
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2893124

Discussion of Misconceptions about WCET Analysis

Article · January 2004

Source: CiteSeer

CITATIONS

14
READS

55

2 authors:

Some of the authors of this publication are also working on these related projects:

CRAFTERS: ConstRaint and Application driven Framework for Tailoring Embedded Real-time Systems View project

EU-Project ADVANCE View project

Raimund Kirner

University of Hertfordshire

131 PUBLICATIONS   1,076 CITATIONS   

SEE PROFILE

Peter P. Puschner

TU Wien

161 PUBLICATIONS   4,656 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Peter P. Puschner on 22 January 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2893124_Discussion_of_Misconceptions_about_WCET_Analysis?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2893124_Discussion_of_Misconceptions_about_WCET_Analysis?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CRAFTERS-ConstRaint-and-Application-driven-Framework-for-Tailoring-Embedded-Real-time-Systems?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/EU-Project-ADVANCE?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimund_Kirner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimund_Kirner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Hertfordshire?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimund_Kirner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Puschner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Puschner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TU_Wien?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Puschner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Puschner?enrichId=rgreq-26649f367e46e134ad5e176d05ade8da-XXX&enrichSource=Y292ZXJQYWdlOzI4OTMxMjQ7QVM6MTA0MzMwMjI5MTkwNjY3QDE0MDE4ODU2NzM5MzA%3D&el=1_x_10&_esc=publicationCoverPdf


Discussion of Misconceptions about WCET Analysis ∗

Raimund Kirner, Peter Puschner
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1

A-1040 Wien, Austria
{raimund,peter}@vmars.tuwien.ac.at

Abstract

Worst-case execution time (WCET) analysis tools
are needed for the development of hard real-time sys-
tems. Despite the theoretic advances in academic re-
search in WCET there has been hardly any impact on
the industrial practice of timing analysis. The essential
question is why it was not possible to provide more in-
fluential research over the last one-and-a-half decades.
This paper gives constructive answers to this question.
It presents a number of misconceptions about current
WCET analysis. These discussions will help to guide
research to the development of more useful WCET
analysis techniques. This paper deals with WCET anal-
ysis techniques for hard real-time systems.

1 Introduction

The knowledge of the worst-case execution time
(WCET) of tasks is crucial for the design of real-time
systems. Since about more than one and a half decades,
research in WCET analysis has been done to support
the industry by concepts for the development of WCET
analysis tools. Still there is hardly any impact on
the industrial practice of timing analysis. The nu-
merous published WCET analysis techniques and sev-
eral prototype tool implementations did not trigger any
ground-breaking improvements for the wide-spread in-
dustrial use of more advanced WCET analysis tech-
niques. But still there is a strong need for useful WCET
analysis tools: simple runtime measurements or man-
ual counting of instructions are no feasible solutions

∗This work has been supported by the IST research project
“High-Confidence Architecture for Distributed Control Applica-
tions (NEXT TTA)” under contract IST-2001-32111.

assessing the code timing of increasingly complex real-
time systems. This leads to the question why there is
still a lack of industrial-strength WCET analysis tools.

The focus of his paper is on WCET analysis tech-
niques for hard real-time systems (HRTS). The con-
struction of HRTS requires a validation that shows that
the system meets all timing constraints under guaran-
tee [5]. In contrast, soft real-time systems (SRTS) do
not to fulfill such strict requirements.

In this paper we highlight misconceptions about
WCET analysis to present starting points for future
research in this area. One of the main challenges
in WCET analysis is the increasing hardware com-
plexity of processors. The variance between optimal
and worst-case performance of processors is growing
significantly. The advanced hardware features make
the timing prediction of modern processors quite com-
plex. As a result, approximations in static WCET
analysis produce steady increasing pessimism in the
calculated WCET bound. If it is not possible to
test all relevant execution scenarios, the consequences
for measurement-based WCET analysis approaches are
similar. The implementation of precise WCET analysis
tools becomes more and more complex and the compu-
tation time needed to analyze all variations for modern
processors becomes tremendously long.

To overcome the problem of the increasing complex-
ity in WCET analysis it is necessary to make useful
restrictions that lead to more predictable systems. To
achieve this, the fundamental misconceptions about
current WCET analysis approaches have to be ana-
lyzed. Based on these elaborations one can identify
WCET analysis approaches that are more promising
for practical usability.

