
Adaptive Scheduling Server for Power-Aware
Real-Time Tasks

PEDRO MEJIA-ALVAREZ
CINVESTAV-IPN, Sección de Computación
EUGENE LEVNER
Holon Academic Institute of Technology
and
DANIEL MOSSÉ
University of Pittsburgh

In this paper, we propose a novel scheduling framework for a dynamic real-time environment with
energy constraints. This framework dynamically adjusts the CPU voltage/frequency so that no task
in the system misses its deadline and the total energy savings of the system are maximized. In this
paper, we consider only realistic, discrete-level speeds.

Each task in the system consumes a certain amount of energy, which depends on a speed chosen
for execution. The process of selecting speeds for execution while maximizing the energy savings of
the system requires the exploration of a large number of combinations, which is too time consuming
to be computed online. Thus, we propose an integrated heuristic methodology, which executes an
optimization procedure in a low computation time. This scheme allows the scheduler to handle
power-aware real-time tasks with low cost while maximizing the use of the available resources
and without jeopardizing the temporal constraints of the system. Simulation results show that
our heuristic methodology is able to generate power-aware scheduling solutions with near-optimal
performance.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems

General Terms: Algorithms

Additional Key Words and Phrases: Heuristics, real-time scheduling, variable voltage scheduling

1. INTRODUCTION

Power management is increasingly becoming a design factor in portable
and hand-held computing/communication systems. Energy minimization is

Pedro Mejia-Alvarez was supported in part by a SEP-CONACyT Project No. 42151-Y.
Daniel Mossé was supported in part by DARPA PARTS (Power-Aware Real-Time Systems) project
under Contract F33615-00-C-1736 and through NSF-ITR medium grant.
Authors’ addresses: P. Mejia-Alvarez, CINVESTAV-IPN, Sección de Computación, AV. IPN. 2508,
México, DF; email: pmejia@cs.cinvestav.mx; Eugene Levner, Department of Computer Science,
Holon Academic Institute of Technology, 52 Golomb, ST, Holon 58102, Israel; email: levner@hait.
ac.il; Daniel Mossé, Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260;
email: mosse@cs.pitt.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2004 ACM 1539-9087/04/0500-0284 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004, Pages 284–306.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 285

critically important for devices such as laptop computers, PCS telephones,
PDAs, and other mobile and embedded computing systems simply because it
leads to extended battery lifetime. Furthermore, the need for power-efficient
designs is not solely associated with portable computing systems. Power dis-
sipation has become a design constraint in virtually every type of computing
system including desktop computers, network routers and switches, set-top en-
tertainment systems, and the most performance-hungry computer servers.

The problem of reducing and managing energy consumption was addressed
in the last decade with a multidimensional effort by the introduction of engi-
neering components and devices that consume less power, low power techniques
involving VLSI/IC designs, algorithm and compiler transformations, and by
the design of computer architectures and software with power as their pri-
mary criterion for performance. Recently, hardware and software manufactur-
ers have introduced standards such as the Advanced Configuration and Power
Interface [Intel-ACPI 2003] for energy management of laptops, desktops, and
servers that allow several modes of operation, several sleep levels, and the
ability to turn off some parts of the computer (e.g., the disk) after a preset pe-
riod of inactivity. More recently, variable voltage scheduling (VVS) has been
proposed as an alternative to energy management. In VVS, the voltage and
frequency (hence, the CPU speed) is adjusted dynamically. Because the power
consumption is linearly dependent on the time and quadratically dependent
on voltage, reducing the frequency and voltage of operations (we call this re-
ducing the speed) will cause them to consume less energy, but take longer to
complete.

In this paper, the VVS problem in real-time systems is to assign appropriate
speeds (from a set of discrete speeds) to a set of dynamically arriving and de-
parting periodic tasks, such that no task misses its predefined deadline while
the total energy savings in the system is maximized. The identification of feasi-
ble options that maximize our optimality criteria (expressed as the total energy
savings of the system) requires the exploration of a large combinatorial space of
solutions. This optimization problem is formulated as a multiple-choice knap-
sack problem (MCKP) with binary variables [Martello and Toth 1990].

In order to cope with the high computation costs of the dynamic real-time en-
vironment, we have developed a low-cost power-aware scheduling scheme. Our
power-optimized real-time scheduling (PORTS) server consists of four stages:
(a) an acceptance test for deciding if and when dynamically arriving tasks can
be accepted in the system, (b) a reduction procedure that transforms the origi-
nal multiple-choice knapsack optimization problem into a standard knapsack
problem, (c) a greedy heuristic algorithm used to solve the transformed opti-
mization problem, and (d) a restoration algorithm that restores the solution of
the original problem from the transformed problem. The PORTS methodology
provides a novel approach to real-time scheduling which yields a near-optimal
solution for the problem of selecting speeds of execution of all tasks in the sys-
tem. The solution developed satisfies the condition of maximizing the energy
savings of the system while guaranteeing the deadlines of all tasks in the sys-
tem. The performance of the PORTS server and its heuristic algorithms will be
compared with the performance of known algorithms.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

286 • P. Mejia-Alvarez et al.

The rest of this paper is organized as follows. In Section 2, related models
and previous work are reviewed. In Section 3, the system and energy models
used are defined. In Section 4, the power-optimized scheduling is formulated
as an optimization problem. In Section 5, the PORTS server is described and in
Section 6, we use an example to simulate the execution of our algorithms, and
compare its performance against known algorithms. In Section 7, we provide a
theoretical justification of our method. In this section we prove that our method
produces a 2-approximate solution to our optimization problem. In Section 8,
simulation results are presented to show the performance of the PORTS server.
Finally, Section 9 presents concluding remarks.

2. RELATED WORK

In this paper, we address the issue of reducing power consumption of proces-
sors through dynamically changing the speed (i.e., voltage and frequency) of a
processor. This technique can be classified as static and dynamic. Static tech-
niques, such as static scheduling, compilation for low power [Mossé et al. 2000],
and synthesis of systems-on-a-chip [Hong et al. 1998c], are applied at design
time. In contrast, dynamic techniques use run-time behavior to reduce power
when systems are serving dynamically arriving real-time tasks or variable
workloads.

Static (or offline) scheduling methods to reduce power consumption in real-
time systems were proposed in Yao et al. [1995], Ishihara and Yasuura [1998],
and Hong et al. [1998a]. These approaches addressed aperiodic tasks. Heuris-
tics for online scheduling of aperiodic tasks while not hurting the feasibility of
offline periodic requests were proposed in Hong et al. [1998b]. Non-preemptive
power-aware scheduling is investigated in Hong et al. [1998a]. Recent work
on VVS includes the exploitation of idle intervals in the context of the rate
monotonic and earliest-deadline-first (EDF) scheduling frameworks [Shin and
Choi 1999; Krishna and Lee 2000; Aydin et al. 2001b; Lorch and Smith 2001].
Following the same VVS technique, other work [Dudani et al. 2002; Pillai and
Shin 2001] considers the fact that some real-time tasks do not always consume
their worst-case execution times, and have the ability to dynamically reclaim
unused computation time to obtain additional energy savings.

Most of the above research work on VVS assumes that all tasks have identical
power functions. Using an alternate assumption, efficient power-aware schedul-
ing solutions are provided where each real-time task may have different power
consumption characteristics [Aydin et al. 2001a; Gruian and Kuchcinski 2001].
A recent survey of such methods, considering continuous voltage has shown the
behavior of many different VVS algorithms [Shin et al. 2002].

