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Assignment

This assignment will be about online execution time analysis: The idea that we

can obtain a better estimate of a tasks execution time after it has been released,

based on program state, input etc. than we can with o�ine worst case execution

time estimates. Not much work has previously been devoted to online execution

time analysis today, and the emphasis of this assignment will be to explore the

concept.

The parts of the assignment are:

A Find a suitable application for demonstrating the bene�ts of online execution

time analysis

B Find a way of scheduling tasks that exploits the online execution time esti-

mate

C Perform an experiment demonstrating the bene�t of using online execution

time analysis

D Write a paper to be submitted to the 2014 WCET Workshop

E If time allows: Design and implement a scheduling simulator that can be

used to perform further experiments on online execution time analysis
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Abstract

As embedded hardware becomes more powerful, it allows for more complex real

time systems running tasks with highly dynamic execution times. This dynamicity

makes the already formidable task of producing accurate WCET analysis even

more di�cult. Since the variation in execution time depends on task input and

the state of the system, it is postulated that a more accurate estimate for the

WCET can be found online with knowledge about the task parameters.

This thesis will explore the concept of online execution time analysis and its

potential utilization. Line detection in images through Hough line transform is

found to be a relevant application whose execution time can be estimated by

the contrast of the input image. A system for scheduling tasks utilizing their

online WCET estimate is then discussed. It dynamically checks for potential

deadline misses and degrades tasks, either by running a more e�cient alternative

task instead or by aborting the task, until timely execution is guaranteed. An

experiment is presented, demonstrating a higher throughput of tasks with online

WCET estimation. Finally, the work on a framework for more precise simulations

and experiments is presented.





Sammendrag

Etter hvert som maskinvare for sanntids datasystemer blir kraftigere, blir også pro-

grammene som kjøres mer komplekse. Dette medfører at kjøretiden blir vanskelig

å beregne nøyaktig. Siden variasjonene i kjøretid avhenger av programmets in-

put samt systemets generelle tilstand, anntas det at et bedre kjøretidsestimat kan

�nnes når man kjenner til disse parameterene.

Dette arbeidet utforsker ideen om å foreta en kjøretidsanalyse mens systemet

er i gang og den eventuelle nytten og bruksområdet en slik analyse vil kunne ha.

Linjedetektering i bilder via Hough-transform blir brukt som eksempelapplikasjon.

Kjøretiden blir vist å være omtrent lineær med kontrasten i bildet og kan dermed

beregnes utifra denne. Et system for tidsdeling av oppgaver som tar i bruk online

kjøretidsestimater blir så diskutert. Det sjekker for mulige overskridelser av tids-

frister og kan etter behov bytte ut oppgaver med alternative varianter som bruker

mindre tid eller avbryte dem. Et eksperiment blir presentert som demonstrerer at

et høyere antall oppgaver blir gjennomført i tide ved bruk av online kjøretidses-

timering og alternative tasks. Til slutt er et påbegynnt arbeid på et rammeverk

for videre eksperimentering presentert.





Glossary ix

Glossary

WCETOFF O�ine Worst Case Execution Time. The worst case execution time

of a task calculated while knowing nothing of the actual program state and

therefore very pessimistic as it can make no assumptions. 2, 8, 9

WCETON Online Worst Case Execution Time. This is a more precise estimate of

a tasks execution time calculated while the systems is running, using certain

parameters that are available during execution time. 2, 9

computer vision An advanced form of image analysis, mainly used as input for

robots, drones and other intelligent systems. 14

edge pixel An image pixel that lies on the edge between two or more homoge-

neous areas of the image. 12

fork A system call that spawns a new process. 40

OETA Online Execution Time Analysis. 2, 9

OpenCV An open source library providing basic and advanced computer vision

functionality. 15

pthread A POSIX library for running and synchronizing programing threads. 39

WCET Worst Case Execution Time. 2
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1 Introduction

A continuing trend in real time embedded systems is that the complexity of their

programs increases. In addition to this, an increasing number of tasks are moved

onto the same physical hardware. One example of this development is the emer-

gence of smart phones. Modern smart phones have evolved from cell phones that

could send and receive calls, and very little else, into what are essentially tiny

computers, running a full �edged operating system and applications made by

completely unrelated programmers. A similar transition will likely follow in other

areas, such as home automation and electrical distribution system (Smart Grid).

As the tasks of real time systems grow increasingly more complex they exhibit

a higher degree of dynamicity, meaning that the execution time varies, for example

based on input values. It is assumed that this fact can be exploited to allow the

scheduler to make a better execution time estimate at task release using online

data like task input and general system state.

This thesis will explore the idea of using online execution time analysis (OETA)

as a tool for the scheduler to make better decisions. In a preliminary project [5],

the OETA was used to help in scheduling mixed criticality systems. These are real

time systems that run many tasks of varying importance, and where the scheduler

can abort a task of low importance (criticality), if it is necessary in order to ensure

that a more critical task completes within its deadline. The basic idea of the work

done in the preliminary project was to use the OETA to determine if it really is

necessary to abort tasks of low criticality given the current set of active tasks, and

not just based on a model.

The rest of this thesis is organized as follows: Section 2 contains background

information. In Section 3, an example application is found. Section 4 presents a

novel way of exploiting online WCET analysis for scheduling. Section 5 presents

an experiment simulating the bene�ts of OETA scheduling. Section 6 describes

the work done in implementing a scheduling simulator and Section 7 concludes

this thesis.
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2 Background

2.1 WCET Analysis

One has traditionally used very pessimistic estimates for execution times, WCET,

when designing real time systems and checking if they will be able to handle

all tasks without missing deadlines. However, the assumption that all tasks will

always execute for their Worst Case Execution Time (WCET) often results in

severe under-utilization of the systems resources, since most tasks have a varying

execution time. They can, for example, spend merely a small percentage of their

WCET most of the times they run and only in a few cases, or potentially never,

spend the entire WCET.

Instead of always using the worst case execution time, a system was suggested

by Sverre Hendseth and Giorgio Buttazo in [6] where the scheduler checks certain

task parameters (input, program state etc.) to determine a better estimate for

how long the task will need to execute in that particular release. This execution

time estimate, computed online, will be called WCETON , and the traditional

WCET determined o�ine will be referred to as WCETOFF . The system utilizing

the added information provided by the WCETON will be referred to as Online

Execution Time Analysis (OETA). In this system each task will have two entry

points: the regular entry point for the actual task code and one for the OETA

code. This allows the scheduler to run the analysis and get a better estimate of

actual runtime required by the task than the WCETON before letting the task

run.

The idea of computing the execution time of a task at runtime has also been

suggested by Stancovic et al. [10] for use in the Spring kernel. This system allowed

a tasks execution time to be "a formula that depends on various input data and/or

state information". Instead of giving each task two entry points which allows for

complex program code to compute the execution time, it is done with a simple

mathematical expression.

Parametric timing analysis is another method that has been previously expored,

in relation to energy saving [9]. It uses loop bounds to predict execution time

online.
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2.2 Computer Vision in UAVs

Unmanned Aerial Vehicles (UAVs) are pilot-less aircrafts that operate either by

remote control or autonomously. They come in di�erent sizes and con�gurations

from small quad-copters the size of a hand to large airplane-like vehicles like the

Predator drone. Most UAVs have some sort of camera, either to allow the operator

to see where the UAV is, or to be used as a sensor for autonomous control, for

example to enable collision avoidance. Advanced image processing is an important

component in UAVs [4], used for example for autonomous landing [12]. UAVs have

traditionally been used for military applications, such as gathering intelligence,

aiming and �ring missiles. Lately several civilian applications for UAVs have been

proposed, such as search and rescue missions, �lmmaking and delivering parcels.

Another possible application for UAVs is surveillance of power lines [8]. Many

long power lines go through forests and other terrain with a lot of vegetation.

These have to be regularly monitored to ensure that the surrounding vegetation

does not grow into the power lines. This is usually done with a manned helicopter,

costing large sums of money. An UAV with a camera that automatically follows

the power lines and takes pictures will make this job both easier and cheaper.

2.3 Degraded Level of Service

In some systems it can be desirable to have the possibility to resort to a degraded

level of service. Consider a UAV used to perform surveillance of powerlines, as

discussed in 2.2. The onboard computer will have to perform many tasks in order

for the UAV to do its job, such as:

• Keeping a stable �ight (not crashing)

• Receiving commands from the operator

• Sending �ight status (position, battery level etc.) information back to the

operator

• Flying along the correct path

• Taking pictures of the power lines
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• Analyzing the pictures

Clearly, not all of these tasks are equally critical. For example, it's more

important to keep the UAV in the air, than to perform the picture analysis. If the

CPU doesn't have enough resources to handle all the tasks, it should abort the low

criticality tasks instead of the high criticality ones, as there is no point in doing a

good picture analysis if it causes the UAV to hit the ground directly afterwards.

Aborting the low criticality tasks to ensure that those of higher criticality are run,

is a form degraded level of service or graceful degradation [3].

Ensuring that the tasks that are regarded as critical are prioritized can be

done for example either by explicitly giving the task a high priority, or implicitly

through for example period transformation. This method divides a highly critical

task is into several tasks with shorter period in a system with a rate monotonic

priority assignment scheme, thereby giving it a high priority. Other systems have a

inherent concept of criticality, like the Adaptive Mixed Criticality Scheme (AMC)

[1].

2.4 Adaptive Mixed Criticality

Most of this section is unchanged from the report written on the authors prelimi-

nary project [5].

A classic real-time system consists of a set of tasks that run together on the

same hardware, and must complete execution before their respective deadlines.

To assure that every task �nishes before its deadline, each task is given a priority,

determined by some scheduling policy. If a task with a higher priority than the

currently running task is released (becomes ready to run), the lower priority task

will be interrupted in order for the new task to be run, and then resumed after

the high priority task is �nished. These priorities does not, however, re�ect the

criticality of the task. In an aircraft the low criticality task that handles the cabin

air conditioning may be given a higher priority than the task making sure that

the landing gear is lowered on time (a very highly critical task) if the scheduling

algorithm �nds that this arrangement of priorities makes sure that all tasks will

�nish by their deadline.



