@ Real-Time Systems, 30, 187-215, 2005
— (© 2005 Springer Science+Business Media, Inc. Manufactured in The Netherlands.
DOI: 10.1007/s11241-005-2461-y

A Technique for Adaptive Scheduling of Soft
Real-Time Tasks*

G. BECCARI

S. CASELLI

F. ZANICHELLI

Dipartimento di Ingegneria dell’ Informazione, University of Parma, Italy

Published online: 06 July 2005

Abstract. A number of multimedia and process control applications can take advantage from the ability to
adapt soft real-time load to available computational capacity. This capability is required, for example, to react to
changed operating conditions as well as to ensure graceful degradation of an application under transient overloads.
In this paper, we illustrate a novel adaptive scheduling technique based on rate modulation of a set of periodic
tasks in a range of admissible rates. By casting constraints on rate ranges in a linear programming formulation,
several adaptation policies can be considered, along with additional constraints reflecting various application
requirements. The paper investigates the effectiveness of rate modulation strategies both on simulated task sets
and on real experiments.

Keywords: adaptive scheduling, overload management, priority scheduling, rate modulation, graceful degrada-
tion, robotic applications, multimedia applications

1. Introduction

Real-time systems are being increasingly designed for complex applications and dynamic
environments. For these applications, it is sometimes impractical or impossible to provide
static guarantees to real-time computations. Consider an autonomous vehicle performing
a surveillance task. The vehicle runs a number of sensor acquisition and interpretation
tasks while patrolling an environment and avoiding obstacles. If ambiguous sensory values
or intrusion clues are detected, the vehicle might be required to activate costly sensory
operations, such as laser scanning or high resolution stereo vision, which otherwise would
be normally kept off. If a fast moving intruder entity is perceived, the system might be
required to activate an urgent computation to plan a path blocking the intruder.

In dynamic environments, and with the sensory and feature rich systems which are
increasingly common nowadays, it becomes very difficult or impossible to guarantee
real-time computations under all possible situations. Furthermore, many computational
techniques, such as those derived from artificial intelligence, providing intelligence and
flexibility to applications, exhibit highly variable computation times (e.g. search al-
gorithms, motion planning, learning components). Hence, adopting their worst case

*Partial support for this research has been provided by MURST, Italy (PRIN project ISIDE on “Dependable
reactive computing systems for industrial applications” and special project “RoboCare” funded by L. 449/97),
and by ASI, Agenzia Spaziale Italiana (contract I/R/134/00).

188 BECCARI, CASELLI AND ZANICHELLI

execution time results into an unacceptable under-utilization or into a non-schedulable
system.

On the other hand, real-time system computations may offer sources of flexibility which
could actually help in determining a feasible schedule. For example, the sampling period
of digital process control systems can often be adjusted within a given acceptable range,
depending on the time constants of the plant, as long as the feedback control algorithm
parameters are designed taking into account the chosen sampling rate (Kuo, 1992; Franklin,
1995). Likewise, the rates of sensory information acquisition and processing tasks can often
be tuned in ranges based on the external dynamics. Suppose that the speed of an object must
be inferred from consecutive camera frames. In order to perform the speed computation
task, a range of acquisition rates could be acceptable, as long as the chosen period is known.

The prevailing real-time scheduling paradigms, both static, such as rate monotonic (RM)
scheduling (Liu and Layland, 1973; Lehoczky et al., 1989), and dynamic, such as earliest
deadline first (EDF) scheduling (Liu and Layland, 1973; Stankovic et al., 1998), do not fit
well the requirements of advanced real-time applications in dynamic environments. These
motivations have led to the emergence of adaptation as a major research issue in real-time
scheduling (Beccari et al., 1999; Jones et al., 1997; Kuo and Mok, 1997; Lu et al., 1999,
2000; Nieh and Lam, 1997; Seto et al., 1996, 1998; Shin and Meissner, 1999; Stankovic
et al., 1999; Steere et al., 1999).

In this paper, we describe a novel adaptive scheduling technique based on rate modulation
of a set of periodic tasks in a range of admissible rates. During increasing load situations,
such as those described in the previous examples, adaptation helps in maintaining the real-
time system in a safer state by preventing starving tasks or reducing their number. In general,
adaptation based on rate adjustment allows dynamic re-distribution of computational power
to better fit the current application requirements. By casting constraints on rate ranges
in a linear programming formulation, we show how several adaptation policies can be
considered, along with additional constraints reflecting various application requirements.

Drawing from the domain of autonomous robots (Beccari et al., 1998, 1999), where
task priority plays an essential role and high priority computations should be protected
from missing their deadlines, we focus on adaptation of otherwise static real-time load
consisting of periodic threads. Additionally, we restrict our attention to uniprocessor
systems.

The paper is organized as follows. Section 2 reviews the related research done in the
areas of adaptive scheduling and overload management. Section 3 presents and moti-
vates the basic adaptation strategy proposed in this paper. Section 4 proposes a general
framework for rate modulation yielding a formulation in terms of a linear program-
ming problem. Section 5 describes several adaptation policies taking into account ad-
ditional task requirements and specializing or extending the linear programming formu-
lation. It also provides an example of constraints leading to a more complex compu-
tational problem. Section 6 discusses issues arising in transition to a new set of rates.
Section 7 presents results from off-line assessments of the various rate adaptation poli-
cies, along with results and traces from their actual experimentation on a Solaris sys-
tem. Section 8 outlines areas of further work and summarizes the contribution of this

paper.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 189

2. Related Work

The use of predefined rate schedules for different operating modes has been for a long time
an empirical technique to manage variability in computational load. However, in the real-
time literature until recently relatively few approaches have addressed the overload problem,
the prevailing doctrine being that overload should never occur in real-time systems. A fine
overview of prior art in overload management and adaptive scheduling techniques for real-
time systems is given in Lu et al. (1999). Mechanisms for detecting and handling timing
errors, including overloads, are discussed in Stewart and Khosla (1997), with emphasis on
a specific application-oriented operating system (Stewart et al., 1992).

The need for an adaptive management of the QoS has been widely recognized in the
domain of distributed multimedia systems. The work in Li and Nahrstedt (1998) exploits
digital control theory to determine the states and the control algorithms to adapt the QoS to
the dynamics of the distributed system. To this purpose, a task control model is developed
where equilibrium and stability analyses are carried out for a PID control algorithm. A
graceful degradation of the communication subsystem is obtained in Abdelzaher and Shin
(1998) by means of QoS contracts specifying degraded acceptable QoS levels. Under over-
load or underutilization conditions, a QoS optimization process attempts at maximizing
the aggregate reward, given the information on rewards and violation penalties specified
by QoS contracts. Another framework for rate-controlled scheduling in multimedia ap-
plications is described in Yau et al. (1997). The on-line scheduler and admission control
mechanisms allow applications to effectively adapt their reserved rates to actual execution
rates.

In a different application domain such as robotics, the need for adaptation capabili-
ties in real-time systems arises in so-called hybrid robot control architectures (Musliner
etal., 1993; Schoppers, 1994). Our initial ideas on adaptive scheduling have been presented
in Beccari et al. (1999), drawing their motivations from the needs of autonomous robots
control architectures.

Significant research has been also devoted to schedulers providing some degree of
adaptation to cope with dynamic, overloaded environments. For example, Jehuda and
Israeli (1998) propose an automated meta-controller for adaptable real-time systems. The
high-level meta-controller determines dynamic reconfigurations in connection with system
mode changes. The need for scheduling systems providing real-time guarantees to a subsect
of tasks withing a general operating system has been emphasized in Stankovic et al. (1996).
The SMART scheduler (Nieh and Lam, 1997) dynamically balances between the needs
of real-time and traditional applications, providing dynamic feedback to allow them to
adapt to the current load. It considers a common importance attribute for both kinds of
applications based on priorities and weighted fair queueing, using an urgency mechanism
based on earliest deadline scheduling to optimize the order in which tasks are serviced. The
Rialto scheduler (Jones et al., 1997) allows the applications to specify minimum guaranteed
execution rates through CPU reservations whereas the feasibility of time constraint requests
are analyzed by reasoning on a precomputed scheduling graph. In the scheduling system
described in Steere et al. (1999) each thread is allocated a percentage of CPU cycles over a
period of time and a feedback controller is exploited to monitor the rate of progress for the

190 BECCARI, CASELLI AND ZANICHELLI

thread as well as to compute new proportions and periods. This work, however, is oriented
to general operating systems, and does not address the issue of real-time tasks performance.

