
Christine Sääv Borg
M

odel Predictive Control for Lateral Path Tracking of an Autonom
ous Form

ula Student Race Car

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Christine Sääv Borg

Model Predictive Control for Lateral
Path Tracking of an Autonomous
Formula Student Race Car

Master’s thesis in Cybernetics and Robotics

Supervisor: Sebastien Gros

June 2020

Christine Sääv Borg

Model Predictive Control for Lateral
Path Tracking of an Autonomous
Formula Student Race Car

Master’s thesis in Cybernetics and Robotics
Supervisor: Sebastien Gros
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

For decades, Formula Student has been a well-established engineering competition for
students all over the world. The engineering competition was first introduced for students
within the mechanical and electrical fields. However, in 2018 Formula Student held their
first competition for driverless race cars. The autonomous competition opens for several
new fields, from advanced perception systems to complex control systems. Within the
field control systems, an important task is to track the desired path in the lateral direction.
Deciding the optimal wheel angle, while avoiding unstable behavior may not be trivial,
especially during the velocities and accuracy a race car aims for.

In this thesis, a lateral control system has been developed and implemented for the au-
tonomous race car developed by the Formula Student team, Revolve NTNU. In the spe-
cialization topic associated with this thesis, an analysis was conducted which concluded
that Model Predictive Control (MPC) will give the best results based on the desired behav-
ior and the current stage of the development of the driverless vehicle. The MPC method is
an optimal controller that will give the desired steering angle based on the predicted behav-
ior of the vehicle. Two models are proposed for predicting vehicle behavior, a kinematic
model, and a dynamic model. The kinematic model only takes into account the vehicle
positions and velocities, whilst the dynamic model includes the forces and moments gen-
erated by the vehicle actions.

The resulting MPC implementations have shown results of varying levels through the three
experiments, straight-line driving, constant radius circle, and the Formula Student inspired
track. The MPC implementation using the kinematic vehicle model shows stable results
for all given experiments, while the implementation using the dynamic vehicle model has
difficulties when it comes to tracking the given curvatures. Additionally, the experiments
have shown shortcomings when it comes to the implemented simulator. Using the MPC
implementation that uses the kinematic vehicle model, the autonomous race car manages
to do small radius cornering at unrealistic high velocities.

i

ii

Sammendrag

I flere tiår har Formula Student vært en velletablert ingeniørkonkurranse for studenter
over hele verden. Konkurransen har i hovedsak vært arrangert for å teste studentenes
kunnskap og evner innenfor det mekaniske og elektriske fagfeltet. Som et resultat av den
teknologiske utviklingen i verden, valgte Formula Student å holde sin første konkurranse
for autonome racer biler sommeren 2018, noe som åpnet opp mulighetene for et helt nytt
ingeniørfelt. Alt fra avanserte oppfatningssytemer til komplekse reguleringssystemer blir
nå tested i ekstreme forhold. En av oppgavene til reguleringssystemet er å bestemme
optimal styrevinkel basert på racerbanen, og samtidig unngå ustabil oppførsel, noe som
ikke er trivielt for de gitte omstendighetene.

I denne oppgaven har et slikt lateralt reguleringssystem blitt utviklet og implementert for
den førerløse bilen til Formula Student laget Revolve NTNU. I fordypningsprosjektet som
er relatert til denne oppgaven, ble det utført en analyse som konkluderte med at mod-
ellprediktiv regulering (MPC) vil gi best resulat basert på ønsket oppførsel, i tillegg til
utviklingsstadiet til den førerløse bilen i dag. MPC er en optimal regulator som predikerer
bilens oppførsel, og basert på dette kan gi den optimale styrevinkelen til racer bilen. To
modeller er forseslått for å predikere bilens oppførsel, en kinematisk og en dynamisk. Den
kinematiske modellen tar kun hensyn til bilens posisjon og hastighet, mens den dynamiske
også inkluderer krefter og momenter.

De resulterende MPC implementasjonene har vist varierende resultater gjennom de tre
eksperimentene, rett bane, sirkel med konstant radius og en Formula Student inspirert
bane. MPC implementasjonen som bruker den kinematiske bilmodellen viser stabile re-
sultater for alle testene, mens MPC implementasjonen som bruker den dynamiske bilmod-
ellen viser vanskeligheter når det kommer til å følge de gitte kurvaturene. Eksperimentene
har i tillegg vist svakheter ved den implementerte simulatoren, ved at den autonome racer
bilen kan gjennomføre svinger med urealistiske høye hastigheter.

iii

iv

Preface

This thesis is a representation of my work as a member of the Formula Student team,
Revolve NTNU. This year has not been as I hoped, due to abnormal situation the whole
world has faced in the last months. Unfortunately, my implementation will not be tested at
the planned competitions in Spain and Germany. However, I would like to thank Revolve
NTNU for giving me the opportunity to be a part of the team and letting me contribute
to their driverless vehicle. Hopefully, my work will be revisited and the development will
continue through a new member of the team. Revolve NTNU has taught me that hard
work, dedication, and good teammates are the key to something great. I am proud to be an
alumnus of Revolve NTNU.

I would like to thank Sebastien Gros for being my supervisor. Sebastien Gros helped me
find the path that resulted in this project, by asking the correct questions. I would also
like to thank my family and friends for always supporting me, even though they may not
understand what I am doing.

Christine Sääv Borg

Trondheim, June 21, 2020

v

vi

Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xi

List of Figures xvii

Acronyms xix

1 Introduction 1
1.1 Formula Student Driverless . 2
1.2 Revolve NTNU . 3
1.3 Contributions . 5
1.4 Report Structure . 5

2 Background 7
2.1 Nomenclature . 7

2.1.1 Mathematical Notation . 7
2.1.2 Frames . 8

2.2 Lateral Vehicle Modeling . 9
2.2.1 Lateral Kinematics of Bicycle Model 10
2.2.2 Lateral Dynamics of Bicycle Modeling 12
2.2.3 Tire Modeling . 13
2.2.4 Linear Tire Modeling . 15

2.3 Earlier Approach . 16
2.3.1 Path Representation . 16

vii

2.3.2 Lateral Controller . 18

3 Theory 21
3.1 Model Predictive Control . 21

3.1.1 Motivation for using Model Predictive Control 21
3.1.2 General Formulation of Model Predictive Control 22
3.1.3 Model Predictive Control for Trajectory Tracking 24
3.1.4 Solvers for Model Predictive Control 29

3.2 Linearization . 31
3.3 Discretization . 32

3.3.1 Exact Discretization . 32
3.3.2 Euler Discretization . 33

4 Implementation 35
4.1 Problem Formulation . 36

4.1.1 Kinematic Formulation . 37
4.1.2 Dynamic Formulation . 38
4.1.3 Minimization Variables . 39
4.1.4 System Constraints . 40
4.1.5 Controller Tuning . 41

4.2 Implementation Interface . 44
4.2.1 qpOASES Specific Implementation 44

4.3 Simulation Environment . 45
4.3.1 Vehicle Simulation . 45
4.3.2 Path Representation . 49

5 Results 51
5.1 Performance Results . 51

5.1.1 Straight-Line . 52
5.1.2 Constant Radius Cornering . 61
5.1.3 Formula Student Driverless Track 66

5.2 Computational Effort Results . 71

6 Discussion 75
6.1 Performance . 76
6.2 Computational Effort . 78

7 Epilogue 81
7.1 Conclusion . 81
7.2 Further Work . 82

7.2.1 New Features . 82
7.2.2 Vehicle Implementation . 83

Bibliography 85

Appendices 89

viii

A Introduction to Atmos Driverless 89
A.1 Sensors . 90
A.2 State Estimation . 91
A.3 Visual Perception . 91
A.4 Path Planning . 92
A.5 Speed Profile . 93

B Nonlinear Region Analysis 95

C Tuning Process 97
C.1 Prediction Horizon . 97
C.2 Weighting Matrices . 100

D Code 105
D.1 Sequential Reformulation . 105
D.2 Run qpOASES . 106

E Feedback Linearization Results 107
E.1 Performance Results . 107
E.2 Computational Effort Results . 108

ix

x

List of Tables

1.1 Goals for Revolve NTNU Driverless . 4

2.1 Summary of SNAME (1950) notation. 8

4.1 Numerical values for vehicle parameters. 38
4.2 Variables for calculating the different forces and torques for the simulation

environment. 46

6.1 Experiments including track, initial state and the used prediction model. . 75
6.2 Experiments for testing the computational effort including track and the

used prediction model. 76
6.3 Computational Effort Results . 79

xi

xii

List of Figures

1.1 Points rewarded for each event . 3
1.2 Revolve NTNU’s driverless vehicle, named Atmos Driverless. 4

2.1 The inertial frame in green, the base-link frame in red and the Serret-Frenet
(sf) frame in blue. The black line represents the centerline of the path. . . 8

2.2 Bicycle Model with steering angle δ and the track width L = lr + lf . . . 10
2.3 Bicycle Model driving a constant radius circle. 11
2.4 Illustration of a tire, including tire frame, angular velocity, ω, and the ef-

fective radius, Reff . 13
2.5 Illustration of the slip angle, α, where δ is steering angle, V is the velocity

vector and x is the longitudinal axis. 14
2.6 Characteristic graph of the lateral force VS slip angle. 14
2.7 Projective guidance law. 17
2.8 Kinematic path following. 18
2.9 Bicycle Model with frames . 18

4.1 Overview of the interaction between the MPC, the solver of the optimiza-
tion problem, and the simulation environment. 35

4.2 Visual representation of the MPC problem, with important variables. . . . 36
4.3 Vehicle following the centerline of a track, bounded by cones. 3.0 m is

marking the track width, while 1.2 m is marking the widest part of the
vehicle. 40

4.4 Error response, where the orange line represents the desired error value
ed = eψ = 0, for the kinematic formulation. 42

4.5 State response, where the orange line represents the desired error value
eψ = 0, and control input response, for the kinematic formulation.. 42

4.6 Error response, where the orange line represents the desired error value
ed = eψ = 0, for the dynamic formulation. 43

4.7 State response, where the orange line represents the desired error value
eψ = 0, and control input response, for the dynamic formulation. 44

xiii

4.8 Four wheel model of the vehicle with designated constants and variables. 46
4.9 Example of a cubic spline representation, where the blue graph is the

spline and the orange dots are the waypoints. 49

5.1 Track layout for straight-line driving. The yellow dotted line represents
the centerline, and the black lines are the border of the track with a track
width of 3m. The blue object represents the autonomous vehicle, Atmos
Driverless. 52

5.2 Lateral tracking of straight driving with the kinematic formulation with an
initial cross-track error of 0.6m. The blue line is the path driven by the
vehicle. 53

5.3 Error states while tracking the centerline with an initial cross-track error
of 0.6m with the kinematic formulation. The orange lines represents the
zero references. 53

5.4 Vehicle states while tracking the centerline with an initial cross-track error
of 0.6m with the kinematic formulation. The dark red lines represent the
associated state constraints. 54

5.5 The control effort while tracking the centerline with an initial cross-track
error of 0.6m with the kinematic formulation. The dark red lines represent
the associated control input constraints. 54

5.6 The error states while tracking the centerline with an initial cross-track
error of 0.6m, in addition to an initial heading error of 0.03rad using the
kinematic formulation. The orange lines represent the zero references. . . 55

5.7 The vehicle states while tracking the centerline with an initial cross-track
error of 0.6m, in addition to an initial heading error of 0.03rad using the
kinematic formulation. The dark red lines represent the associated state
constraints. 56

5.8 The control effort while tracking the centerline with an initial cross-track
error of 0.6m, in addition to an initial heading error of 0.03rad using the
kinematic formulation. The dark red lines represent the associated control
input constraints. 56

5.9 Lateral Tracking of straight driving with an initial cross-track error of 0.6m
using the dynamic vehicle formulation. The blue line is the path driven by
the vehicle. 57

5.10 The error states while tracking the centerline with an initial cross-track
error of 0.6m using the dynamic formulation. The orange lines represent
the zero references. 57

5.11 The vehicle states while tracking the centerline with an initial cross-track
error of 0.6m using the dynamic formulation. The dark red lines represent
the associated state constraints. 58

5.12 The control effort while tracking the centerline with an initial cross-track
error of 0.6m using the dynamic formulation. The dark red lines represent
the associated control input constraints. 58

xiv

5.13 Error states while controlling the vehicle to the centerline with an initial
cross-track error of 0.6m, in addition to an initial heading error of 0.3rad
with the dynamic formulation. The orange lines represent the zero refer-
ences. 59