2.5 Alternative tasks 5

This does, however, tend to become very ine�cient as more tasks of varying

criticality are moved onto the same hardware. This trend has become increasingly

prominent, as concerns about space, energy e�ciency and cost have grown [2]. The

issue is that since important, potentially life-preserving, functionality is a part of

this system, the other less important tasks must undergo the same rigorous tests

and certi�cation. This might lead to a severe under-utilization of the system,

since making sure that all the highly critical tasks �nish by their deadline requires

all tasks to be given a pessimistic execution time estimate. In theory, one must

allocate the WCET to each task. Finding the exact WCET is, however, not trivial

[11]. The solution then, is to give each task a very generous WCET, to be "sure"

that the task will not exceed it.

One way of handling di�erent degrees of criticality is by giving highly critical

tasks a high priority, and thereby ensuring that they will run without interference

from the non-critical tasks.

In [11], Steve Vestal proposed a scheme for scheduling mixed criticality systems.

The motivation behind this was that the di�erent tasks of a real-time system does

not necessarily need the same level of assurance in regards to certi�cation. When a

system is to be certi�ed, only a certain number of the tasks are actually interesting

to the certi�cation authority. These are the highly critical task, e.g. those that

deal with preventing damage to the system, death etc.

Several models have since been suggested, that improve the original work in

[11]. One of these, called Adaptive Mixed Criticality (AMC) has been shown [1] to

surpass the others in amount of task sets that are schedulable. In his 2013 review

article on mixed criticality systems [2], Alan Burns writes that this is still the

case1. The basic idea of AMC is that if a task executes for longer than its allotted

time at a given criticality level, all tasks of the lowest criticality are aborted.

2.5 Alternative tasks

Another form of degraded level of service is the use of alternative tasks. Instead

of completely aborting a task, it may be possible to perform a simpler, less time

1He does, however, note that an extension of the AMC by Zhao et al. has improved the stack

usage.
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consuming algorithm instead. This way, the purpose of the task is still ful�lled,

although with lower quality. Such a system is described in [7] page 92.

Alternative tasks can be used in two ways. One is as a back up mechanism

to be used when the normal task cannot be used. Another way of looking at it

is a possibility of running a task variant that you normally would not have the

resources for, but that you every now and then can run when the resource demand

in the rest of the system is very low.

The use of alternative tasks was also suggested as a feature in the Spring

Kernel [10]. Here it is used as a backup in case there is not enough time to run the

proper task. Burns and Wellings [3] discuss the use of alternative modules. These

are alternative tasks that can be called if the output of the original task fails an

acceptance test.
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3 Finding example Application

3.1 Criteria

Part of the work has been devoted to �nding a suitable application for the use of

online execution time analysis. A suitable application should exhibit the following

properties:

High degree of dynamicity The application must have a varying execution

time that can easily be computed based on information available online.

Applicable in real-time systems Since real-time systems rely heavily on the

execution time of tasks, they are believed to bene�t the most from such a

system.

Relevant for cybenetics applications This is not a absolute demand, but would

be an attractive property for an application.

Finding a good application proved to be more challenging than initially be-

lieved. Even though the execution time of most computer algorithms depend on

the input size, when used in a practical application the input size from iteration to

iteration rarely changes. For example doing matrix calculations is a part of many

control systems, and it is trivial to show that inverting a 50 by 50 matrix takes

longer time than inverting a 5 by 5 matrix. However, the sizes of the matrices

in a given system rarely changes. They are usually given by the number of state

variables and inputs to a system.

There were two candidates for an application: Variable MPC controller and

Computer vision in UAVs.

This section start with a presentation of the online WCET analysis. Then the

two alternatives are presented and the decision is made. Finally an experiment

evaluating the applicability of the application is described.

3.2 Online WCET Analysis

Online WCET analysis is the concept of using online data to make a better estimate

for the execution time of a task than what can be achieved with traditional o�ine
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analysis. There are mainly two types of data that can be used: task input and

system state.

Task input can a�ect execution time in several ways. The most obvious is that

most algorithms have an execution time that is a function of the input size. Sorting

a list of 10 elements, for example takes less time than a list of 10000 elements. In

addition to the input size, the value or type of input can dictate the time it takes

to process it. A message handling task can for example spend a relatively constant

amount of time handling normal messages, but spend a lot longer handling other

such as error messages that require the task to signal other parts of the system or

take other extraordinary actions.

System state can be used to estimate execution time in multiple ways. If the

system is modeled as a state machine a tasks behavior might be dictated by the

current state. One can also use information about shared resources (whether they

are locked, how many tasks are waiting etc.) to estimate how long it will take for

a given tasks to access it and continue running. Hardware state is another part

of the system that can be used. Many smart phones, for example, have a low

power mode that can either be activated manually, or is automatically enabled

when the battery reaches a certain charge level. This mode can for example put

some component in a sleep-state and will thus impact the execution time of a task

that needs to wait until the component is active again.

There are several challenges regarding the use of online data for estimating the

execution time. One is how the actual estimation will be done. In some cases it

may be relatively easy, if the task is simply traversing a list, performing a matrix

inversion or processing a message frame. Here we can use the size of the list, matrix

dimensions etc. as a parameter for our estimation algorithm and can use either

a simple mathematical function, like suggested in [10], or values in a previously

computed lookup-table. It gets slightly harder if the execution time is dependent,

not only on the size of the input data, but on the actual data itself. Some of the

hardest are those where the execution time depends on some of the calculations

themselves. In the worst case scenario the estimation will have to perform the

entire task program in order to �nd an estimate. In this case one might be better

o� with just having the estimation function return the staticWCETOFF . Another

problem is tasks that can block, for example while waiting for a semaphore, or a
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message from another thread. In some cases one can potentially take the blocking

time into account when designing the estimation algorithm, or have the scheduler

check the state of blocking semaphores when computing the WCETON

Another problem is the fact that the scheduler will be executing the estimation

function, which is written by an application programmer. This function may take

a lot of time and introduce an overhead that need to be taken into account during

system design, schedulability proofs, etc. In some cases it might be necessary to

add the execution time of the OETA algorithm to the WCETOFF of the task in

schedulability proofs. In some systems that separate between user- and kernel-

space code, another problem may occur, as application code is run by the kernel.

Such a system could run the estimation code with limited permissions. On the

other hand, in an embedded real time system, one usually have complete control

over what tasks will be running on the system, and the probability that someone

will sneak in "malicious" code is not as big as for example in a desktop system.

A lot of real time operating systems do not operate with distinct kernel and user

space.

The fact that the online execution time analysis takes time is an issue that

must be taken into account when verifying the schedulability of the system.

An important requirement of the estimation algorithm is that it must never

give an estimate that is too low. That is, in order to be useful, it should provide

a better estimate than the WCETOFF , but it must still be su�ciently generous

in order to ensure that the actual execution time does not exceed the WCETON .

It is, after all, still a worst case execution time, although computed with better

accuracy, due to the availability of more information. Furthermore, the execution

time of the estimation algorithm should be reasonably modest, so that it does not

incur excessive overhead on the system.

3.3 MPC controller with variable time horizon

One idea was to use the online execution time analysis to make an MPC controller

with a variable time horizon. An MPC controller generates an input by modeling

the future and thereby "looking ahead" to the best future state and then giving

the system an input that corresponds to the �rst step of the planned input. It
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is possible that a longer time horizon would allow a better prediction to be made

and indirectly allow for a improved control of the process. It would, however take

longer to run the model prediction.

One could make a system that uses theWCETON of all tasks currently running

in the system to determine how large time horizon could be used for the MPC-

controller, while ensuring that all other active tasks �nish by their deadline.

3.4 Hough Line Transform

The Hough transform is a method for �nding shapes in an image. The shapes

to be detected has to be parameterizable. For example, a straight line can be

represented by its angle θ and distance to the origin r. The line can then be

mapped as a point in the (θ, r)-space. If every line that goes through a point

is mapped in (θ, r)-space, it forms a wave-like line linke the ones seen in Figure

1c. The Hough Line Transform is brie�y described below, followed by a more in

depth description with an example. It keeps an accumulator array of all possible

(θ, r)-values.

1. A preliminary blurring using a Gaussian �lter to remove noise from the

image.

2. Perform an edge detection algorithm, such as the Canny edge detector to

locate all the edge pixels (edge pixels are explained below).

3. For every edge pixel �nd the (θ, r)-values of all lines that goes through the

point.

4. Increase the values corresponding to the (θ, r)-values in the accumulator

array.

5. Pick out the lines that have the larges values in the accumulator array.

Canny edge detector Edge pixels are pixels that lie along the edge between

two uniformly colored areas of an image. The Canny edge detector outputs a

binary image where all the edge pixels are white and the rest black. This is shown

in Figure 1b.
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(a) Original image (b) After Canny edge detection

(c) Accumulator array

(d) Detected lines

Figure 1: The steps of the Hough Line Transform
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Find the parameter values of all lines that might go through the point

A set of quantized θ-values are chosen. For a given edge pixel (xi, yi). All (θ, r)-

values that satisfy

r = xicos(θ) + yisin(θ) (1)

represent lines that pass through (xi, yi). The corresponding value in the ac-

cumulator array is increased.

The accumulator array is shown in Figure 1c.

Pick out the lines with the highest value in the accumulator array When

all edge pixels has been added to the accumulator array, a given value in the

accumulator array A(θi, ri) contains the number of edge pixels that lie along the

line represented by (θi, ri).The maximas of this array correspond to a line in the

image. Usually a threshold is used to select which of the values will be considered

a line.

For every point in the original image, we can plot all lines that potentially go

through the point. This plot looks like a sine-wave. We do this for all points that

are candidates for line pixels and see if their "sine wave" intersect. The intersection

point in (θ, r)-space represents a line that the points of all the intersecting waves

lie on. One can then choose to either return the n longest lines, all lines with more

than a given number of pixels, all lines with a certain angle or another subset of

possible lines in a picture. Figure 2 shows a simple image with four lines, and the

corresponding accumulator array. The four lines can easily be seen as the maximas

in the accumultor array.

One possible use case for this is in the power line surveillance example[8]. An

UAV could take an image, estimate how long it would take to analyze it and if

it would take longer than a set limit, it could wither slow down the UAV to give

itself more time to analyze before a new image is taken, or scale down the image,

to make the processing go faster, but be less accurate.
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(a) A simple image with four lines

(b) The accumulator array, the four maximas are marked with green squares

Figure 2: Correlation between the lines in an image and the accumulator array
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3.5 Decision

It was decided to examine the Hough transform further. The reasons it was chosen

over the MPC controller are:

It is more suitable for small embedded systems with limited resources.

