
Data Flow Testing as Model Checking∗

Hyoung Seok Hong, Sung Deok Cha
Department of Electrical Engineering and Computer Science and AITrc

Korea Advanced Institute of Science and Technology
{hshong,cha}@salmosa.kaist.ac.kr

Insup Lee, Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania
{lee,sokolsky}@saul.cis.upenn.edu

Hasan Ural
School of Information Technology and Engineering

University of Ottawa
ural@site.uottawa.ca

Abstract

This paper presents a model checking-based approach to
data flow testing. We characterize data flow oriented cover-
age criteria in temporal logic such that the problem of test
generation is reduced to the problem of finding witnesses
for a set of temporal logic formulas. The capability of model
checkers to construct witnesses and counterexamples allows
test generation to be fully automatic. We discuss complexity
issues in minimal cost test generation and describe heurstic
test generation algorithms. We illustrate our approach us-
ing CTL as temporal logic and SMV as model checker.

1 Introduction

During the last two decades, there have been a num-
ber of data flow testing methods. Included are those pro-
posed by Rapps and Weyuker[26], Ntafos[24], Ural[30],
and Laski and Korel[22], which are originally devel-
oped for modules in procedural languages. These meth-
ods have been extended for interprocedural programs in
procedural languages[13], object-oriented programmming
languages[14], and requirements specification languages
such as SDL[29, 31] and statecharts[17]. In data flow test-

∗This research was supported in part by Advanced Information Tech-
nology Research Center at KAIST, NSF CCR-9988409, NSF CCR-
0086147, NSF CCR-0209024, ARO DAAD19-01-1-0473, DARPA ITO
MOBIES F33615-00-C-1707, and the Natural Sciences and Engineering
Research Council of Canada under grant OGP00000976.

ing, we usually model a software as a flow graph which
identifies the information of control flow and data flow in
the software. We then establish certain associations be-
tween definitions and uses of variables required to be cov-
ered in a given coverage criterion by applying conventional
data flow analysis upon the flow graph. Finally we select a
finite number of paths which cover the associations as a test
suite.

Model checking is a formal verification technique for de-
termining whether a system model satisfies a property writ-
ten in temporal logic and model checkers such as SMV[23]
and SPIN[16] are already used on a regular basis for the
verification of real-world applications. In addition to being
automatic, an important feature of model checking is the
ability to explain the success or failure of a temporal logic
formula[5, 6, 15]. If a system model satisfies a formula,
model checkers are capable of supplying an execution of
the model as a witness demonstrating the success of the for-
mula. Conversely, a counterexample is supplied when the
model fails to satisfy the formula.

This paper presents a model checking-based approach to
data flow testing. In our approach, the problems of data
flow analysis and path selection in data flow testing are for-
mulated in terms of model checking. We investigate four
groups of coverage criteria in [26, 24, 30, 22] and character-
ize each coverage criterion by specifying the requirements
of the coverage criterion using a set of temporal logic for-
mulas such that the problem of test generation is reduced
to the problem of finding witnesses for the set of formu-
las. The capability of model checkers to construct witnesses

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

and counterexamples allows test generation to be fully au-
tomatic. As a by-product, the characterization enables us
to discuss complexity issues in minimal cost test genera-
tion. This paper illustrates our approach using CTL[4] as
temporal logic and SMV[23] as model checker. The main
advantages of our approach may be summarized as follows:
First, the approach enables test generation from large flow
graphs whose size is limited by the capabilities of current
model checkers. Second, the approach allows focusing on
only high-level specifications of coverage criteria written in
temporal logic. All the details about test generation algo-
ritms and their implementations are hidden in model check-
ers. Third, the approach is language independent in that
the temporal logic formulas employed in the approach are
applicable with minor modifications to flow graphs con-
structed from various kinds of programming languages and
requirements specification languages.

Connections between data flow analysis and model
checking were made in [27, 28] which show that model
checking can be used to solve various data flow analysis
problems including the standard bit-vector problems. Our
approach extends the work of [27, 28] in that data flow
testing combines data flow analysis with the path selec-
tion problem. Recently, connections between test genera-
tion and model checking have been considered especially
in specification-based testing. In [20], local and on-the-fly
model checking algoritms are applied to test generation. In
[32], SPIN is used for on-the-fly test generation. Test gen-
eration using the capability of model checker to construct
counterexamples has been applied in several contexts. In
[1], the application of model checking to mutation analysis
is described. In [3, 9], tests are generated by constructing
counterexamples for user-supplied temporal logic formulas.
In [12], the capability of SMV and SPIN to construct coun-
terexamples is applied to test generation for control flow
oriented coverage criteria. No consideration is given to data
flow testing in the above work.

In [18, 19], the authors discuss the application of model
checking to test generation from requirements specifica-
tions for both control flow and data flow oriented coverage
criteria. The approach in [18, 19] is based on the fact that
the state space of a specification is often finite and hence
one can use reachability graphs instead of flow graphs for
test generation. On one hand, this paper extends [18, 19] by
considering more comprehensive groups of data flow ori-
ented coverage criteria. On the other hand, the flow-graph
approach we advocate here can be seen as complementary
to the reachability-graph approach in [18, 19]. In the flow-
graph approach one can generate tests from programs or
specifications with infinite state space because the values
of variables are not expanded in flow graphs. It, however,
requires posterior analysis such as symbolic execution or
constraint solving to determine the executability of tests and

for the selection of variable values which make tests exe-
cutable. The reachability-graph approach can handle only
finite state space but has the advantage that only executable
tests are generated which obviates the necessity of posterior
analysis.

Section 2 briefly reviews the basics of flow graph and
CTL which are the model and logic employed in our ap-
proach, respectively. Section 3 characterizes the coverage
criteria in [26, 24, 30, 22] by associating a CTL formula,
parameterized with the propositions of a given flow graph,
with each entity required to be covered in a given criterion.
Each formula is defined in such a way that a flow graph sat-
isfies the formula if and only if the flow graph has an execu-
tion covering the entity described by the formula. By find-
ing witnesses for every formula in a given criterion, we gen-
erate a test suite satisfying the criterion. Section 4 discusses
complexity issues in minimal cost test generation. Typically
a CTL formula can have several executions as its witness.
By selecting the right witness for each formula, one can
minimize the size of the test suite. We show that two opti-
mization problems of minimal cost test generation are NP-
hard and describe heuristic test generation algorithms em-
ploying the capability of model checkers to construct coun-
terexamples. We report the experimental results obtained
by applying the heuristics to a moderate flow graph. In our
experience with SMV, we were able to generate test suites
from flow graphs containing dozens of variable definitions
and uses in seconds. Finally, Section 5 concludes the paper
with a discussion of future work.