5.14 Vehicle states while controlling the vehicle to the centerline with an initial
cross-track error of 0.6m, in addition to an initial heading error of 0.3rad
with the dynamic formulation. The dark red lines represent the associated
state constraints. 60

5.15 The control effort while controlling the vehicle to the centerline with an
initial cross-track error of 0.6m, in addition to an initial heading error of
0.3rad with the dynamic formulation. The dark red lines represent the
associated control input constraints. 60

5.16 The track layout for constant radius cornering. The yellow dotted line
represents the centerline, and the black lines are the border of the track
with a track width of 3m. The blue object represents the autonomous
vehicle, Atmos Driverless. 61

5.17 Lateral tracking of a constant radius circle with an initial cross-track error
of 0.6m using the kinematic formulation. The blue line is the path driven
by the vehicle. 62

5.18 The error states while tracking the centerline with an initial cross-track
error of 0.6m using the kinematic formulation. The orange lines represent
the zero references. 62

5.19 The vehicle states while tracking the centerline with an initial cross-track
error of 0.6m using the kinematic formulation. The dark red lines represent
the associated state constraints. 63

5.20 The control effort while tracking the centerline with an initial cross-track
error of 0.6m using the kinematic formulation. The dark red lines represent
the associated control input constraints. 63

5.21 Lateral tracking of a constant radius circle with an initial cross-track error
of 0.6m using the dynamic formulation. The blue line is the path driven
by the vehicle. 64

5.22 The error states while tracking the centerline with an initial cross-track
error of 0.6m using the dynamic formulation. The orange lines represent
the zero references. 65

5.23 The control effort while tracking the centerline with an initial cross-track
error of 0.6m using the dynamic formulation. The dark red lines represent
the associated control input constraints. 65

5.24 The vehicle states while tracking the centerline with an initial cross-track
error of 0.6m using the dynamic formulation. The dark red lines represent
the associated state constraints. 66

5.25 Track layout for the Formula Student Track. The yellow line represents
the centerline, and the black lines are the boarder of the track with a track
width of 3m. The blue objects represents the autonomous vehicle, Atmos
Driverless. 67

xv

5.26 Lateral Tracking of the track using kinematic formulation. The blue line
is the path driven by the vehicle. 67

5.27 Error states while tracking the centerline of the Formula Student track us-
ing the kinematic formulation. The orange lines represent the zero refer-
ences. 68

5.28 Vehicle states while tracking the centerline of the Formula Student track
using the kinematic formulation. The dark red lines represent the associ-
ated state constraints. 68

5.29 The control effort while tracking the centerline of the Formula Student
track using the kinematic formulation. The dark red lines represent the
associated control input constraints. 69

5.30 Lateral Tracking of the track using dynamic formulation. The blue line is
the driven path of the vehicle. 69

5.31 Error states while tracking the centerline of the Formula Student track us-
ing the dynamic formulation. The orange lines represent the zero references. 70

5.32 The control effort while tracking the centerline of the Formula Student
track using the dynamic formulation. The dark red lines represent the
associated control input constraints. 70

5.33 Vehicle states while tracking the centerline of the Formula Student track
using the dynamic formulation. The dark red lines represent the associated
state constraints. 71

5.34 The computational effort of the MPC using the kinematic vehicle model,
while driving a straight path. 72

5.35 The computational effort of the MPC using the kinematic vehicle model,
while driving a constant radius circle. 72

5.36 The computational effort of the MPC using the dynamic vehicle model,
while driving a straight path. 73

5.37 The computational effort of the MPC using the dynamic vehicle model,
while driving a constant radius circle. 73

A.1 Overview of the autonomous pipeline 89

A.2 Visualization of LiDAR detection to the left, where the red circles repre-
sent the light channels, all visualized using Rviz. The camera detection
is visualized to the right, where the cones are marked using the camera
detection algorithm. 91

A.3 Visualization of the estimated position indicated by the red line. The green
circles are the predicted location of the cones and the yellow and blue
circles are incoming cones. The visualization is from a simulation of the
FSG 2018 race track using Rviz. 92

A.4 Visualization of the particle filter using Rviz. 93

xvi

B.1 Vehicle data from Autocross run during the Formula Student competition
at Hockenheim. August 2018. Left plot displays the path of the track, us-
ing Global Navigation Satellite System (GNSS), where the red cross is the
current position of the vehicle. The upper right plot shows the longitudinal
velocity of the vehicle. The middle plot shows the lateral acceleration of
the vehicle, and the bottom graph shows the steering wheel angle. The red
line represents the current position in time. 96

C.1 Straight-line driving using the kinematic problem formulation with too
short prediction horizon. 98

C.2 Straight-line driving using the kinematic problem formulation with too
large prediction horizon. 98

C.3 Straight-line driving using the kinematic problem formulation with an ap-
propriate prediction horizon. 99

C.4 Straight-line driving using the dynamic problem formulation with an ap-
propriate prediction horizon. 99

C.5 Error state response for the kinematic vehicle model with the initial weight-
ing matrices in Equation C.1. 100

C.6 Error state response for the dynamic vehicle model with the initial weight-
ing matrices in Equation C.1. 100

C.7 Error state response for the kinematic vehicle model with decreased weight
on the control input. 101

C.8 Error state response for the kinematic vehicle model with increased de-
creased weight on the cross-track error, Q(1, 1) = 5. 102

C.9 Error state response for the kinematic vehicle model with increased de-
creased weight on the heading error, Q(2, 2) = 30. 102

C.10 Error state response for the dynamic vehicle model with the initial weight-
ing matrices in Equation C.2. 103

E.1 Cross-track error and the resulting steering angle using the feedback lin-
earization controller, driving a straight-line path. The initial cross-track
error is 0.6m. The orange line represents the zero references. 108

E.2 Cross-track error and the resulting steering angle using the feedback lin-
earization controller, driving a constant radius corner. The initial cross-
track error is 0.6m. The orange line represents the zero references. 108

E.3 The computational effort of the feedback linearization controller, while
driving a straight path. 109

E.4 The computational effort of the feedback linearization controller, while
driving a constant radius circle path. 109

xvii

xviii

Acronyms

CG Center of Gravity. 9, 10, 12, 13, 37, 46, 49

GNSS Global Navigation Satellite System. xvii, 90, 96

HPIPM High-Performance Interior-Point. 30, 31

INS Inertial Navigation System. 90

LIDAR Light Imaging, Detection and Ranging. 90

LOS Line of Sight. 16, 18, 19

LPV Linear Parameter-Variant. 23, 83

MIMO Multiple-Input-Multiple-Output. 23

MPC Model Predictive Control. i, iii, xiii, xvi, 4–6, 21–24, 29, 31, 32, 35, 36, 39, 41,
43–45, 51, 71–73, 75–79, 81–83, 97, 101

OCP Optimal Control Problem. 30

PID Proportional–Integral–Derivative. 16, 18, 19

QP Quadratic Programming. 23, 26, 27, 29–31, 45, 77, 79, 81

ROS Robot Operating System. 83

sf Serret-Frenet. xiii, 8, 9, 16–18

SLAM Simultaneous Localization and Mapping. 90–92

xix

xx

Chapter 1
Introduction

This chapter is based on Chapter 1 from the specialization project associated with this
thesis. Modifications have been made according to changes during the latter part of the
project.

Autonomous vehicles are on their way to everyday roads, whether humanity likes it or
not. In some countries, the first autonomous cars are already being tested in the wild. Au-
tonomous cars will revolutionize transportation, how cities are built and probably change
the lives of many people in unknown ways. The EU has estimated that autonomous vehi-
cles will give 84.4 Billion Euro trade surplus for the European market1. Likewise, the in-
dustry is in a huge research and development phase around the world. Tesla is introducing
self-driving equipment for all of their new cars, including traffic-aware cruise control and
autosteer 2. Even more impressive may be the autonomous race cars competing in Rob-
orace, a global championship for autonomous race cars 3. In Roborace the autonomous
vehicles are tested at their limits, where both control and perception systems must perform
at an excellent level during high-speed racing.

The engineering competition Formula Student has recognized the technology that comes
with driverless vehicles as important for the future. Formula Student has therefore estab-
lished a competition to encourage students around the world to develop skills regarding
driverless race cars. One of the teams competing in the Formula Student Driverless class
is the Norwegian based Formula Student team, Revolve NTNU, and this project is a con-
tribution to the driverless vehicle made by Revolve NTNU.

The Formula Student Driverless competition is described in Section 1.1, while the Revolve
NTNU is described in Section 1.2. In Section 1.3, the contributions of the product from

1For further information about the automobile industry in Europe, see https://www.acea.be/
automobile-industry/facts-about-the-industry

2For further information about Tesla AutoPilot, see https://www.tesla.com/autopilot
3For further information about Roborace, see https://roborace.com/

1

https://www.acea.be/automobile-industry/facts-about-the-industry
https://www.acea.be/automobile-industry/facts-about-the-industry
https://www.tesla.com/autopilot
https://roborace.com/

Chapter 1. Introduction

this thesis are presented, and the structure of the report is described in Section 1.4.

1.1 Formula Student Driverless

Formula Student is a student competition organized to conceive, design, fabricate, develop
and compete with small, formula style, race cars [1]. The competitions are arranged all
over the world, where the most prestigious competition is at Hockenheimring, Germany.
The driverless class of the Formula Student competition was introduced in 2017 and the
first competitions were arranged during the summer of 2018.

The competition consists of two event categories, static and dynamic. The static events are
divided into

• Business Plan Presentation,

• Cost & Manufacturing, and

• Engineering Design.

These static events are meant for testing the team’s understanding of the vehicle and how
decisions have been made throughout its development phase.

The dynamic events are divided into five events,

• Skid Pad,

• Acceleration,

• Autocross,

• Efficiency and

• Trackdrive,

where the goal is to push the vehicle to its limits. The points awarded to each event, both
static and dynamic, are presented in Figure 1.1.

Before a vehicle is allowed to enter the dynamic events it has to go through scrutineering.
During scrutineering, judges inspect the vehicle and make sure it follows all the rules the
competition requires, given in the Formula Student Rules [1]. The rules may be specific
for each competition, and therefore, it is important to have a good understanding of the
rules and make the vehicle rule compliant.

2

1.2 Revolve NTNU

Figure 1.1: Points rewarded for each event

Formula Student also has an electrical and a combustion class, which is similar to Formula
Student Driverless. However, in these classes, the race car is manned. This report only
regards the driverless class, therefore, the electrical and combustion classes will not be
described in detail.

1.2 Revolve NTNU

Revolve NTNU is an independent student organization founded in 2010 with the goal
of competing in the Formula Student competition. Over the last decade, the team has
expanded and is now competing in both the driverless class and the electrical class [2].
Every year, the electrical team of Revolve NTNU develops and builds a new electrical
race car, while the driverless team improves the autonomous systems of the driverless
vehicle. The team aims to compete in the respective classes all over Europe.

During last season, the performance of the driverless race cars in the Formula Student
competitions had a major leap. The autonomous systems were more accurate and the
vehicles drove faster. As a team, Revolve NTNU has always had high ambitions and aims
at being one of the best Formula Student teams in the world. As a result, high goals are set
for pushing each subsystem of the vehicle to perform at the desired level. The goals for
the driverless vehicle are listed in Table 1.1, where the main goal is to be one of the top
three teams in every competition Revolve NTNU attends.

3

Chapter 1. Introduction

Sub-goals Dynamic Goals Static Goals
Test ready car by the 3.75 sec on acceleration 70/100 Cost and

13th of April Manufacturing
Top 3 in all dynamic 5.5 sec on skidpad 70/75 Business

events Presentation
Final in Engineering 10 m/s avg. on autocross 230/300 Engineering

Design Design
17 m/s avg. on trackdrive

Table 1.1: Goals for Revolve NTNU Driverless

The ambitious dynamic goals, represented in Table 1.1, demands controllers with high ac-
curacy and robustness, accounting for nonlinear behavior during high-speed events, like
trackdrive. See Appendix B for a brief analysis of the nonlinear region of Atmos. There-
fore it is of high interest to research the field of lateral controller that allows the vehicle to
reach the high velocities needed to accomplish the given goals. In the specialization topic
associated with this thesis [3], an analysis was conducted which concluded that an Model
Predictive Control (MPC) will be the best approach for reaching the presented goals, given
the current stage of the development of Revolve NTNU’s autonomous race car. The control
system designed in this thesis will be embedded into Atmos Driverless, shown in Figure
1.2. See Appendix A for an introduction to Atmos Driverless’ sensor configuration and
pipeline.

