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Characterizing Frequency Stability: A Continuous 
Power-Law Model with Discrete Sampling 

Todd Walter 

Abstract-This paper examines several aspects of the Allan 
variance and the modified Allan variance. New expressions for 
these variances are derived for noise processes that produce 
power spectral densities with both integer and noninteger powers 
(CY) in their functional dependence on f. A single expression, 
continuous over CY, is presented for each of these variances. 
Also investigated are the effects of discrete sampling and finite 
data length. Discrete equations are developed and compared with 
more familiar continuous expressions. In addition, the uncer- 
tainty of the estimates for the Allan variance and the modified 
Allan variance for fully overlapping data usage is presented. 
The uncertainties can be calculated for arbitrary CY. The results 
presented are compared with computer simulations and found to 
be in excellent agreement. 

I. INTRODUCTION 
HE correct characterization of the effect of noise is an T important issue to both users and manufacturers of high- 

performance oscillators because noise ultimately limits the 
precision of these devices. There are many possible sources of 
noise inherent both to the oscillators and to the frequency mea- 
surement systems. These sources are conventionally grouped 
into one of five noise categories. The categories are distin- 
guished by the slopes of the power spectral densities (PSDs) 
of frequency fluctuations as functions of Fourier frequency in 
a log-log plot. In the standard power-law model, the PSD is 
assumed to be proportional to f a .  The five different noise 
categories considered to affect oscillators are white phase, 
flicker phase, white frequency, flicker frequency and random 
walk frequency. These correspond to the integer values of 
a ranging from 2 to -2 respectively. Although only integer 
values of a are commonly considered, there is no real reason 
to exclude noninteger values, as the model is largely empirical. 
The quality of the observed PSDs does not justify excluding 
the possibility of noise sources that would yield noninteger 
values of a. If one is interested in characterizing the limits 
of precision for a particular device, then the standard power- 
law model, coupled with deterministic effects, is more than 
adequate [21]. However, if one is interested in understanding 
the noise source itself, then correctly determining the true 
functional dependence of its PSD can be important. This paper 
examines the effects of noise which has a PSD proportional 
to f a ,  but for a continuous range of a. 

Recently a discrete noise generation routine capable of 
creating noise with arbitrary cy was introduced [1]-[2]. In 
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addition to verifying the results presented in this paper via 
computer simulation, the noise generator addresses the issues 
of discretization and finite sample length. This paper will 
investigate these effects on both time domain and frequency- 
domain measures of noise. 

We must first understand how noise affects the oscillator 
output. The output of an oscillator is often represented by [3] 

V ( t )  = [Vo + ~ ( t ) ]  sin[27~uot + cp(t)] + Vl(t ) ,  

where VO and uo are the respective nominal amplitude and 
frequency of the output, c(t)  and p(t) are amplitude and 
phase fluctuations respectively, and VI ( t )  is additive noise. 
Provided E and VI are much smaller than V,, the instantaneous 
frequency of the oscillator output can be written as 

From this, the instantaneous fractional frequency deviation 
from nominal may be defined: 

The frequency stability (or instability) of the oscillator can be 
specified through the characterization of y(t) .  It is not possible 
to measure y(t)  directly. The measurement of y ( t )  takes place 
over a finite time interval r. Thus, it is usually more convenient 
to define the instantaneous phase deviation in units of time 

We can see that y( t )  is the time derivative of x( t ) .  The average 
value of y ( t )  over the time interval 7 can be obtained through 
integration: 

The quantity z ( t )  may contain both deterministic and non- 
deterministic effects. Examples of deterministic effects would 
include linear frequency drift and diurnal trends. In principle, 
it is possible to account for these effects. Nondeterministic 
effects or stochastic processes are more difficult to resolve. 
These processes lead to random fluctuations in z ( t ) .  In the 
following sections, this paper will examine the effects of 
stochastic processes on stability measures. 
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11. FREQUENCY DOMAIN 

The richest sources of information about noise and other 
disturbances to an oscillator are often the PSDs Sz(f) and 
Sy(f)'. The PSD graphically separates the various noise 
sources affecting the oscillator frequency. In fact, the most 
common noise types affecting oscillators were originally dis- 
tinguished by the slopes of their PSDs. The standard power- 
law model is written as [3] 

where ha is the intensity coefficient for the noise category. 
As mentioned before, only integer values are traditionally 
considered. Some noise sources, such as white noise and those 
following a random walk, which produce PSDs having even 
integer values of a, are reasonably well understood. However, 
other noise sources yielding slopes in the region of the odd 
integers have been observed empirically. Analytically, these 
noise sources are not well understood. In some analyses [l], 
[4], fractional calculus is invoked to derive their dependencies. 
Because they depart from classical processes, their existence 
can lead one to widen the power-law model, and consider not 
only odd-integer values, but also noninteger values. In this 
new continuous model the sum in (1) could be replaced with 
an integral and the coefficients replaced with a noise intensity 
density function. This would permit the analysis of noise with 
a broader signature in the frequency domain. However, without 
any loss of generality, this paper will consider processes x ( t )  
which are affected by only a single noise process. 

