
Fail-Awareness: An Approach to Construct Fail-safe Applications

Christof Fetzer and Flaviu Cristian
Department of Computer Science & Engineering

ITniversity of California, San Diego
La Jolla, CA 92093-0114*

ht tp: //www-cse.ucsd.edu/users/ { cfetzer,flaviu}

Abstract
W e present a f r a m e w o r k f o r building fail-safe hard

real-t ime applications o n t o p of a n asynchronous dis-
tributed s y s t e m subject t o communica t ion part i t ions,
i .e. using processors and communica t ion faci l i t ies
whose real-t ime delays cannot be guaranteed. T h e ba-
sic a s sumpt ion behind o u r approach as tha t each pro-
cessor has a local hardware clock tha t proceeds w i th in
a l inear envelope of real-t ime. T h i s allows t o com-
pu te a n upper bound o n t h e actual delays incurred by
a part icular processing sequence o r message t ransmis -
s ion. Services and applications can use these com-
puted bounds t o detect w h e n t h e y cannot guarantee all
t he i r properties because of excessive delays. T h i s al-
lows a n application t o detect w h e n t o switch t o a fai l -
safe mode.

1 Introduction
In recent years there has been a trend to use

commercial-off-the-shelf (COTS) products such as
real-time Unix and main-stream hardware platforms
to build hard real-time systems. A system is hard real-
t i m e if the consequence of a non-masked performance
failure can be catastrophic [13]. Hard real-time sys-
tems can coarsely be classified into fai l -safe and fail-
operational systems. Fail-safe systems have at leaat
one safe state and the system has to transit to such a
state when a non-maskable component failure occurs.
The motivation for using COTS is to cut costs while
still using the latest technologies. From a technical
point of view COTS usage is quite challenging with re-
spect to the construction of distributed hard real-time
systems. To explain this, note that several recently
built distributed hard real-time systems [11, 20, 12, 11
rely on the guaranteed response paradigm [13]. This
paradigm depends on the assumption that the maxi-
mum number of failures per time unit is a priori known
to guarantee that the real-time system reacts to events
occurring in the controlled object within an a priori
known time bound. However, if this fai lure as sump-
t i o n can be violated at run-time, the real-time system
can be subject to unpredictable behavior. To bound
the number of performance failures per time unit, one
has to know an upper bound on the processor and net-
work load. However, the usage of COTS software and

*This research was partially supported by a grant from the
Air Force Office of Scientific Research.

0731-3071/97 $10.00 0 1997 IEEE

hardware does not necessarily allow to bound the peak
processor and network load a priori because the load
induced by these products is not known and can only
be estimated using measurements. For example, due
to interrupts, caching, and bus arbitration it is very
difficult to determine the worst case execution times
for main-stream hardware platforms [17]. Moreover,
the load induced by the application and middleware
products depends also on the point of operation of
the system and for many systems the envelope of op-
eration is not well known. The occurrence of non-
maskable performance failures is therefore difficult to
avoid by design. We present an approach to address
the problem of non-maskable performance failures.

Due to the problems posed by the guaranteed re-
sponse paradigm, many practical systems are based
on the best effort paradigm that does not guarantee
that a real-time system always responds within the re-
quired time bounds. However, the system has to show
in empirical tests that it statistically responds in a
timely fashion. We describe a best effort approach to
constructing fail-safe distributed hard real-time appli-
cations for partitionable systems: fai l -awareness . In
a parti t ionable s y s t e m the set of processes can split
into disjoint subsets due to network failures or exces-
sive performance failures. Each such subset is infor-
mally referred to as a (communica t ion part i t ion. The

as the number of failures per time unit experienced by
the underlying communication and process services re-
mains below a given bound, all services provide their
standard synchronous (i.e. hard real-time) semantics
and each server knows this fact; when the number of
failures per time unit rises above that bound, a server
is allowed to switch to a specified exception semantics.
Clients can learn if a server provides its standard or
exception semantics by examining an exception indi-
cator provided by each server. An application can use
the indicators of the servers it depends upon to switch
the system to a safe state when the occurrence of non-
maskable performance failures causes some underlying
services to switch to their exception semantics.

The novelty of our approach is that instead of aim-
ing for real-time support in an asynchronous, parti-
tionable setting onky by providing high throughput
see Transis [3] and Totem [15]), we specify the stan- 6 ard semantics of services using real-time deadlines

and provide mechanisms to detect when an applica-

general goal of our approach is as r’ ollows: as long

282

tion cannot depend upon the standard semantics of
services due to unmasked performance (or omission or
crash) failures. This detection is essential for fail-safe
applications that have to switch to a fail-safe mode
whenever they cannot guarantee their standard syn-
chronous properties. Our approach allows the servers
in each partition to “make progress” independently of
the servers in other partitions, i.e. these servers can
provide their standard semantics and hence, increase
the availability of the system. In this paper we give
an overview of several fail-aware partitionable services
that we have designed such as clock synchronization,
membership, and atomic broadcast to illustrate our
approach.

2 Model Rationale
The guaranteed response paradigm is based on the

assumption that the classes of likely failures and their
maximum number per time unit is a priori known. The
fail-awareness paradigm also assumes knowledge of the
classes of likely failures, but does not assume aything
about their maximum frequency of occurrence (since
the number of performance failures per time unit can-
not be bounded due to the use of COTS products).
That difference in the underlying assumptions results
in the use of different system models for the guaran-
teed response paradigm (i.e. use of a synchronous sys-
tem model) and the fail-awareness paradigm (i.e. use
of the timed asynchronous system model [a]). We re-
view in this section the basic differences between these
two models.