Figure 1.2: Revolve NTNU’s driverless vehicle, named Atmos Driverless.

4

1.3 Contributions

1.3 Contributions
This project is a contribution to the driverless vehicle of Revolve NTNU, and the following
contributions have been made by the author:

• implementation of the simulation environment in MATLAB,

• implementation of the feedback linearization method in MATLAB,

• development and implementation of the MPC method using both a kinematic and a
dynamic vehicle model in MATLAB,

• a discussion of the performance of the two MPC methods, including a comparison
with the feedback linearization controller, and

• a timing comparison between the two MPC methods and the feedback linearization
controller

1.4 Report Structure
Background

The background chapter aims to give a good insight into the lateral controller approached
used by the previous Revolve NTNU team. To do so, a walkthrough of the notation and
frames used throughout the report is conducted, also a description of the lateral modeling
of the vehicle, including both the kinematic and the dynamic of the vehicle, is given.

Theory

The theory chapter gives an insight into the theory behind the MPC method, which is
needed for understanding the two implementations of the method. The linearization method,
in addition to the discretization method, are also presented for understanding the entirety
of the MPC method.

Implementation

The two MPC implementations using the kinematic vehicle model and the dynamic vehicle
model are presented in the implementation chapter. An overview of the implementation
interface and the simulation environment is also given in this chapter.

Results

The results from the three experiments are presented in the results chapter. The experi-
ments conducted are

• straight-line driving,

• constant radius cornering, and

5

Chapter 1. Introduction

• a track containing all elements of Formula Student Driverless Track described by
the Formula Student rules [1].

Also, the computational effort of the MPC method, both for the kinematic and the dynamic
vehicle modeling, in addition to the feedback linearization controller, are represented.

Discussion

The results of both the performance and the computational effort of the two MPC imple-
mentations are discussed in this chapter. Also, a comparison with the feedback lineariza-
tion is conducted.

Epilogue

The conclusion of the overall performance of the MPC implementations is given in this
chapter. Additionally, a discussion about further work is conducted.

6

Chapter 2
Background

This chapter is based on the Chapter 2 and the Chapter 3 from the specialization project
associated with this thesis. Modifications have been made according to changes during
the latter part of the project.

Some background knowledge is highly important for understanding and designing a con-
trol system for an autonomous race car. The notations and frames used throughout this
report are described in Section 2.1. Further, the lateral vehicle modeling is described in
Section 2.2, and the earlier approach, is described in Section 2.3 for later comparison with
the new control system.

2.1 Nomenclature
To have a common understanding of the notation and frames used throughout the thesis, a
summary is given. A more thorough description is given wherever needed. Some standard
notations are used and described in Section 2.1.1. Further, the frames used throughout the
report are represented in Section 2.1.2.

2.1.1 Mathematical Notation
Throughout the report, variables are set in italic, vectors and matrices are in bold, and
constants in roman.

Some standard matrices are used throughout the report. 0 represents a zero matrix or a
zero vector, and I denotes the identity matrix.

The standard notation that is given in SNAME (1950) [4] is used throughout the report and
the notation can be seen in table 2.1. The SNAME (1950) notation, is the notation used in
the maritime sector. However, controlling the motion of a vehicle is similar to controlling

7

Chapter 2. Background

the motion of a vessel. Therefore, the notation can be used in vehicle modulation and
control.

DoF Description Forces and Linear and Position and
moments angular velocities Euler angles

1 Motion in the X u x
x-direction

2 Motion in the Y v y
y-direction

3 Motion in the Z w z
z-direction

4 Rotation about the K p φ
x-direction (roll)

5 Rotation about the M q θ
y-direction (pitch)

6 Rotation about the N r ψ
z-direction (yaw)

Table 2.1: Summary of SNAME (1950) notation.

Some exceptions from the SNAME (1950) notation are done, where the forces are defined
as FX , FY , and FZ for the x-, y- and z-direction respectively. The same yields for the
moments where MX , MY , and MZ describe the moments in the x-, y- and z-direction
respectively.

2.1.2 Frames
There are three main frames used in this report. These are the inertial frame, the base link
frame, and the Serret-Frenet (sf) frame, all shown in Figure 2.1.

xb

yb

xsf

ysf

xI

yI

Figure 2.1: The inertial frame in green, the base-link frame in red and the sf frame in blue. The
black line represents the centerline of the path.

8

2.2 Lateral Vehicle Modeling

The inertial frame, also called map frame, origins where the vehicle stands when the au-
tonomous system boots. The x-component points towards the front of the vehicle, the
y-component points towards the left of the vehicle, and the z-component points upwards.
In Figure 2.1 the x- and y component of the inertial frame are visualized by the green ar-
rows. This is a static frame, meaning it will keep the same position throughout the whole
race and works as a reference frame.

The base-link frame, or body frame, is defined in the same way as the inertial frame.
However, where the inertial frame is static, the base-link frame is centered in the Center
of Gravity (CG) of the vehicle at all times. The base link frame is represented by the red
x- and y-axis in Figure 2.1.

To connect the body frame to the inertial frame the odometry frame is applied, which is
based on calculations from the state estimation module. The relationship between the three
frames, inertial frame, body frame, and odometry frame, is

pIb = RI
op

o
b + pIo, (2.1)

where p is a position vector and R is a rotation matrix. The subscriptions I , o and b
represent the inertial, odometry and body frame, respectively.

The sf frame is used as a reference frame following the desired path [4]. The sf frame is
used due to its property, where the frame components are parameterized using the given
curve the frame is following. This property is preferred when following a curved path,
and the curvature of the path can easily be extracted from the parameterized components.
The x-component of the frame is always tangential to the curvature of the path and the
y-component is pointing to the left, perpendicular to the x-component of the frame. The
blue x- and y components in Figure 2.1 represents the sf frame.

2.2 Lateral Vehicle Modeling

To describe the lateral vehicle behavior, the bicycle model is applied for both the kinematic
and the dynamic modeling [5]. The bicycle model is a simplification of the vehicle model
where the two axles are represented as one wheel, as seen in Figure 2.2. This model is
widely used and often in the automotive industry.

The conference paper, [6], represents a comparison between the bicycle model and the
9 degrees of freedom vehicle model in a model predictive control approach for motion
planning. It concludes that the bicycle model is consistent for this purpose, as long as the
lateral acceleration is constrained.

9

Chapter 2. Background

Figure 2.2: Bicycle Model with steering angle δ and the track width L = lr + lf .

The resulting model simplifies the kinematics and dynamics of the vehicle, compared to a
higher degree of freedom model. It is assumed only front-wheel steering and that the CG
is placed at the origin of the coordinate frame in Figure 2.2, i.e. base-link frame.

2.2.1 Lateral Kinematics of Bicycle Model

The lateral kinematic of the vehicle describes the vehicle motion from a geometric per-
spective, thus the influence of forces and torques are neglected. This is considered a valid
assumption for low velocities, where low velocity is defined as 0m/s ≤ u ≤ 5m/s.
When assuming low speed, the no-slip assumption is also valid and simplifies the mathe-
matical representation. As the vehicle is running on a flat track, the linear motions in the
z-direction are neglected. The stated assumptions result in only x, y, and ψ as the defining
states for the vehicle motions. x and y define the position of the vehicle, while ψ defines
the rotation of the vehicle around the z-axis, located in CG, all with respect to the inertial
frame.

For modeling the vehicle motions it is assumed that the vehicle is in a circular motion. In
this case, driving a straight line is equivalent to cornering with an infinite radius, R =∞.

To model the kinematics of the vehicle, a triangle can be drawn between the center of the
circle that the vehicle is following, the CG, and the front wheel. Additionally, a triangle
between the center of the circle, CG, and the rear wheel can be drawn, as visualized in
Figure 2.3. By deploying the sine rule, the relationship between the circular path and the
vehicle can be deducted.

10

2.2 Lateral Vehicle Modeling

Figure 2.3: Bicycle Model driving a constant radius circle.

For the front triangle, the sine rule results in

sin(δ − β)

lf
=
sin(π2 − δ)

R
, (2.2)

where β is the body slip angle of the vehicle. The body slip angle is the difference in the
direction of the velocity vector and the direction the vehicle is heading.

The sine term in Equation 2.2 can be extended using the algebraic method and the resulting
expression is

tan(δ)cos(β)− sin(δ) =
lf
R
. (2.3)

Similarly, for the rear triangle, the sine rule results in

sin(β)

lr
=
sin(π2)

R
=

1

R
⇒ sin(β) =

lr
R
. (2.4)

Thus, by inserting Equation 2.4 into Equation 2.3 the relationship between the vehicle and
the circular path can be described by

tan(δ)cos(β) =
lf + lr
R

. (2.5)

When using the assumption of low velocity, the assumption ψ̇ = r = V
R , is also considered

valid. By combining Equation 2.5 with this assumption the change in ψ can be described
as

11

Chapter 2. Background

ψ̇ = r =
V cos(β)

lf + lr
tan(δ). (2.6)

The changes in x- and y-direction are then defined by

ẋ = V cos(ψ + β),

ẏ = V sin(ψ + β).
(2.7)

2.2.2 Lateral Dynamics of Bicycle Modeling
When a vehicle drives at higher velocities the dynamics of the vehicle must be included
in the modeling of the behavior, due to that the assumption about no-slip stated in the
previous section does not hold anymore. Thus, the forces and torques must be included in
the description of the change in the vehicle states.

To define the lateral forces acting on the vehicle, Newton’s second law of motion is applied.

may = FY,f + FY,r, (2.8)

where ay is the acceleration of the vehicle at CG with respect to inertial frame, and FY,f
and FY,r are the forces acting on the front and rear tires, respectively.

The acceleration ay is a combination of the acceleration along the y-axis and the centripetal
acceleration, thus the acceleration can be stated as

ay = ÿ + ur. (2.9)

When combining Equation 2.8 and Equation 2.9, Newton’s second law of motion is de-
scribed by

m(ÿ + ur) = FY,f + FY,r. (2.10)

Similar to Newton’s second law of motion, the moment balance about the z-axis placed in
CG is defined as

IZ ṙ = lfFY,f − lrFY,r (2.11)

where the tire forces, FY,f and FY,r, must be estimated, and IZ is the yawing moment of
inertia.

In summary, the lateral dynamics of the bicycle model can be described by

12

2.2 Lateral Vehicle Modeling

ÿ =
1

m
(FY,f + FY,r)− ur

ṙ =
lfFY,f − lrFY,r

IZ
.

(2.12)

2.2.3 Tire Modeling

Tires are the only elements of the vehicle in contact with the ground, and consequently
are the only source of generating acceleration. The lateral force acts on the center of
the contact patch in the horizontal plane. This force acts, at all times, perpendicular to
the heading of the tire, assuming zero camber and inclination angle [7], following the
coordinate system in Figure 2.4.

Figure 2.4: Illustration of a tire, including tire frame, angular velocity, ω, and the effective radius,
Reff .

As a result of the tire movement relative to the ground, called slip, the tire experiences a
deformation due to the friction forces at the contact patch. The natural behavior of a tire
is to act against this deformation and it tries to regain its original shape, which creates
the lateral force. The lateral slip angle can be described as the angle between the velocity
vector and the geometric direction of the respective tire. The slip angle is mathematically
defined as

αf = δ − arctan(
ωf lf + v

u
)

αr = arctan(
ωrlr − v

u
)

(2.13)

where ωf,r is the angular velocity, and lf,r is the distance from CG to the front and rear
tire, respectively. The slip angle is illustrated in Figure 2.5.

13

Chapter 2. Background

Figure 2.5: Illustration of the slip angle, α, where δ is steering angle, V is the velocity vector and
x is the longitudinal axis.

To model the lateral forces, the empirical model Pacejka magic formula is used [8]. The
Pacejka magic formula is a widely used model for estimating tire forces in the automotive
industry. The simplification of constant coefficients [9] is applied, where it is assumed zero
camber angle and constant load as pitching motions are neglected. The resulting lateral
force for a tire is then

FY,i = −FZ,i ·DY,isin(CY,i · arctan[Bvαi − EY,i(BY,iαi − arctan(BY,i))]), (2.14)

where i indicates the front or rear wheels. The parameters D, C, B and E represents the
peak, shape, stiffness and curvature, respectively, and are estimated by fitting the curve
defined by Equation 2.14 to empirical data giving the characteristic graph given in Figure
2.6.

