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Abstract

We can apply grid-based methods for deterministic uncertainty propagation in
combination with uncertainty estimation algorithms for neural networks. This
can be used to model dynamical processes and their uncertainties using neural
networks. Further, such methods can yield calibrated uncertainty estimates when
forecasting with dissipative first order systems.

This master’s thesis in engineering cybernetics develops and applies an ap-
proach to employing existing grid-based uncertainty propagation methods (e.g.
the unscented transform) on machine learning algorithms which have a variable
(heteroscedastic) output uncertainty. Further, the thesis explores a method of jointly
learning the process dynamics and process uncertainty in a dynamical system. This
method applies recent advances in predictive uncertainty estimation for neural
networks in combination with grid-based uncertainty propagation.

The methods are applied on a real world dataset, to model the temperature
evolution in the main bearing of wind turbines at a Norwegian wind farm. It’s
found that the temperature confidence intervals predicted by a neural network-
based method when simulating generalizes to other wind turbines. The results in-
dicate that it is feasible to jointly model first order process dynamics and process
uncertainty with neural networks. Though a trade-off between predictive accur-
acy and calibration was observed, this can likely be mitigated by fine-tuning the
uncertainty estimation methods and optimization procedures.

The main contributions from this thesis are: i) Derivation of equations for
applying grid-based uncertainty propagation methods on systems with variable
output uncertainty, ii) Demonstration of how this can be used to model process
dynamics and process noise using neural networks, and iii) Application of the
methods to model the temperature of a wind turbine main bearing with uncer-
tainty estimates.
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Sammendrag

Punktbaserte metoder for deterministisk videresending av usikkerhet kan benyttes
i kombinasjon med usikkerhetsestimering for nevrale nettverk. Dette kan brukes
for å modellere dynamiske tilstandsromprosesser samt deres prosessusikkerhet
ved hjelp av nevrale nettverk. Disse metodene kan gi kalibrerte usikkerhetsestima-
ter når de benyttes for å modellere og simulere dissipative første ordens systemer.

Denne masteroppgaven innen kybernetikk viser hvordan deterministiske punkt-
baserte algoritmer for videresending av usikkerhet (f.eks. the unscented transform)
kan benyttes på maskinlæringsalgoritmer med en variabel (heteroskedastisk) pre-
diksjonsusikkerhet. Videre utforskes en metode for å lære systemdynamikk og
tilknyttet usikkerhet ved hjelp av nevrale nettverk med usikkerhetsestimering.
Her benyttes nylig utviklede metoder for usikkerhetsestimering i nevrale nettverk
i kombinasjon med punkbaserte metoder for videresending av usikkerhet.

Metodene blir anvendt på et eksperiment med ekte data fra en vindmølle-
park i Norge. De benyttes der for modellere temperaturutviklingen i lageret der
akslingen til vindturbinene roterer. Resultatene viser at konfidensintervaller for
temperatur som forutsies av et nevralt nettverk kan generalisere når nettverket
anvendes på nye vindturbiner. Eksperimentet indikerer at det er mulig å mod-
ellere førsteordens dynamikk sammen med prosessusikkerhet ved hjelp av nev-
rale nettverk. Det ble observert en avveining mellom nøyaktighet i prediksjon og
nøyaktighet i usikkerhetsestimater, men dette kan trolig reduseres ved å kom-
binere ulike usikkerhetsestimeringsmetoder og forbedre optimeringsprosedyren.

Hovedbidragene fra denne masteroppgaven er: i) Derivasjon av ligninger som
lar oss anvende eksisterende punktbaserte algoritmer for videresending av usik-
kerhet på modeller med variabel prediksjonsusikkerhet, ii) Demonstrasjon av hvordan
dette kan benyttes for å modellere prosessdynamikk og prosessusikkerhet ved
hjelp av nevrale nettverk, og iii) Anvendelse av metodene for å modellere temper-
aturutviklingen i lageret til akslingen på ekte vindturbiner, med usikkerhetsmål.
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Chapter 1

Introduction

1.1 Motivation

Advanced artificial intelligence (AI) implementations are rapidly becoming ac-
cessible, widespread, and remarkably successful at complex tasks [8] [9]. Neural
network-based machine learning (ML) models have garnered significant interest
in the past decades, as deep neural networks have challenged and pushed the state
of the art within many fields - including time-series forecasting [10]. ML-based AI
is enabling impressive technological advancements, but the inner workings of the
state-of-the-art implementations is not well understood [11]. The consequence of
this is that the integration of AI in safety-critical systems poses significant chal-
lenges [12].

Physics-based simulators are widely used for process representation, optim-
ization and simulated safety tests. These enable high-fidelity simulations based
on differential equations, without the safety implications of running the process
they model. The potential in applying machine learning models in place of a tra-
ditional simulator lies in the possibility of speeding up the evaluation by several
orders of magnitude. Such a possibility is clearly enticing - but it comes at a price:
Substituting a physics-based model for a machine learning-based model arguably
decreases the interpretability of the results. When can we then trust such a model
to be correct? This is a question that necessitates an answer if we are to apply
machine learning for predictive forecasting or decision making.

In order to make informed decisions, we need information on the risk in
the outcomes that may entail from these decisions. As the risk associated with a
method is dependent on the inherent uncertainty in said method [13], uncertainty
estimation for industrial methods (e.g. [14]) have played an important role in
developing methods applicable for safety-critical domains.

Uncertainty estimation can be valuable. Predicting that a prediction is er-
roneous in advance can make it possible to employ preventative measures before
a failure takes place. Recent contributions have proposed several algorithms for
estimating the predictive uncertainty in the output of neural networks [15] [16]
[17]. These appear very promising, and have been demonstrated to perform well
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in diverse applications [18] [19]. However, such methods are not fault proof: they
still suffer when faced with data very dissimilar from what they have previously
seen [20].

Even in case of a highly accurate model, uncertainty in its input can propag-
ate to its output, yielding uncertain predictions. This becomes increasingly relev-
ant as ML-based systems are becoming widespread: If we interconnect systems
that each have an associated uncertainty, the propagation of uncertainty can be
crucial to account for. There is extensive theory concerning propagation of input
uncertainty through black-box functions [21] [22] [23] [24], much of which has
roots in state estimation theory. But can we apply this on a machine learning model
with variable predictive uncertainty?

This last question is what sparked the work in this thesis. It was posed in
the context of dynamical systems modeling, and motivated by a simple idea: Re-
placing a state space model with a neural network that employs predictive un-
certainty estimation. Could this be used to obtain both accurate predictions and
accurate uncertainty estimates? The inspiration for this was work done in my spe-
cialization pre project [25] and an experiment proposed by Kongsberg Digital:
Modeling the temperature evolution of a wind turbine. The idea of a model that
fits straight into existing control theory approaches was enticing, and the approach
was further explored. The result is what is presented in this thesis.

1.2 Objectives

The theme of this thesis was proposed by Kongsberg Digital. The goal of the pro-
ject was to explore methods for estimating the uncertainty of predictions from ML
models in an industrial setting.
The main objective of this thesis is to combine model uncertainty estimation tech-
niques and input uncertainty propagation techniques in order to estimate the total
uncertainty in the resulting prediction of a dynamical system. This developed into
the following research questions,

1. How can we propagate uncertainty through a machine learning model whose
output is uncertain? Can we apply existing techniques directly, or do we
need to extend them?

2. Are existing uncertainty estimation methods applicable for small-scale neural
networks?

3. Can small neural networks with uncertainty estimation be applied to model
a dynamical system and it’s uncertainties?

These are the questions the work in this thesis builds upon.
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1.3 Contributions and Outline

The main contributions of this thesis are,

1. an approach to combining grid-based input uncertainty propagation with
model uncertainty estimation for machine learning models.

2. a demonstration of how this can be applied to simulate and identify a model
represented by a neural network with predictive uncertainty estimation

3. the application of these methods to model and estimate the uncertainty in
the temperature evolution of wind turbines over long time horizons. This is
done with real-world data from a wind farm in Norway.

1.3.1 Outline

This thesis shows how we can apply uncertainty estimation methods for neural
networks in combination with grid-based uncertainty propagation techniques. Us-
ing this, neural networks with predictive uncertainty estimation are employed
to develop a model which predicts the temperature in a wind turbine, along
with the associated uncertainty. Two separate uncertainty estimation methods for
neural networks are considered: Deep Ensembles and Monte Carlo dropout. The ap-
proach is evaluated against alternative methods, including system identification
[26] combined with Bayesian model averaging [27].

We begin with a brief overview of relevant literature in Chapter 2. This first
covers machine learning, model representation using neural networks and state
space modeling. Following this, relevant uncertainty estimation methods are re-
viewed: Grid-based uncertainty propagation, filtering, and advances in uncer-
tainty estimation for machine learning models.

Following the literature review, the main methods developed this thesis are
presented in Chapter 3. We show how common grid-based uncertainty propaga-
tion methods can be extended to propagate uncertainty through equations with a
variable output uncertainty. We then demonstrate how we can apply this to sim-
ulate a model whose dynamics are given by an stochastic difference equation,
and how this can be extended for use in a Gaussian filtering framework. Lastly,
the approach used in this thesis to model a dynamic system by combining neural
networks (with uncertainty estimation) and grid-based uncertainty propagation
methods is outlined.

A qualitative synthetic experiment is then considered in Chapter 4. This con-
cerns simulating a dynamical system represented by a stochastic difference equa-
tion with variable process uncertainty.

The main experiment is presented in Chapter 5. This concerns a wind turbine
temperature modeling task. Several models that estimate the main bearing tem-
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perature within wind turbines are developed. These are based on real data from a
wind farm in Norway, and motivated by physical energy balance equations. Both
long-horizon simulations and one-step-ahead predictions when filtering are con-
sidered for evaluating the models.

The results from the experiments are then discussed in Chapter 6, and possible
directions for future research are suggested. Lastly, we conclude in Chapter 7. The
main results are there summarized, along with some concluding remarks.

1.3.2 A Final Note

It was chosen to present the information necessary to understand the main ex-
periment (Chapter 5) in the same chapter instead of in the literature study, as to
not switch context repeatedly in the thesis. This means that the literature study in
Chapter 2 presents the foundations for the methods developed in Chapter 3, and
Chapter 5 should be accessible in isolation.



Chapter 2

Literature Study

On order to apply uncertainty estimation on a machine learning model, a thorough
understanding of the underlying theory is necessary. The methods presented in
Chapter 3 build upon traditional techniques for dynamical process modeling, so
an overview of these is also required.

The literature study first covers machine learning and neural networks, then
dynamical process modeling. Following this, existing approaches to uncertainty
estimation are presented. This covers both methods with origins in state estima-
tion, and recent methods developed for neural networks. Lastly, a brief overview
of the key observations from the literature study is presented.

2.1 Machine Learning

The field of machine learning (ML) concerns computer programs that adapt to
improve their performance [28]. It can be employed for a wide variety of tasks,
including modeling. System models represented by computer programs with tune-
able parameters are applied in a wide range of domains, such as power electronics
[29] and renewable energies [30], aerospace [31] and language modeling [8].

The perceptron [32] is an important early contribution to machine learning, as
it laid the foundation for deep neural networks (DNNs). Machine learning models
based on DNNs have demonstrated remarkable results for complex tasks includ-
ing object detection [33] [34], physics modeling [35] [36] [37], and semantic
segmentation [38] [39].

2.1.1 Advances in Neural Networks

A neural network [40] is a nonlinear mapping f : Rn → Rm parametrized by
weights W and biases B. Most commonly, it consists of multiple affine transforma-
tions (e.g. Wi x +Bi for fully connected networks) and nonlinear activations σ(·)
applied sequentially to an input. An affine transformation followed by an activa-
tion is often referred to as a layer - and deep neural networks can have hundreds
of layers [41].

5
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Figure 2.1: Residual Neural Network Architecture: A simple example of how a
residual network can look. The residual blocks learn a difference xk − xk−1. This
difference is commonly scaled by some factor α, omitted in this illustration.

Neural networks are commonly used for supervised learning, where they can
be trained to learn patterns through stochastic optimization [42]. This consists of
two main steps, i) a forward pass and loss computation, and ii) a backward pass
and parameter optimization. In the forward pass, the network observes a set of
inputs and makes predictions. These predictions are then evaluated using a loss
criterion, a function which decreases the better the predictions are. For the back-
ward pass, the backpropagation algorithm [42] is used to compute the gradient of
the network parameters with respect to the loss function output. An optimization
algorithm then updates the network parameters using the gradient.

Deep neural network architectures (in terms of layer count) can compose lay-
ers of abstraction to learn both low level features and abstract patterns [40]. This
has led profound advances within complex fields such as computer vision [38]
and language modeling [8].

A major obstacle to the success of these deep networks has been the diffi-
culty in optimizing their parameters. Parallelization has been instrumental in this
regard: Though networks may have thousands or millions of parameters, the com-
putations can be expressed as vectorized operations, which lends to GPU accel-
eration. Rectifier activation functions [43] and residual architectures [41] (see
Figure 2.1) helped combat the longstanding problem of vanishing gradients dur-
ing optimization. Combined with faster optimization algorithms such as Adam
[44] and Adabound [3], the result is that the computation time required for para-
meter optimization is substantially reduced. Regularization techniques such as
dropout [45] can even further improve training speed, and additionally improve
the generalization capabilities of the networks. The compounded impact of such
developments have enabled models with billions of parameters and unpreceden-
ted representational capabilities [8].

The astounding results demonstrated by neural networks are undeniable: They
have laid the foundation for important technological advances, including self driv-
ing [9]. Still, this success does not come without challenges. The complexity of
neural networks can lead to significant obfuscation of their internal mechanics. It
is not well-understood how the most advanced models work [11]. This has severe
safety-implications. How can we trust that a model which we do not understand
produces correct results? How can we determine when the model is malfunction-
ing? These challenges have led to a significant interest in uncertainty estimation
for neural networks [46][16][17][20][47][15][48][49].
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t y1(t) y2(t)

0.0 3.0 −1.5
0.1 2.5 3.2
0.2 4.1 1.1
...

...
...

Table 2.1: Time Series Data: Datasets for dynamical systems are typically given
as time series data. These consist of measurements with an associated timestamp
t.

2.2 Dynamical Process Modeling

The output of a dynamical process depends on past inputs. This necessitates meth-
ods to express how the process evolves over time. State space models are a widely
used approach to representing dynamical processes, and these will be covered
first. Following this, some methods to model dynamical systems using neural net-
works will be reviewed. Data sets for dynamical systems are commonly given as
time series. These are sequences of data points that describe the evolution of some
values over time - as shown in Table 2.1.

2.2.1 State Space Models

A state space model [50, p. 4] represents a dynamical system. It consists of a set
of states x = [x1, . . . , xn]> ∈ Rn, inputs u = [u1, . . . , up]> ∈ Rp, and outputs
y = [y1 . . . ym]> ∈ Rm, and associated first order differential equations which can
be expressed compactly in vector form as

ẋ = f (x , u, t) ∈ Rn

y = h(x , u, t) ∈ Rm (2.1)

Where t is the time. Theory for system analysis, modeling, simulation, and control
with state space models is thoroughly covered in [51], [52], and [50].

Systems represented as Equation (2.1) are continuous-time systems. They can
be simulated using numerical integrators, e.g. Runge-Kutta methods [50, p. 526-
567], to yield discrete time systems [51, p. 121-125] where the system dynamics
are given by difference equations,

x [k+ 1] = f d(x [k], u[k], t) ∈ Rn

y[k] = h(x [k], u[k], t) ∈ Rm (2.2)

where t = t0 + kh for a time step (sample time) of length h.
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As real-world processes often exhibit stochastic behaviour (due to unmodeled
phenomena and sensor noise, among other causes), process noise and measure-
ment noise are commonly included as terms in state space models. For a discrete-
time system, this can be expressed as,

x [k+ 1] = f d(x [k], u[k], w [k], t) ∈ Rn

y[k] = h(x [k], u[k], v[k], t) ∈ Rm (2.3)

where w [k] and v[k] are, respectively, the process noise and sensor noise at step
k. They are commonly assumed to be additive (multivariate) Gaussians with zero
mean.

System Identification

When modeling physical systems with state space models, Equation (2.3) can of-
ten be derived from known quantities (e.g. masses and heat capacities) and the
governing physical equations (e.g. mass balances, energy balances, geometrical
constraints).

In other cases, the quantities or governing equations might not be entirely
known, in which case they can be fully or partially estimated using machine learn-
ing. System identification is the process of determining the structure and paramet-
ers θ of such dynamic system models based on observations of the system inputs
and outputs, in order to obtain a state space model.

Offline system identification for linear state space models can be done using
numerical algorithms for subspace identification (N4SID) such as described in
[26] and [53]. On a high level, these obtain the (approximate) system parameters
by finding the least squares’ solution of a matrix equation expressing prediction
error over time.

2.2.2 Time Series Modeling with Neural Networks

Neural networks are powerful function approximators, which makes them suit-
able for modeling complex temporal relations.

Recurrent neural networks have been widely applied to model sequences, and
early examples of system modeling with them date back more than 20 years [54]
[55]. Variants of long short term memory networks [56], a form of recurrent neural
networks, have seen a great deal of success within forecasting [10] and speech re-
cognition [57].

More recently, recently, the authors of [37] demonstrated how differentiable
ODE solvers can be applied to learn and simulate systems governed by ordinary
differential equations using neural networks. Even more interesting, their work es-
tablishes a connection between deep neural networks and dynamical systems: Re-
sidual connections [41], employed by most deep architectures, can be expressed



Chapter 2: Literature Study 9

Figure 2.2: Neural ODEs: Ordinary differential equation represented by a neural
network ( fθ ), as demonstrated in [37]. By integrating the neural network pre-
dictions with a differentiable ODE solver (1/s), it becomes possible to optimize
the neural network parameters using conventional stochastic optimization tech-
niques. Recognize the similarity to the residual network in Figure 2.1: By unwrap-
ping the ODEnet we can recover a similar structure to a residual network.

using differential equations. This lends to an interpretation of deep networks as
psuedo-dynamical systems, where their depth is analogous to a simulation length.

The models explored in [37] are referred to as ODEnets. They were briefly
explored in [25]. ODEnets can, very generally, be expressed as a differential vector
field

ẋ = f θ (x , t)

And the prediction from the network is given by the integral of the vector field over
some time horizon T0 . . . T , given an initial condition. Given constant time steps,
they can be treated as difference equations. ODEnets are fascinating and highly
relevant in context of recent interest in physics informed machine learning [35]
[58] [36]. However, applications of neural networks to model difference equations
date back to at least the early 2000s [59]. A benefit of this (illustrated well in [59]
and [60]) is that such networks can be used to formulate a state space model (see
Section 2.2.1). This enables the use of neural networks in traditional filtering and
control algorithms.

2.3 Uncertainty Estimation

Uncertainty estimation can broadly be explained as as estimating the uncertainty
associated with a prediction in advance, without necessarily knowing the ground
truth. Uncertainty estimation is crucial for safe application of a method, as the
associated risk is tied to the uncertainty in the possible outcomes [13]. Being able
to reject an erroneous prediction before it causes a failure can be invaluable. Sim-
ilarly, efficient information fusion that combines noisy estimates to yield accurate
predictions is crucial for complex tasks like tracking and control.

There is a longstanding history of uncertainty estimation in cybernetics. Ad-
vanced control algorithms often require estimation of inner process states. Filter-
ing algorithms have been widely employed for this purpose since the at least the
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mid 19th-century [61]. More recently, uncertainty estimation for machine learn-
ing algorithms have seen increased interest. For the safe adoption of artificial
intelligence algorithms and machine learning-based models, robust uncertainty
estimation is a necessity [11]. This can be challenging for dynamical systems, as
each time step predicted by a model will inject additional uncertainty into the
estimate. However, as approximate inference for state space models is employed
in traditional state estimation, this is a reasonable starting point to investigate.

This section will first cover traditional state estimation, grid-based uncertainty
propagation, and filtering. Following this, uncertainty in machine learning will
be reviewed. This will include a brief overview of the theory that many of these
algorithms build upon: Bayesian statistics. Then, common classifications of the
uncertainty and methods to estimate them will be covered.

2.3.1 State Estimation and Filtering

Dynamical systems such as ships and airplanes often employ state estimators in or-
der to determine their internal (and often unmeasurable) states from noisy meas-
urements.

Gaussian filtering algorithms are a widely used [62] [31] [19] [63] approach
to state estimation. These build upon the Kalman filter [61], which has been ap-
plied in tracking, control, and sensor fusion tasks since the 1960s. Kalman filtering
algorithms consist of a set of recursive equations: 1) A time update step where the
current state estimate is propagated in time to predict the next state, and 2) A
measurement update step where the propagated state estimate is corrected based
on (noisy) measurements. As such, propagation of uncertainty is a key task per-
formed by filtering algorithms.

Multivariate Gaussian Random Variables

Uncertainties in Kalman filtering algorithms are often expressed in terms of mul-
tivariate Gaussian distributions (multivariate normal). These can conveniently be
represented using only the first two moments of the distribution: mean µ ∈ Rn

and covariance Σ ∈ Rn×n. The probability density function of a multivariate Gaus-
sian distribution is defined when the covariance is positive definite, in which case
it is given by Equation (2.4).

N (x;µ,Σ) =
1

(2π)n/2det(Σ)1/2
exp{−

1
2
(x−µ)>Σ−1(x−µ)}, x ∈ Rn (2.4)

A linear transformation applied on a multivariate Gaussian distribution yields
a multivariate Gaussian distribution [64, eqs. 1.16.13-14]. Any multivariate Gaus-
sian random variable X ∈ Rn can therefore be expressed in terms of the standard
multivariate Gaussian distribution Z ∼N (0n, In×n) ∈ Rn:

N (x;µ,Σ) = µ+
p
ΣZ (2.5)

Where Σ=
p
Σ
p
Σ
>

(which can e.g. be obtained by Cholesky factorization [65]).
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Figure 2.3: Grid-based Uncertainty Propagation: A continuous input distri-
bution is approximated using deterministically chosen point coordinates and
weights (left). The points are transformed (center), and the statistics of the
propagated continuous distribution are approximated from the statistics of the
weighted points (right). Algorithm 1 describes one method for implementing the
procedure.

Grid-Based Gaussian Filters

Early extensions of the Kalman filter to nonlinear systems employ linearization
[50, Chapter (1.2.3)] to apply the same recursive equations as the original fil-
ter [63]. The past decades, grid-based approaches have become more common-
place, in part motivated by the susceptibility of linearization to cause instability
[66], which can for instance be seen in [25]. Grid-based filters approximate the
propagation of state uncertainty using deterministic derivative-free numerical in-
tegration methods. Variants include the unscented Kalman filter [66] [67] [59],
the Gauss-Hermite quadrature Kalman filter [68], and sparse grid quadrature fil-
ters [69] [70].