In a completely synchronous system the real-time
delays of all processes and all messages are within a
priori known bounds. One can generalize the notion
of a synchronous system by allowing a bounded num-
ber of “performance failures” per time unit. To define
performance failures, one first introduces thresholds
for process scheduling (U) and message transmission
delays (5). When the transmission delay of a mes-
sage m is greater than the maximum assumed mes-
sage delay 5, one says that m suffers a performance
failure. Otherwise, m is said to be timely. Similarly,
when the scheduling delay of a process p is greater
than the maximum assumed scheduling delay c, p suf-
fers a performance failure. A process that does not
suffer any performance failures in a given interval is
said to be timely. A failure model specifies what kind
of failures have to be considered in the design of a
system, i.e. the probability that any other kind of
failure occurs is negligible. A typical failure model
used in synchronous systems assumes that processes
have a crash/performance failure semantics and mes-
sages have an omission/performance failure semantics.
A failure assumption states the maximum number of
(performance, crash, and omission) failures that can
occur per time unit, i.e. the probability that more fail-
ures occur is negligible. Since most distributed proto-
cols are “round based , a failure assumption typically
states the maximum number of failures per round, i.e.
a “time unit” is the maximum length of a round.

A synchronous system requires that the classes of
failures that can occur and the maximum number of
these failures per time unit be a priori known. Know-

ing what classes of failures can occur (stated in the
failure model) and knowing the maxzmum number of
these failures per time unit (stated in the failure as-
sumption), one can use a sufficient amount of redun-
dancy to mask all failures that can occur by hypoth-
esis. Thus, when the failure model and assumptions
are correct, one can exclude the occurrence of non-
maskable failures, that is, system failures, by design.
In other terms, the probability that the system masks
all failures is at least a,s high as the probability that
the failure model and the failure assumption are valid

To bound the maximum number of performance
failures per time unit, one has to bound the peak
processor and network load. Using commercial soft-
ware packages with unknown peak load therefore in-
creases the difficulty of deriving a well founded max-
imum number of performance failures per time unit.
For example, using a network of workstations with
a standard operating system like Unix does in many
cases not allow a reasonable failure assumption to be
made in the sense that the probability that the failure
assumption can be violated will be negligible. We use
therefore the timed asynchronous system model as the
foundation of our work since it does not put any bound
on the number of failures per time unit. For a detailed
description and comparison with other models like the
quasi-synchronous model of [19] see [2].

The timed asynchronous model assumes that pro-
cesses have access to a local unsynchronzzed hard-
ware clock with a bounded drift rate, i.e. they
proceed within a lineatr envelope of real-time. It
uses the following failure model: processes have
crash/performance failure semantics and messages
have omission/performance failure semantics. In what
follows, when we use the generic term “failure” we
mean a failure that belongs to one of these classes of
failures. This model does not define any bound on the
maximum number of failures per time unit, i.e. it has
no failure assumption. It is an accurate description of
existing distributed systems like a network of worksta-
tions running Unix or Windows NT. The model also
allows the system to split into partitions when all mes-
sages sent between processes (in different partitions)
suffer omission or performance failures. Unlike in the
synchronous system model, the timed asynchronous
model does not necessarily allow to mask all failures
that occur since any amount of redundancy used to
mask failures can be exceeded by the actual number of
failures that occur. The fail-aware protocols we have
been designing have nevertheless some resemblance to
synchronous protocols because they behave like syn-
chronous protocols as long as the number of failures
per time unit is within some give bound. However, the
fail-aware protocols have to deal with situations when
processes become partitioned, partitions merge, or the
number of failures per round becomes that high that
servers have to switch to their exception semantics.

3 Fail-Awareness
Since our main interest is in fail-safe applications,

we base our approach on the following idea: instead
of depending on the assumption that the number of

P I .

283

failures per time unit never rises above a given bound,
we require that

0 services mask all failures as long as the the num-
ber of failures per time unit is within some given
threshold, and

0 a server detects when it cannot provide its stan-
dard (synchronous) semantics anymore (because
the number of failures is above the threshold) and
signals that condition to its clients using an (ex-
ception) indicator (see also Section 5.2), i.e. the
servers are fail-aware.

Typically, some processes of an application will
monitor the servers the application depends upon and
switch the system to a safe state when “too many”
servers cannot provide their standard semantics any-
more. The communication between these processes to
coordinate the switch to a safe state should - when-
ever possible - use communication based on measuring
the passage of time. This ensures that communication
takes place between these processes even when the net-
work is overloaded or partitioned (see Section 6 and
[8] for examples). We will refer to this type of com-
munication as communication b y time. In our designs
we mainly use a (time) locking mechanism to facili-
tate communication by time between processes (see
Section 5.3).

The specifications of the fail-aware services we have
designed so far are typically derived from the spec-
ifications of the corresponding synchronous services,
i.e. services that were originally specified to be im-
plemented in synchronous systems. We transform the
specification S of a synchronous service into a new,
but similar, specification F A so that F A becomes im-
plementable in timed asynchronous systems that are
characterized by having no bound on the number of
failures per time unit and the possibility of commu-
nication partitions. Fail-awareness for partitionable
systems is based on the concept of a logical partition
[9] to represent communication partitions: a logical
partition consists of a unique id and a sequence of
memberships [5].

The transformation of a synchronous specification
S into a fail-aware specification F A is done in four
steps:

the interface of F A is augmented with an excep-
tion indicator]

an F A server is required to provide its standard
semantics, defined to be identical or very close to
the synchronous semantics S , whenever its indi-
cator signals that it is part of a logical partition,

otherwise] when the indicator signals that a server
is not part of a logical partition, it has to provide
a specified exception semantics] and

the indicator of a server p in a communication
partition S P must signal that it is part of some
logical partition that contains SP whenever the
communication and process services in S P exhibit
“synchronous behavior”, that is, the number of

failures per time unit within SP is within some a
priori given bound. We call S P a stable partition.
A formal definition of a stable partition can be
found in [a].

