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Abstract—In the last three decades a number of methods have
been devised to find upper-bounds for the execution time of crit-
ical tasks in time-critical systems. Most of such methods aim to
compute Worst-Case Execution Time (WCET) estimates, which
can be used as trustworthy upper-bounds for the execution time
that the analysed programs will ever take during operation. The
range of analysis approaches used include static, measurement-
based and probabilistic methods, as well as hybrid combinations
of them. Each of those approaches delivers its results on the
assumption that certain hypotheses hold on the timing behaviour
of the system as well that the user is able to provide the needed
input information.

Often enough the trustworthiness of those methods is only
adjudged on the basis of the soundness of the method itself.
However, trustworthiness rests a great deal also on the viability
of the assumptions that the method makes on the system
and on the user’s ability, and on the extent to which those
assumptions hold in practice. This paper discusses the hypotheses
on which the major state-of-the-art timing analyses methods
rely, identifying pitfalls and challenges that cause uncertainty
and reduce confidence on the computed WCET estimates. While
identifying weaknesses, this paper does not wish to discredit any
method but rather to increase awareness on their limitations and
enable an informed selection of the technique that best fits the
user needs.

I. INTRODUCTION

Determining the Worst-Case Execution Time (WCET) of
software programs running in time-critical systems (with
criticality related to safety, availability, security, mission or
business needs) is a known challenge. A host of methods have
been devised to date to that end, each asserting trustworthiness
on the basis of certain assumptions on the timing behaviour
of the processor hardware (e.g. known placement policies
in cache), the software programs (e.g. known flow facts),
and their run-time environment. However, for each distinct
application domain and for the particular system of interest,
the preservation and observance of those assumptions may be
overly difficult to attain, if at all possible. Industrial users are
therefore confronted with the daunting challenge of arriving at
the computation of WCET estimates with the domain-specific
degree of trustworthiness and within possibly strict cost and
effort constraints.

In each domain, a certain degree of rigour and depth
for analysis is imposed by safety-related standards such as
ISO26262 (automotive) [18], DO-178B/C (avionics software
guidance) [41], IEC61508 (generic electronic systems) [17],
EN50128 (Railway) [7], etc.; however, in many cases industry
adopts additional safety measures beyond those in the stan-
dards so as to have additional confidence on the safety of the
systems delivered. How to quantify such confidence is a hard
– if at all doable – step. Interestingly, WCET analysis is not
directly related to safety: how a timing failure (i.e. overrunning

a WCET) affects safety is determined by complex reasoning
at system level. WCET estimates have to be trustworthy for
the conclusions of that reasoning to be relied upon as well
for sustaining the cost of the relevant mitigation measures.
Industry-viable timing validation of safety-related systems is,
therefore, a complex process with a number of constraints,
all of which need to be balanced when performing WCET
analysis and further to help claim that the timing of the overall
system meets the system safety requirements.

In this paper we focus on the process followed to obtain
WCET estimates once the hardware and software to be anal-
ysed are available, leaving Worst-Case Response Time analysis
out of this discussion. We focus on a number of methods
to timing analysis including static, measurement-based and
hybrid techniques following a deterministic and a probabilistic
approach [48], [5], [9]. For each method we identify the
main elements and steps which determine the confidence that
can be placed on it. Some steps can be taken in full trust
whereas others are challenging. It is often the case that the
user neglects to ascertain the trustworthiness of some of those
steps, therefore lapsing into undue claims. For instance, steps
like the estimation of loop bounds and relevant execution
paths may be performed manually or, in the best case, semi-
automatically, which fails on the side of trustworthiness.
Indeed, the trustworthiness of the whole process cannot be
higher than that of those steps unless suitable countermeasures
are taken. In summary, our contributions are as follows:

1) For static timing analysis methods we carefully review
the steps in the design and development of a hardware
device (e.g. a processor) and how its associated docu-
mentation is contributed in each step. Documentation on
processor-related timing feeds the models built on top
of that information, therefore becoming a central factor
to confidence and trust.

2) We review how measurements are collected and the
inputs/conditions exercised in the measurement runs,
and then how WCET estimates are derived based on
that information. We relate those aspects to confidence,
cost and quality of the WCET estimates (hence of their
trustworthiness).

3) For hybrid analysis, we examine how and what it takes
from static and measurement-based approaches in the
intent of drawing the best from both worlds.

While some of these findings have already been identified
for some of the timing analysis techniques in the past [30],
to the best of our knowledge a comprehensive analysis of the
limitations challenging the different timing analyses has not
been provided so far. This paper aims at covering this gap, also
considering the new challenges brought forward by multicore
processor architectures.



TABLE I
WCET TECHNIQUES TAXONOMY

Deterministic Probabilistic
Static SDTA [8], [26], [32], [48] SPTA [5], [2]
Measurement-based MBDTA [48], [31] MBPTA [15], [9], [6]
Hybrid HYDTA [38], [47] HYPTA [25]

The conclusion we arrive at is that none of the surveyed
methods is fully trustworthy on all accounts. Still, we identify
scenarios where their application is intended to provide higher
confidence on the WCET estimates obtained.

The rest of the paper is organised as follows. Section II
reviews the set of timing analyses considered and the criteria
against which they are assessed. We discuss the case of the
deterministic and probabilistic flavors of static, measurement-
based and hybrid timing analysis in Sections III-VIII. A sum-
mary is provided in Section IX. Finally, Section X concludes
this paper.

II. TECHNIQUES AND ASSESSMENT CRITERIA

In this section we review the particular timing analysis
techniques we evaluate and the criteria we use.