Because of their relationship in the time domain, the PSD 
of z ( t )  is related to the PSD of y(t): 

As already mentioned, z ( t )  is the more convenient process, 
since it is a quantity we can directly measure. We can therefore 
translate the power-law model to a form that works with x ( t ) .  
I will use new parameters /3 and gp defined such that 

(3) 

The five conventional noise categories now correspond to 
the integer values of p ranging from 0 to -4. Most of the 
subsequent work will be done with these parameters and will 
later be converted back to traditional nomenclature (a, ha).  

One of the reasons that the PSD is such a powerful tool is 
that in addition to noise, any periodic modulation of the signal 
can be easily observed in the frequency domain. Examples of 
possible modulations include 60 Hz pick-up and mechanical 
resonances. These modulations appear as sharp peaks in the 
PSD. However, rather than being able to obtain the true PSD 
for a particular noise process, we can only form estimates from 
the discretely sampled data. The estimates are distorted by the 
effects of discrete sampling and finite data length. Because 
there is only a finite amount of data from which to form the 

' The spectral density is a function of Fourier frequency (f) .  The frequencies 
f are completely unrelated to the nominal oscillator frequency VO. It is 
important to distinguish between these two. 

estimate, we only have information about a finite frequency 
range. Any spectral information outside this range will fold 
down and distort the estimates in the region where we do 
have information. This effect is called aliasing (see [5 ]  section 
X), and it will be mentioned again in sections VI and VII. 
Improper windowing may also create distortions and biases 
in the spectral estimates [6], [7]. One must therefore exercise 
great care when using the PSD estimate. 

The timing community is primarily interested in clock 
accuracy. The PSD is not able to provide a convenient measure 
of the precision of time intervals. It does permit a measure of 
the types of noise affecting clock performance, but not of the 
uncertainty over a specific time interval. For this information, 
we will tum to measures in the time domain. 

111. TIME DOMAIN 

The time-domain analog of the PSD is the autocorrelation 
function. It is the inverse Fourier transform of the two-sided 
autospectral density. It should be noted that all of the spectral 
densities discussed in this paper are one-sided. The symmetric 
timeflag autocorrelation function for a continuous real zero- 
mean process z ( t )  is given by [l] ,  [20] 

&(t,  T )  E ( X ( t  - T / 2 ) 2 ( t  + T / 2 ) )  

where the brackets () denote an expected value or an infinite 
ensemble average. The explicit dependence on time is because 
many of the noise processes considered to affect oscillators are 
nonstationary. A (wide sense) stationary process is one, such 
that in the limit that time goes to infinity, its autocorrelation 
function converges to a finite value 

lim R , ( ~ , T )  + R,(T). 
t-oo 

This is not the case for noise following the power-law model 
with p 5 -1. 

For a stationary real process, z( t) ,  the autocorrelation 
function is related to the spectral density by the inverse Fourier 
integral 

03 

= 1 &(f) COS(2.rrfT)df. (4) 

Unfortunately, this function is not directly useful for char- 
acterizing oscillator stability. Unless the noise process is 
ergodic, it is impossible to obtain a reasonable estimate of 
the autocorrelation function. Because the process we are 
trying to characterize is a noise process, each individual 
measurement may vary widely. However, the average of 
many measurements should converge to a definite value. The 
difficulty is that we often have only one oscillator. Even if 
we had an ensemble of oscillators, we cannot guarantee that 
they all would be affected to the same degree by exactly the 
same noise processes. However, if the noise process is ergodic, 
the time average approaches the ensemble average for long 
averaging times. This would enable us to form an estimate 
from a single oscillator. It is only an estimate because any 
time series actually measured will be finite in length. There are 
two assumptions made with this approach: First, that the noise 
process will not change over time and second, that the process 
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is ergodic. A necessary, but not sufficient, requirement for 
ergodicity is that the process be stationary. It is obvious then 
why we cannot form estimates of the autocorrelation function 
for /3 5 -1. We must, therefore, seek out other time-domain 
measures. 

IV. ALLAN VARIANCE 

The most common time-domain measure is the Allan (or 
two-sample) variance [9]. It has the advantage that experimen- 
tally it is convergent for a > -3 (although a system bandwidth 
must be imposed for a 2 1). In terms of the phase deviation, 
the Allan variance is defined by 

( 5 )  
2 1 

.,("-) = S ( ( z k + 2  - 2xk+1 + Tk)'). 
A new process can be defined by 

z ( t  + 27)  - 22(t + r )  + z ( t )  
Z(t,.) = 

7 

z ( ~ , T )  is a process which must be stationary in order for the 
Allan variance to be convergent. Equation (5) is similar in 
appearance to the autocorrelation of z ( t ) .  It can be expressed 
as a linear combination of autocorrelation functions 