Load-adjustable algorithms (Kuo and Mok, 1997) and value-based policies (Buttazzo and
Stankovic, 1993; Koren and Shasha, 1992) are the main techniques proposed for graceful
recovery from overload. A load adjustment mechanism is proposed in Kuo and Mok (1997)
in order to handle periodic processes with varying temporal parameters. The aim of this
work is to determine feasible time parameter configurations (execution time C and period
T) and thus modify the real-time computation for collections of tasks. The configuration
selection problem is solved by a harmonic approach achieving the maximum exploitation
of the computational resources under any time parameter configuration. While appealing,
this approach does not lend itself to many real-time systems, where execution times, in
spite of their variability, cannot be set or chosen by the designer.

Value-based policies, e.g. RED (Buttazzo and Stankovic, 1993) and D,y (Koren and
Shasha, 1992), adopt reject procedures that suspend low value tasks according to the
application privileges they own. This approach is particularly suited for hard real-time
applications. In many real-time architectures, while it is acceptable that certain soft real-
time threads are computed at a lower rate, typically few or no threads can be rejected for
an arbitrary amount of time without a serious impairment of system functionality.

Baruah and Haritsa (1997) propose a scheduling algorithm maximizing the effective
processor utilization during overload, given a minimum slack factor for all tasks. The
algorithm is developed in an EDF scheduling framework, hence it does not guarantee
which tasks will not be affected by overload.

Other research deals with real-time policies compliant with soft time constraints. For
instance, the jitter analysis in Baruah et al. (1997) makes the assumption that inaccuracy
characterizes actual systems, hence some jitter, e.g., the uncertainty of the arrival times
of individual frames in a communication system, should be taken into account during the
design of real systems. The skip approach in Caccamo and Buttazzo (1997) accepts more
flexible timing constraints than those allowed by usual real-time approaches. It assumes
that certain tasks could abort some instance during a periodic execution, especially for data
transmission applications. In our view such a soft real-time approach is well-suited also for
other types of applications, such as process or robot control architectures, although some
application-specific framework is required.

In Stankovic et al. (1999), Lu et al. (1999, 2000) the authors assume a flexibility in
timing requirements similar to the one considered in this paper. To address the dynamics
of the environment, they propose a modified EDF adaptive scheduling framework based
on feedback control methods and use feedback control loops to maintain a satisfactory
deadline miss ratio when task execution times change.

An interesting technique for overload management in hard real-time control applications
is described in Ramanathan (1999). The author presents a scheduling policy determinis-
tically guaranteeing m out of any k periodic task activations, along with a methodology
able to minimize the effects of missed control-law updates. This work provides a solid
foundation to graceful degradation policies of periodic real-time tasks. However, unless the
overload duration is very short, the application could be significantly impaired by the loss
of periodic execution for a number of real-time tasks.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 191

The contributions in Buttazzo et al. (1998, 2002), Seto et al. (1996) and Shin and Meissner
(1999) can be directly compared to the research described in this paper, as they all refer to
periodic processes and pursue adaptation by changing task rates. In Buttazzo et al. (1998,
2002) periodic computations are modeled as springs with given elastic coefficients and
minimum lengths. Requested variations in task execution rates or overload conditions are
managed by changing the rates based on the springs’ elastic coefficients. Compared to
the general framework described later in this paper, the solution computed by solving the
spring problem corresponds to a single rate adaptation policy implicitly encoded in the
elastic coefficients. We feel that the user would be more comfortable managing concepts
such as task values and priorities rather than spring coefficients. Furthermore, we show that
several adaptation policies, emphasizing different criteria relevant to applications, can be
made available to designers. Finally, the spring-based formulation does not allow additional
constraints to be taken into accounts, nor does it provide a clear task value-to-elasticity
mapping.

In Seto et al. (1996) task rates are allowed to vary within given ranges. Each task is
assumed to be characterized by a performance index such that the index is a monotonically
decreasing and convex function of the task rate. An optimization problem is then formu-
lated as a nonlinear programming problem, and task rates are determined by means of a
combination of search and Lagrangian multipliers. The approach, however, is conceived
for digital control systems and tackles control system design together with task scheduling.
For this reason, it cannot deal with tasks unrelated to the control function or lacking an
associated performance index, such as tasks devoted to input data processing. Furthermore,
the proposed technique, due to its computational complexity and its interaction with digital
control synthesis, is only suitable for off-line, static schedulability analysis.

The work in Shin and Meissner (1999) aims to extend the approach in Seto et al. (1996)
to make it suitable for on-line operation in multiprocessor systems. The paper shows the
development of a performance index for a specific example, however the approach remains
restricted to digital control systems or similar applications. Load adaptation is pursued by
means two mechanisms: task reallocation to other processors, assumed to be uniform and
without communication and migration costs, and period extensions in fixed steps. Unlike
our own work, the proposed heuristics are restricted to the case of simply periodic processes,
i.e. where all task frequencies are harmonic.

The aforementioned papers address a variety of problems similar to the one discussed
in the present paper and investigate useful related approaches. The specific problem de-
scribed in this paper is highly relevant in application domains such as process control and
multimedia, and is addressed by means of a general rate adaptation framework.

3. The Adaptation Strategy

Let7 = {11, 1o, . . ., Tv } be aset of N independent real-time periodic tasks. Each task 7; has
aworst case execution time (WCET) C;, a relative deadline D; (relative to its ready/request
time), and a period T3, i.e., T; should be executed once every T; time units. We assume that
7T is partitioned in two subsets 7, and 7, so that 7 = 7, U7, and 7, N 7; = @. T}, is the

192 BECCARI, CASELLI AND ZANICHELLI

set of hard real-time tasks and 7 is the set of soft real-time tasks. Tasks in 7 are sorted by
increasing period, i.e.,

For the purpose of this paper, we assume that soft real-time tasks are characterized by a
range of admissible rates, whereas hard real-time tasks are characterized by fixed rates.
Tasks in 7; satisfy the following hypothesis of non-null rate modulation range:

Ti,min = Tz = Ti,max (2)
Ti,min 7& Ti,max

i.e., under proper conditions, the periods of soft real-time tasks can be adjusted within their
allowed range. For each task in 7y, a preferred nominal period T; ,, within the range (2) can
also be defined.

Tasks in 7}, are characterized by a null modulation range:

Ti,min - Tt = Ti,max (3)

Tasks are scheduled by Rate Monotonic (RM) scheduling (Liu and Layland, 1973) and
priorities are set a priori accordingly: namely, if P; is the priority of t; and P;y; is the
priority of 7;y;, then P; > P;;|. The processor Utilization Factor of each task t; is U;
= C;/T;. The least upper bound for a set of N tasks to be feasibly scheduled by the RM
algorithm is L(N) = N(2ﬁ — D, ie., if UT) = vazl C;/T; < L(N) then the task
set is guaranteed to be schedulable by the RM algorithm (Liu and Layland, 1973). Later
research in RM scheduling has determined improved least upper bounds for U/ (7") along
with necessary and sufficient schedulability conditions (Adusley, 1991; Burchard et al.,
1995; Han and Tyan, 1997; Kuo and Mok, 1997; Joseph and Pandya, 1986; Lehoczky et
al., 1989). Since the present paper is not directly concerned with the bound itself, in the
following we assume Uy, to be any chosen processor utilization least upper bound fully
guaranteeing the set of real-time tasks.

The utilization factor can be written as:

UT) = U(Ty) + UT) “

where U(7;,) = ZI’, T, C;/T; is the utilization factor of the hard real-time subset and
U = ZT, 7. Ci/T; is the utilization factor of the soft real-time subset (Figure 1(a)).
The proposed adaptation policy, hereafter termed rate adaptation policy (RAP), is based
on active management of the I/(7) utilization factor as a means to achieve an appropriate
task schedule. In general, the need to perform such adaptation may arise for a number of
reasons, mostly related to the dynamic nature of the environment and the partial modeling of
the real-time system itself. We coarsely classify situations requiring adaptation as follows:

— less utilization factor is available for the set of tasks,

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 193

lub

h overload Us overload

|
|
| b
|

- A

Figure 1. Requested CPU utilization before and after overload.

— more utilization factor is available for the set of tasks,

— need to adjust the utilization factors of the tasks as close as possible to their nominal
values.

Overload conditions belong to the first class of situations. Overload conditions can arise
because of hard or soft real-time tasks taking longer than expected, hard real-time sporadic
or aperiodic tasks unaccounted for, and modification of scheduling parameters induced
by the real-time application itself, e.g. to reserve CPU utilization to a critical task or to
modify its rate. In case of overload, the active management of the U/(7;) utilization factor
is achieved by means of a reduction of the rate f; = 1/T; for some or all the tasks 7; € 7,
leading to a schedule more suitable for the current context or implementing a graceful
degradation of the application.