A. WCET Techniques
In our taxonomy we split WCET analysis techniques into

two categories: deterministic and probabilistic. The former
category applies to systems whose hardware and software
resources, for a given input and initial state, provide an
output in a defined time on those systems; deterministic timing
analysis (DTA) is used to provide a single WCET estimate.
Probabilistic timing analysis (PTA) applies to resources with
either time-randomised or time-deterministic behaviour. PTA
techniques compute a distribution function called probabilistic
WCET (pWCET) whose tail can be cut at a probability of
exceedance sufficiently low to make a negligible contribution
to the overall probability of failure of the system according to
the applicable safety standard.

For each approach we have three variants: static,
measurement-based, and hybrid, for a total of 6 variants (cf.
Table I). The specific characteristics of static, measurement-
based and hybrid approaches are described later.

B. Criteria
We use the following set of criteria to assess each of the

methods for practicality and tightness:
Trustworthiness and tightness - we must have some defined

confidence that the WCET estimate produced is above and
sufficiently close to that which would be observed during the
operational life of the system under test1.

Certifiability - the approach must be compatible with cer-
tification practice in the different domains. This leads to two
sub-criteria: Tool qualification - the tools used to support the
WCET analysis must be of sufficient quality for their output to
be trusted. Safety justifications for any additional manual effort
used in the process, e.g. to exclude some execution paths.

Cost effectiveness - the cost and effort used to apply the
WCET method must be within practical bounds, e.g. for As
Low As Reasonably Practicable (ALARP).

Good implementation practices - The soundness of each
of the methods depends on whether their implementation is

1Although trustworthiness and tightness are different concepts, we consider
them together because typically timing analysis techniques trade them off, and
WCET estimates need to attain both (to some extent) simultaneously.

correct. While this is a critically important concern, it affects
all methods in a similar manner. Further, since their im-
plementations have been successfully assessed against safety
standards in the past, we omit this concern in the rest of the
paper.

Target application scalability - All methods rely on the use
of good programming practices for the applications to be anal-
ysed, since this is already needed for functional verification.
Analogously, the size of the application under analysis is not
deemed as a challenge per se since its parts can be analysed
separately if too large. Instead, we dig into the challenges
related to the collection of flow facts and test input generation,
which are concerns orders of magnitude above the application
size (e.g., number of lines of code).

III. STATIC DETERMINISTIC TIMING ANALYSIS

Within the class of deterministic approaches, static WCET
analysis techniques (SDTA) derive WCET bounds for a given
program on a target platform without resorting to program ex-
ecution, by combining the results from two distinct models: an
abstract model of the hardware and a structural representation
of the program under analysis. Each of such models typically
corresponds to a different analysis scope in SDTA methods:
• Low-level analysis: where a timing model of the target

architecture is constructed, by attaching a precise func-
tional and temporal behaviour to each hardware com-
ponent (e.g., cache hierarchy, pipelines, buses, memory
controllers, etc.).

• High-level data flow or path analysis: where a repre-
sentation of the program under analysis is used as a
structure on which the information from the low-level
timing model is combined with path information to derive
a WCET estimate.

Strong emphasis in SDTA approaches is put on the safeness
of results [48], as determined by the application of provably
sound static analysis steps. SDTA approaches consider all
possible inputs (values and states) for a program: the search
space is kept within a tractable dimension only by using safe
abstractions for both hardware (e.g., abstract hardware states)
and software (e.g., contexts of execution). Tightness of the
produced WCET estimates is also important, but it is degraded
to a subsidiary objective that cannot always be had, due to the
conservative approach inherent to the analysis steps.

Arguing on the safeness of SDTA analysis results might
seem, in the common acceptation of the term, a stronger claim
than trustworthiness, in that a safe bound is by definition
infallible. However, the safeness guaranteed by static analysis
methods is only a product of the results of their analysis steps.
Despite the precision of SDTA methods, if the assumptions or
inputs to these analysis steps are flawed then the results are
inaccurate. Unfortunately, both low- and high-level analysis
steps are somehow exposed to weaknesses that may jeopardise
the accuracy of WCET results.

In the following we highlight the weaknesses of SDTA
assumptions, thus showing that full confidence cannot be
always attained, even in case of precise SDTA techniques.

A. Accuracy of Low-level Analysis
An accurate characterisation of the timing behaviour of the

hardware platform is fundamental in the determination of the
WCET behaviour of each single instruction. Needless to say
that novel hardware architectures and increasingly advanced



Fig. 1. Steps in hardware design and their impact on documentation and TM.

hardware speed-up features complicate this low-level analysis
step. Timing models (TM) for a specific hardware can be, in
the most favourable cases, provided by the hardware vendor
itself or derived a-posteriori from the available technical
specification. In both cases, the TM may not always report the
actual timing behaviour of the hardware (or an upper-bound)
due to possible inaccuracies introduced along the typical
hardware development process as well as due to intentionally
limited disclosure.

A.1. Vendor’s TMs and technical specifications
The typical hardware design flow is briefly summarised in

Figure 1. It moves from the definition of a highly accurate TM
and its (only in part automatically generated) representation
as a Register Transfer Level (RTL) description. Then the RTL
code can be automatically translated to a gate level design and
a netlist, which already accounts for the electrical effects of
the physical implementation of the circuit such as resistances
and capacitances. Additionally, a detailed documentation is
produced and updated within each development phase. Some
inaccuracies and inconsistencies may be injected at certain
critical points in the process:
• TM definition and RTL description: some inconsistencies

may arise between the TM, the RTL and the documen-
tation. Hardware designers in charge of developing the
TM are often in charge of producing the documentation
describing the timing behaviour of the design. Based
on our first-hand experience on hardware design, we
know that those engineers, who are highly skilled in
hardware design, tend to consider documentation as a
painful process, to be done only once the design is
complete. This may lead to incomplete or inaccurate
documentation that does not reflect the actual timing
behaviour of the hardware. Moreover, as RTL must be
fully unambiguous, some design choices affecting timing
may be taken during the TM-to-RTL translation and never
transferred back to the documentation, especially when
the TM-to-RTL translation is not performed by the same
hardware designers.