The Hough transform is being used in UAVs, which have limited battery sup-

ply and therefore limited computation power. The UAVs computation power

must also be used for other purposes, like hardware control and communica-

tion. The MPC-controller, on the other hand, is primarily used in larger sys-

tems like oil platforms, ships and chemical factories. In this setting one could

easily buy a relatively powerful computer just to run the MPC algorithm.

This reduces the bene�t of developing a more time-e�cient MPC-controller.

It is easier to test. Making a test program to analyze a set of pictures can be

done easily with the Hough transform. There are already computer vision

libraries available online that performs the hard work, such as OpenCV.

In contrast, testing the MPC algorithm would need a process to be controlled,

as well as a set of tasks to be run on the same hardware with variable

execution time that can be executed.

The runtime of the Hough transform can be reduced by scaling down the image.

In a UAV setting the scheduler can choose to scale the image down if there is not

enough time to run the Hough transform on the entire image.

One problem with using the Hough Transform is that it requires a lot of tuning

to produce good results. When studying the lines detected in Figure 1d, it is

clear that not all lines in the original image were detected, and that some marked

lines are false positives. There are several ways to tune the Hough transform:

Changing the Gaussian �lter size used for blurring, the threshold values for the

Canny detector, and the threshold and resolution values for the Hough transform

itself. These values must be tweaked for the images used in the speci�c application

in order to obtain a good result. In this work, no e�ort has been made to ensure

good line detection, as this would require a lot of time. It also would probably

not be possible to �nd a set of parameters suiting a diverse set of pictures like the
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one used in this work. This is a problem since it makes it impossible to determine

whether a reduced variant of the Hough transform gives a satisfactory result.

3.6 Testing execution time estimate

The hypothesis is that the number of edge pixels corresponds linearly to the execu-

tion time of the hough transform. To test this, 100 pictures was taken of buildings

in and around the NTNU campus. They were then run through an OpenCV im-

plementation of the Hough line transform and timed. The results are shown in

Figure 3.

The resolution of these images are 1632x1224 pixels. Figure 3 shows that the

execution time of the Hough analysis is approximately linear with respect to the

number of edge pixels.

Figure 4 shows all the data points in the experiment. This shows that the

variations are relatively small. One can easily make an online WCET estimator

by making a linear function that goes above the data points like WCETON =
3

3500000
∗ nedgepixels + 0.15. Note that this is not found analytically and is only a

statistical observation. A proper real time system would demand more rigorous

analysis.

The next step would be to see how long each of the steps of the Hough transform

takes compared to the others. For this test, �ve stages of the Hough transform was

timed: loading the image, blurring, running the Canny edge detector, counting the

edge pixels and adding all the edge pixels to the accumulator array. The latter

is referred to as "Hough Transform" in the graph because this is the name of

the OpenCV function responsible for this. The timing has been done by running

the same program multiple times and aborting after each step. Because of this,

the numbers for the Canny edge detector comes from running the image loading,

blurring and Canny detector. In retrospect, it would be better to run the entire

algorithm and output the time after each step. The results are shown in Figure 5.

Several observations can be made from Figure 5. The �rst is that the "prepro-

cessing", i.e. everything up to the Hough Transform takes more or less constant

time. Furthermore, counting the pixels takes very short time. This is good as

this step constitutes the added overhead needed in order to perform the OETA.
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Figure 3: Average Execution time of the Hough transform relative to the number
of edge pixels

By doing the pixel counting as part of the Canny edge detector step, the time

consumption could possibly be lowered further. However, as this would require
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Figure 4: Execution time of all runs of the Hough transform relative to the number
of edge pixels

rewriting the OpenCV library, it was not done for this experiment.

Figure 6 shows the execution time of the same images scaled down by 50%. This

shows that scaling the images down is a possible way of reducing the execution

time of the Hough transform. As previously stated, this experiment gives no

information about the quality of the results when the image is scaled down.

The tests performed on the pictures indicate that the Hough analysis is a

suitable application for online execution time analysis.
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Figure 5: Average Execution time for di�erent steps of the Hough transform. Time
is given in seconds

4 Using Online WCET estimates for scheduling

This work presents a new scheduling scheme. Its prominent features include:

• Online WCET-analysis, which is run by the scheduler at every task release

providing more precise timing information.

• Tasks consist of one or more task variants. If there is not enough time to

run the preferred variant of a task, an alternative task variant can be run

instead. This decision is made by the scheduler.

• Tasks have a criticality level associated with them to determine what tasks

to prioritize over others.
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Figure 6: Average Execution time for di�erent steps of the Hough transform with
scaled down images. Time is given in seconds

It is important to note that the concept of using online worst case execution

time analysis to help the scheduler is not restricted to the scheme described here.

The following scheme is a somewhat simple example of how scheduling can be

done, with suggestions for variations and changes in Chapter 4.4.

4.1 Model

The system consists of tasks. Each task has the following information associated

with it:

• A priority: P

• A deadline: D

• A period: T

• A set of task variants

• An estimator preprocessing routine
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• A criticality: L

A task variant has the following information associated with it:

• An entry point for the actual task

• An entry point for the OETA code

When referring to tasks and task variants, a number is used to label the task

and a letter is used to label the task variant. These task variants are ordered

alphabetically by preference. This means that if task 1 has the three task variants

1A 1B and 1C, 1A is the preferred and most time-consuming task variant. If this

task variant cannot be used the task is "degraded" and the next task variant 1B

is considered. The details surrounding this are given below.

Generally, a task has a single purpose that it needs to accomplish. This can

be done in several ways, represented by the task variants.

An important property of the envisioned scheduling system is that it is the

schedulers responsibility to make decisions regarding what task variant to use or

whether a task is to be ran at all. The alternative to this is that the application

programmer makes this functionality in the source code. This might allow for

some more �exibility in the way the task is structured, but is more error prone.

An analogy would be the use of a memory manager that ensures separation between

processes in an operating system, instead of having all programmers reference the

memory directly.

4.2 Choosing which task variant to use

The system may at any point degrade a task. Degrading a task can mean two

things. The task will try to use the next task variant if it has any. If it is currently

running the lowest task variant, it is aborted. This is shown in Figure 7.

When a task is released, its estimator preprocessing routine is run by the

scheduler. This routine acquires and sets up all the necessary data for computing

the WCET of a variant. The OETA algorithm for that tasks �rst task variant is

run, and the result is saved. I the Hough transform example, the preprocessing

would be everything up to the edge pixel counting. A test is performed to check
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Figure 7: Degrading a task either causes it to switch to a lower task variant or
abort it of it is already at the lowest variant.

whether the addition of the new tasks will result in a deadline miss in the system.

If that is not the case, all tasks are allowed to run as normal. If the test �nds

that some task will miss its deadline, the scheduler aborts the lowest criticality

task, and checks the WCET ON of that tasks next task variant. If no task will

miss a deadline with that task variant, the task variant is used. If not, the next

task variant is checked until either the system is schedulable, or the task has no

more task variants. If it has no more task variants, the task is aborted and the

scheduler runs the dadline check again. This time the second least critical task

is degraded. This continues until the system is schedulable. This is illustrated in

Figure 8. Note that in this example Task 1 is the least critical task in the system.

Had another task been less critical, it would have been degraded in stead of task

1.

4.3 Testing for deadline misses

This is based on the system made in the preliminary project [5].

Testing for deadline misses is done with a simpli�ed response time analysis.

The general idea is that if the sum of WCETON for all tasks with priority equal
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Figure 8: Deciding on a task variant. The released task is in this case the least
critical task currently running. The process starts with the scheduler running the
estimator preprocessing routine (1), then the WCET estimator for task variant
A is run and its result returned to the scheduler (2). The scheduler deems it
impossible to run task variant A, and calls the WCET estimator for task variant
B (3). As the system is schedulable with the estimate for variant B, the scheduler
starts running its actual code.

to or higher than a given priority is less than the time to the earliest deadline of

any task of that priority, no tasks with that priority will miss a deadline. This test

is then carried out for every priority level. The number of steps for this algorithm

is the same as the number of tasks currently ready to run. This will run in O(n)

time, where n is the total number of tasks in the system. The WCET analysis is

not run for every task each time, only for the task that was released. The other

tasks WCETON are saved by the scheduler from their release time. This can be

written as

∑
{i|pi≥p∗}

WCETON
i < min

{j|pj=p∗}
Dj , ∀p∗ ∈ P (2)

Where P is the set of priorities, and p∗ is the priority level we are currently

checking.

This is a simpli�ed version of the response time analysis. The simpli�cation is
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that it does not take into account periodic tasks that will be released again (for

example task 1 could be released again while task 2 is executing). This is because

we treat every task as a sporadic task for the purposes of this test, and run the

check for deadline misses at every task release.

This test is performed only on the tasks that are currently ready to run, not the

entire task set of the system. In a system without time slicing, this test is su�cient,

but not necessary. Further optimizations are likely possible, like considering the

amount of time a task has already spent executing.

4.4 Variations

4.4.1 Assigning criticality levels to task variants instead of tasks

Normally, one considers criticality on a per-task basis. In other words, one task is

given a higher criticality than another because we would like the airplanes landing

gear to function correctly more than we would like to have good air condition inside

the plane. This model, however, speci�es a criticality level for each task variant.

This is because it may be desirable to degrade a higher criticality task to a lower

task variant instead of completely aborting a lower criticality task. Consider the

example task set in Figure 9, consisting of tasks 1, 2 and 3, each with its set of

task variants (A and B for task 1 and 3, with a third variant C for task 2).

Assume that task 1 and 2 is running, both at variant A, and task 3 is released.

The scheduler �nds that the system is not schedulable and must degrade one task.

Task 1 is the most critical of the three, followed by task 2 with task 3 being the

least critical task. As such task 3 is degraded and forced to execute its B-variant.

The scheduler checks to see if the new task set is schedulable. If that is not the case

a new task must be degraded. If criticality is assigned to each task, the scheduler

will degrade task 3, thereby aborting it. It may be desirable to instead degrade

task 2 to its variant B in order to let task 3 execute at all. This can be ensured

by assigning criticality-values to task variants instead of tasks. If it is desirable

to operate with a criticality-level per task, this can be ensured by giving all task

variants of the same task the same criticality-level.

Another possibility would be to consider more permutations of tasks. Given

the example above, if we decide to degrade task 2 instead of aborting task 3, the
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Figure 9: An example task set. It shows the three tasks labeled 1, 2 and 3, as well
as their respective set of task variants.

current task set would be (1A, 2B, 3B). Since the decision of degrading task 3

to variant C was taken when task 2 was running as variant A, the system could

now potentially run task 3 with variant A. This was proposed in the feedback on

the paper submitted to The 2014 WCET Workshop. The full feedback is given in

Appendix D. This would increase the complexity of the schedulers decision.