0

0

Slip angle [deg]

L
at

er
al

Fo
rc

e
[N

]

15-15 -10 105-5
-3000

3000

-2000

-1000

1000

2000

Figure 2.6: Characteristic graph of the lateral force VS slip angle.

14

2.2 Lateral Vehicle Modeling

The final lateral dynamics of the vehicle, when substituting Equation 2.14 into Equation
2.12, is

ÿ = − 1

m

(
F fZ ·D

f
Y sin

(
CfY · arctan[BfY αf − E

f
Y (BfY αf − arctan(BfY))]

)
+ F rZ ·Dr

Y sin
(
CrY · arctan[BrY αr − ErY (BrY αr − arctan(BrY))]

))
− ur

(2.15)

ṙ = −
lfF

f
Z ·D

f
Y sin

(
CfY · arctan[BfY αf − E

f
Y (BfY αf − arctan(BfY))]

)
IZ

+

lrF
r
Z ·Dr

Y sin
(
CrY · arctan[BrY αr − ErY (BrY αr − arctan(BrY))]

))
IZ

.

(2.16)

2.2.4 Linear Tire Modeling
The aforementioned tire forces are highly nonlinear, which may be too complex for a
lateral controller. Therefore, a linear approximation of the lateral forces can be deducted
[10]. For small slip angles, the lateral force can be linearized, which results in

FY,f = Bcs,fαf ,

FY,r = Bcs,rαr.
(2.17)

The variables Bcs,f and Bcs,r are the cornering stiffness of the front and rear tire, respec-
tively. The cornering stiffness is a description of the tires ability to resist deformation
while cornering.

Due to the small slip angle assumption in Equation 2.17, the slip angle can also be lin-
earized around small angles. Consequently, the slip angles can be approximated as

αf = δ − arctan(
ωf lf + v

u
) ≈ δ − ωf lf + v

u
,

αr = arctan(
ωrlr + v

u
) ≈ ωrlr + v

u
.

(2.18)

Substituting the linear formula for slip angle, Equation 2.18, into the linear relation of
lateral force, Equation 2.17, the linear relation results in

FY,f = Bcs,f (δ − ωf lf + v

u
),

FY,r = Bcs,r(
ωrlr + v

u
).

(2.19)

15

Chapter 2. Background

The lateral dynamics of a vehicle with a linear tire model can then be described by

ÿ =
1

m
((Bcs,f (δ − ωf lf + v

u
)) + (Bcs,r(

ωrlr + v

u
)))− ur,

ṙ =
1

IZ
(lf (Bcs,f (δ − ωf lf + v

u
))− lr(Bcs,r(

ωrlr + v

u
))).

(2.20)

2.3 Earlier Approach
The approach used before this thesis started was a cascade of three controllers, a Line of
Sight (LOS) controller, a feedback linearization controller, and finally a
Proportional–Integral–Derivative (PID) controller, including an advanced path and tim-
ing law. For this report, the earlier approach is used for comparison purposes and a basis
for further development.

2.3.1 Path Representation
The path π(·), defined by the centerline of the track, is represented as a parameterized path
in the planar vector space, where it is assumed approximately arc length parameterization,
meaning

π($i)− π($i−1) ≈ $i −$i−1, (2.21)

where$ is a continuous path variable. Additionally, the path follows the geometric bound-
ary conditions stated in the Formula Student rules, [1]. This implies a maximum track
width of 3 meters, in addition to a maximum curvature of 0.22m−1. Further, the path is
assumed second derivative continuous and regular, which allows calculating velocities and
accelerations of the sf frame, described in Section 2.1. A path being regular implies that

|π′($)| = dπ($)

d$
6= 0. (2.22)

Projection

At all times, it is important to keep track of where the vehicle is with respect to the path.
Both the odometry and the centerline are given in the world frame, but the position of
where they are in the world with respect to each other is not. To resolve this, a minimiza-
tion problem can be defined.

θP(π) min {||πd(θ)− p||2 : θ ∈ [0, L]}. (2.23)

In Equation 2.23, θP is the projection operator, where P is the set of all legal points, p,
along the track with a length L. Further, the 2-norm, || · ||2, is defined as

16

2.3 Earlier Approach

||x||2 =

√√√√ n∑
k=1

|xk|2. (2.24)

This finds the shortest distance from the vehicle to the path, perpendicular to the curvature
of the path.

Timing Law

Both to keep track of the progression along the path and be able to use a lookahead dis-
tance, a timing law is crucial. Two different timing laws are used, one for fully detected
and known tracks and one for unknown tracks [11].

A simple projective guidance law is implemented for the unknown tracks, where the pose
of the vehicle is projected onto the track with a given lookahead distance, see Figure 2.7.

Figure 2.7: Projective guidance law.

For the fully detected and known track, a kinematic path following timing law for tracking
the reference frame, the sf frame, attached to the path is implemented. Assigning a virtual
velocity to the sf frame leads to a more predictive timing law, which results in better
performance, as the lookahead distance is dynamic. The change in distance traveled is
defined as

ṡ =
vf√

∆2 + y2e + x2e
(
√

∆2 + x2e − xe) (2.25)

The kinematic path following, and the variables in Equation 2.25, are visualized in Figure
2.8.

17

Chapter 2. Background

Figure 2.8: Kinematic path following.

2.3.2 Lateral Controller
The existing control system for the lateral movement of the race car is based on the path-
following kinematic controller in [4]. This controller utilizes the bicycle model, presented
and illustrated in Section 2.2. The complete control strategy was developed by a previous
member of Revolve NTNU and is described in [12], excluding the aforementioned kine-
matic timing law. Even though the control design is presented in [12], the controller will
be described in this Section for the reader’s holistic understanding.

The controller for lateral motion is a cascade of three controllers,

• a LOS guidance controller,

• a feedback linearization controller, and

• a PID controller.

Figure 2.9: Bicycle Model with frames

The LOS guidance controller finds the desired heading for approaching the path with a
given lookahead distance. The path is represented as a spline, with the respective target
velocity as a function of the curvature. The sf frame, at the path, seen in Figure 2.9, is

18

2.3 Earlier Approach

used as a virtual target for the vehicle. When the desired course is known, a feedback
linearization controller controls the vehicle for keeping the desired course. By utilizing
the yaw dynamic of the bicycle model, the desired steering angle can be calculated for
maintaining the desired yaw rate from the feedback linearization controller. Then a PID
controller draws the control error to zero.

The control law of the LOS guidance controller is defined as

χsfr = atan(
−ysf

∆
) (2.26)

where χ is the heading of the vehicle and ∆ is the lookahead angle. The lookahead angle
refers to how far in front of the vehicle it is aiming, to reach the centerline when assuming
a straight path.

The feedback linearization controller aims to keep the desired course angle from Equation
2.26. Therefore, it is necessary to find the yaw dynamics described in the sf frame. This is
given by

χ̇sf = r + β̇ − κusf (2.27)

By rearranging Equation 2.27, the yaw rate is described by

r = χ̇sf − β̇ + κusf , (2.28)

where

β̇ =
d

dt

(
arctan

(v
u

))
(2.29)

and κ is the curvature of the path.

The feedback linearization controller results in the yaw rate reference, defined as

rr = χ̇sfr − β̇ + κusf +KP,rχ̃
sf . (2.30)

where

χ̃sf = χsf − χsfr , (2.31)

The yaw dynamic for the bicycle model is given by

ṙ =
1

IZ
(−Bcs,fαf lf +Bcs,rαrlr) (2.32)

19

Chapter 2. Background

where Bcs,f and Bcs,r are the cornering stiffness for the respective tires. The tire model
is assumed to be linear as described in Section 2.2. Thus, by substituting the equation for
the slip angle, Equation 2.13, into Equation 2.32 and solving for the steering angle, δ, it
results in

δ =
IZ ṙ

Bcs,f lf
− arctan(

ωlf + v

u
) +

lr
lf
arctan(

ωlr − v
u

) (2.33)

Hence, the steering angle reference, including a proportional controller, is

δref =
IZ ṙ

Bcs,f lf
− arctan(

ωlf + v

u
) +

lr
lf
arctan(

ωlr − v
u

) +KP,δ r̃ (2.34)

where ṙd refers to the derivative of Equation 2.30 and r̃ = r − rr.

20

Chapter 3
Theory

The various spectra of control regimes have previously been used for controlling the lateral
motion of autonomous vehicles. One of the advanced methods is the optimal control
regime Model Predictive Control (MPC), a method for finding the optimal control input
based on the prediction of the vehicle motions. A thorough introduction of the MPC
method and the intended use is described in Section 3.1. For this thesis, the linear version
of the problem formulation of the MPC is employed. Therefore, the linearization scheme
is described in Section 3.2. The MPC is planned to run on a digital computer, which
requires a discrete formulation of the MPC. Discretization methods are therefore described
in Section 3.3.

3.1 Model Predictive Control
MPC, also called receding horizon predictive control, is a widely used control method for
several purposes and in different fields of studies [13]. MPC was introduced in the 1960s
and was quickly implemented in the industry. The MPC method is highly computational,
and therefore, the method did not get the desired attention. Due to the increase in the
processing power of computers, the interest in MPC has grown during the last decade.

3.1.1 Motivation for using Model Predictive Control
For a race car driver, it is important to act as a result of the path seen in front of the driver.
It is equally important to know the behavior of the vehicle in every situation. If a race car
driver only utilizes the current state of the vehicle and neglects future parts of the track, it is
impossible to compete against world-class drivers. This theory also yields for autonomous
race cars. Taking actions based on predicted behavior is crucial when the goal is to drive
at high velocities. This is known as an active control regime, which is the opportunity the
MPC method provides.

21

Chapter 3. Theory

Using the MPC method for tracking a reference path is not a new technology. In the litera-
ture several approaches using the MPC method are already presented, e.g. [14], [15], [16],
and [17] all utilizing the method differently. Both the approach in [15] and the approach
in [16] are designing an MPC to use the shortest amount of time finishing the given track.
Even though they are aiming for the same thing, [15] includes machine learning in the
formulation, which [16] is not using. The approach in [14] proposes a method using the
kinematic vehicle model for path tracking, while the approach in [17] is using a dynamic
vehicle model for the MPC implementation. The MPC approach can be implemented in
many ways, and utilize a wide specter of technology, which makes the approach interest-
ing.

One of the benefits of the MPC method is that it is a modular control regime, allowing one
to change the object of the controller, without changing the entire implementation. This
makes it easy to increase the complexity of the controller stepwise, depending on both the
accuracy and complexity needed. The different levels of complexity can also be utilized
for the different dynamic events of the Formula Student competition, described in Section
1.1, where different events require a different level of accuracy and robustness.

3.1.2 General Formulation of Model Predictive Control
The method, MPC, seeks to find the optimal control input based on predictions of future
behavior of the controlled system, and consists of three main elements:

• Prediction Model,

• Objective Function,

• Constraints.

These elements are designed as an optimization problem for fulfilling the three steps of
the control method.

1. The prediction model describes the behavior of the controlled system and is used
for predicting future outputs, based on the current system state. The prediction is
calculated for every time step in a given and finite prediction horizon denoted N .

2. The objective function is designed for optimizing the system control input while
keeping the given reference for the given prediction horizon. Often systems are
limited, due to physical limits or desired limits, then both the states and the control
inputs may be limited. The limits are formulated as constraints in the optimization
problem.

3. The resulting optimization problem will optimize the control input over the given
horizon, where only the first control input is fed into the controlled system.

Mathematically, the MPC problem can be summarized as the optimization problem rep-
resented in Equation 3.1 [18]. The objective function, f(x), is minimized subject to the
constraints, where E represents the set of equality constraints and I represents the set of
inequality constraints.

22

3.1 Model Predictive Control

min
x∈Rnx

f(x)

s. t. ci(x) = 0 i ∈ E ,
ci(x) ≥ 0 i ∈ I.