It should be noted that adaptation could also be triggered by the opposite situation;
namely, additional utilization factor could become available to a set of soft real-time
tasks, either because of decreased hard real-time load or because soft real-time tasks
are deactivated in the current application context. In case of increased utilization factor
becoming available, rate adaptation allows its dynamic redistribution to those tasks which
can take advantage of higher execution rates.

Finally, if the nominal rates assigned by the designer bear special value for the application,
an alternative goal of rate adaptation can be to keep task rates close to their nominal rates
while minimizing overloads.

In the following, we phrase our discussion on the overload case, even though the same
techniques apply when rate modulation is mandated by a control layer of the application or
when more CPU utilization is available for the set of tasks. A separate discussion addresses
the nominal rates case.

The following inequality:

A=Uw—-UT) >0 (%)

194 BECCARI, CASELLI AND ZANICHELLI

holds even during overload, or otherwise some hard real-time deadline could be missed
and the system would fail. A is the processor utilization actually available to soft real-time
tasks.

When an overload occurs U/(7") becomes greater than U, and some tasks miss their
deadlines. Let A,, be the available processor utilization for soft real-time tasks in an
overload situation. Whatever the source of overload, since Eq. (5) must hold, we have:

U(TS)oy > Aoy (©6)

Note that both members in (6) might have changed from their values prior to overload
(Figure 1(b)). The system could be recovered if the adopted policy can reduce U(7;) below
its present U(7;),, value while still executing soft real-time tasks at acceptable rates. The
proposed adaptation policy exploits the degree of freedom offered by the 7; subset, which
allows choosing in a range of possible rates for each task in order to re-establish

UTy) = Aoy %)

This policy determines a controlled exit from the overload situation as long as a feasible rate
assignment (compatible with constraints (2)) exists. However, the application level control
system must be notified of the new set of rates, as the high-level control policy may need to
be changed accordingly. Moreover, each interested task may possibly need to resynthesize
any rate-dependant parameter, e.g. in PID controllers.

The system can be successfully adapted to the new operating conditions by rate modu-
lation if

C;

= Z/l(,];)min = on (8)

i,max
€Ty

However, even when (8) does not hold, the rate modulation policy helps in taking the
system to a possibly safer state, i.e., in general less tasks will be missing their deadlines
after adaptation.

In order to simplify the presentation of the algorithms implementing the adaptation
policy, we initially assume that tasks in 7 are sorted in such a way that Vz; € 7, 7, hasa
period T; lower than the period T;1 of t,4, withi =1 ... N—1. More precisely, because of
the rate modulation range hypothesis in Equation (2), we assume that:

Ti,max S Ti+l or (9)
Ti 5 Ti+l,min

Furthermore, we assume that Vt; € 7, T; < T; nax in nominal operative conditions.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 195

3.1. Basic Approach: Simple Rescaling

Aoy
U(T)oy

nasn = % If Vi, € 73, nT; < Timax then a fair RAP is simply obtained by replacing T;
with n T,‘.

This straightforward replacement will re-establish the real-time guarantees for the system
as required by Eq. (7). Note however that if:

Let us define the Rescaling Factor F as F = and its reciprocal Relaxation Factor

EITI' S 7; : ﬂTz > Ti,max (10)

a simple rescaling of the tasks’ periods cannot be applied.

4. A General Rate Modulation Framework

In general, finding out a feasible modulation that guarantees the task set of a soft real-time
application cannot be achieved by simple rescaling, due to the constraints on the allow-
able rate modulation ranges. We next describe a general problem formulation framework
incorporating such constraints, along with several solution algorithms.

The goal is to determine a set of periods T; for tasks 7; € 7 so that the constraint (7) holds.
Given the inverse relation between task periods and utilization factors, U; = C;/T;, the C;
can be assumed as constants.! We investigate approaches that search a guaranteed state along
different directions in the space of the Utilization Factors U = {U; : Ui min < Ui < Ui max},
with Ui min = 77— and Uy max = 7=

Let A* be a known value set to less than or equal to the maximum available utilization
factor for soft real-time tasks, e.g., A* = Aoy in (7). Letx; =U;, witht; € 75, j=1---8S
and S = |7;|. The x; are real variables, A* is a real constant, and 0 < x;, A* < 1.

We translate the rate modulation constraints (2) and the capacity constraint (7) in terms
of the new variables x;, leading to the following linear programming (LP) formulation:

Find

S
max Y vjx; (11)
j=1

subject to

X j,min = xjij,maXa JZIS

S
2%
j=1

A

A*

where X;j min, Xjmax and v;, j = 1 ... S, are known positive constants; weights v; express the
logical task value of t; € 7 (discussed below), X min = Uj min, a0d X} max = U max-

196 BECCARI, CASELLI AND ZANICHELLI

As well known, linear programming problems can be solved with polynomial algorithms,
such as the ellipsoid method (Garey and Johnson, 1973), or with the standard and usually
efficient simplex algorithm (Hillier and Lieberman, 2000).

Weights v; appearing in the LP formulation (11) can be used to alter the otherwise
implicit assumption that the logical value of each task is essentially the same as its priority
determined by the scheduling policy. As a matter of fact, in many application domains it
is not uncommon to regard a low rate activity (hence lower priority in RM scheduling)
as more valuable than higher rate computations (higher RM priority). Additionally, the
scheduling priority and the logical value of a task can be considered as distinct parameters
when scheduling guarantees have to be re-established after an overload.

4.1. Partially Ordered Rate Modulation Ranges

The rate modulation framework (11) yields a new schedule which does not affect task pri-
orities. In fact, constraints in (9) ensure that all tasks maintain their original RM ordering
after rescaling. However, in many real applications the disjoint rate modulation ranges con-
straints in (9) do not hold. In general, any two period ranges could be partially overlapping
or properly included. Because of rate modulation, the priority of a subset of tasks, expressed
by their RM ordering, could be modified from the original assignment.

The linear programming formulation (11) remains valid with general rate modulation
ranges. Found solutions, though, might modify the original priority assigned to the task set,
due to the non-uniform rate modulation.

In order to maintain the original priority assignment, if a feasible one exists, the following
additional set of constraints (expressing the rate ordering preserving constraint (1)) can be
included in the LP formulation in (11):

a; Xj Z ajy1 Xjt1, j =1...5-1 (12)

where the a; are known real constants, a; = 1/C;, j=1...8.

Indeed, a major value of the LP formulation is that it provides a framework where several
constraints can be coherently formulated based on the application needs. Unfortunately,
some constraints move the problem out of the LP domain. Examples of such constraints
are minimizing the distance from nominal rates and scheduling with harmonic constraint,
which will be also discussed in the next section.

4.2. Discussion

While the LP problem (11), possibly supplemented by the additional constraints (12),
is generally benign, its solution time with standard linear programming solvers like the
simplex could prove too demanding for on-line adaptation if large task schedules must be
dealt with. Furthermore, sometimes the optimal solution space is very large, with a region
of solutions exhibiting the same value, as the constraints in (11) provide little bias to the
solution.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 197

These considerations motivate the investigation of adaptation policies which can take
advantage from heuristic solution algorithms for the problem (11), both to obtain more
efficient adaptation techniques and to bias the solution toward specific properties of interest.
The policies described below are representative of the spectrum of techniques rather than
exhaustive. They have been chosen because of the specific property they emphasize: low
computational cost (greedy), fairness (iterative saturation), priority (prioritized saturation),
protection of more valuable computations (value-based approaches), closeness to nominal
scheduling parameters.

5. Adaptation Policies
5.1. Greedy Algorithm

Due to its simple structure, the particular LP instance (11) can be solved in linear time with
a greedy approach.

RAP Algorithm 1: Greedy

Let X = Zf;l Xjmin and Xpa = Zf:l Xjmax If Xmax < A* we set xj = Xjmax for
each 7; € 7y, i.e., each soft real-time task can be set to its maximum rate or to any desired
rate compatible with the rate modulation constraints (2). If A, > A* than no feasible
solution exists, and overload must be managed by a second-order graceful degradation
mechanism. Nonetheless, all periods could be set to their maximum values to simplify
overload management and reduce the number of tasks experiencing uncontrolled deadline
misses.

