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Abstract
An autonomous Formula Student race car requires accurate information about the
vehicle’s pose and motion in order to complete the challenging dynamic events of
the competition as fast as possible. To reach all the way to the top of the ranking
list, the race car should display robust performance despite complex tracks and
partial system failure. This includes reliable and efficient fusion of the available
sensor data, where all sources of uncertainty are optimally accounted for.

In this thesis, a state estimation solution is derived, implemented and validated
with simulations. The proposed design is a multiplicative extended Kalman filter.
The filter is formulated indirectly and driven by high rate inertial measurements.
Low rate position and baselinemeasurements fromdual global navigation satellite
system (GNSS) receivers and radar-based ground speed measurements are used
for corrections. Theproposeddesignuses aunit quaternion as thenominal attitude
parametrization and the three parameter angular error state. This removes any
risks of singularities in the system. TheKalmanfilter is basedon apurely kinematic
model. Hence, it is independent of the vehicle’s parameters and robust to varying
track and tire conditions.

The validation of the developed state estimation system shows promising poten-
tial. The system shows rapid convergence towards the true vehicle states and is
capable of detecting and rejecting outliers in the sensor measurements. The val-
idation is carried out offline with simulated data. This is representative, but not
sufficient for verification of on-track performance. Further testing and develop-
ment still remains before the system can be considered viable. To facilitate further
development, the current design is thoroughly examined. The main contributing
factors to the desirable performance achieved in the simulator are discussed. In
the very end of this thesis, suggestions for future work are proposed based on the
experience gained throughout this process.

Keywords: State Estimation, Sensor Fusion, AutonomousVehicles, KalmanFilters,
Aided Inertial Navigation Systems
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Sammendrag
En selvkjørende Formula Student-racerbil er avhengig av å ha nøyaktig kunnskap
om sin nåverende posisjon, fart og attitude, ofte referert til som bilens tilstander, til
enhver tid. Dette er nødvendig for å fullførededynamiskekonkurranseeventene så
fort sommulig. For å nå hele veien opp til toppen av resultatlistene, må racerbilen
være istand til å vise robust ytelse i alle sine systemer til tross for utfordrende
kjørebaner og delvise systemfeil. Her inngår også pålitelig og effektiv fusjon av
den tilgjengelige sensordataen, hvor alle kilder til usikkerhet er tatt hensyn til.

Denne masteroppgaven redegjør, implementerer og validerer et tilstandsestimer-
ingssystem for en Formula Student-racerbil som møter de nevnte kravene. Det
foreslåtte designet er et multiplikativt utvidet Kalmanfilter. Filteret er indirekte
formulert, og drives av høyfrekvente målinger fra treghetssensorer. Posisjons-
målinger og basevektormålinger fra to GNSS-mottakere, samt radarbaserte bakke-
hastighetsmålinger, er brukt til å korrigere tilstandsestimatene. I et slikt design
brukes kvarternioner til å parametrisere den nominelle attituden til fartøyet, derav
betegnelsen "mulitplikativt". Dette eliminerer risikoen for singulariteter i sys-
temet. Attitudefeilen er et såpass lite signal at den uansett ikke er utsatt for singu-
lariteter og er representert med den tredimensjonale vinkelfeilen. Kalmanfilteret
er også basert på en kinematisk modell, og er dermed uavhengig av parametrene
til bilen. Dette gjør at tilstandsestimeringssystemet også er robust mot varierende
dekk- og bakkeforhold.

Valideringen av det utviklede tilstandsestimeringssystemet viser et lovende poten-
siale. De estimerte tilstandende konvergerer raskt mot deres sanne verdier, gitt
av en simulator. Det utviklede systemet er også istand til å detektere og forkaste
ekstremverdier, ansett som upålitelige, basert på statistisk hypotesetesting. Valid-
eringen er gjort i simulator. Dette er representativt, men ikke tilstrekkelig for å
kunne si noe sikkert om ytelsen under et faktisk løp. Det gjenstår derfor forsatt
validering og videreutvikling før det utviklede tilstandsestimeringssytemet kan
anvendes på bil. For å legge til rette for denne videreutviklingen, er det nåværende
designet nøye drøftet i denne rapporten. De største bidragsytende faktorene til de
tilstrekkelig gode resultatene oppnådd i simulator er identifisert og diskutert. Avs-
lutningsvis inneholder oppgaven konkrete forslag til hensiktsmessige fremtidige
fokusområder i videreutviklingen av produktet.
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IEKF iterative extended Kalman filter.

IMU inertial measurement unit.

INS inertial navigation system.

KF Kalman filter.

LiDAR Light Detection and Ranging.

MEKF multiplicative extended Kalman filter.
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xviii ABBREVIATIONS

MEMS micro-electro-mechanical systems.

MPC model predictive control.

MSS Marine Systems Simulator.

NED North East Down.

NTNU the Norwegian University of Science and Technology.

PSD power spectral density.

PVA position, velocity and attitude.

RMS root mean square.

SAE the Society of Automotive Engineers.

SLAM simultaneous localization and mapping.

SSKF steady state approximation of the extended Kalman filter.

SWPS Steering Wheel Position Sensor.

TUM the Technical University of Munich.

VDCS Vehicle Dynamics and Control Systems.



Nomenclature
)022 Time constant of the accelerometer bias model.

)0AB Time constant of the gyrsocope bias model.

Δ81
=1

Gyroscope error model.

03 3x3 zero matrix.

G3 Discrete Jacobian matrix of the error state dynamics wrt. the error state.

G Continuous Jacobian matrix of the error state dynamics wrt. the error state.

K3 Discrete Jacobian matrix of the error state dynamics wrt. the noise.

K Continuous Jacobian matrix of the error state dynamics wrt. the noise.

N Measurement Jacobian matrix.

O3 3x3 identity matrix.

Q: Kalman gain matrix at timestep k.

W022 Process noise covariance matrix of the accelerometer.

W0AB Process noise covariance matrix of the gyroscope.

X022 Measurement noise covariance matrix of the accelerometer.

X0AB Measurement noise covariance matrix of the gyroscope.

%(�) Continuous Dirac delta function.

81
8<D

Angular rate measurement from the gyroscope.

81
=1

True angular rate.

b1022 True accelerometer bias.

b10AB True gyroscope bias.

f 1
8<D

Specific force measurement from the accelerometer.

f 1
=1

True specific force.

g=
=1

True gravity.

p=
=1

True position.

q=
=1

True attitude quaternion.

xix



xx NOMENCLATURE

v=
=1

True velocity.

w1
022 Accelerometer measurement noise.

w1
0AB Gyroscope measurement noise.

x True state vector.

�)1
=1

Three parameter angular error state.

�b1022 Accelerometer bias error state.

�b10AB Gyroscope bias error state.

�g=
=1

Gravity error state.

�p=
=1

Position error state.

�q=
=1

Quaternion representation of the attitude error state.

�v=
=1

Velocity error state.

�x+
:

A posteriori error state estimate at timestep k.

�x−
:

A priori error state estimate at timestep k.

�x Error state vector estimated by the ESKF.

�y Error between the low rate measurements and the corresponding quantities
estimated within the nominal state space.

V̂+
:

A posteriori estimate of the error state covariance matrix at timestep k.

V̂−
:

A priori estimate of the error state covariance matrix at timestep k.

b̂1
022,8=B

Nominal accelerometer bias.

b̂1
0AB,8=B

Nominal gyroscope bias.

ĝ=
8=B

Nominal gravity.

p̂=
8=B

Nominal position.

q̂=
8=B

Nominal attitude quaternion.

v̂=
8=B

Nominal velocity.

x̂8=B Nominal state vector estimated by the INS.

ℎ Time step in seconds.

{1} BODY coordinate frame.

{=} North East Down coordinate frame.



1Introduction
A central task in the field of control engineering is the manipulation of physical
systems to achieve a desired behaviour. To achieve a certain behaviour, the control
engineer must design a control law that specifies the correct set points for actuator
inputs at any point in time. Such a control law typically depends on a set of states
and a strategy known as feedback control, where knowledge about the states are
used to determine actuator inputs which again act on the states.

A major obstacle in control applications is to accurately obtain information about
the current state of a system. To enable observation of the states of interest, the
system is equippedwith variousmeasurement units. However, a general challenge
is restrictions in the insight into all desired states of a system. To alleviate this
problem a common approach is to construct estimates of the desired states based
on the available information.

Whena control law isdependent on estimates of a system’s states, a crucial question
is how these estimates should be constructed optimally. An availablemeasurement
is often described by ameasurement function. Themap between themeasurement
and the states, represented by this function, is in general not injective. Thus, the
estimates cannot be a static function of the measurements. Instead, they are
designed as the output of a dynamic system. This yields an error term between
the estimates and the true states, where concepts of control theory can be utilized
to achieve the desirable behaviour of convergence towards zero.

1.1 Autonomous vehicle technology

Vehicles are a widely studied control application and represent a platform for
application of the latest within autonomous technology. An autonomous vehicle
is defined as a vehicle capable of sensing its environment and operating without
human involvement (Synopsys, 2020). The Society of Automotive Engineers (SAE)
currently defines six levels of driving automation ranging from level 0, where the
vehicle is fully manual, to level 5, where the vehicle is fully autonomous. The
levels in between capture vehicles with some degree of automation, collectively
known as semi-autonomous vehicles.

Atpresent, themajority of vehicles on the road canbedescribedas semi-autonomous
due to advanced safety features like assisted braking and parking system. Modern
cars are for instance often equipped with an anti-lock braking system (ABS), pre-
venting the wheels from locking during hard braking, and an electronic stability
control system (ESC), stabilizing the lateral motion in order to prevent skidding.
Other advanced safety features include collision warning and avoidance, rollover

1
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Figure 1.1: Devbot 2.0 competing in Season Alpha

prevention and crosswind compensation (Consumer Reports, 2020).

The concept of fully autonomous vehicles dates all the way back to 1939, when
General Motors (GM) created an exhibit displaying their vision of an automated
highway system guiding self-driven cars (Gringer, 2020). From here, continuous
work towards this vision has been carried out, both in academia and in indus-
try. Speedy and surprising progress has been made, yielding a number of great
achievements. Amemorable milestone is Google’s self-driven car, tested on public
roads since 2010 (Woollaston, 2020).

1.2 Autonomous racing

Autonomous racing has relatively recently gained a lot of attention and is a rapidly
increasing technology. It refers to the sport of racing ground-based vehicles, con-
trolled by computers. In early 2016, Roborace started working on the world’s first
driverless race car, named "Devbot". In August the same year, it successfully drove
twelve laps of a Formula E circuit. Roborace is also the company starting Sea-
son Alpha, the world’s first motor-sports series for self-driven cars. Autonomous
racing pushes the limits of autonomous vehicle technology, making it an exciting
engineering challenge.

1.3 Problem formulation

This thesis is carried out in collaboration with Revolve NTNU, a student engineer-
ing team developing an autonomous race car. With this race car, the team com-
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petes against other university teams in the highly established Formula Student (FS)
competition. The competition is arranged and supported by major players in the
automotive industry (Revolve, 2020). The task at hand is to develop an accurate
and robust state estimation system, utilizing the available sensor configuration
and applying concepts of control theory.

All autonomous vehicle technology rely on information about the current state
of the vehicle and its surroundings. To retrieve this information modern vehicles
are equipped with advanced sensing systems. Fusion of these sensors, taking
parameter uncertainties andother error sources into account, is currently a popular
topic of research and development. As mentioned, autonomous race cars are
intended to push the limits of speed and rapid maneuvers. This increases the
demands on the autonomous systems. Currently, autonomous racing is a topic
poorly covered in literature, and most work in the field is carried out by students.
It is therefore rewarding to take part in this field of research.

1.4 Main contributions

The main contributions of this thesis are:

• Derivation of models for the system dynamics and measurements for an
aided inertial navigation system on an autonomous Formula Student race
car.

• Implementation of a multiplicative extended Kalman filter (MEKF) with an
indirect formulation, combining high rate inertial sensor data with low rate
dual GNSS position measurements along with ground speed measurements
for accurate state estimation.

• Modifications of the state estimation systemdesign at stand-stillwith regards
to the target application for increased performance.

• Detection and rejection of outliers in the sensor data using a probabilistic
"2-test.

• Validation of the developed navigation systemwith simulations, and discus-
sion of its strengths and weaknesses with regards to the target application.

1.5 Thesis outline

This thesis aims to systematically present the work carried out in this project. The
report is organized in seven chapters with distinct purpose. In the following, a
brief overview of the thesis organization is given.
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Chapter 2: Background and Motivation

Chapter 2 contains information about the background and motivational factors
for this project. More information about Revolve NTNU and the FS competitions
is provided, disclosing the bigger picture and substantiating focus areas during
the project. This chapter also mentions some challenges due to the COVID-19
outbreak.

Chapter 3: Preliminaries

In Chapter 3, the preliminary knowledge necessary for understanding the devel-
oped navigation solution is put forward. The chapter contains a short introduction
to navigation before it moves to a more thorough explanation of the concepts rel-
evant for the system developed here. The various design choices made in this
project are also substantiated in this chapter.

Chapter 4: The State Estimation System

Chapter 4 systematically presents the final implementation of the state estimation
system. All equations for the various operations carried out in the developed sys-
tem are stated and explained. In other words, this chapter contains the realization
of the concepts presented in Chapter 3.

Chapter 5: Results and Discussion

This chapter aims to validate the final performance of the developed state estima-
tion system. The achieved results are also discussed. After this, small modifica-
tions are applied to the final design in order to examine essential design choices.
In the last part of this chapter, individual sensors are removed from the sensor
configuration to investigate their contribution to the final performance.

Chapter 6: Conclusion

In Chapter 6, the work and findings of this thesis are summarized.

Chapter 7: Future Work

The final chapter proposes suggestions for future work, with the aim of facilitating
further development of this state estimation system.



2Background and Motivation
This chapter provides information about the background andmotivational factors
behind this project. The aim of this chapter is to illustrate the bigger picture and
to present the most important contextual information.

2.1 Revolve NTNU

Revolve NTNU is an independent student organization at NTNU. This year’s team
consists of approximately 80 members from 24 different fields of study working
voluntarily to design and build a self-developed race car in only eight months.
This is carried out in parallel with full time studies (Revolve, 2020).

2.2 Formula Student

Every summer Revolve NTNU competes in Europe’s most established educational
engineering competition, Formula Student (FS), against university teams from all
over the world (IMechE, 2020). Multiple FS competitions are organized, in several
different countries, where Formula Student Germany (FSG) is recognized as the
most prestigious.

Formula Student provides students the opportunity to push their engineering
design and project management skills through application of classroom theory
in the demanding real world. With heavy industry backing, it has become a
well respected initiative, developing students into desirable engineers (Revolve,
2020). All the FS competitions are organized similarly, consisting of both static and
dynamic events. The static events focus on cost, business plan and engineering
design, while the dynamic events focus on the on-track performance of the race
car.

2.3 Formula Student Driverless

The teams can choose to compete in one out of three classes: the combustion class,
the electric class or the rather new driverless class, introduced in 2017. Revolve
NTNU has since 2018 competed both in the electric and in the driverless class. The
members are divided into two dedicated divisions, focusing on one competition
class each. This thesis is carried out in collaboration with the driverless team of
Revolve NTNU.

Thedriverless class sticks out from theother two inmultipleways. The competition
task in this class is no longer to build a race car from scratch, but rather to adopt

5
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a previously built FS car and transform it into an autonomous race car by adding
appropriate sensors and software. To illustrate how the quality andperformance of
the race car will be measured, some essential aspects of the driverless competition
is provided below.

Among the static events, the event named "Engineering Design" is especially im-
portant in the driverless class. The task to be solved in this competition require
advanced sensing and software systems utilizing recently developed concepts,
where many of these concepts are still subject of research. In addition, safety is
a crucial topic. All design choices should therefore be carefully considered when
developing the autonomous systems, and properly defended at the Engineering
design event.

In the dynamic events the car has to drive tracks of varying length and complexity
as fast as possible, and fully autonomously, without hitting any delimiters. The
delimiters are cones placed on both sides of the track with even spacing and color
coding to signal left or right side. To perform well in the dynamic events the
autonomous race car is dependant on robust, reliable and precise state estimation,
detection, localization and mapping - among other things.

2.4 The car: Atmos

For the 2020 season, the driverless team of Revolve NTNU has chosen to compete
with the electrical race car namedAtmos. Atmos is the third generation four-wheel
driven electrical race car of Revolve, developed and produced by the team of 2018
(Revolve, 2020). The efforts of this team is rewarded with a second place in FSG
2018, proving great capabilities. Atmos was also used by the driverless team of
2019. According to the competition rules, it is allowed to compete in the driverless
class with the same vehicle up to two times.

Atmos is configured with a large number of sensors ranging from simple voltage
meters on every other battery cell to complex high-technology sensors such as the
two LiDAR sensors. The most relevant sensors for the autonomous system on
Atmos are presented more in detail in Appendix A.
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Figure 2.1: The driverless vehicle of team 2019 and 2020, named Atmos.

2.5 The autonomous software system

The autonomous software system of Atmos is referred to as "the autonomous
pipeline" within the team. Key components of this pipeline are state estima-
tion, redundant cone detection systems, simultaneous localization and mapping
(SLAM), trajectory planning and model predictive control (MPC). The overall task
solved by the autonomous pipeline is to detect and localize the various types of
cones in its environment based on sensor data, place the cones in a map and place
itself in the same map. The autonomous software of the car should then, based on
this knowledge, generate the optimal path and determine the optimal actuator set
points to complete the racetrack as fast as possible.

The competition rules provide information about what the colours and sizes of the
cones signalize. This facilitates understanding of the racetrack layout based on the
detected cones. The autonomous pipeline should handle obstacles such as noise
on sensor data, measurement delays, false positives and negatives, limitations in
sight of the various sensors, environmental disturbances and general mechanical
and electrical constraints.

2.6 Performance goals of Revolve NTNU Driverless

Goals are important as they outline the expected outcome of the work carried out
by the team. They set clear performance standards for the team members and
guide their efforts. A common set of goals also has a unifying effect and facilitates
team spirit and motivation. Due to this, Revolve NTNU Driverless has set some
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specific and measurable goals for the 2020 season. These are listed below.