The detection that a server cannot provide its stan-
dard semantics anymore is based on several mecha-
nisms that we detail in Section 5. Note that a server
does not actually have to decide if it is in a stable
partition or not since (1) a server has to guarantee
by design (i.e. by masking failures) that it provides
its standard semantics as long as it is part of a stable
partition, $2h it has to detect when it cannot mask all
failures an ence, cannot provide its standard seman-
tics anymore (i.e. by design this can only happen when
it is not part of a stable partition)] and (3) a server
typically provides its standard semantics as long as it
masks all failures even though it might not be part
of a stable partition. Section 5 also describes our im-
plementation of an exception indicator: an indicator
has to enable clients to detect that a server cannot
provide its standard semantics even when the server
suffers performance failures. This allows the processes
that monitor the servers (and switch the system to a
fail-safe mode) to query the current semantics of a
server at any point in time.

4 Fail-Aware Services
We have designed and implemented a hierarchy of

fail-aware services to support the design and imple-
mentation of fail-safe real-time applications (see Fig-
ure 1) [$]. The foundations of the hierarchy are an
asynchronous datagram service and a process man-
agement service that provide the semantics assumed
by the timed asynchronous system model, i.e. mes-
sages have omission/performance and processes have
crash/performance failure semantics. We give an
overview of the goals of the different fail-aware services
in the presence of partitions. We refer the reader to
[8] for a description and performance measurements of
our implementation of the protocol stack.

fail-aware broadcast -+ depends upon

fail-aware membership

fail-aware clock synchronization

fail-aware clock reading

fail-aware datagram

timed asynchronous system

+ +
1-

+
local leader election + 4 4--+---- independent assessment

Figure 1: Hierarchy of fail-aware services to support
the design of fail-safe partitionable real-time applica-
tions.

4.1 Partitionable Systems
When it comes to designing distributed protocols,

the ideal underlying system is one that is completely
synchronous: each pair of non-crashed processes p and

284

q is O-connected, i.e. p and q are timely and each mes-
sage sent between p and q is timely (see [2] for a for-
mal definition). Since processes and messagees do not
suffer performance failures, this greatly simplifies pro-
tocol design. In practice, systems are often not com-
pletely synchronous, in particular, we are considering
systems in which the probability that partitions occur
is not negligible. When a system splits into partitions,
the ideal situation (with respect to the design of pro-
tocols) would be that each partition shows completely
synchronous behavior (see Figure 2 : all process pairs

nected from processes outside their partition, i.e. they
do not receive any messages from other partitions (see
[2] for a formal definition). If a system only splits into
such “ideal partitions”, the design of protocols would
be reasonably simple since the protocols do not have
to handle situations like the inability of some processes
to communicate with other processes in the same par-
tition, or sporadic message arrivals from other parti-
tions.

in a partition are O-connected an d they are discon-

1 - O-connected timely urocesso ideal partition)

Figure 2: Ideally all processes in a partition should be
mutually O-connected with all processes in the same
partition and be disconnected from all processes in
other partitions.

Real communication partitions are not always ideal
in the above sense. For example, for some time inter-
val a process r might be linked to a process q by a
“one-way connection”, i.e. a connection that allows
r to send timely messages to q but does not allow
r to receive timely messages from q (see Figure 3).
Due to local network overload, two processes n and o
might be linked by a “slow-connection”, i.e. all mes-
sages sent between n and o suffer performance fail-
ures. Instead of each process pair p,q in a partition
being O-connected, they could only be F-connected [a]
for some F > 0, i.e. p and q are timely and at most
F messages per time unit sent between p and q suf-
fer omission/performance failures. In what follows, we
use the term “connected” to denote “F-connected” for
some fixed F . Note that the connected-relation in a
partition might also not be transitive, i.e. each of the
process pairs (0, k) and (k , q) might be connected while
process pair (0, q) is not connected (see Figure 3).

The goal of the fail-aware protocol hierarchy is to
provide - whenever possible - an application with an
abstraction similar to that of an ideal partition to re-
duce the complexity of programming distributed real-
time applications for partitionable systems: a logical
partition. When a server is not part of a logical par-
tition, it has to switch to its exception semantics. To
make logical partitions similar to ideal partitions, we

- connected timely process
- - slow connection -e- one-way connection

Figure 3: Real partitions are not always ‘ideal’: slow
connections, one-way connections, and non transitiv-
ity of the connected-relation complicate the protocol
design.

require that logical partitions do not overlap and all
processes in a logical partition be able to communi-
cate via a tomic broadcasts with all processes in their
logical partition in a timely manner and that they
be “broadcast-disconnected” from processes in other
logical partitions, i.e. they only receive broadcasts
that were sent by processes within their logical par-
tition. Thus, the fail-aware services have to provide
an application with a view of the system in which
the connected-relation (with respect to atomic broad-
casts) is transitive. There are two main approaches to
achieve this goal:

message forwarding: a process o can send mes-
sages via process k to destination q when o is dis-
connected from q while k is connected to q (see
Figure 3). One way to implement message for-
warding is message diffusion, i.e. a sender of a
message m sends ”z to all connected processes
and each process q that receives m sends m to
all connected processes unless q is the destina-
tion of m or q has adready forwarded m. Message
diffusion can be prohibitively expensive for many
applications.

e removing connections: even though two processes
p and q can communicate via datagram messages,
higher level protocols are forbidden to send broad-
cast messages between p and q since they are in
different logical partitions. Removing “too many”
connections could however split the system in par-
titions “too small” to do useful work.