The greedy algorithm re-establishes Eq. (7) by maximizing the utilization factor of a
subset of tasks in 7; and relaxing the residual subset of tasks so that if after L steps, L < S,
we have:

L S
ij,max + Z Xjmin < A* (13)
j=1 j=L+1

and after step L4-1:
L+1 S
ij,max + Z Xj,min > A* (14)
j=1 J=L+2

then a feasible solution is given by the following choice:

Xj = Xj max,]=1L
Xj = X;j min> j=L+2...8 (15)

L S
Xp4+1 = A* — ij,max + Z X j,min
j=1

j=L+2

198 BECCARI, CASELLI AND ZANICHELLI

While simple, the greedy approach does not yield a solution ideally suited for most
applications, as it is strongly biased toward maximizing x; for higher priority (lower in-
dexes) tasks at the expense of lower priority ones. In this respect, the greedy algorithm
may be considered as the opposite of the rescaling algorithm in a fairness spectrum. Fur-
thermore, the reference period for soft real-time tasks does not necessarily correspond
to the minimum one. When nominal rates are available, an improved greedy behavior is
obtained by replacing maximum utilization factors X;j m.x with nominal ones x;, in Egs.
(13) to (15). With this modification, favoured tasks will run at most at their nominal
rate.

5.2. Saturation Approaches

It should be noted that the simple rescaling RAP provides, where it is applicable, a maximal
fairness approach in constant time. Several algorithms can be conceived to overcome the
limitations of simple rescaling, providing an approximation of the ideal rescaling solution
when it is not applicable.

We describe two simple algorithms differing in the way they choose the tasks that will
be set to their maximum allowed period and hence only partially rescaled (saturated tasks).
Both algorithms have quadratic complexity in the number of soft real-time tasks, but in the
general case they obtain a more balanced allocation of processor utilization than the greedy
algorithm.

RAP Algorithm 2: Iterative Saturation

Let 7 C 7, be the set of tasks 7; : § Tj > T} max in (10). These tasks are saturated,
i.e.:

Vtk S Tv,sat Tk = Tk,max (16)

7, is then partitioned in such a way that:

Ts = IZ;,unsat U Z,sat (17)

On the current set of unsaturated tasks 7 ynsar We attempt again the rescaling n 7' mechanism,
with:

A=A — U(Z,sm) (18)

and F, n modified accordingly. Since additional tasks may need saturation, the algorithm
continues until the condition U/(7Z;) < A* is re-established.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 199

RAP Algorithm 3: Prioritized Saturation

This algorithm obtains a set of acceptable rate modulation values by saturating tasks in
order of increasing priority. Thus, at each iteration K, K < S:

T =Timm» j=5...K (19)

7 is partitioned so that:

T, =T\ J Tosu where
’Z;k ={t1,...,Tk—1} and

Z,sat = {TK, ceey TS}
Tasks in Ts" are modulated, if possible, by replacing T; with n T}, where:
A=A _Z/[(,Z;,sal) (20)

and F, n are modified accordingly. Iterations start with K = S and continue with K = S —
1,S — 2, ... until condition /(7;) < A* is re-established.

Both saturation approaches described in this section can also be applied when rate
modulation ranges are only partially ordered. In this case, however, a task re-ordering
operation must be executed at each iteration when RM consistency is not preserved owing
to modulation.

5.3. Value-Based Heuristics

Greedy and prioritized saturation algorithms can be easily modified to take into account
logical task values rather than RM priorities to establish which tasks will be saturated.
The greedy algorithm partitions 7; so that in the first subset x; = xjmax With j low in-
dex (i.e. T; high RM priority task), in the second subset X; = Xjmin With j high index
(i.e. 7; low RM priority task), whereas in the third subset a single task with intermediate
index (i.e. intermediate RM priority) is adjusted according to (15). A different “greedy”
adaptation can be obtained simply by changing the task order in 7Z;. Therefore, a greedy
value-based algorithm can be defined by a new task order in 7, where Vt;, 7; € 7T

i < j entails that v; > v;. In fact, high value tasks within this new partition are priori-
tized (i.e. run at their maximum or nominal rate) during overload regardless of their RM
priority.

As the prioritized saturation algorithm also considers the high index (low RM priority)
tasks to be of lower importance, a different, value-based task arrangement in 7y affects the
final modulation as well. Hence, a value-based re-ordering of 7; leads to a different rate
modulation that prioritizes high logical value tasks.

200 BECCARI, CASELLI AND ZANICHELLI

5.4. Scheduling with Nominal Rates

Previously described RAP algorithms exploit task values (and priorities) to re-establish a
suitable scheduling under overload conditions, given a set of timing constraints. However,
the new parameters might noticeably modify the nominal, guaranteed scheduling in use
before the overload. Nominal task rates have been typically assigned at design time in
order to endow the application with the desired behavior while guaranteeing soft real-
time constraints. For this reason, nominal rates might also be taken into account while
re-establishing the scheduling after the overload.

It should be noted that any adaptation policy can be supplemented with a constant time
test to restore nominal rates if sufficient utilization factor is available for soft real-time
tasks, i.e., er T, Ci/Tjn < A = Uuw — U(T}). The following algorithm addresses the
problem of re-establishing a guaranteed schedule while maintaining task rates as close as
possible to a given set of nominal values, where closeness is related to a distance function.

RAP Algorithm 4: Minimum Distance

Let x; = U, be the utilization factorand x; , = U; , = TC—’ be the nominal utilization factor
Vt; € T;, withj=1..Sand § = |7|. Let fix)) = v; (x; - xj,n)2 be a set of convex positive
functions. The goal of maintaining rates close to the nominal ones leads to the following
quadratic programming (QP) problem:

Find

s
min Z'Uj (Xj —Xj’n)z (21)
j=1
subject to

Xjmin = Xj = Xjmax, j=1...8

S
> %
j=1

A*

IA

where X min, Xjmax, and v;, j = 1...S, are known constants, with X; nin = Uj min, Xjmax =
U max» and v; is the logical task value.

Being the quadratic objective function positive definite, (21) is a convex programming
problem, which is well known to be in P (the class of problems solvable in polynomial
time). Hence it can be efficiently solved by a number of algorithms for convex quadratic
programming (Floudas and Visweswaran, 1995), including simple extensions of LP solution
algorithms (Hillier and Lieberman, 2000; Horst and Pardalos, 1995).

5.5. Scheduling with Complex Constraints

We next discuss an example of a scheduling constraint which could be useful in sev-
eral applications but unfortunately moves the problem out of the LP or QP domains.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 201

Adding this constraint to the basic framework in section 4 implies that a more com-
plex solution algorithm is required, thus possibly preventing on-line adaptation for large
schedules.

RAP Algorithm 5: Minimal Harmonic Base

The minimal harmonic base constraint specifies that the new rate values computed by the
adaptation algorithm should be harmonic, or at least as harmonic as possible. This constraint
increases the guaranteed utilization factor U, for RM scheduling from L(N) up to L(H) >
L(N), where H < N is the cardinality of the harmonic base (Kuo and Mok, 1997). Moreover,
a reduced harmonic base could be sought in order to simplify the actual dispatching of the
real-time tasks. Taking advantage from the definitions in equations (2) and (3), the problem
of determining a minimal harmonic base solution for N periodic real-time tasks can be
described as follows:

Find
N
max Y v;x; (22)
j=1
subject to

Xjmin = Xj < Xjmax, J = 1...N

N

ZX,' < Ay

j=1

)Cj :Cjkj,hfhs]:lN, h=1...H <N

where X; min, Xjmax and v;, j = 1 ... N, are known positive constants, Xj min = C; / T} max» Xj max
= C; / T} min, and weights v; express the logical task value V7; € 7. In problem (22) ; 5., f»
and H are search variables: k; ;, are integers, f;, are the H linear independent frequencies of
the harmonic base, and H is an integer. Note that the second constraint in (22) depends on
H,namely Ay = Uy, = HQT — 1).

This problem is in NP (Kuo and Mok, 1997) and not amenable to on-line solution. An
approach for off-line computation involves integration of Constraints Satisfaction Pro-
gramming (Marriot and Stuckey, 1998) and LP techniques via an exhaustive search that
minimizes H. Of the various adaptation strategies considered in this paper, pursuing a
minimal harmonic base is the only one not suitable for an on-line implementation.

5.6. Comparison with Elastic Scheduling

The rate adaptation heuristics presented in this section might be considered, at a first
glance, similar to the "elastic"-based adaptation proposed in Buttazzo et al. (1998). We
next highlight the main difference between the two approaches considering their basic
mechanisms.

202 BECCARI, CASELLI AND ZANICHELLI

Suppose that adaptation of soft real-time tasks is required to make room for an extra
utilization demand of hard real-time tasks. The overall utilization factor available to soft
real-time tasks is thus decreased from A to Ay". Under the elastic adaptation in Buttazzo
et al. (1998), if all soft real-time tasks have identical elastic coefficient, the utilization (A
— Ay') is subtracted in equal parts to all soft real-time tasks, regardless of their current
utilization. For low-utilization tasks, the amount to be subtracted could be comparable to, or
even larger than, their current utilization, whereas high-utilization tasks would be minimally
affected by adaptation. Thus, if all tasks have the same elasticity, elastic adaptation can
easily lead to the setting of low-utilization tasks at their minimum rate, yielding a behavior
close to the Greedy algorithm previously discussed. In contrast, under simple rescaling
(the basic adaptation mechanism proposed in this paper) the utilization (A — Ay') is
subtracted to soft real-time tasks in proportion to their requested nominal utilization. Thus,
this approach will lead to a much more balanced distribution of available utilization factor.