Overall goal

• Rank Top 3 overall at every compe-
tition Revolve NTNU attends

Sub-goals

• Test ready car by the 13th of April

• Top 3 in all dynamic events

• Top 5 in Engineering Design

Dynamic goals

• 3.75 sec on Acceleration, driving 75
meters straight

• 5.5 sec on SkidPad, driving an
eight-shaped track

• 10 m/s avg. on AutoX, driving a
more complex track without prior
knowledge about the layout

• 17m/s avg. on TrackDrive, driving
the AutoX track 10 times

Static goals

• 70/100 points on Cost

• 70/75 points on Business Plan Pre-
sentation (BPP)

• 230/300 points on Engineering De-
sign

2.7 Aim of this project

The project subject to this thesis aims to develop a robust and reliable state es-
timation system for the driverless vehicle of Revolve NTNU that contributes to
the achievement of the performance goals presented above. The state estimation
system should provide reliable information about the current states of the vehicle
at any point in time. By doing so, it should facilitate high performance of the other
interconnected subsystems of the vehicle’s autonomous software. The state esti-
mation system should be designedwith the specific application inmind, and show
decent capabilities in precision, convergence speed and fault handling despite the
expected high speeds and rapid maneuvers.

2.8 Remarks regarding the COVID-19 situation

This project has been affected by the unexpected and unfortunate COVID-19 out-
break. From the initial awareness of the virus in January 2020, a large spread has
taken place resulting in a global state of emergency. Due to this pandemic, a series
of measures has been introduced by governments in numerous countries with the
aim of slowing the transmission of the virus.
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InNorway, comprehensivemeasures to facilitate social distancing is implemented.
All at risk of carrying the virus is required to stay in home quarantine or home
isolation depending on the risk factors. Educational institutions, meeting venues
and a number of businesses are closed, and it is highly encouraged to avoid public
spaces and public transport (NIPH, 2020).

For Revolve NTNU the COVID-19 situation caused loss of access to offices, work-
shops, and production and testing spaces lend by various sponsors. The project
was hence put on hold. The COVID-19 pandemic has reached a level of criticality
beyond what was expected. 22nd of March 2020, it was announced that FSG 2020
is cancelled. Shortly after this disappointing yet unsurprising announcement, the
other FS competitions followed. Consequently, the decision was taken by Revolve
NTNU to cancel this year’s project.

The original purpose and contribution of this thesis is highly affected by the
unfortunate situation. However, it has been possible to validate the system to a
certain degree through simulations. The findings of the work carried out here is
also still relevant for future teams of Revolve and is deemed purposeful.





3Preliminaries
In this chapter, the preliminaries of the developed state estimation system is pre-
sented. The chapter captures the essential knowledge gained through literature
studies in the initial phase of the project. All concepts used in the final state es-
timation solution are explained and substantiated, providing the reader with the
necessary prerequisites for understanding the final implementation.

3.1 Introduction to navigation

Navigation capability is fundamental for an autonomous vehicle. In literature
regarding autonomous vehicles, the term navigation may refer to two different
tasks (Farrell, 2008).

1. Accurate determination of vehicle states, where common states of interest
are position, velocity and attitude.

2. Planning and execution of themaneuvers necessary tomove betweendesired
locations.

The first capability is necessary to achieve the second. In this report, the term
navigation refers to the first of the tasks listed above. The second task is rather
referred to as a combination of planning, guidance and control. The navigation
task, as it is defined here, is also commonly described as state estimation when
the problem is resolved based on a defined state space for the vehicle system.
Navigation systems can in other words be regarded as a subcategory of state
estimation systems, restricted to the specific application of vehicles.

The acknowledged state-space model format shows that a system may have many
internal variables or states, x, and fewer outputs, y. This is due to a variety
of reasons, for instance lack of appropriate sensors. From a more theoretical
perspective, state estimation refers to the problem of achieving knowledge about
all states in the state vector, when only a subset of the states are directly measured
(Farrell, 2008).

State estimation is useful in control applications where knowledge of the entire
system statewould allowhigher performance of the total control systemacting on a
physical system. Figure 3.1 shows the structure of a general guidance, navigation
and control (GNC) system of a plant, for instance a vehicle. The grey blocks
represent various subsystems of the GNC system. Together, these blocks are
responsible for both of the tasks listed above. The blue block represents the
vehicle, equipped with sensors and actuators.

11
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Figure 3.1: General structure of a GNC system

As Figure 3.1 shows, the state estimation system represents the bridge between
the sensors, monitoring the vehicle, and the rest of the GNC system. It is thus a
highly interconnected component of the total autonomous software system.

3.2 Aided inertial navigation systems

An inertial navigation system (INS) estimates the position, velocity and attitude
(PVA) of a vehicle based on inertial sensor measurements. An inertial measure-
ment unit (IMU) commonly consists of two types ofmeasuring instruments. These
are gyroscopes and accelerometers. Gyroscopes measure the angular rates of the
vehicle, including the Earth’s rotation, and the accelerometersmeasure the specific
forces, which represent the sum of the accelerations and the sensed gravity.

The integrative nature of an INS is advantageous in the sense that it smooths out
high-frequency errors such as sensor noise. On the negative side, integration of
low frequency errors due to biases or misalignment will cause the estimates to
drift further and further away from the true state. It is therefore very common to
correct estimates arriving from an INS with external aiding sensors (Farrell, 2008).
Navigation systems combining high rate inertial sensors with low rate aiding
sensors to perform state estimation are referred to as aided navigation systems. By
selecting suitable low rate aiding sensors the expected drifting in the INS estimates
can be eliminated.
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Table 3.1: Comparison of the properties of GNSS and INS

GNSS INS

- Low bandwidth + High bandwidth
+ Bounded errors - Unbounded errors
+ Good long-term accuracy - Poor long-term accuracy
- Relies on external information 1 + Self-contained
- Susceptible for obstruction,
jamming and spoofing

+ Non-jammable and non-spoofable

- No attitude estimation2 + Attitude estimation

A common way to design aided navigation systems is to fuse an INS with a
navigation solution based on global navigation satellite systems (GNSS). Table 3.1
show some of the main advantages and disadvantages of the navigation solutions
provided by each measurement source. As seen in Table 3.1, the properties of the
INS and the GNSS are complementary. It is therefore reasonable to combine them,
utilizing the advantages of each solution to obtain a reliable estimate of the vehicle
states (Bryne and Fossen, 2019). It is also common to use more than one aiding
sensor to increase robustness. On Atmos, an aided inertial navigation system
will be developed utilizing dual GNSS position measurements, the baseline vector
between the two GNSS antennas and velocity measurements from a radar-based
ground speed sensor (GSS) as the low rate aids.

3.3 Coordinate frames

In the design process of a navigation system there are several coordinate or ref-
erence frames in which the available measurements and computed quantities can
be expressed. It is important to have knowledge about the reference frame of the
various quantities in order to correctly relate them to each other. The reference
frames relevant for this navigation system are described in the following.

3.3.1 Nomenclature

Before proceeding, the notational convention used in this thesis will be speci-
fied. The reference frame in which the vector is represented is indicated by a
superscript. In addition, the subscript tells something about the way the current
quantity describes the behaviour of one frame with respect to another frame. To
exemplify, v=

=1
denotes the velocity of the BODY frame with respect to the NED

frame, due to the subscript, given in NED coordinates, due to the superscript. The

1Satellite position and velocity
2Heading can be estimated with a dual receiver solution
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Figure 3.2: Illustration of how the NED reference frame, denoted {=},is defined.

subscript convention for the reference frame is sometimes omitted. This is to avoid
unnecessarily long subscripts, when the information is considered evident.

The rotation matrix between two frames are denoted Xwith a subscript indicating
the original reference frame and a superscript indicating the destination reference
frame. For example, X=

1
represent the rotational transformation from BODY to

NED such that (3.1) holds.

v=
=1
= X=

1
v1
=1

(3.1)

3.3.2 North east down frame

The NED frame, denoted {=}, is the north, east, down rectangular coordinate sys-
tem often referred to in the everyday life. It is determined by fitting a tangent plane
to a fixed point on Earth’s surface, as shown in Figure 3.2. The fixed point is the
origin of the local frame chosen such that it is convenient for local measurements.
The x-axis of theNED frame points to true north along the tangent plane, the z-axis
point towards the interior of the Earth, perpendicular to the reference ellipsoid3

and finally the y-axis completes the right-handed coordinate system pointing east
(Farrell, 2008).

3The reference ellipsoid is a mathematically defined surface approximating the geoid which is the
truer shape of the Earth
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The NED frame is applicable to local navigation applications constrained to a
smaller geographic area, where the assumption of a flat Earth is deemed reason-
able (Bryne and Fossen, 2019). In the aircraft and marine craft control system
literature, the Earth’s rotation is often neglected, such that the NED frame has a
local definition where it is non-rotating and assumed inertial (Perez and Fossen,
2011). It is reasonable to make this assumption when studying motion with very
high velocities compared to the Earth’s rotation. This is true for the target vehicle
of the state estimation system developed here, and the NED frame is therefore
assumed inertial here as well.

3.3.3 BODY frame

The BODY frame, denoted {1}, is a rigid frame attached to the navigating vehicle.
Its origin is commonly at the center of gravity (CG) of the vehicle, with the x-
axis pointing forward, the z-axis pointing downwards and the y-axis pointing to
the right side such that the right-handed coordinate system is complete. Inertial
sensors such as accelerometers and gyroscopes commonly provide measurements
in this frame (Bryne and Fossen, 2019).

3.4 Sensor fusion using Kalman filtering

Sensor fusion is the task of optimally combining the information provided by
various sensors, for instance on a vehicle. One of the tools widely used for this
purpose is the Kalman filter (KF) (Kalman, 1960). The linear KF is recognized as
the state-of-the-art, optimal state estimator for linear dynamic systems and has
been so for several decades.

3.4.1 The principle of linear Kalman filtering

The equations of the linear Kalman filter will not be derived here. Instead, it is
attempted to break down the concept and provide an intuitive explanation of how
this method works, similar to what is done by Plett (2004) in his report about
Kalman filtering for battery management systems.

Very generally, any causal dynamic system generates its outputs as some function
of past and present inputs, where the states of this system summarizes the effect
of all past inputs. The present system output can hence be computed from the
present input and the present state, and there is no need for storing past input
values.

The dynamics of a linear system can be described by the discrete-time state space
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model:

x:+1 = G:x: + H:u: +w: (3.2a)
y: = N:x: + v: (3.2b)

With the following nomenclature

x:
u:
y:
w: , v:

G: , H: ,N:

State vector at time instance :
The known input to the system at time instance :
The output or measurement vector at time instance :.
Process noise and measurement noise respectively, assumed
mutually uncorrelated white Gaussian random processes
Matrices describing the linear dynamics of the system

Equation (3.2a) is called the process equation. This equation captures the evolving
system dynamics, and the system stability, controllability and sensitivity to distur-
bance may all be derived from this equation. Equation (3.2b) is referred to as the
output or measurement equation. Given a system on this form, it may be desired
to estimate the unmeasured dynamic state, x: , in real-time, using the knowledge
about the system’s measured input and output signals. The KF is the optimal
way to achieve this estimate under certain assumptions. Here, the assumption of
uncorrelated Gaussian white noise processes is deemed the most essential.

TheKalman filter problem can be formulated as follows: Using the entire observed
data {u0 , u1 , ..., u:} and {y0 , y1 , ..., y:}, find the estimate, x̂: , of the true state, x: ,
that minimizes the mean squared error. Mathematically the same problem can be

Figure 3.3: The Kalman filter combines knowledge about the dynamics of an
internal state and external measurements
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Figure 3.4: Illustration of the recursive Kalman filter steps

formulated as

x̂: = min(�{[x: − x̂:])[x: − x̂:] | u0 , u1 , ..., u: , y0 , y1 , ..., y:}) (3.3)

The solution to this problem is given by the renowned KF equations, provided in
Table 3.2. V̂: denotes the estimated state covariance matrix, andW: and X: denote
the discrete-time covariance matrices of the process noise and the measurement
noise respectively.

As seen in Table 3.2, the Kalman filter computes two different estimates of the state
vector and the state covariance matrix in each sampling. The first estimates, x̂−

:
,

is the propagation in time of the previous state estimate, using the model for the
system dynamics. This is commonly referred to as the prediction step. In the second
estimate, x̂+

:
, the measurements of the system output are taken into account and

used to adjust the first estimates. This is commonly called the correction step. The
state covariance matrix is estimated correspondingly.

The correction step represents when the estimator considers "new information"
from themeasurements. A question arising at this point is to what degree the new
information from the measurements should be trusted compared to the modelled
system dynamics. To resolve this problem, the Kalman gain, Q: , is computed. The
Kalman gain represents the optimal weighting of the new information from the
measurements, based on the state and measurement covariances.

In conclusion, the Kalman filter provides a theoretically elegant and time-proven
method for achieving an optimal estimate of the internal states of a dynamic system
(Plett, 2004). It is a powerful sensor fusion tool taking advantage of redundancy
by letting the contribution of each sensor input to the overall estimated state be a
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Table 3.2: Linear Kalman filter equations

Linear state space model
x:+1 = G:x: + H:u: +w:

y: = N:x: + v:

Initialization
For : = 0, set
x̂+0 = �{x0}

V̂+0 = �{(x0 − x̂+0 )(x0 − x̂+0 ))}
Computation

For k = 1, 2, ..., compute
State estimate time update:

x̂−
:
= G:−1 x̂+:−1 + H:−1u:−1

Error covariance time update:

V̂−
:
= G:−1V̂+:−1G

)
:−1 +W

:−1

Kalman gain:

Q: = V̂−
:
N)
:
(N: V̂−: N

)
:
+ X:)−1

State estimate measurement update:

x̂+
:
= x̂−

:
+ Q:(y: − N: x̂−: )

Error covariance measurement update:

V̂+
:
= (O − Q:N:)V̂−: (O − Q:N:)) + Q:X:Q)

:

function of the sensor’s accuracy and previous state knowledge. It estimates how
the system develops, propagating not only its state but also the covariance related
to each state (Solà, 2017).

3.4.2 Extended Kalman filter for nonlinear systems

The Kalman filter is specially designed for linear systems. However, many phys-
ical dynamic systems are more accurately described by nonlinear models. For
nonlinear systems a common approach is to include a linearization process in the
beginning of each time step. By doing this, a linear approximation of the system
dynamics with local validity is achieved. This approach is known as the extended
Kalman filter (EKF). Since an approximation of the system dynamics is utilized
in this approach, the EKF may not necessarily be the optimal states estimator
anymore. It has however proven to work well for many nonlinear system, and
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Figure 3.5: Structure of an ESKF

is recognized as a good approximation of the optimal solution (Valls et al., 2018;
Plett, 2004).

3.5 Full state vs. error state Kalman filter

Kalman filters are widely used to combine the various sensors in an aided INS.
In literature regarding aided inertial navigation, two classical principles for aided
INS navigation filters are proposed:

1. Full state Kalman filter

2. Error state Kalman filter (ESKF)

The full state Kalman filter estimates the vehicle’s full state, in line with the ex-
planation in the previous section. This is the traditional design. In the error state
formulation, the filter tries to estimate the error between the states measured by
the low rate aiding sensors, and the corresponding estimates of the states obtained
from the IMU integration (Bryne and Fossen, 2019). These errors, often referred
to as the error states, are then added to the INS estimates to eliminate the drift that
has occurred since the arrival of the previous low rate measurement. Figure 3.5
shows a common structure of an ESKF.

3.5.1 Advantages of the error state formulation

The ESKF is often preferred over the full state formulation, due to some key
advantages. These are listed below. The list discloses some central differences
between the two principles, and is based on the comparison carried out by Solà
(2017).
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• The ESKF is running in a feedback loop, as shown in Figure 3.5. It is therefore
not directly a part of the control loop, like the full state system. This allows
the navigation system to operate even if the KF block fails. This is because
the integrator block connected to the main set of sensors is still capable of
computing estimates. It is only the correction from the low rate sensors that
is lost.

• The error state system always operates close to the origin, and thus far from
possible parameter singularities (e.g. the Euler angle singularity of ± 90
degrees in pitch). This also strengthens the validity of the linearization.

• Since the error state is always small, all second order products are negligible.
This allows easier and faster computation of the various Jacobians.

• The error state dynamics are slow. The ESKF architecture allows the high rate
IMU data to be handled outside of the KF, in the INS block. The error states
can therefore be computed at a lower rate, reducing computational cost and
ensuring a high enough time step to complete all necessary KF calculations.

• The error state formulation facilitate a non-zero dynamic model for the esti-
mates of the gyroscope and accelerometer biases, commonly included in the
state vector in addition to the position, velocity and attitude (PVA).

Due to these advantages the ESKF is the chosen Kalman filter design for the state
estimation system developed here.

3.6 The ESKF procedure

Furthermore, the behaviour of the ESKF is explained. This explanation is also to
a large extent based on the literature of Solà (2017). It is recommended to look at
Figure 3.5 while following the next paragraphs.

In the ESKF it is distinguished between the true state vector, x, the nominal state
vector, x̂8=B , and the error state vector, �x. The true state is a composition of the
nominal state and the error state. More specifically, the true state is either a linear
sum of the nominal state and the error state or a rotation of the nominal state based
on the error state. The rotation can either be carried out using a rotation matrix,
as proposed by Farrell (2008), or with a quaternion product, as recognized in the
design choice of Solà (2017). The idea of the ESKF is to consider the nominal state
as a large signal while the error state is a small signal that is linearly integrable
and suitable for linear Gaussian filtering.

On one side, IMU data arriving at a high frequency is integrated into the nominal
states, x̂8=B . This data is contained in the input vector, u, in Figure 3.5. The nominal
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Table 3.3: Overview of the variables in the ESKF and their relations.