Our approach tries to combine these two extreme
approaches: (1) use a limited amount of forwarding
at the level of the broadcast service, and (2) log-
ically disconnects (when necessary) some processes
even though they are capable of communicating with
each other.

The foundation of our fail-aware protocol stack is
the fai l -aware datagram service [7]. Its purpose is to
reject messages that arrive via slow or one-way con-
nections (see Figure 4). This service computes an up-
per bound on the transmission delay of each message
it delivers (see Section !5.1). The implementation of
this service only depends upon the fact that hardware
clocks proceed within a known linear envelope of real-
time; the service does not need synchronized clocks.

285

- connected timely process
disconnected by fail-aware datagam service

Figiire 4: The fail-aware datagram service allows to
reject messages that arrive via one-way or slow links.

The calculated upper bound for a timely message (i.e.
the transmission delay is 56) is at most some known
A (>6), while the upper bound for a message sent
via a one-way or a slow connection is greater than A.
Higher level services, such as local leader election, re-
ject messages with a calculated upper bound greater
than A time units.

i;iH: :I .,’“ qA, W local leader

- connected timely process : i logical partition

< ’W. \
I - r , j

- -LP3

LPt LP2j
\ \ , ’ O .: U -..!-.w: !., .- ., -I - - .- I

Figure 5: The local leader election service elects local
leaders and creates non-overlapping logical partitions
each consisting of the ‘supporters’ of a local leader.

The next step is to combine processes into logical
partitions. This is the goal of the local leader elec-
t i o n service [9]. It has to create logical partitions such
that each set S of processes that are mutually con-
nected (i.e. each two processes in S are connected)
is in the same logical partition. For example, all pro-
cesses in LP1 of Figure 5 are mutually connected and
therefore have to be in the same logical partition. To
create logical partitions, the local leader protocol tries
to elect a process in each communication partition as
local leader (see [9] for details): a process T supports
the election of the process l only if 2’s identification
is smaller than the id of any other process that r is
connected with. A process 1 becomes local leader only
if it has the support of all processes it is connected
with. A local leader l creates a logical partition L P
that contains all processes that support I’s election.
The id of LP is unique. For example, in the situ-
ation illustrated in Figure 5 the protocol elects pro-
cesses n , I C , and r as local leaders (assuming the fol-
lowing order n<o< ... <u<u). Because processes q , o
and IC support k’s election, k creates a logical parti-
tion (L P 2) consisting of the processes 0, q and k. The
local leader election service ensures that at no point
in time two logical partitions overlap, that is, at any
point in time a process is in at most one logical parti-
tion. This non-overlapping is ensured using the time
locking mechanism (Section 5.3): a process p stays in

a logical partition LP for only a bounded amount of
time before p has to acknowledge that it wants to stay
in L P and thus, p can use its local hardware clock to
make sure that i t is removed from all logical partitions
before it joins a new logical partition [9]. Like the set
of processes that form a communication partition can
change by processes joining or leaving the partition,
processes can leave and join a logical partition. The
fail-aware clock synchronization service ensures that
the deviation between the clocks provided by each of
the servers with the same logical partition is bounded
by some a priori given constant Q. The membership
service [5] keeps track of the set of processes in a log-
ical partition and guarantees that all processes in a

the current members o
logical partition agree any point in clock time) on

logical partition.

-- b-connected -timely process :- :logical partitior

Figure 6: The broadcast service connects all processes
in a logical partition and disconnects them from the
processes in all other partitions.

The next problem we address is that the connected
relation of a logical partition is not necessarily transi-
tive. It is the goal of the fail-aware a t o m i c broadcast
service to ensure that a broadcast in a logical parti-
tion LP is delivered to all processes in LP and to no
process outside of LP. To ensure that all these pro-
cesses get all broadcasts, the local leader IC of a logical
partition forwards a broadcast message m to a process
q when m is sent by some process o that is not con-
nected to q . When the forwarding also fails, the pro-
cesses that cannot deliver all broadcasts are removed
from the logical partition and these processes have to
switch to their exception semantics. The broadcast
service connects all processes in a logical partition via
broadcast messages, making the b-connected (“broad-
cast connected”) relation transitive (see Figure s).
4.2 Fail- Awareness Properties

All fail-aware services of our protocol stack have a
standard semantics that is similar to that of the cor-
responding synchronous services. Due to space con-
straints we can only sketch a few properties of some
of the fail-aware service (for a detailed description of
their semantics and implementations see [4, 5, 9, 71).
The fail-aware clock synchronizat ion service synchro-
nizes the clocks of all clock servers in a logical par-
tition. Each server p provides an exception indicator
I . The indicator tells p’s clients if p’s clock C, is syn-
cironized or not: Ip shows the id of p’s logical parti-
tion when C, is synchronized, and otherwise, it shows
out-of-date (denoted by I). The service provides the
following property: (BD) when two servers p and p
are in the same logical partition at real-time t , their

286

clocks are at most \li apart from each other, where Q
is an a priori given constant,

Our implementation of the service ma es sure that the
indicator Ip of server p will show I before p’s clock can
be more than Q apart from the other clocks in p’s cur-
rent logical partition. We will show in Section 5 how
to achieve that even when p suffers a performance fail-
ure.