1 
272 
+ 2R,(t + T , ~ T )  - 4R,(t + 3 ~ / 2 ,  T )  

o,"(r) = -[R,(t+2r10)+4R,(t+r,0)+R,(t ,0) 

Allan variance). The first method starts with noise in the 
frequency domain and uses special conditions to create a 
convergent autocorrelation function. To force stationarity and 
to eliminate the high-frequency problem, I impose upper and 
lower frequency limits on the noise. The PSD of the noise 
is given by (3) for fi  < f < f h  and is zero outside this 
frequency range. This PSD can be substituted into (4). Defin- 
ing a dimensionless argument U = 27r f T ,  the autocorrelation 
becomes 

R,(T) = gp(27rr)-P-l 

for r # 0, and 

(9) 

for r = 0. 
These integrals must be solved separately for each integer 

value of p and for each region between adjacent integers. For 
purposes of demonstration, consider the region of -2 < p < 
-1. In this region R,(T) is given by 

gp (27rr) -0- 1 

P + 1  
[uf+' cos(?&) - uf+l cos(u1) 

- 4R,(t + r /2 ,  T ) ] .  (6) 

The Allan variance can also be related to the PSD, although 

The last term can be separated into two integrals: 

the two are not a simple Fourier transform pair [lo]: 

This relationship was derived for the case of stationary noise 
( a  > 1). However, the relationship is extended down to 
a > -3 because the integral relationship converges and 
agrees with experimental results. Due to this convergence, 
many authors treat the autoconelation function as though it 
represented a stationary process over this range. Instead, it is 
the linear combination of autocorrelation functions in (6) that 
represents the convergent measure. 

Note that when a is greater than or equal to one, the integral 
relationship will not converge. The PSDs in these cases contain 
an infinite amount of energy when integrated out to higher 
frequencies. In reality the integrand must be multiplied by 
some filter function to reflect whatever filtering takes place in 
the measurement system. The finite bandwidth of the system 
ensures that the autocorrelation function will remain finite at 
zero time lag. For convenience, a rectangular window is often 
used. In many systems this can be a reasonable approximation. 
However, caution should be exercised as filter shapes can have 
some influence on the values obtained [ 1 11. We will see such 
effects in section VII. 

We now take two approaches towards deriving the Allan 
variance for continuous values of a .  The first allows us to 
conveniently find .:(T) as a function of a in the presence of a 
bandwidth limit. The second approach rigorously demonstrates 
the stationarity of z ( ~ , T )  (and hence the convergence of the 

In the limit that Up is small, the first integral has the value 

1, up+' sin(u)du = -r(p + 2) sin(.lrp/a) + ~ ( u i ) .  

In addition, in the limit that uh is large, the second integral is 

l: up+' sin(u)du = -U:+' cos(Uh) + ~ ( u f ) .  

R,(O) can be found with (9): 

9P R,(O) = - p + 1 (f!+l - fi?+l). 

By substituting these values into (6) and taking the limit as fi 
goes to zero and the limit as f h  becomes very large, we obtain 
an expression for the Allan variance: 

Finally, we retum to the more common parameter a to find 

(a-&' - 4 ) r ( ~ ~ - i ) s i n ( ~ ~ / 2 )  3haf,"l a p )  = 
ha + T 2 (  a - 1)( 2T)2  (2TT)"tl 

( 1  1 
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Fig. 1. This is a semi-log plot of the Allan variance (1 1) and the modified 
Allan variance (14) as functions of a. The solid line is the Allan variance for 
the case of h ,  = 1, T = 1 (second), and f j L  = 50 (Hz). The open circles are 
plots of the five standard equations (Table I) for the same case. The dashed 
line is a plot of the modified Allan variance for the case of h ,  = 1, TO = 0.01 
(seconds), m = 100 and fh = 50 (Hz). The I ’ S  represent the five-integer 
equations for the same case. 

TABLE I 
CONTINUOUS POWER-LAW MODEL WITH DISCRETE SAMPLING 

a Sdf) Sdf) U,2(,)t mod a&mq)t . t  

2 hZf* 3fhh2 3fhh2 
(2n)2 T2 (2x) m (m TO) (2x1 

(2x)Zf (2%)2T2 ( 2 ~ ) ~  (m Q) 
1 hlf [1.038+3fn(2xfh%)]hl 3.37h1 

-2 

2 f n  (2) h.1 1.35 Cn (2)h., 

1.65 x2 m q  h.2 
3 

Although these equations were derived for a specific range 
of P(a), they are valid for all p greater than -5 (a > -3). 
While these equations are undefined at most integer values, 
the limits as they approach the integer values exactly match 
the standard values given in literature [ 1 I ]  (Fig. 1). Thus, the 
five separate integer equations (Table I) can be replaced by the 
single equation (1 1). It is interesting to note that provided that 
fi is small, its actual value does not enter into these equations. 

