
CHAPTER 7

Sliding Mode Control∗

Controlling the attitude dynamics of a drone is an essential task when work-
ing with aerial vehicles. This dynamics has a nonlinear nature included in
the Coriolis matrix, see Chap. 2. It was demonstrated in previous chap-
ters that generally this dynamics is used to conceive control algorithms in
its linear or simplified nonlinear mode. Nevertheless, it is also possible to
represent these nonlinear equations as linear and perturbed equations, im-
plying the design of controllers in an easy way. Nonlinear controllers are
becoming popular when working with UAVs because they can be robust
with respect to unknown perturbations such as wind present in the envi-
ronment. Several researchers have proposed countless algorithms to stabilize
the attitude of the aerial vehicle. The sliding mode approach becomes an
essential tool due to its robustness and quick dynamics to converge the
states. This methodology has been extensively studied in many works, see
[1–5].

In this chapter the sliding mode and singular optimal control method-
ologies are used to design nonlinear controllers to stabilize the nonlinear
attitude of a quadcopter vehicle. Two results are introduced here: first,
a new form to represent the nonlinear equations for the orientation of a
VTOL1 vehicle in the presence of unknown disturbances as a linear MIMO
and perturbed system is presented, and second, a control law is proposed
and validated in simulations and in real time to stabilize the attitude of a
quadcopter.

7.1 FROM THE NONLINEAR ATTITUDE REPRESENTATION TO
LINEAR MIMO EXPRESSION

The simplest form to represent the orientation of a quadcopter or VTOL
vehicle is to consider two integrators in cascade with external perturbations
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from the Universidad Autonoma de Nuevo Leon in Mexico.
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Indoor Navigation Strategies for Aerial Autonomous Systems.
DOI: http://dx.doi.org/10.1016/B978-0-12-805189-4.00010-X
© 2017 Elsevier Inc. All rights reserved. 157

http://dx.doi.org/10.1016/B978-0-12-805189-4.00010-X


158 Indoor Navigation Strategies for Aerial Autonomous Systems

as follows:

η̈ = uη + wη, (7.1)

or

ẋ = Āx + B̄1uη + B̄2wη with x = [η1 η2], (7.2)

where η represents the attitude vector with η being φ, θ , or ψ , i.e., the
Euler angles, roll, pitch, and yaw, respectively, uη defines the control input,
and wη the unknown and external perturbation. Even if this representation
is experimentally valid for small angles, it does not represent the Coriolis
and aerodynamic effects that the aerial vehicle experiences and can generate
undesirable dynamics in flight when the vehicle moves quickly.

Studying the complete nonlinear attitude equations to design the con-
troller can be an arduous task; nevertheless, some authors prefer to consider
the strongest terms in the orientation to represent their model. These equa-
tions are described in the following and, considering our experience with
quadcopters, they closely represent the attitude of a quadrotor vehicle:

φ̈ = θ̇ ψ̇

(
Iy − Iz

Ix

)
− Ir

Ix
θ̇� + l

Ix
uφ + wφ,

θ̈ = φ̇ψ̇

(
Iz − Ix

Iy

)
− Ir

Iy
φ̇� + l

Iy
uθ + wθ ,

ψ̈ = θ̇ φ̇

(
Ix − Iy

Iz

)
+ l

Iz
uψ + wψ,

(7.3)

where the distance from each motor to the gravity center of the vehicle is
denoted by l. The inertia of the vehicle in each axis is defined by Ix, Iy, and
Iz while the inertia of the motor is represented by Ir , and the speed of the
rotor is defined by �.

Notice that system (7.3) is quite different from (7.1) even if the un-
known disturbances or uncertainties, wη, are also considered in the model.
We study the system with bounded perturbations because it is obvious that
the physical characteristics of the vehicle (power motors, etc.) are not un-
limited, and, as a consequence, the perturbations need to be bounded, i.e.,
|wη| � Lη, where Lη is a constant that defines the amplitude of each pertur-
bation.
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Theorem 7.1. System (7.3) is equivalent to system