• Pre-Silicon Validation: the RTL hardware description
is typically translated into a netlist, corresponding to
the actual layout of the circuit to be created. Before
actually fabricating circuits, a pre-Silicon validation step
is performed to check the actual implementation of the
circuit against the timing, power, temperature and area

constraints placed on the product. Whenever some con-
straints are not met – and it is often so – modifications are
performed directly into the RTL, gate implementation or
netlist iteratively, until every circuit constraint is satisfied.
Eventually, this may lead to some changes into the
timing behaviour of the hardware, such as pipelining
some circuits to reduce the cycle time (and increase
operating frequency) or adding some constraints to save
power (e.g., preventing the issue of some instructions in
particular cycles to allow for the sharing of a register file
or cache port). Again, this leads to an increased risk of
undocumented changes and mismatches with the TM.

• Post-Silicon Validation: once validated, the netlist is
regarded as final and it is fabricated and tested. Such
test may expose further issues and unmet constraints. At
this point, for example, conflictive layout patterns are
typically detected. Those patterns may be fully correct,
but lead to high process variations due to fabrication
limitations, which translate into frequent failures and
thus, low yield – many chips are faulty. Similarly to pre-
Silicon validation, modifications to the design may not
be captured in the documentation or in the TM.

An additional source of complexity is to be identified in
timing interactions among different hardware components,
typically produced by different vendors. Determining the tim-
ing interaction of different components (e.g., multiple CPUs,
memory devices, I/O devices, etc.) with sufficient accuracy
at system integration is a cumbersome and challenging task.
Furthermore, inaccuracies on a component documentation are
inadvertently passed on into the documentation of the final
integrated hardware platform.

A.2. Deriving a TM from the technical specifications
Besides the risk of potential mismatches between the hard-

ware and its TM, we need to consider that a TM typically
contains highly-confidential information that vendors may not
want to fully disclose, in order not to give away competitive
advantage. In this case, to meet SDTA prerequisites, a TM is
to be derived from the available documentation. Unfortunately,
such documentation is not guaranteed to be either accurate
or complete. Moreover, the construction of a new TM from
scratch is a complex and error-prone process, especially given
that documentation for many embedded processors is in the
order of some thousands of pages. For instance, some parts of
the Freescale P4080 specification have 2,000 pages [12]. Sim-
ilarly, the Infineon XMC4500 microcontroller documentation
has more than 2,500 pages [16].

A.3. Trustworthiness of TMs and technical specifications
A number of steps in the hardware design process expose

to a large number of errors and inaccuracies in the hardware
TM as well as in its technical documentation, which instils
some doubts about the trustworthiness of any analysis relying
on them. The massive presence of errata documents for
modern processors confirms that relying on the accuracy of
product specifications may be a hazard. For instance, the
FreeScale e500mc core documentation has already reached
the third revision. Details about the non-negligible changes
across revisions can be found in [13]. Similarly, processors
such as the ARM Cortex R5 – specifically devised for real-
time systems – have abundant errata in their documentation [3]
despite being relatively simple (i.e. its technical reference



manual has around 450 pages). These errata affect also timing.
For instance, one can read in revision r1p2 that stall cycles
caused by the divider and the latencies of some operations
(VDIV.F64 and VSQRT.F64) needed to be updated in the
documentation.

B. Accuracy of High-level Analysis
SDTA derives WCET bounds on a program without execut-

ing it. Among several possible program representations, the
control flow graph (CFG) is the most popular one in current
state-of-the-art approaches. CFG-based approaches allow to
translate the program structure into a set of flow constraints
according to the implicit path enumeration technique (IPET)
[27] WCET computation method.

Several static analysis techniques are applied to the struc-
tural representation of a program to derive information on the
program flow, typically referred to as flow facts [22]. Whereas
some flow facts can be statically determined or automatically
extracted, for example, by the compiler, not all program
properties are decidable, owing to the halting problem. In
these cases, the user is required to provide flow facts in the
form of manual annotations. Exemplifying properties, in this
sense, are the maximum number of iterations for a loop,
or the targets of dynamic jumps and calls. Although some
simple occurrences of these problems can be automatically
resolved by state-of-the-art static analysis methods (typically
relying on value analysis or pattern-based techniques) user
annotations are generally required to reconstruct the program
control flow. Flow facts, either automatically determined or
manually annotated, are also required to shave pessimism off
the computed WCET (e.g., by excluding infeasible paths).

In any case, high-level path analyses strongly rely on the
availability and correctness of such flow facts. In case of
manual annotations, providing accurate flow facts is an error-
prone task that requires a deep understanding of the program
behaviour. Similarly to the low-level analysis step, inaccurate
flow facts could definitely compromise the quality of the
analysis results. The way flow-fact information is collected
and handled within the development process may introduce
some inaccuracies, which in turn may affect the correctness
of the provided annotations.