Although systems that are able to operate on an almost continuous voltage
spectrum are rapidly becoming a reality thanks to advances in power-supply
electronics [Burd et al. 2000], it is a fact nowadays that most of the microproces-
sors that support dynamic voltage scaling use a few discrete voltage levels. Some
examples of processors that support discrete voltage scaling are: (a) the Crusoe
processor [Transmeta 2003] (200–700 MHz in 33 MHz steps, 1.1–1.6 V); (b) the
ARM7D processor [Intel] (20 or 33 MHz, 5 or 3.3 V); (c) the Intel StrongARM

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 287

SA1100 processor [Intel] (59–221 MHz in 14.7 MHz Steps) [ARM 2003]; and
(d) the Intel XScale (150 MHz–1 GHz) [Intel-Xscale 2003]. Contrary to the con-
tinuous voltage assumption of most of the recent research, discussed above, in
this paper we consider only realistic, discrete-level speeds.

3. SYSTEM AND ENERGY MODELS

We consider a set T = {T1, . . . , Tn} of n periodic preemptive real-time tasks run-
ning on one processor. Tasks are independent (i.e., they share no other resources
besides the CPU) and have no precedence constraints. Each task Ti arrives in
the system at time ai. We consider dynamic systems in which an admission
control procedure is executed to admit or reject tasks that arrive in the system.
We assume that there is a contingency plan to take care of rejected tasks.

The EDF [Liu and Layland 1973] scheduling policy will be considered. The
lifetime of each task Ti consists of a fixed number of instances ri, that is, after the
execution of ri instances, the task leaves the system. Each task Ti has associated
a period Pi, which represents the minimum interarrival time of consecutive
instances of the task. In our model, we assume that Pi is equal to the relative
deadline of the task. Further, once a task passes the admission control, it is
guaranteed to meet the deadlines of its ri instances.

Examples of event-driven real-time systems exhibiting this behavior include:
(1) video-on-demand systems, where media streams are generated aperiodi-
cally; each stream contains a fixed number of periodic instances which are
transmitted over the network, and (2) digital signal processing, where each
task processes source data that often arrives in a bursty fashion. These types
of systems can be found in communication satellites, which have an extreme
need for extending power management (for instance, a 10% increase in battery
life for a satellite with a 5-year estimated lifetime would make the satellite
functional—and profitable—for an extra 0.5 year).

We denote by Ci the number of processor cycles required by Ti in the worst-
case. We assume that Ci processor cycles1 are executed on each instance of
Ti. Under a constant speed fi (given in cps), the execution time of the task is
ti = Ci/ fi. A schedule of periodic tasks is feasible if each task Ti is assigned at
least Ci CPU cycles before its deadline at every instance. The utilization of a
task is the processor load that it demands for execution: Ui = ti/Pi (or Ci/ fi Pi).
According to EDF, a set of tasks is feasible (no tasks misses its deadline) if∑

Ui ≤ 100%. Although we assume EDF in this paper, the scheme can be
easily extended to fixed-priority schedulers [Liu and Layland 1973; Joseph and
Pandya 1986].

We assume that the CPU speed can be changed at discrete levels between
a minimum speed fmin (corresponding to a minimum supply voltage level nec-
essary to keep the system functional) and a maximum speed fmax. In our for-
mulation, f ij denotes the speed of execution of an instance of task Ti when it
executes at speed j , and Uij denotes the utilization of task Ti executing at speed

1Contrary to our assumptions, the work in Aydin et al. [2001b], Dudani et al. [2002], and Pillai
and Shin [2001] consider that some real-time tasks not always execute their worst-case processor
cycles.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

288 • P. Mejia-Alvarez et al.

j . We assume that the speed remains the same during the execution of a single
instance.

The energy E, measured in Joules (J) consumed by a computer over t seconds
is equal to the integral of the power consumption, measured in watts (W). The
dominant source of power consumption in digital CMOS circuits is the dynamic
power dissipation (Pd), characterized by [Burd et al. 2000; Chandrakasan et al.
1992],

Pd = Ca NswV 2
dd f (1)

where Ca is the output capacitance, Nsw is the number of switches per clock, and
f is the processor clock frequency, that is the processor speed. Pd is a strictly
increasing convex function of the supply voltage Vdd, but its exact form depends
on the technology [Hong et al. 1998c].

Processor speed is almost linearly related to the supply voltage [Burd et al.
2000; Chandrakasan et al. 1992]:

f = k
(Vdd − Vt)2

Vdd
(2)

where k is a constant, and Vt is the threshold voltage (i.e., the minimum voltage
that can be supplied to the processor allowing full and correct functionality).
Since power varies linearly with the clock speed and the square of the voltage,
adjusting both can produce cubic power reductions, at least in theory. Since the
time needed to execute task Ti is ti = Ci/ fi, the energy consumption of the task
executing for an interval of time I , is E = Pd I .

While applying voltage-clock scaling under EDF scheduling, we make the
following two additional assumptions. First, the time overhead associated with
voltage switching is negligible, that is, the voltage change overhead can be in-
corporated in the workload of each task. According to Transmeta [2003] the
time overhead associated with voltage switching in the Transmeta Crusoe mi-
croprocessor is less than 20 µs per step. The worst-case scenario of a full swing
from 1.1 to 1.6 V takes 280 µs. Second, different tasks have different power
consumptions, that is, the power dissipation is dependent on the nature of the
running software of each task in the system. For example, a task may use more
memory or the floating point unit than other tasks, or it may be executed on
specialized processors (e.g., DSPs, microcontrollers, or FPGAs).

4. FORMULATION OF THE PROBLEM

In a real-time system with energy constraints, the scheduler should be able
to guarantee the timing constraints of all tasks in the system and to select
the speed of execution of each task such that the energy consumption of the
system is minimized, or equivalently, that the energy savings of the system
is maximized. Obviously, energy savings are minimum when all tasks execute
at their maximal speeds, therefore, in order to maximize energy savings, the
minimum possible speed for each task has to be determined such that no task
misses its deadline.

The problem we address can be formulated as follows. Each time a new task
Ti arrives at or leaves the system, determine the speed of execution for each task

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 289

in the system such that no task misses its deadline and the energy savings of
the system is maximized. Note that a solution to this problem must be computed
each time a new task arrives at or leaves the system; thus, the solution must
have low computational complexity.

4.1 The Optimization Problem

We define Ni, as the set of speeds2 for each task Ti. Each level of speed j ∈ Ni
has an energy saving computed by

Sij = (Ei1 − Eij) (3)

where Eij is the energy consumed by task Ti executing at speed j (j = 1 means
maximum speed). Note that, Si1 = Ei1−Ei1 = 0; that is, executing at maximum
speed yields no energy savings. It is assumed that the items (speeds) j ∈ Ni
are arranged in nondecreasing order, so that Si1 and Ui1 are the items with the
smallest values.

Each task Ti in the system accrues an accumulated energy savings Sk
i upon

executing a number of instances during the interval of time between different
tasks arrivals ak and ak+1. Sk denotes the amount of energy savings accrued
by all the tasks in the system during ak+1 − ak , that is, Sk =∑n

i=1 Sk
i .