The rest of the paper presents current misconcep-
tions about WCET analysis. Section 2 discusses the
main misconceptions about WCET analysis. Section 3
concludes this document.



2 Discussion of Misconceptions about
WCET Analysis

For a better understanding of the existing problems,
a short overview about some basic properties of static
WCET analysis and runtime measurements is given.

Static WCET analysis methods usually provide safe
upper bounds for the WCET. To guarantee safeness,
any piece of information that is not available for the
analysis has to be modelled in a conservative way.
Therefore, overestimation becomes the price for the
safeness of the calculated upper WCET bound. In
a static WCET analysis framework, calculating the
concrete execution time for fractions of the code is
called exec-time modeling. The implementation of
exec-time modeling for modern processors with fea-
tures like caches or pipelines becomes quite complex.
The advantage of measurement-based WCET analysis
techniques is that they do not require exec-time mod-
eling. However, the drawback of using simple mea-
surements is that measured execution times may vary
depending on the concrete values of the input data.

Misconception I: “Safe Upper WCET Bounds
Need to be Known for Every Real-Time Task”

It is often argued that strict static WCET analysis
has to be used to analyze the timing of any real-time
system. In reality, only the design of hard real-time
systems (HRTS) really requires the provision of safe
upper WCET bounds. HRTS are only a small category
of real-time systems, having usually simple software
structures.

The timeliness of soft real-time systems (SRTS) is
only a question of quality of service, as sporadic dead-
line misses usually do not cause serious consequences.
Therefore, SRTS are built to handle only typical sys-
tem load scenarios. Since the accurate timing anal-
ysis of SRTS is less stringend than for HRTS, SRTS
tend to have relatively complex software structures,
e.g, MPEG-based video streaming. As a consequence,
for modern processors with pipelines or caches, the ap-
plication of strict static WCET analysis techniques to
SRTS may cause too much pessimism. Furthermore,
for SRTS that use modern processors, the precision ob-
tained by runtime measurements tends to be more pre-
cise than strict static WCET analysis techniques. And
the common drawback of measurement-based analysis
methods – the potential underestimation of the WCET
– is not necessarily so critical for SRTS.

Misconception II: “Measurement is not an Ad-
equate Technique for WCET Analysis”

It is often argued that runtime measurements are
not an adequate technique to obtain the WCET for
HRTS as they typically provide only a lower bound of
the WCET. To discuss properties of runtime measure-
ments in further detail, it is necessary to distinguish be-
tween pure runtime measurements and hybrid WCET
analysis methods.

Performing pure runtime measurements with ex-
haustive search over the value space of the input data
is in general not feasible and as a consequence, only a
lower bound for the WCET can be found. But things
become much more easier on programs with relatively
few input-data dependent control flow.

For target architectures where instruction timing
only depends on the previous program control flow and
the values of the operands, it is sufficient to perform the
measurements for all combinations of the input data
that influence the control flow. For example, the in-
struction timing of an architecture having a pipeline
but no instruction delays due to hierarchic memory de-
pends only on the previous control-flow dependent and
the parameters. Target architectures with features like
caches have an instruction timing that depends on the
previous control flow and instruction parameters. For
these architectures it is required to perform the mea-
surements for combinations of all input data.

Also hybrid WCET analysis methods based on static
analysis and runtime measurements can be used to cal-
culate safe upper bounds for the WCET. Hybrid meth-
ods are relatively new and they are typically designed
to exploit available control-flow information.

As a consequence, runtime measurements are an
adequate WCET analysis method for hybrid analysis
methods or for the analysis of systems with strongly
constrained input-data dependent control flow.

Misconception III: “WCET Analysis Is Simple
To Use!”

The optimal WCET analysis tool would not re-
quire any special knowledge from the user about the
analyzed code. Due to undecidability, the realiza-
tion of such a tool is not possible. However, it is
typically discussed whether static WCET analysis or
a measurement-based approach can be provide more
transparency to the user. In fact, both methods have
their inherent limitations and, in general, will require
additional knowledge about the runtime behavior of
the code.