2 Flow Graph and CTL

A flow graph G = (V ,vs,vf ,A) is a directed graph where
V is a finite set of vertices; vs ∈ V is the start vertex;
vf ∈ V is the final vertex; and A is a finite set of arcs. A
vertex represents a statement and an arc represents possible
flow of control between statements. We adopt the following
convention to decorate each vertex with data flow informa-
tion. Let x be a variable and v be a vertex. We say that x
is defined at v, denoted by dx

v , if v represents a statement
assigning a value to x. We say that x is used at v, denoted
by ux

v , if v represents a statement referencing x. We use
DEF(v) and USE(v) to denote the sets of definitions and
uses at v, respectively. A sequence v1...vn of vertices is a
path if (vi,vi+1) ∈ A for 1 ≤ i ≤ n− 1. A path is complete
if it starts from the start vertex vs and ends at the final vertex
vf . A test sequence is a complete path and a test suite is a
finite set of test sequences. Figure 1 shows a program and
its flow graph.

We view a flow graph as a Kripke structure M =
(Q,qinit ,L,R) where Q is a finite set of states; qinit ∈ Q
is the initial state; L: Q → 2AP is the function labelling
each state with a subset of the set AP of atomic proposi-

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

v1: input(x, y, z);
v2: if (x > y)
v3: thenmax := x;
v4: elsemax := y;
v5: endif
v6: max := z ∗ max;
v7: output(max);

✒✑
�✏
vf {final}
❄

✒✑
�✏
v7 {umax

v7 }
❄

✒✑
�✏
v6 {dmax

v6 , uz
v6 , umax

v6 }
❄

✒✑
�✏
v5 ∅

�✠❅❘
✒✑
�✏
v4 {dmax

v4 , uy
v4}✒✑

�✏
v3{dmax

v3 , ux
v3}

✒✑
�✏
v2 {ux

v2 , uy
v2}

❅❘�✠

✒✑
�✏
v1 {dx

v1 , dy
v1 , dz

v1}
❄

✒✑
�✏

vs {start}
❄

Figure 1. An example of flow graphs

tions; R ⊆ Q × Q is the transition relation which is total,
i.e., for every state q, there is a state q′ such that (q,q′) ∈ R.
The Kripke structure M(G) corresponding to a flow graph
G is (V , vs, L, A ∪ {(vf , vf)}) where L(vs) = {start},
L(vf) = {final}, and L(v) = DEF(v) ∪ USE(v) for every
v ∈ V − {vs, vf}. The tuple (vf ,vf) is necessary to guar-
antee that the transition relation be total.

Now we give a brief and informal introduction to CTL.
We refer to [4] for the formal syntax and semantics for CTL.
Formulas in CTL are built from path quantifiers, modal op-
erators, and standard logical operators. The path quantifiers
are A (for all paths) and E (for some path). The modal
opeators are X (next time), F (eventually), G (always), and
U (until). For a CTL formula f and a state q of Kripke
structure M , we write M, q |= f (q |= f when M is un-
derstood) if q satisfies f and writeM |= f ifM, qinit |= f .
The meaning of CTL formulas can be understood as fol-
lows: “q |= EXp” states that there is a path from q such that
p holds at the next state; “q |= EFp” states that there is a
path from q such that p holds sometime in the future; “q |=
EGp” states that there is a path from q such that p holds
globally in the future; “q |= E[p1Up2]” states that there is a
path from q such that p1 holds until p2 holds and p2 eventu-
ally holds in the future. ECTL is the exitential fragment of
CTL where only the path quantifier E is allowed and nega-
tion is restricted to atomic propositions. ACTL is the dual
universal fragment of CTL.

Symbolic model checkers for CTL such as SMV repre-
sent the state space and transition relation of Kripke struc-

tures in terms of binary decision diagrams (BDDs) and use
a fixpoint characterization of CTL formulas to compute the
set of states satisfying a formula. For example, the set
of states satisfying EFp is a least fixpoint of the predicate
transformer τ : 2Q → 2Q defined by τ(Z) = p∨EXZ. The
fixpoint computation requires standard logical operations,
quantification over variables, and substitution of variables
which can all be performed efficiently on BDDs.

An important feature of model checking is the ability to
construct witnesses and counterexamples. Algorithms for
constructing linear witnesses and counterexamples, i.e., fi-
nite or infinite paths, were developed in [5, 15] and are
widely used in current model checkers. Recently, Clarke
et al.[6] made a formal definition of witnesses and coun-
terexamples using simulation relation. Let M be a Kripke
structure, f be a ECTL formula, and g be a ACTL formula.
If M |= f , a witness for f is a Kripke structure M ′ such
that M ′ |= f and M simulates M ′. Dually, if M
|= g,
a counterexample for g is a Kripke structure M ′′ such that
M ′′
|= g andM simulatesM ′′. They also proposed to use
tree-like structures as witnesses and counterexamples for a
large class of branching-time temporal logics which do not
have linear witnesses.

For the purpose of data flow testing, we are only inter-
ested in linear and finite witnesses and restrict ourselves to
a subclass of ECTL, which we call WCTL, defined by: A
ECTL formula f is a WCTL formula if (i) f contains only
EX, EF, and EU and (ii) for every subformula of f of the
form f1 ∧ ... ∧ fn, every conjunct fi except at most one is
an atomic proposition. For example, EF(p1∧ EFp2) is in
WCTL while EFp1 ∧ EFp2 is not. For a Kripke structure
M and a WCTL formula f such that M |= f , we define
the set of witnesses for f with respect to M , denoted by
W(M ,f), as follows.

• W (M ,true) = Q,

• W (M ,false) = ∅,

• W (M ,p ∧ f) = {q | q |= p} ∗W (M ,f),

• W (M ,f ∨ g) =W (M ,f) ∪W (M ,g),

• W (M ,EXf) = {q0q1 | q1 |= f, (q0, q1) ∈ R} ∗
W (M ,f),

• W (M ,EFf) = {q0...qn | qn |= f, (qi, qi+1) ∈ R for
all 0 ≤ i ≤ n− 1} ∗W (M ,f),

• W (M ,E[fUg]) = {q0...qn | qi |= f for all 0 ≤ i ≤
n− 1, qn |= g, (qj , qj+1) ∈ R for all 0 ≤ j ≤ n− 1}
∗W (M ,g),

• W(M ,f) = {π ∈W (M ,f) | π(0) = qinit},

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

where Π1 ∗ Π2 = {π | ∃i : πi ∈ Π1, π
i ∈ Π2}, πi denotes

the prefix of π ending at i, and πi denotes the suffix of π
starting from i. Let q0...qn be a witness in W(M ,f) andM ′

be its corresponding Kripke structure defined as (Q, qinit ,
L, R− {(q, q′) | q = qi for some 1 ≤ i ≤ n− 1}). It is not
hard to see thatM ′ |= f andM simulatesM ′.