The aim of this optimization problem is to find a speed level j ∈ Ni for each
task Ti, such that the sum of energy savings for all tasks is maximized without
having the utilization sum to exceed the capacity of the system3 (i.e., 100%).

That is, problem P0 is defined as follows.

maximize Z0 =
n∑

i=1

∑
j∈Ni

Sijxij

subject to
n∑

i=1

∑
j∈Ni

Uijxij ≤ 100%∑
j∈Ni

xij = 1, i = 1, . . . , n

xij =
{

1 if speed j ∈ Ni for task Ti is chosen
0 otherwise

.

By achieving the optimality criteria, whenever a new task arrives at or leaves
the system, we intend to maximize the accumulated energy savings Sk obtained
after scheduling the entire set of tasks for the complete duration of the schedule.

We have formulated the power saving problem as a MCKP with 0-1 vari-
ables [Martello and Toth 1990]. However, the MCKP is known to be NP-
hard [Martello and Toth 1990], which implies that there is no general fast
(polynomial-time) exact method for its solution. From a practical point of view
this means that exact methods, such as dynamic programming [Martello and

2In Ni there may (or may not) be a different set (or different number) of speed levels than in Nk
(i 6= k).
3This bound is given by the EDF scheduling policy.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

290 • P. Mejia-Alvarez et al.

Fig. 1. Methodology for handling power-aware real-time tasks.

Toth 1990], Lagrange multipliers [Aydin et al. 2001a], mixed-integer linear pro-
gramming [Swaminathan and Chakrabarty 2001], and enumeration schemes
[Hong et al. 1998b], do not satisfy realistic temporal requirements for solving
any reasonable size MCKP.

5. PORTS: POWER-OPTIMIZED REAL-TIME SCHEDULING SERVER

The PORTS, is an extension of the EDF scheduling policy [Liu and Layland
1973]. The PORTS server is capable of handling dynamic real-time tasks with
power constraints, such that the energy savings of the system is maximized
and the deadlines of the tasks are always guaranteed. In order to meet our
optimality criteria, when new tasks arrive in the system, the PORTS server
adjusts the load of the system by controlling the speed of execution of the tasks.

The PORTS server is activated whenever a task arrives at or leaves the sys-
tem. The proposed method consists of five basic parts, or stages, as illustrated
in Figure 1, and described in detail in the following subsections.

The PORTS server first executes a feasibility test (FT) to decide whether or
not the new task can be accepted for execution in the system. If the new task
is accepted, an optimization procedure is executed to calculate the speeds of
execution of all tasks in the system.

This optimization procedure consists of three parts:

(1) A reduction algorithm, which converts the original MCKP to a standard
KP.

(2) An approximation algorithm (e.g., enhanced greedy algorithm, EGA) capa-
ble of finding an approximate solution to the reduced KP, and

(3) A restoration algorithm, which reconstructs the solution of the MCKP from
the solution of the standard KP.

The solution provided by the optimization procedure (speeds of execution
of all tasks) is such that no task in the system misses its deadline and the

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 291

energy savings of the system is maximized. After the optimization procedure is
executed, the total bandwidth server (TBS) [Lipari and Buttazzo 2000] is used
to compute the start time of the new task. Finally, with the start time of the
new task computed and the solution provided by the optimization procedure
(the set of speeds for execution), the PORTS server will schedule the new task
in the system.

5.1 Activating the PORTS Server and Feasibility Test

The two conditions for activating the PORTS server and their procedures are:

(1) Task Arrival: When a new task Tj arrives in the system, the FT is executed.
The new task is rejected when, running all tasks (including Tj) at their max-
imum speeds (minimum utilization), makes the system infeasible (some
tasks miss their deadlines). Otherwise, the new task is accepted:

FT =
{

Tj is accepted if Umin =
∑n

i=1 Ui1 ≤ 100%
Tj is rejected otherwise.

After a new task has been accepted in the system, the next problem is to
choose the speed of execution of each task in the system. This problem is
related to our optimization problem because by choosing a speed for the ex-
ecution of task Ti we will obtain its corresponding energy savings achieved.

(2) Task Departure: The PORTS server is also activated when a task leaves the
system. In this case, the optimization procedure is executed to satisfy the
optimality criteria for the new set of tasks in the system. At task departure,
the FT does not need to be executed since the system utilization is decreased
when a task terminates.

5.2 Reduction Scheme from MCKP to the Standard KP

Our approximation algorithm is based on the reduction of the MCKP to the
equivalent KP using the convex hull concept [Martello and Toth 1990]. In order
to reduce the MCKP, denoted by P0, the following auxiliary problems will be
used.

P1: The Truncated MCK Problem
Problem P1 is constructed from P0, by extracting the lightest item (i.e., the

item with the minimum Uij value) from each set Ni and assuming that all these
items are inserted into the knapsack. The sum of the lightest items from each set
Ni is denoted by Smin =

∑n
i=1 Si1 and Umin =

∑n
i=1 Ui1. When formulating P1,

we have to consider that the new capacity of the system is now equal to (c−Umin),
so we have to write

∑
j∈Ni

xij ≤ 1 (instead of
∑

j∈Ni
xij = 1) because the lightest

items are assumed to be already inserted into the knapsack. Therefore, some
or even all sets Ni in problem P1 may contain no items, that is, it may happen
that

∑
j∈Ni

xij = 0 (no speed for task Ti is chosen) for the optimal solution of
problem P1. Notice that c = 1.0 (or c = 100%) denotes the maximum capacity
of the system.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

292 • P. Mejia-Alvarez et al.

Problem P1:

Maximize Z1 =
n∑

i=1

∑
j∈Ni

(Sij − Si1)xij

subject to
n∑

i=1

∑
j∈Ni

(Uij −Ui1)xij ≤ (c −Umin),∑
j∈Ni

xij ≤ 1, i = 1, . . . , n, xij = 0 or 1 for j ∈ Ni, i = 1, . . . , n.

P2: The Truncated Relaxed MCK Problem
Problem P2 is constructed from problem P1 by allowing a relaxation on the

variable integrality condition: 0 ≤ xij ≤ 1, in other words, xij values are not nec-
essarily 0 or 1. Let Z2 be the objective function of problem P2. The reason for
introducing this problem is that its exact solution can be found in low compu-
tation time, which in turn, provides a good approximate solution to problem P1
and hence a good approximate solution to P0 [Sinha and Zoltners 1978]. Prob-
lem P2 can be solved by problems P3 and P4 [Lawler 1979; Sinha and Zoltners
1978; Martello and Toth 1990; Pisinger 1995].

P3: The Relaxed MCK Problem on the Convex Hull
Given P2, a convex hull of items in each set Ni can be found [Martello

and Toth 1990]. The elements constituting the convex hull will be called P -
undominated and denoted by (Rij, Hij) (this notion will be explained below in
more detail).

Let us start by denoting the savings without the lightest item in problem P2
by sij = Sij − Si1 and analogously denote the utilization by uij = Uij −Ui1.

The following Dominance Criterion [Sinha and Zoltners 1978] is applied to
reduce the set of items in the convex hull.

Dominance Criterion 1. If two items r and q in the same set Ni in problem
P2 satisfy sir ≤ siq and uir ≥ uiq then item r is said to be dominated by item q.
In every optimal solution of problem P3, xir = 0, that is, the dominated items
do not enter into the optimal solution.