The first term in each equation is negligible for values of 
a much above 1, while the second term is small for values 
of a below 1. Both terms are large and offsetting in the 
region of (I: = 1. This equation demonstrates the necessity 
of imposing a bandwidth limit in the region of a a 2 1. 
The fact that the first term becomes negligible when cy gets 
to be larger than 1 is one of the greatest drawbacks of the 
Allan variance. All noise processes in this region will yield the 
same dependence on r ,  causing the Allan variance to become 
an ambiguous measure for distinguishing between different 
noise types. Other characterization tools must therefore be used 
(PSD or the modified Allan variance). 

To prove that z ( t , ~ )  is truly stationary, we must use (6) 
and the autocorrelation function for nonstationary x( t). This 

requires starting from the time domain and staying within it. 
Because of this, it is difficult to impose a rectangular frequency 
cutoff. Instead, I will consider the case of infinite bandwidth. 
In this case the Allan variance is only convergent for -3 < 
a < 1. We can use the time-dependent autocorrelation given 
(in the limit t >> 7 )  by [l]: 

for ,b’ # 1 and 

for P = 1. When these are substituted into (6) one finds that 
the time-dependent terms demonstrate remarkable cancellation 
to yield 

The last term demonstrates that the Allan variance is in fact 
convergent for p > -5 which corresponds to a > -3. This 
can be rewritten in terms of (I:, and we find that it agrees 
exactly with (1 1) for a < 1 provided that the identification 
is made: 

Q=-. ha 
2(27r)a 

V. MODIFIED ALLAN VARIANCE 

The modified Allan variance [SI was developed to resolve 
the difficulty that the Allan variance has distinguishing be- 
tween noise types that have spectral densities with a a > 
1. It takes advantage of the fact that noise in this region 
has different dependencies on bandwidth. This is evident 
from (11). The modified Allan variance effectively changes 
the bandwidth with sampling time 7 ,  by averaging adjacent 
measurements. The assumption made is that some number of 
equally spaced time measurements exist which have a basic 
time step of TO. The modified Allan variance for time interval 
T = WLTO (where m is an integer) is given by 

where xk denotes ~ ( t )  at t = t o  + k q .  This too is a linear 
combination of autocorrelation functions. We can see that the 
quantity inside the sum is z ( t i ,  rm), which we have already 
demonstrated to be stationary. The square can be expressed as 
a double sum, and the summations can be pulled outside the 
angle brackets to yield 

1 
mod ai(m.ro) = ~ 

2(  7n2r0)2 
m m  
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The terms inside the curly brackets are identical to those 
for the Allan variance. Since this particular combination is 
independent of time, the number of summations can be reduced 
to one. The summation indices are replaced by IC = ( i  + j ) / 2  
and C = li - jl. The modified Allan variance in terms of the 
discrete autocorrelation function is 

1 
2 ( m2 ro ) 

mod oi(m70) = ___ 

x { ~ [ R $ ( I c  + 2m,0) + ~ R $ ( I C  + m.0) 

+R:(IC,O) -4R:(IC+3m/2,m) 
- ~ R ~ I C  + m/2, m) + ~ R ~ I C  + m, am)] 

+ 
+ 2Rg ( I C ,  e) - 4R: ( I C  + 3m/2, m + 1) 
- 4Rd,(IC + 3m/2, m - e) 
- ~ R ~ ( I C  + m/2, m + C) - 4 ~ $ ( r ~  + m/2, m - e) 
+ ~ R ~ I C  + m, 2m + e) + ~ R ~ I C  + m, 2m - e ) ] } ,  

m-1 

(m - C)[2R$(k + 2m, e) + SR$(IC + m, 1) 
e= 1 

(13) 

where the discrete autocorrelation function is defined by 

Rt(lc, m)  R,(kTo + t o ,  mro). 

The value of IC in (1 3) is not important, because of the sta- 
tionarity of ~ ( t ,  r ) .  Using expressions for the autocorrelation 
from section IV it is possible to obtain a closed-form solution 
to the modified Allan variance similar to (1 1): 

1 - 4 ) q a  - 1 )  sin(ra/2) 

r ( a  - 1) sin(ra/2) 

(27“0)”-1 
+ 

m-1 

x C(m-e) e=i (27r7rJ)-1 

x [6(1)’-O - 4(m + C ) l - O  - 4(ne - 

+ (am + + (2m - 1 ) l - O  

While this equation is more complex than (1 I ) ,  it can be easily 
calculated with modem computers. This equation is similar to 
(1 1) in that it replaces the five integers for the modified Allan 
variance (Table I) with a single continuous function of a. Fig. 
1 displays these results. 

The modified Allan variance also has a relation to the PSD 
[W, [W: 

The same comments that applied to (7) can be applied to (15). 
These relationships sometimes lead to the view that the Allan 
variance (or modified Allan variance) for a certain time inter- 
val T represents the PSD sampled through a particular filter 
function. Each value of T would then have a corresponding 
bandpass filter associated with it. The center of each bandpass 

region would be inversely proportional to 7. It is possible to 
define other generalized variances by means of some filter 
function IH( f ) I [ 1414 151: 

General Variance = 1 S, ( f ) lH( f )12df .  (16) 

where H ( f )  may be the Fourier transform of the time-domain 
process or just a general filter. The two relationships (7) and 
(IS) can be nonrigorously derived from this method. 