ẋ = Ax + B(u + w̄) (7.4)

with x = (φ1 θ1 ψ1 φ2 θ2 ψ2)
T , u = (uφ uθ uψ)T ,

w̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ2

(
ψ2

(
Iy − Iz

Ix

)
− Ir

Ix
�

)
− φ2 + wφ

l
Ix

φ2

(
ψ2

(
Iz − Ix

Iy

)
− Ir

Iy
�

)
− θ2 + wθ

l
Iy

θ2φ2

(
Ix − Iy

Iz

)
− ψ2 + wψ

l
Iz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =
(

03×3

03×3

I3×3

I3×3

)
,

B =
(

03×3

B2

)
,

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

l
Ix

0 0

0
l
Iy

0

0 0
l
Iz

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Proof. Consider γ1 =
(

Iy − Iz

Ix

)
, γ2 =

(
Iz − Ix

Iy

)
, γ3 =

(
Ix − Iy

Iz

)
, β1 = Ir

Ix
�,

β2 = Ir

Iy
�, b1 = l

Ix
, b2 = l

Iy
, and b3 = l

Iz
. Define φ1 = φ, θ1 = θ , ψ1 = ψ ,

φ̇1 = φ2, θ̇1 = θ2, and ψ̇1 = ψ2.
Then, rewriting (7.3) it follows that

φ̇1 = φ2, φ̇2 = θ2 (ψ2γ1 − β1) + b1uφ + wφ,

θ̇1 = θ2, θ̇2 = φ2 (ψ2γ2 − β2) + b2uθ + wθ , (7.5)
ψ̇1 = ψ2, ψ̇2 = θ2φ2γ3 + b3uψ + wψ.

To simplify the analysis, define f1 = θ2 (ψ2γ1 − β1), f2 = φ2 (ψ2γ2 − β2), and
f3 = θ2φ2γ3. Taking the three right equations of (7.5), we obtain

φ̇2 = φ2 − φ2 + f1 + b1uφ + wφ,

θ̇2 = θ2 − θ2 + f2 + b2uθ + wθ ,

ψ̇2 = ψ2 − ψ2 + f3 + b3uψ + wψ.

Define 	1 = f1 − φ2, 	2 = f2 − θ2, and 	3 = f3 − ψ2. Then

φ̇2 = φ2 + b1(uφ + w̄φ),

θ̇2 = θ2 + b2(uθ + w̄θ ),

ψ̇2 = ψ2 + b3(uψ + w̄ψ)
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with w̄i = (	i +wη)/bi. Finally, define ηi = (φi θi ψi)
T , i = 1,2. Then we

can write

η̇1 = η2,

η̇2 = η2 + B2(u + w̄),

which is equivalent to system (7.4).

7.2 NONLINEAR OPTIMAL CONTROLLER WITH INTEGRAL
SLIDING MODE DESIGN

The goal is to stabilize the quadcopter attitude using an optimal control u
that is robust with respect to perturbations and parameter variations. For
this it is necessary to minimize the following singular quadratic cost:

J (x (t)) = 1
2

∞∫
t1

[
x (t)T Qx (t)

]
dt, (7.6)

with Q = QT > 0. The minimization of (7.6) is subject to

η̇1 = η2. (7.7)

Developing (7.6), it follows that

J = 1
2

∞∫
t1

(
ηT

1 Q11η1 + 2ηT
1 Q12η2 + ηT

2 Q22 η2
)
dt. (7.8)

To eliminate the cross terms, the Utkin variable υ = η2 +Q−1
22 QT

12 η1 is used.
Then

J = 1
2

∞∫
t1

(ηT
1 Q1η1 + υTQ22υ)dt (7.9)

with Q1 = Q11 − Q12Q−1
22 QT

12. Rewriting (7.7) with the Utkin variable
yields

η̇1 = A1η1 + υ, (7.10)

where A1 = −Q−1
22 QT

12. Then (7.9) is not singular with respect to the vari-
able υ, so that υ is taken as an optimal virtual control variable and is given
by

υ = −Q−1
22 Pη1, (7.11)
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where P ∈ R
3×3 is the solution to the Riccati equation PA1 + AT

1 P −
P Q−1

22 P + Q1 = 0. Introducing the Utkin variable into (7.11), we have

η2 + Q−1
22

(
QT

12 + P
)
η1 = 0. (7.12)

Notice that (7.11) and (7.12) are only true if (7.9) is minimized for all
t1 ≥ 0.