Dominance Criterion 2. If some items r, q, t from the same set Ni are such
that sir ≤ siq ≤ sit , uir ≤ uiq ≤ uit , and

(siq − sir)
(uiq − uir)

≤ (sit − siq)
(uit − uiq)

(4)

then xiq = 0 in every optimal solution of problem P2.

The item q ∈ Ni, depicted in Figure 2, is called P -dominated [Sinha and
Zoltners 1978]. In what follows, we exclude P -dominated items from each set
Ni when solving the relaxed MCK problem P3 to optimality.

The items remaining after we excluded all the P -dominated items are called
P -undominated. All the P -undominated items belonging to the same set Ni, if
depicted as points in the two dimensional space, form the convex hull of the set

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 293

Fig. 2. Problem P3: Convex hull.

Ni [Martello and Toth 1990], and denote the new set of P -undominated items
{(Rij, Hij)}, as illustrated in Figure 2. Note that R denotes energy savings and
H denotes utilization.

The set of all P -undominated items may be found by examining all the items
in each set Ni in an increasing order and according to equation (4). Because
of the ordering of the items, the upper convex hull can be found in O(m log m)
time [Sinha and Zoltners 1978], where m denotes the total number of items in
the system, m = ∑n

i=1 |Ni|. The obtained MCKP on the upper convex hull is
denoted as problem P3.

Problem P3:

Maximize Z3 =
n∑

i=1

∑
j∈Ni

Rij yij

Subject to
n∑

i=1

∑
j∈Ni

Hij yij ≤ (c −Umin),∑
j∈Ni

yij ≤ 1, i = 1, . . . , n, 0 ≤ yij ≤ 1, for j ∈ Ni, i = 1, . . . , n.

As described in Sinha and Zoltners [1978], some items belonging to the set
Ni (i.e., yij = 1) can be included into the solution entirely; they are called
integer variables. On the other hand, some items may exceed the constraint∑n

i=1
∑

j∈Ni
(Hij yij) ≤ (c −Umin), and only part of it could be included into the

solution. These items are called fractional variables.

P4: The equivalent knapsack problem (EKP)
The EKP P4 is constructed from P3. In each set Ni, slices or increments are

defined as follows:

Pij = (Rij − Ri, j−1), i = 1, . . . , n, j = 2, . . . , CHi (5)

Wij = (Hij − Hi, j−1), i = 1, . . . , n, j = 2, . . . , CHi (6)

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

294 • P. Mejia-Alvarez et al.

where CHi is the number of the P -undominated items in the convex hull of set
Ni.

When solving (continuous) problem P3, we may now discard4 the condition∑
j∈Ni

yij ≤ 1, i = 1, . . . , n, and solve the problem of selecting slices in each set
Ni.

Problem P4 :

Maximize Z4 =
n∑

i=1

∑
j∈Ni

Pijzij

Subject to
n∑

i=1

∑
j∈Ni

(Wijzij)≤ (c −Umin), 0 ≤ zij≤ 1, for j ∈Ni, i= 1, . . . , n.

From the analysis of problem P4 [Sinha and Zoltners 1978; Lawler 1979] it
follows that, in all integer sets Ni: if some variable is equal 1 (e.g., the variable
is chosen) then all preceding variables are also 1; if some variable is equal zero
(e.g., the variable is not chosen) then all subsequent variables are also zeros.
From this fact the following important properties of problem P4 follow.

PROPERTY 1. The combination of all items (slices) from set Ni (i = 1, . . . , n)
yielding an optimal solution to problem P4, corresponds to a specific item to be
chosen from set Ni in problem P3; namely, if k denotes this specific item, then∑
{ j∈Ni}(Pijxij) = Rik and

∑
{ j∈Ni}(Wijxij) = Hik. In each set Ni all the slices are

numbered in the decreasing order of their ratios, Pij/Wij.

PROPERTY 2. There should not be a gap in a set of slices corresponding to a
solution in any set Ni.

To exemplify Property 1, assume that P1,1 = 1,642, P1,2 = 2,764, and P1,3 =
2,074 are the slices from set N1. This optimal solution of problem P4 correspond
to R1,3 = 6,480 from problem P3. To exemplify Property 2, let us consider the
set N j containing the slices r, q and t. According to Property 2, the following
solutions are valid: {}, {r}, {r, q}, and {r, q, t}, while {q}, {t}, {r, t}, and {q, t} are
invalid. Note that, {r, t} is invalid because slice q is not included, causing a gap
in the solution.

5.3 Enhanced Greedy Algorithm

In order to solve the EKP P4, we may collect all slices from all sets Ni (following
a decreasing order of their ratios, Pij/Wij) as candidates for including them into
a single set: PW. With all slices in the single set PW, now the problem becomes
the standard knapsack problem.

The main idea of the standard greedy algorithm (SGA) for solving the stan-
dard knapsack is to insert the slices, {pi, wi} (obtained from the single set PW)
inside the available capacity of the knapsack (c −Umin) in order of decreasing
ratio pi/wi, until the knapsack capacity is completely full, or until no more slices
can be included. If the knapsack is filled exactly to its full capacity (c −Umin)

4This condition is discarded because after problem P4 we will include all items from all tasks into
a single set in the EGA discussed in the next section.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 295

Fig. 3. Greedy algorithms: SGA and EGA.

in the mentioned order, then this is the optimal solution. While inserting slices
into the knapsack, one of them may not fit into the available capacity of the
knapsack. This slice is called the break-slice [Martello and Toth 1990], and its
corresponding set is called the break-set.

Contrary to the solution proposed by Pisinger [1995], our method does not
consider fractional items to be part of the solution. Therefore, we will discard
the break-slices, and consequently (following Property 2) all remaining slices
from the same break-set.

To the greedy scheme of Pisinger [1995] we add the following two rules.

Rule 1. When computing the solution of P4 take into account Z ′4 = {(pmax),
Ẑ4}, where pmax = max{pi} is the maximal energy saving item in the Truncated
MCK problem P2 and Ẑ4 = p1 + p2 + · · · + pk−1 is the solution obtained by the
SGA.

Rule 2. After finding the break-slice, the remaining empty space is filled
in by slices from the non-break sets in decreasing order of the ratios pi/wi.

The SGA algorithm is executed until the first break-slice is found. The EGA
algorithm, in contrast to SGA, does not stop when the first break-slice is found;
it is executed for all remaining slices in the single set PW. According to Rule 2,
break-slices are not considered to be part of the solution in the EGA algorithm.
The SGA and EGA algorithms are illustrated in Figure 3.

5.4 Restoring the Solution from the EKP to the MCKP

An approximate solution to problem P4 is obtained as follows:

—SGA Algorithm: Z ′4 = max{pmax, (p1 + p2 + · · · + pk−1)}
—EGA Algorithm: Z ′′4 = max{pmax, (p1 + p2 + · · · + pk−1 + α)}

The term α is a possible increment caused by using Rule 2, that is, the profits
of additional items from nonbreak sets.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

296 • P. Mejia-Alvarez et al.

Fig. 4. Optimization procedure.