00 

VI. DISCRETE SAMPLING 

Whether taking data or generating simulated data, one must 
face the reality of having only a finite number of points. This 
implies that it is only possible to obtain information about 
a finite number of frequencies (or time intervals). Usually, 
a set of N points, equally spaced in time, is sampled. It is 
hoped that these points represent instantaneous values of the 
continuous function being sampled. From these data points 
we form estimates of our various measures. To find the PSD 
estimate, a fast Fourier transform routine is usually invoked. 
For the Allan variance one assumes that the noise process is 
ergodic and replaces the ensemble average with a time average 
to form the estimate 

The A denotes the fact that this is only an estimate. Because 
z ( t , ~ )  is a Gaussian stochastic process, the estimate will be 
chi-square distributed, with a certain number of degrees of 
freedom. This estimate is designed to make maximal use of 
the data by using overlapping differences. This implies that 
the number of degrees of freedom of the estimate will be less 
than the N - 2m points averaged. How much less will depend 
on the noise type. The number of degrees of freedom will be 
discussed in section IX. It is evident that the estimate becomes 
less accurate as m becomes larger. 

For the modified Allan variance the estimate is 
N - 3 m  c 1 

mod CP(mq, N )  = 
2 ( N  - 3m + 1)(m2To)2 

This estimate also makes use of overlapping data, and it 
becomes even worse at large m. 

In all of the previous sections the equations were derived 
for the case of continuous functions. An important question 
is: What are the correct equations for discretely sampled data? 
Conventional noise simulation routines seek to generate noise 
which has a discrete PSD that samples from the continuous 
PSD. However, discretely sampling in the time domain for a 
finite period will cause some distortion of the PSD. It can be 
argued [ I ]  that instead it should be the discrete autocorrela- 
tion function which directly samples the continuous function. 

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 26,2020 at 14:35:06 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 43, NO. 1, FEBRUARY 1994 

Because the discrete Allan and modified Allan variances 
would be formed from linear combinations of the discrete 
autocorrelation function, they too should directly sample the 
continuous functions given above. This holds true, except 
for the issue of bandwidth. The autocorrelation function will 
depend on the bandwidth of the system. The next question is: 
What is the correct way to implement the filtering? The simple 
response is to put the filter cut-off out at some reasonably 
high frequency, where it has the least effect. However, when 
examining the PSD, it is better to put the filter cutoff before 
the Nyquist frequency to prevent higher frequency components 
from wrapping themselves down into the lower frequency 
region. The problem this creates is that the upper bound on the 
integrals in (8) and (9) becomes uh = mr, which for the first 
few values of m can hardly be considered to be approaching 
infinity. What then is the correct approach to filtering? 

Recent papers [l], [2] demonstrate that for f p  noise dis- 
cretely sampled in the time domain, the power spectral density 
will have the form 

where the superscript d specifically denotes the discrete sam- 
pling. This is consistent with other work [7] which states that 
for the case of discrete sampling the relationship between 
the spectral density of x ( t )  and the spectral density of y(t) 
becomes 

The corresponding discrete autocorrelation for 
given by [ I ]  

> - 1 is then 

Some form of filtering has been implicitly assumed as this 
expression is finite for zero lag. Following the same steps as 
in section IV, one can find the Allan variance 

If one takes the limit as m becomes large, one finds 

3 m P  + 1 )  
2(2r)0r7,P+1(mr0)2r2(1 + 0 / 2 )  ' 

+ 

The first term is in exact agreement with (10). The second 
term has the correct time dependence, but the value for f h  

is dependent on p, and for some values is undefined. This is 
because the implicit filter in (21) is obviously not rectangular. 
Despite this, (22) is valid for all values of P > -5  and can be 

" a i  
1 0 . ~  

1 00 10' 102 1 n' 

Fig. 2. This is a plot of the discrete Allan variance and mean Allan variance 
estimates for CI = 1 .  The solid line depicts (23) for the case of h, ,  = 1 
and SO = 1. The open circles represent the mean Allan variance estimates 
for 100 generated noise sequences. The variances of the 100 generated Allan 
variance estimates are represented by the error bars. The dotted lines show 
the expected variance (29). 

rewritten in terms of the more familiar parameter cy: 

qm + 1 - 4 2 ) r y C y / 2 )  
r(m + 4 2 ) r ( i  - 4 2 )  
+ 1 - 4 2 ) r ( c y / 2 )  

+ r ( 2 m  + a / 2 ) r ( i  - cy/2) 

x [,+I 

1 .  (23) 

This equation is convergent for cy > -3.  It is plotted for two 
different values of Q in Figs. 2 and 3. Similarly we can find 
the modified Allan variance 

qm + e + I - 4 2 )  
r ( 2 m  + e + 4 2 )  

qm - e + 1 - 4 2 )  
qm - e + 4 2 )  

r ( 2 m  + e  + 1 - 4 2 )  
r ( 2 m  + e + 4 2 )  

r ( 2 m - e + 1 - 4 2 )  
+ r ( 2 m  - e + 4 2 )  . 