(3.1)

Objective Function

The objective function in an MPC is often formulated as a quadratic cost function, resulting
in a Quadratic Programming (QP) problem. The general formulation is

f(x) =
1

2
xTGx + xT c, (3.2)

whereG ∈ Rnx×nx is the Hessian matrix and c ∈ Rnx is the gradient [18]. A QP problem
can always be solved or shown to be infeasible within a finite number of iterations. If the
Hessian matrix of the quadratic cost function is a positive semidefinite Hessian matrix, the
function is convex. A convex function implies that a local minimum is a global optimum.

The QP formulation allows for Multiple-Input-Multiple-Output (MIMO) system, meaning
the systems have several inputs and outputs [19]. When formulating the MPC problem as a
QP problem, the resulting control inputs over the horizon are treated as individual outputs.
Additionally, several industrial optimization solvers utilize the structure of a QP problem.
Therefore, the QP structure is preferable for an MPC formulation.

Prediction Model

To predict the future system outputs, a model of the system is necessary. The prediction
model is a crucial part of the MPC problem and a significant contributor to the computa-
tional load of the MPC. Therefore, it is important to choose a model that is both complex
enough to catch the important behavior and dynamics of the system, and at the same time
simple enough for solving the resulting optimization problem in real-time. The model can
be both linear and nonlinear. In this thesis, the linear model is considered as the prediction
model, due to the reduction of complexity and the decrease in computational load. The
linear state-space formulation of the prediction model used in the MPC formulation is

xk+1 = Akxk + Bkuk + Ekdk,

yk = Ckxk + Dkuk.
(3.3)

In the states-space formulation, Equation 3.3, the subscript indicates the discrete time step
index. Allowing the system to change state matrices for every time step in the MPC,
is often a useful tool. State-independent and known model parameters may change over
the prediction horizon, N , and by letting these parameters change for every time step
over the horizon, it will lead to a more accurate solution. Changing the state-independent
and known model parameters, results in a Linear Parameter-Variant (LPV) system. The
system states in the state-space formulation are xk ∈ Rnx , the system control inputs are

23

Chapter 3. Theory

uk ∈ Rnu , the known system disturbances are dk ∈ Rnd and yk ∈ Rny are the output
variables of the system. The associating system matrices are the discrete system matrices
of the following sizes

• Ak ∈ Rnx×nx ,

• Bk ∈ Rnx×nu ,

• Ek ∈ Rnx×nd ,

• Ck ∈ Rny×nx ,

• Dk ∈ Rny×nu .

Constraints

In real-world systems, there are often limitations based on physical laws or desirable be-
havior. These limitations can be embedded into the MPC formulation as constraints. Both
the system states and the control input are often bounded by a defined interval which makes
them a perfect candidate for inequality constraints.

xlow ≤ x ≤ xhigh

ulow ≤ u ≤ uhigh
(3.4)

In Equation 3.4 the system states, x, are limited by a lower value, xlow, and an upper
value, xhigh, restricting the states from entering an illegal area. The same applies to the
control input u.

Often it is desirable to limit the change in control input to avoid rapid movements that can
damage the controlled system. The inequalities are then

∆ulow ≤∆u ≤∆uhigh, (3.5)

where ∆u is the change in control input, defined as ∆u = uk − uk−1.

3.1.3 Model Predictive Control for Trajectory Tracking
MPC is well suited for trajectory tracking as the method can find the optimal control input
for minimizing the error between the trajectory of the system and the desired trajectory.
The aforementioned formulation of the MPC problem is also applicable for the trajectory
tracking problem. The objective function and the constraints for the trajectory tracking
problem will be described more thoroughly in the following sections.

Objective Function

The MPC method attempts to find the optimal control inputs,

24

3.1 Model Predictive Control

ū = [uTk ,u
T
k+1, . . . ,u

T
k+N−1] ∈ Rnu×N , (3.6)

for the given horizon N , minimizing the error evolution

ē = [eTk+1, e
T
k+2, . . . , e

T
k+N] ∈ Rnx×N . (3.7)

The error, e, is defined as the difference between the system states and the trajectory refer-
ences, denoted eTk+1 = xTk+1 − rTk+1. The resulting objective function can be formulated
as

f(e,u) =
1

2

N∑
k=0

e(x, r)Tk+1Qk+1e(x, r)k+1 + uTkRkuk. (3.8)

The matrices Qk+1 ∈ Rny×ny and Rk ∈ Rnu×nu are weighting matrices. Qk+1 � 0, is
a positive semi-definite matrix weighting the importance of a small state error, eTk+1 → 0,
and Rk � 0 is a positive definite matrix weighting the usage of the control input [20].

Equation 3.8 can be reformulated to match the formulation in Equation 3.2 when utilizing
the vectors in Equation 3.6 and Equation 3.7,

f(z) =
1

2
ēT Q̄ē + ūT R̄ū =

1

2
zT
[
Q̄ 0
0 R̄

]
z =

1

2
zT Ḡz. (3.9)

The optimization variables in Equation 3.9 are now both the control input and the state
error, denoted z = [eTk+1, e

T
k+2, . . . , e

T
k+N ,u

T
k ,u

T
k+1, . . . ,u

T
k+N−1] = [ēT ūT]. The

new weighting matrices, Q̄ and R̄, are the state and control input weighting over the
whole horizon, defined as

Q̄ =

Qk+1 0 0 0 0
0 Qk+2 0 · · · 0 0
0 0 Qk+3 0 0

...
. . . 0 0

0 0 0 0 Qk+N−1 0
0 0 0 0 0 Qk+N

, (3.10)

and

R̄ =

Rk 0 0 0 0
0 Rk+1 0 · · · 0 0
0 0 Rk+2 0 0

...
. . . 0 0

0 0 0 0 Rk+N−2 0
0 0 0 0 0 Rk+N−1

. (3.11)

25

Chapter 3. Theory

This formulation of the weighting matrices, Q̄ and R̄, allows different weighting at each
time step over the horizon.

Defining Constraints

The prediction model and the state and control input limitations have to be embedded into
the QP formulation as constraints. There are mainly two approaches for embedding the
constraints and prediction model into the formulation when aiming for a numeric solution,

• a sequential approach, and

• a simultaneous approach [21].

For the sequential approach, both the system states and the control inputs are defined as
the optimization variables, whereas in the simultaneous approach, only the control input
is treated as the optimization variables.

Simultaneous Formulation

The constraints of the simultaneous formulation are derived from the prediction model,
defined by Equation 3.3. The evolution of the states can be stated as

xk+1 = Akxk + Bkuk + Ekdk

xk+2 = Ak+1xk+1 + Bk+1uk+1 + Ek+1dk+1

= Ak+1(Akxk + Bkuk + Ekdk) + Bk+1uk+1 + Ek+1dk+1

= Ak+1Akxk + Ak+1Bkuk + Ak+1Ekdk + Bk+1uk+1 + Ek+1dk+1

xk+3 = Ak+2xk+2 + Bk+2uk+2 + Ek+2dk+2

= Ak+2(Ak+1Akxk + Ak+1Bkuk + Ak+1Ekdk + Bk+1uk+1

+ Ek+1dk+1) + Bk+2uk+2 + Ek+2dk+2

...

(3.12)

By continuing this evolution for the entire horizonN , it can be condensed, using the states
and control inputs for the horizon, formulation by

Āx̄ + B̄ū = Ē, (3.13)

where the state matrices are defined as

Ā =

−I 0 0 0

Ak+1 −I 0 · · · 0

0 Ak+2 −I
...

...
. . . 0

0 · · · 0 Ak+N−1 −I

 , (3.14)

26

3.1 Model Predictive Control

B̄ =

Bk 0 0

0 Bk+1 · · ·
...

...
. . . 0

0 · · · 0 Bk+N−1

 and Ē =

−Akxk −Ekdk
−Ek+1dk+1

−Ek+2dk+2

...
−Ek+N−1dk+N−1

 . (3.15)

Equation 3.13, can be written even more compact by including the optimization variable,
z, in the formulation can then be stated as

[
Ā 0
0 B̄

]
z =

[
Ē
0

]
. (3.16)

Including the objective function in Equation 3.9, the resulting QP formulation is

min
z∈R(m+n)×N

1

2
zT Ḡz

s. t.
[
Ā 0
0 B̄

]
z =

[
Ē
0

]
,

zlb ≤ z ≤ zub.

(3.17)

This formulation requires good estimates of the state evolution x̄, which may not be trivial.

Sequential Formulation

For the sequential formulation, both the objective function and the constraints containing
the prediction model and limitations must be formulated using the control input. In this
case, the evolution is described similarly as for the simultaneous formulation, however, the
control input is the main variable, and it can be described as

xk+1 = Akxk + Bkuk + Ekdk

xk+2 = Ak+1xk+1 + Bk+1uk+1 + Ek+1dk+1

= Ak+1(Akxk + Bkuk + Ekdk) + Bk+1uk+1 + Ek+1dk+1

= Ak+1Bkuk + Bk+1uk+1 + Ak+1Ekdk + Ek+1dk+1 + Ak+1Akxk

xk+3 = Ak+2xk+2 + Bk+2uk+2 + Ek+2dk+2

= Ak+2(Ak+1Bkuk + Bk+1uk+1 + Ak+1Ekdk + Ek+1dk+1

+ Ak+1Akxk) + Bk+2uk+2 + Ek+2dk+2

= Ak+2Ak+1Bkuk + Bk+2uk+2 + Bk+2uk+2 + Ak+2Ak+1Ekdk

+ Ak+2Ek+1dk+1 + Ek+2dk+2 + Ak+2Ak+1Akxk.

...

(3.18)

27

Chapter 3. Theory

By continuing the evolution over the horizon N , the state prediction can be written using
matrices as

xk+1

xk+2

xk+3

...

 =

Bk 0 0

Ak+1Bk Bk+1 0 · · ·
Ak+2Ak+1Bk Ak+2Bk+1 Bk+2

...
. . .

uk
uk+1

uk+2

...

+

Ek 0 0

Ak+1Ek Ek+1 0 · · ·
Ak+2Ak+1Ek Ak+2Ek+1 Ek+2

...
. . .

dk
dk+1

dk+2

...

+

Ak

Ak+1Ak

Ak+2Ak+1Ak

...

xk,

(3.19)

The condensed formulation of Equation 3.19 is

x̂ = B̂ū + Êd̄ + Âxk. (3.20)

If not all system states require minimization, the system output matrix C should be embed-
ded into the objective function for reducing the problem size. The new weighting matrix,
¯̄Q, is defined as

¯̄Q =

CT
k+1Qk+1Ck+1 · · · 0

...
. . . 0

0 0 CT
k+NQk+NCk+N

 . (3.21)

Equation 3.20 can be substituted into the objective function, Equation 3.9, resulting in

f(u) =
1

2
((B̂ū + Êd̄ + Âxk)T − r̄T) ¯̄Q((B̂ū + Êd̄ + Âxk)− r̄)

+ ūT R̄ū,
(3.22)

where only the control inputs for the horizon are the optimization variables. Rearranging
Equation 3.22, the objective function can be written on the standard form as

f(u) =
1

2
ūT (B̂T ¯̄QB̂ + R̄)ū + (xTk ÂT + d̄T ÊT − r̄T) ¯̄QB̂ū

+
1

2
(2ÂTxTk

¯̄QÊd̄− 2ÂTxTk
¯̄Qr̄ − 2ÊTdT ¯̄Qr̄

+ ÂTxTk
¯̄QÂxk + ÊTdT ¯̄QÊd + r̄T ¯̄Qr̄)

(3.23)

28

3.1 Model Predictive Control

The constant terms of Equation 3.23 does not have any effect on the minimization value,
it will only introduce an offset. Hence, the objective function can be written as

f(u) =
1

2
ūT (B̂T ¯̄QB̂ + R̄)ū + (xTk ÂT + d̄T ÊT) ¯̄QB̂ū

=
1

2
ūTGū + cT ū.

(3.24)

The system prediction is embedded into the objective function. Therefore, the limitations
of the states and the control inputs have to be included as constraints. However, the limi-
tations need to be formulated using the prediction matrices, due to only the control inputs
being the optimization variables. This results in constraints of a higher degree of com-
plexity than for the simultaneous formulation. The inequality constraints for the states
are

x̄lb ≤ x̂ ≤ x̄ub. (3.25)

When the prediction matrices are included, the inequality matrices are written as

x̄lb − Êd̄− Âxk ≤ B̂ū ≤ x̄ub − Êd̄− Âxk. (3.26)

The inequality constraints in Equation 3.26 can be written more generally as

x̄lb ≤ B̂ū ≤ x̄lb. (3.27)

The resulting minimization problem, using the sequential formulation, is then

min
u∈Rn×N

1

2
ūTGū + cT ū

s. t. b̄lb ≤ B̂ū ≤ b̄lb,

ūlb ≤ ū ≤ ūub.