Variable type True
state

Nominal
state

Error
state

Composition Measured
input

Noise

Full state x x̂8=B �x x=
=1
= x̂=

8=B
⊗ �x=

=1

Position p=
=1

p̂=
8=B

�p=
=1

p=
=1
= p̂=

8=B
+ �p=

=1

Velocity v=
=1

v̂=
8=B

�v=
=1

v=
=1
= v̂=

8=B
+ �v=

=1

Quaternion q=
=1

q̂=
8=B

�q=
=1

q=
=1
= q̂=

8=B
⊗ �q=

=1

Rotation matrix X=
1

X̂=
1,8=B

�X=
1

X=
1
= X̂=

1,8=B
�X=

1

Angles vector �)1
=1

�q=
=1
= 4�)

1
=1
/2

Accelerometer
bias

b1022 b̂1
022,8=B

�b1022 b1022 = b̂1
022,8=B

+�b1022

Gyrometer bias b10AB b̂1
0AB,8=B

�b10AB b10AB = b̂1
0AB,8=B

+ �b10AB
Gravity vector g=

=1
ĝ=
8=B

�g=
=1

g=
=1
= ĝ=

8=B
+ �g=

=1

Acceleretaions f 1
=1

f 1
8<D

w1
022

Angular rates 81
=1

81
8<D

w1
0AB

states do not take noise terms into account. As a consequence, errors accumulate
causing these estimates to drift. In parallel to this, the KF estimation of the error
states aims to collect these errors by taking noises and other perturbations into
account in its dynamic models.

The KF runs an iteration every time a low rate sensor reading arrives, resulting
in a close to optimal estimate of the error states, �x. The error states are then
injected into the nominal states, ideally eliminating the drift since the previous
error state injection. Lastly, the error states are reset to zero in the Kalman filter.
This procedure is repeated once a new low rate measurement arrive.

In Table 3.3, an overviewof all the variables of the ESKF are given. The composition
equations utilized for injection of the error states into the nominal states are also
provided here, showing how the various variables relate to each other. As Table
3.3 shows, the vehicle states of interest are the position, velocity and attitude along
with the accelerometer and gyroscope biases.

3.7 Multiplicative extended Kalman filter

The vehicle’s attitude describes the relative orientation of the axes of the body
frame and the navigation frame. There are three ways to represent the attitude:



22 CHAPTER 3. PRELIMINARIES

• The rotation or direction cosine matrix '=
1

• The Euler angles roll, pitch and yaw, represented as ), � and # respectively.
These are illustrated in Figure 3.6

• The four dimensional quaternion representation q =
[
@� q�

])
From Table 3.3 it is seen that the attitude of this navigation system is represented
by a quaternion. The quaternion parametrization uses a four dimensional space to
represent the attitude. It has a scalar or real part, and a three dimensional vector
or imaginary part. For a quaternion defined as in the list above, @� represents the
scalar part and q� =

[
@8 @ 9 @:

]) represents the three dimensional vector part.
This four dimensional representation may appear less intuitive. However, with
the quaternion representation comes a number of convenient properties.

An example of a convenient property of the quaternion representation is the lin-
earity of the quaternion differential equations. Compared to the Euler angles, an
advantage is the complete avoidance of singularities. Another advantage is the
reduction of trigonometric functions in the integration routine. Compared to the
direction cosine integration, the number of parameters are significantly smaller
using quaternions (Farrell, 2008).

When utilizing a quaternion to represent the attitude, there exist several different
quaternion conventions that may be chosen. The most common are the Hamilton
quaternion and the JPL quaternion. For this system the Hamilton convention
is used, in accordance with Solà (2017). The most important property of this
convention is the element order where the scalar part comes first. A comparison
between the Hamilton and JPL quaternion can be found in Appendix B.

A Kalman filter, using unit quaternions as the nominal attitude parametrization, is
commonly referred to as a multiplicative extended Kalman filter (MEKF). This is
because the relation between the nominal attitude and the attitude error no longer
is additive. Instead, the injection of the error state into the nominal state is carried
out through computation of the quaternion product. This can be recognized in
the composition equations in Table 3.3. Appendix B contain a section explaining
fundamental quaternion mathematics. This section also covers the quaternion
product.
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Figure 3.6: The roll, pitch and yaw angles in BODY frame

3.8 Locally defined angular rates and angular error

A design choice affecting the attitude estimation is how the angular rates and
angular errors should be defined. These can either be defined locally or globally.
In the literature of Solà (2017), an aided inertial navigation system designs is
proposed for both choices. For the navigation system developed here, it is chosen
to define both the angular rates and the angular errors locally, with respect to the
nominal quaternion and the nominal orientation. This choice allows direct use of
the gyrometer measurements from the IMU, as these measurements provide body
referenced angular rates.

3.9 Stochastic instrument errors

As mentioned, a navigation system combines uncertain information related to a
vehicle to accurately estimate its state. The uncertain information is mainly noise
and imperfections in the sensor measurements. These are quantities that change
with time in a non-deterministicmanner. Stochastic processes are therefore impor-
tant in navigation systems as they allow quantitative analysis of the propagation
of uncertainties through a system as a function of time (Farrell, 2008).

Stochastic processes utilize probability theory to make statements about events
or processes that are too complicated for detailed deterministic analysis. When a
deterministic signal G3(C) is dependant on a parameter C, it means that the value
of G3 can be accurately determined if C is known. For a stochastic signal GB(C), the
parameter C only determines the probability distribution and statistics of GB .

The error model of a navigation state is usually driven by various sources of sensor



24 CHAPTER 3. PRELIMINARIES

errors. Parts of these error sources are classified as deterministic error sources that
are modeled as known biases and compensated for. In this navigation system
design, these biases are included in the state vector and estimated together with
the rest of the vehicle states.

3.10 Inertial sensors specifications

The aided navigation system developed here utilizes the inertial sensors of the
IMU as its main data source. The IMU is an integrated sensor package combining
multiple accelerometers and gyroscopes to produce a 3-dimensionalmeasurement
of both specific force and and angular rate. Specific force is a measure of accelera-
tion relative to free-fall, hence linear acceleration minus the gravity. Angular rate
is a measure of the rate of rotation (VectorNav, 2020)

The IMU present on Atmos is manufactured by VectorNav. The sensor provides
measurements at 100 Hz, which is regarded as a high output frequency. The
documentation from the manufacturer contains information about the quality of
the sensor. The sensor specifications relevant for examination of the various error
sources are summarized in Table 3.4.

The sensor specifications from Table 3.4 can be used to achieve a representative
error model for the inertial sensor inputs. The various error sources presented in
this table introduce errors of different characters. To determine an appropriate
error model each of the errors should be considered separately in the light of the
expected behaviour of the vehicle.

In a technical report from 1997 published by the Norwegian Defence Research
Establishment (FFI), Gade presents a thorough examination of the various error
sources in the inertial sensors on an autonomous underwater vehicle (AUV). In
the report, the contribution from each error source to the final error model is
systematically put forward. In the following sections, the error sources present in

Table 3.4: IMU error specifications from manufacturer

Gyroscope Accelerometer

Error Source Value Error Source Value
Alignment ±0.05◦ Alignment ±0.05◦
Linearity < 0.1% FS* Linearity < 0.5% FS*
Bias Stability < 10◦/hr Bias Stability < 0.04 mg
Noise Density 0.0035◦/(s

√
Hz) Noise Density < 0.14 mg /

√
Hz

* Full Scale. For the gyroscope this corresponds to 4000◦/s and for the accelerometer
the full scale is 32g.
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the IMU on Atmos will be systematically investigated in a similar manner. The
investigation is carried out with respect to the specifications in Table 3.4 and the
expected behaviour of the target vehicle.

3.11 Gyroscope error model

When considering various error sources it is common to distinguish between low
frequency errors and high frequency errors by collecting each of these in two
separate terms in the error model. The gyroscope is hence modeled as follows.

81
8<D = 81

=1
+ b10AB +w1

0AB = 81
=1
+ Δ81

=1
(3.4)

Δ81
=1

is defined as the total gyroscope error model. b10AB denotes the gyroscope
bias term or the standard deviation of the gyroscope, due to low frequency error
sources. w1

0AB denotes high frequency measurement noise. Low frequency errors
include the alignment errors, the in-run bias stability and the linearity errors. The
high frequency term mainly includes white noise with the noise density given in
Table 3.4. Moreover, each of the two terms in the error model will be modeled
based on Table 3.4.

3.11.1 Modeling of the gyroscope bias: b10AB
Biases are common to model as first order Gauss-Markov processes driven by
Gaussian white noise (Gade, 1997). This yields

¤b10AB = −
1
)0AB

b10AB +w1
1,0AB

(3.5)

The termw1
1,0AB

is referred to as process noise and represent white noise processes
that drive the bias. This noise is different from w1

0AB from (3.4) which is measure-
ment noise. The process noise is normally distributedwith zeromean and variance
equal to W0AB%(�). The gyroscope bias in each direction is assumed uncorrelated
such that

W0AB =


�2
&0AB ,G

0 0
0 �2

&0AB ,H
0

0 0 �2
&0AB ,I

 (3.6)
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To determine the value of �&0AB ,8 , where 8 ∈ {G, H, I}, the relation from Appendix
D is utilized. This relation states that

�2
110AB ,8

= �2
&0AB ,8

)0AB

2 (3.7)

Hence, �&0AB ,8 is dependant on the time constant and the standard deviation of the
gyroscope bias term. The bias is expected to vary sowly and the time constants,
)0AB , is thus set one hour (Gade, 1997).

)0AB = 3600s (3.8)

�110AB ,8 denotes the standard deviation of the gyroscope bias in each direction, and
represents its uncertainty. This standard deviation contains contributions from
each of the low frequency error sources present in Table 3.4, specifically the in-run
bias stability error, the linearity error and the alignment error. Before being able
to determine the value of �110AB ,8 , the expected contributions from each of the low
frequency error sources must be determined based on the IMU specifications and
the expected vehicle behaviour. This is carried out below.

Gyroscope in-run bias instability

The first low frequency error source of consideration is the in-run bias stability.
This error source is straightforward to consider. Its contribution to �110AB ,8 , equal to
its standard deviation, is directly given by the sensor specifications in Table 3.4.
Conversion to the correct unit yields

�$180B,8 = 10 · �
180 ·

1
3600rad/s = 4.85 · 10−5rad/s (3.9)

Gyroscope linearity error

The linearity error is another low frequency error source, contributing to �110AB ,8 . For
axis 8 the linearity error is equal to �81

=1,8
·81

=1,8
, where �81

=1,8
denotes the linearity

error and 81
=1,8

denotes the angular rate. The latter is considered a deterministic
signal while the linearity error is considered a stochastic signal. Utilizing that the
expected value of a deterministic signal is the signal itself, the following expression
for the standard deviation is achieved.

�$;8=,8 = 0.1 · 10−2 · 81
=1

rad/s (3.10)

Here, the value for the linearity error from Table 3.4 is inserted. From the ex-
pression above it is observed that the linearity error contribution depends on the
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Figure 3.7: The FSG 2019 Autocross and Trackdrive layout

angular rate. Hence, this error source only contributes to �110AB ,8 when the vehicle
is turning. The size of the contribution is proportional to the size of the turn rate.
To properly determine the effect of this error contribution the expected behaviour
of the vehicle must be studied.

The dynamic events at the competitions include three tracks, where the Accelera-
tion track is a straight line, the Skidpad track is shaped as the number eight and
the track used for both the Autocross and Trackdrive events has a layout that is
uninformed in advance of the competition.

The standard deviation of the linearity error is equal to zero when the vehicle
is driving straight, which is true for the entire Acceleration event. During the
Skidpad event, the vehicle is turning during the entire race. The performance
goals, stated in Chapter 2, correspond to 65.5◦/s. This is in general a very high
turn rate for a ground vehicle, and the linearity error source is expected to have a
considerable effect on this race. The Autocross and Trackdrive events are expected
to contain smaller turns in both directions. Figure 3.7 show the track layout for
Autocross and Trackdrive at FSG 2019, which is regarded as a reasonable indicator
of the expected amount and size of turns. The various turn rates and the duration
of each turn are however impossible to properly determine in advance.

It is reasonable to treat the expected turn rate in the Skidpad event as themaximum
expected turn rate of the vehicle. The turns in this event are also long-lasting,
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inducing a larger overall contribution from the linearity errors. By inserting this
turn rate into (3.10), the maximum contribution to �110AB ,8 from the linearity error
becomes

�$;8=,8 = 0.1 · 10−2 · 81
=1

rad/s

= 0.1 · 10−2 · 65.5 · �
180 rad/s

= 1.14 · 10−3 rad/s

(3.11)

Gyroscope alignment error

The last low frequency error source is the alignment error. This error source leads
to a slight disorientation of the axes in the reference system. Because of this, they
are no longer exactly orthogonal preventing the misalignment to be described by
a rotation matrix. The error along each axis must therefore instead be considered
separately.

Figure 3.8 illustrates how this kind of misalignment of a single axis introduces an
error in a measurement. The error along an axis will have the highest value when

� = 90◦ + �, (3.12)

using the notations from Figure 3.8. � denotes the alignment error value spec-
ified in Table 3.4. Under the assumption of � being small, the alignment error
contribution to �110AB ,8 can be expressed as

Figure 3.8: Illustration of the alignment error source
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�$0;86=,8 = sin(�) · |8b
nb | ≈ � · |8b

nb | (3.13)

Note that this is correct with respect to units because [rad] is a dimensionless unit.
It is considered a special case of the SI units. Insertion of the maximum expected
turn rate and the alignment error value from Table 3.4, results in

�$0;86=,8 = (0.05 · �
180 ) · (65.5 · �

180 ) rad/s = 9.98 · 10−4 rad/s (3.14)

With this, the contributions from all the low frequency error sources present in
Table 3.4 are computed. The value of �110AB ,8 is calculated as

�110AB ,8 =
√
�2
$0;86=,8 + �2

$;8=,8 + �2
$180B,8 = 0.0015 rad/s (3.15)

Moreover, all necessary information in order to determine the standard deviation
of the driving noise in (3.5), �&0AB ,8 , is now achieved. Insertions of )0AB and �110AB ,8
into (3.7) yields

�&0AB ,8 =

√
2
)0AB
· �2

110AB ,8
= 3.58 · 10−5 rad

s
√

Hz (3.16)

This completes the model for the gyroscope bias term, b10AB .

3.11.2 Modeling of the gyroscope measurement noise: w1
0AB

Next, the high frequency measurement noise component in (3.4) is studied. The
measurement noise is modeled as a continuous white noise process with zero
mean and variance equal to X0AB%(�). Similar to the process noise for the bias drift,
the measurement noise in each direction is assumed uncorrelated such that

X0AB =


�2
'0AB ,G

0 0
0 �2

'0AB ,H
0

0 0 �2
'0AB ,I

 (3.17)

The standard deviation of the gyroscope measurement noise is given in the sensor
specifications and can be directly read out from Table 3.4.

�'0AB ,8 = 0.0035 · �
180

rad
s
√

Hz
(3.18)
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3.12 Accelerometer error model

The accelerometer error model, Δ f 1
=1
, is similar in appearance to the error model

for the gyroscope. It has a bias term, collecting the low frequency errors, and
a measurement noise term, collecting high frequency noise. The specific force
arriving from the IMU is therefore expressed as

f 18<D = f 1
=1
+ b1022 +w1

022 = f 1
=1
+ Δ f 1

=1
(3.19)

Each of the terms contained in Δ f 1
=1

will now be modeled.

3.12.1 Modeling of the accelerometer bias: b1022
Similar to the gyroscope bias, the accelerometer bias term is modeled as a first
order Gauss-Markov process with a time constant equal to one hour.

¤b1022 = −
1

Z022
b1022 +w1

022 (3.20)

)022 = 3600s (3.21)

w1
022 denotes the Gaussian white process noise that drives the biases, with zero

mean and variance equal to W022%(�). W022 is written out in (3.22), using the
assumption that the driving noise in each direction are uncorrelated.

W022 =


�2
&022 ,G

0 0
0 �2

&022 ,H
0

0 0 �2
&022 ,I

 (3.22)

The value of �&022 ,8 is achieved using the relation from Appendix D, in the same
way as for the standard deviation of the driving noise in the gyroscope bias model.
The relation states that

�2
11022 ,8

= �2
&022 ,8

)022

2 (3.23)

where �11022 ,8 denotes the standard deviation of the accelerometer bias in each di-
rection, representing its uncertainty. �11022 ,8 is composed by the contributions of
each low frequency error source present in Table 3.4. To obtain �&022 ,8 , a compu-
tation of �11022 ,8 based on an investigation of the low frequency error sources in the
accelerometer is required. This will now be carried out.
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Accelerometer bias error

The contribution from the in-run bias stability to �11022 ,8 is straightforward to con-
sider here aswell, with a standarddeviationdirectly givenbyTable 3.4. Conversion
to the correct unit yields

� 5180B,8 = 0.04 · 10−3 · 9.81m/s2
= 3.92 · 10−4m/s2 (3.24)

Accelerometer linearity error

The expression for the standard deviation of the linearity errors in the accelerom-
eter is provided below.

� 5;8= = 0.5 · 10−2 · f 1
=1

(3.25)

Here, the standard deviation of the linearity error depends on the specific force.
In order to examine the maximum expected contribution of this error source to
�11022 ,8 , the maximum expected specific force should be investigated. Since this
state estimation system is developed for a ground vehicle, the horizontal plane
will focused on.

In general, specific force arise when there is a change in the length or a change in
the direction of the velocity vector. At competition, the largest linear acceleration
is expected at the Acceleration event, where the vehicle is driving a 75 meter long
straight track. Due to the performance goals fromChapter 2 the aim is to complete
this event in 3.75s. This corresponds to an acceleration of 10.66m/s2 in the forward
direction. If zero pitch angle is assumed, this value becomes equal to the specific
force.

The maximum angular rate is expected at the Skidpad event. If the performance
goals is to bemet, an angular rate of 65.5◦/s is required as alreadymentioned. The
specific force caused by this angular rate is calculated as follows.

f 1
=1
= Y(81

=1
)v1
=1
− g1

=1
(3.26)

Here, Y(81
=1
) represents the skew-symmetric matrix of 81

=1
. Assuming zero roll

and pitch angles, the resulting maximum specific force in the horizontal direction
becomes
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max ©«( ©«


0
0

65.5 · �
180

ª®¬

10.4

0
0

 −


0
0

9.81

ª®¬ = 11.89m/s2 (3.27)

using the desired average body velocity to reach the performance goals for the
Skidpad event. This is higher than the specific force during the Acceleration event,
and will be used to calculate the maximum expected standard deviation from the
linearity error.