B.1. Collection of flow-fact information
Making effective manual annotations requires specialised

skills and deep knowledge of the program under analysis.
This knowledge, obviously owned by the system designers
and software developers, may be unavailable when timing
analysis is performed and difficult to retrieve, either because
SDTA is not performed by the same people or because the
program includes black-box external components or libraries.
Lost flow information can be reconstructed by (a combination
of) different methods, none of which is completely flawless.
• Code inspection: flow facts can be derived by manual

inspection of the program code. Whereas this could be
reasonable for simple flow facts, it may result to be
extremely complex or even unfeasible for non-trivial pro-
grams [30]. In general, code inspection alone cannot be
considered fully reliable as its effectiveness is a function
of the skills and effort put in it.

• Empirical observations: flow facts may be also derived
from program observations, thus with actual runs of the
program. Under this approach, however, SDTA inherits

the same limitations as measurement-based methods,
which we discuss in the next sections.

B.2. Scope of flow-fact information
Flow information and the respective manual annotations are

typically defined at the source-code level where the program
logic is much more readable. However, SDTA does not operate
directly at the source level since the timing behaviour is
actually determined by the low-level object code, as produced
by the compilation process. The gap between source- and
object-level is determined by the code generation engine of
compiler back-ends which, depending on the optimisation
policy, reorganises the control flow, and introduces loops
and branches not traceable back to the source code [26].
Besides the fact that some flow information may be only
available at the object-code level, a translation mechanism is
required to map source-level annotations into the object-level
code constructs. An automatic translation may not always be
possible and the user may be required to reformulate or express
new annotations directly at the object-code level. Flow facts
also need to conform syntactically to the static analysis tool,
which may introduce further inaccuracies.

B.3 Fragility of flow-fact information
The circumstance that flow facts are effective at object-

code level makes annotations inherently fragile: they are
only valid under the exact and specific conditions they were
defined for. Both automatically produced or manually defined
annotations use addresses and offsets that are very specific to
the executable under analysis. For example, the correctness of
an annotation on the target of a dynamic call depends on the
fact that the addresses identified at analysis time stay exactly
the same in operation.

C. Certification

Static analysis techniques are advocated in the software
verification stage of industrial safety standards [37]. When
WCET analysis is recommended [37], SDTA can in principle
meet all the requirements set by the standards, particularly
for the highest integrity levels [41], [17]. The mathematical
foundations of SDTA, in fact, provide a strong basis for
building solid certification arguments.

However, besides the discussed issues in term of trust-
worthiness, SDTA cannot always yield satisfactory results in
terms of cost-efficiency and value tightness. Thus, the cost
of applying SDTA can only be afforded by the average user
for comparatively small programs running on comparatively
simple hardware [30].

D. Multicore Considerations

Timing analysis for multicore systems becomes much more
complicated in consideration of the effects of sharing hardware
resources among tasks running on different cores: complex and
detailed information on the functional and timing behaviour
of the processor hardware is required to precisely account for
the contention incurred by accessing shared resources. SDTA
approaches could then be extended to include the interference
from shared caches and buses, for example, by jointly comput-
ing a safe approximation of the incurred delay [49], [8] (i.e.
computing the WCET for all tasks in all cores simultaneously).
The assumptions of joint static WCET analysis approaches,
however, are questionable as explained in [31] due to the



complexity of task sets and timing variations (e.g., tasks in
other cores may easily change or align differently in time
depending on whether previous tasks execute faster or slower).

Although in principle a worst-case impact of contention, or
Upper Bound Delay (UBD), could be defined for each shared
hardware resource, its actual computation is hampered by the
increasingly complex multicore processors adopted in safety-
critical real-time domains, and the limited information avail-
able on their internal functioning. This is somehow confirmed,
for example, by a collaborative study between an avionics
end-user and a SDTA tool provider [32], where the maximum
memory contention on a P4080 processor is determined on the
basis of empirical UBD values, instead of analytic bounds.

SDTA has only been proven practical on top of specific
hardware designs with simple cores where time and space
partitioning are strictly applied for resource sharing [40], [21],
thus leading to low average and guaranteed performance [19].
These design choices are against the adoption of multicores
by creating almost-federated architectures inside the chip.

E. Takeaway Message
The assumptions made by SDTA are not guaranteed to hold

in all circumstances. The risk of inaccurate TM or technical
specification, and unreliable manual annotations cannot be
ignored when reasoning on the trustworthiness of SDTA.
Although SDTA relies on sound mathematical abstractions,
unattended assumptions may threaten the correctness of the
whole approach: for SDTA this might question even the
safeness of WCET bounds.

This notwithstanding, SDTA remains an industrially-viable
option for timing analysis [44], especially when the aforemen-
tioned implicit assumptions are guaranteed to hold:
• Simple hardware design: simple, consolidated (and de-

bugged) hardware designs are expected to exhibit high-
quality documentation and accurate TMs. Arguably how-
ever, such hardware may be incapable of providing high
average and guaranteed performance. This might require
the deployment of a larger number of hardware systems,
with higher costs, power consumption and payload.

• Simple software: for simple-enough program fragments,
the cost and risk incurred in the collection of flow infor-
mation is very low, where not zeroed by full automation.

Whereas those favourable conditions are still realistic, the
current industrial scenario is witnessing a substantial grow
in the number and complexity of safety-related functions to
meet the increasing expectations on higher value and increased
reliability in different domains. Unmanned vehicles in the
avionics domain or x-by-wire technology in the automotive
domain critically rely on complex software running, with
exponentially growing code size [10], [42], on top of high
performance hardware platforms. In practice, under these
challenging conditions, SDTA might not be able to deal with
the totality of time-critical functions.