Finally we extend the notion of witnesses to a set of
WCTL formulas. Let M be a Kripke structure and F be a
set of WCTL formulas. A witness-set Π for F with respect
to M is a set of finite paths such that, for every formula f
in F with M |= f , there is a finite path π in Π that is a
witness for f . It is easy to see that Π is a witness-set for
F if and only if it is a witness-set for {f ∈ F | M |= f}.
For example, in Figure 2 we observe that {q0q1q3q4q0q2q3},
{q0q2q3q4q0q1q3}, and {q0q1q3, q0q2q3} are witness-sets
for {EF(a ∧ EFc), EF(b ∧ EFc)}.

�
❅❘

✒✑
�✏

q0

✒✑
�✏

q1

✒✑
�✏

q2

✒✑
�✏

q3 ✒✑
�✏

q4✲ ✲

✲

✲

✻

❄

L(q0)=∅, L(q1)={a}, L(q2)={b}, L(q3)={c}, L(q4)=∅

Figure 2. An example of Kripke structures

3 Characterizing Data Flow Oriented Cover-
age Criteria

This section characterizes four groups of coverage
criteria[26, 24, 30, 22] in terms of witness-sets for WCTL
formulas.

3.1 Rapps and Weyuker’s Criteria

Rapps and Weyuker’s criteria require certain associa-
tions between definitions and uses of the same variable be
covered[26]. The criteria are extended with the notion of
executability by Frankl and Weyuker[11]. We first adopt
the following terminology. A path (v, v1, ..., vn, v′) is a
definition-clear path from v to v′ with respect to variable
x if n = 0 or x is not defined at vi for every 1 ≤ i ≤ n.
A pair (dx

v , ux
v′) is a definition-use pair (in short, du-pair) if

there is a definition-clear path from v to v′ with respect to x.
For example, consider dx

v1
and ux

v3
in Figure 1. We observe

that (dx
v1

, ux
v3

) is a du-pair through a definition-clear path
v1v2v3.

3.1.1 Characterization

We first describe how to generate a test sequence covering
a pair (dx

v , ux
v′). The first step is to determine whether (dx

v ,
ux

v′) is a du-pair or not. For this, we associate the following
WCTL formula with (dx

v , ux
v′).

wctl(dx
v , ux

v′) = EF(dx
v∧ EXE[¬def(x) U (ux

v′∧ EFfinal)])
where def(v) is the disjunction of all definitions of x. For
example, in Figure 1 we have that def(x) ::= dx

v1
, def(y) ::=

dy
v1

, def(z) ::= dz
v1

, and def(max) ::= dmax
v3

∨dmax
v4

∨dmax
v6

. It
is not hard to see that (dx

v , ux
v′) is a du-pair if and only if the

Kripke structureM (G) of a flow graph G satisfies wctl(dx
v ,

ux
v′). Hence the problem of determining whether (dx

v , ux
v′)

is a du-pair is reduced to a model checking problem. After
determining whether (dx

v , ux
v′) is a du-pair, we generate a

test sequence covering it. It is also not hard to see that a
test sequence covers a du-pair (dx

v , ux
v′) if and only if it is a

witness for wctl(dx
v , ux

v′). Hence the problem of generating
a test sequence covering (dx

v , ux
v′) is reduced to the problem

of finding a witness for wctl(dx
v , ux

v′). For example, a test
sequence covering the du-pair (dx

v1
, ux

v3
) is shown in Fig-

ure 3, which is also a witness for EF(dx
v1
∧ EXE[¬def(x) U

(ux
v3
∧ EFfinal)]).

✒✑
�✏

vs

start

✲
✒✑
�✏

v1

dx
v1

✲
✒✑
�✏

v2

¬def(x)

✲
✒✑
�✏

v3

ux
v3

✲
✒✑
�✏

v5 ✲
✒✑
�✏

v6 ✲
✒✑
�✏

v7 ✲
✒✑
�✏

vf

final

Figure 3. A test sequence covering du-pair
(dx

v1
, ux

v3
)

Now we describe how to generate a set of test sequences
for a set of pairs (dx

v , ux
v′) according to the criteria by Rapps

and Weyuker. Basically we associate a formula wctl(dx
v ,

ux
v′) with every pair (dx

v , ux
v′) and characterize each cov-

erage criterion in terms of witness-sets for the formulas
wctl(dx

v , ux
v′). This reduces the problem of generating a

test suite to the problem of finding a witness-set for a set of
WCTL formulas.

A test suite Π satisfies all-defs coverage criterion if, for
every definition dx

v and some use ux
v′ , some definition-clear

path with respect to x from v to v′ is covered by a test se-
quence in Π. Let DEF(G) and USE(G) be the sets of defi-
nitions and uses in G, respectively. A test suite Π satisfies
all-defs coverage criterion if and only if it is a witness-set
for

{
∨

ux
v′∈USE(G)

wctl(dx
v , u

x
v′) | dx

v ∈ DEF (G)}.

A test suite Π satisfies all-uses coverage criterion if, for
every definition dx

v and every use ux
v′ , some definition-clear

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

path with respect to x from v to v′ is covered by a test se-
quence in Π. A test suite Π satisfies all-uses coverage crite-
rion if and only if it is a witness-set for

{wctl(dx
v , u

x
v′) | dx

v ∈ DEF (G), ux
v′ ∈ USE (G)}.

In the worst case, the number of formulas can be quadrac-
tic in the size of a flow graph since the number of
pairs (dx

v , u
x
v′) can be O(n2) in a flow graph of size

n. For example, for all-uses coverage criterion in Fig-
ure 1 we associate 11 formulas with the pairs (dx

v1
,ux

v2
),

(dx
v1

,ux
v3

), (dy
v1

,uy
v2

), (dy
v1

,uy
v4

), (dz
v1

,uz
v6

), (dmax
v3

,umax
v6

),
(dmax

v3
,umax

v7
), (dmax

v4
,umax

v6
), (dmax

v4
,umax

v7
), (dmax

v6
,umax

v6
),

and (dmax
v6

,umax
v7

). Among them, the formulas for
(dmax

v3
,umax

v7
), (dmax

v4
,umax

v7
), and (dmax

v6
,umax

v6
) are not satis-

fied in Figure 1, which means that the pairs are not du-pairs.
A test suite Π satisfies all-du-paths coverage criterion if,

for every definition dx
v and every use ux

v′ , every cycle-free
definition-clear path with respect to x from v to v′ is cov-
ered by a test sequence in Π. Unlike other coverage crite-
ria, all-du-paths coverage criterion cannot be characterized
in terms of witness-sets. To generate test suites satisfying
this criterion properly in our approach, we should be able
to construct all cycle-free witnesses instead of only one for
a given formula, which is beyond the capability of existing
model checkers. In general, extending model checkers to
construct all witnesses for a given formula or a subset of
witnesses satisfying certain constraints is an open problem.