Observe that (7.12) is an optimal vector that can be used for designing
the vector S ∈R

3 given by

S = η2 + Q−1
22

(
QT

12 + P
)
η1, (7.13)

where (7.13) represents the sliding surface vector. Taking the derivative of
the previous equation with respect to time gives

Ṡ = [
I3×3 + Q−1

22

(
QT

12 + P
)]

η2 + B2 (u + w̄) . (7.14)

To remove the linear parts, take u as

u = B−1
2

{
ū − [

I3×3 + Q−1
22

(
QT

12 + P
)]

η2
}
. (7.15)

Thus

Ṡ = ū + B2 w, (7.16)

where ū is the new controller to assure the convergence of the system.
Developing the above, it follows that⎛

⎜⎝ Ṡ1

Ṡ2

Ṡ3

⎞
⎟⎠ =

⎛
⎜⎝ ū1 + f1 − φ2 + wφ

ū2 + f2 − θ2 + wθ

ū3 + f3 − ψ2 + wψ

⎞
⎟⎠ .

To remove the linearities η2, we propose ū as

ū =
⎛
⎜⎝ ū1

ū2

ū3

⎞
⎟⎠ =

⎛
⎜⎝ v̄1 + φ2

v̄2 + θ2

v̄3 + ψ2

⎞
⎟⎠ .

Then, rewrite Ṡ as

Ṡ =
⎛
⎜⎝ v̄1 + f1 + wφ

v̄2 + f2 + wθ

v̄3 + f3 + wψ

⎞
⎟⎠ ,

where each Ṡi ∈ Ṡ is represented as

Ṡi = v̄i + fi
(
η1,η2, t

) + wη. (7.17)
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7.2.1 Convergence of the Sliding Surfaces

In the conventional sliding mode control the robustness property is not
guaranteed from the first time instant because the robustness is only guar-
anteed when the sliding surface reaches zero.

With the integral sliding mode we will be able to compensate nonlinear
terms and bounded uncertainties, also the robustness will be guaranteed
from the initial time instance. In the following, we introduce variable v̄i to
stabilize the sliding surfaces.

Then, we propose

v̄i = v̄i1 + v̄i2. (7.18)

• Part v̄i1 will be responsible of compensating the nonlinear terms fi and
the bounded disturbance wη from the beginning.

• Component v̄i2 will make sure that each sliding surface Si reaches the
optimal surface Si = 0 at a defined finite time t1 taking in consideration
that the perturbations fi and wη have been compensated from the initial
time instance t = 0.

Design of v̄i1

For v̄i1 we propose a new auxiliary surface σi with i = 1,2,3 given by2{
σi = Si − Zi,

Żi = v̄i 2.
(7.19)

It should be mentioned that v̄i1 is designed as a conventional sliding
mode control. This means that for the stability analysis a candidate Lya-
punov function could be used. Therefore

V (σi) = 1
2
σ 2

i > 0. (7.20)

The asymptotic stability of (7.19) at the equilibrium point 0 can be proved
if the following conditions are satisfied:

(a) lim|σi|→∞
V = ∞, (7.21)

(b) V̇ < 0 for σi �= 0. (7.22)

2 In this chapter variable σ is used only as an auxiliary sliding surface and not as a saturation
function.
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Condition (a) is obviously satisfied by V in (7.20). Nevertheless, the finite-
time convergence (global finite-time stability) could be achieved if condi-
tion (b) is modified as

V̇ ≤ −αiV 1/2, αi > 0. (7.23)

Indeed, separating variables and integrating inequality (7.23) over the time
interval 0 ≤ τ ≤ t, we obtain

V 1/2 (σi (t)) ≤ −1
2
αi t + V 1/2 (σi (0)) , (7.24)

and, considering that V (σi (t)) reaches zero in finite time tr , get

tr ≤ 2V 1/2 (σi (0))

αi
. (7.25)

Therefore control v̄i1 that satisfies (7.23) will drive σi to zero in finite
time tr and will keep it at zero ∀ t ≥ tr .