IV. MEASUREMENT-BASED DETERMINISTIC TIMING
ANALYSIS

Measurement-based deterministic timing analyses (MB-
DTA) derive WCET estimates by collecting measurements
(mostly execution time measurements) on top of the actual
hardware platform and operate on those measurements. While
measurements themselves can be deemed trustworthy as they
provide real data (thus are exempt from TM or documentation

flaws), a number of issues challenge the trustworthiness of
MBDTA. Among those we identify the following ones:

1) Test conditions. Measurements need to be collected in a
platform identical to those used at deployment.

2) Test inputs. Inputs used to collect measurements must –
ideally – include the one leading to the WCET.

3) Measurement collection. Accurate measurements of the
execution time, among other metrics, are needed.

4) Operation on the measurements. Given a set of measure-
ments, how to determine the WCET estimate requires
some guidance.

In the rest of this section we analyse those issues and how
they challenge timing analysis trustworthiness.

A. Test Conditions
Reproducing during the platform-test phase the execution

conditions that will occur during deployment is a complex
task. First, very likely this cannot be done until all hardware
and software components have been developed, which may
occur too late to react if WCET estimates fail to satisfy the
required deadlines. If those measurements are collected with
an incomplete platform (e.g., while other software components
are being developed), it may be complex guaranteeing that
missing components will not alter the timing of the software
under analysis. For instance, memory placement of objects has
been deemed as a critical factor affecting execution time in the
presence of cache memories as it determines how different
addresses compete for cache space [29], [36]. Even if those
addresses can be fixed so that side-effects across tasks can
be avoided, this is not the case with stateful OS services,
whose execution time may depend on the execution history
of the whole system. Depending on how the OS is designed,
OS services may use a different set of addresses depending
on past history, thus leading to different cache patterns and
so, different execution times when running the task with and
without other software components of the system.

Test conditions also include the modifications made to the
system for collecting measurements. This practice may be
intrusive if extra instructions need to be executed or if tracing
devices alter the hardware timing in any significant way.

B. Test Inputs
Typically, tasks have an inordinately large input space so

that all potential inputs cannot be tested to derive a WCET
estimate. Therefore, a method is required to determine a set
of inputs so that their execution can be performed in an
affordable time while providing useful data for the estimation
of the WCET. Ideally, one might want to execute the task
with the input leading to the highest execution time. However,
determining such input analytically is often beyond the user
means, especially if the program under analysis is legacy
code developed by someone else. In fact, even if one can
determine the execution path leading to the highest execution
time, producing an input exercising that path can be regarded
as a very complex task.

In this scenario, users face a complex challenge. Typically,
the only inputs available are those used for functional testing,
which may not produce the highest execution time. Therefore,
users may end up using those inputs and, in the best case,
devise some stressful inputs with the hope they will deliver
execution time measurements close enough to the real WCET.
Unfortunately, the existence of hardware features devised for



Fig. 2. Determination of the WCET estimate in MBDTA.

high average performance typically leads to execution times
that may vary significantly under minor modifications in the
inputs, as cache-related effects can introduce execution time
variations in the order of one or more orders of magnitude [36].

Overall, input data used to collect measurements can pro-
duce high execution times, but it is hard to determine how
close are those to the actual WCET. In this scenario the degree
of trustworthiness attained strongly depends on the skills of
the user to understand the timing behaviour of the software
when running on the particular hardware platform.

C. Measurement Collection

MBDTA needs to collect some execution time measure-
ments. However, accurately counting the number of cycles
a program run takes is a complex problem. Hardware per-
formance monitoring counters (PMCs) can be used to that
end, as they allow counting execution time at the right gran-
ularity. However, PMCs are typically accessed through some
specialised API, whose inherent latency makes it very unlikely
to start counting cycles right when the program under analysis
starts executing and stop counting right when it completes.
Thus, intrinsic inaccuracy pollutes those measurements.

The degree of such inaccuracy as well as whether it may
lead to under-measurements or only to over-measurements will
depend on the characteristics of the API and the hardware,
and how they are used. Further, it is to be considered how
such inaccuracy may affect the trustworthiness of MBDTA.
For instance, if inaccuracy can only inflate WCET estimates,
then it may affect somehow tightness but not trustworthiness.
Therefore, it is of utmost importance to guarantee that mea-
surements are taken so that the WCET is never underestimated.

If other PMCs are used, analogous problems can be ex-
pected if counters are not shared across cores. If some degree
of sharing occurs, for instance by counting misses in a shared
cache, then it is unclear how to accurately identify the program
responsible for each particular event.

D. Operation on the Measurements

Once a set of execution time measurements has been ob-
tained, the only trustworthy claim is that the WCET is higher
or equal than the highest observed execution time (HOET).
However, the distance between the HOET and the WCET
is typically unknown as shown in Figure 2. Again, several
approaches have been considered to estimate the WCET [46],
[28]. Typically, the WCET is estimated by increasing the
HOET by a given factor (e.g., by 20%). While the scientific
justification behind such an approach is roughly null, it works
in practice in many cases where the user has non-negligible
knowledge of both hardware and software being analysed.

E. Certification

MBDTA has been successfully used in the certification of
many single-core and few dual-core safety-critical systems
where SDTA cannot be afforded. Those systems typically
include fail-safe systems2, which account for the vast majority
of systems in the automotive and railway domains among
others, and a significant fraction in avionics [14].