3.2 Ntafos’ Criteria

Ntafos’ criteria emphasize interactions between differ-
ent variables[24]. Such interactions are captured in terms
of sequences of alternating definitions and uses, called k-dr
interactions. A sequence [dx1

v1
ux1

v2
dx2

v2
ux2

v3
... dxn

vn
uxn

n+1]
is a data flow chain (df-chain) if, for every 1 ≤ i ≤ n,
(dxi

vi
, uxi

vi+1
) is a du-pair[30]. Note that the use uxi

vi+1
and

definition dxi+1
vi+1 occur at the same vertex for every 1 ≤ i ≤

n. A path v1π1v2π2...vn+1 is an interaction subpath of a df-
chain if, for every 1 ≤ i ≤ n, viπivi+1 is a definition-clear
path from vi to vi+1 with respect to xi. A df-chain consist-
ing of k − 1 du-pairs, k ≥ 2, is a k-definition/reference in-
teraction (k-dr interaction) in the terminology of [24]1. For
example, in Figure 1 we observe that [dx

v1
ux

v3
dmax

v3
umax

v6
]

is a 3-dr interaction which has v1v2v3v5v6 as its interaction
subpath.

3.2.1 Characterization

For a sequence κ = [dx1
v1
ux1

v2
dx2

v2
ux2

v3
... dxk−1

vk−1 u
xk−1
k], k ≥

2, define wctl(κ) as follows.
1We do not require the variables x1, ..., xn and the vertices

v1, ..., vn+1 be distinct. This definition is consistent with that of Clarke
et al.[7] and Ntafos[25] and is different from the original one[24] which
requires the vertices to be distinct.

• if κ is empty, then wctl(κ) = EFfinal,

• if κ is [dxi
vi
uxi

vi+1
] · κ′, then

wctl(κ) = dxi
vi
∧ EXE[¬def(xi) U (uxi

vi+1
∧ wctl(κ′))],

• wctl(κ) = EFwctl(κ).

By induction on the number of pairs (dxi
vi

, uxi
vi+1

) in κ, it
can be shown that κ is a k-dr interaction if and only if the
Kripke structureM (G) of a flow graph G satisfies wctl(κ).
Moreover, a test sequence covers κ if and only if it is a
witness for wctl(κ). For example, a test sequence covering
the 3-dr interaction [dx

v1
ux

v3
dmax

v3
umax

v6
] is shown in Fig-

ure 4, which is also a witness for EF(dx
v1
∧ EXE[¬def(x) U

(ux
v3

∧ dmax
v3

∧ EXE[¬def(max) U (umax
v6

∧ EFfinal)])]).

✒✑
�✏

vs

start

✲
✒✑
�✏

v1

dx
v1

✲
✒✑
�✏

v2

¬def(x)

✲
✒✑
�✏

v3

dmax
v3

ux
v3

✲
✒✑
�✏

v5

¬def(max)

✲
✒✑
�✏

v6

umax
v6

✲
✒✑
�✏

v7 ✲
✒✑
�✏

vf

final

Figure 4. A test sequence covering 3-dr inter-
action [dx

v1
ux

v3
dmax

v3
umax

v6
]

A test suite Π satisfies required k-tuples coverage crite-
rion if, for every k-dr interaction κ, some interaction sub-
path of κ is covered by a test sequence in Π. A test suite Π
satisfies required k-tuples coverage criterion if and only if
it is a witness-set for

{wctl([dx1
v1
ux1

v2
dx2

v2
ux2

v3
...dxk−1

vk−1
u

xk−1
k])

| dxi
vi

∈ DEF (G), uxi
vi+1

∈ USE (G), 1 ≤ i ≤ k − 1}.

3.3 Ural’ Criteria

Ural’s criteria also emphasize interactions between dif-
ferent variables[30]. While Ntafos’ criteria consider df-
chains consisting of fixed number of du-pairs, Ural’s crite-
ria consider df-chains consisting of an arbitrary (but finite)
number of du-pairs which start with inputs and end with
outputs. The rationale here is to identify the functionality
of a module in terms of the interactions with its environ-
ment by identifying the effects of inputs accepted from the
environment on outputs offered to the environment. We say
that a definition dx

v affects a use ux′
v′ if

• either x = x′ and (dx
v , ux′

v′) is a du-pair or

• there is a use ux
v′′ such that (dx

v , ux
v′′) is a du-pair and

there is a definition dx′′
v′′ , given in terms of ux

v′′ , that
affects ux′

v′ .

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

A pair (dx
v , ux′

v′) is an affect-pair if dx
v affects ux′

v′ . Among
the particular affect-pairs of interest to Ural’s criteria are
those starting with inputs and ending with outputs, which
we call io-pairs. We define an input as a definition at an
input statement and an output as a use at an output state-
ment. For example, dx

v1
, dy

v1
, dz

v1
are inputs and umax

v7
is

an output in Figure 1. We observe that the input dx
v1

affects
the output umax

v7
through the df-chain [dx

v1
ux

v3
dmax

v3
umax

v6

dmax
v6

umax
v7

].

3.3.1 Simple Characterization

For an affect-pair (dx
v , ux′

v′), define CHAIN(dx
v , ux′

v′) as the
set of sequences κ = [dx1

v1
ux1

v2
dx2

v2
ux2

v3
... dxn

vn
uxn

n+1] such
that dx1

v1
= dx

v and uxn
vn+1

= ux′
v′ . In general, there may

be multiple occurrences of the same pair (dxi
vi

, uxi
vi+1

) in κ
thereby causing the possibility of an infinite number of ele-
ments in CHAIN(dx

v , ux′
v′). To ensure that CHAIN(dx

v , ux′
v′)

be finite, we consider its subset SCHAIN(dx
v , ux′

v′) consist-
ing of simple sequences in which at most one occurrence of
each pair (dxi

vi
, uxi

vi+1
) is allowed.

A test suite Π satisfies all-inputs coverage criterion if,
for every input i and some output o, an iteraction subpath
of some simple df-chain in SCHAIN(dx

v , ux′
v′) is covered by

a test sequence in Π. Let IN(G) and OUT(G) be the sets of
inputs and outputs inG, respectively. A test suite Π satisfies
all-inputs coverage criterion if and only if it is a witness-set
for

{
∨

o∈OUT(G)

∨

κ∈SCHAIN (i,o)

wctl(κ) | i ∈ IN (G)}.

A test suite Π satisfies all-outputs coverage criterion if,
for every input i and every output o, an iteraction subpath
of some simple df-chain in SCHAIN(dx

v , ux′
v′) is covered by

a test sequence in Π. A test suite Π satisfies all-outputs
coverage criterion if and only if it is a witness-set for

{
∨

κ∈SCHAIN (i,o)

wctl(κ) | i ∈ IN (G), o ∈ OUT (G)}.