The approximate solution to the problem P0 is defined as Z4 + Smin. Recall
that Smin =

∑n
i=1 Si1, are the elements truncated in problem P1. From the

definition of the slice (described in equations (5) and (6)) and Property 1, it
follows that if several slices (e.g., s, r, and t, in that order) belonging to the
same set N j are chosen to be part of the solution of the greedy algorithm, then
the item corresponding to the slice t is considered to be part of the solution of
problem P0. On the other hand, if no slice is chosen from set N j to be part of
the solution, then the truncated item considered in problem P1 (Sj 1 and U j 1)
is chosen to be part of the solution. The above criteria allow us to construct the
corresponding items (speeds), from each set N j of problem P4 that are part of
the solution of problem P0.

The algorithm that describes the optimization procedure is illustrated in
Figure 4. The solution from problems P1, P2, and P4 can be obtained in O(m)
time (lines 5–18 from Figure 4), while the EGA algorithm obtains solutions in
O(m log m) time (lines 19–22 from Figure 4). The reduction algorithm (problems
P1, P3, and P4) is executed in lines 7–17. The approximate algorithm is executed
in lines 19 and 20, and the restoration algorithm is executed in line 21.

It will be shown in Section 7 that the complete procedure provides a 2-
approximate solution to P0 in the worst-case.

5.5 Scheduling the New Task

After the optimization procedure is executed, the TBS [Lipari and Buttazzo
2000] will calculate the start time of the new task. It is well known that TBS

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 297

server provides low response times for handling aperiodic tasks. As described
in Buttazzo and Sensini [1999], the TBS server assigns a deadline dTBS =
max(ta, da−1)+(Ca/Us) to new aperiodic requests τa that arrive at time t = ta. In
our framework, Ca denotes the computation time of the new task and Us denotes
the server utilization factor. Us is computed in our framework as Us = 1−∑i Ui.
If the deadline of the new task obtained by the TBS is greater than the actual
deadline of the new task, dTBS > da, then the scheduling time of the new task
is modified to t∗a = dTBS − Pa. Recall that Pa is the period of the new task. On
the other hand, if da > dTBS the new task is scheduled at its arrival time (ta). In
any case, old tasks may be preempted by the new task. Finally, with the start
time of the new task computed by the TBS server, and the solution provided by
the optimization procedure (the set of speeds for execution), the PORTS server
will schedule the new task in the system following the EDF scheduling policy.

6. EXAMPLE

The purpose of this section is to use an example to simulate the execution
of our algorithms and to compare their performance against several known
algorithms.

—Dynamic Programming (DP): This algorithm was designed to solve to opti-
mality the MCKP problem [Martello and Toth 1990].

—Maximum Speed (MS). In this algorithm, the processor is set to its maximum
speed (in this case, maximum speed= 1.0). This algorithm is introduced with
the purpose of finding the minimum energy savings achievable in the system,
and for comparing its performance against our algorithms.

—Static Continuous (SC) and Static Discrete (SD) Algorithms. In the SC al-
gorithm [Aydin et al. 2001a], the processor speed for all tasks is set to the
system utilization (i.e., fi =

∑
Ui1). The static discrete solution uses the con-

tinuous solution (SC) and approximates its results. For example, if the speed
levels of the processor are {1.0, 0.75, 0.5, 0.25}, and the utilization of the task
set is 0.6, then the speeds of all tasks are set to 0.75.

—Optimal Continuous OP(c) and Optimal Discrete Algorithms OP(d). The con-
tinuous algorithm OP(c) [Aydin et al. 2001a] considers tasks with different
power characteristics and provides a continuous solution. The discrete so-
lution OP(d) approximates the continuous solution using discrete levels of
speed, in the same way that SD approximates SC.

Consider the real-time workload described in Table I. The value of c used
in this example is 1,000 (this value denotes 100% of the size of the knapsack).
The workload described was computed assuming maximum speed levels for
each task, obtaining a total load of

∑
i Ui = 60%. In this example, a power

consumption function Pd = kV 3 is considered, where k is shown in Table I.
Recall that energy consumption is computed by E = Pd I , where I is the interval
of time that some task is executing.

Table II shows the energy consumption Eij, energy savings Sij, and utiliza-
tion Uij for the set of speeds of all tasks, Ni = {1.0, 0.9, 0.7, 0.5, 0.3}. Energy
consumption measurements are simulated for a period of 32,000 time units,

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

298 • P. Mejia-Alvarez et al.

Table I. Real-Time Workload and
Parameter k

Tasks Ci Pi Ui k
Task 1 216 1,600 0.135 2
Task 2 228 2,000 0.114 2
Task 3 300 2,000 0.150 8
Task 4 1,551 8,000 0.194 4

Table II. Energy Consumption, Savings and Utilization

Speed Levels
1.0 0.9 0.7 0.5 0.3

Eij 8,640 6,998 4,234 2,160 778
Sij 0 1,642 4,406 6,480 7,862

Task 1 Uij 135 150 192 270 450
Eij 7,296 5,910 3,575 1,824 657
Sij 0 1,386 3,721 5,472 6,639

Task 2 Uij 114 126 162 228 380
Eij 38,400 31,104 18,816 9,600 3,456
Sij 0 7,296 19,584 28,800 34,944

Task 3 Uij 150 166 214 300 500
Eij 24,816 20,101 12,160 6,204 2,233
Sij 0 4,715 12,656 18,612 22,583

Task 4 Uij 193 215 276 387 646

Table III. Result from Problems P1 and P4

Problem P1 Problem P4
Sij 1,642 4,406 6,480 7,862 Pij 1,642 2,764 2,074 1,382

Task 1 Uij 15 57 135 315 Wij 15 42 78 180
Sij 1,386 3,721 5,472 6,639 Pij 1,386 2,335 1,751 1,167

Task 2 Uij 12 48 114 266 Wij 12 36 66 152
Sij 7,296 19,584 28,800 34,944 Pij 7,296 12,288 9,216 6,144

Task 3 Uij 16 64 150 350 Wij 16 48 86 200
Sij 4,715 12,656 18,612 22,583 Pij 4,715 7,941 5,956 3,971

Task 4 Uij 22 83 194 453 Wij 22 61 111 259

which is larger than the least common multiple of all the task periods Pi. For
task T1, energy consumption is computed as follows. Considering an interval
of time I = 32,000, ti = Ci/1 (the maximum speed is 1.0), and P1 = 1,600,
the number of instances of T1 in I is equal to 32,000/1,600 = 20. The energy
consumption of task T1 is E1 = k f 3

1 (C1/ f1)20 = 2× 216× 20 = 8,640.
Table III show the results of the truncation procedure described in prob-

lem P1. This table is constructed with elements from Table II, removing the
elements with minimum Uij value. Note that, the elements S11 and U11 in
Table III, problem P1, are computed by S11 = 1,642 −0 = 1,642 and U11 =
150 − 135 = 15. Note that 0 and 135 are the energy savings and utilization
with minimum values from task T1 in Table II. Note that Smin and Umin val-
ues are Smin =

∑4
i=1 Si,1 = 0 and Umin =

∑4
i=1 Ui,1 = 592. After building

Table III all minimum items from each task are included into the knapsack.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 299

Table IV. Array PW: Greedy Algorithms and EGAs

Pij 7,296 12,288 4,715 7,941 1,386 1,642 9,216 2,764 2,335
Wij 16 48 22 63 12 15 86 42 36∑

S 7,296 19,584 24,299 32,240 33,626 35,268 44,484 47,248 49,583∑
Load 16 64 86 149 161 176 262 304 340