F. Multicore Considerations

The adoption of multicore processors – either wanted or
imposed – leads to new scenarios where tasks interact in
non-obvious ways in a number of hardware resources simul-
taneously, thus leading to huge execution time variations.
For instance, it has been shown that execution time may
experience a 5X growth in 4-core processors used in the
space domain [11] and above 4X when 4 cores are used in
a Freescale P4080 considered for an avionics domain case
study [31], which is much beyond the margin industry could
afford. Hence, the complexity to derive those margins grows
with multicores and so trustworthiness can only decrease if an
inordinate price is not to be paid to budget for the unknown.
Note that safety standards regard any approach as acceptable
if it has been used sufficiently in the past and it can be proven
that use conditions are analogous for the system being verified,
which holds for MBDTA and single-core processors but not
for multicores.

G. Takeaway Message

The trustworthiness of MBDTA depends on factors critically
contingent on the user knowledge of the hardware and soft-
ware under analysis. Inter-task software and hardware conflict
effects, which are complex enough to analyse for single-core
processors, do severely aggravate in multicores. On the other
hand, industrial practice often relies on measurements as users
may be simply unable to produce the information needed
to apply SDTA, which is regarded as more trustworthy than
MBDTA when systems and applications are sufficiently sim-
ple. Those users may therefore have to conceive increasingly
stressful tests not only to certify their products against safety-
related standards, but also to reach sufficient coverage-based
confidence to make final product release.

It is unclear how this process will scale with the advent of
multicores, especially if hardware platforms need to be used
efficiently to reduce costs and keep competitive edge.

V. HYBRID DETERMINISTIC TIMING ANALYSIS

Some hybrid approaches have arised by increasing con-
fidence of measurements with static information while still
keeping those analyses friendly for industry in an attempt
for bringing the best from SDTA and MBDTA into a hybrid
timing analysis (HYDTA). Those hybrid approaches augment
MBDTA with some static information from the control flow
of the program to provide WCET estimates for unobserved
execution paths [47], [38].

Next we review the effect of hybrid approaches on two
aspects that challenge trustworthiness of MBDTA: test inputs
and operation on the measurements.

2A system is fail-safe if there is a safe state in the environment that can be
reached in case of a system failure either by the safety function or diagnostics,
e.g., a train can be stopped.



A. Test Inputs

Hybrid approaches typically use only those test inputs pro-
vided by the user. However, as it is the case of RapiTime and
other approaches [47], [38], they may collect execution time
measurements at a finer granularity than the whole program
(e.g., at function level, at basic block level, etc.). Then, some
type of control flow analysis is performed to identify potential
execution paths that have not been observed and measurements
are operated to derive WCET estimates considering those new
paths. How to operate on those measurements is described in
the next subsection.

While considering new paths increases confidence on the
WCET estimates, it is unclear to which extent those estimates
are trustworthy:
• All paths may have not been considered for complex

programs (e.g. with indirect function calls). If so, it is
hard to determine whether the path leading to the WCET
estimate has been included in the new paths that the
hybrid approach considers.

• Path coverage is not enough. Apart from path coverage,
other input-dependent effects may alter the execution
time. While the user has some degree of control of those
effects for the particular test inputs used, there is no
guarantee on whether those effects are upper-bounded in
the new paths considered.

• Excessive path coverage. Although it is not a matter of
trustworthiness, building paths analytically may produce
some infeasible paths that may increase the WCET esti-
mate unnecessarily.

Overall, it is hard, if at all possible, to quantify the extent
to which trustworthiness grows with increased path coverage.

B. Operation on the Measurements

Hybrid approaches add some degree of intelligence in the
computation of the margin that needs to be considered over the
HOET. For instance, instead of using the HOET, one can use
the highest execution time across all those paths considered
feasible, thus gaining some confidence. Still, even if those
effects indicated in Section V-A are properly upper-bounded,
measurements from different parts (e.g., basic blocks) have
been collected in different runs and thus, their cache in-
teraction has not been truly observed. As explained before,
cache memories are particularly sensitive to small variations
in the address patterns, as they can lead to large execution
time variations. Thus, although hybrid techniques increase
trustworthiness, it is unclear to which extent.

C. Certification

Since HYDTA provides no less confidence than MBDTA,
it can be used in the certification of the same type of systems.
However, HYDTA is subject to roughly the same limitations
as MBDTA on the complexity of the underlying platform.

D. Multicore Considerations

Inter-task effects can occur in multicores, and identifying
those scenarios leading to the WCET is a hopeless task. If
this is the case, confidence on the WCET estimates grows very
little by using hybrid approaches as the impact in execution
time of inter-task effects in shared resources is much less
evident than that of intra-task effects in single-core processors.

E. Takeaway Message
Hybrid approaches increase trustworthiness w.r.t. MBDTA

while keeping industrial viability of the approach. This is so
because some degree of intelligence and analysis is added
into the computation of the WCET estimate. However, such
trustworthiness gain is hard to quantify. Furthermore, WCET
estimates obtained on multicores still are subject to the same
issues as in the case of MBDTA. Therefore, hybrid approaches
are better than MBDTA in terms of trustworthiness and so they
may be used reducing the pressure on the user to produce tests.
In fact, they may indicate which execution paths lead to the
highest execution times, thus guiding the user in the process of
producing stressful tests. However, in order to have sufficient
confidence, skilled users are needed, as for MBDTA, so that
they are able to understand how the program under analysis
interacts with hardware features.

VI. STATIC PROBABILISTIC TIMING ANALYSIS (SPTA)
SPTA [5], [2] has been devised for very simple processor

models limited to fully-associative or set-associative caches for
which a deterministic placement is used. The latter however,
resorts to keeping exactly the same cache set alignment for all
memory addresses at analysis and at deployment, much like
SDTA, thereby renouncing the competitive benefit of SPTA
against SDTA in terms of more lenient requirements.