Indeed, in the elastic approach higher elasticity can be assigned to those tasks that are
deemed more suitable for adaptation. The extra utilization factor would then be subtracted
to soft real-time tasks in proportion to their elastic coefficient. Different elastic coefficients
could thus be exploited to alleviate the problem of imbalanced adaptation. However, the
proper setting of these coefficients remains difficult, given that elasticity has no relation
with the processor utilization requested by soft real-time tasks. In the set of algorithms
proposed in this paper, the higher suitability for adaptation of certain tasks can be specified
by assigning them lower values. The value concept is supported both in the general LP for-
mulation and in the Greedy, Prioritized saturation, and Minimum distance RAP algorithms.
The LP formulation will provide a set of rates compatible with available utilization that
maximizes the overall value of the computation, whereas the Minimum distance RAP will
provide a set of rates as close as possible to the nominal rates while maximizing the overall
value of the computation.

6. Transition

When adaptation is triggered by a higher level control system, an issue to be considered
with any rate adaptation policy is how to avoid transient overloads. In general, if the rate
of some tasks must be increased, transition to the new set of rates should be carefully
managed in order not to exceed at any instant of time the available utilization factor. On
the other hand, when adaptation is required to recover from an overload condition, soft
real-time tasks are already experiencing deadline misses, and the prominent goal is to bring
the system under control.

Let us assume that the task set is guaranteed both before and after adaptation. Let {7} } be
the new set of periods computed by the specific rate adaptation policy. We partition the task
set 7, in such a way that 7 ;.. is the set of tasks whose period will either increase or remain
unchanged (T > T;), and 7y 4ecr is the set of tasks whose period will decrease (T/ < T)).
Let #* be the instant of time in which adaptation to the new set of rates is requested. Under
the hypotheses of this paper, tasks in 7 j,c; can be immediately adapted, thereby reducing,
in general, the future utilization demand. Hence, in #* the current execution deadline of the
tasks whose period must be increased is delayed according to the new period.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 203

We thus focus our attention on tasks in 7y gecr, Whose rate must be increased. Let 7; €
s gecr be the first of such tasks and B; = [(t* — @;)/T;] T;, B; >t*, its next execution
deadline, where ¢; is the activation time of ;. In 8;, all tasks in 7 i, have already been
adapted. Since by hypothesis the initial and final schedules are both guaranteed, in j; the
period of t; can be safely set to its new value T;. This argument can be repeated for all
tasks in 7Zg geer. Liu and Layland’s theorem (Liu and Layland, 1973) applied at the next
execution deadline B; of each t; € 7 geer €nsures that the utilization factor remains below
Unub- A similar argument applies to any schedulability check based on a least upper bound
of utilization factor.

In summary, rate adaptation of rate-increasing tasks can be safely performed at their
next release instant following #*. This strategy guarantees that transient overloads are not
induced by adaptation and bounds transition time. In the worst case, the delay between the
time at which adaptation is requested and the end of the transition is equal to the longest
period T; of soft real-time tasks. A similar result was obtained in Buttazzo et al. (1998) for
elastic-based adaptation in connection with EDF task scheduling. Note that the proposed
transition strategy is based on a sufficient-only schedulability condition. The problem of
designing an algorithm to minimize transition time in each adaptation instance remains
open.

7. Experimental Results

A set of experiments has been carried out to assess the behavior of the proposed algo-
rithms onto a test application when its execution is affected by an artificial overload. The
experimental validation has involved both off-line simulations and actual execution of
multi-threaded applications on a Solaris workstation. This section presents the results we
have obtained by modulating the nominal rate of application tasks scheduled with RM
scheduling. We first describe the off-line simulation of a simple test case and compare the
resulting scheduling adaptations. Next, we summarize the results of a statistical investiga-
tion involving the generation of 1,000 test cases. Finally, we report the results obtained with
Solaris thread-based applications, which illustrate the effect of rate modulation algorithms
in actual real-time systems.

7.1. Off-Line Assessment on a Simple Test Case

Table 1 shows the parameters for a simple off-line assessment of the rate modulation
algorithms. All tasks in 7; = {t;... 14} are considered soft real-time tasks owing to the
fact that their periods (utilization factors) can be chosen within admissible ranges. Nominal
scheduling parameters (7, and U,) are also included in the table. Ranges are neither
interleaved nor nested, hence the total ordering assumption holds. Rate monotonic analysis
shows that tasks are schedulable as U, = 0.7705 < M (3) = 0.7797 (where M(K) is Kuo
and Mok’s upper bound (Kuo and Mok, 1997) for a size K of the harmonic base). Task
indexes in Table 1 are tied to their priority assignment.

204 BECCARI, CASELLI AND ZANICHELLI

Table 1. Timing parameters for a set of soft real-time tasks (all times in ms).

Tasks C Tiin T, Tinax Umax U, Unmin Priority Value
71 3 20 30 40 0.15 0.1 0.075 6 6

T2 4 40 60 80 0.1 0.0667 0.05 5 1

73 20 80 120 180 0.25 0.1667 0.1111 4 2

T4 44 180 270 300 0.2444 0.1630 0.1467 3 5

75 60 320 540 600 0.1875 0.1111 0.1 2 3

76 150 600 920 1200 0.25 0.163 0.1250 1 4
Utot 1.1819 0.7705 0.6078

The simulation assumes that at a certain time (¢;,;) task 7; needs to be scheduled with
a shorter period, 71 = 20 ms, thus increasing the overall requested utilization factor to
Uror = Ziﬁ:l U; = 0.8204, and possibly causing a timing fault. As a matter of fact, the
increase of the utilization factor of 7| could equally be induced by an unexpected elongation
of its execution time.

The real-time analysis shows that tasks in 7/ = {1y... 15} are still guaranteed, as
ZiS:l U; = 0.6574 < L(5) = 0.7435 < M(3) = 0.7797, whereas 7’ U {14} is no longer
guaranteed by RM scheduling and 7 could miss its deadlines (Zle U; = 0.8204 > M(3)).

Tables 2 and 3 show how the rate modulation algorithms described in the paper alter task
rate parameters to re-establish scheduling guarantees. The column labels P and V refer to
the heuristics based on task priorities and task values respectively. Within this simulation
71, which is now required to be scheduled with a fixed period of 77 = 20 ms, is regarded
as a “hard” real-time task, i.e., not subject to the rate adaptation strategy, and it is hence
labeled as hard in Tables 2 and 3.

The simple rescaling algorithm is not applicable for this problem owing to the constraints
on task periods. Given the underconstrained nature of this problem, the results provided
by the general linear programming formulation are not particularily useful and are omitted
from Tables 2 and 3.

Table 2. Adaptations resulting from an off-line assessment of some RAP algorithms for
the set of tasks in Table 1 (periods in ms).

Greedy P IterSat PrioSat P MinDist
Tasks T policy T policy T policy T policy
T 20 hard 20 hard 20 hard 20 hard
T2 40 min 70 adapt 66 adapt 65 adapt
73 176 adapt 140 adapt 132 adapt 148 adapt
T4 300 max 300 max 297 adapt 286 adapt
T5 600 max 600 max 600 max 600 max
76 1200 max 1078 adapt 1200 max 1107 adapt

02y 0.0058 0.0016 0.0021 0.0015

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 205

Table 3. Adaptations resulting from an off-line assessment of value-based RAP algo-
rithms for the set of tasks in Table 2 (periods in ms).

Greedy V PrioSat V MinDist V

Tasks T policy T policy T policy
T 20 hard 20 hard 20 hard
Ty 80 max 80 max 80 max
73 180 max 180 max 147 adapt
T4 221 adapt 277 adapt 292 adapt
75 600 max 564 adapt 600 max
T6 1200 max 944 adapt 1014 adapt
0% 0.0062 0.0034 0.0017

The solution obtained by the greedy algorithm (Table 2) is easily computed, although it
exhibits lack of fairness. The task set is partitioned in such a way that task 7, is executed at
its maximum rate, i.e. with its minimum period (min), task t3 is executed at an intermediate
rate (adapt), whereas all other tasks are maximally relaxed, i.e., their periods are set to the
maximum allowable values (max). The iterative saturation algorithm results into a more
balanced solution, since it is able to adapt as many task periods as possible while saturating
areduced set to their maximum period. The prioritized saturation algorithm clearly favors
high priority tasks so that it saturates low priority ones. Columns Greedy V, PrioSat V and
MinDist V in Table 3 show how the the various RAPs implemented are significantly affected
by value parameters. The minimum distance algorithm obtains the scheduling parameters
closest to the nominal rates, as indicated in Table 2 by P2y, ie. the quadratic residual for
the utilization factors with respect to the nominal rates.