4.4.2 Changing criticality levels

In some applications it might be advantageous to allow for task to change critical-

ity level based on the system state or circumstances of the application. In a UAV

�ying by GPS-waypoints and autopilot would probably want to treat these fea-

tures as highly critical, but when landing, the elevation sensor and remote control

communication would be more critical.

4.4.3 Using a value function

A third variant is the use a value function to determine the task to be degraded.

This would compare all the possible sets of variants for the currently running tasks

that are schedulable, and compare them based on a value function describing how
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valuable each task is to the system at any given time. The scheduling would then

be performed by �nding the set of task variants that maximizes the value function.

This function can take into account factors like how long a task has been

executing, how much time would be freed by degrading the task in addition to its

criticality. The function could also use information about the past behavior or, in

the case of periodic tasks, future task releases. This would allow it to prioritize

tasks that have recently been degraded. This can be applicable in situations where

two tasks are of almost equal importance. Normally, the system should degrade the

slightly less critical task to run the other, but if this has happened three times in a

row, it might be sensible to degrade the high criticality task instead. Information

about future task releases can be used in a similar way.

There are several challenges with such a scheme. First and foremost making

such a value function is not trivial. The value function does not need to take into

account all the factors suggested above, but even simple value functions would be

di�cult to construct, as one would have to not only decide which tasks are more

or less critical, but how high the value of each task or task variant is compared to

each other. Another large problem would be to formally verify the correctness of

such a system, and ensuring that the value function actually chooses a desirable

course of action in any set of circumstances. It may be that the value function

deems the value of running ten virtually unimportant tasks higher than the value

of running one life critical task. This kind of behavior is di�cult to predict and

requires rigorous testing and analysis.
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5 Experiment

A simulation was conducted to demonstrate the potential bene�t of using online

WCET analysis for scheduling.

5.1 Assumptions and simpli�cations

Assumptions:

Tasks are not aborted after they exceed their deadline

The OETA overhead is constant for all tasks While it is unrealistic that the

OETA overhead is absolutely constant (and equal for all tasks), it should not

vary greatly. The timing results of the Hough transform shown in Figure 5

show this behavior.

Every task can have its execution time predicted and the predictions are accurate

In reality the online WCET estimation will predict an execution time that is

larger than the actual execution time. In this case the di�erence in estimated

and actual execution time has been disregarded.

Simpli�cations:

No task switching overhead Since the normal task switching is the same both

with and without OETA, it has not been included in the simulation. The

OETA overhead includes both the estimation algorithm itself and the time

used to check schedulability and pick a suitable task variant.

Criticality is not considered Adding the criticality level of tasks to the exper-

iment would not provide any interesting information as the scheduler would

always degrade the least critical task. There is no measure of the value of

the task variants executed.

5.2 Method

A task set consisting of �ve tasks has been given random execution times and

deadlines. Variations in execution time between runs due to di�erent input were
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simulated by randomly doubling or tripling the execution time of any task. The

task set was run by a simulated standard deadline monotonic scheduler and a

simulation of our system that added a constant overhead to represent the online

WCET analysis, and also allowed a task to spend only half or 1/4 its execution

time if needed to represent an alternative task being run. It is assumed here that

the scheduler runs the online WCET analysis for all tasks before starting the �rst

task. The simulation was done for 10000 task sets.

The standard parameters for the simulation are given in Table 1.

Table 1: Standard parameters used in simulation. The doubling and tripling are
mutually exclusive: only one will happen for each task

Number of tasks 5
Number of task sets generated 10000

Number of runs for each task set 100
Execution time Uniformly distributed between 1 and 10

Deadline Uniformly distributed between 5 and 50
Probability of doubling execution time 9%
Probability of tripling execution time 1%

OETA overhead 0.1

Several variations of the standard values were used to test how the OETA

scheduling would perform:

• Standard parameters

• OETA overhead set to 1 instead of 0.1

• OETA overhead set to 1.5 instead of 0.1

• Shorter deadlines

The execution time is a relative time and the deadline is an absolute time. In

the example task set given in Table 2, tasks 2, 3 and 5 would be able to �nish by

their deadline, while the rest would miss it. How the tasks will run is illustrated

in Figure 10.

The source code for the simulation is given in Appendix A.
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Table 2: Example task set

Task Number Execution Time Deadline
1 9 5
2 2 15
3 9 24
4 7 26
5 3 39

Figure 10: A diagram showing the execution times (blue areas) and deadlines (red
lines) of the task set example described in Table 2.

5.3 Results

As the values of execution times and deadlines as well as the behavior of the tasks

are somewhat arbitrary, the qualitative observations are more interesting than the

quantitative. The results are therefore only presented as bar charts. The actual

numbers are given in Appendix B.

Two metrics were measured:

• The number of tasks that �nished within their deadline: Nfin

• The amount of time spent performing tasks that �nished before their deadline

Tfin
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5.3.1 Resuslts with standard parameters
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(a) Percentage of tasks that �nished by their deadline

(b) Percentage of time spent executing tasks that �nished by

their deadline

Figure 11: Simulation results with standard parameters
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5.3.2 Results with increased estimation overhead
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(a) Percentage of tasks that �nished by their deadline

(b) Percentage of time spent executing tasks that �nished by

their deadline

Figure 12: Simulation results with OETA overhead set to 1
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(a) Percentage of tasks that �nished by their deadline

(b) Percentage of time spent executing tasks that �nished by

their deadline

Figure 13: Simulation results with OETA overhead set to 1.5
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5.3.3 Results with tighter deadlines
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(a) Percentage of tasks that �nished by their deadline

(b) Percentage of time spent executing tasks that �nished by

their deadline

Figure 14: Simulation results with earlier deadlines
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5.4 Discussion

Figure 11a shows how many tasks were able to �nish by their deadline. We can

observe two things from it. Firstly, the fact that more tasks were able to �nish by

their deadline using OETA Scheduling. This is to be expected, since a task can be

swapped out with a shorter variant if there is not enough time to run it. Secondly,

we can see that with OETA Scheduling more tasks of Variant A were able to

complete before their deadline. Since it completes some tasks faster when needed,

there is more time available in the system. Figure 11b shows the amount of time

that was not wasted by executing tasks that did not meet their deadline. Since

it can switch to shorter tasks, we can see that OETA scheduling is outperforming

the regular deadline monotonic scheme.

When the standard results are compared with the results in Figure 13, it is

clear that increasing the OETA overhead from 1-10% of the execution time to 10-

100% reduces the number of variant A tasks that can be scheduled by the OETA

scheduler, see Figure 12a. Nevertheless, the total number of task that complete

before their deadline is higher. Figure 12b shows that the Tfin-value of the OETA

scheduling has decreased and is now about the same level as for the regular deadline

monotonic scheme. This decrease is expected as the scheduler spends more time

performing the OETA algorithm than with the standard parameters. One of the

primary concerns with OETA is that it will introduce an extra overhead that

outweigh any bene�t it might o�er. This results indicate that even with fairly

large OETA overhead, the OETA scheduler with alternative tasks still performs

better than traditional deadline monotonic scheduling. This is attributed both to

the possibility of running an alternative task, but it is also a result of the online

execution time scheduling itself, since it will not run tasks that it knows will miss

their deadline, thereby saving execution time for other tasks.

The trends of increasing the OETA overhead continues when it is increased to

1.5, as shown in Figure 13. An OETA overhead of 1.5 is in this case between 15%

and 150% of the actual execution time of the task and as such is unrealistically

high. One interesting observation to make here is that even though the Tfin of the

OETA scheduling is lower than for regular deadline monotonic scheduling, it still

manages to complete more tasks by their deadline. This indicates that comparing
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CPU utilization alone is not a good metric for quality of scheduling policies with

alternative tasks.

Lastly a test was performed with earlier deadlines. Figure 14 shows that the

OETA scheduling scheme is less sensitive to this than regular deadline monotonic

scheduling. Although the number of variant A tasks that are able to complete is

smaller the total number of tasks completing by their deadline remains virtually

unchanged.

One important factor not addressed in this experiment is the quality of service

provided by the di�erent task variants. We have assumed that all tasks can be

degraded to more e�cient task variants that provide an acceptable quality of

service. This might not be the case for all applications.
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6 Implementation of scheduling simulator

This section describes a scheduling simulator for testing OETA scheduling. As

described in Section 4.4, there are several ways to perform the scheduling while

taking advantage of online execution time analysis. The variations and extensions

described o�ers more �exibility, like the option of degrading a highly critical task

instead of aborting a less critical task if this is favorable. The cost of this �exibility

is higher computational overhead. Since the relative advantages and disadvantages

of these scheduling systems are hard to predict, a framework for testing should be

implemented. The purposes of this framework is both to be able to test di�erent

scheduling schemes and applications suitable for OETA scheduling. The design

described has not been completely implemented.

6.1 Design goals

The goals of the implementation are:

It should simulate a preemptive scheduler. The scheduler can interrupt the

execution of a task at any time to run another task. It can also resume

execution where it left o�.

Tasks can run arbitrary programs. The application programmer should be

able to run any code as a task.

Scheduler can run each tasks WCET estimator. The application program-

mer can specify the OETA routine that computes a tasks execution time.

This can be run by the scheduler.

Tasks can have alternative tasks associated with them. A task can have a

set of alternative tasks that the scheduler can switch between when required.

Separation between the scheduler and application. The application program-

mer should not need to worry about task preemption/resuming, computing

WCET or switching of alternative tasks.

It should be easy to change the scheduling scheme. Since part of the pur-

pose of the scheduler simulator is to make it possible to experiment with
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di�erent ways of scheduling, changing the scheduling scheme should be pos-

sible without a�ecting other parts of the simulator.

6.2 Implementation details

The scheduling simulator will be implemented as a normal program running on

a standard Linux computer. In a preliminary project, the author made a similar

testing platform by rewriting parts if the FreeRTOS kernel, to allow for OETA

code to be run. This was run on an Atmel micro controller development kit. The

reasons for not going with this design in this thesis were:

Limitations in the code that can be run Computer vision applications are not

able to run on in this system because of hardware and the �le management

of FreeRTOS.

Added complexity of FreeRTOS Since it is a version of FreeRTOS, changing

the scheduling policy of the system is not trivial.