Consider a discrete time system on the form of Equations (2.6) and (2.7),

x k+1 = f (x k) + w k (2.6)

yk = h(x k) + v k (2.7)

Where f is the state transition function, h is the observation function that relates
the system state to external sensor measurements, and w and v are white noise
terms with covariance Q and R, respectively. Subscripts denote time step.

The key operation required for applying Kalman filtering equations to nonlin-
ear systems is the propagation of the state estimate through the state transition
function f and observation function h. To do this, grid-based filters solve the
same underlying equations as the original Kalman filter: The Bayesian filtering
equations given in (2.8) and (2.9).

Propagation of a multivariate Gaussian state distribution x k−1 ∼N (x̂ k−1,Pk−1)
for a single time step can be expressed analytically as

p(x k) =

∫

Rn

p(x k|x k−1)p(x k−1)dx k−1 (2.8)
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Where p(x k|x k−1) is given by Equation (2.6). Bayes rule can be used to express
the conditional propagated state estimate after observing a sensor reading yk,

p(x k|yk) =
p(yk|x k)p(x k)

∫

Rn p(yk|x k)p(x k)dx k
(2.9)

Where p(yk|x k) is given by Equation (2.7). In an ideal world, we would be able
to apply these equations directly and obtain the full propagated state distribution.
In practice, the integrals over the stochastic variables will not be tractable.

The first two moments of the output distribution p(x k) from the propagation
can be found using Equation (2.8). Only these two first moments are needed to
obtain a Gaussian approximation, which is the state distribution Gaussian filters
maintain. Using the informal notation E[x p] to refer to the p-th raw moment, this
can be expressed as following for the state transition in Equation (2.6),

E[x p
k] =

∫

Rn

x p
k p(x k|x k−1)dx k (2.10)

=

∫

Rn

x p
k

�∫

Rn

p(x k|x k−1)p(x k−1)dx k−1

�

dx k (2.11)

=

∫

Rn

�∫

Rn

x p
kN (x k; f (x k−1),Qk)dx k

�

N (x k−1; x̂ k−1,Pk−1)dx k−1 (2.12)

Where Fubini’s theorem and the fundamental theorem of calculus are used to
change the order of integration. Equation (2.12) can be further rewritten using
Equation (2.5). This makes it possible to express the integration in terms of a
standard multivariate Gaussian probability density. The grid-based filters all em-
ploy approximations of Equation (2.12) expressed in terms of standard multivari-
ate Gaussians,

∫

Rn

g (z)N (z;0n, In×n)dz '
N
∑

i=1

wig (z i) (2.13)

Where g (z) is the inner integral in Equation (2.12) rewritten using Equation (2.5),
and will depend on the moment. The same grid-based approximation can use used
to express the covariances needed for the measurement update equations when
filtering [70] [68]. It should be noted that Gaussian quadrature-based approaches
[68] can compute the integrals exactly for Gaussian uncertainties. On the contrary,
the unscented transform [66] (used in the unscented Kalman filter) only approx-
imates the uncertainty propagation integrals [71, Chapter 4.4].

An practical interpretation is that the grid-based methods propagate a discrete
approximation of the state distribution at each time step. The selection of the
points z i and associated weights wi (along with the number (N) of such points)
depends on the specific algorithm being used. Figure 2.3 illustrates how such grid
based methods work.
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Remark 2.3.1 (Grid-Based Numerical Integration) In addition to the approxim-
ations mentioned here, numerical rules for other integral forms can be derived [72,
Chapter 3.6]. Some are outlined in [73, Appendix A] If the probability distribution
is not known but its moments can be computed, moment matching can be used to
derive similar integration rules [21], or the unscented transform can be used [23].

The Unscented Transform

The unscented transform is a grid based uncertainty propagation algorithm, used
in the unscented Kalman filter. Many variants have been presented [71] [74] [67].
A version outlined in [66] is given in Algorithm 1.

Algorithm 1: The Unscented Transform
. Given p(x )∼N (x̂ ,Px) ∈ Rn ,
. A function f : Rn→ Rm

. And a user-determined scaling κ (often set to κ= 3− n, see [66] )
The random variable x is approximated as a set 2n+ 1 of
deterministically chosen points and corresponding weights,

X (0) = x̂ , w(0) = κ/(n+κ)

X (i) = x̂ +
�
Æ

(n+ κ)Px)i , w(i) = 1/2(n+ κ)

X (i+n) = x̂ −
�
Æ

(n+ κ)Px)i , w(i+n) = 1/2(n+ κ),

(2.14)

Where
p

(n+ κ)Px)i is the i-th row (or column) of the matrix square
root, which can be computed using a Cholesky factorization [65]. The
superscripts (i) denote point index, not an exponent.

The points are transformed through the function f ,

Y(i) = f (X (i)), i = 0, . . . , 2n (2.15)

And the propagated mean and covariance are,

ŷ '
2n
∑

i=0

w(i)Y(i), i = 0, . . . , 2n

Py '
2n
∑

i=0

w(i)(Y(i) − ŷ)(Y(i) − ŷ)>
(2.16)

Accuracy of Widely Used Grid-Based Approximations

Grid-based uncertainty propagation methods have varying accuracies. The accur-
acy is often expressed in terms of orders, indicating what order of polynomial g (z)
they are accurate to. Quadrature rules (such as the Gauss-Hermite quadrature
[68]) with m evaluation points and weights are exact for polynomials of order
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o ≤ 2m− 1. Consider,

E[ f (x)] =

∫

f (x)N (x ;0n, In×n)dx

E[( f (x)− E[ f (x)])2] =

∫

( f (x))2N (x ;0n, In×n)dx − E[ f (x)]2

Where f (x) = x p. A 3-point Gauss-Hermite quadrature rule can accurately propag-
ate the distribution mean for p ≤ 5, but the propagated variance will only be
accurate for p ≤ 2.5.

The accuracy of the unscented transform (which the unscented Kalman filter
builds upon) is analyzed in [71, Chapter 4.3]. It is there shown that the propagated
mean is accurate to the third order, and the covariance to the second order. The
magnitude of the errors depend on the variant of the unscented transform, and
the scaling parameters used. Further, as noted in [71, Chapter 4.4], the unscented
transform for scalar systems can yield identical weights and evaluations points to
the 3-point Gauss-Hermite quadrature rule for scalar systems.

2.3.2 Bayesian Uncertainty Estimation

There is a substantial body of literature concerning Bayesian uncertainty estima-
tion [27] [75] [76] [77] [14] [49]. The Gaussian filtering methods in Section 2.3.1
are derived from Bayesian statistics, and many deep learning uncertainty estima-
tion techniques build upon similar methods. The fundamental idea behind Bayesian
uncertainty estimation is that probabilities are used to represent the uncertainties.
In order to make predictions, we perform marginalization over the uncertainties
that are present. In order to learn a model, we first assume a probability distribu-
tion over the parameters (referred to as a prior), p(θ ). We then observe data D
and adjust the assumption to obtain p(θ |D) (referred to as the posterior). In order
to perform inference with the resulting model, we marginalize out the uncertainty
in the conditional parameter distribution to obtain a prediction,

p(y |x ,D) =
∫

θ

p(y |x ,θ )p(θ |D)dθ (2.17)

Bayesian methods have additionally been considered a great deal for model av-
eraging [76] [75], including for forecasting [27]. This is also referred to as soft
model selection, as it involves combining multiple models (none of which are
necessarily correct) to obtain more accurate predictions and predictive uncer-
tainty. Instead of selecting among competing models, Bayesian model averaging
employs a mixture of an ensemble of models to make predictions. This can both
improve predictive accuracy (i.e. more accurate predictive mean) and yield better
uncertainty estimates (as spread-error correlation between predictions is common
[27]) [78]. Bayesian model averaging requires estimation of the weighting of each
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model in the ensemble. Approaches to this include using Bayes factors [76] and
the related approximation, the Bayesian information criterion [75]. An arguably
simpler approach was proposed in [27], where the Expectation Maximization al-
gorithm was applied to estimate the model average weighting.

2.3.3 Uncertainty in Machine Learning Algorithms: An Overview

Several authors have recently categorized uncertainty sources in machine learning
- though with focus on deep learning and neural networks. Notable examples
include [46], [79] and [80]. One can, very broadly, summarize uncertainties in
machine learning as belonging to the following categories,

1. Model uncertainty: Uncertainty associated with the choice of model and
the parameters of the chosen model. This uncertainty is reducible given
sufficient amounts of high quality data. It is expressed as p(θ |D) in Equa-
tion (2.17).

2. Inherent noise: An irreducible uncertainty stemming from noise in the
data, stochasticity in the process, and other phenomena that cannot be ac-
counted for by increasing the amount of available data. This puts a lower
bound on the uncertainty in the predictions from a model, and is expressed
as p(y |x ,θ ) in Equation (2.17).

3. Propagated uncertainty: Uncertainty in the inputs to an algorithm will
propagate through the algorithm. This propagation of uncertainty is highly
relevant for interconnected machine learning algorithms and regression tasks
with uncertainty in the input. Uncertainty propagation could be expressed
in Equation (2.17) by including a distribution over x .

4. Concept shift and distributional shift: Differences between the training
environment and the operating environment might occur in an instant, or
slowly over time. This will result in added uncertainty that can be challen-
ging to quantify. This is also referred to as model misspecification. It can
be interpreted as a mismatch between the function p(y |x ,D) that has been
learned, and the true process p(y |x ).

Works concerning (1) and (2) include [17], [16], [47], [46], and [27]. (3) is
thoroughly reviewed in [21], and relevant works include [24], [22], [67], [70],
and [73, Appendix A]. A review of (4) is given in [81]. (4) is outside the scope of
this thesis, and will not be covered further.

Predictive uncertainty - the uncertainty stemming from model uncertainty and
inherent noise - is visualized in Figure 2.4. Propagated uncertainty is visualized
in Figure 2.5.

2.3.4 Model Uncertainty Estimation for Neural Networks

There has, in recent years, been significant research efforts on representing model
uncertainty and inherent noise in neural networks. Many methods build directly
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Figure 2.4: Illustration of Predictive Uncertainty: Model uncertainty and in-
herent noise result in a predictive uncertainty. Even if the model input is determ-
inistic, the model output can have an associated uncertainty. This is illustrated
above. The continuous black line indicates the ground truth f (x), and the model
predictions M(x) with the associated predictive uncertainty are indicated by the
continuous and dashed red lines, respectively. Note: This figure was also used in
my pre project report.

Figure 2.5: Propagated Uncertainty

Figure 2.6: Illustration of Propagated Uncertainty: Uncertainty in the input to
to a model can propagate through the model, yielding uncertainty in the output.
This is illustrated above, where an uncertain input (along the x-axis) causes an
uncertain output (along the y-axis) from the model M . Note: This figure was also
used in my pre project report.
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upon Bayesian statistics, and learn a distribution over the model parameters. How-
ever, neural networks can have millions of parameters, making the integral in
Equation (2.17) intractable. As such, approximate Bayesian methods are often
used. Briefly put, these rewrite Equation (2.17) in terms of a sum over a finite
parameter mixture. These use a finite number of realizations θ i of the parameter
distribution p(θ |D). The output y is often approximated [16] [17] as a Gaussian
using the first two moments of the output mixture distribution,

y ∼
T
∑

i

1
T

p(y|x ;θ i)

'N (y; ŷ ,σ2
y)

(2.18)

(a) (b)

Figure 2.7: A Qualitative Example of Deep Ensemble and MC Dropout Predic-
tions: Deep ensembles (a) optimize on the predictive likelihood. We can expect
them to predict a distribution with good coverage of the ground truth. Networks
using Monte Carlo dropout (b) typically optimize on the mean square error in the
predictive mean. We can then expect them to predict a distribution with mode
close to the expectation of the ground truth.

Variational Bayesian networks such as [82] and [47] represent model paramet-
ers as probability distributions parametrized by deterministic values (e.g. a nor-
mal distribution given by a mean and a variance), and sample from these when
performing inference. This relies on the reparametrization trick [83], which en-
ables optimization on stochastic samples of variational distributions. Monte Carlo
dropout [16] [84] is among the most widely used approaches for variational Bay-
sian inference, and represents model parameters as a bimodal distribution. Deep
ensembles were proposed in [17] as an alternative to Bayesian methods. This
approach involves learning a parametrization of a distribution with several in-
dependently trained networks. A qualitative illustration of the predictions from
Monte Carlo dropout and Deep Ensembles is given in Figure 2.7

Recent research indicates that methods based on deep ensembles yield better
uncertainty estimates than many competing methods in empirical experiments
[20] [49]. However, it has been shown that all existing methods suffer signific-
antly when faced with out of distribution samples (e.g. due to model misspecific-
ation) [85] [20].
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Method Deep Ensembles [17] Monte Carlo dropout [16]

Model uncertainty An ensemble of function
representations com-
bined as a finite mixture
distribution

Bimodal distribution over
the parameters, which is
sampled from when per-
forming inference, and com-
bined as a finite mixture dis-
tribution

Inherent noise Learned as a function of
inputs

Constant variance given by a
hyperparameter

Table 2.2: Deep Ensembles and Monte Carlo Dropout: Overview. These meth-
ods for estimating the predictive uncertainty in a neural network both represent
the model uncertainty and inherent noise, but do so in different ways.

Deep Ensembles

Deep ensembles [17] are a neural network architecture consisting of multiple
identical networks. They rely on random initialization of neural network para-
meters to obtain several models which reproduce the training data with similar
accuracy. The resulting model consists of M neural networks, each of which has
parameters corresponding to a local optimum of the training cost function.

Training a deep ensemble requires

1. Deciding on a distribution class to parametrize the output as, and
2. Choosing a proper scoring rule [77] as optimization target.

In [17], the networks output Gaussians y ∼N (µθm
(x ),σ2

θm
(x ))where m is the

network number. Performing inference is straightforward, as the ensemble output
is given by a mixture of the M network outputs. [17] further approximates this
as a Gaussian given by the first two moments of the mixture distribution, as seen
in Equation (2.19). It has been argued that Deep ensembles can be interpreted in
terms of a Bayesian model average [49].

p(y|x ;θ1...M ) =
1
M

M
∑

m=1

N (µθm
(x ),σ2

θm
(x ))

'N (µ∗(x ),σ2
∗(x )),

µ∗(x ) =
1
M

M
∑

m=1

µθm
(x )

σ2
∗ =

1
M

M
∑

m=1

{ (µθm
(x )−µ∗(x ))2 +σ2

θm
(x ) }

(2.19)
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Monte Carlo Dropout

Monte Carlo dropout [16] is an approximate variational Bayesian inference method
for neural networks. The network parameter distribution is given by bimodal
Gaussian mixture,

q(θ ) = (1− d)N (θ ,σ2I) + dN (0,σ2I) (2.20)

Where 0< d < 1 is a constant probability. The network employs variational infer-
ence to sample from the parameters. This means that it samples from a Bernoulli
distribution, and transforms the realizations using the variational parameters θ .
This can be performed in a single step by applying dropout with probability d
before every affine transformation in the network [84], which samples from the
mixture modes. The network output has an uncertainty given by a constant vari-
ance τ−1, which represents the inherent noise. Extensions which learn the in-
herent noise have been presented as well [46]. For inference, T forward passes
with dropout enabled are performed and the outputs are combined as a mixture.
Equation (2.21) shows how we can approximate the integral in Equation (2.17)
for a univariate output. This involves sampling realizations q(θ )t of q(θ ) using
dropout.

p(y|x ; q(θ )) =

∫

q(θ )
N ( fq(θ )(x ),τ−1)p(q(θ ))dq(θ )

'N (µmc(x ),σ
2
mc(x )),

µmc(x ) =
1
T

T
∑

t=1

fq(θ )t (x )

σ2
mc =

1
T

T
∑

m=1

{ ( fq(θ )t (x )−µmc(x ))
2 +τ−1}

(2.21)

It has been noted [17] that Monte Carlo dropout tends to give uncalibrated uncer-
tainty estimates when compared to alternatives (such as Deep Ensembles). The
lack of calibration is also noted in the appendix of the original paper [84] on
Monte Carlo dropout.

2.3.5 Input Uncertainty Propagation for Neural Networks

Most uncertainty propagation methods do not impose constraints on the function
that they are applied on. As such, the methods considered in Section 2.3.1 can be
applied for neural networks.

More generally, we can distinguish between i) layer-wise uncertainty propaga-
tion, and ii) entire-network uncertainty propagation for neural networks. The au-
thors of [24] compared some approaches, and found that Monte Carlo simula-
tion [22] followed by entire-network unscented transform yielded the best results
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among them. Assumed density filtering [86] has been applied [48][87] for layer-
wise propagation of uncertainty. As it assumed zero correlation between the activ-
ation distributions in a layer it is likely not optimal for low-dimensional regression
tasks.

Regardless of the method, there is a trade-off between computational com-
plexity and accuracy [21]. Low-order numerical integration methods (e.g. 3-node
Gauss-Hermite quadrature [68] or the unscented transform [67]) will yield less
accurate results for higher order moments compared to higher-order methods (e.g
m > 3-node quadrature formulas [21]). Stochastic sampling methods such as
Monte Carlo simulation [22] can more accurately capture the effects of nonlin-
earities and uncertainty in the model - at the cost of increased computational
expense.

For neural networks that model a state transition function, the network out-
put will tend towards the identity function as the time step length tends towards
zero. For such models, entire-network propagation methods seem like a sensible
approach - as the network output might exhibit less nonlinearities than the indi-
vidual layers do.

2.3.6 Uncertainty Estimation for Dynamical System Models

Monte Carlo dropout has been applied successfully to estimate predictive uncer-
tainty for time series modeled by neural networks. Notable implementations in-
clude [18] and [88]. These methods rely on stochastic sampling: re-running the
same simulation repeatedly, whilst resampling the model parameters using dro-
pout each time step.

Deep ensembles have also been applied for recurrent neural networks. This is
demonstrated in [19], where they employ an ensemble of long short term memory
networks. These simulate individually, and the individual predictions at a time
step are combined as a mixture. [19] uses the ensemble as a virtual sensor for
sideslip angle estimation to guide an unscented Kalman filter - an interesting hy-
brid model. Approaches that combine neural networks and traditional state space
modeling were in fact explored in some early works on the unscented Kalman
filter, including [59]. Though not entirely equivalent to [19], as [59] model the
process dynamics (not a virtual measurement), it is nonetheless interesting to see
that combination approaches have been studied.

ODEnets, as covered in Section 2.2.2, are well suited to modeling dynamical
systems. The impact of including stochastic regularization techniques (e.g. dro-
pout, additive noise and multiplicative noise) to ODEnets is explored in [89]. The
approach can be informaly be expressed as Equation (2.22), where G depends on
the exact regularization technique used.

hk+1 = f (hk, t;θ ) +G(hk, t;θ v)v,

v ∼N (0, 1)
(2.22)

Their research indicates that such methods can provide significant predictive per-
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formance benefits. The authors in [89] do not consider uncertainty estimation.
However, Monte Carlo dropout is a well established method of estimating model
uncertainty. As mentioned, it has additionally been employed to estimate uncer-
tainty in dynamical systems - and for residual architectures [88]. In light of this,
the results in [89] indicate that dropout should be well suited for uncertainty
estimation with neural difference equations. Aside from this, it is interesting to
see that they report additive and multiplicative noise is beneficial for improving
generalization. The model structure resulting from incorporating the noise is, in
effect, nearly indistinguishable from the state transition structure employed in
Gaussian filtering. Perhaps equally interesting: It is similar to the output one can
obtain from predictive uncertainty estimation for neural networks, as can be seen
in Equation (2.18).

2.3.7 Evaluating Probabilistic Predictions

Calibration and sharpness are two very important characteristics of probabilistic
predictions. Calibration is a measure of how well the predicted distributions cor-
respond to the empirical observations [90] [77]. This means that if a calibrated
model predicts some 95% confidence interval, empirical observations should lie
within that interval 95% of the time. Sharpness refers to the density of the in-
dividual prediction distributions [77]. As such, a sharper prediction will yield
narrower confidence intervals. A very accurate model that is calibrated produces
sharp predictions.

Useful metrics for evaluating probabilistic predictions are presented in [77],
[90], and [91] [92]. The expected calibration error (ECE) and reliability diagrams
[90] are two closely related metrics which measure calibration.

Expected Calibration Error and Reliability diagrams

Expected calibration error [90] measures the average discrepancy between the
predicted and empirical coverage of a confidence interval.

The approach in [90] can be adapted for regression models that predict con-
tinuous output distributions. The expected calibration error can then be expressed
as,

ECE=
K−1
∑

i=0

1
K
|ci −αi|

αi
∆
= i/(K − 1)

(2.23)

Where K confidence intervals with increasing coverage are evaluated. αi is the
predicted coverage of confidence interval of confidence interval i. The fraction of
empirical observations that fall within the confidence interval is given by ci . For a
perfectly calibrated model, we expect that exactly αi · 100% of the empirical ob-
servations fall into a αi confidence interval. If this is the case for all the confidence
intervals evaluated, we obtain an expected calibration error of 0%. Conversely, a
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Figure 2.8: A Reliability Diagram: A reliability diagram shows the calibration
curve of a model: A comparison of the predicted coverage (confidence) and the
empirical coverage. This illustration shows an overconfident model, meaning that
the confidence intervals have lower empirical coverage than predicted. A perfectly
calibrated model will have a confidence that consistently matches the empirical
coverage (indicated by the dashed line). The expected calibration error in Equa-
tion (2.23) is the integral of the absolute vertical difference between the dashed
diagonal line and the model’s calibration curve for confidences between 0 and 1.
This is often converted to a percentage.

model that is entirely uncalibrated will yield an expected calibration error of 50%.

This method can visualized well using reliability diagrams [90], which plot αi
against ci . This is illustrated in Figure 2.8.

2.4 Literature Study Conclusion

There have been significant developments for neural networks within the last dec-
ade. This has sparked an interest in uncertainty estimation for neural networks, as
their predictive capabilities can offer utility for industrial applications. Approaches
to estimate uncertainty in dynamical systems often rely on deep networks or re-
current structures.