� 5;8=,8 = 0.50 · 10−2 · 11.89 m/s2
= 5.94 · 10−2 m/s2 (3.28)

Accelerometer alignment error

When investigating the standard deviation of the alignment errors, the same rea-
soning as for the gyroscope is used. The standard deviation can hence be approx-
imated as

sin(�) · | f 1
=1
| ≈ � · | f 1

=1
| (3.29)

using the notation of Figure 3.8. This error is also dependant on the specific force.
In the previous section it was found that the maximum expected specific force in
the horizontal plane is equal to 11.89 m/s2, and is expected to find place during
Skidpad. This yields

� 50;86=,8 = 0.05 · �
180 · 11.89 m/s2

= 1.04 · 10−2 m/s2 (3.30)

All contributions from low frequency error sources in the accelerometer are now
computed, enabling determination of the standard deviation of the accelerometer
bias.

�110AB ,8 =
√
�2
5180B,8
+ �2

5;8=,8
+ �2

50;86=,8
= 0.0603m/s2 (3.31)

By inserting this value into (3.23) together with the time constant of one hours, it
is now possible to compute �&022 ,8 .

�&022 ,8 =

√
2
)022
· �2

11022 ,8
= 0.0014 m

s2

√
Hz (3.32)

With this, the model for the accelerometer bias term, b1022 , is complete.
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3.12.2 Modeling of the accelerometer measurement noise: w1
022

The high frequency measurement noise component in (3.19) is modeled as con-
tinuous white noise, similar to the gyroscope measurement noise. This noise has
a Gaussian normal distribution with zero mean and variance equal to X022 %(�).
The measurement noise in each direction is assumed to be uncorrelated, such that

X022 =


�2
'022 ,G

0 0
0 �2

'022 ,H
0

0 0 �2
'022 ,I

 (3.33)

The standard deviation of the measurement noise, �'022,8 , is read out from Table
3.4.

�'022,8 = 0.14 · 10−3 · 9.81 m/s2 = 0.0014 m
s2
√

Hz
(3.34)

3.13 Discretization of Gaussian white noise

The state spacemodel consist of a set of process equations and a set ofmeasurement
equations. The process equations describe the physical behaviour of the internal
states, and are naturally described in continuous time. The measurements, on the
other hand, only arrive at certain time instants and it is consequently more correct
to model the measurement equations in discrete time.

In the following, an investigation of how discretization of a white noise process
can be carried out is presented. The process to be discretized here is the output
measurement noise. Unlike continuouswhite noise, discretewhite noise processes
are physically realizable. This is due to the discrete Dirac delta function having a
finite value at all time instances. Equation (3.35) show how the discrete time white
measurement noise is defined.

w: =
1
ℎ

∫ C:

C:−1

w(C)3C (3.35)

ℎ denotes the time step, or the difference in time between the arrival of each
measurement. A complete discrete representation also require determination of
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the covariance matrix of w: . This matrix is denoted X3.

X3: = 2>E(w:) = �
{
[w:][w:])

}
=

1
ℎ2

∫ C:

C:−1

∫ C:

C:−1

�
{
[w(C)][w(�)])

}
3C3�

=
1
ℎ2

∫ C:

C:−1

∫ C:

C:−1

X(C)%(C − �)3C3�

(3.36)

Under the assumption that the step size ℎ is small compared to the change rate of
X(C), the approximation of (3.37) holds. This will consequently be utilized in the
discrete time error models in the state estimation system developed here.

X3: =
1
ℎ2

∫ C:

C:−1

X(�)3� ≈ X(C:)
ℎ

(3.37)
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Figure 4.1: The general software structure of the navigation system

The State Estimation System
In this chapter the final design of the developed state estimation system is pre-
sented. The aim of this chapter is to systematically describe the implementation
to an extent that enables the system to be reproduced. Thorough documenta-
tion is valuable for organizations like Revolve NTNU in order to learn from the
experiences of past teams and always move forward in their solutions.

This state estimation system is developed in MATLAB. Initially, it was intended
that the software, having reached a sufficient state of completeness, should be
rewritten in C++ and integrated with ROS in order to run on the vehicle together
with the rest of the total autonomous system. However, due to the limitations
related to the COVID-19 situation, a simulator is instead developed in MATLAB
and utilized for validation.

The structure of the developed state estimation software is illustrated in Figure
4.1. This is intended to provide an overview of the system and will be frequently
referred to during the rest of this chapter. The chapter is structured such that each
block in the block diagram of Figure 4.1 is explained in turn.

35
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4.1 Simulator

The simulator block in Figure 4.1 simulates a certain behaviour of the race car.
It outputs the true states along with the true specific forces and angular rates.
These are useful both for validation, providing simulated ground truth, and for
modeling of the various sensors.

4.1.1 True state space

The simulator block concerns the true state space and is in control of the true
behaviour of the vehicle. This state space is defined by the true state vector, x,
which is given below.

x =


p=
=1

v=
=1

b1022
q=
=1

b10AB


(4.1)

The true state vector above has the following nomenclature:
p=
=1

v=
=1

b1022
q=
=1

b10AB

True position.
True velocity.
True accelerometer bias.
True attitude quaternion.
True gyroscope bias.

All of the states are three-dimensional except for the attitude quaternion which
has four dimensions.

4.1.2 True state kinematics

The true state kinematic equations are used in the simulator block to propagate
the true vehicle states forward in time. The continuous time differential equations
for each of these states are given below.

¤p=
=1
= v=

=1 (4.2a)

¤v=
=1
= X=

1
a1
=1

(4.2b)

¤b1022 = −
1
)022

b1022 +w1
1,022 (4.2c)

¤q=
=1
=

1
2q

=
=1
⊗ 81

=1
(4.2d)

¤b10AB = −
1
)0AB

b10ABw
1
1,0AB (4.2e)
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The implementation of this state estimation system is carried out in the discrete
time domain. This is convenient as both the high rate IMU measurements and
the low rate aiding measurements only arrive at specific time instances. Hence, in
order to include the kinematic equations in the implementation, a discretization
of (4.2) is necessary. The resulting discrete update equations for the true states are

p=
=1:

= p=
=1:−1
+ v=

=1:−1
ℎ + 1

2X
=
1:−1

a1
=1:−1

ℎ2 (4.3a)

v=
=1:

= v=
=1:−1
+ X=

1:−1
a1
=1:−1

ℎ (4.3b)

b1022: = 4
− 1
)022

ℎb1022:−1 +w1,022:−1 (4.3c)

q=
=1:

= q=
=1:−1
⊗ q{81

=1:−1
} (4.3d)

b10AB: = 4
− 1
)0AB

ℎb10AB:−1 +w1,0AB:−1 (4.3e)

In the quaternion update equation, the term q{81
=1:−1
} is recognized. To explain

this notation, the generic expression, q{v}, is used. q{v} denotes the quaternion
associated with the vector v = )u, representing a rotation of ) radians about the
axis u. To compute this quaternion, the conversion formula below is utilized (Solà,
2017).

q{v} = q{)u} = 4)u/2 =
[

cos()/2)
u sin()/2)

]
(4.4)

Having the discrete kinematic equations, the simulator block i capable of propa-
gating all the vehicle states and determine the true behaviour of the vehicle under
the affection of a certain input sequence. The input sequence is constructed in
order to provoke a behaviour corresponding to the choice of case study.

4.1.3 Choice of case study

The simulated case in focus is the Skidpad event at the FS competitions. This is
chosen because it is the most complex dynamic event where the track layout is
known in advance of the competition. This event also excites the dynamics of
almost all the vehicle states of interest, making it a suitable case of study. To obtain
sufficient excitement of roll and pitch, a slight deviation from a horizontal ground
is assumed. From the examination of IMU errors in the previous chapter, it is
also found that the Skidpad event is the event facing the largest effects from the
error sources in the inertial sensors. As mentioned in the previous chapters, the
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Figure 4.2: Skidpad track layout due to competition rules

Skidpad track is shaped as the number eight. The exact layout, according to the
competition rules (FSG, 2020), is shown in Figure 4.2. A corresponding layout is
used in the simulations.

4.1.4 The Skidpad procedure

The procedure of the Skidpad event is as follows. The vehicle starts by driving in
a straight line, referred to as the "pit lane", and enters the track perpendicular to
the figure eight. Then, two full laps on the right circle is taken, where the second
lap is timed. Hereafter, the vehicle enters the left circle of the Skidpad track for
the third lap and completes two laps on this circle as well. Also here, the second
lap is timed.

To match the competition procedure, the pit lane is included in the simulated case
and two laps are completed of each circle before entering the next. In addition it
is assumed that the state estimation system is turned on for a short period of time
while the vehicle remains stationary, waiting for permission to start the race.

The performance goal of this year’s team at the Skidpad event is to finish each
circle within an average time of 5.5 seconds, as stated in Ch.2. This corresponds to
an absolute velocity of 10.4 m/s, which is the velocity applied in the simulations.
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Moreover, it is recognized from Figure 4.1 that the true state vector, x, from the
simulator block is used as input to all the blocks in the block diagram representing
sensors. As this state estimation system is an aided inertial navigation system, the
main data source is the IMU. This is the next block to be presented.

4.2 Inertial measurement unit (IMU)

The IMU block in Figure 4.1 provides the high rate inertial sensor measurements
used as the main set of sensors in this state estimation system. As mentioned in
Ch.3, an IMU is composed of an accelerometer and a gyroscope. Equation (4.5)
and (4.6) show the models for the specific forces, f 1

8<D
, from the accelerometer and

the angular rates, 81
8<D

, from the gyroscope respectively.

f 18<D = a1
=1
+ Y(81

=1
)v1
=1
− X=

1
) g=

=1
+ b1022 +w1

022 (4.5)

81
8<D = 81

=1
+ b10AB +w1

0AB (4.6)

The inertial sensor measurements are modeled as functions of the true specific
forces and angular rates, assumed corrupted by various error sources. The error
models used here correspond to the errormodels worked out in Ch.2, with regards
to the sensor specifications provided by the manufacturer. The specific force and
angular rate vectors make up the members of u8<D in Figure 4.1. This vector is
further fed into the INS block.

4.3 Inertial navigation system (INS)

The INS block in Figure 4.1 performs the integration of the incoming high-rate IMU
measurement outputs to obtain an estimate of the desired vehicle states. These
states represent expected values of the vehicle states based on the IMU readings
alone. Since error components have expected values equal to zero, no noise or
perturbations are taken into account in this block.

4.3.1 Nominal state space

The estimated states obtained from integration of the high rate IMUmeasurements
are referred to as the "nominal states" and make up the "nominal state space". The
nominal state vector corresponds to the true state vector in (4.1), and is stated
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below.

x̂8=B =



p̂=
8=B

v̂=
8=B

b̂1
022,8=B

q̂=
8=B

b̂1
0AB,8=B


(4.7)

In correspondence with the true state vector, the following nomenclature is used:
p̂=
8=B

v̂=
8=B

b̂1
022,8=B

q̂=
8=B

b̂1
0AB,8=B

Nominal position.
Nominal velocity.
Nominal accelerometer bias.
Nominal attitude quaternion.
Nominal gyroscope bias.

All nominal states are in three dimensions, with the exception of the nominal atti-
tude quaternion which is four-dimensional.

4.3.2 Nominal state kinematics

The continuous kinematic equations for the nominal states are utilized to prop-
agate these states forward in time based on the input from the IMU block. The
kinematic equations for the nominal states used in this implementation are given
below.

¤̂p=8=B = v̂=8=B (4.8a)
¤̂v=8=B = â=8=B (4.8b)

¤̂b1022,8=B = −
1
)022

b̂1022,8=B (4.8c)

¤̂q=8=B =
1
2 q̂

=
8=B ⊗ 8̂1

8=B
(4.8d)

¤̂b10AB,8=B = −
1
)0AB

b̂10AB,8=B (4.8e)

The nominal acceleration, â=
8=B

, is obtained due to (4.9) below. Here, it is seen that
the gravitational force is added to the rotated specific force from the IMU, where
the estimated accelerometer bias is subtracted. The nominal angular rate, 8̂1

8=B
,

is calculated due to (4.10) by removing the estimated angular rate bias from the
angular rates provided by the IMU.
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â=8=B = X̂=
1,8=B
( f 18<D − b̂1022,8=B) + ĝ=8=B (4.9)

8̂1
8=B = 81

8<D − b̂10AB,8=B (4.10)

Similar to the true state kinematics, the equations of (4.8) are discretized before
they are implemented in the software. Thediscrete dynamicmodel for the nominal
state is given in (4.11).

p̂=8=B: = p̂=8=B:−1
+ v̂=

8=B,:−1ℎ +
1
2 â

=
8=B:−1

ℎ2 (4.11a)

v̂=8=B: = v̂=8=B:−1
+ â=8=B:−1

ℎ2 (4.11b)

b̂1022,8=B: = b̂1022,8=B:−1
(4.11c)

q̂=8=B: = q̂=
=1:−1
⊗ q̂{8̂1

8=B:−1
} (4.11d)

b̂10AB,8=B: = b̂10AB,8=B:−1
(4.11e)

q̂{8̂1
8=B:−1
} is computed using (4.4).

As seen in Figure 4.1, the INS block outputs estimates corresponding to the aiding
sensor measurements, denoted ŷ, in addition to the nominal state vector. These
estimates correspond to the low rate aiding measurements, represented within
the nominal state space. How the expressions of the various members of ŷ are
constructed, become more evident when presented together with the models for
the low rate aiding sensors. The models for the various aiding sensor and their
corresponding estimates are therefore presented together in the next section.

4.4 Low rate aiding sensors

The dual GNSS block and the GSS block in Figure 4.1 make up the blocks repre-
senting the low rate aiding sensors. These take in the true state vector, x, as input
from the simulator block, and provide aidingmeasurements as output to the ESKF
block. The low rate aiding sensor blocks provide four different quantities: the two
GNSS position measurements, the ground speed measurement and the baseline
vector between theGNSS antennas. These are collected in themeasurement vector,
y.
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y =


y6=BB1
y6=BB2
y6BB
y1;

 (4.12)

Each measured quantity is modeled as a measurement functions of the true state,
x. In the following, each of these sensor models are presented along with the
corresponding nominal estimates, ŷ. The appearance of ŷ is equivalent to y.

ŷ =


ŷ6=BB1
ŷ6=BB2
ŷ6BB
ŷ1;

 (4.13)

4.4.1 Dual GNSS position measurements

The two GNSS antennas are placed a known distance from the CG of the car.
The position measurements from each of these antennas are therefore modeled
as displaced positions. With two of these measurements along with knowledge
about the positions of the antennas relative to each other, the attitude of the vehicle
becomes observable. The measurement functions used for the GNSS position
measurements are

y6=BB,1 = p=
=1
+ X=

1
r11 +w6=BB (4.14)

y6=BB,2 = p=
=1
+ X=

1
r12 +w6=BB (4.15)

The true rotation matrix, X=
1
, and the true position, p=

=1
, are achieved from the

simulator block. Furhtermore, r11 and r12 represent the known lever arms from
the CG to each GNSS antenna. In addition, Gaussian white measurement noise is
added to both of the measurement functions, as some disturbances are expected.

The corresponding nominal quantities are obtained from performing a similar
displacement of the latest nominal position estimate obtained from the INS block.

ŷ6=BB,1 = p̂=8=B + X̂1
=,8=Br

1
1 (4.16)

ŷ6=BB,2 = p̂=8=B + X̂1
=,8=Br

1
2 (4.17)
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X̂=
1
denotes the nominal rotationmatrix, computed from the latest nominal attitude

quaternion. Similar to the nominal states, x̂8=B , no noise is included in ŷ as the
expected values of these components are zero.

4.4.2 Ground speed velocity measurements

Whenmodeling the ground speed sensor, there are two significant properties that
have to be accounted for. Firstly, the sensor is not located exactly as CG, similar to
the GNSS antennas. The measurements must therefore be modeled as displaced
velocities. The displaced velocity is derived by differentiation of the displaced
position:

p=6BB = p=
=1
+ X=

1
r16BB (4.18a)

v=6BB = ¤p=6BB
= v=

=1
+ ¤X=

1
r16BB + X=

1�
�¤r16BB

= v=
=1
+ X=

1
((81

=1
)r16BB

(4.18b)

Secondly, the GSS outputs the ground speed, which is a scalar value. This velocity
corresponds to the absolute horizontal velocity of the vehicle given in BODY
frame. When modeling this sensor, the aim is to arrive at a formulation that
makes it possible to represent this measurement within the estimated state space.
One of the challenges here is that the GSS outputs the absolute value of a two
dimensional size. To resolve this, an allocation matrix is utilized enabling this
sensor to be modeled as a function of the three dimensional velocity vector. This
is shown in the third line of (4.19) where the allocation matrix is multiplied with
the rotated three dimensional velocity vector in the first term.

y6BB = ℎ6BB(xC) +w6BB

=

v16BB2
+w6BB

=

[1 0 0
0 1 0

]
X=
1
)v=6BB


2
+w6BB

(4.19)

The allocation matrix multiplied with the rotation matrix yields the plane in the
NED frame corresponding to the xy-plane in the BODY frame.

The corresponding estimated velocity ŷ6BB is obtained starting from the latest INS
estimate of the velocity. The two dimensional mapping is then accounted for
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following (4.19), with the displacement expressed as in (4.18b).

ŷ6BB =

[1 0 0
0 1 0

]
X̂=
1,8=B

)(v̂=8=B + X̂=
1,8=B

Y(81
8<D − b̂10AB,8=B)r16BB)


2
+w6BB

=

[1 0 0
0 1 0

]
X̂=
1,8=B

) v̂=8=B + Y(81
8<D − b̂10AB,8=B)r16BB


2
+w6BB

(4.20)

4.4.3 Dual GNSS baseline vector

The vector between the two GNSS antennas, referred to as the "baseline", is in-
cluded as the third low rate aidingmeasurement. Thismeasurement is included in
order to aid in determining accurate heading even when the vehicle is at rest. The
GNSS baseline vector is denoted y1; and its measurement function is calculated as
the difference between y6=BB1 and y6=BB2.

y1; = y6=BB2 − y6=BB1

= (p=
=1
+ X=

1
r12 +w6=BB) − (p==1 + X=

1
r11 +w6=BB)

= X=
1
(r12 − r11 )

(4.21)

The corresponding estimated baseline has a similar expression, formulated within
the nominal state space.

ŷ1; = X̂=
1,8=B
(r12 − r11 ) (4.22)

With this, all the quantities in the measurement vector, y, are modeled. The
corresponding nominal quantities are specified as well. To remove contaminants,
note that the aidingmeasurement vector, y, is fed into the ESKFblock from thedual
GNSS block and the GSS block in Figure 4.1. Since ŷ calculates the corresponding
values within the nominal state space this vector has to arrive from the INS block.
This is also shown in Figure 4.1.