Because of the authors familiarity with the FreeRTOS kernel, the implemented

scheduler follows a similar design to that of FreeRTOS.

It was decided to implement the scheduler in C, as this is the language used

for most schedulers and operating systems. It was believed that the system would

be easier to implement the simulator as a real scheduler in a real system later.

In retrospect, it would be better to use a more feature-rich language like C++,

that allows for functionality like exception handling and polymorphism, as imple-

menting the system to run as a real scheduler would require a lot of rewriting

anyway.

The tasks are implemented as processes that are forked from the scheduler

process when they are started. This was chosen over the use of pthread because

processes can be suspended and resumed by sending signals (SIGSUSP and SIG-

CONT). There is, to the authors knowledge, no way to halt execution and be able

to resume exactly where it left o� by using pthreads. Using processes instead of

threads requires special attention to be given to any data that needs to be shared

between the task and the scheduler. This is handled by allocating shared memory

in the initiation function for the task.
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6.3 Design

Figure 15: Class diagram

Figure 15 shows a class diagram with the components of the scheduling simu-

lator. The Scheduler keeps a list of Task objects. Each task object has a list of

task variants that contain a task routine and its estimation function. The shared

object contains data that is put into shared memory. This is necessary because

the tasks are created by spawning new processes, and this information needs to be

accessible by both the scheduler process and task process.

Note that there is a problem with the current design as a void pointer in shared

memory will not reference the same data in both processes. Even if the memory

is allocated before the fork, the processes will not access and manipulate the same



6.4 Task programming interface 41

Figure 16: State diagram for a task

data. One solution here would be to allocate enough space for the kind of data

the preprocessing estimation produces in the Shared Data . In the example of the

Hough line transform, the preprocessing produces both the binary image from the

Canny edge detector and the number of edge pixels. The scheduler class shows

the interface between the scheduler and the application. This is explained further

in section 6.4.

Figure 16 shows the state diagram for a task. This behavior is controlled by

the scheduler.

6.4 Task programming interface

The relevant functions to an application programmer are:

• task_init()
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• task_variant_init()

• task_add_variant()

• sched_init()

• sched_register_task()

• sched_start()

The seemingly redundant functions task_init() and sched_regster_task()

are necessary to keep the scheduler separated from the task implementation. This

is done to make it possible to modify the scheduler independently of the task

implementation.

6.5 What has been implemented

At the time of this writing the basic task functionality has been implemented. This

include starting, suspending and resuming a task, as well as changing between

task variants. There is an issue with the communication between the estimator

preprocessing and the estimation function itself.

A scheduler like the one described in section 4 has been partially written.

In addition to this a simple linked list implementation has been made. This

is used by the tasks to store the task variants and by the scheduler to store the

tasks.

The code is given in the digital attachment described in Appendix E. Along

with the code, there are some simple module tests that demonstrate the function-

ality of these modules.
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7 Conclusion and discussion

One of the most challenging parts of this work has, somewhat surprisingly, been to

�nd a good application that illustrates the bene�t of online execution time analysis.

When discussing the subject generally it seems intuitively apparent that as real

time systems grows in complexity, tasks become increasingly dynamic, and this

development would call for the use of a system like the online WCET analysis.

However, it proved di�cult to �nd an application where the execution time is

dynamic from one task invocation to the next and was also used in systems where

time constraints are of high priority. Finally, computer vision was found to be a

very suitable example.

The di�culty of �nding suitable applications for online WCET analysis could

be seen as an indication that the concept itself is not as universally applicable as

initially believed. Another explanation is that �nding general examples is a di�cult

angle to look at the problem from. A better, and possibly more productive, way

might be to look at a speci�c system such as a UAV and analyze the tasks it

consists of. When one has the source code it might be easier to make a good

estimation algorithm for that particular task. This is the way it will be done by

the programmer if this system is used in a real application.

It might also be possible that cybernetics based real time systems (control

systems etc.) are not an ideal area to use as an example for this kind of system.

These systems are usually required to perform equally well all the time, and not

as good as the rest of the system allows. With this type of application one will in

many situations simply buy a more powerful processor to make sure that it can

handle all variations in task execution time, rather than introduce a system with

online WCET analysis. Other areas, like multimedia may have a larger number of

relevant applications. On the other hand, the trend of moving tasks of di�erent

levels of criticality onto the same hardware, can make it necessary to consider these

areas coexisting in the same system.

One issue of using the OETA system is the added complexity it introduces.

In addition to making the application code, the programmer must also make the

estimator code for each task. More code in a project increases the risk of errors

as well as the need for testing. The development process will be a lot more time
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consuming as the online estimation code must be designed, written and tested.

In addition, this process must be repeated for every change to the tasks actual

code. It has been brie�y mentioned that the static formal veri�cation of a OETA

systems might be a challenge as well.

Simulations on the Hough line transform showed that the execution time of

such an algorithm followed a relatively linear relation to the complexity of the

image, measured in the number of edge pixels. This result proved that the online

WCET analysis can be used in a practical setting. One possible source of worry

that has been brought up with online WCET analysis is the e�ect of features

like caching and branch predictors that improve the average execution time of

programs, but makes it less deterministic. Figure 3 shows the execution times

of the Hough transform performed on several pictures on an Intel i5 processor

running Linux. The linearity of the plot shows that even with cache and other

optimizing technologies online WCET analysis can give useful results.

Designing a run-time system that could utilize the online WCET analysis was

less di�cult. Several properties of real time systems can be improved with online

WCET analysis, such as the number of tasks that can be run or the utilization of

mixed criticality systems [5].

The simulations that have been run indicate that the use of OETA for schedul-

ing performs better than traditional deadline monotonic scheduling. Even though

the simulations are greatly simpli�ed compared to any real implementation, some

observations can be made. The most important is that the overhead introduced by

estimating the WCET does not necessarily need to be as small as initially believed.

When discussing the concept with my supervisor we agreed that a estimation time

of 1-2% of the tasks execution time should be the standard. The simulations in-

dicate that an estimation time of up to 10% of the task execution time is not

necessarily problematic.

A paper has been written and submitted to the 2014 WCET Workshop hosted

by TACLe. It is given in Appendix C. The paper was rejected, mainly because

it was poorly written and failed to give a good presentation of the concept (see

the reviews in Appendix D). Some time later, however, the author was invited to

present this work at a meeting held by the COST Action TACLe. This interest

in online WCET analysis from an international community of researchers suggests
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that the concept has merits.

The work done in this project indicates that the idea of online WCET analysis

is a concept worth further study. Both simulations and response from interna-

tional research communities has shown that there are bene�ts to incorporating

such functionality in a real time system.

Finally some suggestions for future work: When the simulation framework is

�nished it should facilitate further and more precise experimentation with the

pros and cons of OETA scheduling. Especially the added time overhead should

be compared to the potential bene�ts. A good experiment would be to take a full

scale real time system and analyze all the di�erent tasks, to see how many are

suited for online WCET estimation.
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Appendices

A WCET Scheduling simulation code

This is the python-code used to perform the simulation described in Section 5.

1

2 import random

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from matplotlib.ticker import FuncFormatter

6

7 def percent_format(x, pos=0):

8 return '%1.2f%%'%(100*x)

9

10 n_tasks = 5

11

12

13 dm_completed_tasks = 0

14

15 var_a_completed_tasks = 0

16 var_b_completed_tasks = 0

17 var_c_completed_tasks = 0

18

19 total_time = 0

20 dm_time = 0

21 oeta_time = 0

22

23

24 for i in range (10000):

25

26 # Generate task set

27 deadlines = []

28 exec_times = []

29 oeta_overhead = []

30 for task in range(n_tasks):

31 deadlines.append(random.uniform (5 ,50))

32 exec_times.append(random.uniform (1 ,10))

33 oeta_overhead.append (0.1)
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34 deadlines.sort()

35

36 for j in range (100):

37

38 # Set execution time for current iteration

39 iteration_exec_time = exec_times [:]

40 for task in range(n_tasks):

41 random_number = random.random ()

42 if random_number >= 0.99:

43 iteration_exec_time[task] *= 3

44 elif random_number >= 0.9:

45 iteration_exec_time[task] *= 2

46

47 # Run regular deadline monotonic

48 execution_time_sum = 0

49 for task in range(n_tasks):

50 total_time += iteration_exec_time[task]

51 execution_time_sum += iteration_exec_time[task]

52 if execution_time_sum < deadlines[task]:

53 dm_completed_tasks += 1

54 dm_time += iteration_exec_time[task]

55

56

57 # Run OETA scheduler

58 execution_time_sum = 0

59 for task in range(n_tasks):

60 execution_time_sum += oeta_overhead[task]

61 for task in range(n_tasks):

62 execution_time_sum += iteration_exec_time[task]

63 if execution_time_sum < deadlines[task]:

64 var_a_completed_tasks += 1

65 oeta_time += iteration_exec_time[task]

66 else:

67 execution_time_sum -= (iteration_exec_time[task

]/2)

68 if execution_time_sum < deadlines[task]:

69 var_b_completed_tasks += 1

70 oeta_time += iteration_exec_time[task ]/2

71 else:
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72 execution_time_sum -= (iteration_exec_time[

task ]/4)

73 if execution_time_sum < deadlines[task]:

74 var_c_completed_tasks += 1

75 oeta_time += iteration_exec_time[task

]/4

76

77

78

79 print "Deadline Monotonic: \t", dm_completed_tasks

80 print "Var A completed: \t", var_a_completed_tasks

81 print "Var B completed: \t", var_b_completed_tasks

82 print "Var C completed: \t", var_c_completed_tasks

83

84 width = 0.35

85

86 plt.figure (1)

87 p1 = plt.bar(0.3, dm_completed_tasks /5000000.0 , width , color='

red')

88 p2 = plt.bar (0.95, var_a_completed_tasks /5000000.0 , width ,

color='red')

89 p3 = plt.bar (0.95, var_b_completed_tasks /5000000.0 , width ,

color='yellow ', bottom =( var_a_completed_tasks /5000000.0))

90 p4 = plt.bar (0.95, var_c_completed_tasks /5000000.0 , width ,

color='green ', bottom =(( var_b_completed_tasks+

var_a_completed_tasks)/5000000.0))

91

92 plt.legend (( p2[0], p3[0], p4[0]), ( 'Variant A', 'Variant B',

'Variant C', ), loc =3)