A test suite Π satisfies all-IO-df-chains coverage crite-
rion if, for every input i and every output o, an iteraction
subpath of every simple df-chain in SCHAIN(dx

v , ux′
v′) is

covered by a test sequence in Π. A test suite Π satisfies all-
IO-df-chains coverage criterion if and only if it is a witness-
set for

{wctl(κ) | i ∈ IN (G), o ∈ OUT (G), κ ∈ SCHAIN (i, o)}.

3.3.2 Fixpoint Characterization

The above characterization of all-inputs and all-outputs
coverage criteria is naive in that we need to identify all sim-
ple sequences in SCHAIN(i, o) for a given io-pair in order to

generate a test sequence covering just one simple df-chain
for the io-pair. A more faithful characterization should al-
low the generation of a test sequence without identifying
all simple sequences in SCHAIN(i, o) prior to test genera-
tion. Put another way, we like to model-check a new for-
mula Q(dx

v , ux′
v′) whose semantics is defined below without

model-checking all formulas wctl(κ).

q |= Q(dx
v , u

x′
v′) if and only if q |= wctl(κ) for

some κ in CHAIN(dx
v , ux′

v′).

We note that Q(dx
v , ux′

v′) is not directly expressible in CTL
because there is in general an infinite number of κ in
CHAIN(dx

v , ux′
v′) and thus an infinite number of wctl(κ).

The formula Q(dx
v , ux′

v′) leads to a natural characteriza-
tion of all-inputs and all-outputs coverage criteria as fol-
lows: A test suite Π satisfies all-inputs+ coverage criterion
(resp. all-outputs+ coverage criterion) if, for every input
i and some output o (resp. every output o), an interaction
subpath of some df-chain2 in CHAIN(dx

v , ux′
v′) is covered by

a test sequence in Π. A test suite Π satisfies all-inputs+

coverage criterion if and only if it is a witness-set for

{
∨

o∈OUT(G)

Q(i, o) | i ∈ IN (G)}.

A test suite Π satisfies all-outputs+ coverage criterion if and
only if it is a witness-set for

{Q(i, o) | i ∈ IN (G), o ∈ OUT (G)}.
Finally we make a sketch of how to model-check Q(dx

v ,
ux′

v′). Although the formula is not in CTL, it has a symbolic
model checking algorithm similar to that of CTL because it
can be characterized as a fixpoint of a predicate transformer.
In fact, the formula is directly expressible in alternation-
free mu-calculus which has a linear-time model-checking
algorithm[8]. By the definition of affect-pairs, we have the
following equivalence.

Q(dx
v ,ux′

v′) = EFQ(dx
v ,ux′

v′)

Q(dx
v ,ux′

v′) = (dx
v∧EXE[¬def(v)U(ux′

v′∧EFfinal)])∨

(dx
v ∧ EXE[¬def (v)U

∨

ux
v′′∈USE(G)

(ux
v′′ ∧Q(dx′′

v′′ , ux′
v′))])

where dx′′
v′′ is the definition of x′′ occurring at v′′ for some

x′′. Let τ : 2Q → 2Q be a predicate transformer defined by

τ (Z) = (dx
v∧EXE[¬def(v)U(ux′

v′∧EFfinal)])∨

(dx
v∧EXE[¬def (v)U

∨

ux
v′′∈USE(G)

(ux
v′′∧Z[x′′/x, v′′/v]))

where Z[x′′/x, v′′/v] is the formula obtained by replacing
each occurrence of x and v in Z by x′′ and v′′, respectively.

2We do not require a df-chain be simple here.

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

Theorem 1 Q(dx
v , u

x′
v′) is a least fixpoint of τ .

PROOF Assume that Z1 ⊆ Z2. Then τ(Z1) ⊆ τ(Z2) be-
causeZ1[x′′/x, v′′/v] ⊆ Z2[x′′/x, v′′/v] and the modal op-
erator U is monotonic. Hence τ is monotonic.

Let Zf be Q(dx
v , ux′

v′). It is easy to see that Zf = τ(Zf)
and hence Zf is a fixpoint of τ .

To prove that Zf is a least fixpoint of τ , it is sufficient
to show that Zf = ∪iτ

i where τ0(Z) = Z and τ i+1(Z) =
τ(τ i(Z)). We first prove that τ i(false) ⊆ Zf for every i.
Clearly, τ0(false) ⊆ Zf . Assume that τ i(false) ⊆ Zf . Be-
cause τ is monotonic, τ i+1(false) ⊆ τ(Zf). Because Zf

is a fixpoint of τ , τ i+1(false) ⊆ Zf . Hence we have the
first direction ∪iτ

i(false) ⊆ Zf . The other direction, Zf ⊆
∪iτ

i(false), is proved by induction on the number of du-
pairs. Suppose that q0 |= Zf , then there is a path q0q1...
covering a df-chain for (dx

v , ux′
v′). Let j ≥ 1 be the number

of du-pairs of the df-chain. We show that q0 ∈ τ j(false) for
every j. For the base case j = 1, we have that x = x′ and
q0 |= dx

v∧ EXE[¬def(v) U (ux′
v′∧ EFfinal)]. Hence q0 ∈

τ1(false). For the inductive step, suppose q0 ∈ τ j(false)
for j = n. Let j = n + 1 and qk be the state in q0q1... at
which the first du-pair in the df-chain ends. Then there are
n du-pairs from qk and qk ∈ τn(false) by the induction hy-
pothesis. Hence q0 |= (dx

v ∧ EXE[¬def(v)U∨
ux

v′′∈USE(G)

(ux
v′′∧ τn(false)[x′′/x, v′′/v])]) and q0 ∈ τn+1(false).

3.4 Laski and Korel’s Criteria

Laski and Korel’s criteria emphasize that a vertex may
contain uses of several different variables in which each use
may be reached by several different definitions[22]. Such
definitions constitute the definition context of the vertex.
Let v be a vertex and {ux1

v , ..., uxn
v } be a subset of USE(v).

An ordered definition context of v with respect to {ux1
v , ...,

uxn
v } is a sequence [dx1

v1
... dxn

vn
] of definitions such that

there is a subpath v1π1v2π2...πnv, called orderded con-
text subpath, satisfying the following property: for every
1 ≤ i ≤ n, viπivi+1...πnv is a definition-clear path from vi
to v with respect to xi. A definition context of v is a set of
definitions, some permutation of which is an ordered defi-
nition context of v. For example, consider the vertex v6 in
Figure 1. [dz

v1
dmax

v6
] is an ordered definition context of v6

with respect to {uz
v6
umax

v6
} whose ordered context subpath

is v1v2v3v5v6.