Included
Not-included I I I I I I I I I

Pij 5,956 6,144 2,074 1,751
Wij 111 200 78 66∑

S 51,334∑
Load 406

Included
Not-included B-S N-I N-I I

Table V. Results for Different Algorithms

Algorithm Energy Solution-Vector Run-Time % Savings
DP 26,337 [2,3,4,4] 3,980 33%
MS 79,152 [1,1,1,1] 586 −104%
SC 28,495 [x,x,x,x] 586 27%
SD 38,784 [3,3,3,3] 586 0%

OP(c) 25,711 [x,x,x,x] 1,106 34%
OP(d) 34,668 [2,2,4,3] 709 11%
SGA 29,569 [3,3,4,3] 47 24%
EGA 27,818 [3,4,4,3] 58 29%

So, the remaining size of the knapsack is ĉ = (1,000 −Umin) = 408. The re-
sult of the slicing procedure of problem P4 is shown in the right-hand side of
Table III. Following the slicing procedure of problem P4, it is easy to verify that
P14 = S14−S13 = 7,862− 6,480= 1,382 and W14 = U14−U13 = 315−135 = 180.
Finally, ordering the elements in Table III by decreasing energy/utilization ratio
produces the array PW, which is shown in Table IV.

Following the execution of the greedy algorithms (see Table IV) it is easy to
verify that their solution is,

—SGA Algorithm: S = 49,583, and U = 340.
—EGA Algorithm: S = 51,334, and U = 406.

Note that slice (5956, 111) in PW, is the break-slice (B-S). According to our
restoring algorithm, the minimal elements from each set Ni that were truncated
in problem P1 must be added to the solution. Then Smin and Umin, must be added
to the solution. Therefore, the solution to the MCKP problem P0 is as follows:

—SGA Algorithm: S = 49,583, U = 932, and solution vector = [3, 3, 4, 3]
—EGA Algorithm: S = 51,334, U = 998, and solution vector = [3, 4, 4, 3].

In Table V, the energy consumption solution for several algorithms is shown,
along with the solution vector, the run-time (measured in microseconds on a
PII-233 MHz) and the percentage of energy savings normalized to the SD al-
gorithm. Note that the OP(c) algorithm provides the best energy consumption
results. However, because of the fact that we are using discrete levels of speed,
its corresponding discrete solution (obtained by the OP(d) algorithm), gives a

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

300 • P. Mejia-Alvarez et al.

performance lower than that of our greedy algorithms. Note that, the maximum
speed algorithm achieves more than double (e.g., 104%) of energy savings than
that of the SD algorithm. The solution vectors of algorithms OP(c) and SC are
shown in Table V as [x,x,x,x] because they do not yield discrete levels of speed.
In the SC algorithm the speed is set to the value of the utilization (0.6).

Note that for this example, the convex hull of problem P3 will give no P -
dominated elements. This result is obtained because the speeds for each task
are the same on each Ni and because on each Ni there is a constant increase in
the value of each item. Recall that in this example, the set of speeds Ni for all
tasks are {1.0, 0.9, 0.7, 0.5, 0.3}. This arrangement on the set of speeds produces
a convex hull with only P -undominated points (see Figure 2) and may lead to a
simplified algorithm without the convex hull problem. In this special case, we
may remove lines 10–16 from the optimization procedure in Figure 4.

According to the results obtained in this example, we can verify that our
greedy algorithms can obtain results that are close to the optimal (discrete)
solution obtained by the dynamic programming algorithm.

7. ANALYSIS OF THE ALGORITHM

In this section we provide a theoretical justification of our method. Our aim here
is to prove that our method produces an 2-approximate solution to problem P0.

7.1 2-Approximate Solution to Problem P0

To justify the next claims, let us first state the notion of r-approximation
[Martello and Toth 1990]. An approximation algorithm used in a maximiza-
tion problem is called r-approximate if for every instance I of the problem it
delivers a solution x of value AI (x) such that z∗I/AI (x) ≤ r, where z∗I is the
optimal solution value for the instance I .

The value r is called the worst-case error bound, or the guaranteed perfor-
mance ratio; the solution x is called r-approximate.

LEMMA 7.1. An optimal solution to problem P4 yields an optimal solution to
P2.

PROOF. To our knowledge, this fact was first established by Sinha and Zolt-
ners [1978] and D’Atri [1977]. Since the proof can be found in many books and
papers (e.g., Amstrong et al. 1983; Martello and Toth 1990; Pisinger 1995) it is
omitted here.

In what follows, it will be shown that our method produce a 2-approximate
solution to P0.

According to the definition of problem P3 we can conclude that the optimal
solutions of problems P2 and P3 are the same.

Let Smax be the maximum value of energy savings on all sets Ni in P2,
Smax = maxij(Sij − Si1), and let

{(1, j ∗1), (2, j ∗2), . . . , (k, j ∗k)} (7)

be the k (k ≤ n) items chosen from the sets Ni (i = 1, . . . , n) that form the
optimal solution to the problem P3. For example, (k, j ∗k) denotes the chosen

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 301

item, j ∗k , from set Nk . In what follows, we assume that all the items in each set
Ni are numbered in the decreasing order of their ratio Rij/Hij.

LEMMA 7.2. An adjustment to the optimal solution of problem P3, max(Smax,
R(1, j ∗1) + R(2, j ∗2) + · · · + R(k−1), j ∗(k−1)

), yields a 2-approximate solution to P1.

PROOF. This claim has been formulated, without a proof, by Lawler [1979].
Aiming to make this paper self-contained, we present here a short proof.

Obviously, the variables yij corresponding to the first (k−1) items in equation
(7) are equal to 1 (they are chosen to be part of the solution), while the kth item
satisfies the condition in P3: 0 < y(k, j ∗k) ≤ 1. If y(k, j ∗k) = 1 then the relaxed
solution is integer. The obtained solution is the optimal solution to P2, and the
claim is true. Assume now that y(k, j ∗k) < 1. Obviously, the first (k − 1) items
in equation (7) constitutes a feasible approximate solution to P1 as their total
utilization is not greater than (c −Umin). That is,

R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1)) ≤ Z ∗1 (8)

where Z ∗1 is the optimal solution to problem P1.
Consider the item Smax. This single item also constitute a feasible approxi-

mate solution to P3 as its utilization is not greater than (c −Umin). That is,

Smax ≤ Z ∗1 (9)

Then we have max(Smax, R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1))) ≤ Z ∗1.
Next,

Z ∗1 ≤ R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1)) + R(k, j ∗k)

≤ R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1)) + Rmax
(10)

≤ R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1)) + Smax

≤ 2 max
(
Smax, R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1))

)
The claim is proved.

LEMMA 7.3. A 2-approximate solution to problem P1 yields a 2-approximate
solution to the initial problem P0.

PROOF. Consider the following expression:

A = Smin +max
(
Smax, R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1))

)
(11)

Since Smin =
∑n

i=1 Si1 are the items truncated from P1, it follows that the
utilization U of the items in the vector x corresponding to A does not exceed c,
and, hence, A ≤ Z ∗0 (optimal solution of problem P0). On the other side, from
equation (11),

Z ∗0 = Smin + Z ∗1
≤ Smin + 2 max

(
Smax, R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1))

)
≤ 2Smin + 2 max

(
Smax, R(1, j ∗1) + R(2, j ∗2) + · · · + R((k−1), j ∗(k−1))

) = 2A (12)

The claim is proved.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

302 • P. Mejia-Alvarez et al.