93

94 plt.xticks ([0.3+0.35/2 , 2*0.3+0.35*1.5] , ('Regular Deadline

Monotonic ', 'OETA Scheduling '))

95 plt.xlim (0 ,1.6)

96 plt.ylim (0,1)

97

98 plt.gca().yaxis.set_major_formatter(FuncFormatter(

percent_format))

99 plt.figure (2)

100
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101 plt.gca().yaxis.set_major_formatter(FuncFormatter(

percent_format))

102

103 p1 = plt.bar(0.3, dm_time/total_time , width , color='red')

104 p2 = plt.bar (0.95, oeta_time/total_time , width , color='blue')

105

106 plt.xticks ([0.3+0.35/2 , 2*0.3+0.35*1.5] , ('Regular Deadline

Monotonic ', 'OETA Scheduling '))

107 plt.xlim (0 ,1.6)

108 plt.ylim (0,1)

109

110 plt.gca().yaxis.set_major_formatter(FuncFormatter(

percent_format))

111 plt.show()
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B Experiment results

Standard variables: Percentage of tasks �nished Deadline Monotonic: 0.8303756

Var A completed: 0.8772344 Var B completed: 0.0933094 Var C completed:

0.0213072

Time spent executing tasks that did not miss deadline Deadline Monotonic:

0.760636816703 OETA Scheduling: 0.88606699438

Overhead set to 1: Percentage of tasks �nished Deadline Monotonic: 0.832656

Var A completed: 0.7752408 Var B completed: 0.1184746 Var C completed:

0.0557684

Time spent executing tasks that did not miss deadline Deadline Monotonic:

0.764510057549 OETA Scheduling: 0.794146834257

Overhead set to 1.5: Percentage of tasks �nished Deadline Monotonic: 0.8308696

Var A completed: 0.7087512 Var B completed: 0.1197086 Var C completed:

0.056385

Time spent executing tasks that did not miss deadline Deadline Monotonic:

0.76196807125 OETA Scheduling: 0.729069195343

Shorter deadline: Percentage of tasks �nished Deadline Monotonic: 0.6797032

Var A completed: 0.7821982 Var B completed: 0.1520732 Var C completed:

0.0489536

Time spent executing tasks that did not miss deadline Deadline Monotonic:

0.585088262426 OETA Scheduling: 0.805011664561
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C The paper submitted to the WCET Workshop

Below is the paper that was written and submitted to the 2014 WCET Workshop

in Madrid, Spain.
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Abstract
It is well known that traditional offline WCET estimates are inherently pessimistic, leading to

non-optimal design. Since most tasks have a varying execution time, planning for all tasks to use
their offline computed WCET leads to the CPU being idle a large portion of the time. As not all
tasks are hard real time tasks, different strategies has been used to make sure critical tasks meet
their deadline, and non-critical tasks are executed on a best-effort basis. Such strategies include
period transformation, requiring the application designer to split the code into several tasks or
in other ways contort the task code. More recent work in mixed criticality scheduling[8, 1], lets
the system designer assign criticality levels to tasks and lets the scheduler allow less critical tasks
to be run as long as they do not cause a more critical task to miss a deadline.

We propose a system that uses information available online to get a better WCET estimate
by running an estimator routine at each task release. This information allows the scheduler to
decide if a task can be run without causing a more critical task to miss its deadline. If there is not
sufficient time to do so, an alternative task may be run instead that performs the same service
with lower execution time, but also with diminished quality. Resorting to alternative tasks has
previously been a choice made by the application without any knowledge about the state of the
system in general. Since the decision in our system is made by a scheduler with a more precise
online WCET estimate for all running tasks, our system can make better decisions, as well as
make the application programmers job easier. Additionally it is a bandwidth-preserving scheme,
as the decision about running an alternative task can be done by the scheduler before the task
starts executing, instead of having the task abort halfway through execution and thereby wasting
CPU time.

A simulation has been conducted on a hypothetical task set. It showed that more tasks were
able to meet their deadline in a system using online execution time analysis and alternative tasks.

Keywords and phrases Online WCET analysis, alternative tasks, mixed criticality

1 Introduction

In most real time systems not all tasks are equally important. Some tasks deal with preventing
catastrophic failure or death and are very critical. Other tasks, such as data logging, might
be less critical. They should be executed, but not at the expense of the high criticality tasks.
This has traditionally been ensured in different ways. One way is to give tasks with high
criticality a high priority, thereby ensuring that less critical tasks will be preempted in order
to run the more critical ones. This can be done either by explicitly giving the task a high
priority, or implicitly through for example period transformation. This method divides a
highly critical task is into several tasks with shorter period in a system with a rate monotonic
priority assignment scheme, thereby giving it a high priority.

These methods have some disadvantages. Firstly, a tasks temporal properties and
importance are being combined into one attribute. Secondly, they might force the application
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programmer to write the code in a sub-optimal way to ensure that the priorities correspond
to the criticalities of the tasks.

Another method is to organize the system as a mixed criticality system like the one
suggested in [8]. In such a system, each task is given a criticality level and the underlying
runtime system aborts any task if letting it run would mean a task of higher criticality would
miss its deadline. An improved version of this called Adaptive Mixed Criticality (AMC) was
introduced in [1]. This allows for a better utilization of the system as, some (low criticality)
tasks missing deadlines can be accepted. It also makes the formal verification of a system
easier, as not all tasks must be checked.

This paper will explore the idea of using online information available at run time to get
a more accurate estimate of the execution time of a single instance of a task. This online
WCET will then be used to improve the utilization of systems with tasks of mixed criticality,
by running one of several alternative tasks.

The rest of this paper is organized as follows:
Chapter 2 presents previous work on online WCET analysis and mixed criticality systems.

In Chapter 3 the new scheduling scheme is introduced. Chapter 4 describes a simulation
demonstrating the benefits of our scheme, and in Chapter 5 ideas for future work are presented.
Chapter 6 concludes this paper.

2 Previous work

2.1 Online execution time analysis
One has traditionally used very pessimistic estimates for execution times, WCET, when
designing real time systems and checking if they will be able to handle all tasks without
missing deadlines. However, the assumption that all tasks will always execute for their
WCET often results in severe under-utilization of the systems resources, since the execution
time of most tasks have a certain dynamicity. They can, for example, spend merely a small
percentage of their WCET most of the times they run and only in a few cases, or potentially
never, spend the entire WCET.

Instead of always using the worst case execution time, a system was suggested by Sverre
Hendseth and Giorgio Buttazo in [4] where the scheduler checks certain task parameters
(input, program state etc.) to determine a better estimate for how long the task will need to
execute in a particular release. This execution time estimate, computed online, will be called
WCET ON , and the traditional WCET determined offline will be referred to as WCET OF F .
The system utilizing the added information provided by the WCET ON will be referred to
as OETA (Online Execution Time Analysis). In this system each task will have two entry
points: the regular entry point for the actual task code and one for the OETA code. This
allows the scheduler to run the analysis and get a better estimate of actual runtime required
by the task than the WCET ON before letting the task run.

An important requirement of the estimation algorithm is that it must never give an
estimate that is too low. That is, in order to be useful, it should provide a better estimate
than the WCET OF F , but it must still be sufficiently generous in order to ensure that the
actual execution time does not exceed the WCET ON . It is, after all, still a worst case
execution time, although computed with better accuracy, due to the availability of more
information.

Furthermore, the execution time of the estimation algorithm should be reasonably modest,
so that it does not incur excessive overhead on the system.
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The idea of computing the execution time of a task at runtime has also been suggested
by Stancovic et al. [7] for use in the Spring kernel. This system allowed a tasks execution
time to be "a formula that depends on various input data and/or state information". Instead
of giving each task two entry points which allows for complex program code to compute the
execution time, it is done with a simple mathematical expression.

2.2 Mixed criticality systems

A classic real-time system consists of a set of tasks that run together on the same hardware,
and must complete execution before their respective deadlines. To assure that every task
finishes before its deadline, each task is given a priority, determined by some scheduling
policy. If a task with a higher priority than the currently running task is released (becomes
ready to run), the lower priority task will be interrupted in order for the new task to be run,
and then resumed after the high priority task is finished. These priorities does not, however,
reflect the criticality of the task. In an aircraft the low criticality task that handles the cabin
air conditioning may be given a higher priority than the task making sure that the landing
gear is lowered on time (a very highly critical task) if the scheduling algorithm finds that
this arrangement of priorities makes sure that all tasks will finish by their deadline.

This does, however, tend to become very inefficient as more tasks of varying criticality are
moved onto the same hardware. This trend has become increasingly prominent, as concerns
about space, energy efficiency and cost have grown [2]. The issue is that since important,
potentially life-preserving, functionality is a part of this system, the other less important
tasks must undergo the same rigorous tests and certification. This might lead to a severe
under-utilization of the system, since making sure that all the highly critical tasks finish by
their deadline requires all tasks to be given a pessimistic execution time estimate. In theory,
one must allocate the WCET to each task. Finding the exact WCET is, however, not trivial
[8]. The solution then, is to give each task a very generous WCET, to be "sure" that the
task will not exceed it.

One way of handling different degrees of criticality is by giving highly critical tasks a high
priority, and thereby ensuring that they will run without interference from the non-critical
tasks.

In [8], Steve Vestal proposed a scheme for scheduling mixed criticality systems. The
motivation behind this was that the different tasks of a real-time system does not necessarily
need the same level of assurance in regards to certification. When a system is to be certified,
only a certain number of the tasks are actually interesting to the certification authority.
These are the highly critical task, e.g. those that deal with preventing damage to the system,
death etc.

Several models have since been suggested, that improve the original work in [8]. One of
these, called Adaptive Mixed Criticality (AMC) has been shown [1] to surpass the others
in amount of task sets that are schedulable. In his 2013 review article on mixed criticality
systems [2], Alan Burns writes that this is still the case1. The basic idea of AMC is that if
a task executes for longer than its allotted time at a given criticality level, all tasks of the
lowest criticality are aborted.

1 He does, however, note that an extension of the AMC by Zhao et al. has improved the stack usage.
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2.3 Alternative tasks
The use of alternative tasks is a way to give a task a better chance of completing its purpose.
If the task cannot finish in time it will be aborted, and the alternative task is run instead.
This alternative task will complete the job of the task faster, but with a lower quality of
service. Such a system is described in [5].

The use of alternative tasks can be seen from two perspectives, it can be used as a fallback
mechanism that allows a task to complete its mission, even if there is not enough time to
perform the ideal task routine. Another way of looking at it is a possibility to run a routine
that one would not normally consider possible if there happens to be sufficient time available
at the moment.