Some neural network approaches - such as ODEnets - are drawing inspiration
from traditional system representations and physical modeling. Such models are
interpretable in terms of traditional state space representations, which lends to
them being applied in conjunction with state estimation techniques. The effect of
noise injection in ODEnets has been explored previously. This results in a system
structure with the same components as the traditional process dynamics - process
noise models employed in Kalman filters. Further, it closely resembles the output
of existing predictive uncertainty estimation methods.

The reviewed research hints at an enticing possibility: Representing a process
state transfer function and the process noise of a system using a neural network
with predictive uncertainty estimation. This would be possible to employ in a state
space representation. Further, the use of neural networks in filtering algorithms
has been studied previously. Employing a grid-based uncertainty propagation al-
gorithm for propagating a state belief through the neural network would be quite
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different from most existing approaches, which rely on stochastic sampling. How-
ever, this would have some benefits:

1. The model would consist of difference equations, which are often highly
interpretable

2. The model could be used for non-stochastic uncertainty estimation, e.g. with
Deep Ensembles. From a reliability perspective, this could be desirable

3. The model would be applicable in a filtering problem (which may not be as
trivial with e.g. a recurrent neural network)

The research questions for the thesis tie directly into the observations from the
literature study - and the research questions will be answered in Sections 3.1
and 3.2.





Chapter 3

Method

This chapter develops a simple approach to combine variable predictive uncer-
tainty with input uncertainty propagation. Following this, an approach to model-
ing dynamical systems using neural networks with predictive uncertainty estima-
tion is outlined.

3.1 Grid-Based Uncertainty Propagation Through Models
with Uncertainty Estimates

Grid-based uncertainty propagation methods such as the unscented transform and
sparse grid quadrature are numerical approximations to solving weighted integ-
rals.

Propagating uncertainty through a model with a variable (heteroscedastic) out-
put uncertainty requires marginalization over the model’s uncertainty, in addition
to marginalization over the input uncertainty. This can be expressed as an iter-
ated integral. These integrals can be approximated using existing grid-based un-
certainty propagation methods. This means that model uncertainty estimation and
grid-based input uncertainty propagation can be seamlessly combined.

The approach presented here has not been identified in existing literature.
However, as it is only a small extension of existing methods, it is not unlikely that
it has been applied previously by another author.

This section proceeds as follows: i) we first derive equations for applying grid-
based uncertainty propagation to models with variable output uncertainties ii) re-
late the approach to existing methods, iii) show how the approach can be applied
in a Gaussian filtering framework, and lastly, iv) briefly cover necessary assump-
tions, limitations, and possible extensions.

25
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3.1.1 Propagating Uncertainty Through Models With Variable Uncer-
tainty

Consider the Bayesian integral for uncertainty propagation in a dynamical system,

p(x k) =

∫

Rn

p(x k|x k−1)p(x k−1)dx k−1 (3.1)

Using the fundamental theorem of calculus and Fubini’s theorem we can express
the resulting first and second raw moments as follows,

E[x k] =

∫

Rn

x kp(x k)dx k

=

∫

Rn

∫

Rn

x kp(x k|x k−1)dx kp(x k−1)dx k−1

=

∫

Rn

E[x k|x k−1]p(x k−1)dx k−1

(3.2)

E[x kx>k ] =

∫

Rn

x kx>k p(x k)dx k

=

∫

Rn

∫

Rn

x kx>k p(x k|x k−1)dx kp(x k−1)dx k−1

=

∫

Rn

E[x kx>k |x k−1]p(x k−1)dx k−1

(3.3)

Where the notation E[x k|x k−1] indicates the conditional expectation of x k given
that x k−1 is known.

We remark that we can express the first n raw moments of the output distri-
bution in terms of the first n raw moments of the model’s (conditional) output
distribution p(x k|x k−1). As a consequence, we can express the n first moments
of the output distribution without imposing any assumptions on the distribution
p(x k|x k−1) aside from being able to compute these n moments. This means that
we can approximate Equations (3.2) and (3.3) using a grid-based uncertainty
propagation method (introduced in Section 2.3.1),

E[x k]'
∑

i

w(i)k−1E[x k|x
(i)
k−1] (3.4)

E[x kx>k ]'
∑

i

w(i)k−1E[x kx>k |x
(i)
k−1] (3.5)

Equations (3.4) and (3.5) describe the most important result from this section.
It is the result of a short derivation, but it describes how we can propagate an
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Figure 3.1: Grid-based Uncertainty Propagation with Variable Uncertainty:
A continuous input distribution is approximated using deterministically chosen
point coordinates and weights (left). The points are transformed, yielding a set of
probability distributions (center), and the statistics of the propagated continuous
distribution are approximated from the statistics of the mixture of these distribu-
tions (right). Compared to Figure 2.3, the difference is the variable uncertainties
associated with the propagated points.

input uncertainty through an uncertain model. The output distribution can be ex-
pressed as a mixture of the distributions predicted at the input grid evaluation
points. This can be extended to estimate higher order moments, but that will not
be considered in this thesis.

3.1.2 Relations to Existing Methods

The presented grid-based propagation approach describes how we can directly
apply existing methods for propagating uncertainty through a model which has
an uncertain output. In practice, it decouples uncertainty in the input x k−1 from
uncertainty in the output x k|x k−1

. This makes it simple to express conditional un-
certainties - which arise in functions with variable uncertainties such as machine
learning models with uncertainty estimates.

Conceptually, it is very similar to the approaches employed in existing literat-
ure on filtering, including [68], [66], and [69]. The main difference is the slight
restructuring of the computations. Since the uncertainty in the system state trans-
ition is expressed by the model (and not some pre defined, or time varying covari-
ance), the process noise covariance cannot be moved outside of the summation in
Equation (3.5) - which is what is commonly done. This means that only the recon-
struction of the state uncertainty following the model evaluation needs to change
compared to [68], [66], and [69]. In practice, existing methods are applied to
perform the propagation of the input uncertainty - the presented approach only
describes how we can use these methods and additionally account for variable
uncertainty in the state transition.

Aside from that, a similar method is required for Gaussian process state space
models: They require propagation of Gaussian uncertainty through a Gaussian
process (which has variable state transition uncertainty). The authors of [93] sug-
gest moment matching or linearization for this purpose. The extended version
[94] of their paper outlines how these approaches can be applied for Gaussian
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processes. One of these is based on moment matching. Their starting point is the
same as is considered here (Equation (3.2), Equation (3.3)), but as they know
the functions exactly they can compute the moments analytically. Consequently,
their approach appears an ideal choice in cases where Gaussian processes with
Gaussian inputs are considered.

3.1.3 Gaussian Filtering

We can apply grid-based propagation methods to propagate Gaussian state beliefs
through a state transformation with variable uncertainty. Consider the discrete
dynamic state space model given by Equations (3.6) to (3.9). As shown in Equa-
tions (3.8) and (3.9), the process noise is given by variable Gaussian uncertainty,
but the measurement noise is well-specified by some known sensor characteristic.
Note that it is here assumed that the measurement function (relating the system
state x to the output) is given by a matrix multiplication, similarly to in [64,
Chapter 5.5].

x k = f (x k−1, uk−1) + w k ∈ Rn (3.6)

yk = Hkx k + v k ∈ Rm (3.7)

w k ∼ N (0n,Q(x k−1, uk−1)) (3.8)

v k ∼ N (0m,R) (3.9)

The propagation of uncertainty will in this thesis be approximated using the
unscented transform. Other grid-based methods could also be used.

Substituting Equation (3.6) into Equations (3.4) and (3.5) we note that it is
possible to express the uncertainty propagation through the state transition as,

E[x k]'
∑

i

w(i)k−1 f (x (i)k−1, uk−1) (3.10)

E[x kx>k ]'
∑

i

w(i)k−1

�

f (x (i)k−1, uk−1) f (x
(i)
k−1, uk−1)

> +Q(x (i)k−1, uk−1)
�

(3.11)

Which means that for a system with a non-variable process noise Q we recover
the same equations as in conventional Gaussian grid-based filtering (see [68]).

We can modify the Unscented Kalman Filtering algorithm [71, Algorithm 8] to
enable simulation and filtering using a model with a variable output uncertainty.
This is outlined in Algorithm 2, with the sigma point set from Algorithm 1. The
process state transition and the process noise in Algorithm 2 are expressed using
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the functions f and Q in Equations (3.6) and (3.8).

Algorithm 2: Unscented Kalman Filter with Variable Model Uncertainty
Initialize

x̂ 0 = E[x 0], P0 = E[(x 0 − x̂ 0)(x 0 − x̂ 0)
>]

N = 2n+ 1, where n= dim x , κ≥ 0

for k = 1 . . .∞

1. Compute sigma points: According to Algorithm 1

X k−1 =
�

x̂ k−1 x̂ k−1 ±
Æ

(n+ κ)Pk−1

�>

︸ ︷︷ ︸

[N , n]

(3.12)

2.1. Time update: Evaluate process dynamics and process noise

X k|k−1, Qk = f (X k−1, uk−1)
︸ ︷︷ ︸

[N , n]

, Q(X k−1, uk−1)
︸ ︷︷ ︸

[N , n, n]

(3.13)

x̂ k|k−1 =
N−1
∑

i=0

w(i)X (i)k|k−1 (3.14)

Pk|k−1 =
N−1
∑

i=0

w(i){(X (i)k|k−1 − x̂ k|k−1)(X
(i)
k|k−1 − x̂ k|k−1)

> +Q(i)k }

(3.15)

2.2. Time update: Predict next output

ŷk|k−1 = Hk x̂ k|k−1 (3.16)

Py y,k = HkPk|k−1H>k (3.17)

Px ,k = Pk|k−1H>k (3.18)

3. Measurement update:

Kk = Px y,k(Py y,k +Rk)
−1 (3.19)

x̂ k = x̂ k|k−1 +Kk(yk − ŷk|k−1) (3.20)

Pk = Pk|k−1 −KkP>x y,k (3.21)

end for
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3.1.4 Accuracy, Limitations, Necessary Assumptions, and Extensions

Accuracy

A grid-based uncertainty propagation method will be more accurate than a Taylor
expansion-based method. This is thoroughly covered by [71], and also outlined
in [67].

Intuitively, one might expect that a variable process uncertainty would incur a
loss in accuracy for the propagation of uncertainty. However, this will not neces-
sarily be the case. Considering Equation (3.11), we see that the propagated raw
second moment is expressed as a summation over

f (x (i)k−1, uk−1) f (x
(i)
k−1, uk−1)

> +Q(x (i)k−1, uk−1) (3.22)

Remark that the state transition is squared (outer product), whereas the process
noise covariance is not.

Assume the entries in f (x , u) can all be expressed as a p-th order polynomial
of x . Then as long as all the entries of Q(x , u) can be expressed as a pq-th or-
der polynomial of x with pq ≤ 2p, we can expect a similarly accurate result as we
would get if Q was constant. More importantly: For many common uncertainty es-
timation methods for neural networks (Monte Carlo dropout and Deep Ensembles
for instance), the term Q(x , u) can reasonably be expected to be exactly twice the
order of f (x , u) (in terms of polynomial complexity). This can be seen e.g. in
Equation (2.19), where f would be given by µ∗ and Q would be given by σ2

∗ .

These observations indicate that if a variable process uncertainty were to cause
inaccuracies, it would likely be due to inaccuracies in the predicted process un-
certainty - not the propagation of uncertainty.

More generally, the accuracy of the result will be dependent on the grid-based
propagation method and the complexity of the transformation. This is outlined
in Section 2.3.1. For non-variable uncertainty, the polynomial complexity of the
propagation will generally grow exponentially with the number of moments that
are propagated: Requiring accurate integration over an O(pk) polynomial for
propagating k moments through a polynomial of order p.

Computational Cost

The two operations which are likely to incur the highest computational cost for this
approach, are 1) evaluating the model, and 2) using a grid-based approximation
for the input distributions.

The unscented transform in Algorithm 1 is used in this thesis. For a state space
model of dimension n, it requires 2n + 1 model evaluations to propagate un-
certainty for a single time step, and a single Cholesky decomposition. This will
therefore be the case for Algorithm 2. This also means that the complexity can be
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expected to be similar to as in existing variants of the unscented Kalman filter:
O(n3) complexity [71].

The caveat of the above statement is that evaluation of the machine learning
model can incur a significant computational cost. As 2n+1 model evaluations are
performed each time step, the complexity of Algorithm 2 in terms of the model
complexity O(M) is O(nM). As such we can expect O(nM+n3) complexity. How-
ever, as will be seen in Chapter 5, the networks that are used for the main experi-
ments are very small. It should further be noted that many optimization libraries
(e.g. PyTorch) enable high degrees of parallelism. Although 2n + 1 model eval-
uations are required each time step, these can be expressed as a single batch of
inputs to the model.

Assumptions Required for the Grid-Based Propagation Methods

Certain grid-based propagation methods (notably, some variants of the unscented
transform) can have negative weights. A grid-based method with negative weights
should not be used when the uncertainty in the model is variable. The reason for
this, is that negative weights will yield negative terms in the summations of Equa-
tion (3.11). That can in turn result in negative definite covariance matrices. This
can also be explained by considering that the propagation can be expressed as a
mixture of the model output distributions. The weighting of the mixture is given
by the weights of the input distribution grid approximation, and they must as such
be positive semidefinite.

As one may note, the unscented transform variant in Algorithm 1 can have neg-
ative weights depending on the choice of κ. This means that κ should be chosen
such that all weights are ≥ 0 if Algorithm 1 is used. This is also expressed in Al-
gorithm 2.

Downsides of Grid-Based Propagation Methods

Grid-based propagation methods generally rely on the assumption of a specific
distribution class. Deviations from these assumptions will incur loss in accuracy.
Some variants, such as the unscented transform, do not strictly impose this as-
sumption [23]. However, the same limitations will in practice be in place, and the
common grid-based propagation methods won’t yield accurate results for mul-
timodal distributions or distributions with significant skew. This is a notable down-
side of the approach presented. A challenge associated with this comes in the form
of nonlinear systems that are simulated for long time horizons: We cannot ex-
pect them to maintain a Gaussian state distribution. For multivariate state spaces,
this can be a significant challenge (which will be briefly explored in Section 4.1).
However, for dissipative univariate systems (as will primarily be considered in
Chapter 5), the assumption of a Gaussian state distribution over time will not be
as unreasonable.
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Numerical accuracy and positive semidefinite covariances can be problem-
atic when applying grid-based uncertainty propagation. When first extending Al-
gorithm 2 to multivariate systems, several challenges associated with numerical
accuracy were encountered. These were caused by quantization errors, and were
resolved by changing to 64-bit floating point numbers instead of 32-bit. Further,
a somewhat impractical issue is that some (at least PyTorch’s) Cholesky decom-
position implementations may raise exceptions when the state covariance is zero-
valued. This makes sense from a mathematical point of view, but can be imprac-
tical - e.g. if initializating with zero state uncertainty. For the implementation of
Algorithm 2, this was solved by wrapping the Cholesky decomposition with some
logic to exclude zero-valued rows and columns from the decomposition computa-
tion. This is of no consequence for Chapter 5 (as the neural network models used
there ended up being univariate), but can be impractical for multivariate systems.

Nonlinear Measurement Functions

The presented approach can be extended to systems with a nonlinear measure-
ment function h. This is covered more in-depth in Appendix A.

Accurate estimation of the output distribution of ŷ after a nonlinear h can
be achieved by discretizing the conditional output distributions from the model
(the predicted means X (i)k|k−1 and associated covariances Q(i)k ) before transform-
ing them through h. This preserves information on higher order moments in the
distributions of the propagated sigma points, which can impact the output mean
and covariance if h is not affine. In practice, this can be achieved by applying the
unscented transform on the outputs from the models at the evaluation points. This
is very similar to what is done in the unscented Kalman filter in [71, Algorithm
8], there referred to as augmentation of sigma points.

The approach presented in Appendix A is more general than what is covered in
this section, but also more computationally expensive. Algorithm 6 in Appendix A
can be used as a substitute for Algorithm 2 also for affine measurement func-
tions. In fact, the method described in Appendix A was the first approach that was
derived, and this section is a simpler variant of that. As the experiments in the
thesis don’t require nonlinear measurement functions, the method described in
Appendix A ended up not being necessary. However, as it can be useful for filter-
ing with an uncertain model and a nonlinear measurement function (e.g. another
neural network), it was decided to keep it as an appendix.

3.1.5 Implementation of the method

PyTorch [2] was used to implement a filtering algorithm based on the approach
presented here. It employs the unscented transform from Algorithm 1 to propag-
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ate uncertainties. As all of the computations are performed using PyTorch, they
are differentiable using autograd, which is PyTorch’s automatic differentiation
package. The primary benefit of this is that optimization on the simulation traject-
ories (including the state estimate covariances) becomes possible. The FilterPy
[4], library was used as a reference for initial testing (without variable output
uncertainty).

For the sake of transparency, it should be noted that the implementation is
actually based on Algorithm 6 in Appendix A, and not Algorithm 2. However, the
resulting computations end up being the same.

3.2 Neural Networks as Stochastic Difference Vector Fields

This section presents an approach to modeling dynamic systems and their uncer-
tainties using stochastic differential equations represented by neural networks. It
is similar to what is explored in [89], though the approach presented here is with
the intent of uncertainty estimation.

We proceed with i) presenting the state-space representation the method is
based on, ii) show how this can be formulated using a model with variable output
uncertainty, iii) demonstrate how neural networks with uncertainty estimation
can be used to model this, and iv) how such models can be simulated in time.
Lastly, v) we present optimization procedures and vi) relate the approach to ex-
isting methods.

3.2.1 The Foundation: State Space Models with Process Noise

System dynamics in discrete-time state space models are commonly expressed
using ordinary difference equations. These are often accompanied by an additive
process noise: a Gaussian diffusion term that represents the uncertainty in the
dynamics,

x k+1 = x k + f (x k, uk) + w k (3.23)

Where w k ∼N (0n,Qk) for x ∈ Rn .

A challenge associated with such a formulation is that the process noise can
be expected to exhibit heteroscedasticity: It will likely be correlated with (some
of) the inputs or states in the system.

3.2.2 Process Uncertainty as a Model-Specified Diffusion Term

Instead of using a constant (or possibly time varying) covariance as process noise,
it is proposed to employ a neural network with uncertainty estimation. The neural
network is used to jointly model the system dynamics f and the process noise Q.
This can, similarly to in [89] be expressed as a difference equation with a diffusion
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term. As the neural network models considered in Chapter 5 ended up having one-
dimensional state spaces (x ∈ R1), the notation used here will reflect that. The
proposed system model is on the form of Equations (3.24) to (3.27).

xk+1 = xk + fθ (xk, uk) +wθ ,k, (3.24)

yk = xk + vk, (3.25)

wθ ,k ∼N (0,Qθ (xk, uk)) (3.26)

vk ∼N (0, Rk) (3.27)

Where the process dynamics fθ are given by the predictive mean of a neural net-
work with uncertainty estimation, and the process noise wθ ,k ∼N (0,Qθ (xk, uk))
has variance given by the predictive variance of the same neural network.

3.2.3 Representing Uncertain Dynamics With Neural Networks

Existing approaches to predictive uncertainty estimation can be applied directly
to model Equations (3.24) and (3.26). The only practical requirement is that the
method must be capable of estimating a predictive mean and predictive (co)variance.
Monte Carlo dropout and Deep Ensembles are two widely used approaches that can
be applied for this purpose. Inference algorithms for both of these methods are
outlined in Section 2.3.4. Figures 3.2 and 3.3 illustrate how we can model Equa-
tions (3.24) and (3.26) system using these two methods.

Figure 3.2: Deep Ensemble - Difference Equation Architecture: Shown for a
first order difference equation. The individual networks predict a step∆x and an
uncertainty given by a variance σ2. The ensemble consists of several of these net-
works, as described in Section 2.3.4, and the output distributions of the networks
in the ensemble are combined as a mixture. The network neurons are given by
the white nodes (showing the weights only, bias omitted for clarity). The hidden
layer outputs are passed through an activation function (indicated by the centre
square block) individually. The predicted variance is passed through a rectifier to
ensure it is positive (indicated by the rightmost square block).
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Figure 3.3: MC Dropout - Difference Equation Architecture: Shown for a first
order difference equation. A forward pass through the network predicts a step
∆x , whose uncertainty is given by a constant variance τ−1. As described in Sec-
tion 2.3.4, the parameters of the Monte Carlo dropout networks are given by a
bimodal distribution. The network neurons are given by the white nodes. The
hidden layer outputs are passed through an activation function (indicated by
the centre square block) individually. For performing inference, multiple forward
passes are done, and the output is given by the mixture of the output distributions
from these. Each forward pass, dropout is applied before each weight layer. This
randomly zeros out vector elements (indicated by 1|0 in the illustration), which
randomly samples from the bimodal weights and biases [84].

3.2.4 Simulating the System Model

A model on the form of Equations (3.24) to (3.27) can be simulated using the grid-
based uncertainty propagation method presented in Section 3.1. More precisely,
the time update of Algorithm 2 can be applied directly for simulating a Gaussian
approximation of the system state over time. Further, for filtering, Algorithm 2 in
its entirety can be applied.

The simulation of the neural network models can be expressed concisely by
adding a layer of abstraction over Algorithm 2. This is shown in Algorithm 3.

Algorithm 3: Approximate Simulation of Stochastic Vector Fields
x̂0← Initialization
P0← Initialization
for k = 1, . . . ,∞ do

X k−1← SigmaPoints( x̂k−1, Pk−1)

uk−1← Get Input()

// Same input for all the sigma points

U k−1← Stack(uk−1, 2n+ 1)

// Assuming not filtering, then x̂k = x̂k|k−1, Pk = Pk|k−1

x̂k, Pk, ŷk, Py y,k← TimeU pdate(X k−1,U k−1)
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3.2.5 Parameter Identification

Backpropagation is used to optimize the model parameters. As the filter used to
simulate is implemented in PyTorch, the propagation of uncertainty through the
neural difference equations is differentiable using PyTorch’s automatic differen-
tiation [2]. This makes it possible to optimize on the state estimates that result
from simulation, using backpropagation.

The parameter optimization differs somewhat between the Monte Carlo dropout-
based neural network and the Deep Ensemble-based neural network. The explan-
ation for this can be seen in Figures 3.2 and 3.3: The Monte Carlo dropout imple-
mentation doesn’t learn a variance. The predictive uncertainty of the Monte Carlo
dropout algorithm used in this thesis is given by the model parameter uncertainty,
and a constant variance: the inverse of its precision τ. The precision is a hyper-
parameter that in practice represents the inherent noise (see Section 2.3.3). On
the contrary, the networks in the Deep Ensemble learns this inherent noise as a
function of the inputs. That necessitates slightly differing training methodologies.