3.4.1 Characterization

Let v be a vertex and {ux1
v , ..., uxn

v } be a subset of USE(v).
For a sequence λ = [dx1

v1
... dxn

vn
] of definitions, define

wctl(λ) as follows.

• if λ is empty, then

wctl(λ,nodef) = ux1
v ∧ ... ∧ uxn

v ∧EFfinal ,

• if λ is [dxi
vi

] · λ′, then

wctl(λ,nodef) = nodef ∧ dxi
vi
∧ EXE[nodef′

U wctl(λ′,nodef′)]),

where nodef′ = nodef ∧ ¬def(vi),

• wctl(λ) = EFwctl(λ,true).

By induction on the number of definitions in λ, it can be
shown that λ is an ordered definition context of v with re-
spect to {ux1

v , ..., uxn
v } if and only if the Kripke structure

M (G) of a flow graph G satisfies wctl(λ). Moreover, a
test sequence covers λ if and only if it is a witness for
wctl(λ). For example, a test sequence covering the or-
dered definition context [dz

v1
dmax

v3
] with respect to {ux

v6
,

umax
v6

} is shown in Figure 5, which is also a witness for
EF(dz

v1
∧ EXE[¬def(z) U (¬def(z) ∧dmax

v3
∧ EXE[(¬def(z)

∧ ¬def(max)) U (uz
v6

∧ umax
v6

∧ EFfinal)])]).

✒✑
�✏

vs

start

✲
✒✑
�✏

v1

dz
v1

✲
✒✑
�✏

v2

¬def(z)

✲
✒✑
�✏

v3

dmax
v3

¬def(z)

✲
✒✑
�✏

v5

¬def(max)

¬def(z)

✲
✒✑
�✏

v6

umax
v6

uz
v6

✲
✒✑
�✏

v7 ✲
✒✑
�✏

vf

final

Figure 5. A test sequence covering ordered
context [dz

v1
dmax

v3
] with respect to {uz

v6
, umax

v6
}

A test suite Π satisfies context coverage criterion if, for
every vertex v and every definition context dc of v, an or-
dered context subpath of dc is covered by a test sequence in
Π. A test suite Π satisfies context coverage criterion if and
only if it is a witness-set for

{wctl({dx1
v1
, ..., dxn

vn
})

| v ∈ V, uxi
v ∈ USE (v), dxi

vi
∈ DEF (G), 1 ≤ i ≤ n}

where wctl({dx1
v1

, ..., dxn
vn
}) is defined as wctl(λ1) ∨...∨

wctl(λn), where λ1, ..., λn are the permutations of {dx1
v1

, ...,
dxn

vn
}.

A test suite Π satisfies ordered context coverage crite-
rion if, for every vertex v and every ordered definition con-
text odc of v, an ordered context subpath of odc is covered
by a test sequence in Π. A test suite Π satisfies ordered
context coverage criterion if and only if it is a witness-set
for

{wctl([dx1
v1
, ..., dxn

vn
])

| v ∈ V, uxi
v ∈ USE (v), dxi

vi
∈ DEF (G), 1 ≤ i ≤ n}.

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

4 Generating Minimal Cost Test Suites

This section discusses complexity issues in minimal cost
test generation and describes heuristic algorithms and our
experience with SMV for automatic test generation.

We wish to generate a minimal cost test suite Π with
respect to one of the two costs: (i) the number of test se-
quences in Π or (ii) the total length of test sequences in Π.
After finishing the execution of a test sequence, an imple-
mentation under test should be reset into its initial state from
which another test sequence can be applied. It is appropri-
ate to use the first cost if the reset operation is expensive,
and the second one otherwise. For example, in Figure 2
we have that {q0q1q3q4q0q2q3} and {q0q2q3q4q0q1q3} are
minimal in the number of test sequences, while {q0q1q3,
q0q2q3} is minimal in the total length of test sequences.

We first consider the Minimal Number Test Generation
(MNTG) problem which is an optimization problem defined
by: given a Kripke structure M and a set F of WCTL for-
mulas, generate a minimal witness-set Π in the number of
witnesses in Π. We show this problem to be NP-hard by
considering its decision problem MNTG′: givenM,F , and
a positive integer k, is there a witness-set Π with |Π| ≤ k?

Theorem 2 MNTG′ is NP-complete.

PROOF On input 〈〈M,F, k〉,Π〉 where Π is a set of finite
paths, we determine whether Π is a witness-set with |Π|
≤ k for F with respect to M by verifying (i) |Π| ≤ k, (ii)
for every π ∈ Π, π is a path ofM , and (iii) for every f ∈ F ,
there is a witness π ∈ Π for f . This is a polynomial time
verifier and hence MNTG′ is in NP.

We next show that a NP-complete problem, called the
Hitting Set problem, is polynomially reducible to MNTG′.
The Hitting Set problem is defined by: given a collection of
subsetsCi, 1 ≤ i ≤ n, of a finite set S and a positive integer
k, is there a subset S ⊆ S′, called hitting set, such that
|S′| ≤ k and containing at least one element from each Ci?
Given an instance of the Hitting Set problem, we construct
M = (Q,qinit ,L,R) and F as follows:

• Q = {q0} ∪ {qc | c ∈ ⋃
Ci},

• qinit = q0,

• L(q0) = ∅ and, for every qc, i ∈ L(qc) if and only if
qc ∈ Ci,

• R = {(q0, qc) | c ∈
⋃
Ci}, and

• F = {EFi | 1 ≤ i ≤ n}.

This reduction is in polynomial time. Clearly, c ∈ Ci if and
only if q0qc is a witness for EFi. Therefore, a subset S′ of
S is a hitting set with |S′| ≤ k for the collection of Ci if and
only if Π = {q0qs | s ∈ S′} is a witness-set with |Π| ≤ k.

Second we consider the Minimal Length Test Generation
(MNTG) problem defined by: given M and F , generate a
minimal witness-set Π in the total length of witnesses in Π.
Its decision problem MNTG′ is defined by: given M , F ,
and k, is there a witness-set Π with

∑
π∈Π |Π| ≤ k?

Theorem 3 MLTG′ is NP-complete.

PROOF We use the same reduction as in Theorem 2. Since
all paths in the Kripke structure M are of length one, the
minimum total length of Π is achieved when Π contains the
minimum number of witnesses. Therefore, a solution for
the MLTG′ problem in this case will yield the same witness-
set which is also a solution to the MNTG′ problem.

Because of NP-hardness, we do not expect an optimal so-
lution to the minimal cost test generation problems. Instead
we describe a heuristic algorithm which can be applied to
both MNTG′ and MLTG′ problems. Figure 6 describes the
algorithm in a generic fashion without being specific about
any coverage criteria. We directly employ the capability of
model checkers to construct counterexamples by exploiting
the fact that a witness for a WCTL formula is also a coun-
terexample for its negation.