3 OETA Scheduling Scheme

This work presents a new scheduling scheme. Its prominent features include:

Online WCET-analysis is run at every task release and used to give the scheduler more
precise timing information.
Tasks consist of one or more task variants. If there is not enough time to run the preferred
variant of a task, an alternative task variant can be run instead. This decision is made
by the scheduler.
Tasks have a criticality level associated with them to determine what tasks to prioritize
over others.

3.1 Online WCET-analysis
Performing the WCET analysis online can be done in several ways. Most algorithms have an
execution time that depends on their input size. One way of doing online WCET estimation
is to have a lookup-table of values already computed offline, allowing for complex WCET
algorithms to be used. Since it is run by the scheduler, it can also take into account system
information that the application does not know about, such as cache use, the state of
IO-devices etc.

An example of predicting execution time with information available online is the use of
Hough transform to detect lines in an image. Several uses for this in UAV systems have
been proposed, such as power line surveillance[6] and autonomous landing[9]. The algorithm
consists of some preprocessing to find the edge pixels (points of high contrast) in an image,
followed by looping through all edge pixels and checking if they are in a line. One would
assume that the execution time of the second step is a linear function of the number of edge
pixels. We have taken 100 pictures, run them through a standard Hough transform and
timed each step.

Figure 1 shows the execution time of the Hough transform given the number of edge
pixels in the image. The Hough transform was run 100 times on each image. We can see that
the execution time behaves as expected, it is approximately proportional to the number of
edge pixels in the image plus some overhead in the preprocessing. The variance in execution
time for each image is most likely caused by interference from other tasks running on the
system.

Figure 2 shows the portion of execution time used for the different parts of the Hough
transform. We can see that the preprocessing takes a constant amount of time, and that
it is the Hough transform that behaves dynamically. Also note that the OETA portion
(counting the edge pixels) is very small compared to the rest of the work, and that the rest
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Figure 1 Execution time of line detection through Hough transform relative to the images number
of edge pixels (contrast)

Figure 2 Average time of the different steps of the Hough transform. The images are ordered by
number of edge pixels.
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of the preprocessing (loading, blurring and running the canny edge detector) is not an added
overhead of the OETA, and must be performed regardless.

These tests indicate that counting the number of edge pixels and using this number in a
simple linear function is a good way to estimate the execution time of the Hough transform.
We believe that level of contrast and other similar metrics can prove to be used to estimate
the execution time of several other computer vision algorithms.

3.2 Assumptions
The OETA algorithm exists There exists some algorithm for determining a WCET ON for

every task.
W CET ON is pessimistic This was also stated in the description of the OETA in section

2.1. The WCET ON must be such that it always is an upper bound for the execution
time of the task.

3.3 Model
A task has the following information associated with it:

A criticality: L

A priority: P

A deadline: D

A period: T

A set of task variants
An estimator preprocessing routine

A task variant has the following information associated with it:

An entry point for the actual task
An entry point for the OETA code

3.4 Behavior
Two suggested behaviors are described below. It is important to note, however, that the
principle of using online WCET analysis to help the scheduler make decisions as described
above is not restricted to the following schemes. These represent two very different methods
of scheduling tasks given the extra knowledge about WCET.

3.4.1 A greedy scheduling scheme
When a task is released, its estimator preprocessing routine is run. This routine acquires and
sets up all the necessary data for computing the WCET of a variant. The OETA algorithm
for that tasks first task variant is run, and the result is saved. A test is performed to check
whether the addition of the new tasks will result in a deadline miss in the system. If that is
not the case, all tasks are allowed to run as normal. If the test finds that some task will miss
its deadline, the scheduler aborts the lowest criticality task, and checks the WCETON of
that tasks next task variant. If no task will miss a deadline with that task variant, the task
variant is used. If not, the next task variant is checked until either the system is schedulable,
or the task has no more task variants. If it has no more task variants, the task is aborted and
the scheduler starts degrading the service of the second least critical task until the system is
schedulable. This is illustrated in Figure 3.
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Figure 3 Deciding on a task variant. The released task is in this case the least critical task
currently running. The process starts with the scheduler running the estimator preprocessing routine
(1), then the WCET estimator for task variant A is run and its result returned to the scheduler (2).
The scheduler deems it impossible to run task variant A, and calls the WCET estimator for task
variant B (3). As the system is schedulable with the estimate for variant B, the scheduler starts
running its actual code.

This scheme performs the scheduling relatively fast. It is at all times trivial for the
scheduler to find the task to degrade/abort, since it always chooses the least critical. The
problem with this scheme is first and foremost that it is not bandwidth-preserving if the
released task is not currently the least critical task in the system. If a highly critical task
enters the system, thus making the task set unable to guarantee all deadlines, a task of lower
criticality will be aborted/degraded, causing it to have wasted all the CPU bandwidth spent
by the task so far.

Another problem with having the scheduler aborting tasks is freeing the resources locked
by that task. This requires the run-time system to keep track of every tasks locked recourses
and release them when a task is aborted.

One possible extension of this scheme is giving each task variant a criticality instead of
the tasks themselves. This will make the system more flexible in that it would the designer to
prioritize the most bare-bones variant of a low criticality task over the most time-consuming
variant of a more critical task. For example, we might say that sending a small "I am
alive"-message is more important than running a complex MPC-loop with a large horizon to
control a vehicles flight, even though in normal circumstances keeping the UAV in the air is
more critical than sending a detailed status report to the controller.

3.4.2 A more complex scheduling scheme
One can envision a system where the goal is to not abort a task after it has started, or
at least do it as rarely as possible. Instead the system should be analyzed well enough in
advance that the scheduler can, at the release of a task, choose a task variant that will not
be required to abort. One advantage of this is that one will not have wasted CPU-cycles
running code that did not produce any result. Another is that it does not introduce the
problem of releasing resources that a task has locked before it is aborted.
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Instead of using criticality-levels to determine which task to degrade/abort, it uses a
value function. This function can take into account a tasks criticality, how long it has been
executing, how much time would be saved if it was degraded etc. to determine what tasks to
degrade/abort. It will be necessary to take into account information about the other periodic
tasks that are not running, but will be released during the tasks execution time, since these
are the main reason that tasks needs to be aborted in the scheme described in Section 3.4.1.
The problem of finding a set of tasks to degrade that will maximize the value function is
clearly NP-hard. The use of heuristics is one possible way of solving this.

This system would in effect be an admission based scheduler with dynamic values as
described in [3].

3.5 Setting priorities
Priorities are set using the same strategy as for the AMC system[1]. It uses a modified
variant of Audsley’s priority assignment algorithm. A task is identified which may be given
as the lowest priority. It is then taken out of the set of tasks and the task of the second
lowest priority is identified in the same manner. This continues until all the tasks have a
priority assigned to it.

3.6 Testing for deadline misses
Testing for deadline misses is done with a simplified response time analysis. The general
idea is that if the sum of WCET ON for all tasks with priority equal to or higher than a
given priority is less than the time to the earliest deadline of any task of that priority, no
tasks with that priority will miss a deadline. This test is then carried out for every priority
level. The number of steps for this algorithm is the same as the number of tasks currently
ready to run. This will run in O(n) time, where n is the total number of tasks in the system.
The WCET analysis is not run for every task each time, only for the task that was released.
The other tasks WCET ON are saved by the scheduler from their release time. This can be
written as

∑

{i|pi≥p∗}
WCET ON

i < min
{j|pj=p∗}

Dj , ∀p∗ ∈ P (1)

Where P is the set of priorities, and p∗ is the priority level we are currently checking.
This is a simplified version of the response time analysis. The simplification is that it

does not take into account periodic tasks that will be released again (for example task 1
could be released again while task 2 is executing). This is because we treat every task as a
sporadic task and run the check for deadline misses at every task release.

This test is performed only on the tasks that are currently ready to run, not the entire task
set of the system. In a system without time slicing, this test is sufficient, but not necessary.
Further optimizations are likely possible.

3.7 Schedulability Proof
Since the system does not require every task to finish by its deadline, making a formal proof
to show that a system is schedulable is not trivial. One way to do it would be to decide on a
set of tasks (or task variants) that are required to finish by their deadline for the correct
function of the system (hard real time tasks), and then perform a response time analysis
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for that set of tasks. These tasks should of course be given the highest criticality values to
ensure that they are the ones remaining if multiple tasks must be aborted. For the response
time analysis, offline WCET estimates would have to be used.

4 Simulation

A simulation has been run in order to assess the benefit of our system. A task set consisting
of five tasks has been given random execution times and deadlines. Variations in execution
time was simulated by randomly doubling or tripling the execution time of any task in each
simulated run. The task set was run by a simulated standard deadline monotonic scheduler
and a simulation of our system that added a constant overhead to represent the online WCET
analysis, and also allowed a task to spend only half or 1/4 its execution time if needed to
represent an alternative task being run. This was done for 10000 task sets. The results of
the simulation are shown in Figure 4. As the values of execution times and deadlines are
somewhat arbitrary, the qualitative observations are more interesting than the quantitative.

(a) Number of tasks meeting their deadline (b) Amount of time spent executing tasks that met
their deadline

Figure 4 Simulation results

Figure 4a shows how many tasks were able to finish by their deadline. We can observe
two things from it. Firstly, the fact that more tasks were able to finish by their deadline
using OETA Scheduling. This is to be expected, since a task can be swapped out with a
shorter variant if there is not enough time to run it. Secondly, we can see that with OETA
Scheduling more tasks of Variant A were able to complete before their deadline. Since it
completes some tasks faster when needed, there is more time available in the system.

Figure 4b shows the amount of time that was not wasted by executing tasks that did not
meet their deadline. Since it can switch to shorter tasks, we can see that OETA scheduling
is outperforming the regular deadline monotonic scheme.

A more complex implementation allowing actual task code to be run is being developed.
This will, when finished, allow for more extensive tests to be conducted.

5 Future work

A deeper analysis of a schedulability proof and priority assignment should be conducted.
This is important in order to make a scheme for static verification of systems. Schemes for
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choosing which tasks to degrade and how to detect a possible deadline miss should also be
developed and analyzed further. If the more flexible scheme described in Section 3.4.2 is to
be taken further, analysis of different heuristics to determine the task variant to run for a
released task should be conducted.