Optimization Procedure for the Deep Ensemble network

The output estimates ( ŷ) in Algorithm 2 are given in terms of Gaussians. We can
optimize directly on the likelihood of these Gaussian state predictions conditional
to the initial state x0 and the model parameters θ . However, it is more convenient
to express the optimization using the negative log likelihood (NLL). This enables
rewriting the optimization as a summation, which is minimized. Minimizing the
NLL is equivalent to maximizing the likelihood. Letting the past inputs be given
by p0...k = [u0, u1, . . . , uk−1]>, we can express the negative log likelihood of the
simulation over the whole dataset as,

`(y1, y2, y3, . . . , yND
|x0, p0...k;θ ) =

ND
∑

k=1

`(TB,k|x0, p0...k;θ ) (3.28)

It is convenient to decouple the simulation length from the loss function mag-
nitude, as this will make the gradients invariant of the simulation length when
training. This doesn’t change the optimum, and can be achieved by normalizing
the NLL by the number of simulation steps.

`(y1, y2, y3, . . . , yND
|x0, p0...k;θ )∝

1
ND

ND
∑

k=1

`(yk|x0, p0...k;θ ) (3.29)

The right hand side of Equation (3.29) is approximated by a minibatch of B sim-
ulations of length Nsim,

`(y;θ )'
1

BNsim

B
∑

i=1

i+Nsim
∑

k=i

`(yk|x0i
, p0i ...k;θ ) (3.30)
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Where each of the negative log likelihood values on the right hand side of Equa-
tion (3.30) are given by Equation (3.31). This can be derived by taking the log-
arithm of the Gaussian probability distribution function in Equation (2.4), and
dropping the constant term.

`(yk|x0i
, p0i ...k;θ ) =

1
2

ln(Py,k) +
1

2Py,k
(yk − ŷk)

2 (3.31)

yk and Py,k in Equation (3.31) are the output mean and variance predicted by the
model at that specific time step, given the initial conditions.

In practice, this means that the system is repeatedly initialized, and then simu-
lated for a time horizon using Algorithm 3 (in dead-reckoning). The mean NLL of
the true measurements for the sequence is then computed based on the predicted
distributions. The gradient of the NLL with respect to the parameter vector θ is
computed using backpropagation. An optimization algorithm can then update the
parameters with the goal of minimizing the NLL.

Similarly to in [17], the networks in the ensemble are trained individually.
Contrary to [17] adversarial examples [95] are not used as it was not found to
yield improvements.

A summary of this method is given in Algorithm 4. Initialization can be per-
formed by setting an uncertain state (high state (co)variance) and filtering for
a few steps. The computational graph can then be detached (meaning that the
resulting state is treated as a constant), before beginning the simulation which is
optimized on. In Algorithm 4 this is simply denoted as x0 ← y0. For the exper-
iment in Chapter 5 where the networks have one-dimensional state spaces, this
’fuzzy’ initialization is not a necessity.

Algorithm 4: Stochastic Neural Difference Equation Optimization: Deep
Ensemble

Initialize the parameters θ 1,θ 2, . . .θM of the networks randomly
while training do

for m= 1 . . . M do
L← 0
for i = 1, . . . , B do

Sample sequence (y0...Nsim
, u0...Nsim

)
Initialize x0← y0
Simulate θm with Algorithm 3 to obtain ŷ1...Nsim

, P y,1...Nsim

L= L+
∑Nsim

k=1`(yk|x0, p0...k;θm)/(NsimB)
Minimize L wrt. θm

Optimization Procedure for the Monte Carlo dropout network

As the Monte Carlo dropout network doesn’t learn the inherent noise, it is simu-
lated without uncertainty propagation when training. This means the optimization
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procedure resembles what is done in existing literature that applies Monte Carlo
dropout for dynamic system modeling [18].

Similarly to for the Deep Ensemble model, optimization is performed by sim-
ulating a minibatch of sequences, computing a loss, and updating the parameters.
During these simulations, dropout is active - which means that for each predic-
tion step, the model parameters are randomly sampled. An L2 (Mean square er-
ror) loss criterion is used. As specified in [16], maximum a posteriori optimization
is performed, yielding an additional L2 loss for each entry in the parameter vector.

Relating this to Equation (3.30), the optimization loss can be expressed as,

`(y;θ )' kreg(
∑

j

θ2
j ) +

1
BNsim

B
∑

i=1

i+Nsim
∑

k=i

1
2
(yk − ŷk)

2 (3.32)

Where kreg(
∑

j θ
2
j ) is the joint negative log likelihood of the model parameters.

The regularization constant kreg , is a function of the hyperparameters used for
Monte Carlo dropout.

Following the optimization, the model precision (inverse of the output vari-
ance) is found by maximizing the likelihood of the training data when simulating
with uncertainty propagation using Algorithm 3. A grid search is used. This is
somewhat similar to what is applied in [18] - the main difference being that they
express the inherent noise outside of the dynamics (so as an additive noise term
to ŷ), whereas it is here expressed in the dynamics (so as an additive noise term
to ∆x).

Algorithm 5: Stochastic Neural Difference Equation Optimization:
Monte Carlo Dropout

Initialize the parameters θ of the network randomly
while training do

L← 0
for i = 1, . . . , B do

Sample sequence (y0...Nsim
, u0...Nsim

)
Initialize x0← y0
for k = 1, . . . Nsim do

xk← ForwardWithDropout(xk−1, uk−1;θ )
ŷk← xk

L= L+
∑Nsim

k=1
1
2 ||yk − ŷk||/(NsimB)

L= L+ kreg(
∑

jθ
2
j )

Minimize L wrt. θm
// Find inherent noise through a grid search
Minimize NLL wrt. τ−1
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3.2.6 Relations to Existing Methods

The approach presented here builds upon the work presented in [89]. This is
combined with existing work on the unscented Kalman filter [59] [66], and un-
certainty estimation methods for neural networks [17] [16].

Existing approaches to modeling dynamical systems and their uncertainties
using neural networks often employ stochastic simulations with Monte Carlo dro-
pout. This involves repeatedly simulating the entire trajectory with dropout en-
abled [10] [18] [88] (though similar methods that employ deep ensembles have
also been applied [19]).

The distinguishing difference between these approaches and the simulation
method applied in this thesis, is in which order the marginalization over the
present uncertainties is performed when performing inference. Both when apply-
ing Monte Carlo dropout and Deep Ensembles, inference is performed for a single
step. Grid-based uncertainty propagation is used to propagate the Gaussian state
belief through the state transition and process noise (both if which are given by
the model).

Many existing approaches can informally be expressed as approximations of

p(x t |x0) =

∫

θ

∫ t

τ=0

∫

xτ1

p(xτ|xτ−dτ;θ )p(xτ−dτ)d xτ−dτdτp(θ )dθ (3.33)

Meaning that they perform marginalization over the uncertainty in the model
predictions after the simulation. They simulate a set of particles for the entirety
of the time horizon, without interaction between the particles. In comparison, the
approach considered here can be expressed as an approximation of

p(x t |x0) =

∫ t

τ=0

∫

θ

∫

xτ−1

p(xτ|xτ−dτ;θ )p(xτ−dτ)d xτ−dτp(θ )dθdτ (3.34)

Where the marginalization over the model’s predictive uncertainty is performed
at each time step. This means that every time step, the state distribution is ap-
proximated as a Gaussian, and sigma points for propagating the distribution the
next time step are recomputed using that Gaussian.

A major benefit of existing approaches is that they are capable of predicting
rich state distributions over time, as it is expressed as a mixture of several es-
timates. On the contrary, the approach presented here is more closely related to
existing approaches employed in filtering. As a result, it can be applied directly in
a Kalman filter, only requiring small modifications to the uncertainty propagation
method - as outlined in Section 3.1.
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Synthetic Experiment

This chapter considers a qualitative synthetic experiment: Simulation of a dynam-
ical state space model with a variable (heteroscedastic) process uncertainty.

4.1 Stochastic Nonlinear Orbiter

The experiment shows how we can apply uncertainty propagation on a stochastic
system to predict the system state over time. The uncertainty propagation method
described in Section 3.1 will be compared against a stochastic Monte Carlo Sim-
ulation with 10000 samples. This is a simulation with no feedback (i.e. not fil-
tering). This is primarily a qualitative experiment. We will consider the effect of
applying grid-based uncertainty propagation when a Gaussian approximation is
reasonable, and also when it isn’t reasonable.

The stochastic dynamicalk process we will consider is represented by the fol-
lowing difference equation,

�

∆x1
∆x2

�

= h

�

−d −1
1 −d

��

x1|sin(x1)|
x2|sin(x2)|

�

+ hγw ,

w ∼N
��

0
0

�

,

�

|x1|1/2 |x1 x2|1/4/8
|x1 x2|1/4/8 |x2|1/2

�� (4.1)

This is a nonlinear orbiter where the steps are approximated using Euler in-
tegration. Its trajectory is visualized in Figures 4.2 and 4.4. The system has an
additive variable process noise w (white noise), whose magnitude is scaled by γ.
The covariance of w is a function of the system’s states.

For this experiment, the step length h will be fixed to 1/100 and the damping
d will be fixed to 1/12. The simulation length is set to 30s. We will consider
two separate values of the uncertainty scaling factor γ: 1/10, and 3/10. The first
yields a near-Gaussian empirical state distribution, whereas the second results in
a heavy-tailed, warped empirical state distribution.

41
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4.2 Evaluation Overview

The evaluation will focus on the disparity between the predicted state distribution
and the empirical state distribution (approximated by the Monte Carlo simula-
tion). This is illustrated using graphs of predicted state distribution in comparison
the the empirical state distribution. Additionally, two metrics will be considered:

1. Eucludian distance: Distance between the predicted state distribution mean
and the empirical state distribution mean. Lower is better.

2. Wasserstein2 distance [96]: A distance metric indicating how much work it
would take to morph one probability distribution into another. This is com-
puted between the predicted (Gaussian) state distribution and a Gaussian
given by the empirical state distribution’s mean and covariance. Lower is
better.

4.3 Simulation Methods

4.3.1 Unscented Transform

The time update step of Algorithm 2 is used to simulate a Gaussian approximation
of the system states over time.

4.3.2 Monte Carlo Simulation

A stochastic Monte Carlo simulation is used to simulate 10 000 particles. This
procedure consists of two steps,

1. Deterministic State Transition: The deterministic state update term is com-
puted, and the covariance matrix of hγq is computed.

2. Stochastic Sampling: A random sample is drawn from the diffusion term
specified by the process noise, and added to the state update.

The 10 000 particles are simulated individually for the time horizon. This results
in a point cloud for each time step.

4.4 Results

This section presents the results for the two separate values of γ.
The overall results are as one can expect: When the empirical state distribution

is reasonably well approximated by a Gaussian, the unscented transform yields ac-
curate results. When the empirical state distribution is not well-approximated by
a Gaussian, the accuracy of the predictions is degraded. However, even if the em-
pirical state distribution is highly non-Gaussian, the predictions from grid-based
uncertainty propagation can still be reasonable.
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4.4.1 Near-Gaussian Empirical State Distribution: γ= 1/10

The marginal distributions of the states over time are given in Figure 4.2, and
their joint distribution over time are given in Figure 4.3. The Euclidian mean and
Wasserstein distance over time are given in Figure 4.1a.

We can observe from Figure 4.2 that the marginal distributions of the states
over time match closely between the unscented transform and the Monte Carlo
simulation. The joint distributions of the Monte Carlo simulation in Figure 4.3
are somewhat heavy-tailed. Though a Gaussian state distribution isn’t a perfect
approximation of this, it is reasonable. The predictive mean in Figures 4.2 and 4.3
tracks the empirical mean closely. This is also illustrated well in Figure 4.1a.
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(a) γ= 1/10
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(b) γ= 3/10

Figure 4.1: Wasserstein Distance and Predictive Mean Euclidian Distance
Over Time: W2 denotes Wasserstein2 distance, and || · ||2 denotes Euclidian dis-
tance. When a Gaussian is a good approximation of the empirirical state distri-
bution, grid-based uncertainty propagation can yield accurate predictions. This
is shown in (a). When a Gaussian is a poor approximation, the quality of the
predictions will degrade. This is shown in (b).
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Figure 4.2: Marginal Distribution of Orbiter States for γ= 1/10: The marginal
distributions of the Unscented Transform (UT) prediction overlaid a Gaussian ap-
proximation of the Monte Carlo Simulation (MCS) marginal distributions. Pre-
dictive means are given by the lines, and ±3ST D confidence intervals are given
by the shaded area. Similarly to as seen in Figure 4.3, the predictions from the
UT for γ= 1/10 follow the MCS distribution closely.
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Figure 4.3: Joint Distribution of Orbiter States for γ = 1/10: The joint state
distribution of the orbiter for 5 different time steps are shown. These are snap-
shots of the simulation in Figure 4.4. The Unscented Transform (UT) prediction
is given by the shaded area (in blue), which marks 68.27%, 95.45%, and 99.73%
confidence ellipses for the predictive mean. The Monte Carlo Simulation (MCS)
is given by the scattered point predictions. Only 1000 of the 10000 particles are
shown. The mean of the Monte Carlo simulation is given by the square marker.
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4.4.2 Heavy-Tailed Empirical State Distribution: γ= 3/10

The marginal distributions of the states over time are given in Figure 4.4, and
their joint distribution over time are given in Figure 4.5. The Euclidian mean and
Wasserstein distance over time are given in Figure 4.1b.

In comparison to Section 4.4.1, we can observe in Figure 4.1b that the ap-
proximation yields less accurate predictions in this case. The highly skewed and
warped distribution of the Monte Carlo simulation can be seen well in Figure 4.5.
A single Gaussian cannot approximate this well - so the accuracy will be lower.
Still, though the overall predictions decline in quality, the empirical means of the
Monte Carlo simulation in Figure 4.5 are all within the 99.73% confidence ellipses
predicted by the unscented transform.

We can note that both the Wasserstein distance and Euclidian distance in Fig-
ure 4.1b decrease towards the end of the simulation. This is an important ob-
servation. As the particles in the Monte Carlo simulation converge towards the
equilibrium in [0, 0]>, their distribution will be better approximated by a unim-
odal, non-skewed distribution such as a Gaussian.
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Figure 4.4: Marginal Distribution of Orbiter States for γ= 3/10: The marginal
distributions of the Unscented Transform (UT) prediction overlaid a Gaussian ap-
proximation of the Monte Carlo Simulation (MCS) marginal distributions. Pre-
dictive means are given by the lines, and ±3ST D confidence intervals are given
by the shaded area. Just as in Figure 4.5, we can recognize that the predicted
variances do not follow very closely. However, the empirical mean of the MCS is
reasonably close to the prediction of the UT for the entirety of the simulation.
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Figure 4.5: Joint Distribution of Orbiter States for γ = 3/10: The joint state
distribution of the orbiter for 5 different time steps are shown. These are snap-
shots of the simulation in Figure 4.4. The Unscented Transform (UT) prediction
is given by the shaded area (in blue), which marks 68.27%, 95.45%, and 99.73%
confidence ellipses for the predictive mean. The Monte Carlo Simulation (MCS)
is given by the scattered point predictions. Only 1000 of the 10000 particles are
shown. The mean of the Monte Carlo simulation is given by the square marker.
The UT yields a poor approximation of the MCS distribution over time in this case.
Due to the significant increase in process uncertainty compared to in Figure 4.3,
the state distribution of the MCS becomes far more spread out. This heavy-tailed
and warped distribution cannot be approximated well by a multivariate Gaussian,
meaning that grid-based approximations like UT will perform poorly. However,
despite significant differences in the predicted distributions, the empirical mean
of the Monte Carlo simulation is reasonably close to the predictive mean of the
UT, and is within the 99.73% confidence ellipse for all of the time steps shown in
the plot.

4.5 Summary

The simulations in this experiment show that grid-based uncertainty propagation
methods can yield accurate state distribution estimates, but also that they are not
guaranteed to do so. The accuracy of the simulation considered in this experiment
can be limited by the Gaussian approximation. However, in cases where the Gaus-
sian assumption holds, a grid-based method can offer similar results to a Monte
Carlo simulation at a fraction of the cost.

Aside from this, the observation concerning convergence of the Monte Carlo
simulation is important. It can give us some intuition on what systems can be ex-
pected to be well suited to a Gaussian approximation. If the uncertainty in the
state distribution dissipates, it will tend towards a single coordinate. If this occurs
at a similar or faster rate than the state distribution is spread (e.g. due to uncer-
tainty injected from process noise or warping due to nonlinearity in the dynamics),
the assumption of a Gaussian state distribution can be expected to be reasonably
accurate. Importantly, physical processes are dissipative - and Chapter 5 concerns
a physical process.



Chapter 5

Wind Turbine Bearing
Temperature Modeling

This experiment concerns the development of a wind turbine main bearing tem-
perature model. The goal of this model is to produce predictions with uncertainty
estimates for the main bearing temperature of a specific type of wind turbines
located in a wind farm in Norway. This experiment will demonstrate how the
methods in Sections 3.1 and 3.2 can be applied to solve a real-world problem. It
will also serve as a basis for a discussion on the benefits, drawbacks, and practic-
alities of the methods presented in this thesis.

The chapter is divided into seven main parts.

1. Overview of the experiment. This introduces the process being modeled, the
utility the model serves, and the evaluations which will be performed

2. Data overview and information on the pre-processing that has been per-
formed

3. Overview of methods that have previously been applied to solve similar
modeling tasks

4. Overview of the physics that govern the system in question
5. Information on the models developed for the experiment
6. More detailed information on the evaluation criteria and the cases con-

sidered for evaluation
7. Presentation of results from the evaluation

The main bearing of a wind turbine is a bearing which enables the turbine
blades to rotate. The sheer size of larger wind turbines and the wind forces in-
volved can put significant stress on this component. Figure 5.1a illustrates the
main components of a vertical axis wind turbine, including the main bearing.
Figure 5.1b illustrates a vertical axis wind turbine. The components shown in Fig-
ure 5.1a are located at the very top of Figure 5.1b.

47
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(a) Wind Turbine Component Diagram (b) Wind Turbine

Figure 5.1: Illustrations: (a) Diagram showing some important components of
a wind turbine: i) The hub where the rotor blades are mounted, ii) The main
bearing in which the shaft rotates, iii) The main shaft, iv) The gearbox, and v)
the generator. These are mounted inside the nacelle, at the top of the turbine. (b)
Illustration of a vertical axis wind turbine from the Wikimedia Commons, licensed
under the CC BY-SA 3.0 license.

5.1 Overview

The wind turbines in question are fitted with sensors which yield periodic meas-
urements of several values (covered in Section 5.2). Among these is the temper-
ature of the turbine main bearing, which the intent is to model. An important
question to consider is why should we model something which we already measure?
In this case, there are multiple moments which motivate developing a model - and
these are summarized below.

1. Bearing temperature estimates in presence of missing measurements.
As a significant portion of readings are missing, it is desirable to have es-
timates of the bearing temperature even when the measurements are not
transmitted. More generally speaking, applying a suitable model in conjunc-
tion with a filter (e.g. a Kalman filter) can yield both accurate predictions
when measurements are available, and estimates when measurements are
unavailable (dead-reckoning).

2. Data stream verification. The labels of the data from the wind turbines are
assigned manually, and discrepancies between a model and measurements
can assist in determining if turbines have mislabeled measurements.

3. Wind turbine health monitoring. Significant deviations between model
predictions and measurements can indicate a turbine with deteriorating
health.

The above motivates the development of a model which is accurate the case
of dead reckoning (lack of output feedback). A filtering algorithm can be applied
in conjunction with this in order to incorporate sensor measurements in the case
where they are available.

These use-cases are very well suited towards uncertainty estimation. An al-

https://en.wikipedia.org/wiki/File:Wind_Turbine.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 5.2: Bearing Temperature Measurements: Bearing temperature meas-
urements from Wind Turbine 1 (WTUR1) over the course of two years. This is
the variable that we are interested in modeling. Note the seasonality and non-
negligible number of missing measurements. For an illustration of where the tur-
bine bearing is located, see Figure 5.1.

gorithm capable of predicting the current bearing temperature along with a cal-
ibrated confidence interval would be ideal: This could for instance provide the
means to approximate the current state of the turbines when temperature meas-
urements are missing. Further, it could enable sensible weighting between the
data reported by the turbines and the model prediction: A confident prediction
that does not correspond to the measurements could be an indication of deteri-
orating turbine health or malfunctioning sensors. Likewise, a highly unconfident
prediction might indicate unexpected model inputs - hinting at mislabeled data.

To evaluate the models, two separate quantitative evaluations will be con-
sidered,

1. Case A: Simulation. Predicting the bearing temperature evolution in the
wind turbines without any knowledge of the bearing temperature sensor
measurements (dead-reckoning). The target is to forecast the temperature
evolution over time.

2. Case B: Filtering. The bearing temperature measurements are assumed to
arrive sequentially, and are used as measurements in a filtering algorithm.
The target is to predict the temperature evolution one step ahead.

Following these cases, the interpretability of the resulting models will be briefly
looked into. This will focus on the neural network-based models, since the method
presented in Section 3.2 has not been identified in existing literature.

More in-depth information on the evaluation is presented in Section 5.6, and
the results in Section 5.7. Before that, an overview of the data, previous work,
system, and models will be presented.
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5.2 Data Sourcing and Dataset Overview

A time series dataset for wind turbines located in Norway was obtained through
Kongsberg Digital. The data, spanning just under 2 years, consists of the measure-
ments shown in Table 5.1.

t [UTC] TB [◦C] TE [◦C] P [kW] ω [RPM]

Table 5.1: Wind Turbine Data Columns: Each row in the wind turbine data
contains a timestamp t, main bearing temperature TB, external temperature TE ,
electrical power output P, and generator angular speed ω. The measurement
units are shown in the table ( RPM denotes rotations per minute).

The data is from four separate turbines: Wind Turbines 1, 2, 3, and 6 - from
now on referred to as WTUR1, WTUR2, WTUR3, and WTUR6. The data spans two
years per turbine (January 1, 2017 - December 21, 2018), and measurements are
equally spaced with a 10 minute period. There are 103620 rows of measurements
in total for each of the four turbines. A significant number of the values are miss-
ing: Between 26.8% (for WTUR1) and 34.2% (for WTUR6) per turbine. Tables B.1
to B.4 in the appendix give a more more detailed overview of the statistics of the
data, including how the missing measurements are distributed for each turbine.
The bearing temperature measurements from WTUR1 are shown in Figure 5.2.