INPUT: a Kripke structure M and a coverage criterion C
OUTPUT: a test suite Π satisfying C

1: Π := ∅;
2: mark every entity required to be covered in C as uncovered;
3: repeat
4: choose an entity marked as uncovered;
5: let f be the WCTL formula for the entity;
6: model-check f against M ;
7: ifM �|= f
8: mark the entity as untestable;
9: else
10: let π be a witness for f

(or equivalently a counterexample for ¬f);
11: let En(π) be the set of entities covered by π;
12: mark every entity in En(π) as covered;
13: for every π′ ∈ Π such that En(π′) ⊆ En(π)
14: Π := Π − {π′};
15: Π := Π ∪ {π};
16: until every entity is marked as covered or untestable
17: return Π;

Figure 6. A heuristic algorithm for test gener-
ation

Basically, we construct a witness for every formula by
finding a counterexample for its negation. The algorithm
is locally optimal in the sense that model checkers such as
SMV find a shortest counterexample for a given formula
through breadth-first search of the state space. However, it

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

Table 1. Results of test generation without heuristics
required orderded

all-defs all-uses 3-tuples all-inputs all-outputs all-IO-df-chains context context
Number of formulas employed 24 105 139 6 22 62 105 229
Number of formulas satisfied 24 53 60 5 6 6 58 63

Number of test sequences 24 53 60 5 6 6 58 63
Total length of test sequences 487 1210 2007 92 116 116 1305 1456

Execution time (sec) 0.44 0.88 1.56 0.34 0.31 0.23 1.48 1.2
Number of BDD nodes 3130 3268 3200 1997 2043 2000 3418 3342

Table 2. Results of test generation with heuristics
required orderded

all-defs all-uses 3-tuples all-inputs all-outputs all-IO-df-chains context context
Number of formulas employed 24 105 139 6 22 62 105 229
Number of formulas satisfied 24 53 60 5 6 6 58 63

Number of test sequences 4 14 23 2 3 3 14 14
Total length of test sequences 106 385 878 39 63 63 385 385

Execution time (sec) 0.86 5.13 14.39 0.37 0.40 0.35 8.08 8.23
Number of BDD nodes 5823 21498 55543 1564 2185 2183 22276 22091

would generate a number of redundant witnesses because a
witness may cover more than one entity at the same time.
The algorithm removes such redundant witnesses by con-
sidering only uncovered states (Line 4) and by removing an
existing witness if all the entities covered by it are also cov-
ered by a new witness (Line 13 and 14). Finally we note
that the computation of En(π) in Line 11 can be done by
viewing a witness q0...qn as the single-path Kripke struc-
ture ({q0, ..., qn}, q0, L, {(q0, q1), ..., (qn−1, qn), (qn, qn)})
and model-checking the WCTL formula against the Kripke
structure for every entity in the coverage criterion.

We describe the experimental results obtained by apply-
ing our approach to a moderate flow graph. In the exper-
iment, we used SMV on a standard PC and adopted the
flow graph made by Ural et al. (see Figure 1 in [31]). The
flow graph consists of 39 vertices, 46 arcs, 11 variables,
24 definitions, and 36 uses. We first applied our approach
to the flow graph without heuristics. Table 1 summarizes
the experimental results. The second row gives the number
of WCTL formulas associated with each coverage criterion
and the third row gives the number of WCTL formulas sat-
isfied in the flow graph. The number of test sequences given
in the fourth column is equivalent to that of formulas satis-
fied, because we did not remove redundant test sequences.
A test sequence has a single test purpose, that is, it is in-
tended to cover only one entity. The fifth row gives the
total length of test sequences. Finally, the sixth and seventh
rows give the execution time in seconds and the number of
BDD nodes, respectively. Table 2 summarizes the results of
test generation with heuristics in Figure 6. We removed re-

dundant test sequences according to the heuristics and were
able to significantly reduce the number and total length of
test sequences with the cost of increased execution time and
BDDs. For example, only 14 test sequences are necessary
for all-uses coverage criterion. The test sequences cover all
entities desribed by 53 formulas. The execution time was
calculated by adding up the execution time of Line 6 and
Line 11 in Figure 6. The number of BDD nodes was fig-
ured out in a similar manner.

5 Summary and Discussion

We have showed that test generation from flow graphs
for data flow oriented coverage criteria can be automated by
model checking. We investigated four groups of coverage
criteria in [26, 24, 30, 22]. For a given coverage criterion,
a CTL formula is associated with every entity required to
be covered in the coverage criterion. A witness for the CTL
formula corresponds to a test sequence covering the entity
described by the formula and a witness-set for the formula
set corresponds to a test suite satisfying the criterion. We
also discussed complexity issues in minimal cost test gener-
ation and described heuristics for automatic test generation.

As mentioned before, one of the advantages of our ap-
proach is language independence. We are currently working
on both program-based and specification-based test genera-
tion for real-world applications. In our preliminary exper-
iments for specification-based testing, we constructed flow
graphs from statecharts or a set of communicating state ma-
chines by following the methods in [17, 31] and were able

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

to generate test suites from flow graphs with 220 vertices
and one hundred formulas in one minute and flow graphs
with 270 vertices and one hundred formulas in one hour. Of
course, further experiments are compulsory to demonstrate
the feasibility of our approach when applied to data flow
testing with huge state space.

We are planning to extend our approach for interproce-
dural programs and object-oriented programs. Data flow
testing of such programs is more complicated due to proce-
dure call/return, recursion, and reference parameters as well
as global variables. Data flow testing methods for such pro-
grams were proposed in [13, 14] which employ interproce-
dural data flow analysis. Recently, the problem of interpro-
cedural data flow analysis has been formulated as a model
checking problem[2, 10]. Combining both work together
may be a starting point for developing a model checking-
based approach to data flow testing of interprocedural pro-
grams and object-oriented programs.

We showed that a subclass of CTL, which we call
WCTL, is expressive enough to characterize a number
of data flow oriented coverage criteria except those by
Ural[30]. For Ural’s criteria, we extended WCTL with least
fixpoints so that model checking of the resulting logic can
be readily implemented in existing model checkers for CTL
such as SMV. To characterize the criteria considered in this
paper in a more uniform way, it is necessary to employ
a logic more powerful than CTL. We are currently work-
ing with a subclass of mu-calculus[21], more specifically
alternation-free mu-calculus[8], which supports the explicit
use of fixpoint operators.

We cannot directly use linear time temporal logic for the
characterization of data flow oriented coverage criteria, be-
cause it requires existential quantification over paths. It is,
however, possible to construct a witness for a WCTL for-
mula using linear time model checkers by exploiting the fact
that a path is a witness for a WCTL formula if and only if
the path is a counterexample for its negation. For example,
we can construct a witness for a WCTL formula EFEFp by
finding a counterexample for ¬EFEFp = AGAG¬p, which
is in turn equivalent to the LTL formula AGG¬p. This
opens the possibility of applying linear time model checkers
such as SPIN to data flow testing.