A better practical runtime environment should also be produced to facilitate testing and
experimentation of different scheduling schemes utilizing OETA. Tests on actual overhead
and practical benefits of online WCET can then be carried out. It will also make it easier
to test online estimation algorithms for real applications. This implementation has been
started.

6 Conclusion

With the added information about system state, application state and program input, online
WCET analysis can be used to make a more precise estimate for the execution time of a
task than traditional offline methods. As real time systems grow in complexity, tasks exhibit
a greater degree of dynamicity. This can for example be seen in computer vision applications
that are relevant for UAV systems. This dynamicity makes traditional offline WCET analysis
less applicable, since it will give an overly pessimistic result.

We propose a system that performs an online WCET estimation for every task release,
taking into account task input, application state and general system state where relevant.
Each task can have a set of alternative task variants that the scheduler may choose to run
instead of the main task. This choice is made primarily based on the online WCET estimate.
This was shown in a simulation to yield both a higher number of tasks finishing by their
deadline and less time wasted on tasks that missed their deadline.
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D Review of the paper

The paper was not accepted by the WCET Workshop. The review is given below.

�������� REVIEW 1 �������

PAPER: 13

TITLE: Using online WCET analysis to schedule alternative tasks in mixed

criticality systems AUTHORS: Fredrik Bakkevig Haugli, Amund Skavhaug and

Sverre Hendseth

OVERALL EVALUATION: 0 (borderline paper) REVIEWER'S CONFIDENCE:

4 (high) Reviewer's con�dence: 4 (High) Applicability to the workshop: 3 (Fair)

���� REVIEW ����

The paper presents an online scheduling scheme where a tasks WCET estimate

is re�ned at task release (based on some online information) and the available

slack time is exploited to schedule tasks with low criticality. The paper tackles

an interesting hot-topic and is well written and easy to read. The results of the

evaluation are promising.

Major criticisms:

- The presentation of the used WCET analysis is missing and the paper con-

centrates on the scheduling part. The assumption that a WCET analysis can

be done online is unrealistic. A feasible approach would be to use an o�ine pre-

computation as for instance in parametric timing analyses. This was also indicated

in Section 2, but the relevant citation is missing (parametric timing analysis + dy-

namic scheduling has been explored in for instance in [X]) and the authors do not

state if they assume such an approach or not. - The description of the evaluation

is not complete and the results are thus not re-producible. I am missing already

very basic information such as the range of the periods or the overall task utiliza-

tion. How many tasks are considered to have a high criticality, how many a low

criticality? The most important omission, however, is the runtime overhead of the

presented algorithm: both the scheduler and the online WCET analysis require

execution time and thus reduce the available processor time to execute other tasks.

An unfortunate selection of the tasks' parameters may even result in a worse per-
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formance of the proposed scheduling theme compared to the basic DM scheduling.

The authors state that they assume a constant overhead to represent the online

WCET analysis, but do not specify it. Technically, zero is also constant.

These drawbacks strongly reduce the quality of what otherwise would have

been a valuable paper.

Minor issues:

- page 1, second to last paragraph: "This method divides a highly critical task

is [sic!] into ..." - section 2.2: please state explicitly that you assume a preemptive

scheduling policy as most safety-critical applications assume non-preempted execu-

tion. - section 2.2.: "These priorities does not ..." - section 3.4.2: 'A more complex

scheduling scheme' is a rather unconventional name for a scheduling scheme. -

section 3.4.2: I am not convinced that the �nding a set of degradable tasks to

maximize a value function is NP-complete. Do you have any proof or at least

some indication to justify this claim?

[X] ParaScale: Exploiting Parametric Timing Analysis for Real-Time Sched-

ulers and Dynamic Voltage Scaling. Sibin Mohan, Frank Mueller, William Hawkins,

Michael Root, Christopher A. Healy, and David B. Whalley. RTSS, page 233-242.

IEEE Computer Society, (2005)
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PAPER: 13

TITLE: Using online WCET analysis to schedule alternative tasks in mixed

criticality systems AUTHORS: Fredrik Bakkevig Haugli, Amund Skavhaug and

Sverre Hendseth

OVERALL EVALUATION: -1 (weak reject) REVIEWER'S CONFIDENCE:

4 (high) Reviewer's con�dence: 4 (High) Applicability to the workshop: 3 (Fair)

���� REVIEW ����

The authors present a very sketchy scheme postulated on the existence of an

online utility might be used to determine, presumably based on the current exe-

cution context, the band of execution time within which a program eligible to run

might be allocated. On that online information (which the authors call "online

WCET") the online scheduler might accept the job or else reject it in its present

form and allow instead a less time-demanding variant of it. The submission in-

cludes a very simplistic simulation experiment that shows that more jobs might

complete some variant of their execution is the proposed scheme was used, then

it would happen if no provisions were made and tasks were free to exceed their

allocated execution-time budget.

The submission seems to inspired on reference [4], which however is too shallow

a basis to sanely build upon.

In spite of its prior use in citation [4], the term WCET in the connotation used

in this work does not seem to be appropriate, nor is the use of "online WCET

analysis" or "online execution time analysis". It would seem that the execution-

time bounds on which scheduling decisions are made (for acceptance or selection

of a feasible program variant) are all taken o�ine and then only selected at run

time based on knowledge of the current execution context.

The formulation of the assumptions presented in Section 3.2 is highly ques-

tionable: not even under the authors' own hypothesis, execution time bounds are

"analysed" online, rather, the runtime uses parameter monitoring to determine

the band of (statically-allocated) execution time of the program(s) of interest.

The scheduling scheme presented in Section 3.4.1 seems to suggest that the

whole system holds while some sort of context-aware WCET analysis is made for
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a program candidate to execute: the overhead of this scheme is untenable. The

solution presented in Section 3.4.2 is no less untenable, given the complexity of

de�ning a useful and realistic "value function" to decide whether a task can be

aborted or not.

All in all, the ideas on which the authors construct their argument are immature

and not very convincing, in solidity and in depth.

Some remarks follow on required textual �xes. - Globally applicable real time

�> real-time [when used as an adjective]; same for high/low criticality o�ine �

> static - Section 1, page 1, para 2 a tasks temporal properties �> one task's

temporal properties - Section 2.2, page 3, para 1 These priorities does not �>

These priorities do not - Section 2.3, page 4, para 1 Reference [5], as given, is void

and meaningless - Section 3, page 4, para 1 The dash has no place in "WCET-

analysis" and should be globally removed - Section 3.1, page 4, para 1 IO-devices

�> IO devices - Section 3.1, page 4, para 2 Insert a space before the citation

reference
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�������� REVIEW 3 �������

PAPER: 13

TITLE: Using online WCET analysis to schedule alternative tasks in mixed

criticality systems AUTHORS: Fredrik Bakkevig Haugli, Amund Skavhaug and

Sverre Hendseth

OVERALL EVALUATION: -2 (reject) REVIEWER'S CONFIDENCE: 4 (high)

Reviewer's con�dence: 4 (High) Applicability to the workshop: 3 (Fair)

���� REVIEW ����

Summary: The authors ague that the o�ine WCET estimation is usually too

pessimistic and is far more than the task execution time in most cases. This leads to

ine�ciency as idling resources are wasteful. The authors propose a new model that

uses online WCET estimation and makes scheduling decisions at the runtime. With

existing algorithms to calculate online WCTE estimation, the paper proposes two

di�erent scheduling schemes. The �rst one is to try degrading the quality of tasks

starting from low to high criticality level until the system is schedulable. When

a task is degraded to the lowest quality and the system is still unschedulable, the

task is aborted before degrading the next task with higher criticality. The second

scheme proposes to use a function to decide which task to be degraded without

the trial procedure as in the �rst scheme.

Strong points: The idea is potentially useful in developing an e�cient schedul-

ing model for mixed criticality systems.

Weak points: - The paper fails to provide an abstract view of the proposed

model. Also, there are not enough details of how this model should work. It

is very di�cult to follow and understand the idea of the paper. - In the �rst

scheduling scheme, when none variant of the task with lowest criticality can be

used to make the system schedulable, the task should be aborted. The scheme

then considers to degrade the task with the next higher criticality. For example,

there are 3 tasks: task A with 2 variants A1, A2; task B with 2 variants B1, B2;

and task C with 1 variant C1. Quality of A1 is lower than A2, B1 is lower than

B2. Criticality of A is lower than B, B is lower than C. The system is currently

executing A2 and B2. C is released and it can not be scheduled. A is degraded

to A1 and the combination (A1, B2, C) is still not schedulable. A is aborted, B
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is degraded to B2 and combination (B2, C) is then schedulable. Q1: Why after

aborting A, why does the scheduler degrade B immediately? Should it try �rst if

the system is schedulable without degrading B, i.e. (B1, C)? Q2: If B is degraded

to B1 and the system is schedulable, will the scheduler consider to restart A, i.e.

(A1, B1, C)? Suggestion: The scheduler should consider all combinations of task

variants before aborting any task. The system now examines all combinations in

the following order: (A1, B2, C), (A1, B1, C), (B2, C), (B1, C), (C). The scheduler

chooses the �rst combination that is schedulable.

- The second scheduling scheme is described very vaguely. There is no detail

about the propose function.

- Organisation problems: + The introduction section fails to present the context

and motivation of the paper. + The previous work section is poorly presented. For

each related work, the authors list some disconnected details but do not provide

an overview or concise understanding of the work.

- Unclear points: + the model supports sporadic tasks (section 3.6) but in the

second scheduling scheme requires information about periodic tasks (section 3.4.2)

+ Task information: what is priority? how is it di�erent from criticality? what is

period T? + In section 3.5: the model uses the strategy in the AMC system to set

priority for tasks. The paper needs to provide an overview how the AMC system

work, not just a reference.

- Presentation problems: + Figure 2 and Figure 4: the colours are not dis-

tinguishable in gray-scale printing + Is it necessary to quote the whole phrase

in reference [7] (last paragraph in section 2.1)? + Why does "sure" need to be

quoted? (last sentence in the second paragraph of section 2.2)

- There are a lot of grammar problems. Here are some examples: + WCET

estimate �> WCET estimation (note that "estimate" is a verb, its noun is "es-

timation") + "a tasks temporal properties and importance" �> "a task's ..." +

"This system allowed a tasks execution time to be ... " �> "This system allows a

task's execution time ..."
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E Digital attachment

This thesis has a digital attachment in the form of a zip-�le. It contains the source

code for the scheduling simulator. The code is organized in a git repository in the

same folder. To compile the module tests, use the included make�le.
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