Training, validation, and test data

Since WTUR1 has the lowest number of missing values, it is used for training
and validation. The data from WTUR1 spanning the first 12 months is used for
training models. The following 6 months of data from the same turbine is used in
the evaluation. The remaining data from the turbine is not used, as it is missing a
majority of the values.

The data from the other three turbines is used as test data to examine gener-
alization of the models when evaluating. Similarly as for WTUR1, only the first
18 months of the data is used. Figure 5.3 shows the sensor readings from WTUR1
from the first week of the data. As can be seen there, the temperature measure-
ments vary smoothly, but the generator speed and power output rise and fall more
abruptly.

Unmeasured Variables and Associated Uncertainties

There are several unmeasured variables that can have an impact on the temper-
ature change in the wind turbines. A prime example of this is the cooling system,
which will certainly affect the temperature in the turbine bearing. We can expect
these unmeasured variables to limit the predictive accuracy and result in added
process uncertainty. However, it is likely that there are correlations between some
of the unmeasured variables and the variables that are measured - which can be
possible for a model to learn.
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Figure 5.3: WTUR1 measurements: The first week of sensor measurements from
Wind Turbine 1 (WTUR1). Remark the missing measurements. The temperatures
vary smoothly, whereas the generator speed and power output vary more ab-
ruptly.

5.2.1 Data Pre Processing

The data has a significant amount of missing measurement values. This results in
two challenges: i) How to clean the data, and ii) How to make predictions when
input measurements are missing. Additionally, anomalies in the data need to be
tackled.

Unit Changes

Temperature measurements were first converted to Kelvin, as it is more convenient
for expressing the physics which govern energy balance.

Anomalies and Outliers

An initial exploratory data analysis revealed that there were some anomalies in the
data. Most notably the external temperature measurements from Wind Turbine 3,
which can be seen in Figures 5.4 and 5.5. The measurements are are likely i)
mislableled, or ii) the result of a faulty sensor. It was decided to still use the data
for testing, as it can give insight into the effect of erroneous data on the model
predictions.

In addition to this very notable anomaly, some outliers were present, such as
a small amount of negative generator speeds, and a small number of negative
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power output values. Some of these are caused by the turbines grid-sourcing elec-
tricity for starting the blade rotation [97], but some have greater magnitude and
are likely due to temporary sensor malfunction. It was initially attempted to re-
move outliers using a quantile-based method (Tukey’s method [98]). This yielded
improved one-step-ahead predictor accuracy, but caused a degradation in longer
horizon simulation accuracy for the models tested at that point. It was therefore
decided to use a simple method: Clipping measurements to be ≥ 0, an example
of which is shown in Equation (5.1). Figure 5.5 shows the marginal distributions
of the turbine measurements after the clipping.

TB(t)←max(TB(t), 0) (5.1)

Replacing Missing Measurements

For simulation, missing input measurements are replaced by the previous avail-
able measurement (’forward filling’), shown in Equation (5.2). When there are
large measurement gaps, this results in significant degradation in the prediction
quality. The reason forward filling is used in place of more advanced gap-filling
methods, is that simulation is performed as if running on-line with measurements
arriving in real time (so future measurements are assumed to be unknown). For-
ward filling is a simple method to handle missing data in cases where there is no
opportunity to fill gaps by interpolation.

TB(t)←

¨

TB(t), if TB(t) 6= NaN

TB(t −∆t), else
(5.2)

Normalization

For training and simulating neural networks, the data was normalized column-
wise to have a mean of 0 and a variance of 1. This was done using the sample
mean and sample standard deviation of the respective data column from Wind
Turbine 1. Equation (5.3) shows how this is done for a single measurement. This
same mean and standard deviation is also used for normalizing the data from
other turbines, as the statistics of their data are not assumed to be known.

TB(t)← (TB(t)−µTB
)/σTB

(5.3)

5.3 Previous Work

Models for the wind turbine bearing temperature have previously been developed
by Kongsberg Digital. The models include linear state space models and (shallow)
autoregressive neural network models. They are currently running in production.
These models run in dead reckoning, predicting the current bearing temperature
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Figure 5.4: WTUR3 measurements: The first week of sensor measurements from
Wind Turbine 3 (WTUR3). The external temperature measurements are distinctly
different from what is measured by WTUR1 during the same period (see Fig-
ure 5.3).
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Figure 5.5: Histograms of All Measurements: A comparison of the measure-
ment marginal distributions for all the wind turbines. Each row corresponds to a
wind turbine, and each column corresponds to a sensor. Means ±1ST D are indic-
ated by the vertical lines. Note the discrepancy between the external temperat-
ure (TE) measurements: WTUR3 likely has mislabeled data or a malfunctioning
sensor. More detailed statistics are in the appendix: Tables B.1 to B.4.
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using only the other sensor readings. In addition to this, a Kalman Filter has been
applied for filtering the sensor measurements, but not in combination with the
models. These models have been developed in C#, but the source code is unavail-
able so they cannot be directly used as baselines, nor are exact performance met-
rics available. The general approaches used are however a suitable starting point
for developing a model with uncertainty estimates.

A related approach was identified in [30]. The authors apply a physics-based
model for health monitoring of wind turbines. Their model is a one-step-ahead
predictor, which was verified in an exchange with the primary author. Aside from
that, there is a difference in the sensors that are used: Their model uses the turbine
nacelle temperature - not the external temperature.

The parameters in the linear models developed by Kongsberg Digital and [30]
were identified using a least square’s fit. The parameters in the autoregressive
neural networks developed by Kongsberg Digital were identified by optimizing on
single-step predictions using the limited-memory BFGS algorithm [99, p. 177].

5.4 Physical Considerations

Before formulating models for the wind turbine bearing temperature, it can be
useful to reason about what to expect. In order to get an understanding of how
the measured variables interact with the turbine bearing temperature, we will
briefly review some of the underlying physics.

Similarly to as in [30], this will yield a set of differential equations. These
equations will then be used to formulate state space models and neural network-
based models.

5.4.1 Energy Balance Equations

We begin by considering the physical equations that govern the system in question.
These can be formulated using energy balance [50, Chapter 11.4].

Let V be a fixed material volume [50, Chapter 11.4.1] which encloses the
particles in the main bearing, and is assumed to have constant density ρ. The
rate of change in the total energy in the system can be expressed using [50, Eq.
(11.172)] the rate of change in the specific internal energy u[J kg−1], specific
kinetic energy ek[J kg−1], and specific potential energy φ[J kg−1],

d
d t

∫∫∫

V
ρ(u+ ek +φ)dV

︸ ︷︷ ︸

rate of change in the total bearing energy

= −
∫∫

∂ V
ρ(u+

p
ρ
+ ek +φ)~v · ~ndA

︸ ︷︷ ︸

rate of energy change due to pressure work and convection '0

−
∫∫

∂ V

~jQ · ~ndA
︸ ︷︷ ︸

rate of energy change due to conduction
(5.4)
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The body forces acting on the bearing (e.g. by the turbine shaft) are expressed as
the gradient ~∇φ[N kg−1] of the potential field. The conduction term −~jQ[W m−2]
expresses the flux of heat in and out of the bearing volume surface. The material
volume is fixed in the nacelle of the wind turbine. We assume there is no flux
of particles, so we will neglect the convection terms and pressure work in Equa-
tion (5.4).

Approximations of the Energy Balance Equations

We approximate the bearing as a point mass, with mass m= ρV [kg], specific heat
capacity cp[J K−1 kg−1], and uniform temperature TB[K]. The internal energy can
then be expressed as U = cpmTB[J] = CpTB[J]. The heat conduction is approx-
imated by a finite number of heat fluxes qi[W] . The power exerted by the body
forces (the integral over ~∇φ[N kg−1]) will be expressed as Pb[W]. The change in
the bearing kinetic energy will be expressed as dEk/d t[W].

We can expect a heat flux proportional to the difference in temperature between
the surrounding material and the temperature in the main bearing, which can
likely be approximated well in terms of the external temperature TE[K] and the
thermal resistance R[K W−1]. The shaft rotates in the bearing, and this will result
in a heat flux caused by dissipation due to the friction force F f [N]. Further, there
is likely to be a heat flux due to electrical dissipation in the generator, which can
be approximated using the power output P[W] of the turbine. Lastly, there are un-
modeled phenomena, which will be represented by a unknown heat flux w[W].
We can then rewrite Equation (5.4) to obtain a similar expression as considered
in [30],

d
d t

CpTB ' Pb −
d
d t

Ek +
∑

i

qi +w (5.5)

' Pb
︸︷︷︸

power exerted by body forces

−
d
d t

Ek
︸ ︷︷ ︸

change in kinetic energy

+ R−1(TE − TB) + kpP + k fωF f
︸ ︷︷ ︸

heat fluxes

+ w
︸︷︷︸

unmodeled phenomena

(5.6)

Where kp is a dimensionless constant. k f [RPM/(m/s)] is a conversion factor from
the wind turbine generator speed to the magnitude of the sliding velocity for the
friction contact surface between the shaft and main bearing.

These equations are only an approximation, but they do give an indication
to what we can expect from the models. Having obtained some intuition on the
system in question, we proceed to identifying models for the bearing temperature.



56 E. E. Vesterkjær: Grid-based U.P. and Neural Networks with U.E.

5.5 Wind Turbine Model Identification

Several methods were iteratively developed to serve as baseline models for the
system in question. These can roughly be divided into three categories,

1. Least squares’ models: Linear state space models, parameters found from
the least squares’ solution of a single prediction step (similar to [30] and
the linear models developed by Kongsberg Digital)

2. System identification models: Linear state space models, parameters found
using the Canonical Variate Analysis [26] system identification algorithm

3. Neural network models: Neural network-based state space models, para-
meters found from optimization on simulation trajectories

The models which will be considered in more detail are the following:

1. LS: Least-squares’-based first order linear state space model
2. LS-B: Least-squares’-based first order linear state space model, with a bias

term
3. LS-H: Least-squares’-based first order linear state space model, with a static

(Hammerstein [100]) nonlinearity
4. LS-HB: Least-squares’-based first order linear state space model, with both

a static (Hammerstein [100]) nonlinearity and a bias term
5. CVA-1: System-identification-based first order linear state space model with

bias term and Hammerstein nonlinearity
6. CVA-2: System-identification-based second order linear state space model

with bias term and Hammerstein nonlinearity
7. BMA: Bayesian model average of the two CVA models
8. MCD: First order probabilistic neural network state space model, based on

Monte Carlo Dropout [16]
9. DE: First order probabilistic neural network state space model, based on

Deep Ensembles [17]

The following subsections describe how these models were identified and op-
timized. The evaluation and results are described in Sections 5.6 and 5.7.

5.5.1 Least Squares’ Models

Four kinds of least squares’-based models were identified. These will be described
briefly here.

LS

A simple linear model can be expressed using Equation (5.6). We consider only
the heat fluxes of the right hand side, assume Coloumb friction, and discretize the
equation, to obtain the LS-model in Equation (5.7),
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∆TB,k+1 =
�

β1 β2 β3 β4
�







TB,k
TE,k
Pk
ωk






(5.7)

Where k is the time step, ∆TB,k+1 is the change in bearing temperature from step
k to k+1, and βi are the system parameters. This is among the models considered
by Kongsberg digital.

LS-B

When approximating Equation (5.6) as Equation (5.7), we are implicitly linear-
izing the system equations with respect to the variables used, about their origin.
By adding a bias term to Equation (5.7) we can shift the equilibrium point of the
linearized system, which might improve predictive performance. This can also ac-
count for steady-state offsets (e.g. due to unmodeled heat fluxes). The LS-B-model
is obtained by including a bias term to the right hand side of Equation (5.7).

LS-H

A model similar to the one considered in [30] can be found by using a viscous fric-
tion model, which results in a Hammerstein state space model [100] (with a static
input nonlinearity). The resulting quadratic term can possibly also encode some
information about the kinetic energy of the system. It may be beneficial to use
a combination of the friction models, as viscous friction forces generally exhibit
nonlinear behaviour [50]. The LS-H model is found by including the nonlinear
friction term β5ω

2 to the LS model.

LS-HB

LS-HB combines LS-H and LS-B, yielding Equation (5.8). As will be seen in Sec-
tion 5.7, this yields improvements over the other least squares’ models for simu-
lation tasks.

∆TB,k+1 =
�

β1 β2 β3 β4 β5 β6
�















TB,k
TE,k
Pk
ωk
ω2

k
1















(5.8)

We recognize that all of the least squares’ models can be expressed discrete first
order state space models. For instance, Equation (5.8) can be written as Equa-
tion (5.9).
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∆TB,k+1 = β1TB,k +
�

β2 β3 β4 β5 β6
�

uk (5.9)

Where uk = [TE,k Pk ωk ω
2
k 1]> are the sensor measurements (and bias con-

stant) at step k, and ∆TB,k+1 is the change in bearing temperature from step k
to k + 1. For simulation, the temperature steps can then approximated using the
previous bearing temperature predictions.

Parameter Identification

The model parameters were found using a least squares’ fit. This is among the
approaches previously used by Kongsberg Digital, and was also done in [30].
All of the least squares’ models above can be expressed as Equation (5.7) can be
rewritten as,

∆TB,k+1 = β
> f k (5.10)

Where β is the vector of Nparam parameters, and f k is a vector of features (bearing
temperature and the other measurements) at time step k. Using this we can obtain
a system of ND equations, with ND being the number of usable data points (that
do not contain NaN values):

∆TB
︸︷︷︸

[ND]

= Fβ
︸︷︷︸

[ND ,Nparam][Nparam]

(5.11)

The solution to the least squares problem min
β
||∆TB− Fβ ||2 can be in general

found using the Moore-Penrose generalized inverse (’pseudoinverse’). The PyT-
orch lstsq implementation was used to solve Equation (5.11) for all of the least
squares models.

5.5.2 Canonical Variate Analysis Models

For improving simulation performance (performance in dead-reckoning when no
output feedback is available), it is sensible to use parameters that are optimized
minimize the predictive error in longer simulation trajectories. One approach to
this is to use system identification algorithms for state space models in order to
identify the structure and parameters of a state space model. An added benefit
of this approach is that system identification algorithms estimate the error covari-
ances in the models - a step towards estimating the uncertainty in the temperature
predictions (though it can also be done for a least squares’ regression).

CVA-1 and CVA-2

A first order and second order state space model are considered: CVA-1 and CVA-2.
The motivation behind the second order model is that the nacelle material might
act like a heat buffer between the main bearing and the external surroundings,
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resulting in second order dynamics. The CVA models use the same input features
as LS-HB. Both of these models are discrete state space models, on the form given
in Equation (5.12),

∆x k+1 = Ax k +Buk +Kvk

TB,k = Cx k +Duk + vk

vk ∼N (0, R)
(5.12)

Parameter Identification

The canonical variate analysis [26] algorithm is used for system identification,
with the MATLAB [6] n4sid implementation. Details on the settings used are given
in Table B.5 in the appendix. Forward filled data from WTUR1 was used for optim-
ization, which is suboptimal. As the models benefit from having data from both
summer and winter (the dynamics are impacted by seasonality) and n4sid re-
quires a continuous data sequence, a trade-off is required. Despite this, the CVA
models outperform the least squares’ models, as will be seen in Sections 5.7.1
and 5.7.2.

The sensor noise in the temperature measurement and the process noise in the
dynamics are expressed by vk and Kvk in Equation (5.12), respectively. Note the
single noise source ; n4sid yields models with noise terms given in the innovations
form (instead of separate noise sources for the process and measurement).

5.5.3 Bayesian Model Averaging

Neither of the CVA models explain the bearing temperature evolution perfectly.
As outlined in Section 2.3.2, Bayesian model averaging can improve predictive
accuracy and calibration when multiple models are available but none of them
fully explain the underlying process.

The CVA-models can be simulated using the prediction step of a Gaussian fil-
tering algorithm to obtain the bearing temperature estimates and associated un-
certainties over time. A simplified variant of the approach presented in [27] for
Bayesian model averaging is applied to combine the model predictions.

The model average is given by the mixture of the individual model predictions,
where the mixture weights are chosen to maximize the likelihood of the result-
ing predictions. This is not a true Bayesian model average as there is no prior
distribution on the models or their parameters - but it is a simple and effective
method. Similarly to in [27], independence of all forecast errors will be assumed.
As is noted in [27], this is not likely to hold, but is unlikely to significantly impact
the resulting mixture weighting. Similarly to as in [17], the mixture distribution
will be further approximated by a Gaussian with the mixture mean and variance.
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Denoting the model yielding the following constrained optimization problem,

argmax
w1,w2

`(D|w1, w2)' argmax
w1,w2

∑

∀k

log N (TB,k;µk,σk)

s.t.

µk =
∑

i∈(1,2)

wi yi,k

σk =
∑

i∈(1,2)

wi(y
2
i,k + Pyi ,k −µ

2
k)

w1 +w2 = 1, 0≤ w1, 0≤ w2

(5.13)

Due to the constraints on wi and small number of mixture entries, this can be
solved quite easily. A grid search (with steps spaced with 0.01) over w1 was used
to do so. It was found that the predictions were still overconfident, so they were
then post-processed by including an additional inherent noise given by a constant
standard deviation - similarly to in [18]. Both the grid search and computation of
the additional inherent noise were performed over the training data. As maximum
likelihood estimation is prone to over-fitting, using a hold-out validation set would
in general be preferable. However, since the predictive errors were similarly dis-
tributed over time for a given turbine, doing so would not have made much of a
practical difference in this case. For larger mixture sizes (or if a Gaussian output
approximation is not suitable), the iterative approach described in [27] is more
suitable.

5.5.4 Neural Network Models

The inclusion of a nonlinearity and bias for the linear models improved predictive
performance. To further iterate on this, a black-box nonlinearity such as a neural
network can be a suitable approach. This can enable us to model Equation (5.6)
more accurately, as nonlinear relations between the inputs can be learned.
The process of developing neural networks for this purpose spanned a large por-
tion of the semester. Part of the reason for this is that a) the Hammerstein nonlin-
earity and bias addition, and b) system identification with CVA yielded surprisingly
good results. Obtaining results comparable or better than the CVA models proved
surprisingly challenging. An in-depth documentation of all the approaches that
were attempted would yield a far too broad scope. In order to motivate the meth-
ods used in the end, some approached that were attempted but were not used in
the end will first be briefly covered.

Static feedforward models were briefly tested. As the wind turbine temper-
ature is dissipative, the current temperature should be possible to approximate
as a function of a sliding window of previous input measurements. These were
found to yield too noisy predictions in practice - likely a result of large variations
in the turbine generator speed and power output between time steps. This incudes
variants based on convolutional networks.
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It was found that single-step-optimized autoregressive neural networks (which
have been used by Kongsberg Digital) did not improve upon the system identification-
based models. This can be explained by the improvement in performance from the
Hammerstein nonlinearity and bias. The same was observed for extreme learning
machines, which is a neural network variant that is optimized using a kernel re-
gression algorithm [101].

Recurrent neural networks such as LSTMs have been applied successfully to
model complex time series [10] [18]. They were not used due to previous ob-
servations: More specifically that CVA-2 did not significantly outperform CVA-1
for other turbines. This indicated that a recurrent neural network with multiple
hidden internal states could likely yield an unnecessarily complex model for the
given purpose.

Optimization on Prediction Horizons

The distinguishing difference between the initial least squares’ approach and the
system identification algorithms is optimization on prediction horizons rather than
single-step optimization. As this improves simulation performance for linear sys-
tems, applying similar methods for neural networks is reasonable. Instead of op-
timizing the network on the output from a single step, one can recursively apply
the model to predict a trajectory, and optimize on the entire trajectory.

As such, it was chosen to i) keep the vector field representation used by the lin-
ear models, but ii) optimize it on long horizon trajectories rather than single step
predictions. In practice, this yields a model similar to the neural ordinary differen-
tial equations considered in [37] (though given in terms of difference equations).

Incorporating uncertainty estimates into such models spawned the idea of
learning process noise in addition to the process dynamics, using Deep Ensembles
[17]. However, simulating these stochastic vector fields requires propagating un-
certainty through them (since even if the first input is deterministic, the output
that the next prediction will be based on is stochastic). As a bearing temperature
model will be dissipative, the assumption of a Gaussian probability distribution
for the temperature seems reasonable: A similar assumption is e.g. imposed in
[27].

The method in Section 3.1 was then developed. The approach resulting from
this is outlined in Section 3.2.

Bearing Temperature Stochastic Neural Difference Equation

As described in Section 3.2, the neural networks model a state transition with a
diffusion term. This yields networks which jointly model the bearing temperature
change, and the uncertainty in the predicted change. Rewriting Equations (3.24)
to (3.27) in terms of the bearing temperature, this can be expressed as,
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xk+1 = xk + fθ (xk, uk) +wθ ,k, (5.14)

TB,k = xk + vk, (5.15)

wθ ,k ∼N (0,Qθ (xk, uk)) (5.16)

vk ∼N (0, Rk) (5.17)

Just as in Section 3.2, the process dynamics fθ are given by the predictive mean
of a neural network with uncertainty estimation, and the process noise wθ ,k ∼
N (0,Qθ (xk, uk)) has variance given by the predictive variance of the same neural
network.

Optimizing on the simulation output estimates also requires estimating or
learning the noise in the bearing temperature sensor. To limit complexity it was
chosen to estimate it, based on the IEC 60751:2008 standard [102] for temper-
ature sensors. Standard B class platinum resistance thermometers (see e.g. the
WIKA IN 00.17 data sheet [103]) have a tolerance of ±(0.30+0.005|t|)K, where
|t| is the absolute value of the temperature in ◦C and K is degrees Kelvin. Assum-
ing an operating temperature of 50◦C this gives ±0.55K. This is approximated as
an additive white noise term v with zero mean and standard deviation 0.18K.

DE

The ensemble consists of 4 networks, each with a single hidden layer of 16 nodes.
The output layer has two nodes (predictive mean and variance). This is the same
structure as shown in Figure 3.2. It is optimized using the AdaBound optimzer
[3]. Full details are given in Table 5.2. The structure of the network is as shown in
Figure 3.2. It has the same input vector as LS-H. The motivation behind including
the quadratic term is that it is a complex function to learn for a small network
with a single hidden layer.