- 4  

- 4  

+ 
(24) 

This equation also approaches the continuous expression in 
the limit that m becomes large. 

11 
VII. DISCRETE TRANSFER FUNCTIONS 

The discrete variances in Section VI can also be related 
back to the discrete PSD. Rather than providing a rigorous 
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which leads to 
lo’ l 

which again agrees with the continuods expression. Our ex- 
pression for the modified Allan variance then becomes 

1 

100 IO’ I O 2  103 When this integral is evaluated it leads to 

Fig. 3. This is a plot of the Allan variance and mean Allan variance estimates 
for cy = -1. The dashed line depicts the discrete Allan variance (23) for the 
case of h, = 1 and ro = 1. The solid line depicts the continuous Allan 
variance (11) for the same case with fh = 0.5. The open circles represent 
the mean Allan variance estimates for 100 generated noise sequences. The 
variances of the I 0 0  generated Allan variance estimates are represented by 
the error bars. The dotted lines show the expected variance (29). As expected, 
the estimates follow the discrete model rather than the continuous model. 

derivation, we will adopt the generalized variance approach 
of (16) and demonstrate equivalence. First we must choose 
the expression for IH( f ) I2 .  For this, we will start with the 
discrete time-domain process 

where 6k ,m  is the Kronecker-delta function (= 1 when the 
indices are identical, = 0 otherwise). This choice was made 
because of its resemblance to (5). Taking the absolute square 
of the discrete Fourier transform we find 

which agrees with the continuous transfer function for the 
Allan variance. In the case of discrete sampling, we have 
no information about frequencies higher than the Nyquist fre- 
quency. All of the power in that region has been folded down 
into lower frequencies. Therefore, integration in the frequency- 
domain only takes place up to the Nyquist frequency. When 
all of this is incorporated into the discrete version of (16) with 
appropriate frequency limits we find 

When this is evaluated (with help from [16] 3.892) we find 
that it is exactly equivalent to (22). 

This procedure can be repeated for the modified Allan 
variance, this time with some interesting results. The time- 
domain process in this case is 

~ m-1 

which has a considerably simpler form than earlier expressions 
for the modified Allan variance. We can express this as a 
function of a: 

While we have been unable to prove that this expression is 
equal to (24) in the general case, the two equations reduce to 
the same form for all specific values of m examined. This then 
is a much simpler and much more easily computable equation 
for the modified Allan variance than any previous expression. 
Note that it contains only four terms as opposed to the 5m 
terms in (24). This equation is plotted for a = 2 in Fig. 4. 

The above relationships provide a clue as to the implicit 
filtering of (21). One can see that the filter is nearly rectangular 
and is in fact of the form 

for the region f 5 l/(2.r0) and has zero contribution beyond 
the Nyquist frequency. For white phase noise (p  = 0) it 
is exactly a rectangular filter with cutoff at the Nyquist 
frequency. As /? becomes smaller than 0, this window becomes 
distorted near the Nyquist frequency. However, this effect is 
unimportant as most of the noise power will be at the lower 
frequency end of the spectrum, away from the distortion. 
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Fig. 4. This is a plot of the discrete modified Allan variance and mean 
modified Allan variance estimates for c1 = 2. The solid line depicts (26) for 
the case of h ,  = 1 and TO = 1. The open circles represent the mean modified 
Allan variance estimates for 100 generated noise sequences. The variances of 
the 100 generated modified Allan variance estimates are represented by the 
error bars. The dotted lines show the expected variance (32 ) .  

For p > -1 there is little difference between the discrete 
and continuous equations. For p below this region there is 
a noticeable difference between the equations for the first 
few values of m. However, the discrete equations rapidly 
converge (by m M 8, see Fig. 3) to the continuous equations. 
In a real system there is often more than one noise process 
affecting the oscillator. Often the dominant contribution to 
the Allan and modified Allan variances for small values of 
r comes from a noise in the vicinity of white phase noise. 
Other processes (flicker frequency, random walk frequency) 
dominate at large values of 7 .  Because the discrete variances 
approach the continuous variances for all values of r as ,fj 
approaches 0, the continuous and discrete equations cannot 
be distinguished for real systems. The practical implications 
of this are that as long as noise in the vicinity of p = 0 
dominates for small values of T, (23) is as good as (1 l), and 
(26) is better than (14) due to its relative simplicity. 