The fail-aware membershap service takes the logical
art ition L P created by the local leadership service

b l and maintains agreement on the membership of
L P among the members of LP (see [4] for a detailed
description of the semantics). Each server p maintains
an indicator M S p that shows the id of p’s current log-
ical partition and a set msetp that shows the current
members of p’s logical partition. The service ensures
that at any clock time T when the indicators M S p
and MS,. of two servers p and q show the same logi-
cal partition id L P , then the two servers agree on the
membership of LP:

MSp (T)=MS, (T) =+ msetp (T)=mset (T).
A fail-aware membership service ensures tkat depar-
tures and joins of servers are detected and result in
a new membership of the logical partition within a
known amount of time. In particular, the fail-aware
membership service has also to ensure that (1) when-
ever a server can keep up with the servers in some
logical partition LP i.e. the server agrees with the

be included in the membership of L P , and (2) when-
ever a server cannot keep up with the other servers
in LP (i.e. its indicator shows I, it is crashed, or
in an other communication partition), it is removed
from the membership of LP. Since servers agree on
the membership of their logical partition LP at any
point in clock time, they agree of course on the order
in which servers are included in or removed from the
membership of LP. Each server q that cannot update
its membership in time has to set its indicator to 1 to
signal to its clients that its membership information is
out-of-date. The service has to guarantee that at any
point in real-time a process is in the membership of at
most one logical partition, i.e. the memberships of two
logical partitions never overlap. Our implementation
of the membership service [5] uses the messages sent
by the local leader election service to reach agreement
on the members of a logical partition and the time
locking mechanism (see Section 5.3) to guarantee that
the memberships of two logical partitions do not over-
lap.

The faal-aware atomic broadcast service delivers
messages within a constant R clock time delay after
they are sent and uses their send time stamps and
their sender’s id to totally order all delivered mes-
sages. A broadcast message is time-stamped by read-
ing the synchronized clock Cp of the sender p . Thus,
the broadcast service guarantees causal delivery even
in the presence of a hidden channel like a file-system
whenever the delay of the channel is greater than the
maximum deviation between clocks [14] (which is of
the order of a few milliseconds in our implementation).
The service ensures the atomicity property that either

IP N=Iq (t)#I * I CP (t)- cq pl5 Q .

processes in LP on t 6 e membership of L P) , it will

all servers or no server in a logical partition deliver
a broadcast message. A server that (1) does not de-
liver all broadcasts in time, or (2) has broadcasted a
message that is not delivered in its logical partition,
has to signal to its clients that it is out-of-date. Each
server p maintains therefore an indicator BIp. More
precisely, when a server q broadcasts a message m at
clock time T , then either (A) all processes in LP de-
liver m by T + C2 (i.e. the indicators of all processes
that have not delivered m by T + R must not show
LP by T + a), or (B) no process delivers m and q
signals by T + R to its clients that not all messages
it has broadcasted are delivered in LP by setting its
indicator to 1. When server p’s indicator shows LP
at clock time T , i.e. BIp(T) = LP, p knows that it
has delivered all broadcast messages delivered in LP
no later than T and that all messages it has broad-
casted before T - R are delivered by all processes in
LP. When a process p cannot keep its broadcast indi-
cator up-to-date, it is removed from the membership
of its previous logical partition LP within a bounded
amount of time, i.e. all processes in LP learn that
p has not necessarily delivered in a timely fashion all
broadcasts that are delivered in LP.

The broadcast service uses fail-aware datagram
broadcasts to send broadcast messages to the other
servers. A local leader 1‘ decides what broadcast mes-
sages are delivered in its logical partition and in what
order. It piggy-backs that ordering information on the
datagrams sent by the leader election protocol. When
the “early delivery option” of the broadcast service is
activated, the local leader broadcasts additional or-
dering datagrams to allow the servers an earlier de-
livery of broadcast messages. The local leader rejects
all broadcast messages from other logical partitions
and all broadcasts that arrive in slow datagrams, i.e.
with a transmission delay greater than A. Since the
broadcasts are ordered with respect to their send time
stamps, the local leader waits for A + 9 before it or-
ders a broadcast message to make sure that no broad-
cast message with an earlier send time stamp arrives.
When the local leader detects that some server has
not received all broadcast messages, it forwards these
messages to that server. A server that does not deliver
all broadcast messages in time has to set its exception
indicator to 1. A local leader can re-integrate such
out-of-date servers by transferring them the current
state of the logical partition that it maintains.

5 Mechanisms
Most of the fail-aware protocols we have designed

use time redundancy to mask a bounded number of
performance failures per time unit (“round”). Be-
cause the number of failures per time unit cannot be
bounded a priori, not all performance failures are nec-
essarily maskable. Since such non-maskable failures
can lead to system failures, fail-safe applications re-
quire their detection so that they can switch to a safe
state. We review some of the mechanisms we use to
detect performance failures.
5.1 Fail-Aware Datagrams

The fail-aware datagram service [7] calculates an
upper bound on the transmission delay of some mes-

287

I B local (hardware clock) timd

I t d (m j l D-A-(C-B) I
Figure 7: When the drift rate of hardware clocks
can be neglected, the transmission delay of m can be
bounded by (D - A) - (C - B) even though p’s and
q’s hardware clocks are not synchronized.

sage m using the four time-stamps (each taken with
local unsynchronized hardware clock) of some round-
trip n , m (see Figure 7). The service makes sure that
two connected processes p and q exchange periodically
messages such that when p sends a message m to q it
can piggy-back the time stamps of some message n
that p has previously received from q . This enables q
on the reception of m to calculate an upper bound for
m. Since the drift rates of hardware clocks are in gen-
eral very small (in the order of even when p has
received n multiple seconds before sending m, the in-
crease of the upper bound for m due to the maximum
hardware clock drift rate is very small.

T S
P

... _I

standard E standard
semantics 2 Semantics

‘CA 9

Figure 8: Process p has to adjust its clock before hard-
ware clock times S, S + D , and S + 2 0 . It actually
performs the adjustments at times T , U , and V . Since
p misses deadline S + D < U , a process q that reads
p’s clock between [S + D , U] has to detect that C, is
not synchronized.

