus, I, returns value out-of-date that allows q to  de- 
tect that C, is not in synchrony anymore. 

A process q that reads I, might itself suffer a per- 
formance failure while evaluating the current value of 
I An indicator I, therefore returns the hardware 
dock time stamp used in its evaluation. This allows 
the detection of performance failures that occur dur- 
ing the evaluation of Ip  or during the usage of the 
value returned by I,. 

Hp =expTime clock 
lpartition I G E  

I IP 
out-of-date 

Figure 9: The indicator of a process p consists of the 
logical partition lpart i t ion of p and an expiration time 
e x p T i m e ,  i.e. the time when the indicator will become 
out-of-date.  

5.3 Locking Mechanism 
Several of our protocols, e.g. the leader election 

service, use a locking m e c h a n i s m  to  communicate by 
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the passage of time. This mechanism is similar to the 
‘leases’ mechanism of [lo] which was introduced to en- 
sure cache consistency in distributed file systems. The 
locking mechanism requires only one fail-aware data- 
gram message instead of a round-trip message pair (or 
synchronized clocks) used in the leases mechanism. 

The advantage of using time for interprocess com- 
munication is that -when applied properly -this com- 
munication is possible even when the communication 
partners become partitioned. This mechanism is in 
particular useful for the coordination of the processes 
that switch the system to a safe mode (see Section 6). 
The locking mechanism works as follows (see Figure 
10). A process p sets some local variable LV to a value 
V and sends a message m to  a process q at t telling 
q that it will not change the value of LV for at  least 
lockTime real-time units. When process q receives m 
at s, it knows that p will not change LV for at  least 
lockTime - td(m) time units, where td(m) = s - t is 
the transmission delay of m. Process q can use the up- 
per bound ub(m) >td(m) calculated by the fail-aware 
datagram service to  determine a lower bound for the 
time p will not change L V ,  i.e. at least until time 
U = s - ub(m) + lockTime. The interesting part is 
that at  time t + lockTime process p can change the 
value of LV without having to  notify q about that 
change because p will not use its knowledge that LV 
equals V beyond time U 5 t + lockTime. For exam- 
ple, consider that p lets q know by m that p wants to 
be part of q’s logical partition LP until at most time 
t + lockTimel then p can try after time t + lockTime 
to  become part of another logical partition without 
sending q another message since q will remove p from 
LP before t + lockTime. In other words, the locking 
mechanism can be used to guarantee that a process is 
at  any point in real-time in at  most one logical parti- 
tion. 

A 

; tf’ockTime I L V = V  t 

l p  k 

Figure 10: A process p guarantees not to change its 
variable LV for at least lockTime time units. Process 
p knows that q will use this information (transmitted 
in m) at most to  some time U 5 t + lockTime. 

6 Traffic Signaling Example 
We illustrate in this section how fail-aware services 

could be used in a practical setting in which com- 
puter controllers that are physically close to  sensors 
or actuators are linked by a communication network. 
Such systems of distributed controller are common in 
factory floor control applications. Space considera- 
tions do not allow us to describe such a real-world 
application. Instead, we will illustrate the use of fail- 
awareness on a simpler, although slightly contrived 

example: a synchronized traffic signaling application. 
We consider a system with two intersections (see 

Figure 11). There are four traffic lights per intersec- 
tion. Each of the four directions of an intersection 
is sensed by a pair of sensors. During normal opera- 
tion at least one of the two sensors of each pair has to 
be “operational”, otherwise, the subsystem controlling 
the intersection has to switch to a “round robin’’ mode 
to guarantee a certain amount of fairness for all cars. 
For each intersection there are two safe states: (A) 
all four traffic lights show red, or (B) all four traffic 
lights flash red. The system should only transition to 
safe state (A) for a bounded amount of time before it 
transitions to state (B). During non-partitioned oper- 
ation the traffic lights of the two intersections have to 
be synchronized to maximize the flow of cars. When 
the system partitions, the intersections are allowed to  
be controlled independently of each other. 