From the theoretic point of view, static WCET anal-
ysis has various advantages over measurement-based
approaches. Also, the calculated WCET bound is au-
tomatically a safe upper bound if only partial knowl-

2



edge about the possible control flow of a code is avail-
able. In practice, static WCET analysis has numerous
limitations: One of them is due to flow facts, that de-
scribe the possible control flow paths (CFP) of a pro-
gram. In general, flow facts cannot be fully automat-
ically extracted from the program code by semantic
analysis. Code inspection and manual code annotation
by the programmer is required to specify the possible
CFP more precisely. The flow facts together with the
program code are used by the static WCET analysis
tool to calculate a WCET bound. In practice, concrete
flow facts specifications are not powerful enough to ex-
press the possible CFP of generic programs in a precise
way. For relative simple processors without caches or
pipelines it is sufficient to specify flow facts as restric-
tions over the execution frequencies of program blocks.
For modern processors this information is not sufficient
to calculate precise WCET bounds. As the footprints
in pipelines and caches depend on the concrete exe-
cution order of instructions, flow facts need to have a
semantics much closer to the program execution. The
calculation of flow facts about the execution order of in-
structions would be even more complex than flow facts
about the execution frequency, which might lead to ad-
ditional pessimism.

Measurement-based approaches do not directly rely
on flow facts as the knowledge about the control flow is
not required to perform a runtime measurement. How-
ever, to obtain WCET bounds for hard real-time sys-
tems requires to test all relevant execution scenarios
of the code. A concrete execution scenario for a code
is determined by the initial state of the target hard-
ware and the values for the input parameter. The key
question is how to find the relevant values for the in-
put data so that it is ensured that all relevant execu-
tion scenarios are tested. An exhaustive search over
the whole value space of the input data is in general
not feasible. Missing a relevant value instantiation of
the input data can result into an underestimation of
the WCET. Therefore, measurement-based approaches
have an analogous limitation to static WCET analysis
methods. As static WCET analysis methods require
flow facts to describe the control flow of a given code,
measurement-based approaches require the provision
of precise information about execution scenarios to be
tested.

For program code with limited complexity, static
WCET analysis methods as well as measurement-based
approaches can be designed to be simple to use. Due to
undecidability, the analysis of generic code structures
will, however, always require the provision of additional
information about the execution behavior of the code.

Misconception IV: “Static WCET Analysis Pro-
vides Accurate Results”

An important factor for the accuracy of a WCET
analysis tool is the construction of an accurate exec-
time model. To calculate a precise WCET bound, the
WCET analysis tool has to use the underlying exec-
time model to consider all possible execution combina-
tions - a task that becomes quite expensive and com-
plex for modern processors. Static WCET analysis
methods therefore use safe approximations, that inher-
ently cause pessimism. For example, when modeling
the behavior of a cache, it can happen due to approxi-
mations that the number of cache misses is highly over-
estimated. In practice, this means that the “effective
cache size” is only a fraction of the real cache size.
There exist numerous work about modeling of differ-
ent hardware features by static WCET analysis tools.
However, one has to be aware that the support of a
certain hardware feature by a static WCET analysis
tool in general cannot be done without inducing over-
estimations. Though a WCET analysis tool promises
the support of a certain hardware feature, the user may
not be satisfied by the provided accuracy.

Misconception V: “WCET Analysis Has to Con-
sider Task Preemptions”

It is often argued that intra-task WCET analysis
introduces too much pessimism. However, widening
the WCET analysis to the inter-task level creates ad-
ditional complexity in the analysis as the number of
variable analysis parameters increases. The alterna-
tive approach is to construct more predictable systems
that support a hierarchical timing analysis. Such an
approach allows for the calculation of accurate results.
There exist already research in the area of separating
the execution context of tasks to make the execution
time of a single task more predictable [3, 1, 4]. Fur-
ther research in hardware and software paradigms is
required to develop practicable solutions for construct-
ing more predictable systems.

Misconception VI: “Too Much Reserved Time
due to Pessimism in WCET Analysis can be Re-
cycled as Gain Time by Soft Real-Time Tasks”

Due to undecidability, the calculation of safe upper
WCET bounds often induces pessimism. It has been
argued in literature that pessimism is not such a key
problem for WCET analysis methods, since a waste of
resources due to pessimism could be recycled as gain
time by soft real-time tasks.

3



It is in general questionable whether it is a good
strategy to mix hard and soft real-time computation
patterns. An argument from the community of fault-
tolerant computing is that it is a better strategy to
split systems into smaller, redundant distributed parts
to increase fault tolerance.