References

[1] P. Ammann, P. Black, and W. Majurski, “Using Model
Checking to Generate Tests from Specifications,” in Pro-
ceedings of the 2nd IEEE International Conference on For-
mal Engineering Methods, pp. 46-54, 1998.

[2] T. Ball and S.K. Rajamani, “Bebop: a Symolic Model
Checker for Boolean Programs,” SPIN Workshop ’00, Vol.
1885 of LNCS, pp. 113-130, Springer-Verlag, 2000.

[3] J. Callahan, F. Schneider, and S. Easterbrook, “Specification-
based Testing Using Model Checking,” in Proceedings of
1996 SPINWorkshop, also Technical Report NASA-IVV-96-
022, West Virginia Univeristy, 1996.

[4] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Ver-
ification of Finite-State Concurrent Systems Using Temporal
Logic Specifications,” ACM Transactions on Programming
Languages and Systems, 8(2):244-263, Apr. 1986.

[5] E.M. Clarke, O. Grumberg, K. McMillan, and X. Zhao,
“Efficient Generation of Counterexamples and Witnesses in
Symbolic Model Checking,” in Proceedings of the 32nd De-
sign Automation Conference, pp. 427-432, 1995.

[6] E.M. Clarke, S. Jha, Y. Lu, and H. Veith, “Tree-Like Coun-
terexamples in Model Checking,” in Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science, pp.
19-29, 2002.

[7] L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J. Zeil,
“A Formal Evaluation of Data Flow Path Selection Criteria,”
IEEE Transactions on Software Engineering, 15(11):1318-
1332, Nov. 1989.

[8] R. Cleaveland and B. Steffen, “A Linear-Time Model-
Checking Algorithm for the Alternation-Free Modal Mu-
Calculus,” Formal Methods in System Design, Vol. 2, pp.
121-147, 1993.

[9] A. Engels, L. Feijs, and S. Mauw, “Test Generation for Intel-
ligent Networks Using Model Checking,” TACAS ’97, Vol.
1217 of LNCS, pp. 384-398, Springer-Verlag, 1997.

[10] J. Esparza and J. Knoop, “An Automata-Theoretical Ap-
proach to Interprocedural Data-Flow Analysis,” FOSSACS
’99, Vol. 1578 of LNCS, pp. 14-30, Springer-Verlag, 1999.

[11] P.G. Frankl and E.J. Weyuker, “An Applicable Family of
Data Flow Testing Criteria,” IEEE Transactions on Software
Engineering, 14(10):1483-1498, Oct. 1988.

[12] A. Gargantini and C. Heitmeyer, “Using Model Checking to
Generate Tests from Requirements Specifications,” in Pro-
ceedings of ESEC/FSE ’99 pp. 146-162, 1999.

[13] M.J. Harrold and M.L. Soffa, “Interprocedural Data Flow
Testing,” in Proceedings of the 3rd Symposium on Software
Testing, Analysis, and Verification, pp. 158-167, 1989.

[14] M.J. Harrold and G. Rothermel, “Performing Data Flow
Testing on Classes,” in Proceedings of the 2nd ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing, pp. 154-163, 1994.

[15] R. Hojati, R.K. Brayon, and R.P. Kurshan, “BDD-based De-
bugging of Designs Using Language Containment and Fair
CTL,” CAV ’99, Vol. 697 of LNCS, pp. 41-58, Springer-
Verlag, 1993.

[16] G.J. Holzmann, “The Model Checker SPIN,” IEEE Transac-
tions on Software Engineering, Vol. 23, No. 5, pp. 279-295,
May 1997.

[17] H.S. Hong, Y.G. Kim, S.D. Cha, D.H. Bae, and H. Ural,
“A Test Sequence Selection Method for Statecharts,” Journal
of Software Testing, Verification, and Reliability, 10(4):203-
227, Dec. 2000.

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

[18] H.S. Hong, I. Lee, O. Sokolsky, and S.D. Cha, “Automatic
Test Generation from Statecharts Using Model Checking,”
in Proceedings of the First Workshop on Formal Approaches
to Testing of Software, pp. 15-30, 2001.

[19] H.S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Tempo-
ral Logic Based Theory of Test Coverage and Generation,”
TACAS ’02, Vol. 2280 of LNCS, pp. 327-341, Springer-
Verlag, 2002.

[20] T. Jeron and P. Morel, “Test Generation Derived From Model
Checking,” CAV ’99, Vol. 1633 of LNCS, pp. 108-121,
Springer-Verlag, 1999.

[21] D. Kozen, “Results on the Propositional Mu-Calculus,” The-
oretical Computer Science, 27:333-354, 1983.

[22] J.W. Laski and B. Korel, “A Data Flow Oriented Program
Testing Strategy,” IEEE Transactions on Software Engineer-
ing, 9(5):347-354, May 1983.

[23] K.L. McMillan, Symbolic Model Checking− an Approach to
the State Explosion Problem, Kluwer Academic Publishers,
1993.

[24] S.C. Ntafos, “On Required Element Testing,” IEEE Transac-
tions on Software Engineering, 10(11):795-803, Nov. 1984.

[25] S.C. Ntafos, “A Comparison of Some Structural Testing
Strategies,” IEEE Transactions on Software Engineering,
14(6):868-874, June 1988.

[26] S. Rapps and E.J. Weyuker, “Selecting Software Test Data
Using Data Flow Information,” IEEE Transactions on Soft-
ware Engineering, 11(4):367-375, Apr. 1985.

[27] D.A. Schmidt and B. Steffen, “Data-flow Analysis as Model
Checking of Abstract Interpretations,” SAS ’98, Vol. 1503 of
LNCS, pp. 351-380, Springr-Verlag, 1998.

[28] B. Steffen, “Generating Data-Flow Analysis Algorithms for
Modal Specifications,” Science of Computer Programming,
21:115-139, 1993.

[29] H. Ural and B. Yang, “A Test Sequence Generation Method
for Protocol Testing,” IEEE Transactions on Communica-
tions, 39(4):514-523, Apr. 1991.

[30] H. Ural, “IO-df-chains criterion,” ISO Working Group on
Formal Methods on Conformance Testing, Draft Interna-
tional Standard, Sept. 1993.

[31] H. Ural, K. Saleh, and A. Williams, “Test Generation Based
on Control and Data Dependencies within System Specifica-
tions in SDL,” Computer Communications, 23(7):609-627,
Mar. 2000.

[32] R. de Vries and J. Tretmans, “On-the-Fly Conformance Test-
ing Using SPIN,” International Journal on Software Tools
for Technology Transfer, 2(4):382-393, 2000.

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