8. SIMULATION EXPERIMENTS

The following simulation experiments have been designed to test the perfor-
mance of the PORTS server and its ability to achieve our optimality criteria us-
ing synthetic task sets. The goals in this simulation experiments are: (1) to mea-
sure the quality of the results over a large set of dynamic tasks that arrive and
leave the system at arbitrary instants of time, and (2) to measure and compare
the performance and run-time of our algorithms against known algorithms.

A simulator has been developed to illustrate the execution of a dynamic set
of synthetic real-time tasks, energy consumption, and speeds of execution of
the tasks. The algorithms used for comparison are: optimal dynamic program-
ming (DP) [Martello and Toth 1990], static discrete algorithm (SD) [Aydin et al.
2001a], and the optimal discrete algorithm OP(d) [Aydin et al. 2001a]. Each plot
in the graphs represents the average of a set of 5,000 task arrivals. The results
shown in the graphs are compared with the SD algorithm and the size of the
knapsack used in the experiments is c = 1, 000 (100% of the load).

Each task has a lifetime (ri) that follows a uniform distribution between 30
and 200 instances. At the end of its lifetime, the task leaves the system. The
period Pi of each task follow a uniform distribution between 1,000 and 16,000
time units, such that the LCM of the periods is 32,000.

The arrival time of task Ti+1 is computed by ai+1 = (Pi+1ri+1)/nt, where
nt is the actual number of tasks in the system at the time Ti+1 was gen-
erated. For a given number of speeds, each speed level is computed propor-
tionally between the maximum speed (fmax = 1.0) and the minimum speed
(fmin = 0.2). For example, if there are five speed levels, the speed levels will be
{1.0, 0.8, 0.6, 0.4, 0.2}. The utilization of task Ti under minimum speed, Umin, is
chosen as a random variable with uniform distribution between 10% and 25%.
Ci is computed by Ci = Umin fij Pi. For each speed, utilization Uij is computed
by Uij = tij/Pi, and tij = Ci/ fij.

The power functions for each task Ti used [Krishna and Lee 2000; Shin and
Choi 1999; Swaminathan and Chakrabarty 2001] are of the form ki S

xi
i , where

ki and xi are random variables with uniform distributions between 2 and 10, 2
and 3, respectively. Then, the energy consumption for each task and each speed
f j is computed by Eij = I (ki f xi

j (Ci/ f j Pi)), where I is a fixed interval, given by
I = LCM . The PORTS server executes at the speed of the current executing
task, and the input to our optimization problem P0 is computed by equation (3).

The performance of our algorithms is measured at each task arrival (and
departure) according to the following metrics:

—Percentage (%) of energy savings (%ES): The solution obtained (in terms
of energy consumption) by each algorithm for all tasks gives us the total en-
ergy consumption Etot =

∑n
i=1 Ei. The solution provided by each algorithm

is then compared with the solution obtained by algorithm SD, and the per-
centage of improvement is plotted in the graphs. The results shown in the
graphs represent the average (X̄ = (

∑5,000
i=1 % ES)/5,000)) or sample mean

of a set of 5,000 experiments (each for every task arrival). On each result
of %ES, we also compute their corresponding confidence intervals (for the
mean) assuming a confidence level of 95%.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 303

Fig. 5. Energy savings (%) and run-time (µs).

Fig. 6. Energy savings (%) and run-time (µs).

—Run-Time: This metrics denotes the execution time of each algorithm, which
measures the physical time in microseconds, using a PC Intel 233 MHZ with
48 MB of RAM and running on the Linux operating system. The function
used for the measurements is gettimeofday().

—Rejection Ratio (RR): This metric denotes the percentage of tasks rejected
from execution. A new task is rejected if it produces an overload. That is, a
new task is rejected if the following condition is met

∑
i Ui > 100%, while

setting all tasks at maximum speed.

We demonstrate the performance of our algorithms with two simulation
cases. The first case (Figure 5), considers 10 speed levels, and the number of
tasks is varied from 5 to 80. In the second case (Figure 6), we show the in-
fluence of the granularity of the speed changing steps: the number of tasks is
set to 30, and the speed level is varied from 3 to 60. The results obtained by

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

304 • P. Mejia-Alvarez et al.

Table VI. Confidence Intervals for 40 Tasks

SGA SGA OP(d) DP
% ES 21 25 13 27

CI [20.1,21.8] [24.1,25.3] [12.6,13.3] [25.6,27.9]

algorithm EGA (shown in Figure 5) vary from 89% to 96% of the DP algorithm
(we use DP as our optimal algorithm), with % of energy savings ranging from
23% to 26%.

The SGA performs from 79% to 89% of optimal, with energy savings rang-
ing from 19% to 22%. This results show an improvement of over 40% from the
results obtained by the OP(d) algorithm. It is important to note that, although
unrealistic due to the lack of discrete speed levels, the continuous OP(c) algo-
rithm was also simulated to give us an upper bound on the energy savings;
it yields between 24% and 28% energy savings, showing that our heuristics
perform very well with respect to energy savings.

The results shown in Figure 5 (right side) indicate the low cost of the EGAs.
For the SGAs and EGAs the run-time varies from 56 to 853 µs. Note the large
difference in run-time obtained by the EGA algorithms, when compared with
the DP and the OP(d) algorithms: OP(d) varies from 155 to 102,500 µs, and DP
varies from 2,529 to 49,653 µs. The RR in these simulations (Figure 5) is as
follows. From 0 to 30 tasks, rejection ratio is equal to RR = 0%. For 40 tasks
RR = 7.5%, which indicates that 3 out of 40 tasks, in average, are rejected
from execution. For 50 tasks RR = 24%, for 60 tasks RR = 35%, for 70 tasks,
RR = 42.8%, and for 80 tasks RR = 47.5%. From the % of energy savings in
Figure 5, the confidence intervals computed for 10–80 tasks are within the range
[−7% %ES,+7% %ES]. Table VI shows the results of Figure 5 with 40 tasks and
their corresponding confidence intervals (assuming a confidence level of 95%).

The results shown in Figure 6 indicate how important is to consider an appro-
priate number of speed levels for achieving a high percentage of energy savings.
As shown in Figure 6, under moderate, realistic number of speed levels (between
3 and 30), the EGA algorithm outperforms the OP(d) algorithm. However, for
more than 30 speed levels OP(d) algorithm outperforms the EGA algorithm,
because the system approaches a continuous voltage setting, in which OP(d) is
close to the optimal OP(c).

The run-time computed (shown in Figure 6), indicate that the OP(d) algo-
rithm has very little sensibility to the number of speed levels: the run-time of
the OP(d) algorithm varied from 6,900 to 7,100 µs. In contrast, our greedy al-
gorithms increased their run-time with higher number of speed levels, but still
remained well under OP(d). For this experiments, the run-time of the greedy
algorithms varied from 99 to 1800 µs. The DP algorithm is the most expensive,
with one or two orders of magnitude higher run-time than the EGA and SGA
algorithms. The RR for this experiment was always 0% (because the number of
tasks considered for the experiment shown in Figure 6 is 30) meaning that no
tasks were rejected from execution on any single test.