MCD

The Monte Carlo dropout network has a single hidden layer with 12 hidden nodes.
The output layer has a single hidden node (as the inherent noise is a constant).
This is the same structure as shown in Figure 3.3. It is optimized using the Ad-
aBound optimzer [3]. Full details are given in Table 5.3. The structure of the
network is as shown in Figure 3.3. Like DE, the MCD network has the same input
vector as LS-H.
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Hyperparameter Value

Loss Simulation mean NLL
Training Sequence Length 20
Minibatch Size 8
Minibatch Iterations 11500
AdaBound Learning rate 5× 10−4

AdaBound Final Learning rate 1× 10−7

AdaBound Gamma 1× 10−8

Ensemble size 4
Hidden nodes 16
Activation Function 2tanh(x)
Variance Rectifier Softplus: ln(1+ ex)
Dropout 0.05
Training simulation Algorithm 3

Table 5.2: Deep Ensemble Neural Network Hyperparameters: The settings
used for training the Deep Ensemble network wind turbine model. Note that dro-
pout was only active when training, not during evaluation.

Hyperparameter Value

Loss Simulation MSE + Parameter L2 reg.
Training Sequence Length 32
Minibatch Size 8
Minibatch Iterations 16000
AdaBound Learning rate 5× 10−4

AdaBound Final Learning rate 1× 10−7

AdaBound Gamma 1× 10−8

Hidden nodes 12
Activation Function 2tanh(x)
Dropout 0.1
τ (inverse normalized variance) 1000
l 1× 10−2

T 50
Training simulation Forward pass with Dropout

Table 5.3: Monte Carlo Dropout Neural Network Hyperparameters: The set-
tings used for training the Monte Carlo dropout network wind turbine model.

Optimizer Selection, Architecture Selection and Parameter Identification

The L-BFGS optimizer in PyTorch was tested, but it was found that it failed to
converge. It was chosen to use AdaBound instead, due to previous experience
with it.
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Determining the architecture for the neural networks was somewhat challen-
ging. The networks are rather small (especially the Monte Carlo dropout-based
network). Determining their sizes, activation functions and other parameters was
an iterative process which was performed manually.

Hidden layer sizes were chosen to be as small as possible without degrading
predictive performance. As the DE-networks have two outputs, its networks re-
quired a larger hidden layer than the MCD-network. The activation function was
chosen due to it being symmetric and centered about 0. A smooth rectifier (soft-
plus) was tested as well, but this did not yield good results.

The neural network models were optimized as outlined in Section 3.2, using
Algorithm 4 and Algorithm 5. Checkpointing was used when optimizing, rather
than early stopping. The parameters used for evaluation in Section 5.6 are from
the checkpoint where the model’s MSE was the lowest on the validation data - and
the Minibatch Iterations noted in Tables 5.2 and 5.3 are the number of optimization
steps that had been performed at this point.

The motivation for checkpointing was previous observations from training dy-
namic neural network models: That the validation performance may plateau tem-
porarily. This likely ties into that optimization is performed on relatively short time
sequences, whereas validation is performed on a long sequence. A small localized
model error might yield significantly decreased validation results, but encounter-
ing this situation during training may be rare.

5.6 Model Evaluation Overview and Criteria

All the models are first quantitatively evaluated on two distinct cases: Simulation,
and filtering. Following these two cases, we consider a qualitative comparison of
what the models have learned. This focuses on DE, MCD and CVA-1, where we look
into the vector field representations of these models and the uncertainties learned
by the neural networks.

5.6.1 Case A: Simulation

For simulation, the true temperature of the main bearing is not assumed to be
known by the models. This means that they are predicting in dead-reckoning, for
long time horizons. The evaluation data for WTUR1 spans January 1, 2018 - June
1, 2018 (inclusive), so it is chronologically after the training data. The evaluation
data for the other turbines spans January 1, 2017 - June 1, 2018 (inclusive).

When applying the models for simulation on other turbines, it was observed
that the predictive performance declined significantly. A bias correction is there-
fore performed, which compensates some for this. This is a post-processing step
that uses the first 28 days of measurements in 2017.
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5.6.2 Case B: Filtering

When filtering, the models obtain measurements sequentially. They predict the
turbine bearing temperature one step ahead. The data spans the same time ranges
as given in Section 5.6.1. The least squares’ models use the previous temperature
measurement directly to predict the next, as in [30]. The neural network models
use the entirety of Algorithm 2. The system identification-based models use an un-
scented Kalman filter (as it had been implemented - a conventional Kalman filter
could be used). Additionally, a naive model which simply predicts the previously
measured temperature is included in the metric tables when filtering. The BMA
model is not considered when filtering. As its predictions are given by a mixture
of the output from CVA-1 and CVA-2, it could have been computed when filtering
as well. However, as the filtering algorithms already add an additional layer of
complexity, it was chosen to not consider BMA for Case B.

Part of the evaluation when filtering is based on predicted temperature change
(steps). The steps from the Kalman filtered models are computed as T̂B,k|k−1 −
T̂B,k−1|k−1. This is the difference between their predicted bearing temperature at
step k before the measurement update, and their predicted bearing temperature at
step k−1 after the measurement update. The steps from the least squares’ models
are computed as T̂B,k−TB,k−1. This is the difference between their predicted bear-
ing temperature at step k, and the previous bearing temperature measurement.

No bias correction is performed when filtering.

5.6.3 Evaluation Criteria for Simulation and Filtering

The same evaluation criteria will be used for both of the two cases in this ex-
periment. They have been chosen in an attempt to evaluate both the predictive
accuracy (in terms of predicted mean), and the uncertainty estimate calibration
(in terms of overlap between the predicted uncertainty and empirical error).

The metrics in the evaluations are computed using the available bearing tem-
perature measurements (so if missing, they are not replaced with forward-filled
values). There isn’t a perfect overlap between missing bearing temperatures and
the missing inputs, which means that the models are using forward-filled inputs
for parts of the time steps they are evaluated on. This can be expected to degrade
accuracy - especially for the turbines with more missing measurements (notably
WTUR6). It was decided to evaluate the models in a setting that is reasonable to
implement and deploy.

The criteria used are,

1. Mean absolute error (MAE) [104]: Evaluates predictive accuracy. This
gives an indication of how inaccurate the predictions on average are. This
metric was chosen as it is easily interpretable and not overly sensitive to
outliers. Lower is better.

2. Root mean square error (RMSE) [104]: Evaluates predictive accuracy.
This gives an indication of how inaccurate the predictions are, indicating
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the standard deviation of the errors under a Gaussian assumption. Lower is
better.

3. R2 score [92]: This evaluates the predictive accuracy. The coefficient of de-
termination is a measure of how much of the target variable variation is
explained by the model. Closer to 1 is better. A score at or below 0 indic-
ates the model predictions provide no information. The baseline is a naive
model, which has the score of 0. This model predicts the mean temperature
for the simulation experiments, and the previous measured temperature for
the filtering experiments. For simulation, we consider the R2 score of the
predictions. For filtering, we consider the R2 score of the predicted steps (as
the previous temperature is known, so the R2 of the predictions would be
near 1 regardless of model accuracy).

4. Empirical coverage of predicted 95% confidence intervals: Evaluates cal-
ibration. This evaluates the predictive uncertainty by computing the per-
centage of bearing temperature measurements that fall within the 95% con-
fidence intervals a model predicts. Closer to 95% is better.

5. Expected calibration error (ECE) [90]: Covered in Section 2.3.7. Evalu-
ates calibration. This measures the average discrepancy between the pre-
dicted confidence intervals (confidence) and the empirical coverage of these
confidence intervals (accuracy). This means it is closely related to the 95%
coverage metric. Closer to 0% is better, with 50% being the worst possible
score.

In addition to these metrics, figures are used to assist in the evaluation. This in-
cludes graphs of predictions (and confidence intervals) versus measurements over
time. Additionally: Histograms of prediction errors, correlation plots of predic-
tions versus measurements, and reliability diagrams [90] (covered in Section 2.3.7).

5.6.4 Model interpretation

The models developed for predicting the wind turbine temperature are given in
terms of difference vector fields with 4 free inputs. Visualizing these vector fields
can help us interpret the models and their differences. The model interpretation
consists of a qualitative comparison of the vector fields learned by the models.
It is interesting to examine the difference between a linear model and a neural
network-based model. For this reason, we consider the bearing temperature steps
learned by CVA-1, DE and MCD. Since CVA-1 has a process noise that is constant,
it is not considered when evaluating the uncertainties. We instead look at the
uncertainties learned by DE and MCD, along with the distribution of the training
data. The bearing temperature steps correspond to fθ in Equation (5.14), and the
uncertainties correspond to the standard deviation

p

Q of wθ ,k in Equation (5.14).
To visualize the vector fields, we project them onto two of the input dimensions

while keeping the keeping the other inputs fixed to their mean value (computed
from the training data). This gives us contours of the predicted temperature change
and predictive uncertainty as a function of two of the inputs. As the bearing tem-
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perature is the quantity of interest, we will compare the model predictions as a
function of the bearing temperature and each of the other model inputs.

5.7 Results

This section describes the results from the evaluation presented in in Section 5.6.
Case A (Simulation) is covered in Section 5.7.1, Case B (Filtering) in Section 5.7.2,
and the model interpretation in Section 5.7.3. An overall summary is given in
Section 5.7.4.

For both Sections 5.7.1 to 5.7.3, a brief overview of the most important results
are first presented. Following this, the results are detailed more thoroughly.

5.7.1 Case A: Simulation

Overview

No single model consistently outperforms all others on all metrics. Though the
models with second order dynamics (BMA and CVA-2) yield the most accurate pre-
dictive means for WTUR1, they suffer more than other models when generalizing.
The neural network-based models yield more comparable results to BMA for the
other turbines. However, the calibration results are more one-sided. Overall, DE
yields more calibrated predictions than the other models.

The steady-stade offset between the temperature in WTUR2 and WTUR1 (see
Figure 5.5) is compensated for reasonably well by the 28 day bias correction (de-
scribed in Section 5.6.1). The large number of missing measurements for WTUR6
results in the models having lower predictive accuracy for it, compared to for
WTUR1.

As expected, the anomaly in the measurements from WTUR3 (see Figure 5.5)
has a severe impact on the predictions. This means that none of the models yield
acceptable predictive means for this turbine. However, there is a single model
which yields reasonable estimates for the uncertainty in the prediction: DE.

Predictive Accuracy

The mean absolute error, root mean square error, and R2 of the predictive means
are given in Table 5.4a, Table 5.4b, and Table 5.5a.

As a first note, the models in the result tables are ordered similarly to the
order they were presented in Section 5.5. The least squares’ models are at the
top, and the neural network models at the bottom. Consequently, the general
trend is that the models on the lower half of the tables yield the best results.
Tables 5.4a and 5.4b show the impact the bias term and Hammerstein nonlinear-
ity have on predictive accuracy for the least square models. The inclusions are
theoretically sensible, and improve the empirical results. This is visualized well
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in Figure 5.13, where we can see that LS-HB has significantly tighter correlation
diagrams between measurements and predictions when compared to LS.

Further, we can observe from Table 5.5a that none of the least squares’ models
outperform any of the other models on MAE, RMSE, or R2 for turbines 1, 2, and 6.
Although the differences between LS-HB and CVA-1 are not substantial, they are
still consistent. This is not surprising - we would expect a model that is optimized
on longer simulation trajectories to yield better results when evaluated on longer
simulation trajectories. The distributions of predictive errors shown in Figure 5.12
illustrate this well.

The BMAmodel yields improved results when compared to both CVA-1 and CVA-
2. This supports the well-established view that model averaging can be beneficial
for predictive accuracy [27]. The only turbine where this is not consistently the
case is WTUR3.

MCD and DE do not outperform CVA-2 and BMA in predictive accuracy for WTUR1.
However, the neural-network based models appear to generalize well when com-
pared to other models. The consequence of this is that the neural network mod-
els yield predictions of more similar accuracy to BMA for WTUR2 and WTUR6 in
terms of RMSE and MAE, as can be seen in Table 5.4. CVA-2 suffers a greater re-
duction in MAE and RMSE than CVA-1 when applied to WTUR2. This can be seen
in Tables 5.4a and 5.4b, and hints that CVA-2 has overfitted on WTUR1 to some
degree. However, the effect is not as significant when these models are applied to
WTUR6. This indicates that inclusion of higher order dynamics could possibly be
beneficial for predictive accuracy for the neural network-based models - though
generalization might pose a challenge.

From comparing Tables 5.4a and 5.4b we can observe that the predictions for
WTUR6 have significantly higher RMSE than those of WTUR1 and even WTUR2.
However, the difference in MAE isn’t as substantial. This is an indication that there
are more outliers (predictions with significant error) for WTUR6. This can at least
partially be explained by the high amount of missing input measurements for
WTUR6. It can be seen from the figures that the models tend to predict the tem-
perature in WTUR6 well, but that they at times deviate significantly. These occur-
rences will often correspond to times where one or more inputs are forward-filled,
an example of which can be seen in Figure 5.11.

It can be seen in Table 5.5a that there is still significant temperature variations
that are not explained by the models. It is not a significant surprise that none of the
models provide useful information for WTUR3: Their negative R2 values indicate
they would be (significantly) outperformed by a model that predicts the mean
temperature of WTUR3. However, this is not necessarily a bad result: Considering
that the external temperature data in WTUR3 is anomalous (see Figure 5.5), this
is a scenario we would be interested in detecting.
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Predictive Calibration

Tables 5.6a and 5.6b show the empirical coverage of 95% confidence intervals and
expected calibration error of the model predictions when simulating. The least
square’s models don’t predict confidence intervals, as can be seen in Figures 5.6a
and 5.8a. As such, they will not be mentioned further in this subsection.

DE yields significantly more calibrated uncertainty estimates than any other
model when generalizing to other turbines. The reliability diagrams in Figure 5.14
visualize this very well.

Both BMA and MCD yield reasonably calibrated predictive uncertainty estimates
for WTUR1 - in fact, they yield better estimates than DE for WTUR1. This is not
unsurprising. The data from WTUR1 used for evaluation occurs chronologically
later than the training data, but can be expected to be reasonably similar. Both
BMA and MCD have parameters which are chosen to maximize predictive calibration
on the WTUR1 training data under a Gaussian assumption.

Though BMA and MCD offer decent predictive uncertainty estimates for WTUR1,
they do not generalize well to other turbines. They are consistently outperformed
by DE on WTUR2, WTUR3, and WTUR6. The width of their predicted confidence
intervals do not vary much over time or between turbines. On the contrary, DE
predicts confidence intervals whose width varies significantly - as can be seen in
Figures 5.7, 5.9 and 5.10.

An observation that should be taken into account, is that DE is underconfid-
ent on WTUR1: It predicts too wide confidence intervals. This can be seen in
Table 5.6a. This largely explains the improvement in calibration when DE is ap-
plied on WTUR2: Similarly to BMA, its 95% confidence interval coverage is re-
duced by approximately 4 percentage points. However, this does not explain the
extreme discrepancy in calibration on WTUR3 and WTUR6 between DE and any
other model. The results in Tables 5.6a and 5.6b are a strong indication that DE
yields predictive uncertainty estimates that generalize better than the comparable
approaches used in this thesis. It is noteworthy that this observation is not unique
to this experiment [20]. Perhaps equally important, it should be stressed that the
uncertainty estimates for DE have been observed to be good also for the previous
iterations that have been developed during the work for this thesis.
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Figure 5.6: Long-Horizon Simulation of Bearing Temperature on WTUR1:
LS-HB, CVA-1 and CVA-2: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
This simulation uses data from the turbine the models were trained on, but chro-
nologically later. As in Figure 5.7, the models capture the large variations in bear-
ing temperature but not all the smaller variations (e.g. around 2018− 04− 06).
Compared to BMA in Figure 5.7a, the confidence intervals from CVA-1 and CVA-2
are tighter. This is especially evident in areas where input measurements are be-
ing forward filled and the prediction converges to an equilibrium (e.g. just after
2018− 02− 05).
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Figure 5.7: Long-Horizon Simulation of Bearing Temperature on WTUR1:
BMA, MCD, and DE: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
This simulation uses data from the turbine the models were trained on, but
chronologically later. We can recognize the models all capture the large vari-
ations in bearing temperature, but not all the smaller variations (e.g. around
2018 − 04 − 06). The confidence intervals from DE exhibit more variation over
time than those of BMA and MCD. This is very visible when input measurements
are being forward filled and the prediction converges to an equilibrium (e.g. just
after 2018− 02− 05).
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(b) CVA-1
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Figure 5.8: Long-Horizon Simulation of Bearing Temperature on WTUR6:
LS-HB, CVA-1 and CVA-2: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
These plots are from a simulation on WTUR6, which has significant amounts of
missing measurements compared to WTUR1. As in Figure 5.6, the predictions
from CVA-1 and CVA-2 compared BMA (Figure 5.9a) illustrate how model aver-
aging can improve calibration.
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Figure 5.9: Long-Horizon Simulation of Bearing Temperature on WTUR6:
BMA, MCD, and DE: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
The plots show a simulation on WTUR6. It can be observed that the width of the
confidence intervals predicted by DE tend to be greater than they were for WTUR1
in Figure 5.7c. The predictive accuracy of BMA and MCD appears qualitatively sim-
ilar to that of DE, but they do not provide accurate estimates of their predictive
uncertainty.
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Figure 5.10: Short-Horizon Simulation of Bearing Temperature on WTUR2:
BMA, MCD and DE: Measured bearing temperatures (TB) are given by the dashed
blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D confidence
intervals are given by the solid red lines and surrounding shaded area. These plots
are from a simulation on WTUR2, which has a temperature offset compared to
WTUR1. This is compensated for by the bias correction. The large variations in
the confidence interval width from DE are very visible. In comparison, BMA and
MCD yield qualitatively similar predictions.
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Figure 5.11: Visualizing the Effect of Missing Input Measurements on DE:
Measured bearing temperatures (TB) are given by the dashed black lines in the
uppermost subplot. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red line and surrounding shaded area.
The model inputs TE ,ω, and P are shown in the three lower subplots. This plot is
from a simulation on WTUR6 - similarly to in Figure 5.9c, but showing a shorter
time span. We can recognize the input measurements are missing for significant
parts of the time period shown. Forward filling is used to replace these, resulting
in sub-optimal predictive performance.
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Figure 5.12: Long Horizon Simulations: Prediction Error Marginal Distribu-
tions: Histograms showing the marginal distributions of all bias corrected model
prediction errors after simulation. Each column corresponds to a turbine, and
each row corresponds to a model. Means ±1ST D are given by the vertical lines.
Note the different x-scale for WTUR6. The bias correction compensates well for
the bearing temperature offset between WTUR2 and WTUR1. NN-MCD, NN-DE,
CVA-1, CVA-2, and BMA yield approximately equally good predictive accuracy on
WTUR2 and WTUR6. The increase in prediction error for WTUR6 compared to
WTUR1 is to some degree caused by missing input measurements during simula-
tion. This can not be compensated for by a bias correction.
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Figure 5.13: Simulation Prediction Correlation Diagrams: Correlation dia-
grams showing the measured temperature (TB) versus predicted temperature
(T̂B) of simulations. Each column corresponds to a turbine, and each row cor-
responds to a model. Predictions closer to the solid black diagonal line are better.
The predictions for WTUR3 are almost pure noise. For the other turbines, the pre-
dictions from the system identification-based and neural network-based models
appear qualitatively similar. We can recognize from the scatters that models tend
to be biased at lower bearing temperatures for WTUR1, WTUR2 and WTUR6. In-
terestingly, LS-H is the only model which does not exhibit this behaviour - though
its predictions on average appear to be far more noisy than most other models.
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Figure 5.14: Simulation Regression Reliability Diagrams: Regression reliabil-
ity diagrams showing predicted confidence interval coverage (Confidence) versus
empirical coverage of the intervals (Accuracy). Each column corresponds to a tur-
bine, and each row corresponds to a model. The model calibration curves are
given by the solid red line. The markers indicate where the coverage has been
evaluated. The coverage is given in the range [0,1], where 0 denotes no coverage,
and 1 denotes full (100%) coverage. The dashed black lines indicate optimal cal-
ibration - closer to this is better. Markers below the dashed black line indicate the
model is overconfident. Markers above the dashed black line indicate the model
is underconfident. Both BMA, DE, and MCD are underconfident on WTUR1 - most
of all DE. However, DE is significantly better calibrated than any other model on
WTUR2, WTUR3, and WTUR6.
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Model WTUR1 WTUR2 WTUR3 WTUR6

LS 2.3700 3.0749 34.7823 4.2531
LS-B 1.8517 2.0986 18.5188 2.8331
LS-H 2.2594 2.5561 31.4240 3.2679
LS-HB 1.2976 1.6540 18.0648 2.2333
CVA1 1.2956 1.5818 20.0866 2.2472
CVA2 1.1559 1.5638 18.2199 2.1464
BMA 1.1399 1.4978 19.1556 2.0900
MCD 1.2461 1.5194 12.2560 2.1373
DE 1.2705 1.5740 10.0346 2.0612

(a) Mean Absolute Error (MAE) [K]

Model WTUR1 WTUR2 WTUR3 WTUR6

LS 10.3387 16.9514 2505.7783 32.6566
LS-B 7.0183 10.3568 841.1924 22.7610
LS-H 8.5632 10.5939 2094.6558 33.4457
LS-HB 3.2180 5.8309 806.6307 14.3540
CVA1 3.1443 4.9184 873.0285 13.3859
CVA2 2.4526 5.0571 856.6162 12.2108
BMA 2.4225 4.5268 850.4112 12.0720
MCD 2.9249 4.4870 249.7213 10.9293
DE 2.6833 4.6343 201.6541 12.5213

(b) Root Mean Square Error (RMSE) [K]

Table 5.4: Wind Turbine Simulation - MAE and RMSE: Results from Sec-
tion 5.7.1 (Case A: Simulation).