Figure 11: The traffic lights (Ll-L8) of two intersec- 
tions have to  be synchronized. There are two sen- 
sors (S?a,S?b) for each traffic light (L?) (and there 
are two redundant controllers for each of the two in- 
tersections). 

The distributed subsystem that controls an inter- 
section consists of 1) one pair of redundant intersection 
controllers, 2) eight sensor nodes, and 3) four traffic 
light actuator nodes, one per traffic light. The sen- 
sors broadcast periodically their sensor information. 
During normal operation all controllers get the same 
sensor broadcasts in the same order. We assume that 
the controllers are implemented by a deterministic al- 
gorithm. Hence, the controllers of an intersection im- 
plicitly agree on the commands to  send to  the traffic 
lights. Since the controllers get also the sensor infor- 
mation from the other intersection when the system is 
not partitioned, they can synchronize the traffic lights 
of the two intersections without any further commu- 
nication. 

When a sensor S becomes partitioned from a con- 
troller C or the sensor broadcasts of S are not deliv- 
ered to  C in a timely manner, then C and S cannot be 
in the same logical partition. To guarantee the fairness 
condition (at least one of the two sensors of each sensor 
pair has to  be operational), it is sufficient that when 
the membership of the logical partition of a controller 
C does not contain at  least one sensor for each direc- 
tion of C’s intersection, C switches to a “round robin” 
mode. To avoid that the two controllers of an inter- 
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section send conflicting commands to  the traffic light 
actuators, a controller only broadcasts commands to 
the traffic lights when at least all four traffic light ac- 
tuators of its intersection are in the membership of 
its logical partition: when both controllers have all 
traffic light actuators in their membership then both 
controllers are in the same logical partition (because at 
any point in real-time a process is in at most one log- 
ical partition and hence, both controllers receive the 

fore, implicitly agree on the commands they send to 
the traffic light actuators. 

The traffic light actuator has to switch to  a safe 
mode whenever it cannot be guaranteed that the four 
traffic light actuators receive the same sequence of 
commands in a timely manner. Since the broadcast 
indicator of a broadcast server p signals whenever p 
has not delivered all broadcasts in a timely manner, 
by monitoring its broadcast indicator a traffic actua- 
tor node can determine when it has missed a broad- 
cast from a controller unit and it has to switch to a 
fail-safe mode. To detect when one or more of the 
other three traffic light actuators of an intersection do 
not get all broadcasts sent by the controllers, a traffic 
light actuator can simply check that all four actuators 
are in its current membership because a process that 
does not get all broadcasts will be removed from the 
membership from a logical partition within a bounded 
amount of time. Therefore, it is sufficient that each 
traffic light node p has a high priority process that 
switches that traffic light to  a safe state when (1) p’s 
broadcast indicator signals that  it has not received all 
broadcasts, or (2) p’s membership does not contain at 
least one of the two controllers and all four traffic light 
actuators of the intersection. Note that some simple 
hardware circuit that checks if the indicator of some 
server is up-to-date (see [8] for an example circuit) 
can in some cases replace the necessity of such high 
priority processes. 

The switch to a safe state of the four traffic lights 
of an intersection has to  be synchronized in the sense 
that (1) when one is flashing red the other lights have 
to show red or have to flash red, and (2) after switching 
to  a fail-safe mode all lights have to  flash red within 
a bounded amount of time. Let us now describe how 
the time locking mechanism can be used to  coordinate 
the switch to  a safe state even when all four traffic 
lights are partitioned from each other. For simplicity 
of exposition, let us assume that there are only two 
lights L1 and L2. To achieve an coordinated switch, 
L1 and L2 send each other periodic fail-aware unicast 
messages during their normal operation which lets the 
other traffic light know that the sender will not switch 
to  the “flash state” for at least It time units. L1 can 
switch to  flash stat,e whenever it has not sent such 
a message for at  least It time units (see Figure 12). 
When L2 does not receive at  least every It time units 
a message from L1, it first switches to red and when it 
is sure that L1 shows red or flashes red, it transitions 
to  flash red. L1 knows that at least It time units after 
its last message to  L2 that L2 has to  switch to  red or 
flash state. Note that L2 has to  stay in the red state 
for at most It time units before i t  can switch to  the 

same sensor 2 roadcasts in the same order and there- 

flash state. 