7.2. Statistical Assessment

A statistical assessment of the rate modulation algorithms has been performed by means of
a simulation-based methodology. One thousand rate modulation cases have been simulated
for randomly generated task sets of N = 20 tasks each. In each experiment, all tasks have
the same computation time C; and the same admissible range for their utilization factor
Ui, i.e. U; € [Unin, Umax]. The initial value for U; is sampled from a uniform distribution
between Upnin and Upax. This value is assumed as the desired, nominal utilization factor
U, , for each task.

Minimum and maximum values for utilization factors are chosen to be U, = L (N)/5
N and Up,x = 4 L(N)/N. Since N = 20, we obtain L(20) = 0.7053, Upin = 0.00705, and
Umax = 0.14105. With this set of values, it is quite likely that the sum of utilization factors
exceeds L(NV) and the set of tasks cannot be scheduled at the requested nominal rates. Rates
are then adapted based on the RAP algorithms previously described.

Figures 2 and 3 depict the results of rate adaptation performed by the algorithms to obtain
an overall utilization factor equal to L(20). To enable a comparison of the various policies,

206 BECCARI, CASELLI AND ZANICHELLI

0,2

+—|nput
o1sk o—o |tersat
v~ Greedy N

~— PrioSat
*— MinDist

0,1

Utilization Factor

0,05

Task Index (sorted by Priority)

Figure 2. Statistical assessment of the rate modulation algorithms: task indexes sorted by priority.

0,2

H - Input

oo |tersatV
0,15~ v Greedy NV
~— PrioSatV
*— MinDist
=—a MinDistV

Utilization Factor
T

0,05 —

0 s 10 15 20
Task Index (sorted by Value)

Figure 3. Statistical assessment of the rate modulation algorithms: task indexes sorted by value.

in Figure 2 tasks are sorted by increasing priority, i.e. the task index increases with the
requested nominal rate. In Figure 3, instead, tasks are sorted by increasing value, i.e. the
task index increases with the task value, which in turn is assumed to run in the reverse order
with respect to requested nominal rates. Values are then computed as V; = 10 - i. In both
figures the average values of the requested and granted utilization factors across the 1000
random sets of tasks are reported.

The curve labeled as Input represents the requested, nominal utilization factor for each
task. The remaining curves represent the outcome of the various RAPs. Iterative saturation
and prioritized saturation exhibit identical average behavior in Figure 2, whereas prioritized
saturation with value, labeled as PrioSat V, markedly favors higher value tasks in Figure 3.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 207

Greedy is implemented with reference to nominal rates in both Figures 2 and 3, and hence
labeled as Greedy N or Greedy NV when different task values are considered: in each task
set, a few tasks are set to their nominal rate, one at an intermediate rate, and the remaining
at their minimum rate. Minimum distance provides the adaptation closer to the requested
Input utilization factors considering all tasks. When different task values are provided for
the task set, the resulting adaptation (labeled MinDist V) is significantly affected, as shown
in Figure 3.

From a general viewpoint, the minimum distance and the iterative saturation algorithms
appear more suitable for a generic soft real-time application, owing to their ability to
maintain task rates closer to their nominal values. The prioritized saturation algorithm may
prove more effective in specific applications, where rate assignments closely follow the
relative importance even of soft real-time tasks.

7.3. Experimental Evaluation

In the set of experiments described hereafter, rate modulation has been applied to a multi-
threaded application running on a Solaris workstation. Experiments leverage upon Solaris
multi-threading capabilities and soft real-time oriented features, including reduced latency
to interrupts, frequent kernel preemption points, separate scheduling classes (Real-Time,
Sys, User) for thread execution, process memory locking to avoid paging, and high resolu-
tion real-time timers (Sun, 2000).

Building on the POSIX facilities of Solaris, we have also developed a custom library
aiding the design and development of real-time control architectures for the robot domain.
This library, termed rt-1ib (Beccari et al., 1998), implements mechanisms for periodic
computations, handling of timing faults, monitoring of CPU utilization, and procedures that
allow on-line modification of thread scheduling parameters (period, deadline and priority).
Times in rt-1ib are measured using gethrtime/gethrvtime calls (with 1 us resolution
on Solaris 8 for SPARC), whereas periodic computations exploit the nanosleep system
call (1 ms resolution).

Table 4 shows the soft real-time parameters of the thread-based application, developed
with rt-1ib under Solaris. In this test application, a specific thread rt_monitor (acting

Table 4. Timing parameters for the set of soft real-time tasks under Solaris (all times in ms).

Tasks C Tmin T, Tmax Umax U, Unin Priority Value
rt_mon 2.9097 10 30 40 0.2910 0.097 0.0727 6 6
7] 4.2864 40 60 80 0.1072 0.0714 0.0536 5 1
T2 17.1343 80 120 160 0.2142 0.1428 0.1071 4 2
73 45.825 200 250 500 0.2291 0.1833 0.0917 3 5
T4 61.4847 500 500 700 0.123 0.123 0.0878 2 4
T5 153.8896 700 750 2000 0.2198 0.2052 0.0769 1 3

Utot 1.1843 0.8227 0.4898

208 BECCARI, CASELLI AND ZANICHELLI

0,8
07’ — rt_mon (hard))
gl T, (max) |
06l -~ T, (max) _
5 | +— 17, (adapt) g
é 0.5 o T, (Max) n
5 04; — T (adapt)]
i »— Deadline misses
N
S

0 f—x X
8000 12000 16000 20000
time [ms]

Figure 4. Adaptation of utilization factors by means of Iterative Saturation. After three deadline misses (at
around 12000 ms) rates are modulated to bring the system to a safe condition. When the overload ends, nominal
periods are restored for all tasks.

as a system manager) traces the application utilization factor (hereafter {4,,p), while other
threads {z; ... 75} execute dummy workloads.

Threads are activated in nominal operating conditions with RM priority assignment,
yielding a harmonic base cardinality K = 3. Although the system utilization factor U, =
0.8227 is greater than L(6) and M(3), the real-time analysis proves the schedulabilty of
these tasks. Again, rate ranges are totally ordered.

In this experiment overload occurs roughly at #,; = 10.8 s (Figure 4) on account of
the increased activation frequency of the rt_monitor thread, which the application level
requires now to be executed with a shorter period 7; = 10 ms. Overload ends roughly
at t.,g = 17.8 s, when the application level decreases the rt_monitor activation period to
its original value 77 = 30 ms. During the overload the system is not guaranteed as the
desidered utilization factor becomes Us,,, = 1.0167. We observe that while the thread
subset 7 = {rt_monitor} U {t; ... 14} is schedulable (the frequency set is 2-harmonic
and U(7T) = 0.8115 < M(2)), the whole application is not, and t5 execution cannot be
guaranteed, yielding multiple deadline misses. In the same experiment run under plain
Solaris and without any adaptation, the utilization factor for ts is drastically reduced
(yielding a stream of deadline misses for this thread), while all other threads remain
unaffected.

Table 5 shows the parameters computed by some of the rate modulation algorithms de-
scribed in Section 5 that allow scheduling guarantees to be re-established. Thread rz_monitor
is assumed to be a hard real-time thread whose period cannot be modified. To cope with
the limited computational capacity available, the various RAPs cause a few soft realt-time
threads to be rescaled (adapt), whereas the remaining ones are set to their maximum period

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 209

0,1 T

— Nominal

= Overload
=—a Greedy with priority (adapt)
- Greedy with value (max)
= -a |terSat (max) P
4+—4 PrioSat with priority (adapt) N e | N S

-
2
Q 0,08
<
<
=
o
g=
< \
S 5 c
§ A [Mo “Tuﬁ '”"”

= o e o

J",\.L.ﬂl\'h
\ \ \
12000 16000 20000
time [ms]

Figure 5. Measured utilization factor of thread 1 under various rate adaptation policies.

(max). For the specific problem, priority saturation with value finds the same modulation
parameters obtained by iterative saturation.

In these simple experiments (Figures 4 to 7) there is no run-time task acceptance nor
dynamic computation of the adaptation. Rather, the rate modulation algorithms have been
computed off-line, and the adapted timing parameters have been directly coded into the
thread-based application and properly handled by rt-1ib facilities following the on-line
overload detection, namely the third deadline miss occurrence. All rate adaptation policies
change U,p, in a way that it becomes less or equal to L(6) = 0.7348. When the cause of
overload ceases, a straightforward policy has been adopted in these tests to re-establish
nominal operating conditions: namely, when the rt_monitor thread detects Uy, < 0.6 for
more than 10 cycles, it resets all soft real-time thread periods to their prior nominal values.