Model WTUR1 WTUR2 WTUR3 WTUR6

LS 0.6371 0.5180 −75.6632 0.4111
LS-B 0.7536 0.7055 −24.7359 0.5896
LS-H 0.6994 0.6988 −63.0851 0.3969
LS-HB 0.8870 0.8342 −23.6785 0.7412
CVA1 0.8896 0.8602 −25.7099 0.7586
CVA2 0.9139 0.8562 −25.2078 0.7798
BMA 0.9150 0.8713 −25.0180 0.7823
MCD 0.8973 0.8724 −6.6401 0.8029
DE 0.9058 0.8682 −5.1695 0.7742

(a) R2 (Predictions)

Table 5.5: Wind Turbine Simulation - R2: Results from Section 5.7.1 (Case A:
Simulation)
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Model WTUR1 WTUR2 WTUR3 WTUR6

LS 0.00 % 0.00 % 0.00 % 0.00 %
LS-B 0.00 % 0.00 % 0.00 % 0.00 %
LS-H 0.00 % 0.00 % 0.00 % 0.00 %
LS-HB 0.00 % 0.00 % 0.00 % 0.00 %
CVA1 82.79 % 77.85 % 8.59 % 67.42 %
CVA2 77.60 % 64.79 % 8.38 % 58.50 %
BMA 94.49 % 90.23 % 17.13 % 82.64 %
MCD 93.01 % 88.46 % 22.22 % 80.72 %
DE 97.83 % 93.88 % 96.76 % 93.08 %

(a) Empirical Coverage of Predicted 95% Confidence Intervals

Model WTUR1 WTUR2 WTUR3 WTUR6

LS 50.00 % 50.00 % 50.00 % 50.00 %
LS-B 50.00 % 50.00 % 50.00 % 50.00 %
LS-H 50.00 % 50.00 % 50.00 % 50.00 %
LS-HB 50.00 % 50.00 % 50.00 % 50.00 %
CVA1 6.85 % 11.52 % 38.28 % 17.57 %
CVA2 10.98 % 16.62 % 37.97 % 20.28 %
BMA 3.38 % 3.23 % 35.41 % 7.27 %
MCD 1.74 % 3.82 % 33.77 % 8.80 %
DE 4.85 % 1.09 % 4.03 % 1.30 %

(b) Expected Calibration Error (ECE)

Table 5.6: Wind Turbine Simulation - Prediction Coverage and ECE: Results
from Section 5.7.1 (Case A: Simulation). The calibration curve of the models are
illustrated in Figure 5.14.
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5.7.2 Case B: Filtering

Overview

The predictive accuracy in this experiment is notably increased compared to Sec-
tion 3.2.4, which is expected. However, few models consistently outperform the
naive model. Overall, MCD, LS-H and LS yield the most accurate predictions. These
outperform the naive model in RMSE on all turbines except WTUR3.

Just as in Section 3.2.4, the anomaly in the measurements from WTUR3 (see
Figure 5.5) still has a severe impact on the predictions. This means that none of
the models yield acceptable predictive means for this turbine.

Contrary to in Section 5.7.1, none of the models yield calibrated uncertainty
estimates. CVA-1 and CVA-2 yield estimates than the other models, but it is not
consistent. The trend is that the models are under-confident - which is reasonable,
considering they are optimized for simulation rather than filtering.

Predictive Accuracy

The mean absolute error, root mean square error, and R2 of the steps of the pre-
dictive means are given in Table 5.7a, Table 5.7b, and Table 5.8a.

Whereas the results in Section 3.2.4 were largely correlated with the order
the models were developed in, this is not the case here. Perhaps most importantly,
we can observe in Tables 5.7a and 5.7b that the least squares’ models tend to
be more accurate compared to CVA-1 and CVA-2. Considering that the former are
optimized for single-step predictions and the latter are optimized for multi-step
predictions, this is not surprising. In practice, it yields a similar observation to as
in Section 5.7.1 - that the optimization criteria should be chosen based on the
context we wish to apply the model in.

There is a clear qualitative difference between the leas squares’ models and the
rest, which can be seen for LS-H in Figures 5.15 and 5.19: As LS-H predicts the next
temperature based on the previous measured bearing temperature, it does not
update an internal state when measurements are missing. As a consequence, LS-
H yields (nearly) similar predictions for long time periods when no measurements
are available.

Both LS, LS-H, and MCD yield good results. We can see in Table 5.7b that they
consistently outperform the naive model in terms of RMSE. Figure 5.21 also illus-
trates that they have significantly more accurate predictions than CVA-1 and CVA-
2. DE generalizes worse than MCD when filtering. Considering the size-difference
between the networks, this points at DE having overfitted on WTUR1.

LS-H is the model most similar to what is used by [30] for one-step-ahead pre-
dictions for wind turbine bearing temperature. The results here indicate that it is
a good choice for that purpose. However, their reported RMSE for one-step-ahead
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predictions is lower than what all of the models evaluated here (except CVA-2)
result in. This can be indicative that the sensors in the wind turbines they con-
sider have a higher noise output or are less accurate. It might also be due to slight
differences in the input features used.

Figures 5.19 and 5.20 provide an illustration of just how significant the meas-
urement anomaly in WTUR3 is. Despite filtering, none of the models yield good
predictions over time on WTUR3. Interestingly, the lack of internal state update
in LS-H when measurements are missing proves beneficial in this case. This can
for instance be seen in in Figures 5.19a and 5.19b, just after 2018-02-05. LS-H
predicts a temperature close to the previous measurements whereas CVA-1 pre-
dicts a rapid increase in bearing temperature once no measurement updates are
available.

We can recognize from Table 5.8a that the models offer far less information for
this case in comparison to Section 5.7.1, where no bearing temperature measure-
ments were available. This is not a very large surprise. The regressors used by the
models are indicative of the direction in which the temperature will change. How-
ever, when the temperature is close to an equilibrium, the unmodeled phenomena
will govern the fine-grained details in the temperature evolution. As can be seen
from Figure 5.22, the predicted temperature steps do tend to be correlated with
the measured temperature steps - but not perfectly.

A common challenge with one-step-ahead predictors is that they behave like a
naive model (i.e. predict the previous value). This will give a prediction time series
which is mostly identical to the measurement time series, but shifted a single time
step. Figures 5.17 and 5.18 are included to examine this.

Judging by the (admittedly very short) time span shown there, LS-H, MCD, and
DE appear to to provide more informative predictions than CVA-1 and CVA-2. This
corresponds well with their RMSE values in Table 5.7b. Interestingly, the R2 values
of CVA-1’s steps in Table 5.8a are similar to those of MCD, and better than those
of DE. This likely ties into the uncertainties in the model predictions, which can
be seen in Figures 5.15b, 5.15c, 5.16a and 5.16b. Higher predictive uncertainty
in the neural network predictions will result in the Kalman filter compensating
more. This means the inner state of the neural network models are likely closer to
the previous measured bearing temperature after the Kalman update than CVA-1
is. As a consequence, DE yields lower RMSE than CVA-1 despite not predicting as
informative steps.

Predictive Calibration

Tables 5.9a and 5.9b show the models’ 95% confidence interval coverage and
expected calibration error.

Compared to in Section 3.2.4, the models are worse calibrated. Looking at
Figure 5.23, we can recognize the confidence intervals predicted by DE and MCD
during filtering are not of any use. This is the case for CVA-1 and CVA-2 as well.
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Though CVA-2 is reasonably calibrated on WTUR2, it does not generalize between
the turbines. This can be seen in Table 5.9b.

The lack of calibration can be explained by the models being optimized for
simulation rather than filtering: The process uncertainties from all models were
found based on their simulation performance. Just like the least squares’ models
that are optimized on single step predictions perform suboptimally in Case A (Sec-
tion 5.7.1), the models optimized on longer trajectories tend to give supoptimal
predictions here.
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Figure 5.15: Short-Horizon Filtering of Bearing Temperature on WTUR2: LS-
H, CVA-1 and CVA-2: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
These plots are from a filtering on WTUR2, which has a temperature offset com-
pared to WTUR1. No bias correction is performed.
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Figure 5.16: Short-Horizon Filtering of Bearing Temperature on WTUR2:
MCD and DE: Measured bearing temperatures (TB) are given by the dashed blue
lines. Predicted bearing temperatures (T̂B) along with ±3ST D confidence inter-
vals are given by the solid red lines and surrounding shaded area. These plots are
from a filtering on WTUR2, which has a temperature offset compared to WTUR1.
No bias correction is performed.
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Figure 5.17: Very Short-Horizon Filtering of Bearing Temperature on WTUR6:
LS-H, CVA-1 and CVA-2: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
These plots are from a filtering on WTUR6, which has significant amount of miss-
ing measurements. No bias correction is performed.
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Figure 5.18: Very Short-Horizon Filtering of Bearing Temperature on WTUR6:
MCD and DE: Measured bearing temperatures (TB) are given by the dashed blue
lines. Predicted bearing temperatures (T̂B) along with ±3ST D confidence inter-
vals are given by the solid red lines and surrounding shaded area. These plots
are from a filtering on WTUR6, which has significant amount of missing meas-
urements. No bias correction is performed.



88 E. E. Vesterkjær: Grid-based U.P. and Neural Networks with U.E.

2018-01-06 2018-02-05 2018-03-07 2018-04-06 2018-05-06 2018-06-05

270

280

290

300

310

D
eg

re
es

[K
]

T̂B ± 3STD
TB Measured

(a) LS-H

2018-01-06 2018-02-05 2018-03-07 2018-04-06 2018-05-06 2018-06-05

270

280

290

300

310

D
eg

re
es

[K
]

T̂B ± 3STD
TB Measured

(b) CVA-1

2018-01-06 2018-02-05 2018-03-07 2018-04-06 2018-05-06 2018-06-05

270

280

290

300

310

D
eg

re
es

[K
]

T̂B ± 3STD
TB Measured

(c) CVA-2

Figure 5.19: Long-Horizon Filtering of Bearing Temperature on WTUR3: LS-
H, CVA-1 and CVA-2: Measured bearing temperatures (TB) are given by the
dashed blue lines. Predicted bearing temperatures (T̂B) along with ±3ST D con-
fidence intervals are given by the solid red lines and surrounding shaded area.
These plots are from a filtering on WTUR3, which has anomalous external tem-
perature measurements. No bias correction is performed.
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Figure 5.20: Long-Horizon Filtering of Bearing Temperature on WTUR3:
MCD and DE: Measured bearing temperatures (TB) are given by the dashed blue
lines. Predicted bearing temperatures (T̂B) along with ±3ST D confidence inter-
vals are given by the solid red lines and surrounding shaded area. These plots are
from a filtering on WTUR3, which has anomalous external temperature measure-
ments. No bias correction is performed.
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Figure 5.21: One-Step-Ahead Filtering Errors: Histograms showing the mar-
ginal distributions of the model one-step-ahead prediction errors when filtering.
This is the scenario from Case B Each column corresponds to a turbine, and each
row corresponds to a model. Means ±1ST D are given by the vertical lines. Com-
pared to in Section 5.7.1 the predictive errors when filtering are much more
densely distributed - as is to be expected.
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Figure 5.22: Filtering Step Correlation Diagrams: Correlation diagrams show-
ing the steps in measured temperature (∆TB) versus predicted steps (∆T̂B) of
one-step-ahead predictions. Each column corresponds to a turbine, and each row
corresponds to a model. Predictions closer to the solid black diagonal line are
better. The models that yield the best results in Table 5.7 appear to have the least
vertical spread in the correlation plots here. Remark that whereas Figure 5.13
shows the correlation between predictions, this figure shows the correlation in the
steps. Interestingly, the predictions from CVA-2 and DE appear better correlated
than MCD for edge-cases, but have significantly more vertical spread on average.
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Figure 5.23: Filtering Regression Reliability Diagrams: Regression reliability
diagrams showing predicted confidence interval coverage (Confidence) versus em-
pirical coverage of the intervals (Accuracy) of one-step-ahead predictions. Each
column corresponds to a turbine, and each row corresponds to a model. The
model calibration curves are given by the solid red line. The markers indicate
where the coverage has been evaluated. The coverage is given in the range [0, 1],
where 0 denotes no coverage, and 1 denotes full (100%) coverage. The dashed
black lines indicate optimal calibration - closer to this is better. Markers below the
dashed black line indicate the model is overconfident. Markers above the dashed
black line indicate the model is underconfident. In comparison to Figure 5.14, DE
and MCD yield far worse calibration when filtering. The models tend to yield un-
derconfident predictions in this case - aside from on WTUR3. Interestingly, CVA-1
and CVA-2 yield better calibrated predictive uncertainty than DE and MCD. This is
not very surprising, considering they predict the tightest confidence intervals in
Section 5.7.1, which can e.g. be seen in Figures 5.8b and 5.8c. Still, the calibration
is not nearly as good as DE has in Section 5.7.1.
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Model WTUR1 WTUR2 WTUR3 WTUR6

Naive 0.1159 0.1207 0.1243 0.1420
LS-1-Step 0.1076 0.1408 1.6047 0.1680
LS-B-1-Step 0.1167 0.1814 1.6854 0.1870
LS-H-1-Step 0.0930 0.1010 1.5123 0.1131
LS-HB-1-Step 0.0926 0.1484 1.6315 0.1455
CVA1-KF 0.1380 0.1843 1.9171 0.2049
CVA2-KF 0.1537 0.2877 3.8386 0.2767
MCD-KF 0.0980 0.1287 0.5304 0.1381
DE-KF 0.0960 0.1594 1.2162 0.1481

(a) Mean Absolute Error (MAE) [K]

Model WTUR1 WTUR2 WTUR3 WTUR6

Naive 0.0703 0.0808 0.0735 0.1095
LS-1-Step 0.0598 0.0793 4.0946 0.1058
LS-B-1-Step 0.0664 0.1019 4.3632 0.1282
LS-H-1-Step 0.0548 0.0655 3.7073 0.0932
LS-HB-1-Step 0.0543 0.0813 4.1237 0.1014
CVA1-KF 0.0629 0.1082 9.4713 0.1444
CVA2-KF 0.0612 0.1797 26.8938 0.2215
MCD-KF 0.0420 0.0796 1.0938 0.1008
DE-KF 0.0384 0.0929 2.7443 0.1260

(b) Root Mean Square Error (RMSE) [K]

Table 5.7: Wind Turbine Filtering - MAE and RMSE: Results from Section 5.7.2
(Case B: Filtering).

Model WTUR1 WTUR2 WTUR3 WTUR6

Naive 0.0000 0.0000 0.0000 0.0000
LS-1-Step 0.3215 0.0181 −122.5148 0.0650
LS-B-1-Step 0.0659 −0.4823 −130.7144 −0.4222
LS-H-1-Step 0.4891 0.3101 −110.7246 0.3239
LS-HB-1-Step 0.4847 −0.0413 −123.4234 0.1395
CVA1-KF 0.5706 0.3173 −39.3820 0.4715
CVA2-KF 0.4586 −0.0894 −168.0358 0.0225
MCD-KF 0.5679 0.3078 −5.0804 0.5032
DE-KF 0.5623 0.0386 −42.5079 0.2320

(a) R2 (Steps)

Table 5.8: Wind Turbine Filtering - R2 of Predicted Steps: Results from Sec-
tion 5.7.2 (Case B: Filtering).
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Model WTUR1 WTUR2 WTUR3 WTUR6

Naive 0.00 % 0.00 % 0.00 % 0.00 %
LS-1-Step 0.00 % 0.00 % 0.00 % 0.00 %
LS-B-1-Step 0.00 % 0.00 % 0.00 % 0.00 %
LS-H-1-Step 0.00 % 0.00 % 0.00 % 0.00 %
LS-HB-1-Step 0.00 % 0.00 % 0.00 % 0.00 %
CVA1-KF 98.95 % 98.88 % 1.36 % 97.02 %
CVA2-KF 99.54 % 96.72 % 0.07 % 92.87 %
MCD-KF 99.84 % 99.84 % 96.78 % 99.47 %
DE-KF 99.97 % 99.95 % 99.93 % 99.94 %

(a) Empirical Coverage of Predicted 95% Confidence Intervals

Model WTUR1 WTUR2 WTUR3 WTUR6

Naive 50.00 % 50.00 % 50.00 % 50.00 %
LS-1-Step 50.00 % 50.00 % 50.00 % 50.00 %
LS-B-1-Step 50.00 % 50.00 % 50.00 % 50.00 %
LS-H-1-Step 50.00 % 50.00 % 50.00 % 50.00 %
LS-HB-1-Step 50.00 % 50.00 % 50.00 % 50.00 %
CVA1-KF 21.69 % 14.31 % 40.69 % 13.13 %
CVA2-KF 19.57 % 4.41 % 40.89 % 6.99 %
MCD-KF 26.86 % 21.65 % 22.02 % 20.95 %
DE-KF 33.05 % 27.47 % 26.92 % 30.44 %

(b) Expected Calibration Error (ECE)

Table 5.9: Wind Turbine Filtering - Prediction Coverage and ECE: Results from
Section 5.7.2 (Case B: Filtering). The calibration curve of the models are illus-
trated in Figure 5.23.
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5.7.3 Model Interpretation

Overview

The features learned by the neural networks tend to be stronger than the features
learned by CVA-1. Though not identical, the temperature dynamics learned by
DE, MCD and CVA-1 are overall similar. The uncertainties learned by the neural
networks are inversely correlated with the density of the training data. Though
not identical between MCD and DE, their contours are reasonably similarly shaped.

What separates the temperature models?

Figure 5.24 compares the temperature dynamics learned by DE, MCD, and CVA-1.
The contour plots indicate that the neural networks learn stronger features than
the linear model does. The largest differences appear to be for the generator speed
ω. We can recognize that the models have all learned vector fields that are physic-
ally sensible: The contours all indicate that an increased the bearing temperature
will result in larger temperature drops each time step. MCD has very jagged con-
tours - a consequence of the bimodal distribution over the parameters and the
small network size. As 100 forward passes are done at each input coordinate, this
might not be simple to mitigate.

The negative correlation between power output P and bearing temperature
change is interesting. It likely ties into the correlation between generator speed
and power output: The wind energy that isn’t converted to electrical energy is
dissipated. For a given generator speed, a lower power output will lead to larger
heat fluxes into the main bearing.

Overall, the differences between the models aren’t enormous. The neural net-
works have learned stronger features - especially DE - but the overall relations
between inputs and predicted bearing temperature change are similar.

What Uncertainties have the Neural Networks Learned?

Figure 5.25 compares the predictive uncertainty learned by DE and MCD, along
with the density of the training data. The uncertainties are given in terms of the
predictive uncertainty standard deviation - which is the square root of their output
process noise variance Q for each input combination. Similarly to in Section 5.7.3,
the contours from MCD are jagged.

Figure 5.25 provides us some insight on the predictive uncertainty learned by
the networks. The uncertainty tends to be negatively correlated with the training
data density, which is reasonable: The networks will learn the dynamics better for
areas of the input space to which they are more exposed. We can recognize that
DE yields the larger variations in predictive uncertainty, as it learns the inherent
noise as a function of the inputs. Variations in the uncertainty of MCD are only due
to the uncertainty in the model parameters. Though magnitudes and finer details
differ between the models, the uncertainty contours have similar shapes.
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Figure 5.24: Bearing Temperature Change Contours: The contour plots show
the predicted temperature change ∆TB as a function of the current bearing tem-
perature TB (along the x-axes) and an additional input (along the y-axes). Each
column corresponds to a model. Each row corresponds to an input: External tem-
perature TE at the top, generator speed ω in the middle, and power output P at
the bottom. The dotted contour lines (with blue background color) indicate the
bearing temperature is predicted to drop. The continuous contour lines (with red
background color) indicate the bearing temperature is predicted to rise. As each
row shows the different models’ predictions for the same combination of inputs,
we can expect them to be reasonably similar.
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Figure 5.25: Predictive Uncertainty Contours and Training Data Distribution:
The contour plots show the uncertainty

p

Q in the predicted temperature change
as a function of the current bearing temperature TB (along the x-axes) and an
additional input (along the y-axes).

p

Q is the standard deviation of the predicted
process noise. Each row corresponds to an input: External temperature TE at the
top, generator speedω in the middle, and power output P at the bottom. The two
first columns show the uncertainty contours of the neural networks. The rightmost
column shows the joint distribution of the training data in terms of the bearing
temperature and the additional input given by the row. The contour lines (and
the background color shade) indicate the magnitude of the predictive uncertainty.
Remark how the predictive uncertainties in each row tend to be lower where the
data distribution in the same row is denser.
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5.7.4 Summary of Results

Table 5.10 gives a very brief summary of the results from simulation and filtering.

Though the context will dictate what model is optimal, the trend is that the
neural network models were slightly more versatile than the linear models: Out-
performing the least-squares’ models when simulating, and yielding better results
than the system identification-based models when filtering. In addition to this, the
neural network-based models generalized surprisingly well when applied to other
turbines. Aside from that, model averaging consistently improved predictive per-
formance and predictive uncertainty calibration of the system identification-based
models when simulating. This indicates it can be a useful approach to obtain im-
proved predictions when multiple models are available.

DE yielded significantly better calibrated uncertainty estimates than the other
models when simulating on new turbines. No models offered calibrated predictive
uncertainty estimates then filtering.

The results demonstrate the importance of having a similar training environ-
ment and operation (evaluation) environment for maximizing performance. Mod-
els optimized for simulation tend to yield good results for simulation - and models
optimized for one-step-ahead predictions tend to yield good results for one-step-
ahead predictions.

The predictive uncertainty of both MCD and DE are negatively correlated to
the density of the training data. The uncertainties predicted by DE have larger
variations in magnitude. This is due to DE learning the inherent noise in the un-
certainty as a function of its inputs.

Simulation Filtering

Accuracy BMA, MCD, CVA-2, DE LS-H, MCD
Calibration DE -

Table 5.10: Overview of Wind Turbine Experiment Results: A brief overview
of which models yielded better results for the two cases in Section 5.6.
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Discussion

6.1 A Retrospective View on Wind Turbine Modeling

The work related to Chapter 5 has spanned the entirety of the semester. We there
show how the methods presented Chapter 3 can be applied for a real-world case.
The implementations considered iterate on what has been explored by previous
authors for similar modeling tasks.

It’s interesting that it appears feasible to obtain reasonably calibrated uncer-
tainty estimates when simulating the turbine bearing temperatures. Though the
models are experimental, this result shows that the notion of learning both turbine
dynamics and their uncertainty is realistic. This can prove very useful: It indicates
we can apply a model on new turbines and obtain trustable confidence intervals
for the turbine bearing temperature, after a simple bias correction.

As improved data handling significantly increased predictive performance, it
is likely that better pre-processing techniques can yield further improvements. In
retrospect, focusing primarily on a real-world case when developing the methods
might not have been an ideal choice. Distinguishing between unsuitable methods
and inaccuracies stemming from the data quality has at times been challenging.
However, the benefit of the wind turbine experiment is that it shows the methods
from Chapter 3 are actually applicable in a real-world scenario.

Though the primary focus of this thesis is angled towards neural networks
with uncertainty estimation, a major benefit of the traditional system identific-
ation approaches considered in Chapter 5 is that they are well-established and
quick to employ. As implementations are readily available, system identification
can enable rapid model identification with limited effort required. This makes
them a versatile and useful option - especially when taking into account the value
of time.