The applicability of SPTA to more realistic processor de-
signs has not been proven yet, which impedes considering
current SPTA as a viable alternative for industrial use. Nev-
ertheless, the trustworthiness of current SPTA techniques is
challenged analogously to SDTA techniques: its trustworthi-
ness strongly depends on the accuracy of the timing model of
the hardware and the information provided by the user.

VII. MEASUREMENT-BASED PROBABILISTIC TIMING
ANALYSIS (MBPTA)

Some works have focused on applying statistical or math-
ematical techniques, such as extreme value theory (EVT) and
convolution, to the execution time observations taken from real
platforms [15], [4]. It has been shown however that the trust-
worthiness of the resulting pWCET estimates is challenged by
the same threats noted for MBDTA [6]: the test inputs provided
by the user must provide sufficient coverage for a number of
sources of execution time variation, such as the alignment of
objects in memory – which determine their location in cache –
that are hard to control accurately. Hence, although the input
data passed to EVT or convolution meet their requirements
(e.g. independence and identical distribution for EVT), the
strong dependence of those values on the particular conditions
incurred in the test cases, degrades the trustworthiness of
the probability distribution function obtained in that manner
beyond the particular conditions exercised during analysis.

Other MBPTA approaches set explicit constraints to miti-
gate the impact of the sources of execution time variation [9].
Considerable aid to that end may come from using hardware
that actively breaks dependence on those factors (for example
via time randomisation) so that the coverage needs on the user
are much lower [6]. In principle, those MBPTA approaches
only need the user to ensure sufficient path coverage, but
not memory address or value range coverage of any kind.
Those MBPTA techniques have been evaluated in complex
processor designs including pipelined cores, complex cache
hierarchies and shared resources [23], [20]. However, they rely



on hardware features that are not in production yet, although
they are being explored in domain-specific processors [35]. It
is also worth noting that software-only randomisation alterna-
tives have been shown to work for single-core processors [24].

Even if the appropriate hardware support is in place, the
trustworthiness of MBPTA is challenged by a number of
aspects that we cover next.

A. Test Inputs

As explained, MBPTA relies on the user providing path
coverage [9]. This is regarded as a simpler task than in
MBDTA as the number of sources of execution time variation
is reduced to only path coverage, as opposed to the case of
MBDTA, which needs coverage for all valid combinations
of the different sources of execution time variation [6]. For
instance, given an application with 1,000 different execution
paths and 1,000 different placements of objects in memory
(e.g. code, data, libraries, OS objects), MBPTA would require
the user (ideally) to produce test inputs for those 1,000 paths,
whereas MBDTA would require 1,000,000 test inputs for each
combination of memory placement and path.

B. Measurement Collection

Challenges on accurate measurement collection for MBPTA
are analogous to those for MBDTA. Still, if inaccuracies only
inflate WCET estimates – which we assume to be also the
case for MBDTA – and given that MBPTA only relies on
execution time measurements, this challenge should not affect
the trustworthiness of the method.

C. MBPTA Method

MBPTA has been shown to use a number of statistical tests
for its correct application [9]. Those statistical hypothesis tests
use particular threshold values (e.g. significance value) which,
although being set to typical values for use in criticality-
concerned domains, may lead to some false positive/negative
outputs. Interestingly, the event of tests not passing due to
some random effects does not lead per se to non-trustworthy
pWCET estimates. Instead, the analysis process can just be
repeated as needed.

MBPTA also relies on a convergence criterion to decide
when the data contained in the set of execution time measure-
ments is enough to obtain trustworthy and tight pWCET esti-
mates. In particular, this method stops collecting data when a
number of steps lead to similar-enough pWCET distributions.
Unfortunately, convergence may be reached too early, before
execution time measurements include enough data. This risk
is discussed in [1], [39]. In such (extreme) cases, MBPTA
could deliver optimistic pWCET estimates, thus being non-
trustworthy. Recent work [1] deeply analyses the scenarios
in which these anomalies may arise and provides methods to
detect them for some types of programs with even distribution
of accesses to most addresses, so that the convergence criterion
does not challenge trustworthiness anymore. This method
needs to be extended to other program types.

D. Certification

MBPTA is a new method not used before for certification
against safety standards. Thus, arguments for its certification
are needed so that pWCET estimates can go through the
certification process. Initial steps in this direction have been

already taken for the single core case [45] and for the mixed-
criticality multicore case [34], but further work is needed to
make a safety case valid in different domains.

E. Multicore Considerations
MBPTA relies on hardware platforms with specific char-

acteristics for the arbitration policies on access to shared
resources (i.e. buses, memory controllers) and management
of shared cache memories. Simple – yet effective – solutions
have been devised to deal with these issues. In particular, ran-
domised policies [20] or the use of the worst-case mode [33]
have been shown to be effective for arbitrating the access to
shared resources. Solutions for cache memories rely on, for
instance, cache partitioning [33] or controlling the eviction
frequency of the different cores [43]. While other methods
also enable the use of multicores, the combination of these
designs and MBPTA has been proven to attain high average
and guaranteed performance – which SDTA fails to provide
– while still providing time composability – which MBDTA
fails to provide – as needed by end users.

F. Takeaway Message
MBPTA on top of MBPTA-friendly hardware keeps the

industrial viability of MBDTA – it is a cost effective approach
– while gaining trustworthiness in most aspects where MB-
DTA lacks of it. Also tightness has been proven in industrial
avionics case studies [46]. Still some further steps need to
be taken so that appropriate hardware, software and safety
arguments can be made available before MBPTA can be used
in real products. On the other hand, once those conditions
are met – and no impediment has been found so far –, the
number of issues challenging the trustworthiness of the method
has been shown to be low and they are often attainable for
end users. Still path coverage and the convergence criterion of
MBPTA for any type of program are important challenges to
be tackled.