5.2 Indicators
Real-time communication protocols can be divided

into two broad classes [13]: t i m e triggered and event
triggered. Event triggered systems react to events di-
rectly while time-triggered systems react only at pre-
defined points in time. Orthogonal to the above classi-
fication, protocols can also be classified as clock-driven
or t imer -dr i ven [lS]. Clock-driven protocols rely on
synchronized clocks while timer-driven protocols rely
on (unsynchronized) timers. All our fail-aware pro-
tocols are event-triggered and all protocols above the
fail-aware clock synchronization layer are clock-driven.
We chose event-triggered protocols since operating
systems like Unix have relatively good reaction times
to events like a message reception but they have poor
real-time scheduling support. The protocols are clock-
driven because clock-driven protocols simplify the im-
plementation of indicators: a process knows the clock

deadline beyond which it cannot provide its standard
semantics anymore, unless ‘something good’ happens
before that deadline. Our indicator design relies on
this knowledge to signal when a server starts provid-
ing its exception semantics.

To explain how clock-driven protocols help to main-
tain indicators, consider a simple fail-aware clock syn-
chronization protocol. A process p has to adjust a
clock C, periodically, say, before its local hardware
clock shows values S , S + D , ... to keep its clock syn-
chronized (see Figure 8). When process p does not
adjust its clock before the given deadlines, its clock
C, is not necessarily synchronized to the other clocks.
Let process q be another process that is executed on
the same computer node as p (p and q use the same
hardware clock H p) . When process q tries to read C,
between S + D and U (measured by H p) , q has to de-
tect that C, is out of synchrony. We achieve that by
using the following mechanism (see Figure 9). An in-
dicator I, of a process p consists of two parts: (1) the
identification of p’s logical partition (lpar t i t i on) , and
(2) the expiration time (e x p T i m e) beyond which the
indicator has to signal that p provides its exception
semantics. When process q evaluates I,, it first reads
the local hardware clock H,. If its hardware clock
shows at most time e x p T i m e , the value of I, is Ipar-
t i t i on . Otherwise, the value of I, is out-of-date (I)
which tells q that p provides its exception semantics.
Process p updates its indicator periodically, e.g. at
time T it sets the expiration time to its next deadline
S + D (see Figure 8). When p suffers a performance
failure, it does not update its indicator in time and
hence, any client that reads the indicator will evalu-
ate I, to out-of-date. For example, when q evaluates
I during interval (S + D , U) , the expiration time is
$+ D while H, shows a value greater than S + D.
Thus, I, returns value out-of-date that allows q to de-
tect that C, is not in synchrony anymore.

A process q that reads I, might itself suffer a per-
formance failure while evaluating the current value of
I An indicator I, therefore returns the hardware
dock time stamp used in its evaluation. This allows
the detection of performance failures that occur dur-
ing the evaluation of Ip or during the usage of the
value returned by I,.

Hp =expTime clock
lpartition I G E

I IP
out-of-date

Figure 9: The indicator of a process p consists of the
logical partition lpart i t ion of p and an expiration time
e x p T i m e , i.e. the time when the indicator will become
out-of-date.

5.3 Locking Mechanism
Several of our protocols, e.g. the leader election

service, use a locking m e c h a n i s m to communicate by

288

the passage of time. This mechanism is similar to the
‘leases’ mechanism of [lo] which was introduced to en-
sure cache consistency in distributed file systems. The
locking mechanism requires only one fail-aware data-
gram message instead of a round-trip message pair (or
synchronized clocks) used in the leases mechanism.

The advantage of using time for interprocess com-
munication is that -when applied properly -this com-
munication is possible even when the communication
partners become partitioned. This mechanism is in
particular useful for the coordination of the processes
that switch the system to a safe mode (see Section 6).
The locking mechanism works as follows (see Figure
10). A process p sets some local variable LV to a value
V and sends a message m to a process q at t telling
q that it will not change the value of LV for at least
lockTime real-time units. When process q receives m
at s, it knows that p will not change LV for at least
lockTime - td(m) time units, where td(m) = s - t is
the transmission delay of m. Process q can use the up-
per bound ub(m) >td(m) calculated by the fail-aware
datagram service to determine a lower bound for the
time p will not change L V , i.e. at least until time
U = s - ub(m) + lockTime. The interesting part is
that at time t + lockTime process p can change the
value of LV without having to notify q about that
change because p will not use its knowledge that LV
equals V beyond time U 5 t + lockTime. For exam-
ple, consider that p lets q know by m that p wants to
be part of q’s logical partition LP until at most time
t + lockTimel then p can try after time t + lockTime
to become part of another logical partition without
sending q another message since q will remove p from
LP before t + lockTime. In other words, the locking
mechanism can be used to guarantee that a process is
at any point in real-time in at most one logical parti-
tion.

A

; tf’ockTime I L V = V t

l p k

Figure 10: A process p guarantees not to change its
variable LV for at least lockTime time units. Process
p knows that q will use this information (transmitted
in m) at most to some time U 5 t + lockTime.

6 Traffic Signaling Example
We illustrate in this section how fail-aware services

could be used in a practical setting in which com-
puter controllers that are physically close to sensors
or actuators are linked by a communication network.
Such systems of distributed controller are common in
factory floor control applications. Space considera-
tions do not allow us to describe such a real-world
application. Instead, we will illustrate the use of fail-
awareness on a simpler, although slightly contrived

example: a synchronized traffic signaling application.
We consider a system with two intersections (see

Figure 11). There are four traffic lights per intersec-
tion. Each of the four directions of an intersection
is sensed by a pair of sensors. During normal opera-
tion at least one of the two sensors of each pair has to
be “operational”, otherwise, the subsystem controlling
the intersection has to switch to a “round robin’’ mode
to guarantee a certain amount of fairness for all cars.
For each intersection there are two safe states: (A)
all four traffic lights show red, or (B) all four traffic
lights flash red. The system should only transition to
safe state (A) for a bounded amount of time before it
transitions to state (B). During non-partitioned oper-
ation the traffic lights of the two intersections have to
be synchronized to maximize the flow of cars. When
the system partitions, the intersections are allowed to
be controlled independently of each other.