The results from the various linear model iterations in Chapter 5 demonstrate

99



100 E. E. Vesterkjær: Grid-based U.P. and Neural Networks with U.E.

how much impact small changes in a model can have. These changes were primar-
ily motivated by the physics which govern the system in question. This yields a
positive observation: A high level understanding of governing physics can make it
far easier to make sensible modeling decisions - also when the parameter identi-
fication is data-driven. Although exact equations might not be possible to derive,
they can often be feasible to approximate for physical processes. This enables us
to make good choices on what information to feed to a model in order to facilitate
learning and minimize its complexity.

6.2 The Relevance of Grid-Based Uncertainty Propaga-
tion

Grid-based uncertainty propagation through machine learning models that have
a variable output uncertainty is theoretically grounded and feasible to implement.
This opens up interesting new possibilities, such as using neural networks to rep-
resent both system dynamics and process noise in a state space formulation.

In general, grid-based uncertainty propagation methods are very suitable for
filtering when sensor measurements are available. This is also the case for long-
horizon simulations of dissipative systems, as in Chapter 5. Long-horizon simula-
tions for a general system with a higher-dimensional state space might not be as
ideal: The system cannot be reasonably assumed to maintain a Gaussian (or near-
Gaussian) state probability distribution over time. This will however be system-
dependent, as seen in Chapter 4. A reasonable approach for accurate predictions
with a multivariate system might be to switch to a Monte Carlo simulation when
simulating, and use grid-based methods when filtering.

The uncertainty propagation method used in this thesis builds upon existing
grid-based uncertainty propagation algorithms. As a consequence, its accuracy is
subject to the accuracy of the underlying algorithm being used. This means that
for complex dynamics, higher accuracy might be achievable by employing higher
order grid-based propagation methods. However, it’s possible that this could be
negated by inaccuracy stemming from the Gaussian assumption.

Grid-based uncertainty propagation methods can yield high-accuracy results
with significantly lower computational requirements than a Monte Carlo simu-
lation. However, they will not be suitable for all use-cases, as they impose as-
sumptions on the uncertainty distributions. Still, being derivative-free, they are
applicable for systems where gradients are not available and alternative methods
such as linearization is not possible. Even in cases where linearization is possible,
grid-based methods can in general be expected to yield the more accurate results.
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6.3 Representing Process Dynamics and Process Noise with
Neural Networks

The primary experiment considered in this thesis indicates it’s possible to learn
system dynamics and associated uncertainties using neural networks. However,
it does not guarantee the approach is applicable for more general systems. This
includes systems with higher order dynamics or multiple hidden states. More thor-
ough experimentation with the method would have been desirable, but the scope
of the thesis was already broad. However, the overall approach appears prom-
ising. It’s beneficial that it’s interpretable both in terms of traditional modeling
techniques and recent advances in neural networks. This indicates it could prove
a sensible way to employ machine learning models with uncertainty estimation
for common control engineering tasks.

The two neural network models used in this thesis - based on Monte Carlo
dropout and Deep Ensembles - each have strength and drawbacks. The main ex-
periment indicates that learning a lower bound on the process uncertainty as a
function of model inputs is beneficial, though this requires a larger parameter
count. This corresponds with results in existing research. In addition, the res-
ults indicate that optimizing directly on error in predictive mean is necessary to
maximize predictive accuracy. This is not surprising, but can make it challenging
to directly apply certain uncertainty estimation techniques for neural networks
when representing dynamics. It’s possible to combine the two uncertainty estim-
ation methods employed in the thesis. This could enable us to leverage each of
their strengths.

Process output measurement noise was not learned by the networks employed
in this thesis, but approximated based on a data-sheet. This was likely not an ideal
choice, and including the sensor characteristic as a learnable parameter in the
models could improve the uncertainty estimates. Aside from this, it was observed
that uncertainty estimation suffered when filtering, as the networks are optimized
to predict their uncertainty when simulating. A possible approach to combating
this could be to include context as an input feature to the model, to indicate if it’s
currently used for simulation or filtering. This could potentially compensate for
the models being under-confident when applied for filtering.

Though the implementations used in the thesis are experimental, they hint
at exciting potential. System models that generalize well and estimate their un-
certainty are an enticing concept well suited for industrial application. Even if the
networks used don’t individually perform optimally on all accounts, this can likely
be mitigated by fusing the methods. It appears that formulating a neural network-
based system model capable of jointly learning highly accurate dynamics and cal-
ibrated uncertainty estimates is achievable - but not entirely straightforward.
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6.4 Are Uncertainty Estimates Necessary?

Machine learning and artificial intelligence are becoming widespread. We cannot
expect a user interacting with a machine learning-based system to have an in-
depth knowledge of its inner workings. Likewise, we cannot expect them to have
a full understanding of the ways in which its predictions can fail. A machine learn-
ing algorithm with calibrated predictive uncertainty estimates can enable users to
make informed decisions without necessitating a complete understanding of its
inner mechanics. Similarly, they can enable an algorithm to contain an error be-
fore it causes a failure. In a sense, calibrated uncertainty estimates can add some
degree of transparency to a ’black-box’ algorithm. However, the utility of this re-
lies fully on the accuracy of said estimates.

Although the models considered Chapter 5 are simple, they illustrate import-
ant challenges that uncertainty estimation can bring. Including uncertainty estim-
ation in an algorithm arguably shifts the responsibility of making critical judge-
ment on its output away from humans. This can have severe safety implications
if important decisions are made based on inaccurate or downright wrong uncer-
tainty estimates. Looking at model predictions in context of the ground truth, we
can judge their validity reasonably well. However, for successful large scale un-
certainty estimation, we need to know in advance that the uncertainty estimates
are reliable.

Some methods for uncertainty estimation in neural networks are very prom-
ising. Incorporating uncertainty estimation in a system can provide useful inform-
ation for making decisions and evaluating system performance. Just as any other
method, the context will dictate whether uncertainty estimation is necessary. You
want your car autopilot to be fail-safe. It isn’t as critical if your phone’s voice as-
sistant performs a wrong action because it didn’t ask you to repeat yourself. If
uncertainty estimation is included in an algorithm, it’s crucial that it provides cal-
ibrated uncertainty estimates or that the calibration curve (reliability diagram)
is known. Otherwise, the downsides of incorporating it will likely outweigh the
benefits, as users can be presented with false guarantees of trustworthiness.
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6.5 Future Work

To iterate on the model representation from Section 3.2, looking into higher or-
der process dynamics could be useful. This would make the approach applicable
for a far wider variety of processes. Further, it could be of interest to apply a
combination of the uncertainty estimation methods used for the neural networks
(or entirely new methods) in order to further improve on the models’ predictive
quality. In addition to this, it’s possible that uncertainty estimate calibration when
filtering could be improved by including the context (filtering or simulating) as a
model input feature. This would only require small changes, but could be interest-
ing to look into. As the approach from Section 3.2 is similar to Gaussian Process
dynamic state space models, it’s possible that methods already employed there
could be borrowed to improve the approach.

Many processes have non-Gaussian noise, and learning this could be useful for
fine-tuning predictive uncertainty. This could likely be parametrized by a neural
network output, similarly to how Gaussians are parametrized by the neural net-
works used in this thesis.

Adding soft constraints to neural network optimization criteria has been ex-
plored by previous authors. It would be interesting to look into whether physically
motivated constraints such as passivity and input-to-state stability can be benefi-
cial when learning system dynamics and uncertainty.

Lastly, it would be interesting to explore smoothing algorithms for the models
considered in this thesis. They could possibly be suitable for limiting the effect
of missing data points both when learning dynamics and when performing infer-
ence.





Chapter 7

Conclusion

In this master’s thesis, we have shown how we can extend common grid-based
uncertainty propagation methods in order to apply them on neural networks with
predictive uncertainty estimation. We have then demonstrated how this can be
applied to formulate a Gaussian filtering algorithm applicable for process models
with variable output uncertainty. Further, we have shown how this can be applied
to learn and estimate the uncertainty in a dynamical system model represented
by a neural network.

These methods are then used to develop dynamical models for the main bear-
ing temperature of a specific type of wind turbine using real data. When applying
these models on new wind turbines, their predictive accuracy is comparable to
a Bayesian model average of two system identification-based models. Further, it
appears these methods can be capable of providing much improved uncertainty es-
timate calibration when simulating on new turbines - though a trade-off between
predictive accuracy and calibration was observed for the models used. When ap-
plied for filtering, the neural network-based models outperform the models iden-
tified using a system identification algorithm. Still, a model optimized for one-
step-ahead predictions yields the highest predictive accuracy when measurements
are available, which underlines the importance of considering application context
when developing a model: A model optimized for simulation won’t necessarily be
optimal for one-step-ahead predictions.

Observations from the main experiment aligns with existing research on pre-
dictive uncertainty estimation for neural networks: Learning the uncertainty in
the model parameters and learning the uncertainty in the model output are both
beneficial for estimating the total uncertainty in the prediction. A combination of
the neural network methods used in this thesis would likely yield further improve-
ments, as this could leverage their individual strengths. Still, the neural networks
considered in the main experiment are smaller than often considered in similar
research, and it’s promising that some uncertainty estimation techniques are ap-
plicable in light of this.
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Overall, the results indicate that a neural network-based model with uncer-
tainty estimation can be a versatile approach for dynamic process modeling, cap-
able of generalizing surprisingly well when simulating in new environments (new
wind turbines). Coupled with the possibility of learning more calibrated uncer-
tainty estimates, this hints at exciting potential.

The main conclusions we can draw from the work in this thesis, are

1. Existing grid-based uncertainty propagation methods (e.g. the unscented
transform) can be extended to propagate uncertainty through machine learn-
ing models with variable output uncertainty. This makes it possible to apply
predictive uncertainty estimation techniques for neural networks in combin-
ation with computationally efficient derivative free uncertainty propagation
methods. Further, it’s possible to formulate a Gaussian filtering algorithm for
dynamical models with variable output uncertainty using these methods.

2. We can apply existing uncertainty estimation methods for small-scale neural
networks. These can be used to model a dynamical system and it’s uncer-
tainties. This enables jointly identifying process dynamics and process un-
certainty through stochastic optimization.

3. These techniques can be applied for real-world systems. Process dynamics
and uncertainties for the main bearing temperature of wind turbines from a
wind farm in Norway were modeled using neural networks with uncertainty
estimation. However, when simulated on new turbines, it was found that
only one of the methods considered - Deep Ensembles - yielded calibrated
(accurate) uncertainty estimates. A trade-off between predictive accuracy
and calibration was observed for the models applied in this thesis, but it is
very likely that this can be mitigated by combining the uncertainty estima-
tion methods considered and fine-tuning the optimization procedures.

4. An understanding of the governing physics in a process can be very useful.
Approximations of the process dynamics can help us make good modeling
choices by indicating what input features are sensible to include in a process
model, also when using data-driven machine learning to identify the model
parameters. The most substantial increases in simulation accuracy observed
in the main experiment resulted from model changes directly motivated by
the governing physics.
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Appendix A

Grid Based Uncertainty
Propagation with Sigma Point
Augmentation

This appendix presents an extension to the method in Section 3.1. The resulting
approach is suitable for filtering problems with nonlinear measurement functions
h, in cases where the state transition and process noise is modeled by a machine
learning algorithm with uncertainty estimation.

A.1 Derivation

The starting point for this is the same as in Section 3.1: A state space model, and
the Bayesian filtering equations.

x k = f (x k−1, uk−1) + w k ∈ Rn (A.1)

yk = h(x k, uk, t) + v k ∈ Rm (A.2)

w k ∼ N (0n,Q(x k−1, uk−1)) (A.3)

v k ∼ N (0m,R) (A.4)

As shown in Section 3.1, the first two moments of an uncertainty propagated
through Equation (A.1) can be expressed as,

E[x k] =

∫

Rn

x kp(x k)dx k

=

∫

Rn

∫

Rn

x kp(x k|x k−1)dx kp(x k−1)dx k−1

=

∫

Rn

E[x k|x k−1]p(x k−1)dx k−1

(A.5)
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E[x kx>k ] =

∫

Rn

x kx>k p(x k)dx k

=

∫

Rn

∫

Rn

x kx>k p(x k|x k−1)dx kp(x k−1)dx k−1

=

∫

Rn

E[x kx>k |x k−1]p(x k−1)dx k−1

(A.6)

Numerical rules can capture lower order moments of probability distribu-
tions perfectly. This enables us to substitute each of the expectations in the in-
tegrals with a suitable numerical rule expressed by a set of No weighted points
(w( j)k|x k−1

, x ( j)k|x k−1
).

E[x k] =

∫

Rn

�∑

j

w( j)k|x k−1
x ( j)k|x k−1

�

p(x k−1)dx k−1 (A.7)

E[x kx>k ] =

∫

Rn

�∑

j

w( j)k|x k−1
x ( j)k|x k−1

(x ( j)k|x k−1
)>
�

p(x k−1)dx k−1 (A.8)

We can similarly apply a numerical rule to approximate the outer integral.
Expressing this outer set of Ni weighted points as (w(i)k−1, x (i)k−1) we then obtain,

E[x k]'
∑

i

w(i)k−1

�∑

j

w( j)
k|x (i)k−1

x ( j)
k|x (i)k−1

�

(A.9)

E[x kx>k ]'
∑

i

w(i)k−1

�∑

j

w( j)
k|x (i)k−1

x ( j)
k|x (i)k−1

(x ( j)
k|x (i)k−1

)>
�

(A.10)

The inner substitution enables us to retain some information on the higher mo-
ments, similarly to in [71, Algorithm 8], which is useful if the measurement func-
tion h is nonlinear. In other cases, the formulation presented in Equations (3.4)
and (3.5) will be sufficient.

A.2 Applications to Nonlinear Filtering

We can modify the Unscented Kalman Filtering algorithm [71, Algorithm 8] to en-
able filtering with models that have variable uncertainty when the measurement
function h is nonlinear, yielding an extension of Algorithm 2. This is outlined in
Algorithm 6, with the sigma point set described in Algorithm 1. The process state
transition and the process noise in Algorithm 6 are expressed using the functions
f and Q in Equations (A.1) and (A.3) respectively.



Chapter A: Grid Based Uncertainty Propagation with Sigma Point Augmentation 117

The main difference from Algorithm 2 is that the predictions from the model
(i.e. the state transition output distributions) in Algorithm 6 are discretized using
the unscented transform. This is referred to as sigma point augmentation (similarly
to in [71]).

Sigma point augmentation is performed in Equation (A.16). The uncertainty
in the predictions is there approximated as 2n + 1 conditional sigma points, for
each of the 2n + 1 input sigma points, resulting in (2n + 1)(2n + 1) total sigma
points. In practice, this discretizes the model outputs such that they can be fur-
ther propagated through h. It should be noted that only 2n+1 model evaluations
( f and Q) are performed - similarly to in Algorithm 2 - so the complexity is not
quadratic in terms of the model evaluation complexity. A convenient way to ex-
press the (2n + 1)(2n + 1) sigma points is as a 3-dimensional tensor, such that
the first dimension corresponds to the index of the input sigma points, the second
dimension corresponds to the index of the conditional output sigma points, and
the third corresponds to the state space. Letting the notation T(i, j,l) refer to indices
(i, j, l) of dimensions (1,2, 3) of T, the augmentation of the sigma points can then
be expressed as in Equation (A.16),

X (i)k|k−1 =
�

X ∗(i)k|k−1,X ∗(i)k|k−1 ±
r

(n+ κ)Q(i)k

�>

︸ ︷︷ ︸

[No ,n]

, i = 0, . . . , Ni (A.11)

And X k|k−1 will have dimensions [Ni , No, n]. For propagation through a state
transition function, Ni and No will be the same.

The two operations which are likely to incur the highest computational cost
for this method, are 1) evaluating the model, and 2) using a grid-based approxim-
ation for the conditional output distributions. In practice, this can largely be par-
allelized. Importantly, batched Cholesky decompositions (necessary to discretize
the conditional output distributions) can be performed on GPUs using PyTorch.

A.3 Relations to Existing Methods

This is a general approach that is conceptually similar to the method used in [71,
Algorithm 8, Eq. (3.174)] for incorporating additive process noise in the unscen-
ted Kalman filter. Both methods first propagate the input uncertainty (approx-
imated by a grid-based method) through a function, and then augment the out-
puts with additional points that represent the uncertainties in the function out-
put. What separates the two approaches is that [71] uses the unscented transform
to express the joint distribution of the state uncertainty and process uncertainty,
whereas the approach presented here uses separate unscented transforms: One to
express the input uncertainty, and one to the output uncertainty conditional to
a given input. In fact, the difficulty of expressing these conditional uncertainties
using the method from [71, Algorithm 8] is what motivated this method originally.
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Algorithm 6: Unscented Kalman Filter with Variable Model Uncertainty
and Sigma Point Augmentation

x̂ 0 = E[x 0], P0 = E[(x 0 − x̂ 0)(x 0 − x̂ 0)
>]

N = 2n+ 1, where n= dim x , κ≥ 0

for k = 1 . . .∞

1. Compute sigma points: According to Algorithm 1

X k−1 =
�

x̂ k−1 x̂ k−1 ±
Æ

(n+ κ)Pk−1

�>
(A.12)

2.1. Time update: Using process dynamics and process noise

X ∗k|k−1,Qk = f (X k−1, uk−1), Q(X k−1, uk−1) (A.13)

x̂ k|k−1 =
N−1
∑

i=0

w(i)X ∗(i)k|k−1 (A.14)

Pk|k−1 =
N−1
∑

i=0

w(i){(X ∗(i)k|k−1 − x̂ k|k−1)(X
∗(i)
k|k−1 − x̂ k|k−1)

> +Q(i)k }

(A.15)

2.2. Time update: Augment sigma points and predict next output

X (i)k|k−1 =
�

X ∗(i)k|k−1,X ∗(i)k|k−1 ±
r

(n+κ)Q(i)k

�>
, i = 0, . . . , N − 1

(A.16)

Yk|k−1 = h(X k|k−1,uk−1) (A.17)

ŷk|k−1 =
N−1
∑

i=0

N−1
∑

j=0

w(i)w( j)Y(i, j)k|k−1 (A.18)

Py y,k =
N−1
∑

i=0

N−1
∑

j=0

w(i)w( j){(Y(i, j)k|k−1 − ŷk|k−1)(Y
(i, j)
k|k−1 − ŷk|k−1)

>}

(A.19)

Px y,k =
N−1
∑

i=0

N−1
∑

j=0

w(i)w( j){(X (i, j)k|k−1 − x̂ k|k−1)(Y
(i, j)
k|k−1 − ŷk|k−1)

>}

(A.20)

3. Measurement update:

Kk = Px y,k(Py y,k +Rk)
−1 (A.21)

x̂ k = x̂ k|k−1 +Kk(yk − ŷk|k−1) (A.22)

Pk = Pk|k−1 −KkP>x y,k (A.23)

end for



Appendix B

Wind Turbine Experiment

B.1 Turbine Data Overview

Tables B.1 to B.4 give details on the data for Wind Turbines 1, 2, 3, and 6, respect-
ively.
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TB Degrees [K] TE Degrees [K] P [kW ] ω [RPM]

Values 82747.0 79203.0 63565.0 78051.0
Mean 299.68 275.42 906.67 798.76
Std 5.48 5.97 839.76 398.51
Min 273.15 258.96 0.0 0.0
25% 297.23 271.06 190.83 786.25
50% 300.3 274.68 588.52 914.63
75% 303.15 279.09 1521.15 1113.19
Max 318.5 301.93 2561.11 1177.16

Table B.1: WTUR1 Data Summary: Statistics of the bearing temperature (TB),
external temperature (TE), power output (P), and rotation speed (ω) sensor read-
ings. This is the turbine whose data was used for model parameter identification.
It has the least amount of missing measurement values.

TB Degrees [K] TE Degrees [K] P [kW ] ω [RPM]

Values 78593.0 79126.0 60695.0 75030.0
Mean 296.8 275.38 894.2 788.87
Std 5.83 5.92 827.55 400.97
Min 268.42 259.06 0.0 0.0
25% 294.63 271.05 188.93 785.95
50% 297.83 274.7 579.1 892.5
75% 300.6 279.02 1522.18 1110.72
Max 313.49 301.01 2648.94 1180.22

Table B.2: WTUR2 Data Summary: Statistics of the bearing temperature (TB),
external temperature (TE), power output (P), and rotation speed (ω) sensor read-
ings. This wind turbine has a temperature offset compared to Turbine 1, but aside
from that the statistics are relatively similar.

TB Degrees [K] TE Degrees [K] P [kW ] ω [RPM]

Values 77738.0 78331.0 58221.0 73575.0
Mean 295.91 342.16 879.48 773.93
Std 5.77 47.31 794.67 420.32
Min 269.23 273.15 0.0 0.0
25% 293.5 320.05 202.02 758.57
50% 296.91 333.25 586.27 906.47
75% 299.88 350.1 1451.25 1111.74
Max 312.36 1127.69 2496.93 1177.16

Table B.3: WTUR3 Data Summary: Statistics of the bearing temperature (TB),
external temperature (TE), power output (P), and rotation speed (ω) sensor read-
ings. This wind turbine has anomalous external temperature readings, possibly
due to mislabeled data.
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TB Degrees [K] TE Degrees [K] P [kW ] ω [RPM]

Values 75870.0 75872.0 53043.0 67968.0
Mean 298.43 278.2 912.52 767.16
Std 7.51 6.08 809.05 422.75
Min 271.61 261.83 0.0 0.0
25% 296.18 273.71 222.35 711.74
50% 300.35 277.54 629.78 897.53
75% 303.24 282.03 1477.92 1109.1
Max 316.15 304.61 2586.82 1187.33

Table B.4: WTUR6 Data Summary: Statistics of the bearing temperature (TB),
external temperature (TE), power output (P), and rotation speed (ω) sensor read-
ings. A large amount of readings are missing - more than for any of the other
turbines. Aside from that, the distribution statistics are similar to for Turbine 1.

B.2 System Identification Hyperparameters

System identification was done using MATLAB’s [6] n4sid method, with Canonical
Variate Analysis weighting, and Observable Canonical System Form. For a first order
model this has no impact, but it reduces the degrees of freedom in the parameters
of higher order models. The loss function used is the simulation square error.
Further options are given in Table B.5

N4SID Option Value

InitialState ’estimate’
N4Weight ’CVA’
N4Horizon ’auto’
Focus ’simulation’
EnforceStability 1

Table B.5: System Identification Hyperparameters: MATLAB n4sid options used
for system identification of CVA-1 and CVA-2. The prediction horizon for optimiza-
tion were automatically determined by n4sid. This yielded optimization horizons
of 2 steps for CVA-1 and 3 steps for CVA-2 (with 4 and 8 previous inputs used for
initialization).
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