(3.28)

3.1.4 Solvers for Model Predictive Control
The optimization problem is a widely researched field and many state-of-the-art solvers
are available. For MPC- and QP problems some of the available solvers are

• qpOASES [22],

• FORCES PRO [23],

• HPIPM [24], and

• osQP [25].

29

Chapter 3. Theory

An important aspect of the industrial solvers is the terms and conditions the solvers are
restricted by. Some solvers require a valid license for getting access to the solver, while
others are open-source and restricted by free software licenses like GNU General License1,
Apache License, Version 2.02, or the 2-Clause BSD License3.

Often, solvers utilize different aspects of the problem formulation for decreasing the run
time, as this often is the main problem during real-time optimization.

qpOASES

qpOASES is an open-source online active set strategy [22] that solves QP problems. The
solver is based on a study revealing that the active set of a QP problem does not change
significantly from one problem to the next and therefore, the active set is a useful tool
when solving optimization problems. The solver is written in C and wrappers for several
Third-Party Software are available. Additionally, a detailed manual and a well commented
code are available to ease the implementation. qpOASES is restricted by the GNU General
License.

FORCES PRO

FORCES PRO is an optimization solver made for embedded computers [23]. The main
area of usage is problems performed in succession, with changing inputs and is executed
in real-time. The solver is based on an interior point method using the Newton step, and
the solver automatically generates C-code for fast execution. Although FORCES PRO is a
license based solver, meaning a costly license is needed for using the solver, all academic
projects can request free licenses.

HPIPM

The High-Performance Interior-Point (HPIPM) solver is an open-source solver and imple-
mented in C. HPIPM is designed for small to medium-sized problems, and to efficiently
and reliably solve QP problems. HPIPM supports three types of QP problems, dense QPs,
Optimal Control Problem (OCP) QPs, and tree-structured OCP QPs. A limited guide, in
addition to several test examples, is available for HPIPM. The solver is dependent on the
high-performance linear algebra framework BLASFEO4, and the solver is restricted by the
2-Clause BSD License.

osQP

osQP is an open-source solver using the alternating direction method of multipliers algo-
rithm for solving convex QP problems [25]. The solvers utilize the spars pattern of the

1For further information on GNU General License, see https://www.gnu.org/licenses/gpl-3.
0.en.html

2For further information on Apache License, Version 2.0, see https://www.apache.org/licenses/
LICENSE-2.0

3For further information on 2-Clause BSD License, see https://opensource.org/licenses/
BSD-2-Clause

4For further information aboout BLASFEO, see https://blasfeo.syscop.de/overview/

30

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://blasfeo.syscop.de/overview/

3.2 Linearization

matrices in the QP problems, hence requires the same coefficient matrix at almost every
iteration. One of the main benefits of this solvers is that it is division free as long as an
initial matrix factorization has been done. This makes it a good solver for real-time ap-
plications. The solver includes beneficial features like warm start and to change matrices
from iteration to iteration. The solver is restricted by the Apache License, Version 2.0.

Selected Solver

All the aforementioned solvers are suited, and highly relevant, for the MPC method. One
of the main criteria for selecting a solver is that it is an open-source solver. The reason for
this is that it makes it easier for all people involved in the project to further work and also
test the MPC implementation. Additionally, being dependent on an expensive solver may
affect further development if the licenses can not be renewed. Therefore, FORCES PRO
is not an option.

In [24] an experiment is conducted including the three free license solvers, qpOASES,
HPIPM, and osQP. The experiment is thoroughly conducted and results in HPIPM being
the fastest and most robust solver. Also in [25], a benchmark test has been conducted
where osQP shows the best result. Taking into account that [24] is a HPIPM, and [25] is
a similar paper describing the algorithm for osQP, it seems that the solvers have different
strengths, which determine the changing performance in the tests. Based on the test results
from the mentioned papers it is difficult to select one of the solvers. However, the results
for qpOASES are good for the tests in both [24] and [25], it is well documented, including
good examples, and is well established in the industry. Therefore, qpOASES is selected as
the solver used for solving the MPC problem in this project.

3.2 Linearization
In cases where the system model is nonlinear,

ẋ = f(x,u), (3.29)

it is often desirable to approximate the model by linearizing it, to reduce the complexity
of the system [19]. This is especially important in the MPC case, where linearizing will
reduce the computational load of the optimization problem significantly.

The nonlinear system in Equation 3.29 can be linearized around an operating point, often
equilibrium, denoted x0 and u0, using the Jacobean matrices defined as

Ã =

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 ∣∣∣∣∣
x=x0

, B̃ =

∂f1
∂u1

· · · ∂f1
∂un

...
. . .

...
∂fn
∂u1

· · · ∂fn
∂un

 ∣∣∣∣∣
u=u0

. (3.30)

The resulting equation for the linearized system is

31

Chapter 3. Theory

f(x,u) ≈ f(x0,u0) + Ãx̃ + B̃ũ, (3.31)

where x̃ = x− x0 and ũ = u− u0.

3.3 Discretization
In most cases, the linear system models are described in the continuous time form as

ẋ = Ax + Bu,

y = Cx + Du,
(3.32)

whilst the MPC works in the discrete time form. Hence, the model must be discretized
and formulated as in Equation 3.3. Several methods can be used to discretize a linear
state-space model, e.g. exact discretization or Euler discretization, where the Euler dis-
cretization is somewhat less precise than the exact discretization.

3.3.1 Exact Discretization
Using exact discretization the desired discrete system matrices, Ad, Bd, Cd, Dd, are
calculated using the continuous system matrices, A, B, C, D. In cases where the control
inputs are generated by a computer and then passed through a digital-to-analog converter
using zero-order hold, results are in a staircase-like control input [19]. In this case, the
general solution of a continuous-time state-space equation still holds,

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ. (3.33)

Letting the control input be

u(t) = u(kT) =: u[k], for kT ≤ t ≤ (k + 1)T, (3.34)

and for k = 0, 1, 2, Hence, when the control input only changes at discrete time
instants and computing Equation 3.33 at t = kT , then the continuous state-space model in
Equation 3.32 can be written as

xk+1 = Adxk + Bduk,

yk = Cdxk + Dduk.
(3.35)

The system matrices are defined as

32

3.3 Discretization

Ad = eAT = L−1{(sI−A}t=T ,

Bd =

(∫ T

τ=0

eAT dτ

)
B = A−1(Ad − I)B, if A is nonsingular5,

Cd = C,

Dd = D.

(3.36)

3.3.2 Euler Discretization
Sometimes the exact discretization may be inconvenient, due to the high complexity of the
system model or computational complexity. In this case, the Euler approximation

ẋ ≈ x(t+ T)− x(t)

T
, (3.37)

where T is a given step size, can be sufficiently accurate using a small step size [19].
The smaller step size, the more accurate solution. Substituting Equation 3.37 into the
continuous linear model in Equation 3.32, and t = kT for k = 0, 1, . . . , the new discrete
formulation of the model is

x((k + 1)T) = (I + TA)x(kT) + TBu(kT),

y(kT) = Cx(kT) + Du(kT),
(3.38)

where x = xI.

5If A is an n × n square matrix, and its determinant is nonzero, then A is a full rank matrix, called a
nonsingular matrix [19].

33

Chapter 3. Theory

34

Chapter 4
Implementation

The MPC method is implemented in cascade with a simulation environment for testing
both the implementation, and also its performance. An overview of the interaction between
the modules and the data flow is presented in Figure 4.1.

Figure 4.1: Overview of the interaction between the MPC, the solver of the optimization problem,
and the simulation environment.

The problem formulation of the MPC, with the associated constraint and prediction model,
is described in Section 4.1. The formulation described in this section is based on the
findings of the associated specialization topic [3]. The implementation interface for the
MPC, including the designated solver is represented in Section 4.2. Further, the entire
simulation environment is described in Section 4.3.

35

Chapter 4. Implementation

4.1 Problem Formulation
For the path following problem, the main objective is to keep the distance error between
the path and the vehicle, called cross-track error, at zero, in addition to keeping the angle
error between them, called heading error, at zero. When the cross-track error and the
heading error is equal to zero, the vehicle is following the given reference path. The cross-
track error and the heading error are visualized in Figure 4.2 where the cross-track error is
represented by ed and the heading error is represented by eψ.

Figure 4.2: Visual representation of the MPC problem, with important variables.

The cross-track error is derived from the bicycle model, described in Section 2, and the
curved reference path, described in the planar coordinate frame, the vehicle aims to follow.
A representation of this is seen in Figure 4.2. The change in cross-track error is then
defined in the body frame as

ėd = ẋsin(eψ) + ẏcos(eψ). (4.1)

The states, ẋ, and ẏ are the velocities of the vehicle, as defined in Equation 2.7. It is
considered a valid assumption that the rotational velocity of the vehicle is small for the
given time step, in addition to the cornering radius being significantly larger than the cross-
track error. Therefore, the small-angle approximation can be deployed to Equation 4.1.
Also, it can be assumed that the velocity in the x-direction is significantly larger than the
velocity in the y-direction, hence the velocity in the y-direction can be neglected. Including
the given assumptions, the change in cross-track error results in

ėd = ẋψe = ueψ. (4.2)

36

4.1 Problem Formulation

The response of the path can be described by the change in heading and the curvature of
the path, where the curvature is defined as one divided by the radius, denoted κref = 1

R .
The representation of the path, introduced in Section 2.3.1, is a two times continues curve,
therefore the evolution of the path can be described by the state-space model

[
ψ̇ref
κ̇ref

]
=

[
0 u
0 0

] [
ψref
κref

]
+

[
0
1

]
κ̇ref . (4.3)

For simplicity, it is assumed that the vehicle is following the osculating circle of the cur-
vature.

The vehicle response may be described by either a kinematic or a dynamic model represen-
tation. The kinematic model of the vehicle behavior describes the low velocity response at
a desirable level, where low velocity is, as aforementioned, defined as 0m/s ≤ u ≤ 5m/s.
However, when the velocity increases the nonlinear behavior will be present and a dynamic
model is more suitable. Therefore, both the dynamic and the kinematic response are de-
scribed.

4.1.1 Kinematic Formulation

The kinematic formulation uses the change of the vehicle position and heading to describe
the response. The control input for changing the behavior to follow the given reference
path is the change in steering angle. For the kinematic formulation, it is considered a valid
assumption that the vehicle follows the heading of the steering angle, hence the change
in vehicle heading can be described by Equation 2.6, and assuming zero body slip, due
to driving at low velocities. When assuming small-angle approximation, the change in
vehicle heading results in

ψ̇ =
u

lf + lr
δ. (4.4)

The change in cross-track error is described by Equation 4.2 where the velocity is assumed
constant. The heading error, eψ , is influenced by both the vehicle heading and the path
heading, eψ = ψ − ψref . Since the heading error is described in the Center of Gravity
(CG) of the vehicle, the cross-track error, described by both the vehicle heading and the
path heading, is defined as

ėd = u(ψ +
lr

lf + lr
δ)− uψref . (4.5)

Combining the vehicle response and the path response the response is summarized as a
kinematic state-space model

37

Chapter 4. Implementation

ẋ =

0 u u lr

lr+lf
−u 0

0 0 u
lr+lf

0 0

0 0 0 0 0
0 0 0 0 u
0 0 0 0 0

x +

0
0
1
0
0

u+

0
0
0
0
1

 d, (4.6)

where the system states are x = [ed ψ δ ψref κref]T , the control input is u = δ̇
and d = κ̇ref , which is considered a known disturbance.

The required numerical values for the vehicle models, both the kinematic and the dynamic,
are summarized in Table 4.1.

Symbol Unit Numerical Value
Mass m [kg] 196.5

Wheel base front lf [m] 0.813
Wheel base rear lr [m] 0.717

Track front tf [m] 1.180
Track rear tr [m] 1.200

Cornering stiffness front Cf [N/rad] 80
Cornering stiffness rear Cr [N/rad] 80

Moment of inertia Iz [kg · m2] 86.1

Table 4.1: Numerical values for vehicle parameters.