Now notice that (7.23) can be written as

σiσ̇i ≤ −ᾱi |σi| , ᾱi = αi√
2
, ᾱi > 0. (7.26)

Consequently, from the above and with (7.17), (7.18) and (7.19) we have

σi ∗
(
Ṡi − Żi

) = σi ∗
(
v̄i1 + v̄i2 + fi

(
η1,η2, t

) + wη − v̄i2
)

= σi ∗
(
v̄i1 + fi

(
η1,η2, t

) + wη

)
,

and, selecting v̄i1 = −ρi sgn (σi), condition (7.26) is fulfilled if and only if

ρi = ᾱi +
∣∣fi (η1,η2, t

)∣∣ + Lη. (7.27)

Notice that (7.27) represents the necessary gains for ensuring the finite time
stability in a bounded finite time tr , which means

tr ≤ 2V 1/2 (σi (0))

αi
= |σi(0)|

ᾱ
. (7.28)

The above implies that σi = σ̇i = 0 for all t ≥ tr , then the condition σ̇i = 0
produces

σ̇i = −ρi sgn (σi)︸ ︷︷ ︸
v̄i1

+fi
(
η1,η2, t

) + wη = 0 ∀t ≥ tr,

meaning that −ρ1 sgn (σi) will compensate the perturbative terms
fi(η1,η2, t) + wη only during the reaching phase.

In the following, to eliminate the reaching phase, we observe in (7.28)
that proposing σi (0) = 0 will imply tr = 0 and as a result σi = σ̇i = 0 for all
t ≥ 0.
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Based on the above considerations, we present the next result

v̄i1 = −ρi sgn (σi) = − (
fi
(
η1,η2, t

) + wη

)
, ∀t ≥ 0

if and only if σi (0) = 0.
Therefore control v̄i1 = −ρi sgn (σi) compensates fi(η1,η2, t) + wη for all

t ≥ 0 if and only if σi (0) = 0.
Now considering that control v̄i1 accomplishes σi (t) = 0 for all t ≥ 0 and

due to (7.19), it follows that Si (t) = Zi (t) for all t ≥ 0. Therefore (7.19) can
be rewritten as {

Si = Zi,

Żi = v̄i 2,
with Zi (0) = Si (0) . (7.29)

Then considering (7.29) we have

Ṡi = v̄i2.

The next step is to design v̄i2 such that Si converges to zero in finite time.

Design of v̄i2

In order to achieve global finite-time stability at the optimal sliding surfaces
Si = 0, we introduce v̄i 2 = −ki |Si|1/2 sgn (Si); then Ṡi is written as

Ṡi = −ki |Si|1/2 sgn (Si) . (7.30)

The following Lyapunov function is proposed to prove that (7.30) con-
verges to zero in finite time:

V (Si) = |Si| > 0. (7.31)

The previous equations must satisfy conditions (7.22). Observe that, by
definition (7.31), condition (a) is achieved; to fulfill condition (b), we use
(7.23). Notice that when introducing (7.31) into (7.23) an equivalent mod-
ified condition is obtained, which is given by

SiṠi

|Si| ≤ −αi |Si|1/2 . (7.32)

Introducing (7.30) into (7.32), the previous inequality becomes

−ki |Si|1/2 ≤ −αi |Si|1/2 . (7.33)

Therefore to satisfy (7.33) each gain ki must be equal to αi, meaning
that ki > 0, and this implies that

V̇ = −αiV 1/2 if ki = αi > 0.
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Observe that the finite-time convergence time tri will not be bounded, it
will be exactly equal to

tri =
2V 1/2 (Si (0))

ki
= 2 |Si(0)|1/2

ki
; (7.34)

consequently, Si = 0 in a finite time tri . Observe that (7.34) represents the
finite-time convergence of each Si to the optimal sliding surface Si = 0.
With the purpose that each Si has the same finite time convergence, we fix
tri = t1 = cte,3 then we will be able to design the gains ki in order to have
S1(t1) = S2 (t1) = · · · = Sn (t1) = 0.

Fixing tri = t1 = cte, the necessary gains for getting Si(t1) = 0 can be

obtained with ki = 2 |Si(0)|1/2

t1
.