4.5 Error state Kalman filter

Next in line, is the ESKF block. This block is the most important and computa-
tionally heavy block in the state estimation system. The actual sensor fusion takes
place in this block, utilizing the information from the low rate aiding sensors to
eliminate the effects of the various error sources and uncertainties in the system.
The ESKF block take input from the both the low rate aiding sensor blocks in
addition to the INS block. An error state is then estimated with a Kalman filter
using all of the collected information. This error state is subsequently fed back to
the INS block to eliminate drift in the nominal states. This is repeated every time
a new set of aiding measurements arrive.
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The work carried out by the ESKF block at the arrival of a low rate measurement
can be dived into five steps. These are linearization, KF prediction, KF correction,
injection of the errors into the nominal states and finally the reset step. The way
each of these steps are implemented is explained below. To begin with, the error
states space and the error state kinematics are outlined.

4.5.1 Error state space

The error state space is described by the error state vector, which is provided below.

�x =



�p=
=1

�v=
=1

�b1022
�q=

=1

�b10AB
�g=

=1


(4.23)

The following nomenclature is used for the error state vector:
�p=

=1

�v=
=1

�b1022
�q=

=1

�b10AB
�g=

=1

Position error.
Velocity error.
Accelerometer bias error.
Attitude quaternion error.
Gyroscope bias error.
Gravity error.

The error state vector does not correspond exactly to the true state vector and the
nominal state vector. Firstly, the error state vector is expandedwith one additional
state being the gravitational error state �g=

=1
. This is included because it is assumed

that the gravity is calculated inaccurately. An alternative implementation is to omit
the gravity error state and instead assume that it is a part of the accelerometer bias
error state.

Secondly, the attitude error state is represented using the three parameter angular
error, �)1

=1
, instead of the four parameter unit quaternion. Hence, all states in this

state space are three-dimensional. The four parameter unit quaternion makes the
covariance matrix become rank deficient due to the unit constraint (Fossen, 2019).
With the three parameter error state formulation this problem is resolved. Since
the angular error is small, the singularities that may occur close to 90 degrees is
not of concern. The angular error being small also leads to the following relation
to the unit quaternion parametrization of the same error state:

�q=
=1
−−−−→
�)→0

[
1

1
2 �)

1
=1

]
(4.24)
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4.5.2 Error state kinematics

The error states relate to the nominal states following the composition equations
from Table 3.3 in Ch.3. The kinematic equations of the error states are obtained
starting from these composition equations and solving for the error states. Since
the error states are small signals, all second order terms are assumed negligible.
This approach yields the following error state dynamics, utilized in the Kalman
filter equations.

� ¤p=
=1
= �v=

=1 (4.25a)

� ¤v=
=1
= −X̂=

1,8=B
�b1022 − X̂=

1,8=B
Y( f 18<D − b̂1022,8=B)�)1=1 + �g

=
=1
− X̂=

1,8=B
w1
022 (4.25b)

� ¤b1022 = −
1
)022

�b̂1022 +w1
1,022 (4.25c)

� ¤)1
=1
= −Y(81

8<D − b̂10AB,8=B)�)1=1 − �b
1
0AB −w1

0AB (4.25d)

� ¤b10AB = −
1
)0AB

�b̂1022 +w1,0AB (4.25e)

� ¤g=
=1
= 0 (4.25f)

4.5.3 EKF linearization

The error state kinematics are nonlinear as recognized in (4.25). A linearization
process is therefore included in the filter as an additional initial step, following the
principle of the EKF. The linearization step involve computation of the Jacobian
matrices of (4.25) with respect to the error states, �x, and the noise components,
w8<D . These matrices are denoted G and K respectively. Their expressions are
given below.

G =
% f

%�x

����
�x=0

=



03 O3 03 03 03 03

03 03 −X̂1
8=B

−X̂1
8=B

Y( f 1
8<D
− b̂1

022,8=B
) 03 O3

03 03 − 1
)022

O3 03 03 03

03 03 03 −Y(81
8<D
− b̂0AB,8=B) −O3 03

03 03 03 03 − 1
)0AB

O3 03
03 03 03 03 03 03


(4.26)
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K =
% f

%w8<D

����
w=0

=



03 03 03 03
−X̂1

8=B
03 03 03

03 O3 03 03
03 03 −O3 03
03 03 03 O3
03 03 03 03


(4.27)

Furthermore, since the implementation of this state estimation system is carried
out in discrete time, it is necessary to perform a discretization of the linearized
dynamics. This is achieved as follows:

G3 = O18 + Gℎ (4.28)

K3 = Kℎ (4.29)

ℎ denotes the time step given is seconds. With this, the linearization step is
completed and a discrete time linear approximation of (4.25) is achieved. The final
discrete time linearized error state system on compressed form becomes

�x ← G3(u8<D , x8=B)�x + K3(x8=B)w8<D (4.30)

with the discrete Jacobian matrices from (4.28) and (4.29), the nominal and er-
ror state vectors from (4.7) and (4.23) respectively, and the following input and
perturbation vectors:

u8<D =

[
f 1
8<D

81
8<D

]
w8<D =


w1
022

w1
1,022

w1
0AB

w1
1,0AB

 (4.31)

4.5.4 ESKF prediction

The ESKF prediction step computes a time propagation of the error state vector,
�x, and its covariance matrix, V̂, making use of the Jacobian matrices G and K
which represent the linearized dynamics.
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�x−: = G3:−1�x
+
:−1 (4.32)

V̂−: = G3:−1 V̂
+
:−1G3:−1

) +W3 (4.33)

W3 =
1
2 (G3:−1K:−1WK:−1

)G3:−1
) + K:WK:))ℎ (4.34)

Note that the error state �x is reset to zero each time a low rate aidingmeasurement
arrive to the ESKF. Hence, (4.32) always returns zero and is consequently not in-
cluded in the actual implementation. The discrete process noise covariancematrix,
W3, is defined in (4.34). Note that this matrix is computed using the continuous
K-matrix and not the discretized one. W3 represent a discrete approximation of the
continuous process noise covariance matrix. It may be approximated in simpler
ways, for instance like it is done in the literature of Solà (2017). However, to in-
crease preciseness it is here chosen to use an approximation where the K-matrices
from two consecutive time steps are included (Maybeck, 1982).

4.5.5 ESKF correction

In the ESKF correction step, the new information provided by the low rate mea-
surements is taken into account and used to correct the predictions of �x and V̂.
The Kalman gain, Q: , is also computed and utilized in the correction equations to
determine the optimal weighting of this new information. The ESKF correction
equations are provided below.

Q: = V̂−: N
)
:
(N: V̂−: N

)
:
+ X:)−1 (4.35)

�x+
:
= Q:�y: (4.36)

V̂+
:
= (O18 − Q:N:)V̂−: (O18 − Q:N:)) + Q:X:Q)

:
(4.37)

Here, �y is the error between the aiding measurement vector, y, and the cor-
responding estimates, ŷ. Matrix N is the Jacobian matrix of the measurement
functions of y with respect to the error state, �x. Matrix X is the measurement
covariance matrix, as mentioned in Ch.3. Next, the computation of N and �y will
be thoroughly described in turn as both of these quantities play a central role in
the Kalman filter.
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4.5.6 The measurement Jacobian matrix N

MatrixN is an important component in theESKFas it represents the contributionof
the aidingmeasurements to the error state and covariance estimates. Asmentioned
above, matrix N is the Jacobian matrix of the aiding measurements with respect
to the error states.

The different measurement functions of the measurement vector y can generically
be expressed as

y = h(x) +w , w ∼ N(0,X) (4.38)

where h(x) denotes a linear or nonlinear function of the true state andw represent
the expected noise component. Having an expression on this form, the Jacobian
matrix N is defined as

N =
%h
%�x

����
�x=0

(4.39)

This represents a linearization of the measurement function about �x = 0. The
computations of the Jacobian matrices of each low rate sensor model will now be
investigated. These yield the various rows of the final N matrix used in this state
estimation system.

N =


N6=BB1
N6=BB2
N6BB

N1;

 (4.40)

Jacobian of the dual GNSS position measurement function N6=BB

To compute the various Jacobians, each measurement function is reformulated
as a functions of the nominal states and the error states, using the composition
equations to substitute for the true states. The measurement function for the dual
GNSS position measurements are given in (4.14) and (4.15). Staring from these
models, the reformulation is carried out as follows.

y6=BB8 = p=
=1
+ X=

1
r18 +w6=BB

= (p̂=8=B + �p==1) + X̂=
1,8=B
(O3 + Y(�)1

=1
))r18 +w6=BB

= p̂=8=B + �p==1 + X̂=
1,8=B

r18 + X̂=
1,8=B

Y(�)1
=1
)r18 +w6=BB

= p̂=8=B + �p==1 + X̂=
1,8=B

r18 − X̂=
1,8=B

Y(r18 )�) +w6=BB

(4.41)
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with 8 ∈ {1, 2}. From here, the resulting Jacobian with respect to �x becomes

N6=BB,8 =
%ℎ6=BB,8

%�x

����
�x=0

=

[
O3 03 03 −X̂=

1,8=B
((r1

8
) 03 03

]
(4.42)

Jacobian of the GSS velocity measurement function N6BB

The model for the GSS measurements in (4.19), yields a convoluted reformulation
and is omitted here due to space constraints. Disregarding the displacement of
the GSS with respect to CG, the reformulation in order to achieve a function of �x
becomes

y6BB =

[1 0 0
0 1 0

]
X=
1
v=
=1


2
+w6BB

=

[1 0 0
0 1 0

]
(X̂1

=,8=B(O3 + Y(�)1
=1
)))(v̂=8=B + �v==1))


2
+w6BB

=

[1 0 0
0 1 0

]
((O3 − Y(�)1

=1
)X̂1

=,8=B

)(v̂=8=B + �v==1))


2
+w6BB

=

[1 0 0
0 1 0

]
X̂1
=,8=B

)(v̂=8=B + �v==1) − Y(�)1
=1
)X̂1

=,8=B

)(v̂=8=B + �v==1))


2
+w6BB

=

[1 0 0
0 1 0

]
X̂1
=,8=B

)
v̂=8=B + X̂1

=,8=B

)
�v=

=1
+ Y(X̂1

=,8=B

)(v̂=8=B + �v==1))�)
1
=1


2
+w6BB

=

[1 0 0
0 1 0

]
X̂1
=,8=B

)
v̂=8=B + X̂1

=,8=B

)
�v=

=1
+ Y(X̂1

=,8=B

)
v̂=8=B + X̂1

=,8=B

)
�v=

=1
)�)1

=1


2
+w6BB

(4.43)

The Jacobian matrix, N6BB , is derived using the MATLAB Symbolic Math toolbox,
and resulted in non-zero partial derivatives with regards to the velocity error, the
attitude error and the gyroscope bias error. The full expression ofN6BB is provided
in Appendix C.

N6BB =
%ℎ6BB

%�x

����
�x=0

=

[
03

%ℎ3
%�v=

=1

03
%ℎ3

%�)1
=1

%ℎ3
%�b10AB

03
]

(4.44)

Jacobian of the GNSS baseline measurement function N1;

Themeasurement function for theGNSSbaselinevector from (4.21) is reformulated
as a function of �x below.
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h1; = h6=BB2 − h6=BB1

= X=
1
(r12 − r11 ) +w6=BB

= X̂=
1,8=B
(O3 + ((�)1=1))(r

1
2 − r11 ) +w6=BB

= X̂=
1,8=B
(r12 − r11 ) − ((X̂

=
1,8=B
(r12 − r11 ))�)

1
=1
+w6=BB

(4.45)

From this expression, the computation of the Jacobian matrix N1; results in

N1; =
%ℎ1;
%�x

����
�x=0

=

[
03 03 03 −((X̂=

1,8=B
(r12 − r11 )) 03 03

]
(4.46)

4.5.7 Computation of �y

�y is another important component in the ESKF. This quantity is straightforward
to compute through a simple subtraction of the estimated aiding measurements
from the actual aiding measurements. The resulting difference, or error, is an
indicator of the drift that has occurred in the INS block since the previous arrival
of low rate aids.

�y = y − ŷ (4.47)

In this implementation, it is chosen to include a self-diagnosis step is performed
to validate �y. More specifically, it is attempted to check if the incoming aiding
measurement may be an outlier. This is further explained in the next section.

4.5.8 Outlier rejection

Robustness and reliability is crucial in state estimation systems. Any errors present
in this system may propagate further down the line and cause performance lim-
itations in the overall perception and navigation capabilities of the vehicle. A
focus area during development of the current state estimation system is therefore
self-diagnosis. Self-diagnosis in a navigation system refers to the capability of
detecting and handling faults and vulnerabilities in its own system.

A major factor undermining the robustness of navigation systems is sensor faults.
According to previous team members of Revolve NTNU, a pervasive problem
related to the sensor data on Atmos has been sporadic outliers. This is especially
relevant for the data streams from the two GNSS recievers (Skibelid, 2019).

To handle this problem, a probabilistic outlier detection method is applied to
the state estimation system developed here. An outlier is a measurement that is
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regarded too corrupted by errors such that it contains a low amount of valuable
information for the state estimation system. Suchmeasurements are likely to cause
more confusion than benefit. It is hence advantageous to discard these.

The outlier detection method used here was firstly presented by Brumback and
Srinath (1987) and has later had wide usage within navigation systems. It makes
use of the innovation covariance and is therefore applicable with any sensor. The
idea of this outlier rejection approach is to assess the likelihood of a measurement
belonging to the error state distribution, by performing a chi-square ("2) hypoth-
esis test. The "2-test requires the computation of a quantity Y, which is a function
of both the error state covariance matrix, V̂, the sensor noise covariance, X and
the Jacobian matrix of the measurement functions with respect to the error state,
N . This way both the sensor errors and the uncertainty of the states are taken
into account in this method. The error state covariance is already calculated in the
ESKF relieving some computational cost.

Y = NV̂N) + X (4.48)

Once Y is computed, the chi-squared test ("2-test) is performed by checking if
(4.49) below hold. �y is defined as in (4.47).

�y)Y−1�y < "2("8) (4.49)

If the test in (4.49) fails, the sensor measurement is regarded as an outlier and
discarded. The discarding of an outlier can be carried out in several ways. The
simplest solution is to discard the entire �y-vector once one of the members is
classified as an outlier. However, this approach is sub-optimal as it throws away
numerous non-corrupted measurements leading to loss of useful information. It
is therefore here chosen to go with a somewhat different approach.

The implemented approach is as follows. Every time an outlier is detected, the
relevant rows in the N- and X-matrices are cancelled out, meaning that all terms
are set to zero. This yields zero contribution from this aiding measurement in the
computation of the error state, �x. This approach hencemakes it possible to benefit
from all the measurements that pass the "2-test, which is desirable. A drawback
with this approach is that the matrices in the ESKF may have unnecessarily large
dimensions at some time instances.
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4.5.9 Injection of the observed error into the nominal state

After the ESKF correction step is performed, the final error state estimates are
sent back to the INS block where they are injected into the nominal states due to
the composition equations in Table 3.3. These equations are restated below, with
q{�)1

=1
} computed using (4.4) as previously.

p=
=1
= p̂=8=B + �p==1 (4.50a)

v=
=1
= v̂=8=B + �v==1 (4.50b)

b1022 = b̂1022,8=B + �b022 (4.50c)

q=
=1
= q̂=8=B ⊗ q{�)1

=1
} (4.50d)

b10AB = b̂0AB,8=B + �b10AB (4.50e)

4.5.10 ESKF reset

The final step of the ESKF block is the reset of the error state and covariance
estimates. The reset equations implemented in this state estimation system follow
the suggestion of Solà (2017).

�x = 0 (4.51a)

V̂ = MV̂M) (4.51b)

M =



O3 03 03 03 03 03
03 O3 03 03 03 03
03 03 O3 03 03 03
03 03 03 (O3 − Y( 12 �)1=1)) 03 03
03 03 03 03 O3 03
03 03 03 03 03 O3


(4.52)

In most implementations of the ESKF the term 1
2 �) is approximated to zero re-

ducing the M-matrix to an identity matrix O18. However, Solà (2017) proposes this
reset step as it has proven to increase the accuracy of the covariance matrix, V̂.

4.6 Pre-Race state estimation for faster convergence

At the competitions, a shortwaiting time is expected before every race. During this
waiting time, the state estimation system is assumed turned on while the vehicle
is at rest. In this stationary state the system is poorly excited, making it harder to
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determine the various vehicle states. In order to maximize performance despite
the poor excitation, some modifications are applied to the state estimation system
for the special case of the vehicle standing still. This is intended to facilitate faster
convergence, and eliminate most transients before the race is initiated.

The first modification is to reduce the complexity of the state estimation system
when the vehicle is at rest. To maintain observability of the system, the estimation
of the gravity error is omitted when the vehicle is stationary. In addition, the
aiding from the GSS is omitted as this sensor is highly dependant on motion to
provide reliable measurements of the speed of the car.

Secondly, additional aiding by the specific force from the accelerometer is intro-
duced to system. This is the most important modification. The primary intention
of including this aid is to improve the stationary attitude estimation. The model
for the specific force measurements from the IMU is obtained directly from the
accelerometer model in (4.5). The measurement function is hence

y022 = f 18<D = −X=
1
) g=

=1
+ b1022 +w1

022 (4.53)

To compute the Jacobian matrix, N022 , the same procedure as earlier is repeated.
The measurement function is firstly reformulated as a function of �x. This refor-
mulation is given below.

y022 = f 18<D

=
�
�a1
=1
+ ((��81

=1
)
�
�v1
=1
− X=

1
) g=

=1
+ b1022 +w1

022

= −X=
1
) g=

=1
+ b1022 +w1

022

= −(O − ((�)))X̂=
1,8=B

)(ĝ=
=1
+ �g) + b̂1022,8=B + �b1022 +w1

022

(4.54)

In the expression above, it is utilized that the vehicle is known to be stationary such
that the true body accelerations and velocities are equal to zero. From this refor-
mulation, it can be seen that the estimate of the attitude appear. This substantiates
that aiding from this measurement may improve the attitude estimation.

The Jacobian matrix of the reformulated measurement function has the following
appearance.

N022 =
%ℎ022
%�x

����
�x=0

=

[
03 03 O3 −Y(X̂=

1,8=B
) g=

=1
) 03 03

]
(4.55)

The expression for the corresponding estimated specific forces is similar to (4.53),
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with nominal quantities instead of the true.