4.1.2 Dynamic Formulation
Inclusion of the dynamics of the vehicle in the problem formulation leads to a more com-
plex model, yet more accurate during high velocities. The lateral dynamics defined in
Section 2.2.2 is used to describe the behavior of the vehicle. Equation 2.20 describes the
yaw rate and the lateral acceleration, with linear tire models. Assuming the longitudi-
nal velocity, u is constant or regulated using a separate longitudinal controller, the yaw
dynamic can be described by

ÿ =
1

m

(
−Bcs,r

ẏ − lrr
u

−Bcs,f
(ẏ + lfr

u
− δ
))
− ur,

ṙ =
1

IZ

(
− lrBcs,r

ẏ − lrr
u

− lfBcs,f
(ẏ + lfr

u
− δ
))

,

(4.7)

where only the lateral velocity and the yaw rate are the controllable variables.

For the dynamic case, the lateral velocity is included in the change in cross-track error,
hence the cross-track error is now defined as

38

4.1 Problem Formulation

ėd = uψ + v − uψref , (4.8)

where the small-angle approximation is still assumed valid.

The dynamic system can now be described as a states-space formulation as

ẋ =

0 u 1 0 0 −u 0
0 0 0 1 0 0 0

0 0 −Bcs,r+Bcs,f

mu
lrBcs,r−lfBcs,f

mu − u Bcs,f

m 0 0

0 0
lrBcs,r+lfBcs,f

u

l2rBcs,r−l2fBcs,f

mu
lfBcs,f

Iz
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 u
0 0 0 0 0 0 0

x

+

0
0
0
0
1
0
0

u+

0
0
0
0
0
0
1

d,

(4.9)

where the new state matrix is x = [ed ψ ẏ ψ̇ δ ψref κref]T and the control
input and the known disturbance are still the change in steering angle and the curvature,
respectively.

4.1.3 Minimization Variables

Several states can be minimized in the MPC problem. For the tracking problem the two
main minimization states are, both for the kinematic and the dynamic formulation, the
cross-track error, and the heading error, as described above. For the kinematic formulation,
the output function results in

y =

[
1 0 0 0 0
0 1 0 −1 0

]
ed
ψ
δ

ψref
κref

 . (4.10)

For the dynamic formulation, the output function is defined as

39

Chapter 4. Implementation

y =

[
1 0 0 0 0 0 0
0 1 0 0 0 −1 0

]

ed
ψ
ẏ

ψ̇
δ

ψref
κref

. (4.11)

During high velocity cornering, the nonlinear behavior of the vehicle is highly present.
Therefore, it may be preferable to minimize the lateral acceleration and yaw rate for a less
varying, and more stable behavior.

4.1.4 System Constraints
Both the vehicle states and the path states have some desired limitations, in addition to
physical limitations.

Figure 4.3: Vehicle following the centerline of a track, bounded by cones. 3.0 m is marking the
track width, while 1.2 m is marking the widest part of the vehicle.

The Formula Student rules [1] states that the minimum track width is 3m. The main task
of the vehicle is to follow the centerline, therefore, the vehicle can not deviate more than
3.0m−1.37m

2 = 0.815m from the centerline without hitting cones. To have some safety
margin, the allowed deviation should be somewhat less than 0.815 meters. The steering
angle is physically limited by the steering actuator. The steering actuator does not allow
an angle more than 110 degrees to both sides, which results in a steering wheel angle of
approximately 25.6 degrees.

40

4.1 Problem Formulation

The minimum hairpin defined by the formula student rules [1] is a 9 meters outside diam-
eter hairpin, resulting in a maximum curvature of

κ =
1

R
=

1
9m−1.5m·2m

2

≈ 0.45
1

m
, (4.12)

with a track width of 3 meters. It is not necessary to include limitations of the curvature.
However, it can be used as a safety, as a mathematical error can occur when calculating
the curvature using the reference path. The reference path can have a curvature in both left
and right directions, hence the limitation for the curvature is±0.8 1

m , to have some margin.

To avoid entering the nonlinear region, the lateral velocity and the yaw rate of the vehicle
may be limited. Based on data from Atmos as a manned vehicle, the lateral velocity is
limited to ±ẏ = 4ms2 and the yaw rate to ±2.7 rads .

The desired and physical constraints can be summarized as

−0.8m ≤ ed ≤ 0.8m,

−26.5 · π

180
rad ≤ δ ≤ 26.5 · π

180
rad,

−0.8
1

m
≤ κref ≤ 0.8

1

m
.

(4.13)

4.1.5 Controller Tuning
To increase the accuracy and stability of the MPC method the weighting matrices, the pre-
diction horizon must be tuned concerning its problem formulation. Therefore, the kine-
matic and dynamic formulations are tuned separately. As mentioned, the minimization
variables, for both the kinematic and the dynamic formulation, are the heading error, eψ ,
and the cross-track error, ed, hence the weighting matrices result in Q ∈ R2×2. Both
formulations include only one control input, steering angle rate, δ̇, hence the associated
weighting matrices are scalar, R ∈ R1×1. When tuning the weighting matrices and the
prediction horizon it will always be a trade-off between stability and fast response. There-
fore, it may be difficult to find the balance between them. The procedure for finding the
final values for the prediction horizon and the weighting matrices can be seen in Appendix
C.

Kinematic MPC tuning

The final tuning of the weighting matrices results in

Q =

[
5 0
0 35

]
, R = 0.001. (4.14)

The resulting error responses with the associated weighting matrices in Equation 4.14, and
prediction horizon,H = 6, are displayed in Figure 4.4. The state responses and the control

41

Chapter 4. Implementation

input response are displayed in Figure 4.5, where both the states and the control input is
regulated to zero within a reasonable time, with a smooth response.

Figure 4.4: Error response, where the orange line represents the desired error value ed = eψ = 0,
for the kinematic formulation.

Figure 4.5: State response, where the orange line represents the desired error value eψ = 0, and
control input response, for the kinematic formulation..

42

4.1 Problem Formulation

Dynamic MPC tuning

The final tuning of the weighting matrices results in

Q =

[
5 0
0 35

]
, R = 0.001. (4.15)

The resulting error responses with the associated weighting matrices in Equation 4.15,
and prediction horizon, H = 30, are displayed in Figure 4.6. The state responses and the
control input response are displayed in Figure 4.7, where both the states and the control
input are regulated to zero within a reasonable time, with a smooth response, similar to the
kinematic formulation response.

Figure 4.6: Error response, where the orange line represents the desired error value ed = eψ = 0,
for the dynamic formulation.

43

Chapter 4. Implementation

Figure 4.7: State response, where the orange line represents the desired error value eψ = 0, and
control input response, for the dynamic formulation.

4.2 Implementation Interface

The two MPC methods are implemented in MATLAB [26] using the MATLAB version of
the qpOASES solver. The system model is discretized using the MATLAB function c2d()

from the MATLAB toolbox, control toolbox [27].

4.2.1 qpOASES Specific Implementation

The selected solver, qpOASES, requires the MPC problem stated as

44

4.3 Simulation Environment

min
x∈Rnx

1

2
xTHx+ xT g(w0)

s. t. lbA(w0) ≤ Ax ≤ ubA(w0),

lb(w0) ≤ x ≤ ub(w0).

(4.16)

To formulate the MPC method as desired, the sequential formulation described in Equation
3.28, is used. The matrices in Section 4.1 are substituted into the sequential formulation in
Equation 3.28 and results in two MPC problems, one using the kinematic prediction model
and one using the dynamic prediction model, resulting in the desired QP problem formula-
tion. The code implementation using variables is presented in Appendix D, together with
the interaction with the qpOASES solver.

The sequential formulation is used due to the smaller optimization problem which should
reduce the computational load and that it is well suited for QP solver. Additionally, the
sequential formulation should ease the implementation, as unlike for the simultaneous
formulation, not all system states need calculating.

4.3 Simulation Environment

To simulate the implemented MPC both a model of the vehicle and a representation of
the reference path must be implemented. To increase the value of the simulation a four-
wheel model of the vehicle is used as the vehicle during the simulation. For the path
representation, splines are used, due to their smooth and compact characteristics.

4.3.1 Vehicle Simulation

The simulation environment for validating the performance and robustness of the MPC
consists of a dynamic model of a four-wheel-drive vehicle, including

• longitudinal load transfer,

• lateral load transfer,

• aerodynamics weight, and

• Fx and Fy tire force estimation using the Pacejka tire model.

All variables and parameters needed for calculating the different forces and moments are
listed in Table 4.2.

45

Chapter 4. Implementation

Symbol Unit
Sprung mass ms [kg]

Roll stiffness front Kf [N·m /deg]
Roll stiffness rear Kr [N·m/deg]

Height of CG of the unsprung mass front hcg,us,f [m]
Height of CG of the unsprung mass rear hcg,us,r [m]

Height of the roll center front hrc,f [m]
Height of the roll center rear hrc,r [m]

Height of vehicle CG hcg [m]
Change in height dh [m]

Aerodynamic area A [m2]
Air density ρair [kg/m3]

Aerodynamic drag constant Cd [-]
Aerodynamic lift constant Cl [-]

Static weight distribution front wdf [-]
Static weight distribution rear wdr [-]

Table 4.2: Variables for calculating the different forces and torques for the simulation environment.

Vehicle Dynamics for a Four Wheel Model

For accuracy and realistic simulation results, the four-wheel vehicle model, as seen in
Figure 4.8, is used to update the vehicle dynamics.

Figure 4.8: Four wheel model of the vehicle with designated constants and variables.

By using Newton’s second law of motion and the moment balance about the z-axis of
the vehicle, equations for linear and angular acceleration can be deducted. For the linear
acceleration, each contribution of each tire is summarized for the longitudinal and lateral

46

4.3 Simulation Environment

acceleration. Likewise, for the angular acceleration, each tire’s yaw moment contribution
is summarized, which results in

ax =
1

m

(
(Fx,flcos(δ) + Fx,frcos(δ))− (Fy,flsin(δ) + Fy,frsin(δ))

+ (Fx,rl + Fx,rr)− Fx,aero
)

+ v · r,

ay =
1

m

(
(Fy,flcos(δ) + Fy,frcos(δ)) + (Fx,flsin(δ) + Fx,frsin(δ))

+ (Fy,rl + Fy,rr)
)
− u · r,

ṙ =
1

Iz
(lf (Fx,flsin(δ) + Fx,frsin(δ)) + lf (Fy,flcos(δ) + Fy,frcos(δ))

+
tf
2

(Fx,frcos(δ)− Fx,flcos(δ)) +
tf
2

(Fy,flsin(δ)− Fy,frsin(δ))

− lr(Fy,rl + Fy,rr) +
tf
2

(Fx,rr − Fx,rl)).

(4.17)

The lateral and longitudinal tire forces are estimated using the Pacejka Tire Model and will
be described more thoroughly in the next section.

The aerodynamic longitudinal force is also included in the calculation for the longitudinal
acceleration. The vehicle experiences a high amount of drag, due to the complex aerody-
namic package of the vehicle, and it can be described by

Fx,aero =
ρairCdAu

2

2
, (4.18)

where Cd is the aerodynamic drag constant, ρair is the air density, and A is the total
aerodynamic device area.

Longitudinal and Lateral Tire Force Estimation

The longitudinal and lateral forces felt by the tires are estimated using the Pacejka Tire
model described in Section 2.2.2. The same method that is used for lateral tire force
estimation can be used for estimating the longitudinal tire forces. Similarly, as lateral
forces are a result of the appearance of the slip angle, the longitudinal forces are a result
of the appearance of the slip ratio. The slip ratio is defined as the relationship between the
angular and the linear velocity for the tire in the longitudinal direction. Mathematically it
is described as

sr =
ωReff

V · cos(sa)
· 1

100
. (4.19)

The slip ratio is a dimensionless variable and is in the interval between zero and one.
The slip ratio is calculated independently for each tire. The effective radius, Reff , is a

47

Chapter 4. Implementation

changing radius depending on the load on the tire and is calculated using Pacejka magic
formula, where it is assumed that the tire acts like an undamped spring. The effective
radius of a tire is visualized in Figure 2.4.

Tire Load Estimation

The tire load is the z-component of the force acting on each wheel. The total load acting
on a tire is

Fz = Fz,long + Fz,lat + Fz,static + Fz,aero. (4.20)

The static tire load is the load acting on the tires while standing still, a result of the vehicle
mass and gravity is defined by

Fz,static,f =
m · g · wdf

2
,

Fz,static,r =
m · g · wdr

2

(4.21)

where wdf,r is the weight distribution, and the subscripts f and r refers to the front and
rear tire, respectively.