Summarizing the methodology, it follows that when considering (7.17)
and the fact that v̄i = v̄i1 + v̄i2, we have

Ṡi = −ρi sgn (Si − Zi)︸ ︷︷ ︸
v̄i1

+ (−ki |Si|1/2 sgn (Si)
)︸ ︷︷ ︸

v̄i2

+fi + wη

with gains

ρi = ᾱi +
∣∣fi (η1,η2, t

)∣∣ + Lη and ki = 2 |Si(0)|1/2

t1
. (7.35)

• Component v̄i1 will compensate the perturbative terms fi(η1,η2, t)+wη

for all t ≥ 0 if and only if Zi (0) = Si (0).
• Considering that the perturbative terms have been compensated from

the initial time, control v̄i2 will ensure that every Si will converge to
the optimal sliding surface Si = 0 in a fixed reaching time t1.
Therefore, component ūi from (7.15) is given by

ūi = −ρi sgn (Si − Zi) − ki |Si|1/2 sgn (Si) + η2i ,

Zi = −ki
∫ |Si|1/2 sgn (Si)dt with Zi (0) = Si (0) ,

(7.36)

and gains t1 = cte and ᾱi = αi√
2

in (7.35).

3 cte = constant.
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7.3 NUMERICAL VALIDATION

Simulations are realized to validate the proposed controllers. From sec-
tion 7.1 notice that (7.3) can be expressed in regular form as

η̇1 = η2,

η̇2 = η2 + B2(u + w̄),

where η1 = (φ1, θ1,ψ1)
T and η2 = (φ2, θ2,ψ2)

T .
Following the previous control procedure, some matrices are necessary

to compute u. These matrices are proposed as follows:

Q = QT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

17 8 7 −6 −4 2
8 26 6 4 4 13
7 6 11 9 1 2

−6 4 9 23 9 4
−4 4 1 9 9 3
2 13 2 4 3 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

> 0,

thus

Q11 =
⎛
⎜⎝ 17 8 7

8 26 6
7 6 11

⎞
⎟⎠ , Q12 = QT

12 =
⎛
⎜⎝ −6 −4 2

4 4 13
9 1 2

⎞
⎟⎠ ,

Q22 =
⎛
⎜⎝ 23 9 4

9 9 3
4 3 8

⎞
⎟⎠ .

Therefore, from (7.9) and (7.10),

Q1 =
⎛
⎜⎝ 13.1924 3.9244 8.0378

3.9244 4.5773 3.7113
8.0378 3.7113 6.1443

⎞
⎟⎠ ,

A1 =
⎛
⎜⎝ 0.1787 0.1203 −0.5601

0.4330 −0.0034 0.5017
−0.5017 −1.6838 −0.1581

⎞
⎟⎠ .

Solving the Riccati equation, it follows that

P =
⎛
⎜⎝ 25.3132 9.9395 −0.5181

9.9395 8.9679 −1.5217
−0.5181 −1.5217 4.4597

⎞
⎟⎠ ,
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and finally S can be written as

S = η2 + Q−1
22

(
QT

12 + P
)︸ ︷︷ ︸

M

η1, (7.37)

where

M =
⎛
⎜⎝ M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎟⎠ =

⎛
⎜⎝ 0.9702 −0.0036 0.5814

−0.2404 1.1036 −0.9275
−0.2097 1.0228 0.8646

⎞
⎟⎠ .

Then, the sliding surfaces are given by

S1 = φ2 + M11φ1 + M12θ1 + M13ψ1,

S2 = θ2 + M21φ1 + M22θ1 + M23ψ1,

S3 = ψ2 + M31φ1 + M32θ1 + M33ψ1.