Figure 4 reports the actual traces of the utilization factors measured in an experiment of
overload management through iterative saturation. After the third deadline miss occurrence,
thread rt_monitor enforces the new set of rates (04 & 12 s), bringing the system to a safe
state. When the overload ends, the nominal scheduling parameters of Table 4 are estabilished
by thread rz_monitor, and therefore utilization factors are restored accordingly (feng & 18
s). Figures 5 and 6 depict how the different rate adaption algorithms handle threads v, and
T5. Measured utilization factors are consistent with results in Table 5.

An additional perspective on these experiments is given by Figure 7. Cumulative utiliza-
tion factors measured when no overload affects the system (first part of Figure 7) faithfully
follow the expected, nominal behavior. When an overload occurs (at time 10.8 s in Fig-
ure 7), the requested overall utilization factor clearly exceeds the RM bound and does so
until rate adaptation according to iterative saturation is applied.

We conclude this section by presenting the result of an on-line adaptation experiment
(Figure 8). This particular experiment has been executed with a modified library which also
performs on-line acceptance. Parameters for the set of tasks are those given in Table 4.

210 BECCARI, CASELLI AND ZANICHELLI

— Nominal
03 Overload
=—=a Greedy with priority (max)
o—o Greedy with value (max)
=—a |terSat (adapt)
»— PrioSat with priority (max)

1N

Utilization Factor

| | ! |
8000 12000 16000 20000

time [ms]

Figure 6. Measured utilization factor of thread 5 under various rate adaptation policies.

T * T
— Uy=U,+U,
oo Uy=Ug+ U
s Uy=U,+U)
= s Up=U 4 U] -
e U= Ug Uy
ooU,=U

rt_mon

p it iT e
£+ N et
" g b

Utilization Factor
2

fotcom bk .‘WWWWWWMW’+__% e b]
jsnann SRR
B g
0 ‘ \ \ ‘ \
8000 12000 16000 20000
time [ms]

Figure7. Measured cumulative utilization factors with scheduling parameters modulated by Iterative Saturation.

The rate of task rt_monitor is increased at time 10 s by request of the high-level control
system. The remaining tasks rates then are computed on-line by running iterative saturation.
When the high-level control system demands that rt_monitor be scheduled at its prior rate,
all remaining tasks are restored to their nominal rates. Since it is directly triggered by the
on-line acceptance mechanism, adaptation in Figure 8 proves quite effective.

As mentioned earlier, all adaptation heuristics, except pursuing a minimal harmonic base,
have manageable complexity. In practice, on a standard Pentium 4 2.4 GHz CPU, greedy,

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 211

Table 5. Rate modulation evaluation: adaptations computed for the set of tasks in Table 4
(periods in ms).

Greedy P Greedy V IterSat PrioSat P PrioSat V
Tasks T Policy T Policy T Policy T Policy T Policy
rt_mon 10 hard 10 hard 10 hard 10 hard 10 hard
7] 53 adapt 80 max 80 max 68 adapt 80 max
T2 160 max 160 max 160 max 137 adapt 160 max
73 500 max 387 adapt 497 adapt 500 max 497 adapt
T4 700 max 700 max 700 max 700 max 700 max
75 2000 max 2000 max 1491 adapt 2000 max 1491 adapt

0.4 ‘
— rt_mon (hard)

L o—o T, (Max) i
a--a T, (Max)
03 oo Tg (adapt) TS m - —

5 o-0 T, (Max)
S
Q L v -~ T, (adapt) i
= - oy -
o :: ISR i S o e | o
S 02 ! = o q B
= PR T L e g
X 1 :
% [y e ad
D :‘,0—9"{;—0——07‘;70——0“0«‘

0,1 ped e

L
0 ‘ | | |
0 5000 10000 15000 20000
time [ms]

Figure8. Measured utilization factor per thread in an on-line adaptation experiment based on Iterative Saturation.

iterative saturation, priority saturation, and minimum distance rate adaptation algorithms
have been measured at less than 1 ms for on-line adaptation of 20 task sets. In the 6 task
iterative saturation experiment in Figure 8, computation of the new set of rates requires
less than 100 pus.

8. Conclusions

Several real-time applications demand overload management and graceful degradation
mechanisms. In this paper, we have presented a rate adaptation scheduling framework for
soft real-time periodic tasks characterized by a range of admissible rates. The framework
is based on a linear programming problem formulation which can be integrated by other
pertinent application requirements.

Several solution heuristics have been discussed in the paper. Most of the heuristics and
problems variations are suitable for on-line application to task schedulers.

212 BECCARI, CASELLI AND ZANICHELLI

When the rate of some task is required to change by the high-level control system, the
remaining soft real-time tasks can be adapted based upon one of the proposed heuristics. In
other situations, adaptation must be triggered by events in the real-time systems itself, such
as deadline misses and on-line workload measurement. In the experiments reported in this
paper, we have considered rather simplistic criteria, namely when three or more consecutive
deadline misses are detected within a given time window or when the measured utilization
factor falls below a fixed threshold and a more valuable rate assignment exists. These
criteria are motivated by the following considerations:

— sporadic deadline misses can occur in many real-time systems, yet an isolated miss
should not trigger by itself a full adaptation round;

— rate adaptation should be an unfrequent event, due to its associated overhead and to the
need to avoid jeopardizing applications; hence, some hysteresis in adaptation thresholds
could be useful.

On the other hand, relying on the deadline misses of the lowest priority thread is an
inherently slow mechanism. Faster and less ad hoc triggering mechanisms are required, an
issue thus deserving further research.

Another issue discussed in the paper is transition to the new set of rates once they have
been computed. In the experiment shown in Figure 8, on-line adaptation is particularily fast
and transition is seamless. In general, if the rate of some tasks must be increased, transition
to the new set of rates should be carefully managed in order not to exceed at any instant
of time the available utilization factor. Adapting rate-increasing tasks at their next release
instant guarantees that no transient overload will occur. On the other hand, when a soft
real-time system is overloaded and experiencing deadline misses, the prominent goal is to
bring it under control by rate adaptation, and transition becomes a secondary issue.

We are also currently working toward the exploitation of the rate adaptation mechanisms
presented in this paper into the real-time control of sensor-based, autonomous mobile and
manipulator robots.

Acknowledgments

We thank Mirko Mazzoli for his valuable contribution in developing the new version of the
real-time library and in running the on-line adaptation experiments.

Note

1. The potential variability of actual execution times with respect to assumed constant values further reinforces
the case for an adaptive scheduling strategy.

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 213

References

Abdelzaher, T. F. and Shin, K. G 1998. End-host architecture for QoS-adaptive communication. In Proc. IEEE
Real-Time Technology and Application Symposium, RTAS’ 98, Denver, CO.

Adusley, N. C., Burns, A., Richardson, M. F., Tindell, K. and Weillings, A. J 1991. Hard real-time scheduling:
The deadline monotonic approach. In Proc. IEEE Workshop on Real-Time Operating Systems and Software.
Baruah, S. K., Chen, D. and Mok, A. K. 1997. Jitter concerns in periodic task systems. In Proc. IEEE Real-Time

Systems Symposium, RTSS’97, San Francisco, CA.

Baruah, S. K. and Haritsa, J. R 1997. Scheduling for overload in real-time systems. /[EEE Transactions on
Computers 46(9):1034-1039.

Beccari, G., Caselli, S., Reggiani, M. and Zanichelli, F. 1998. A real-time library for the design of hybrid robot
control architectures. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS’ 98, Victoria, BC.

Beccari, G., Caselli, S., Reggiani, M. and Zanichelli, F. 1999. Rate modulation of soft real-time tasks in autonomous
robot control systems. In Proc. Euromicro Conference on Real-Time Systems, ECRTS’ 99, York, UK.

Burchard, A., Liebeherr, J., Oh, Y. and Son, S. H. 1995. New strategies for assigning real-time tasks to multipro-
cessor systems. IEEE Transactions on Computers, 44(12):1429-1442.

Buttazzo, G. C., Lipari, G. and Abeni, L. 1998. Elastic task model for adaptive rate control. In Proc. IEEE
Real-Time Systems Symposium, RTSS’ 98, Madrid, Spain.

Buttazzo, G. C., Lipari, G., Caccamo, M. and Abeni, L. 2002. Elastic scheduling for flexible workload management.
IEEE Transactions on Computers, 51(3):289-302.