VIII. FINITE DATA LENGTH 

The Allan variance and modified Allan variance estimates 
defined in (17) and (18) will have some uncertainty due to the 
fact that they are formed with only a finite number of data 

Then, provided that z ( t ,  T) is normally distributed, we can use 

By substituting this equation and (5) into (27), we can find 
the variance of the Allan variance estimate in terms of the 
discrete autocorrelation function: 

1 
2 [ Zi(m70, N)I = 2(N - 2m)2(m70)4  

ili -2m - 1 

x 

x { ~ , d ( k  + 27% I l l )  + 4 ~ : ( k  + m, I l l )  
+ R:(k, Ill) - 2R:(k + 3m/2, Im +e l )  
- 2R,d(k + 3m/2, Im - el) 
- ~ ~ , d ( k  + m/2,1m + el) 
- ~R: ( / c  -I- m/2, ~m - C I )  
+ R:(k + m, 12m + el) 

( N  - 2m - [cl) 
e=-  N+Zm+l  

+ ~ i ( k  + m, 127n - tl)}’. (28) 

This is similar in appearance to the modified Allan variance. 
We can substitute in the specific case of (21) to find 

points. Provided the noise processes are ergodic, the expected 
means of these estimates approach their respective variances 
(i.e. are unbiased). We are also interested in the variances 
of these random This will enable us to find the 
uncertainty of our estimates and place confidence limits on 
them. This effect has been discussed elsewhere [ 171, [ 181, but 
it is worthwhile to examine it again for the case of arbitrary 
a. I shall follow the derivation used by Lesage and Adouin, 
except that I will use fully overlapping estimates. First, the 
variance of the Allan variance estimate is defined: 

While this equation does not provide an intuitive feel for 
the variance of the Allan variance estimate, it can be readily 
programmed on a computer. This allows confidence intervals 
to be placed on the Allan variance estimate for noise processes 
with f f  > -3. The r m ~ r e d  Variances are to these 
calculated values in Figs. 2 and 3. 

The variance of the modified Allan variance estimate may 
be found in a similar manner. This variance is defined by 
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Following the same procedure as above we can find 

1 
2(N - 3m + 1)2 (m2~o)4  

CT’ [mod t?;(m.ro, N)] = 

The discrete autocorrelation function (21) may also be substi- 
tuted into this equation to yield 

N - 3 m  

x ( N - 3 m + l - I e l )  
~ = - N + ~ T L  

This also can be readily programmed on the computer. Unfor- 
tunately, because of the double sum, calculation time may be 
quite long for large values of N and m. In Fig. 4, the measured 
variances are again compared to the calculated values. 

IX. RESULTS 

In order to verify many of the equations presented here, 
a comparison was made to the results of computer simula- 
tions. Noise was generated corresponding to both integer and 

TABLE I1 
NUMBER OF DEGREES OF FREEDOM FOR THE ALLAN VARIANCE 
ESTIMATE FOR N = 1025 AND VARIOUS VALUES OF U2 

White phase Flicker White Flicker Random-walk 
phase frequency frrs uency frequency 

1 526.6 590.2 682.6 829.4 1024 
2 525.9 554.3 584.3 606.2 526.0 
4 524.4 453.2 354.1 306.8 244.0 
8 521.4 336.1 186.5 150.0 118.4 
16 515.3 232.0 93.53 73.51 58.10 
32 503.2 150.8 45.83 35.76 28.25 
64 479.2 92.31 21.84 16.97 13.35 
128 432.8 52.12 9.852 7.616 5.922 
256 355.2 26.19 4.016 3.012 2.246 

noninteger values of a. The PSD estimates of the generated 
processes Xk were found to match the values predicted by 
(19). The Allan variance and modified Allan variance estimates 
were formed and averaged for 100 generated time series for 
many values of a. The means found in each case were in 
excellent agreement with (23) and (26). The variances of the 
estimates were also in agreement with (29) and (31). Figs. 2 4  
display some of these results for the Allan and modified Allan 
variances for some different values of a. 

The variance of the Allan variance estimate or modified 
Allan variance estimate is not always the best measure to use 
for placing confidence limits on the estimates. Because the 
estimates follow a chi-square distribution rather than a normal 
distribution, the upper and lower uncertainties should be 
determined separately and according to the proper distribution. 
We then need to find the number of degrees of freedom for 
each estimate. A much more complete treatment of this subject 
may be found elsewhere [ 5 ] ,  [19]. Fortunately we can find 
the number of degrees of freedom from the variance of the 
estimates and the true variance. They are obtained from the 
relationship 

(33) 
2 ( 2 ) 2  
“2[82] . d.f. = - 

This allows us to correctly calculate the upper and lower con- 
fidence limits for the estimates of our time-domain measures. 
Table I1 lists the degrees of freedom obtained for the Allan 
variance from (23) and (29). When these are compared to the 
values listed elsewhere [19j, we find they are nearly identical 
for the cases of white phase, white frequency and random- 
walk frequency. The discrepancies are due to the fact that the 
algorithms used here were not made to accommodate integer 
values of a. Instead, an approximation of Q very near the 
integer value is used. Thus the values listed in the subsequent 
tables are only accurate to about 0.1%. The flicker values 
differ from the values stated in literature [19]. This is most 
likely because the flicker values listed in the reference were 
obtained by empirically observing the variance of the estimates 
for computer-simulated noise. The values presented here are a 
numerical evaluation of an analytical model. 