Rewriting u ∈ R
3, it follows that

uφ = (Ix/l) (ū1 − M13ψ2 − M12θ2 − (M11 + 1)φ2) ,

uθ = (Iy/l) (ū2 − M21φ2 − M23ψ2 − (M22 + 1)θ2) ,

uψ = (Iz/l) (ū3 − M31φ2 − M32θ2 − (M33 + 1)ψ2) ,

with

ū1 = −ρ1 sgn (S1 − Z1) − k1 |S1|1/2 sgn (S1) + φ2,

Z1 = −k1

∫
|S1|1/2 sgn (S1)dt with Z1 (0) = S1 (0) ,

ū2 = −ρ2 sgn (S2 − Z2) − k2 |S2|1/2 sgn (S2) + θ2,

Z2 = −k2

∫
|S2|1/2 sgn (S2)dt with Z2 (0) = S2 (0) ,

ū3 = −ρ3 sgn (S3 − Z3) − k3 |S3|1/2 sgn (S3) + ψ2,

Z3 = −k3

∫
|S3|1/2 sgn (S3)dt with Z3 (0) = S3 (0) ,

and gains given by

ρ1 =
(

α1√
2

+ |θ2 (ψ2γ1 − β1)| + L1

)
,

ρ2 =
(

α2√
2

+ |φ2 (ψ2γ2 − β2)| + L2

)
,

ρ3 =
(

α3√
2

+ |θ2φ2γ3| + L3

)
.
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k1 = 2 |S1(0)|1/2

t1

k2 = 2 |S2(0)|1/2

t1

k3 = 2 |S3(0)|1/2

t1

∣∣∣∣∣∣∣∣∣∣∣∣
, t1 = cte (7.38)

The initial conditions were set as φ1 (0) = −5, θ1 (0) = 2, ψ1 (0) = −3,
all in grad, φ2 (0) = 6, θ2 (0) = 4, ψ2 (0) = 6 in grad/s. These conditions
imply S1 (0) = −0.6026, S2 (0) = 10.1917, and S3 (0) = 6.5004. We can also
define t1 = 1 s as a finite-time convergence instance for the sliding surfaces
S1, S2, and S3. Thus, from (7.38) we obtained k1 = 1.5525, k2 = 6.3849,
and k3 = 5.0992. Furthermore, for simulation purposes we assumed α1 =
0.12, α2 = 0.14, and α3 = 0.2. The bounded disturbances were selected as
follows:

wφ = 2 sin (t) sgn (S1) ,
∣∣wφ

∣∣ � Lφ = 2,

wθ = −1.5 cos (2t) sgn (S2) , |wθ | � Lθ = 1.5,

wψ = −0.5 exp (cos (t)) sgn (S3) ,
∣∣wψ

∣∣ � Lψ = 0.5 exp(1).

The above disturbances were considered multiplied by sgn (Si) for the
following reasons:
1. To observe that the effect chattering produced by sgn (Si) is not relevant

for the compensation of such disturbances. We are only interested in
the knowledge of the maximum amplitude that each perturbation can
reach, and not in the high frequency that it can produce.

2. To graphically validate the theory. It is expected to observe an evident
chattering effect in wφ , wθ , and wψ when Si = 0 at the desired finite
time t1 = 1.

The following graphs were obtained when applying the proposed con-
trol scheme. From Fig. 7.1 observe that the auxiliary sliding surfaces σ1, σ2,
and σ3 are zero from the initial time instance, meaning that the robustness
is guaranteed with respect to bounded uncertainties all the time. Besides,
S1, S2, and S3 converge to zero in a desired finite time t1 = 1; this means
that the vector of sliding surface S = η2 + Q−1

22 (QT
12 + P)η1 converges to

the optimal vector of sliding surfaces S = 0 in finite time t1 = 1, and with
this fact every solution η1 = (φ, θ,ψ)T and η2 = (φ̇, θ̇ , ψ̇)T that belongs to
S = 0 will be called an optimal sliding mode because it will be able to min-



Sliding Mode Control 169

Figure 7.1 Convergence of auxiliary surfaces σi and sliding surfaces Si .

imize the cost function (7.9) for all t ≥ t1 and in this manner solve the LQR
problem.4

4 This means that the state variables which minimize the quadratic cost function will be
asymptotically stable.
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Figure 7.2 Stabilization of the dynamics of φ , θ , ψ and φ̇ , θ̇ , ψ̇ .

In Fig. 7.2 an asymptotic stabilization is clearly visible for the dynamics
of φ, θ,ψ and φ̇, θ̇ , ψ̇ due to the convergence of the vector S to the optimal
sliding vector S = 0 in finite time t1 = 1.

In Fig. 7.3 it can be observed that the bounded uncertainties wφ , wθ , and
wψ present an evident chattering effect by considering the factor sgn (Si),
and also that this chattering effect appears at time t1 = 1. However, although
these uncertainties present a high frequency, the control signal responses uφ ,
uθ , and uψ shown in Fig. 7.4 compensate such perturbations from the initial
time instance t = 0.
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Figure 7.3 Bounded uncertainties wφ , wθ , and wψ .