Further tests were conducted (increasing the number of speed levels) to check
when the EGA algorithm and the OP(d) algorithms have similar run-times; this
happens when the number of speed levels is approaching 100.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Adaptive Scheduling Server for Power-Aware Real-Time Tasks • 305

The results obtained in our simulations indicate that the EGAs are a low
cost and effective solutions for scheduling power-aware real-time tasks with
discrete speeds.

9. CONCLUSIONS

In this paper we proposed an adaptive power optimization method for a real-
time application running on a variable speed processor with discrete speeds.
The solution proposed is based on the use of a PORTS server which is comprised
of two parts: (a) a FT, for testing the admission of new dynamic tasks arriving
in the system, and (b) an optimization procedure used for computing the levels
of speed of each task in the system, such that energy savings of the system is
maximized. The process of selecting levels of voltage/speed for each tasks while
meeting the optimality criteria requires the exploration of a potentially large
number of combinations, which is intractable to be done online. The PORTS
server finds near-optimal solutions at low cost by using approximate solutions
to the knapsack problem. We have presented an analysis to demonstrate that
our method produces a 2-approximate solution to the optimization problem.

Our simulation results show that our PORTS server has low overhead, and
most importantly generates near-optimal solutions for the scheduling of real-
time systems running on variable speed processors.

We are currently extending the PORTS server with algorithms for multiple
processors and for real-time tasks with precedence and resource constraints.

REFERENCES

AMSTRONG, R. D., KUNG, D. S., SINHA, P., AND ZOLTNERS, A. A. 1983. A computational study of a
multiple-choice knapsack algorithm. ACM Transactions on Mathematical Software 9, 2, 184–
198.

ARM. 2003.
AYDIN, H., MELHEM, R., MOSSÉ, D., AND MEJIA-ALVAREZ, P. 2001a. Determining optimal processor

speeds for periodic real-time tasks with different power characteristics. In Proceedings of the
IEEE EuroMicro Conference on Real-Time Systems. IEEE Computer Society Press.

AYDIN, H., MELHEM, R., MOSSÉ, D., AND MEJIA-ALVAREZ, P. 2001b. Dynamic and aggressive schedul-
ing techniques for power-aware real-time systems. In IEEE Real-Time Systems Symposium.
IEEE Computer Society Press.

BURD, T. D., PERING, T. A., STRATAKOS, A. J., AND BRODERSEN, R. W. 2000. A dynamic voltage scaled
microprocessor system. IEEE Journal of Solid-State Circuits 35, 11 (Nov.), 1571.

BUTTAZZO, G. AND SENSINI, F. 1999. Optimal deadline assignment for scheduling soft aperiodic
tasks in hard real-time environments. IEEE Transactions on Computers 48, 10 (Oct.).

CHANDRAKASAN, A.P., SHENG, S., AND BRODERSEN, R. W. 1992. Low-power CMOS digital design.
IEEE J. of Solid-State Circuits 27.

D’ATRI, G. 1977. The generalized knapsack problem. In Communication at the Annual Meeting
of CNR-GNIM, Rimini, Italy.

DUDANI, A., MUELLER, F., AND ZHU, Y. 2002. Energy-conserving feedback EDF scheduling for em-
bedded systems with real-time constraints. In ACM SIGPLAN Joint Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES’02). ACM Press.

GRUIAN, F. AND KUCHCINSKI, K. 2001. LEneS: task scheduling for low energy systems using variable
supply voltage processors. In Proceedings of the Asia South Pacific—DAC Conference.

HONG, I., KIROVSKI, D., QU, G., POTKONJAK, M., AND SRIVASTAVA, M. 1998a. Power optimization of
variable voltage core-based systems. In Design Automation Conference.

HONG, I., POTKONJAK, M., AND SRIVASTAVA, M. 1998b. On-line scheduling of hard real-time tasks on
variable voltage processor. In Computer-Aided Design (ICCAD)’98.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

306 • P. Mejia-Alvarez et al.

HONG, I., QU, G., POTKONJAK, M., AND SRIVASTAVA, M. 1998c. Synthesis techniques for low-power
hard real-time systems on variable voltage processors. In Proceedings of the 19th IEEE Real-Time
Systems Symposium. IEEE Computer Society Press.

INTEL. Strong ARM SA-1100 Microprocessor Developer’s Manual. INTEL.
INTEL-ACPI. 2003. ACPI Specification. http://developer.intel.com/technology/IAPC/tech.
INTEL-XSCALE. 2003. http://developer.intel.com/design/xscale/.
ISHIHARA, T. AND YASUURA, H. 1998. Voltage scheduling problem for dynamically varying voltage

processors. In Proceedings of the International Symposium on Low Power Electronics and Design.
JOSEPH, M. AND PANDYA, P. 1986. Finding response times in a real-time system. Computer Journal

29, 390–395.
KRISHNA, C. M. AND LEE, Y. H. 2000. Voltage clock scaling adaptive scheduling techniques for

low power in hard real-time systems. In Proceedings of the IEEE Real-Time Technology and
Applications Symposium. IEEE Computer Society Press.

LAWLER, E. 1979. Fast approximation algorithms for knapsack problems. Mathematics of Oper-
ations Research 4, 339.

LIPARI, G. AND BUTTAZZO, G. 2000. Schedulability analysis of periodic and aperiodic tasks with
resource constraints. Journal of System Architecture 46, 327.

LIU, C. L. AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming in hard real-time
environments. Journal of the ACM 20, 1 (Jan.).

LORCH, J. R. AND SMITH, A. J. 2001. Improving dynamic voltage scaling algorithms with PACE.
In Proceedings of the ACM SIGMETRICS Conference, Cambridge, MA.

MARTELLO, S. AND TOTH, P. 1990. Knapsack Problems. Algorithms and Computer Implementations.
Wiley.

MOSSÉ, D., AYDIN, H., CHILDERS, B., AND MELHEM, R. 2000. Compiler assisted dynamic power-aware
scheduling for real-time applications. In Workshop on Compiler and Operating Systems for Low
Power (COLP’00).

PILLAI, P. AND SHIN, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded op-
erating systems. In Proceedings of the 18th ACM Symposium on Operating System Principles
(SOSP’01). ACM Press.

PISINGER, D. 1995. A minimal algorithm for the multiple-choice knapsack problem. European
Journal of Operational Research 83.

SHIN, Y. AND CHOI, K. 1999. Power conscious fixed priority scheduling for hard real-time systems.
Proceedings of the Design Automation Conference.

SHIN, D., KIM, W., JEON, J., KIM, J., AND MIN, S.L. 2002. SIMDVS: An integrated simulation en-
vironment for performance evaluation of dynamic voltage scaling algorithms. In Proceedings of
the Workshop on Power-Aware Computer Systems (PACS’02).

SINHA, P. AND ZOLTNERS, A. 1978. The multiple choice knapsack problem. Journal of the Operations
Research Society of Japan 21, 59.

SWAMINATHAN, V. AND CHAKRABARTY, K. 2001. Investigating the effect of voltage-switching on low-
energy task scheduling in hard real-time systems. In Proceedings of the Asia South Pacific—DAC
Conference.

TRANSMETA. 2003.
YAO, F., DEMERS, A., AND SHENKER, S. 1995. A scheduling model for reduced CPU energy. In Pro-

ceedings of the IEEE Annual Foundations of Computer Science.

Received January 2003; revised May 2003; accepted August 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