Buttazzo, G. and Stankovic, J. A. 1993. RED: A robust earliest deadline scheduling algorithm. In Proc. 3rd
International Workshop on Responsive Computing Systems, Austin, TX.

Caccamo, M. and Buttazzo, G. 1997. Exploiting skips in periodic tasks for enhancing aperiodic responsiveness.
In Proc. IEEE Real-Time Systems Symposium, RTSS’ 97, San Francisco, CA.

Floudas, C. A. and Visweswaran, V. 1995. Quadratic optimization In R. Horst and P. M. Pardalos, editors,
Handbook of Global Optimization, pp. 217-269, Dordrecht: Kluwer Academic Publisher.

Franklin, G. F., Powell, J. D. and Emami-Naeini, A.: Feedback Control of Dynamic Systems, 3rd edition, Addison-
Wesley, 1994.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability— A Guide to the Theory of NP-Completeness
New York: W. H. Freeman and Co.

Han, C. -C. and Tyan, H. -y. 1997. A better polynomial-time scheduling test for real-time fixed priority scheduling
algorithms. In Proc. IEEE Real-Time Systems Symposium, RTSS’ 97, San Francisco, CA.

Hillier, F. S. and Lieberman, G. J. 2000. Introduction to Operations Research. 7th edition, New York: McGraw-
Hill.

Horst, R. and Pardalos, P. M. (eds.). 1995. Handbook of Global Optimization. Dordrecht: Kluwer Academic
Publishers.

Jehuda, J. and Israeli, A. 1998. Automated meta-control for adaptable real-time software. Real-Time Systems 14:
107-134.

Jones, M. B., Rosu, D. and Rosu, M. -C. 1997. CPU reservations and time constraints: Efficient, predictable
scheduling of independent activities. In Proc. 16th ACM Symposium on Operating Systems Principles, Saint
Malo, France, pp. 198-211.

Joseph, M. and Pandya, P. 1986. Finding response times in a real-time system. The Computer Journal, 29(5):390—
395.

Koren, G. and Shasha, D. 1992. D-over: An optimal on-line scheduling algorithm for overloaded real-time systems.
In Proc. IEEE Real-Time Systems Symposium, RTSS’92.

Kuo, B. C. 1992. Digital Control Systems, 2nd edition, Oxford University Press.

Kuo, T. -W. and Mok, A. K. 1997. Incremental Reconfiguration and Load Adjustment in Adaptive Real-Time
Systems. [EEE Transactions on Computer, 46(12):1313-1324.

Lehoczky, J., Sha, L. and Ding, Y. 1989. The rate monotonic scheduling algorithm: Exact characterization and
average case behavior. In Proc. IEEE Real-Time Systems Symposium, RTSS’ 89, Santa Monica, CA.

Li, B. and Nahrstedt, K. 1998. A control theoretical model for quality of service adaptations. In Proc. IEEE
International Workshop on Quality of Service.

214 BECCARI, CASELLI AND ZANICHELLI

Liu, C. L. and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46-61.

Lu, C., Stankovic, J. A., Abdelzaher, T. E,, Tao, G., Son, S. H. and Marley, M. 2000. Performance specifications
and metrics for adaptive real-time systems. In Proc. IEEE Real-Time Systems Symposium, RTSS’ 00, Orlando,
FL.

Lu, C., Stankovic, J. A., Tao, G. and Son, S. H. 1999. Design and evaluation of a feedback control edf scheduling
algorithm. In Proc. IEEE Real-Time Systems Symposium, RTSS’ 99, Phoenix, AZ.

Marriot, K. and Stuckey, P. J. 1998. Programming with Constraints — An Introduction. MIT Press.

Musliner, D. J., Durfee, E. H. and Shin, K. G. 1993. CIRCA: A cooperative intelligent real-time control architecture.
IEEE Transactions on Systems, Man, and Cybernetics 23(6).

Nieh, J. and Lam, M. S. 1997. The design, implementation and evaluation of SMART: A scheduler for multimedia
applications. In Proc. 16th ACM Symposium on Operating Systems Principles, Saint Malo, France, pp. 184-197.

Ramanathan, P. 1999. Overload management in real-time control applications using (m,k)-Firm Guarantee. /[EEE
Transactions on Parallel and Distributed Systems, 10(6).

Schoppers, M. 1994. A software architecture for hard real-time execution of automatically synthesized plans or
control laws. In Proc. Conf. on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS’94).

Seto, D., Lehoczky, J. P., Sha, L. and Shin, K. G. 1996. On task schedulability in real-time control systems. In
Proc. IEEE Real-Time Systems Symposium, RTSS’ 96, Washington, DC.

Seto, D., Lehoczky, J. P. and Sha, L. 1998. Task periodic selection and schedulability in real-time systems. In
Proc. IEEE Real-Time Systems Symposium, RTSS’ 98, Madrid, Spain.

Shin, K. G. and Meissner, C. L. 1999. Adaptation and graceful degradation of control system performance by task
reallocation and period adjustment In Proc. Euromicro Conference on Real-Time Systems, ECRTS 99, York,
UK.

Stankovic, J. A. et al. 1996. Strategic directions in real-time and embedded systems. ACM Computing Surveys,
28(4).

Stankovic, J. A., Lu, C., Son, S. H. and Tao, G. 1999. The case for feedback control real-time scheduling. In Proc.
Euromicro Conference on Real-Time Systems, ECRTS’ 99, York, UK.

Stankovic, J. A., Spuri, M., Ramamritham, K. and Buttazzo, G. C. 1998. Deadline Scheduling for Real-Time
Systems — EDF and Related Algorithms Kluwer Academic Publishers.

Steere, D. C., Goel, A., Gruenberg, J., McNamee, D., Pu, C. and Walpole, J. 1999. A feedback-driven proportion
allocator for real-rate scheduling. In Proc. Third USENIX Symposium on Operating Systems Design and
Implementation, OSDI’ 99, New Orleans, LA, pp. 145-158.

Stewart, D. B. and Khosla, P. K. 1997. Mechanisms for detecting and handling timing errors. Communications of
the ACM, 40(1).

Stewart, D. B., Schmitz, D. E. and Khosla, P. K. 1992. The Chimera II Real-time operating system for advanced
sensor-based control applications. /[EEE Transactions on Systems, Man, and Cybernetics, 22(6).

Sun Microsystems 2000. Scalable Real-Time Computing in the Solaris Operating Environment Sun Microsystems
Whitepaper, available at http://www.sun.com/software/white-papers/wp-realtimel.

Yau, D. K. Y. and Lam, S. S. 1997. Adaptive rate-controlled scheduling for multimedia applications. /[EEE
Transactions on Networking, 5(4).

Giuseppe Beccari received the Laurea degree in Elec-
tronic Engineering in 1993, and the Ph.D. in Infor-
mation Technology in 1999, both from the University
of Parma, Italy. In 1995 he was visiting scholar at
the Technical University of Delft, Holland, and at the
Laboratoire de Robotique de Paris, France. In 1999
he was employed by CSELT (Centro Studi E Labora-
tori Telecomunicazioni, currently TILAB, the Telecom
Italia Group research center). In 2002 he moved to a
spin off company involved in the EUROSAM/FSAF
(Future Surface-to-Air Family self defense missile

TECHNIQUE FOR ADAPTIVE SCHEDULING OF SOFT REAL-TIME TASKS 215

system) project. While his current professional duties
focus more on software development and team coordi-
nation, dr. Beccari still enjoys investigating real-time
scheduling issues and technology.

Stefano Caselli received a Laurea degree in Electronic
Engineering in 1982 and the Ph.D. degree in Computer
and Electronic Engineering in 1987, both from the Uni-
versity of Bologna, Italy. In 1989-90 he has been vis-
iting scholar at the University of Florida. From 1990
to 1999 he has held research fellow and associate pro-
fessor positions at the University of Parma, Italy. He is
now professor of Computer Engineering at the Univer-
sity of Parma, where he is also director of the Labora-
tory of Robotics and Intelligent Machines (RIMLab).
His current research interests include development of
autonomous and remotely operated robot systems, ser-
vice robotics, and real-time systems.

Francesco Zanichelli received a Laurea degree in
Electronic Engineering in 1987 from the University
of Bologna, Italy and the Ph.D. degree in Information
Technologies in 1994 from the University of Parma,
Italy. Since 1996 he has been an Assistant Professor
with the Department of Information Engineering of
the University of Parma where he is currently teaching
Operating Systems, Information Systems and Multi-
media Systems courses. His current research interests
include distributed multimedia architectures and proto-
cols, real-time systems, security and Quality of Service
technologies for wireless networks, as well as service-
oriented Grid middleware.