Figure 7.4 Control signals uφ , uθ , and uψ .
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In Fig. 7.4 it is shown that the control signal responses uφ , uθ , and uψ

have a chattering effect from the beginning, meaning that such controllers
are compensating the proposed bounded uncertainties wφ , wθ , and wψ for
all t ≥ 0.

7.3.1 Emulation Results

One of the problems existing today is due to the discontinuity produced by
the sgn function. This discontinuity produces a high frequency, normally
called the chattering effect, which in practical applications is not conve-
nient because it could produce unwanted vibrations that could damage the
instruments in real-time implementations. Nevertheless, there exists exten-
sive literature on techniques that help diminish the chattering effect.

Notice the chattering effect produced by the sgn function in Fig. 7.4.
If we want to improve the performance of the control inputs, several tricks
could be used. One technique used frequently is to approximate the sgn
function; see, for example, [6, Chap. 1]. This approximation can be applied
as

sgn (σ ) ≈ σ

|σ | + ε
. (7.39)

For our simulations purposes we consider ε = 0.0007.

Figure 7.5 Convergence of the sliding surfaces S1, S2, and S3.
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The idea when validating the proposed algorithm is to have similar
results in simulations and/or experiments. For this we consider that all states
φ, θ , ψ , φ̇, θ̇ , and ψ̇ are affected by some kind of white noise (that it is true
when using inertial sensors). Under these assumptions the following graphs
are obtained.

In Fig. 7.5 we observe that the sliding surfaces S1, S2, and S3 converge
to zero in finite time t1, although the nonlinear system is being affected
by white noise. In Fig. 7.6 asymptotic convergence is observed for the
dynamics of φ, θ,ψ and φ̇, θ̇ , ψ̇ in spite of having white noise in the internal
dynamics of the system. Due to this, the controls shown in Fig. 7.7 achieve
the convergence of the vector S to the optimal sliding vector S = 0 in

Figure 7.6 Dynamic stabilization of φ , θ , ψ and φ̇ , θ̇ , ψ̇ with sensor noise.
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Figure 7.7 Control signals uφ , uθ , and uψ .

finite time. In Fig. 7.7 a representation of the controllers uφ , uθ , and uψ is
shown; they drive S to zero in finite time in the presence of white noise
and bounded uncertainties.

7.4 REAL-TIME VALIDATION

The previous controller was validated on our platform (see Sect. 4.1.5 of
Chap. 4) to analyze the attitude performance of a quadcopter. Manual and
aggressive references were given to test the behavior of the controller. The
following main graphs illustrate the results.

Applying the controller as obtained in Sect. 7.3 in real time is very dif-
ficult, and the system is very sensible to small changes. This effect appears
because even if the sliding surfaces go to zero, the cross terms of other vari-
ables are present in these surfaces, e.g., recall that surface S1 is for assuring
the roll angle convergence and notice that pitch and yaw terms are also
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included. In addition, if the terms Mij of these variables (pitch and yaw) are
bigger then they will strongly influence the controller performance. There-
fore, in this part we will include a theoretical–practical tune up that could
be used for sliding controllers.

Observe that S = vq + Mq. Then we can choose M not only to assure
convergence of the sliding surfaces but also to facilitate the implementation
in real time. Therefore the goal will be to weigh the main diagonal of M
to assure good convergence of each state. Remember that M is given by
M = Q−1

22

(
QT

12 + P
)

and Q is given by

Q = QT =
(

Q11 Q12

QT
12 Q22

)
> 0, Q11,Q12,Q22 ∈ R

3×3.

For a practical tune up we can consider Q12 = 03×3 and Q22 as

Q22 =
⎛
⎜⎝ r 0 0

0 s 0
0 0 g

⎞
⎟⎠

with r, s, and g being positive numbers to guarantee Q22 = QT
22 > 0. Hence

M becomes

M =
⎛
⎜⎝ P11/r 0 0

0 P22/s 0
0 0 P33/g

⎞
⎟⎠ =

⎛
⎜⎝ M11 0 0

0 M22 0
0 0 M33

⎞
⎟⎠ ,

and this implies that each Si is given by

S1 = φ2 + M11φ1,

S2 = θ2 + M22θ1,

S3 = ψ2 + M33ψ1.