ŷ022 = −X̂=
1,8=B

) ĝ=
=1
+ b̂1022,8=B (4.56)

A remark regarding the stationary case, is that the accelerometer bias estimates
have reduced observability as a consequence of little excitation. By including the
bias in (4.56), it was experienced that some of the errors in the accelerometer bias
estimates propagated and had negative effects on the results. Consequently it
was attempted to neglect this bias in both (4.53) and (4.56). This is a reasonable
simplification under the assumption that the gravity is a significantly larger signal
than the accelerometer bias. This adjustment improved the performance and is
chosen in the final design. Hence, the final expressions for y022 , ŷ022 and N022

become slightly modified and are stated below.

y022 = −X=
1,8=B

) g=
=1
+w1

022 (4.57)

ŷ022 = −X̂=
1,8=B

) ĝ=
=1

(4.58)

N022 =

[
03 03 03 −((X̂=

1,8=B
) g=

=1
) 03 03

]
(4.59)

Apart from these modifications, the rest of the pre-race state estimation system
follow the design presented throughout this chapter.





5Results and Discussion
This chapter presents the results of the state estimation system developed here.
The aim of this chapter is to examine the final performance and map the current
strengths and weaknesses of the developed system. The chapter is divided into
three main sections, structured as follows. The first section presents the results
with the final design of the developed state estimation system. In the second
section, it is decided to investigate the effects of some selected design choices and
evaluate their necessities. Finally, the third section studies the contribution of each
aiding measurement to the overall performance of this state estimation system.

The result of this state estimation system is graphically represented through a fairly
large set of plots. For every aspect examined in this chapter, a new set of plots
are deemed convenient to complement the discussion. This yields an excessive
number of plots. Hence, for a tidier dissemination of the topics of this chapter, all
plots not related to the final results are placed in appendices.

5.1 Results of the final design

5.1.1 Validation with simulated ground truth

The validation of this state estimation system is based on the case study presented
in Ch.4.1.3, focusing on the Skidpad event at the FS competitions. Figure 5.1
show the position estimates from the final state estimation system, mapped onto
the horizontal plane. The estimates are plotted against the true positions from
the simulator mapped onto the same two dimensional plane. In this plot, the
simulated Skidpad track layout is visible.

Figure 5.2 - 5.6 graphically illustrate the final overall performance of the developed
state estimation system. Each figure concerns each of the vehicle states and illus-
trates the performance of the state estimations system using two different plots. In
the first of these plots, the estimated states are plotted against ground truth, ob-
tained from the simulator. The second plot is an error plot showing the deviation
between the estimated states and ground truth.

In the plotted results, the following values are used for the tuning parameters X
and W.

57
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Figure 5.1: The true and estimated positions mapped onto the two dimensional
horizontal plane.

X = diag(
[
4, 4, 4, 4, 4, 4, 1, 8, 8, 8, 1, 1, 1

]
) (5.1)

W = diag(
[
0.001, 0.001, 0.001, 1, 1, 1, 0.01, 0.01, 0.01, 0.001, 0.001, 0.001

]
)

(5.2)

diag(·) represent the diagonal of the two square matrices. Due to time constraints,
a limited amount of time is put into tuning of this state estimation system. In-
creased performance may therefore be achievable with a more comprehensive
tuning process.

To properly validate the convergence of the state estimation system, multiple states
are initializedwith randomvalues that differ from the true initial values. As shown
in the various plots, the vehicle remains stationary for some time in the beginning
of the simulations. During this period of stationary motion, the modified pre-race
state estimation system is validated.

Figure 5.7 show the gravity estimation due to the inclusion of the gravitational
error state in the state vector of the ESKF block.
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5.1.2 RMS error

As a measure of accuracy, the root mean square (RMS) errors are computed and
presented in Table 5.1. The transients in the very beginning of several of the plots,
are omitted in these calculations. To better the ability to analyze the different levels
of excitation, four different RMS values are computed and presented in Table 5.1.

In the first column from the left, the RMS errors capture the time period when the
vehicle is standing still and the pre-race state estimation system acts on the vehicle.
In the second column, the RMS errors are calculated for when the car is driving
the pit lane. Thirdly, the RMS errors capture the period when the car is driving
the eight-figured Skidpad track. Finally, in the rightmost column, the total RMS
values are provided, containing contributions from the former three columns.

It should be noted that the time spent in the three different cases vary considerably.
The amount of time spent in the various cases correspond to their weighting in
the total RMS values. The time spent in the pit lane, is for instance significantly
smaller than the other two cases, yielding very little contribution to the total RMS.
The time period at rest before the start of the race lasts very long compared to the
pit lane, but still only approximately half of the time spent in the Skidpad track.

5.1.3 Discussion of the results with the final design

From the graphical representations of the results along with the RMS errors, the
performance of this state estimation system can be discussed. The discussion is
structured such that each of the three case mentioned above, representing three
different levels of excitation, are discussed separately. Firstly, the performance of
pre-race state estimation system acting on the vehicle at stand-still is investigated.

Performance at stand-still

From Figure 5.2 - 5.6 it is observed that the estimations of the position, velocity,
and gyroscope bias, converge towards the true values while the vehicle remains
stationary. This is evident when observing the error plots, where it is shown that
the deviations from the true states rapidly move towards the zero-reference and
stay close to zero for the rest of the pre-race waiting time.

Considering the attitude estimation in the stationary condition, a small deviation
between the estimated states and the true states is present for the roll and pitch
angles. Here, the error plots provide a better basis for analysis. The magnitudes
of the deviations are revealed by the error plots, and are approximately 3◦ for
the roll angle and 2◦ for the pitch angle. The reason for these deviations are
not trivial, but may be related to the poor performance of the accelerometer bias
estimation at stand-still, which is further discussed later. These deviations are
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Table 5.1: RMS errors of the final state estimation system

Axis RMS Unit
Stand-still Pit Lane Skidpad Total Track

Position
(NED)

x 0.0016 0.0034 0.0075 0.0046
[m]y 0.0025 0.0032 0.0065 0.0040

z 0.0003 0.0010 0.006 0.0004

Velocity
(NED)

x 0.0001 0.0096 0.0106 0.0065
[m/s]y 0.0001 0.0120 0.0111 0.0068

z 0.0000 0.0024 0.0036 0.0022

Accelerometer Bias
(BODY)

x 0.1647 0.0262 0.0172 0.0528
[m/s2]y 0.2940 0.3938 0.0072 0.0969

z 0.0144 0.0164 0.0015 0.0052

Attitude
(BODY)

roll 0.1837 0.1765 0.0047 0.0600
[◦]pitch 0.0980 0.0167 0.0024 0.0299

yaw 0.0237 0.1313 4.9828 2.9422

Gyroscope Bias
(BODY)

roll 0.0000 0.0000 0.0078 0.0046
[◦]pitch 0.0001 0.0054 0.0043 0.0040

yaw 0.0023 0.0002 0.0037 0.0028

however small fractions of the total range of these states. With regards to the poor
level of excitation the accuracy of these estimations are considered satisfactory.

The pre-race estimation of the yaw angle stand out from the other two angles.
Looking at the relevant error plot in Figure 5.5, anoscillatingbehaviour is observed.
The oscillations are however bounded and the deviations stay within a range of
±5◦ from the zero reference. From Figure 5.5 it is also possible to conclude that
the mean of this estimation during the stationary condition is closer to zero than
for the roll and pitch angles.

Asmentioned, the accelerometer bias estimation also lacks capability of converging
towards the true bias valueswhile the vehicle is standing still. Figure 5.4 show that
adeviation is present for all three biases,withdifferentmagnitudes. Thedeviations
have magnitudes of approximately 0.41m/s2, 0.54m/s2 and 0.12m/s2 for the x-,
y- and z-directions respectively. These are relatively large in the x-direction and
y-direction. The presence of these deviations supports the reasoning behind why
the accelerometer bias is omitted in the aiding from the accelerometer specific
force measurement in the pre-race state estimation system.
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An additional overall observation from the various plots is that the position, ve-
locity and accelerometer bias estimation have initial transients. However, these
oscillations decay quickly and a nearly stationary value is reached in approxi-
mately 10 seconds, while the vehicle remains still. These transients therefore do
not introduce any problems during the race.

Performance during pit lane

The stationary period, waiting for the race to start, lasts for a little bit more than
one minute in the simulations. After this, the vehicle enters the pit lane, which is
a 30 meter long straight line going perpendicular towards the figure eight shape
of the Skidpad track. The pit lane marks the transition from a stationary condition
to dynamic motion. At this point, all the vehicle states except the attitudes and
the accelerometer biases have converged to a value in the vicinity of ground truth.
These states remain close to their true values during the driving of the pit lane.
One general observation is that the error plots now show a slightly more oscilla-
tory behaviour about the zero reference line. This is probably due to increased
complexity in the motion, leading to increased effects from the uncertainties. The
states are still estimated with high accuracy.

Furthermore, it is interesting to consider the states where convergence towards
ground truthwas not achieved at stand-still. Figure 5.4 shows that the translational
movement in the pit lane enables the state estimation system to converge towards
the true accelerometer bias value in the x-direction, while the deviations related
to the other two directions remain at the same level. This is better revealed by
the RMS errors in Table 5.1. The direction of travel coincides with the direction
of improved bias estimation. For the attitude estimates, Figure 5.5 shows that no
significant improvements are present for the roll and yaw angles. The deviation in
pitch angle, on the other hand, rapidly diminishes. Also here, the RMS errors in
Table 5.1 provide a clearer image of the improvements. The pitch angle represent
the rotation about the x-axis, also coinciding with the direction of travel.

Here, it is possible to establish a link between the improvements in both the ac-
celerometer bias and the attitude estimation, and the direction of driving. Driving
in the x-direction led to convergence of the accelerometer bias in the same direction
aswell as convergence of the vehicle’s angle about that same axis. This observation
also underpins the previously made statement saying that the poor accelerometer
bias estimation at stand-still may have been the reason for the constant deviations
present in the attitude estimates.

Performance during Skidpad

When the vehicle enters the Skidpad track, the complexity of the motion increase
even further, and all vehicle states are now greatly excited. This part of the
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simulations is the most important one, as it represents the actual competition, in
which the performance of the race car is measured against the other participating
vehicles.

Prior to this part of the simulations, all vehicle states have converged close to their
true values expect for the accelerometer biases in the y- and z-directions and the
roll angle. However, due to the sufficient excitation of the system, the deviations
present in these states are eliminated in few seconds. The already converged states
also remain close to ground truth during the driving of the Skidpad track. All
desired vehicle states are hence estimated with high accuracy during the entire
Skidpad event.

Observing the Skidpad-column in Table 5.1, all RMS errors remain at a low level.
It is however noticeable that the errors in the yaw angle estimation stay at a higher
level than the other errors. The yawangle faces large variations during the Skidpad
track due to the layout of the track, which highly excites the whole range of this
state. Extensive dynamics lead to larger uncertainties when information about
the relevant state is available at specific time instances only. The results are hence
not surprising. Looking at the error plot in Figure 5.5 the yaw angle error has a
magnitude below 3◦ during the entire Skidpad run, and the mean is close to zero.
This result is therefore still satisfactory.

Overall performance of final design

To summarize, the state estimation system developed here is capable of determin-
ing all the desired vehicle state with high accuracy, given that the motion of the
vehicle sufficiently excites the various states. The main aim of this system is to
obtain an accurate determination of the PVA, and the bias estimates themselves
are therefore of lower interest. However, as observed from the results, the differ-
ent vehicle states are closely connected and accurate bias estimations are hence
necessary to obtain the desired accuracy in the PVA estimation.

From the results it is observed that this state estimation system manages to accu-
rately achieve both the positions and the velocities while the vehicle is stationary.
In other word, the state estimation performs well for these states, even without
excitation of the system. The attitudes are estimated with slight deviations when
the vehicle is stationary. This is likely to be a consequence of poor accelerometer
bias estimation. Once the vehicle starts turning, the attitude estimates rapidly
converge towards their true values along with the accelerometer bias estimates.
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(a) Position estimates vs true state

(b) Error plot

Figure 5.2: Results of position estimation
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(a) Velocity estimates vs true state

(b) Error plot

Figure 5.3: Results of velocity estimation
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(a) Accelerometer bias estimates vs true state

(b) Error plot

Figure 5.4: Results of accelerometer bias estimation
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(a) Attitude estimation vs true state

(b) Error plot

Figure 5.5: Results of attitude estimation
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(a) Gyroscope bias estimates vs true state

(b) Error plot

Figure 5.6: Results of gyroscope bias estimation
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Figure 5.7: Results of gravity estimation
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5.2 Investigation of selected design choices

For this section it is desired to examine two essential design choices. Firstly, the
pre-race modifications are reviewed. Here, one of the subjects of analysis is the
exclusion of the accelerometer bias from themeasurement functions for the specific
forces. This exclusion represents a relatively radical simplification, and is hence an
interesting topic to review. In addition, the effects of having pre-racemodifications
at all will be examined. The second design choice investigated in this section is
the gravity estimation, where it is of interest to determine its necessity.

5.2.1 Omittance of the accelerometer bias in the specific force aiding

In the previous chapter, it is put forward that the accelerometer bias is omitted
in the design of the specific force aiding, introduced in the pre-race state esti-
mation system. As discussed above, the accelerometer bias estimation shows
mediocre performance in the stationary condition, and a deviation between the
estimated states and the true states is present in all three directions. These devia-
tions introduce a risk of error propagation, that may harm the performance of the
accelerometer aiding.

Appendix E contains the results when the accelerometer biases are included in the
measurement models used to implement the specific force aiding. The limits of
the y-axes in these plots are kept similar to Figure 5.2 - 5.6 for easier comparison.

From the comparison between these sets of plots, the most prominent differences
are observed in the estimations of the attitudes and the accelerometer biases. Both
of these states are subject to significantly larger deviations and less consistency
than in the final design, yielding a reduction in performance of the state estimation
system.

For the remaining states, namely the positions, velocities and gyroscope biases,
convergence towards ground truth is still achieved. However, it takes more time
for the estimates to converge and a slightly more oscillating behaviour is present
in the beginning of the simulations.

From this, it is confirmed that the omitting of the accelerometer bias improves
the performance of the pre-race state estimation system, making this an expedient
simplification.

5.2.2 The pre-race modifications

Next, it is of interest to compare the performances with and without the entire
pre-race modifications. In the plots presented in Appendix F, the pre-race modi-
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fications are removed such that the state estimation system described in the first
part of Ch. 4 acts on the vehicle during the entire simulation.

In general, a significant reduction in the performance is observed. When the pre-
race modifications are omitted, high frequency transients with large amplitudes
are present in the estimation of several of the states. In addition, the attitude and
accelerometer bias estimations struggle to determine the correct states leading to
great deviations between the estimated states and ground truth.

The poor performance during the stationary condition of the vehicle also seem to
propagate into the first period of dynamic motion. The deviations shown in the
various error plots remain large for several laps of the Skidpad track. Eventually,
the state estimation system is capable of retrieving a somewhat sufficient perfor-
mance. The overall performance is however highly affected in a negative way by
withholding the pre-race modifications.

5.2.3 Gravity estimation

In the final state estimation design, the error state vector in the ESKF block is
expanded with one additional state compared to the nominal state vector. The
additional state is the gravity error state, included in order to more precisely
realize the dynamics of the velocity error state. However, as mentioned in Ch.4
this is not a necessity.

A common alternative approach is to exclude this state in the error state vector
and rather treat it as a part of the accelerometer bias. Appendix G show the
results when this alternative approach is realized. The pre-race modifications are
reintroduced in these plots such that the only difference from the final design is
the exclusion of the gravity estimation.

The plots show that exclusion of this additional error state yields a result that
is nearly identical to the results of the final design. From this, it is concluded
that having the gravitational error state adds little value to the system perfor-
mance. Instead, it adds complexity and computational cost. The estimation of
the gravitational error is omitted in the pre-race state estimation system. Due to
the discoverings of this section, this additional error state might as well have been
omitted entirely.

5.3 Which aiding measurements are most important?

In this section it is desired to unfold which aiding sensors are the most critical
ones. It is also of interest to investigate if there are any aiding sensors that have
an insignificant contribution to the overall performance of this state estimation
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system. To study the individual contributions, the different low rate aiding sensors
are removed from the state estimation system one by one. The most interesting
discoverings from this analysis are presented in the following.

5.3.1 Dual GNSS most important

From thementioned investigation it is found that the dual GNSS aiding is themost
critical low rate aiding. In this study, the aiding by the baseline vector between the
GNSS receivers and the aiding from the GSS was first removed individually and
then removed both together. All the three cases gave very similar results.

The figures in Appendix H show the performance of the state estimation system
when only the GSS is removed from the sensor configuration. From here it is seen
that the removal of this sensor has little effect on the performance, which is almost
identical to when the GSS is included. The necessity of this sensor, considering the
hardware complications and increase of run-time it may introduce, may therefore
be questionable. However, for the target application redundancy is very important
and increases robustness of the system. If the GNSS loses signal during a race, it
is important to still have other available aiding measurements.

Appendix I provides the results when the baseline measurement is removed as
an aiding measurement. Also here, the performance is almost identical to the
final design, and the dual GNSS position measurements seems to carry most of
the responsibility for the desirable performance. In this case, the aiding baseline
measurement arrive from the same sensor as the GNSS position measurements.
This aiding measurement does therefore not provide redundancy in the same way
as the GSS.

Hence, the conclusion is that the satisfactory performance of the final state estima-
tion system is mainly obtained from the contribution of the dual GNSS position
aiding. The two remaining aiding measurements adds little value to the state
estimation system, as long as the dual GNSS position measurements are available.
If the GNSS signals fall out during a race, the GSS measurements provide critical
redundancy.

5.3.2 Reduced performance from baseline measurement

Another highly interesting discovering from this investigation is the effect on the
yaw angle and yaw bias estimations induced by the aiding from the baseline
vector. Comparison of the plots in Appendix I and the final results in Figure
5.2 - 5.6, surprisingly shows that both of these estimations are improved. When
the baseline aiding is removed from the state estimation system, the estimations
of the yaw angles and yaw biases become smoother and have remarkably lower
variances. The errors between the true and the estimated states stay closer to
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zero in both of estimations. Excluding this measurement therefore increases the
performance in addition to reduced complexity and run-time.