VIII. HYBRID PROBABILISTIC TIMING ANALYSIS

As for SPTA, hybrid PTA (HYPTA) is still in its in-
fancy and thus, no viable alternative for industry has been
deployed yet. To the best of our knowledge, Path Upper-
Bounding (PUB) [25] is the main HYPTA technique so far.
PUB increases path coverage w.r.t. MBPTA, thus releasing the
user to some significant extent from providing such coverage.
However, PUB relies on (automatic) code modifications to
derive pWCET estimates for the original program. It is unclear
how pWCET tightness is challenged by PUB and, more
importantly, how those pWCET estimates can be proven valid
for the original program for different safety standards given
that they have been obtained for a modified program.

Although current HYPTA solutions cannot be used in real
industrial problems yet, we are aware of some ongoing work
to increase path coverage of MBPTA by means of HYPTA
approaches without needing to modify the application under
analysis. Thus, one of the limitations of PUB is expected to
be removed in the near future. How to link new methods to
certification processes is still an issue to be tackled, but no
showstopper is currently known to impede this to be achieved.

IX. SUMMARY

We have surveyed a number of WCET analysis tech-
niques. Table II summarises their main traits for applicability,



TABLE II
SUMMARY OF WCET TECHNIQUES

adaptability, cost and certifiability. The conclusion we can
come to is that many of the existing techniques will become
increasingly difficult to apply in mixed-criticality and multi-
core systems, which are increasingly becoming commonplace
even in criticality-related domains. Those techniques will also
progressively become less cost-effective due to the entailed
level of complexity and extent of testing required. We believe
there is not a single timing analysis technique that dominates
all others in all respects, that is providing higher confidence,
requiring less user-provided data – hence increasing trustwor-
thiness – and scaling to complex architectures. In general each
technique is better equipped to analyse systems with specific
characteristics, as detailed in Table II.

SDTA can hardly keep pace with modern hardware designs
and it is therefore bound to be used with comparatively simple
processor architectures. This trait makes it fit for the most
stringent safety-related functions, e.g. DAL-A in commercial
avionics, running on single-core processor architectures or
federated systems (i.e. more stringently isolated than with
classic Integrated Modular Avionics, IMA). However, it is
worth nothing that, for instance, in current avionics designs,
DAL-B to DAL-E functions can easily account for more than
70% of all on-board functions [14]. Thus, we recommend
using SDTA only for fail-operational systems in the highest
safety integrity levels, which can be run on isolated and simple
systems where all information required for accurate timing
modelling can be obtained with affordable costs. However,
only a small fraction of systems falls within this category.

MBDTA is affected by the fact that on new platforms old
margins (e.g. 20%) are questionable. Deriving new margins is
complex if at all possible. HYDTA is better than MBDTA
in terms of trustworthiness but in order to have sufficient
confidence, skilled users are needed able to understand how the
program under analysis interacts with hardware features. MB-
DTA and HYDTA are the only choice when high performance

is required or multiple applications need to be consolidated
onto the same system for cost, power and weight reasons.
While skilled users have proven that these methods can be
used in the context of single-core processors, scaling these
techniques towards multicores becomes extremely painful due
to the lack of understanding of application interactions in
shared resources. Thus, only few systems have been certified
on top of multicores (in particular dual-cores) with MBDTA
and HYDTA.

Although MBPTA and HYPTA have not been deployed
in any real system yet, they have been shown to tackle the
limitations of DTA by allowing end users resort on easy-
to-carry-on measurements and use mixed-criticality multicore
systems while increasing the automation of the process and
thus, reducing the degree of control that users need to exer-
cise to obtain WCET estimates. All in all, MBPTA/HYPTA
allows using multicores efficiently for safety-critical systems
(SDTA does not attain such efficiency) attaining the level
of confidence required for certification (MBDTA/HYDTA
cannot reach the same level of confidence). However, MBP-
TA/HYPTA industrialisation and certification arguments are
not yet complete. Thus, these techniques need to become
mature enough to be a real choice for end users. To that
end they are being integrated in commercial HYDTA tools
(RapiTime [38]) to be used on industrial hardware/software
stacks in the avionics, railway, space and automotive domains
in the context of PROXIMA [35]. While results so far are
promising, this technology is not yet ready for its use in
commercial products.

In summary, SDTA is the best choice for (few) systems
in the highest integrity levels if simple hardware is used and
the effort (time and cost) to produce the information needed
by SDTA can be afforded. Otherwise, MBDTA and HYDTA
are the only choice. While their guarantees are poor from a
scientific point of view, skilled users have proven them to be



of practical use for single-core and some dual-core systems.
Scalability to multicores is, however, a roadblock. MBPTA and
HYPTA tackle this challenge and offer promising results, but
they have not reached the maturity required for commercial
products yet.

X. CONCLUSIONS

Deriving WCET estimates for safety-critical applications is
a complex task and many issues jeopardise the trustworthi-
ness of the whole process. In this paper we have reviewed
the main timing analyses and identified a number of issues
challenging each of the approaches. In particular, input data
and models challenge SDTA trustworthiness. MBDTA lacks
of sound methods to derive trustworthy WCET estimates from
measurements. Hybrid approaches reduce – but not remove –
those issues challenging MBDTA. Finally, some variants of
PTA show promising results and are exposed to few issues
challenging their trustworthiness in comparison with other
timing analyses; however, PTA still misses real industrial
hardware platforms and complete certification arguments to
be used in real products.
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