flash 

Figure 12: The two lights coordinate their switch to  
the flash state using a locking mechanism. L1 can 
switch to  the flash state at  d because it knows that L2 
cannot assume after c < d that L1 is in the normal 
state. L2 cannot switch to  the flash state until time e 
since i t  has sent n ensuring that it will not switch to  
the flash state before e. 

7 Related Work 
Much of the research in distributed real-time sys- 

tems has focused on the simpler, guaranteed response 
paradigm. Some systems designed according to  that 
paradigm are Mars [13], XPA [20], TTP 121, and the 
Advanced Automation System family [l i . Recently, 
some of the research has focused on adaptive real- 
time systems. Research on detecting performance fail- 
ures in ‘quasi-synchronous’ systems is described by 
Almeida and Verissimo [19]. Their approach depends 
on the existence of a lower level synchronous communi- 
cation channel to  detect such failures. In contrast, our 
approach does not require such a basic channel, but 
uses unsynchronized local clocks with bounded drift 
rates to  detect performance failures. There also ex- 
ist at least two systems that support the construction 
of partitionable fault-tolerant distributed applications 
on top of a network of workstations and that aim to 
provide real-time support by providing high through- 
put and predictable latency: Transis [3] and Totem 
[15]. In contrast to  these systems, our approach aims 
to support the design of real-time systems by simpli- 
fying the detection of situations when the delays of 
messages and processes become that high that not all 
performance failures can be masked and an applica- 
tion has to  switch to  a fail-safe mode. 

We introduced the concept of fail-awareness in [B] as 
a general method of transforming synchronous service 
specifications into weaker, fail-aware service specifica- 
tions that are implement able in timed asynchronous 
systems [a]. In our earlier work on fail-awareness [6] 
we did not address the issue of partitionable operation: 
only servers in the partition that contains a majority of 
processes were allowed to  make progress, i.e. at most 
the servers in one partition can provide their standard 
semantics. The main contribution of this paper is to  
show how fail-awareness can be extended such that 
servers in multiple partitions can make progress 
hence, can increase the availability of the 
introducing the concept of logical partitions. 
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8 Conclusion 
The guaranteed response paradigm [13], which al- 

ways ensures timely responses, depends on the use of 
synchronous services, which in turn depend in a basic 
way on the assumption that the maximum number of 
failures per time unit is known. If this failure assump- 
tion, fundamental to all synchronous service imple- 
mentations, can be violated at run-time, these imple- 
mentations can be subject to unpredictable behavior. 
Much of the off-the-shelf hardware and software makes 
it very hard to guarantee a failure assumption at  run- 
time. To address the current trend towards using off- 
the-shelf components in system design, fail-awareness 
no longer depends on a failure assumption: as long as 
the number of failures per time unit stays bounded, 
a fail-aware service provides its standard synchronous 
semantics and when too many failures occur per time 
unit the service performs a timely switch to its spec- 
ified exception semantics. A description of our im- 
plementations of the fail-aware services we have in- 
troduced in this paper and their performance can be 
found in [8]. A detailed description of some of the 
fail-aware services are given in [7, 9, 5, 41. A more 
detailed rail-way crossing example is presented in [8] 
and it shows how an application can use application 
level redundancy to mask a bounded number of perfor- 
mance failures per time unit and how the system can 
be switched to a safe state using a simple hardware 
circuit when the amount of redundancy is exceeded 
due to the occurrence of too many failures. (All these 
reports are available via our home pages.) 
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