The reason for this results is hard to determine with certainty. The lever arms used
to model the displaced GNSS position measurements already provide observable
heading. Hence, it can be questioned if this additional measurement of the base-
line alone has a conflicting effect. It is also possible that this result is related to
insufficient tuning of the measurement noise covariance matrix, X.

5.3.3 Poor performance with single GNSS

The dual GNSS consists of two displaced position measurements, with different
lever arms. It is important to notice that it is both of these measurements together
that yield the desired performance. During the analysis of this section, the perfor-
mance of this states estimation system is also tested when only one of the GNSS
measurements are available.

Having only a single GNSS receiver severely reduces the performance of this
state estimation system, as shown in Appendix J. In the plots in this appendix, the
ground speedmeasurements are reintroduced. The baseline vector is not included
in this scenario as it is dependant of both GNSS receivers and cannot exist when
one of the GNSS receivers are removed. With aiding from only one GNSS position
measurement, the system is capable of determining all the desired vehicle states
for a limited period of time, but starts to diverge after approximately 70 seconds
of simulated vehicle motion.

The state that seems to diverge first is the attitude. This is foreseeable as none of the
low rate aids provide direct measurement of the heading anymore. Now that one
of the GNSS antennas is removed, the observability of the attitude follows along.
As already observed, inaccuracies in one state quickly propagate to other states in
the state estimation system. It is hence important to facilitate high performance
in the estimation of all states with use of appropriate low rate aids. It is also
of concern if the implemented outlier rejection step increases the probability of
divergence. If some of the sensor signals become unavailable for a short period
of time this may mislead the "2-test to classify non-corrupted measurements as
outliers when the lost sensor signals are retrieved.



6Conclusion
In this thesis, an aided inertial navigation system is developed for an autonomous
Formula Student race car. The system estimates the PVA of the vehicle combining
information from high rate inertial sensors alongwith dual GNSS and radar-based
ground speed measurements arriving at a lower rate. This is carried out with the
use of an indirect multiplicative extendedKalman filter (MEKF), based on a purely
kinematic model. The system is validated offline in a simulated environment
where the expected excitation of the vehicle at the racetrack is applied. The
simulated input to the state estimation system is disturbed by a stochastic bias
model and additive Gaussian white noise.

Despite the perturbations and extensive excitation of the vehicle, the state esti-
mation system is able to robustly estimate the desired vehicle states with fast
convergence and rejection of outliers. Central design choices are examined as
well as the contribution of the various sensors. Here, it is found that simplifying
the state estimation system and including additional accelerometer aiding during
stand-still has a significant positive effect on the performance. On the other hand,
the estimation of the gravity during dynamic motion has negligible effects on the
results. Concerning the contribution of the various aiding sensors, the dual GNSS
position measurements stand out as the most important. The baseline vector and
ground speed measurement have little influence on the system performance, but
the latter provide useful redundancy.

Even though the results from the offline validation show promising potential,
the results are not obtained from experiments entirely representable for what
the race car is subject to in an actual race. Such experiments was unfortunately
restricted due to the COVID-19 pandemic. Online validation with real-time sensor
measurements therefore still remains andmay introduce challenges not accounted
for by the current system. Further testing and implementation is thus necessary
before the developed state estimation system can be seen as a viable product for
the intended use.
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7Future Work
The state estimation system has been developed from scratch in this thesis. The
developed system shows promising potential but is still subject to vulnerabilities
and should be further developed. The aim of this chapter is to provide some sug-
gestions of reasonable next steps in the further development of this state estimation
system.

7.1 From offline to online estimation

This state estimation system is developed in a simulated environment and vali-
dated offline with simulated data streams. Furthermore, this system should be
implemented to run in real-time, using measurements directly from the sensors.
Integration with hardware may introduce errors not currently handled in the state
estimation system. These errorsmay root fromexpected error sourceswith a larger
impact than foreseen, or they may arise from unexpected error sources. Examples
of expected errors are uncertainties in the measurements of the lever arms and
misalignments due to the mounting of the various sensors.

It may be possible to reduce the impact of these additional error sources by putting
an increased effort into tuning of the system parameters. As of now, the time spent
on tuning is moderate. Finer tuning may in any case be useful in order to fetch as
much as possible of the potential performance of this state estimation system.

7.2 Compensation of measurement delays

A property of the Kalman filter approach is that it can only take into account
measurements from the current state (Valls et al., 2018). In many practical systems
there is a delay in some of the sensors. These introduce problems with the current
design. Another suggestion for further work is therefore to compensate for these
measurement delays and prevent them from limiting the performance of the state
estimation system.

A trivial solution to this problem is to keep a buffer of previous state distributions
and measurements. At every iteration the state is then propagated forward and
corrected with all newer measurements up to the current time. This solution is
simple in principle, but has a high computational cost.

An approximate approach to this solution is proposed by Valls et al. (2018) and
proven successful for a similar application. The idea is to use the Kalman filter
to estimate the states up until the most delayed measurement. All measurements
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newer than themost delayed one are then taken into account by executing a steady
state approximation of the extended Kalman filter (SSKF).

The SSKF is a simplification of the EKFwhere the following assumptions aremade
for the time interval from themost delayedmeasurement up until the current time:

• Constant (or slowly varying) covariance matrix

• Close to linear measurement models

• Stationary measurement noise and process noise

These assumptions leads to a constant Kalman gain, avoiding the matrix inversion
step and the need for calculating the covariancematrix. This approach represents a
trade-offbetween the accuracy of theEKFand the run-timeof the SSKF.Alternative
solutions for handling delays in discrete Kalman filters are proposed by Larsen
et al. (1998).

7.3 Iterative extended Kalman filter

In Chapter 3, a method for detecting outliers in the measurement data using a
"2-test is presented. Once an outlier is detected, there are several possible ways
to discard this measurement, as already mentioned. The current approach is
to cancel all terms in the measurement Jacobian matrix N related to the outlier.
This leads to zero contribution from this measurement in the rest of the KF steps
where the error state is computed. A disadvantage here is that the dimensions
of the matrices in the filter become unnecessarily large, leading to unnecessary
computational cost, especially since the Kalman filter includes a matrix inversion
step.

Another possibility is to input the aiding measurements individually into the
ESKF block, unless they are classified as outliers. All the steps of the KF are
then performed for each measurement individually. This design is recognized as
an iterative extended Kalman filter (IEKF). In the IEKF, an error state vector is
computed for each aiding sensor separately and the error state covariance matrix
is updated accordingly. This way the properties of each sensor are better captured
in the covariance matrix.

Performing the KF steps for each sensor in the system may seem computationally
costly. However, the matrices become remarkably smaller with this approach.
Hence, the costs related to the increased number of KF iterations are balanced out
by the reduction of cost per iteration. Smallermatrices yield a lower computational
cost of the KF calculations, especially the calculation containing amatrix inversion.
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The difference in the total computational cost between the iterative approach and
the standard approach is therefore small and not of significant concern.

The iterative approach may improve the performance of the state estimation sys-
tem due to more frequent error state generation and injection. In addition, the
continuous update of the covariance matrix is advantageous. This is therefore also
suggested as a topic of research for future work.

7.4 Modification of sensor configuration

From the results of this thesis, it is concluded that the dual GNSS aiding is the
most critical. If one of the GNSS antennas falls out, the performance is radically
reduced, and the state estimation system is only capable of determining all the
states for a short period of time.

It is well-known that GNSS receivers are prone to environmental disturbances.
Loss of GNSS frequently occur due to limited sight of satellite signals or signal
interference. It is therefore expected that periods of weak or no access to GNSS
data may be present during a competition race. A suggestion for future work is
therefore to include other sensors that can provide redundancy together with the
GSS, and compensate for the lost performance if one or both of the GNSS antennas
fall out. This would increase robustness and reliability.

The results also showed that not all states are capable of converging when the
vehicle is stationary. Here, it is interesting to research alternative sensor configu-
rations that may enable entire convergence before the start of a race. The currently
developed system facilitates this research by providing a simulation environment
where it is uncomplicated to include various sensor models and achieve an indi-
cation of their contribution to the overall performance. For instance, it could be
interesting to check if introduction of a compass to the sensor configuration might
improve the attitude estimation.

7.5 Fusion with a separate LiDAR-based state estimation
pipeline

The last suggestion for future work is aimed at a long-term perspective. It is
inspired by the state estimation solution developed by a research group of the
Technical University of Munich (TUM) taking part in the Roborace competition in
2019 (Wischnewski et al., 2019). The clever solution of this research group can be
regarded as an extension of the state estimation solution developed here. The idea
is to fuse two separate state estimation pipelines. One pipeline is based on GPS,
like the one developed here, and the second pipeline is LiDAR-based. The fusion
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Figure 7.1: Comparison of the covariance properties of a LiDAR vs. GPS

is carried out with a Kalman filter.

The key advantage of this solution is the exploitation of the covariance properties
of each sensor source. Figure 7.1 shows how the uncertainty ellipses for LiDAR
and GPS related to three different vehicle positions may be resembled. As shown,
the LiDAR covariance in the lateral direction is smaller than the GPS covariance.
In the longitudinal direction, the opposite holds. Hence, fusion of these two state
estimation pipelines can be carried out with adaptive weighting based on their
covariances.

A similar solution requires application of advanced concepts of control theory and
is believed to be an exciting challenge for the future. This suggestion is included
both to illustrate a potential direction to carry the developed state estimation
system, and to encourage further development in general.



AAtmos Sensor Configuration
Atmos is configured with a high number of sensors in order to monitor various
vehicle states. To enable autonomous perception and navigation the most relevant
sensors are the INS combining GNSS and IMU, the camera, the two LiDARs and
the optical encoders used for the four wheels and for the steering wheel. In this
appendix, a more detailed explanation of the mentioned sensors and their usages
are provided.

A.1 VectorNav VN-300 dual antenna GNSS/INS

The VectorNav VN-300 is a combined sensor consisting of an IMU and two GNSS
antennas. In general, an IMU is an integrated sensor package combining multiple
accelerometers, gyroscopes and sometimes additional inertial sensors to produce
a 3-dimensional measurement of both specific force and and angular rate. Specific
force is a measure of acceleration relative to free-fall. The actual acceleration of
the vehicle can be extracted from the specific force by subtracting the gravitational
acceleration. Angular rate is a measure of the rate of rotation. (VectorNav, 2020)

The VectorNav VN-300 utilizes the latest of micro-electro-mechanical systems
(MEMS)-based inertial sensors famous for being low in cost and high in accu-
racy. VN-300 incorporates a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis
magnetometer and a barometric pressure sensor making up a 10-axis MEMS IMU
(VectorNav, 2020).

The two GNSS recievers follow the U.S. system frequently known as GPS. This is
an Earth-satellite based navigation system made up of a synchronized network
constellation of at least 24 satellites placed in the Earth’s orbit by the U.S Depart-
ment of Defense (DoD). The satellite signals can be processed in a GPS receiver
to estimate its current position and velocity. Since these states are determined di-

Figure A.1: The Vectornav VN-300 INS
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rectly, the GPS receivers are not dependant of initial conditions or previous states.
They are therefore considered as stand-alone sensors. However, these receivers
commonly suffer from time delay and disturbances in the environment shadowing
for the satellite signals and preventing these sensors from providing navigation
data at a high enough rate for e.g. automotive applications.

The VN-300 incorporates two on-board 72-channel, L1, GPS receivers (VectorNav,
2020). Having two such antennas enable estimation of true heading with respect
to true north in both static and dynamic conditions.

This sensor is themain information source for the navigation systembeing the sub-
ject for this thesis. Combining data from IMU and GNSS are in many applications
sufficient for robust state estimation. The VectorNav VN-300 already contains an
on-board filter merging data from its two sensor sources, in order to filter out as
much noise as possible and provide navigation data. However, experience from
earlier teammembers witness that the navigation solution provided by VectorNav
still suffers from drift due to noise (Skibelid, 2019).

A.2 Pegasem GSS15 radar-based ground speed sensor

The Pegasem radar sensors provide non-contact ground speed sensing. This com-
pact and light-weight sensor scans the road surface with a 24 GHz radar beam
outputting 100 pulses per meter. The high gain narrow beam antennas create
Doppler signals with good noise margin, allowing measurements even in very
low speed ranges. The raw Doppler signals are converted to an analogue speed
voltage by the internal processor of the sensor (Pegasem, 2019). The GSS is in-
cluded as a low rate aiding measurement in the aided inertial navigation system
developed in this thesis. Figure A.2 shows an image of the sensor mounted on the
back of a vehicle. Due to the COVID-19 outbreak this sensor did not arrive from
the manufacturer, as originally planned.
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Figure A.2: The Pegasem GSS15 ground speed sensor.

A.3 Basler acA1300-200uc USB 3.0 camera

Atmos is equippedwith twodigital stereo cameras, manufactured by Basler. These
are used for the development of a stereo camera system for where the cameras
attempt to retrieve 3D information from the 2D scene. The desired 3D information
is the presence of cones in the vehicle’s environment, their color and their position
relative to the vehicle.

The two stereo cameras are synchronized and rectified. The cameras being syn-
chronized means that they receive the trigger signal to acquire an image at the
exact same time. Image rectification is a transformation process used to project
two or more images onto a common image plane. In computer vision with stereo
cameras this is done by finding corresponding points in the images.

The stereo camera systemofAtmos aim to detect cones at distances up to 20meters.

Figure A.3: The Basler acA1300-200uc USB 3.0 Camera
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To achieve this, deep learning is applied using the well-known convolutional
neural network, YOLOv3. This neural network perform the actual task of object
detection. For improving the performance of the camera system, a number of
preprocessing steps are applied to the images beforehand.

The Basler USB 3.0 cameras are renowned for being fast with a data throughput
rate up to 350 MB/s. The manufacturer also ensures low CPU load, latency and
jitter. In addition, these cameras are light-weight and have simple integrationwith
most image processing libraries, making them suitable for the current application.
(Basler, 2020)

A.4 Hesai Pandar 40-channel and 20-channel LiDAR

LiDAR is an active detection that uses light for measurement. It uses a pulsed
laser to send out a signal and waits for the echo to arrive. The distance to any
obstacles are then calculated as a function of the time between the laser emission
and reception.

Atmos is equipped with two LiDARs placed as shown in Figure A.5. The rear
LiDAR has 40 vertical channels, while the front LiDAR has 20 channels. The main
difference between these two is thei vertical field of view. The Hesai Pandar 40-
channel LiDAR has 40◦ vertical field of view, while the 20-channel LiDAR has
30◦. Apart from this, both LiDARs have a 200 meter measurement range and a
0.33◦ minimum vertical resolution. Both weigh approximately 1.5 kg and provide
measurement at 20 Hz. (Hesai, 2020a,b)

Autonomous vehicles commonly use LiDARs for obstacle detection and avoidance
to safely navigate through their environments. Point cloud output from a LiDAR
sensor provide the necessary data for perception software to determine where

Figure A.4: The Hesai Pandar 40-channel LiDAR
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Figure A.5: Both Hesai Pandar LiDAR placed on Atmos

obstacles may be located. The LiDAR detection system on Atmos is intended to
detect cones during competitions.

A.5 Optical encoders

Optical encoders are used on Atmos to measure the angle of the steering wheel,
referred to as the Steering Wheel Position Sensor (SWPS) within the team, and to
measure the rate of rotation of the four wheels. Optical encoders consist of a light
source, a rotating grating which is a plastic or glass disk marked with a certain
pattern of holes and optical light detectors. The light source sends light through
the grating that is partly blocked by the pattern on the rotating disk. The light
detectors detect the light that passes through the disc and generates an electrical
pulse. Knowledge about the pattern on the grating enable the electrical pulse to
be decoded into the rotation rate and angle of the disc.

Optical encoders are known to be high resolution, accurate and repeatable, as well
as being very compact. A weakness, on the other hand, is that the accuracy is
highly affected by environmental ruggedness, such as vibrations and dust. Due to
these vulnerabilities, the optical encoders are omitted from the navigation solution
developed here. For future iterations of this state estimation system, these may
come in handy, and for instance provide redundancy.





BQuaternions

B.1 Quaternion convention

There are several ways to define the quaternion. The determination relies on four
binary choices.

1. The order of its elements1: Real part first or last?

q =

[
@�
q�

]
vs. q =

[
q�
@�

]
2. The multiplication formula: Right-handed or left-handed?

8 9 = −98 = : vs. 98 = −8 9 = :

3. The function of the rotation operator: Passive or active?
Rotating frames vs. Rotating vectors

4. The direction of operation (in the passive case): Local-to-global or global-to-
local?

x6;>10; = q ⊗ x;>20; ⊗ q∗ vs. x;>20; = q ⊗ x6;>10; ⊗ q∗

This variety of choices yields 12 possible combinations. Historical developments
has favored some certain combinations. The twomost commonlyused conventions
for quaternions are known as the Hamilton quaternion and the JPL quaternion.
Table B.1 compares the two types with respect to the four binary choices. The JPL
convention ismainlyused in the aerospacedomain,while theHamilton convention
has been applied frequently in other engineering areas. In this state estimation
implementation the Hamilton convention is chosen. This is right-handed and
coincides with the Marine Systems Simulator (MSS) Toolbox developed by Thor I.
Fossen, a professor at NTNU, which has been utilized during development of this
navigation system. This is also the convention used in several software libraries
widely used in robotic applications such as Eigen, ROS and Google Ceres (Solà,
2017).

1@� represents the real, scalar part and q� =
[
@8 @ 9 @:

]) represents the vector part
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Quaternion type Hamilton JPL

1. Element order Real part first Real part last
2. Multiplication formula Right-handed Left-handed
3. Function of rotation operator Passive Passive
4. Direction of operation Local-to-global Global-to-local

Table B.1: Comparison of the Hamilton and JPL quaternion conventions

B.2 Fundamental quaternion mathematics

In this section, a walk-through of some elementary mathematical operations with
Hamilton quaternions is provided. The section is based on the literature of Solà
(2017). For a more comprehensive coverage of the mathematical properties of
quaternions, it is suggested to directly look at his work.