The number of degrees of freedom can be found for the 
modified Allan variance in a similar manner by substituting 
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TABLE 111 
NUMBER OF DEGREES OF FREEDOM FOR THE MODIFIED ALLAN VARIANCE 

ESTIMATE FOR AV = 1025 AND VARIOUS VALUES OF 7)) 

White phase Flicker White Flicker Random-walk 
phase freq uency frcs ucncy frequc.ncy 

1 526.6 590.2 682.6 829.4 1024 
2 447.7 497.3 5 16.0 524.5 442.4 
4 299.0 262.2 252.7 245.6 200.8 
8 158.3 128.2 122.9 119.9 97.33 
16 79.08 62.37 59.94 58.60 47.43 
32 38.22 29.90 28.77 28.1 1 22.7 
64 17.65 13.76 13.24 12.90 10.36 
128 7.413 5.753 5.51 1 5.331 4.208 
256 2.861 2.079 1.812 1.568 1.292 . ŝ,c0 

-8 ' I 
0 200 400 600 800 loo0 1200 

Time (sec) 
Fig. 5. This displays a single generated noise sequence . r ( tk  ) for the case of 
c1 = 0.4, 1 1 ,  = 1 and TO = 1. The total number of points generated is 1024. 

(26) and (31) into (33). The results are listed in Table 111. It 
is evident that the numbers decrease much more rapidly for 
increasing m than they do for the Allan variance estimate. 

Figs. 5 through 8 depict the results of many of the equations 
derived in this paper. These figures serve to summarize and 
illustrate the capabilities of some of the methods presented. 
A time series was generated with a new method [1]-[2] 
corresponding to a = 0.4. Each point is separated by TO = 1 
second, and a total of 1024 points was generated (Fig. 5). 
Visual inspection of the time series fails to show any obvious 
systematic trend. It is then appropriate to form the PSD 
estimate. The time series was multiplied by a Hanning window 
and discretely Fourier transformed. Fig. 6 demonstrates that 
the estimate follows the general trend predicted by (19). No 
sharp peaks are evident in the spectrum, so we retum to 
the time domain. Figs. 7 and 8 depict the Allan variance 
estimates and modified Allan variance estimates respectively. 
The error bars indicate the 90% confidence intervals us- 
ing the chi-square distribution with the number of degrees 
of freedom determined from (33). The figures demonstrate 
that the confidence limits include the expected theoretical 
results. 

IO' 

1 0 1  

E 
100 

\ 

s: (0 

Fig. 6. This is a plot of the PSD estimate obtained via a discrete Fourier 
transform. The process was first multiplied by a Hanning window. The solid 
line is the expected PSD (19) for noise shown in Fig. 5.  

lo-* t 

100 IO' 102 103 

Fig. 7. This shows the Allan variance estimate formed for the sequence 
in Fig. 5.  The solid line is the expected discrete Allan variance (23). The 
error bars correspond to the 90%) confidence intervals using a chi-square 
distribution. The number of degrees of freedom for each point was calculated 
using (23). (29). and (33). 

X. CONCLUSION 

In this paper, new equations for the Allan variance and the 
modified Allan variance have been derived. In each case a 
single equation, continuous in a,  has been presented. These 
equations can be used to augment or to replace the five 
standard integer equations for each variance. The recent in- 
troduction of a discrete form of the autocorrelation [ l ]  has 
allowed for these methods to be extended to discrete processes. 
It has been shown that the discrete equations converge to their 
continuous counterparts. The differences between the discrete 
and continuous equations are in practice indistinguishable. 
However, the discrete equations offer some definite advan- 
tages. One such advantage is (26) has a much simpler form 
than its continuous analog (14). 

This paper also re-examines the uncertainty of the variance 
estimates. The variances of the variance estimates have been 
derived for both the Allan variance and the modified Allan 
variance. Equations (29) and (32) were formed for estimates 
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100 10’ 102 lo? 

Fig. 8. This shows the modified Allan variance estimate formed for the 
sequence in Fig. 5.  The solid line is the expected discrete modified Allan 
variance (26). The error bars correspond to the 90%) confidence intervals 
using a chi-square distribution. The number of degrees of freedom for each 
point was calculated using (26). (32). and (33). 

with overlapping data samples and are continuous functions 
of a. These equations allow for the calculation of the number 
of degrees of freedom for arbitrary a. From these results firm 
confidence limits can be placed on the estimates using the 
chi-square distribution. 

The results presented in this paper can be used to more 
accurately determine the functional dependence of stability 
measures on a . This ability can be extremely useful for 
comparing experimental data to theoretical models. These 
comparisons should lead to a better understanding of noise 
sources which affect high-performance oscillators. 
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