Then u ∈ R
3 for practical validation is given as

uφ = (Ix/l) (ū1 − (M11 + 1)φ2) ,

uθ = (Iy/l) (ū2 − (M22 + 1)θ2) ,

uψ = (Iz/l) (ū3 − (M33 + 1)ψ2) ,

with

ū1 = −ρ1 sgn (S1 − Z1) − k1 |S1|1/2 sgn (S1) + φ2,

Z1 = −k1

∫
|S1|1/2 sgn (S1)dt with Z1 (0) = S1 (0) ,

ū2 = −ρ2 sgn (S2 − Z2) − k2 |S2|1/2 sgn (S2) + θ2,
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Z2 = −k2

∫
|S2|1/2 sgn (S2)dt with Z2 (0) = S2 (0) ,

ū3 = −ρ3 sgn (S3 − Z3) − k3 |S3|1/2 sgn (S3) + ψ2,

Z3 = −k3

∫
|S3|1/2 sgn (S3)dt with Z3 (0) = S3 (0) .

The new gains are given by

ρ1 =
(

α1√
2

+ |θ2 (ψ2γ1 − β1)| + L1

)
,

ρ2 =
(

α2√
2

+ |φ2 (ψ2γ2 − β2)| + L2

)
,

ρ3 =
(

α3√
2

+ |θ2φ2γ3| + L3

)
,

and other parameters are

k1 = 2 |S1(0)|1/2

t1

k2 = 2 |S2(0)|1/2

t1

k3 = 2 |S3(0)|1/2

t1

∣∣∣∣∣∣∣∣∣∣∣∣
t1 = cte,

β1 = β2 (γ1 + 1) , γ3 = −γ1

(
1

γ2 (γ1 + 1) + 1

)
,

b2 = b1

(γ1 + 1)
, b3 = b1[

γ2 (γ1 + 1) + 1
] ,

b−1
2 = (γ1 + 1)

b1
, b−1

3 =
[
γ2 (γ1 + 1) + 1

]
b1

.

Analyzing the previous gains, we can observe that the gains for heuristic
tune up are β2, γ1, γ2, and b1. Thus, the gains can be proposed as

ρ1 = (|θ2 (ψ2γ1 − β1)| + Lx) ,

ρ2 = (|φ2 (ψ2γ2 − β2)| + Ly
)
,

ρ3 = (|θ2φ2γ3| + Lz) ,

and if we want ������ 0
ψ2γ1 − β1 and ������ 0

ψ2γ2 − β2 then for the tune up we can
use the following expressions:

γ3 = − γ1

γ1 + 1
, γ1, b1 = any number, b2 = b3 = b1

(γ1 + 1)
,

and then the gains become ρ1 = (Lx) , ρ2 = (
Ly

)
, and ρ3 = (|θ2φ2γ3| + Lz).
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Figure 7.8 Attitude response when applying the controller in real time.
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Fig. 7.8 introduces the behavior of the controllers when they are applied
in a quadcopter prototype. Observe in this figure that the controller per-
forms well in practice and that the closed-loop system is guaranteed even
in the presence of aggressive maneuvers. Also notice that the procedure to
tune the gains in the controller works pretty well and can be applied to oth-
ers sliding controllers. Desired references were given manually by the pilot.
Notice that several changes were produced to observe the performance of
the controller.

7.5 DISCUSSION

Sliding mode control is becoming a popular tool when working with UAVs
since robustness and quick convergence properties make such controllers
very interesting to apply in autonomous vehicles. On the negative side, the
main problem is the chattering effect produced in the control responses.
This effect could damage the physical parts of the system and could re-
quire lots of energy for good efficiency. New controllers as proposed in
this chapter try to reduce these drawbacks and improve the performance
of such algorithms. Nevertheless, many issues still need to be solved and
remain an open research topic.

The controller presented in this chapter was designed to be robust with
respect to unknown and bounded perturbations and to guarantee conver-
gence in finite time. This fact is not typical in controllers. From emulation
results we could observe good performance of the algorithms. The next
step for this controller will be to reduce the chattering effect in its design.
In addition, a methodology to theoretically tune sliding algorithms was also
presented in this chapter. It is very useful when applying the controller in
real time. The graphs obtained when implementing the proposed controller
demonstrated good performance in closed-loop system.
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