Figure 11: The traffic lights (Ll-L8) of two intersec-
tions have to be synchronized. There are two sen-
sors (S?a,S?b) for each traffic light (L?) (and there
are two redundant controllers for each of the two in-
tersections).

The distributed subsystem that controls an inter-
section consists of 1) one pair of redundant intersection
controllers, 2) eight sensor nodes, and 3) four traffic
light actuator nodes, one per traffic light. The sen-
sors broadcast periodically their sensor information.
During normal operation all controllers get the same
sensor broadcasts in the same order. We assume that
the controllers are implemented by a deterministic al-
gorithm. Hence, the controllers of an intersection im-
plicitly agree on the commands to send to the traffic
lights. Since the controllers get also the sensor infor-
mation from the other intersection when the system is
not partitioned, they can synchronize the traffic lights
of the two intersections without any further commu-
nication.

When a sensor S becomes partitioned from a con-
troller C or the sensor broadcasts of S are not deliv-
ered to C in a timely manner, then C and S cannot be
in the same logical partition. To guarantee the fairness
condition (at least one of the two sensors of each sensor
pair has to be operational), it is sufficient that when
the membership of the logical partition of a controller
C does not contain at least one sensor for each direc-
tion of C’s intersection, C switches to a “round robin”
mode. To avoid that the two controllers of an inter-

289

section send conflicting commands to the traffic light
actuators, a controller only broadcasts commands to
the traffic lights when at least all four traffic light ac-
tuators of its intersection are in the membership of
its logical partition: when both controllers have all
traffic light actuators in their membership then both
controllers are in the same logical partition (because at
any point in real-time a process is in at most one log-
ical partition and hence, both controllers receive the

fore, implicitly agree on the commands they send to
the traffic light actuators.

The traffic light actuator has to switch to a safe
mode whenever it cannot be guaranteed that the four
traffic light actuators receive the same sequence of
commands in a timely manner. Since the broadcast
indicator of a broadcast server p signals whenever p
has not delivered all broadcasts in a timely manner,
by monitoring its broadcast indicator a traffic actua-
tor node can determine when it has missed a broad-
cast from a controller unit and it has to switch to a
fail-safe mode. To detect when one or more of the
other three traffic light actuators of an intersection do
not get all broadcasts sent by the controllers, a traffic
light actuator can simply check that all four actuators
are in its current membership because a process that
does not get all broadcasts will be removed from the
membership from a logical partition within a bounded
amount of time. Therefore, it is sufficient that each
traffic light node p has a high priority process that
switches that traffic light to a safe state when (1) p’s
broadcast indicator signals that it has not received all
broadcasts, or (2) p’s membership does not contain at
least one of the two controllers and all four traffic light
actuators of the intersection. Note that some simple
hardware circuit that checks if the indicator of some
server is up-to-date (see [8] for an example circuit)
can in some cases replace the necessity of such high
priority processes.

The switch to a safe state of the four traffic lights
of an intersection has to be synchronized in the sense
that (1) when one is flashing red the other lights have
to show red or have to flash red, and (2) after switching
to a fail-safe mode all lights have to flash red within
a bounded amount of time. Let us now describe how
the time locking mechanism can be used to coordinate
the switch to a safe state even when all four traffic
lights are partitioned from each other. For simplicity
of exposition, let us assume that there are only two
lights L1 and L2. To achieve an coordinated switch,
L1 and L2 send each other periodic fail-aware unicast
messages during their normal operation which lets the
other traffic light know that the sender will not switch
to the “flash state” for at least It time units. L1 can
switch to flash stat,e whenever it has not sent such
a message for at least It time units (see Figure 12).
When L2 does not receive at least every It time units
a message from L1, it first switches to red and when it
is sure that L1 shows red or flashes red, it transitions
to flash red. L1 knows that at least It time units after
its last message to L2 that L2 has to switch to red or
flash state. Note that L2 has to stay in the red state
for at most It time units before i t can switch to the

same sensor 2 roadcasts in the same order and there-

flash state.

flash

Figure 12: The two lights coordinate their switch to
the flash state using a locking mechanism. L1 can
switch to the flash state at d because it knows that L2
cannot assume after c < d that L1 is in the normal
state. L2 cannot switch to the flash state until time e
since i t has sent n ensuring that it will not switch to
the flash state before e.

7 Related Work
Much of the research in distributed real-time sys-

tems has focused on the simpler, guaranteed response
paradigm. Some systems designed according to that
paradigm are Mars [13], XPA [20], TTP 121, and the
Advanced Automation System family [l i . Recently,
some of the research has focused on adaptive real-
time systems. Research on detecting performance fail-
ures in ‘quasi-synchronous’ systems is described by
Almeida and Verissimo [19]. Their approach depends
on the existence of a lower level synchronous communi-
cation channel to detect such failures. In contrast, our
approach does not require such a basic channel, but
uses unsynchronized local clocks with bounded drift
rates to detect performance failures. There also ex-
ist at least two systems that support the construction
of partitionable fault-tolerant distributed applications
on top of a network of workstations and that aim to
provide real-time support by providing high through-
put and predictable latency: Transis [3] and Totem
[15]. In contrast to these systems, our approach aims
to support the design of real-time systems by simpli-
fying the detection of situations when the delays of
messages and processes become that high that not all
performance failures can be masked and an applica-
tion has to switch to a fail-safe mode.