Another point is that such a combination increases
the complexity of the system, as non-real-time tasks
influence the predictability of the hard real-time tasks.
The existence of non-real-time tasks also hampers the
process of software certification as it becomes more dif-
ficult to argue about the predictability of a system that
includes soft real-time tasks.

The lucid separation of hard real-time and soft real-
time tasks may be also a system requirement. As hard
real-time tasks typically have a quite simple software
structure, their calculated WCETs have few possibil-
ities for allocation of gain time. Therefore, the time
budget for soft real-time tasks in most cases has to be
allocated statically.

It is also a basic question whether the overestimation
of WCET analysis tools is a real problem as computer
systems used a safety-critical environment often have
quite simple code. The overestimation of the WCET
for the simple software in safety-critical systems tend
to be significantly lower than that for generic software
with more complicated code structures.

Misconception VII: “WCET Analysis Tools
Have to Support Generic Programs”

It is often claimed that a WCET analysis tool has
to support generic software structures. For example,
some WCET analysis projects address the full support
of a programming language like ANSI C.

A more promising strategy is to develop WCET
analysis methods for specific application domains. As
already mentioned in misconception I, hard real-time
systems typically have a simple program control flow.
Another point is that code generated automatically
by a code generator often has a restricted shape that
simplifies WCET analysis. The simplified structure
code of programs targeting these application-specific
domains makes WCET analysis easier. In contrast to
this, WCET analysis tools are typically designed for
generic programs, where their analysis limitations be-
come apparent.

There are various ways for a WCET analysis tool
to exploit simplifications from the concrete application
context. As a potential benefit, the precision of the
WCET analysis tool will improve and also the imple-
mentation complexity for the analysis tool will be re-
duced.

3 Summary and Conclusion

This paper discussed misconceptions in current
WCET analysis approaches. An important result is
that one has to analyze which activities of a real-time
system are really time-critical. Only for these hard
real-time activities a safe WCET analsis is required.
For the soft real-time activities a probabilistic timing
analysis is sufficient to guarantee aspects like quality
of service.

To enable safe and precise WCET analysis for hard
real-time tasks, mechanisms are required to ensure
the predictability of them. A promising technique to
achieve this is “WCET-oriented programming”, i.e.,
reducing the number of input-dependent control flow
paths in the code [6, 7, 8]. Development tools like an
intelligent editor can assist the software developer in
using this technique [2].

References

[1] B. Cogswell and Z. Segall. Macs: A predictable ar-
chitecture for real time systems. In Proc. of the IEEE
Real-Time Systems Symposium, pages 296–305, 1991.

[2] J. Fauster, R. Kirner, and P. Puschner. Intelligent ed-
itor for writing wcet-oriented programs. Research Re-
port 30/2003, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2003. submitted to EMSOFT’03.

[3] D. B. Kirk and J. K. Strosnider. Smart (strategic mem-
ory allocation for real-time) cache design using the mips
r3000. pages 322–330, Lake Buena Vista, Florida, USA,
Dec. 1990.

[4] M. Lee, S. L. Min, C. Y. Park, Y. H. Bae, H. Shin, and
C. S. Kim. A Dual-mode Instruction Prefetch Scheme
for Improved Worst Case and Average Case Program
Execution Times. pages 98–105, 1993.

[5] J. W. S. Liu. Real-Time Systems. Prentice Hall, 1st
edition, 2000. ISBN: 0130996513.

[6] P. Puschner. Is worst-case execution-time analysis a
non-problem? – towards new software and hardware
architectures. In Proc. 2nd Euromicro International
Workshop on WCET Analysis, Technical Report, York
YO10 5DD, United Kingdom, Jun. 2002. Department
of Computer Science, University of York.

[7] P. Puschner. Transforming execution-time boundable
code into temporally predictable code. In B. Kleinjo-
hann, K. K. Kim, L. Kleinjohann, and A. Rettberg,
editors, Design and Analysis of Distributed Embedded
Systems, pages 163–172. Kluwer Academic Publishers,
2002. IFIP 17th World Computer Congress - TC10
Stream on Distributed and Parallel Embedded Systems
(DIPES 2002).

[8] P. Puschner. Algorithms for Dependable Hard Real-
Time Systems. In Proc. 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Sys-
tems, Jan. 2003.

4

View publication statsView publication stats

https://www.researchgate.net/publication/2893124