B.2.1 The quaternion sum

The sum of two quaternions is intuitive.

p ± q =

[
@�
q�

]
±

[
@�
q�

]
=

[
?� ± @�
q� ± q�

]
(B.1)

The sum is both commutative and associative.

p + q = q + p (B.2)

p + (q + r) = (p + q) + r (B.3)

B.2.2 The quaternion product

The quaternion product is denoted ⊗ in this thesis, similar to Solà (2017). The
product written out in vector form gives

p ⊗ q =


?�@� − ?8@8 − ? 9@ 9 − ?:@:
?�@8 + ?8@� + ? 9@: − ?:@ 9
?�@ 9 − ?8@: + ? 9@� + ?:@8
?�@: + ?8@ 9 − ? 9@8 + ?:@�

 (B.4)

A more compressed formulation of the same expression can be achieved in terms
of � and �.

p ⊗ q =

[
?�@� − p)� q�

?�q� + @�p� + p� × q�

]
(B.5)
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The vector cross-product reveals that the quaternion product is not commutative.
Hence,

p ⊗ q ≠ q ⊗ p (B.6)

This is a general rule. However, there exist cases where the quaternion product is
commutative. This is if one of the quaternions is real, such that p = ?� or q = @�,
or if the vector parts are parallel, such that p� | |q�. All of these yield p� × q� = 0.

The quaternion product is associative.

(p ⊗ q) ⊗ r = p ⊗ (q ⊗ r) (B.7)

It is also distributive over the sum.

p ⊗ (q + r) = p ⊗ q + p ⊗ r and (p + q) ⊗ r = p ⊗ r + q ⊗ r (B.8)

B.2.3 The identity quaternion

The identity quaternion, q� is defined such that q� ⊗ q = q ⊗ q� = q holds.

q� = 1 =
[

1
0�

]
(B.9)

B.2.4 The quaternion conjugate

The conjugate of a quaternion is defined as follows.

q∗ = @� − q� =

[
@�
−q�

]
(B.10)

The quaternion conjugate has the following properties:

q ⊗ q∗ = q∗ ⊗ q = @2
� + @2

8 + @2
9 + @2

:
=

[
@2
� + @2

8
+ @2

9
+ @2

:

0�

]
(B.11)

(p ⊗ q)∗ = q∗ ⊗ p∗ (B.12)

B.2.5 The norm of a quaternion

The norm of a quaternion is defined as

| |q | | =
√
q ⊗ q∗ =

√
q∗ ⊗ q =

√
@2
� + @2

8
+ @2

9
+ @2

:
(B.13)

It has the property that | |p ⊗ q | | = | |q ⊗ p| | = | |p| | · | |q | |

The unit quaternion is a quaternion where | |q | | = 1.
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B.2.6 The quaternion inverse

The inverse of a quaternion, q−1 is defined such that the quaternion times its
inverse results in the identity quaternion.

q ⊗ q−1 = q−1 ⊗ q = q� (B.14)

The is computed as follows.

q−1 =
q∗

| |q | |2 (B.15)

B.2.7 Rotation with quaternions

The quaternion rotation action of a vector v is carried out through the following
formula.

A(v) = q ⊗ v ⊗ q∗ (B.16)

For a detailed derivation of this formula, the literature of Solà (2017) can be studied.



CJacobian of the Ground Speed
Measurement Function: N6BB

This appendix provides the complete expression for the Jacobian matrix of the
ground speed measurement function, linearized about about �x = 0

The measurement function of the ground speed aiding measurement is:

y6BB =

[1 0 0
0 1 0

]
X=
1
v=6BB


2
+w6BB (C.1)

where
v=6BB = v=

=1
+ X=

1
((81

=1
)r16BB (C.2)

accounting for the displacement of the GSS.

The same measurement function reformulated as a function of the error state
vector �x is achieved using the relation x = x̂8=B ⊗ �x. This results is:

y6BB =

[1 0 0
0 1 0

]
X̂1
=,8=B

)
v̂=8=B + X̂1

=,8=B

)
�v=

=1
+ Y(X̂1

=,8=B

)
v̂=8=B + X̂1

=,8=B

)
�v=

=1
)�)1

=1


2
+w6BB

(C.3)

From this, the linearization is carried out by computing the Jacobianmatrix of y6BB
with respect to the error state, �x, about �x = 0.

N6BB =
%h6BB
%�x

����
�x=0

(C.4)

The expression above is solved using MATLAB’s Symbolic Math toolbox. The
resulting partial derivatives has non-zero expressions with respect to the velocity
error, the attitude error and the gyroscope bias error. All partial derivatives are
provided below:

N6BB?>B =
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 (C.5)
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89



90
APPENDIX C. JACOBIAN OF THE GROUND SPEED MEASUREMENT
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DThe Variance of a First Order
Gauss-Markov Process
A first order Gauss-Markov process is given by:

¤G = − 1
)
G + � (D.1)

where � is a white noise process with power spectral density (PSD) &, such that
�(�(C)�(�) = & ∗ �(C − �).

Equation D.1 yield the following solution.

G(C) = exp− 1
)
(C − C0 ∗ G(C0) −

∫ C

C0

exp− 1
)
(C − ��(�)3� (D.2)

Letting C0 = 0 and G(C0) = 0, the expected value and variance of G follows Equation
D.3 below.

�(G(C)) = 0 (D.3a)
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Utilizing that the expected value operator �() and the integral can swap places,
the following reformulation is valid:
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As mentioned the PSD of � is equal to &. Hence, we obtain:
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APPENDIX D. THE VARIANCE OF A FIRST ORDER GAUSS-MARKOV

PROCESS

Since �(�1 − �2) = 0 when �1 ≠ �2 (and the integrals have the same limits), the
following is obtained:
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Furthermore, this yields:
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2
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C) (D.7)

Letting C →∞, the resulting stationary variance becomes:
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2 (D.8)



EResults when the Accelerometer Bias is
Omitted from the Specific Force Aiding

Figure E.1: Results of position estimation when the accelerometer bias is omitted
from the specific force aiding
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APPENDIX E. RESULTS WHEN THE ACCELEROMETER BIAS IS OMITTED

FROM THE SPECIFIC FORCE AIDING

Figure E.2: Results of velocity estimation when the accelerometer bias is omitted
from the specific force aiding
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Figure E.3: Results of accelerometer bias estimation when the accelerometer bias
is omitted from the specific force aiding
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APPENDIX E. RESULTS WHEN THE ACCELEROMETER BIAS IS OMITTED

FROM THE SPECIFIC FORCE AIDING

Figure E.4: Results of attitude estimation when the accelerometer bias is omitted
from the specific force aiding



97

Figure E.5: Results of gyroscope bias estimation when the accelerometer bias is
omitted from the specific force aiding





FResults when no Pre-Race Modifications
are Applied

Figure F.1: Results of position estimation when the pre-race modifications are
removed
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APPENDIX F. RESULTS WHEN NO PRE-RACE MODIFICATIONS ARE

APPLIED

Figure F.2: Results of velocity estimation when the pre-race modifications are
removed
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Figure F.3: Results of accelerometer bias estimation when the pre-race modifica-
tions are removed
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APPENDIX F. RESULTS WHEN NO PRE-RACE MODIFICATIONS ARE

APPLIED

Figure F.4: Results of attitude estimation when the pre-race modifications are
removed
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Figure F.5: Results of gyroscope bias estimation when the pre-race modifications
are removed





GResults without Gravity Estimation

Figure G.1: Results of position estimation when the gravity estimation is omitted

105



106 APPENDIX G. RESULTS WITHOUT GRAVITY ESTIMATION

Figure G.2: Results of velocity estimation when the gravity estimation is omitted
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Figure G.3: Results of accelerometer bias estimation when the gravity estimation
is omitted



108 APPENDIX G. RESULTS WITHOUT GRAVITY ESTIMATION

Figure G.4: Results of attitude estimation when the gravity estimation is omitted
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Figure G.5: Results of gyroscope bias estimation when the gravity estimation is
omitted





HResults without Ground Speed Aiding

Figure H.1: Results of position estimation when the gravity estimation is omitted
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112 APPENDIX H. RESULTS WITHOUT GROUND SPEED AIDING

Figure H.2: Results of velocity estimation when the gravity estimation is omitted
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Figure H.3: Results of accelerometer bias estimation when the gravity estimation
is omitted



114 APPENDIX H. RESULTS WITHOUT GROUND SPEED AIDING

Figure H.4: Results of attitude estimation when the gravity estimation is omitted
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Figure H.5: Results of gyroscope bias estimation when the gravity estimation is
omitted





IResults without Vector-Measurement
Aiding

Figure I.1: Results of position estimation when the gravity estimation is omitted

117



118 APPENDIX I. RESULTS WITHOUT VECTOR-MEASUREMENT AIDING

Figure I.2: Results of velocity estimation when the gravity estimation is omitted
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Figure I.3: Results of accelerometer bias estimation when the gravity estimation is
omitted



120 APPENDIX I. RESULTS WITHOUT VECTOR-MEASUREMENT AIDING

Figure I.4: Results of attitude estimation when the gravity estimation is omitted
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Figure I.5: Results of gyroscope bias estimation when the gravity estimation is
omitted





JResults with Single GNSS Aiding

Figure J.1: Results of position estimation when the gravity estimation is omitted
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124 APPENDIX J. RESULTS WITH SINGLE GNSS AIDING

Figure J.2: Results of velocity estimation when the gravity estimation is omitted
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Figure J.3: Results of accelerometer bias estimation when the gravity estimation is
omitted



126 APPENDIX J. RESULTS WITH SINGLE GNSS AIDING

Figure J.4: Results of attitude estimation when the gravity estimation is omitted



127

Figure J.5: Results of gyroscope bias estimation when the gravity estimation is
omitted





References
Basler (2020). Knowledge base. https://www.baslerweb.com/en/

sales-support/knowledge-base/(Accessed: 26.05.2020).

Brumback, B. and Srinath,M. (1987). A chi-square test for fault-detection in kalman
filters. IEEE Transactions on Automatic Control, 32(6): 552–554.

Bryne, T. H. and Fossen, T. I. (2019). Lecture notes on aided inertial navigation
systems. Technical report, Norwegian University of Science and Technology.

Consumer Reports (2020). Cars with advanced safety sys-
tems. https://www.consumerreports.org/car-safety/

cars-with-advanced-safety-systems/(Accessed: 14.06.2020).

Farrell, J. A. (2008). Aided Navigation. The McGraw-Hill Companies.

Fossen, T. I. (2019). Lecture notes on error-state kalman filters for aided ins.
Technical report, Norwegian University of Science and Technology.

FSG (2020). Formula student rules 2020. https://www.formulastudent.

de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf (Ac-
cessed: 17.03.2020).

Gade, K. (1997). Integrering av treghetsnavigasjon i en autonom undervanns-
farkost. Technical report, Forsvarets Forskningsintitutt.

Gringer, B. (2020). History of the autonomous car. https://www.titlemax.com/
resources/history-of-the-autonomous-car/ (Accessed: 23.05.2020).

Hesai (2020a). 20-Channel Mechanical LiDARUser’s Manual. Building L2, Hongqiao
World Center, Shanghai.

Hesai (2020b). 40-Channel Mechanical LiDARUser’s Manual. Building L2, Hongqiao
World Center, Shanghai.

IMechE (2020). About formula student. https://www.imeche.org/events/
formula-student/about-formula-student(Accessed: 17.03.2020).

Kalman, R. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME— Journal of Basic Engineering, 82(Series D): 35–45.

Larsen, T. D., Andersen, N. A., Ravn, O., and Poulsen, N. K. (1998). Incorporation
of time delayed measurements in a discrete-time kalman filter. In Proceedings of
the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), volume 4,
pp. 3972–3977 vol.4.

129

https://www.baslerweb.com/en/sales-support/knowledge-base/
https://www.baslerweb.com/en/sales-support/knowledge-base/
https://www.consumerreports.org/car-safety/cars-with-advanced-safety-systems/
https://www.consumerreports.org/car-safety/cars-with-advanced-safety-systems/
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.titlemax.com/resources/history-of-the-autonomous-car/
https://www.titlemax.com/resources/history-of-the-autonomous-car/
https://www.imeche.org/events/formula-student/about-formula-student
https://www.imeche.org/events/formula-student/about-formula-student


130 REFERENCES

Maybeck, P. S. (1982). Stochastic Models, Estimation and Control. Academic Press.

NIPH (2020). Facts about the virus and covid-19 disease.
https://www.fhi.no/en/op/novel-coronavirus-facts-advice/

facts-and-knowledge-about-covid-19/facts-about-novel-coronavirus/(Accessed:
20.05.2020).

Pegasem (2019). Ground SpeedManual V1.44. Egerlaenderstr. 1, 86720Noerdlingen.

Perez, T. and Fossen, T. I. (2011). Motion Control of Marine Craft. The CRC Press,
second edition. ISBN 1420073648.

Plett, G. L. (2004). Extended kalman filtering for battery management systems of
lipb-based hev battery packs. Technical report, Department of Electrical and
Computer Engineering at the University of Colorado.

Revolve (2020). Revolve NTNU - from student to engineer in a year. https:
//www.revolve.no/(Accessed: 19.03.2020).

Skibelid, A. B. (2019). Odometry, mapping and localisation of an autonomous
race car for revolve ntnu. Master’s thesis, Norwegian University of Science and
Technology.

Solà, J. (2017). Quaternion kinematics for the error-state kalman filter. CoRR,
abs/1711.02508.

Synopsys, I. (2020). What is an autonomous car. https://www.synopsys.com/
automotive/what-is-autonomous-car.html(Accessed: 14.06.2020).

Valls, M. I., Hendrikx, H. F. C., Reĳgwart, V. J. F., Meier, F. V., Inkyu Sa, R. D.,
Gawel, A., Bürki, M., and Siegwart, R. (2018). Design of an autonomous race-
car: Perception, state estimation and system integration. Technical report, The
Autonomous Systems Lab, ETH Zurich.

VectorNav (2020). Vectornav technologies - MEMS-based inertial sensors. https:
//www.vectornav.com/(Accessed: 20.03.2020).

Wischnewski, A., Stahl, T., Betz, J., and Lohmann, B. (2019). Vehicle dynamics state
estimation and localization for high performance race cars. Technical report,
Department of Mechanical Engineering, Technical University of Munich.

Woollaston, V. (2020). How google’s driverless cars work? https://www.

alphr.com/cars/7038/how-do-googles-driverless-cars-work(Accessed:
23.05.2020).

https://www.fhi.no/en/op/novel-coronavirus-facts-advice/facts-and-knowledge-about-covid-19/facts-about-novel-coronavirus/
https://www.fhi.no/en/op/novel-coronavirus-facts-advice/facts-and-knowledge-about-covid-19/facts-about-novel-coronavirus/
https://www.revolve.no/
https://www.revolve.no/
https://www.synopsys.com/automotive/what-is-autonomous-car.html
https://www.synopsys.com/automotive/what-is-autonomous-car.html
https://www.vectornav.com/
https://www.vectornav.com/
https://www.alphr.com/cars/7038/how-do-googles-driverless-cars-work
https://www.alphr.com/cars/7038/how-do-googles-driverless-cars-work


N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Tonja Joseph

State Estimation for a Self-Driving
Racing Car

Master’s thesis in Cybernetics and Robotics

Supervisor: Torleiv Håland Bryne

June 2020


	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Introduction
	Autonomous vehicle technology
	Autonomous racing
	Problem formulation
	Main contributions
	Thesis outline

	Background and Motivation
	Revolve NTNU
	Formula Student
	Formula Student Driverless
	The car: Atmos
	The autonomous software system
	Performance goals of Revolve NTNU Driverless
	Aim of this project
	Remarks regarding the COVID-19 situation

	Preliminaries
	Introduction to navigation
	Aided inertial navigation systems
	Coordinate frames
	Nomenclature
	North east down frame
	BODY frame

	Sensor fusion using Kalman filtering
	The principle of linear Kalman filtering
	Extended Kalman filter for nonlinear systems

	Full state vs. error state Kalman filter
	Advantages of the error state formulation

	The ESKF procedure
	Multiplicative extended Kalman filter
	Locally defined angular rates and angular error
	Stochastic instrument errors
	Inertial sensors specifications
	Gyroscope error model
	Modeling of the gyroscope bias: TEXT
	Modeling of the gyroscope measurement noise: TEXT

	Accelerometer error model
	Modeling of the accelerometer bias: TEXT
	Modeling of the accelerometer measurement noise: TEXT

	Discretization of Gaussian white noise

	The State Estimation System
	Simulator
	True state space
	True state kinematics
	Choice of case study
	The Skidpad procedure

	Inertial measurement unit (IMU)
	Inertial navigation system (INS)
	Nominal state space
	Nominal state kinematics

	Low rate aiding sensors
	Dual GNSS position measurements
	Ground speed velocity measurements
	Dual GNSS baseline vector

	Error state Kalman filter
	Error state space
	Error state kinematics
	EKF linearization
	ESKF prediction
	ESKF correction
	The measurement Jacobian matrix TEXT
	Computation of TEXT
	Outlier rejection
	Injection of the observed error into the nominal state
	ESKF reset

	Pre-Race state estimation for faster convergence

	Results and Discussion
	Results of the final design
	Validation with simulated ground truth
	RMS error
	Discussion of the results with the final design

	Investigation of selected design choices
	Omittance of the accelerometer bias in the specific force aiding
	The pre-race modifications
	Gravity estimation

	Which aiding measurements are most important?
	Dual GNSS most important
	Reduced performance from baseline measurement
	Poor performance with single GNSS


	Conclusion
	Future Work
	From offline to online estimation
	Compensation of measurement delays
	Iterative extended Kalman filter
	Modification of sensor configuration
	Fusion with a separate LiDAR-based state estimation pipeline

	Atmos Sensor Configuration
	VectorNav VN-300 dual antenna GNSS/INS
	Pegasem GSS15 radar-based ground speed sensor
	Basler acA1300-200uc USB 3.0 camera
	Hesai Pandar 40-channel and 20-channel LiDAR
	Optical encoders

	Quaternions
	Quaternion convention
	Fundamental quaternion mathematics
	The quaternion sum
	The quaternion product
	The identity quaternion
	The quaternion conjugate
	The norm of a quaternion
	The quaternion inverse
	Rotation with quaternions


	Jacobian of the Ground Speed Measurement Function: TEXT
	The Variance of a First Order Gauss-Markov Process
	Results when the Accelerometer Bias is Omitted from the Specific Force Aiding
	Results when no Pre-Race Modifications are Applied
	Results without Gravity Estimation
	Results without Ground Speed Aiding
	Results without Vector-Measurement Aiding
	Results with Single GNSS Aiding
	References