We introduced the concept of fail-awareness in [B] as
a general method of transforming synchronous service
specifications into weaker, fail-aware service specifica-
tions that are implement able in timed asynchronous
systems [a]. In our earlier work on fail-awareness [6]
we did not address the issue of partitionable operation:
only servers in the partition that contains a majority of
processes were allowed to make progress, i.e. at most
the servers in one partition can provide their standard
semantics. The main contribution of this paper is to
show how fail-awareness can be extended such that
servers in multiple partitions can make progress
hence, can increase the availability of the
introducing the concept of logical partitions.

290

8 Conclusion
The guaranteed response paradigm [13], which al-

ways ensures timely responses, depends on the use of
synchronous services, which in turn depend in a basic
way on the assumption that the maximum number of
failures per time unit is known. If this failure assump-
tion, fundamental to all synchronous service imple-
mentations, can be violated at run-time, these imple-
mentations can be subject to unpredictable behavior.
Much of the off-the-shelf hardware and software makes
it very hard to guarantee a failure assumption at run-
time. To address the current trend towards using off-
the-shelf components in system design, fail-awareness
no longer depends on a failure assumption: as long as
the number of failures per time unit stays bounded,
a fail-aware service provides its standard synchronous
semantics and when too many failures occur per time
unit the service performs a timely switch to its spec-
ified exception semantics. A description of our im-
plementations of the fail-aware services we have in-
troduced in this paper and their performance can be
found in [8]. A detailed description of some of the
fail-aware services are given in [7, 9, 5, 41. A more
detailed rail-way crossing example is presented in [8]
and it shows how an application can use application
level redundancy to mask a bounded number of perfor-
mance failures per time unit and how the system can
be switched to a safe state using a simple hardware
circuit when the amount of redundancy is exceeded
due to the occurrence of too many failures. (All these
reports are available via our home pages.)

References
F. Cristian, B. Dancey, and J . Dehn. Fault-
tolerance in air traffic control systems. ACM
Transactions on Computers, 14(3):265-286, Aug
1996.

F. Cristian and C. Fetzer. The timed asyn-
chronous system model. Technical Report CS97-
519, UCSD, Jan 1997.

D. Dolev and D. Malki. The transis approach to
high availability cluster communication. Commu-
nications of the ACM, 39(4):64-70, Apr 1996.

C. Fetzer and F. Cristian. Derivation of fail-aware
membership service specifications. Technical Re-
port CS96-502, UCSD, Nov 1996.

C. Fetzer and F. Cristian. A fail-aware member-
ship service. Technical Report CS96-503, UCSD,
Nov 1996.

C. Fetzer and F. Cristian. Fail-awareness in timed
asynchronous systems. In Proceedings of the 15th
ACM Symposium on Principles of Distributed
Computing, pages 314-321a, Philadelphia, May
1996.

C. Fetzer and F. Cristian. A fail-aware datagram
service. In Proceedings of the 2nd Annual Work-
shop on Fault- Tolerant Parallel and Distributed
Systems, Geneva, Switzerland, Apr 1997.

C. Fetzer and F. Cristian. Fortress: A system to
support fail-aware real-time applications. Tech-
nical Report CS97-520, UCSD, Jan 1997.

C. Fetzer and F. Cristian. A highly available local
leader service. In Proceedings of the Sixth IFIP
International Working Conference on Dependable
Computing for Critical Applications, Grainau,
Germany, Mar 1997.

C. G. Gray and 13. R. Cheriton. Leases: An
efficient fault-tolerant mechanism for distributed
file cache consistency. In Proceedings of the 12th
ACM Symposium on Operating Systems Princi-
ples, pages 202-210, Dec 1989.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani,
W. Schwabl, C. Senft, and R. Zainlinger. Dis-
tributed fault-tolerant real-time systems: The
Mars approach. IEEE Micro, pages 25-40, Feb
1989.

H. Kopetz and G. Grunsteidl. Ttp-a protocol for
fault-tolerant real-time systems. IEEE Computer,
pages 14-23, Jan 1994.

H. Kopetz and P. Verissimo. Real time and de-
pendability concepts. In S. Mullender, editor,
Distributed Systems, Second Edition, chapter 16,
pages 411-446. Adclison-Wesley, New York, 1993.

L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications

L. Moser, P. Melliar-Smith, D. Agarwal, R. Bud-
hia, and C. Lingley-Papadopoulos. Totem:
A fault-tolerant multicast group communication
system. Communications of the ACM, 39(4):54-
63, Apr 1996.

D. Powell. Failure mode assumptions and as-
sumption coverage. In Proceedings of the 22nd In-
ternational Symposium on Fault- Tolerant Com-
puting Systems, pages 386-395, 1992.

D. Stewart and P. Khosla. Mechanisms for detect-
ing and handling timing errors. Communications
of the ACM, 40(1):87-93, Jan. 1997.

P. Verissimo. Real-time communication. In
S. Mullender, editor, Distributed Systems, Sec-
ond Edition, chapter 17, pages 447-490. Addison-
Wesley, New York, 1993.

P. Verissimo and C. Almeida. Quasi-synchronism:
a step away from the traditional fault-tolerant
real-time system models. IEEE TCOS Bulletin,
7(4), Dec 1995.

P. Verissimo, P. Bond, A. Hilborne, L. Rodrigues,
and D. Seaton. The extra performance architec-
ture (xpa). In D. Powell, editor, Delia-4 - A
Generic Architecture for Dependable Distributed
Computing. Springer Verlag, Berlin, 1991.

of ACM, 21(7):558--565, JuI 1978.

291