Longitudinal and Lateral Load Transfer

When the vehicle moves, it will experience load transfer due to acceleration, both in the
longitudinal and the lateral direction.

The longitudinal load transfer is

Fz,long,f =
m · ax · hcg

L
· wdf ,

Fz,long,r =
m · ax · hcg

L
· wdr,

(4.22)

for the front and rear tire, respectively.

The lateral load transfer depends on the roll stiffness of the vehicle, meaning how much
the vehicle resists while rolling [7], and is defined as

Fz,lat,f = ay

(
ms

tf

(
dh

Kf − lr ·ms · dhL
Kf +Kr −ms · dh

+
lr

L · hrc,f

)
+

mus,f

tf · hcg,us,f

)
,

Fz,lat,r = ay

(
ms

tr

(
dh

Kf − lf ·ms · dhL
Kf +Kr −ms · dh

+
lf

L · hrc,f

)
+

mus,r

tr · hcg,us,r

)
,

(4.23)

48

4.3 Simulation Environment

for the front and rear wheel respectively, and where

dh = hcg −
hrc,f + hrc,r

2
. (4.24)

The load transfer for the left side of the vehicle is initially negative, due to the coordinate
frame placed in the CG.

Tire Load due to Vehicle Aerodynamics

The autonomous vehicle includes a complex aerodynamic package. The aerodynamic load
is dependent on the velocity of the vehicle and is arising from drag. The aerodynamic load
for each tire can be modeled as

Fz,aero =
ρairClAu

2

2
, (4.25)

where Cl is the aerodynamic lift constant, ρair is the air density, and A is the total aerody-
namic device area.

4.3.2 Path Representation
The path is defined by the centerline of the track, as aforementioned, and is represented
as in Section 2.3 using splines. By using desired coordinates, also called waypoints, a
polynomial function can be extracted, as seen in Figure 4.9. A cubic spline, constructed
from piecewise third-order polynomials, holds the necessary assumptions of being second
derivative continuous, and regular. When the vehicle position is known, a projection can be
executed down to the reference spline to find the cross-track error at a given time instance,
as described in Section 2.3.1.

Figure 4.9: Example of a cubic spline representation, where the blue graph is the spline and the
orange dots are the waypoints.

The spline representation is implemented in MATLAB using the MATLAB’s Curve Fitting
Toolbox [28].

49

Chapter 4. Implementation

50

Chapter 5
Results

In this chapter, the results of the MPC methods are presented. The results are divided into
two categories

• performance results, and

• timing results.

The performance results intend to present the MPC’s ability to track the reference path for
a variety of tracks. As the MPC is suppose to be embedded into a real-time system, the
run time of the controller may be as important as the ability to follow a given track. If the
run time of the control system is too slow, the controller will not be able to give reasonable
results, and by that not manage to follow the reference path. The performance results will
be presented in Section 5.1, and the timing results will be presented in Section 5.2.

5.1 Performance Results
Using the aforementioned simulation environment, three experiments are conducted for
testing and validating the performance of the implemented MPC,

• straight-line driving,

• constant radius cornering, and

• a track containing all elements of Formula Student Driverless Track described by
the Formula Student rules [1].

These three experiments are selected as the straight-line driving and the constant radius
corner validates the implementation and the functionality of the MPC. A full track is also
included as an experiment, as this should validate some of the edge cases of the MPC

51

Chapter 5. Results

implementation. Some of the edge cases are a track with changing curvature and high-
speed cornering. These experiments may also be linked up to the goals of Revolve NTNU,
described in Section 1.2.

5.1.1 Straight-Line

The track setup for the straight-line driving is displayed in Figure 5.1. The experiment is
conducted with a constant longitudinal velocity of u = 15m/s, as this may be the average
velocity of the vehicle during the dynamic events.

10 20 30 40 50 60 70
Longitudinal Distance (m)

-10

-5

0

5

10

L
at

er
al

D
is

ta
nc

e
(m

)

Acceleration Path

Figure 5.1: Track layout for straight-line driving. The yellow dotted line represents the centerline,
and the black lines are the border of the track with a track width of 3m. The blue object represents
the autonomous vehicle, Atmos Driverless.

Two experiments are conducted using the straight-line path, one experiment with an initial
cross-track error, ed = 0.6m, and one experiment with initial cross-track error, ed =
0.6m, and initial heading error, eψ = 0.03rad. The heading error is chosen to be in
the opposite direction of the natural direction for driving towards the centerline. The
reason for choosing the heading error in the opposite direction is that it demands a higher
control effort to change the heading of the vehicle and minimize the cross-track error. The
experiments are conducted for both the kinematic vehicle model, and the dynamic vehicle
model.

Kinematic Vehicle Model with Initial cross-track Error

The tracking of the reference path with an initial cross-track error, using the kinematic
vehicle model is displayed in Figure 5.2. The respective error states are displayed in
Figure 5.3, the problem states are presented in Figure 5.4, including the state constraints,
and the resulting control input is displayed in Figure 5.5, also including the control input
constraints.

52

5.1 Performance Results

0 10 20 30 40 50 60 70 80
Longitudinal Distance (m)

-5

0

5
L

at
er

al
D

is
ta

nc
e

(m
)

Acceleration Path

Figure 5.2: Lateral tracking of straight driving with the kinematic formulation with an initial cross-
track error of 0.6m. The blue line is the path driven by the vehicle.

Figure 5.3: Error states while tracking the centerline with an initial cross-track error of 0.6m with
the kinematic formulation. The orange lines represents the zero references.

53

Chapter 5. Results

Figure 5.4: Vehicle states while tracking the centerline with an initial cross-track error of 0.6m with
the kinematic formulation. The dark red lines represent the associated state constraints.

Figure 5.5: The control effort while tracking the centerline with an initial cross-track error of 0.6m
with the kinematic formulation. The dark red lines represent the associated control input constraints.

54

5.1 Performance Results

Kinematic Vehicle Model with Initial cross-track Error & Heading Error

The error states for the kinematic vehicle model when tracking the reference path with
an initial cross-track error of 0.6m, in addition to an initial heading error of 0.03rad are
displayed in Figure 5.6. The problem states, with its respective constraints, are displayed
in Figure 5.7, and the control input is displayed in Figure 5.8, including the control input
constraints.

Figure 5.6: The error states while tracking the centerline with an initial cross-track error of 0.6m,
in addition to an initial heading error of 0.03rad using the kinematic formulation. The orange lines
represent the zero references.

55

Chapter 5. Results

Figure 5.7: The vehicle states while tracking the centerline with an initial cross-track error of 0.6m,
in addition to an initial heading error of 0.03rad using the kinematic formulation. The dark red lines
represent the associated state constraints.

Figure 5.8: The control effort while tracking the centerline with an initial cross-track error of 0.6m,
in addition to an initial heading error of 0.03rad using the kinematic formulation. The dark red lines
represent the associated control input constraints.

56

5.1 Performance Results

Dynamic Vehicle Model with Initial Cross-Track Error

The tracking of the reference path with an initial cross-track error of 0.6m, using the
dynamic vehicle model is displayed in Figure 5.9. The respective error states are displayed
in Figure 5.10, the problem states are displayed in Figure 5.11, and the control input is
displayed in Figure 5.12. The associated constraints are also displayed in the respective
figures.

10 20 30 40 50 60 70 80
Longitudinal Distance (m)

-4
-2
0
2
4

L
at

er
al

D
is

ta
nc

e
(m

) Acceleration Path

Figure 5.9: Lateral Tracking of straight driving with an initial cross-track error of 0.6m using the
dynamic vehicle formulation. The blue line is the path driven by the vehicle.

Figure 5.10: The error states while tracking the centerline with an initial cross-track error of 0.6m
using the dynamic formulation. The orange lines represent the zero references.

57

Chapter 5. Results

Figure 5.11: The vehicle states while tracking the centerline with an initial cross-track error of 0.6m
using the dynamic formulation. The dark red lines represent the associated state constraints.

Figure 5.12: The control effort while tracking the centerline with an initial cross-track error of 0.6m
using the dynamic formulation. The dark red lines represent the associated control input constraints.

58

5.1 Performance Results

Dynamic Vehicle Model with Initial Cross-Track Error & Heading Error

The error states for the dynamic vehicle model when tracking the reference path with
an initial cross-track error of 0.6m, in addition to an initial heading error of 0.03rad are
displayed in Figure 5.13. The problem states, with its respective constraints, are displayed
in Figure 5.14, and the control input is displayed in Figure 5.15, including the control input
constraints.

Figure 5.13: Error states while controlling the vehicle to the centerline with an initial cross-track
error of 0.6m, in addition to an initial heading error of 0.3rad with the dynamic formulation. The
orange lines represent the zero references.

59

Chapter 5. Results

Figure 5.14: Vehicle states while controlling the vehicle to the centerline with an initial cross-track
error of 0.6m, in addition to an initial heading error of 0.3rad with the dynamic formulation. The
dark red lines represent the associated state constraints.

Figure 5.15: The control effort while controlling the vehicle to the centerline with an initial cross-
track error of 0.6m, in addition to an initial heading error of 0.3rad with the dynamic formulation.
The dark red lines represent the associated control input constraints.

60

5.1 Performance Results

5.1.2 Constant Radius Cornering

The track setup for the constant radius cornering is displayed in Figure 5.16. The exper-
iment is conducted with a constant radius of R = 9.125m. This experiment is similar to
the skidpad track described in the formula student rules [1].

-15 -10 -5 0 5 10 15
Longitudinal Distance (m)

-5

0

5

10

15

20

L
at

er
al

D
is

ta
nc

e
(m

)

Constant Radius Cornering Path

Figure 5.16: The track layout for constant radius cornering. The yellow dotted line represents the
centerline, and the black lines are the border of the track with a track width of 3m. The blue object
represents the autonomous vehicle, Atmos Driverless.

To validate that the control regime manages to track a path with a constant nonzero curva-
ture, even within cross-track error, the experiment is conducted with an initial cross-track
error, ed = 0.6m, similar to the aforementioned straight-line experiment.

Kinematic Vehicle Model

The vehicle path when tracking the centerline of a constant radius circle is displayed in
Figure 5.17. The respective error states is displayed in Figure 5.18, the vehicle states are
displayed in Figure 5.19, and the control input is displayed in Figure 5.20, all with its
associated constraints. The experiment is conducted with a constant longitudinal velocity
of u = 15m/s.

61

Chapter 5. Results

-15 -10 -5 0 5 10 15
Longitudinal Distance (m)

-5

0

5

10

15

20

L
at

er
al

D
is

ta
nc

e
(m

)

Constant Radius Cornering Path

Figure 5.17: Lateral tracking of a constant radius circle with an initial cross-track error of 0.6m
using the kinematic formulation. The blue line is the path driven by the vehicle.

Figure 5.18: The error states while tracking the centerline with an initial cross-track error of 0.6m
using the kinematic formulation. The orange lines represent the zero references.

62

5.1 Performance Results

Figure 5.19: The vehicle states while tracking the centerline with an initial cross-track error of 0.6m
using the kinematic formulation. The dark red lines represent the associated state constraints.

Figure 5.20: The control effort while tracking the centerline with an initial cross-track error of
0.6m using the kinematic formulation. The dark red lines represent the associated control input
constraints.

63

Chapter 5. Results

Dynamic Vehicle Model

The vehicle path while tracking the centerline of a constant radius circle using the dynamic
vehicle model is displayed in Figure 5.21. The respective error states are displayed in Fig-
ure 5.22, the control input is displayed in Figure 5.23, and the vehicle states are displayed
in Figure 5.24, all with its associated constraints. The experiment is conducted with a
constant longitudinal velocity of u = 10m/s.

-15 -10 -5 0 5 10 15
Longitudinal Distance (m)

-5

0

5

10

15

20

L
at

er
al

D
is

ta
nc

e
(m

)

Constant Radius Cornering Path

Figure 5.21: Lateral tracking of a constant radius circle with an initial cross-track error of 0.6m
using the dynamic formulation. The blue line is the path driven by the vehicle.

64

5.1 Performance Results

Figure 5.22: The error states while tracking the centerline with an initial cross-track error of 0.6m
using the dynamic formulation. The orange lines represent the zero references.

Figure 5.23: The control effort while tracking the centerline with an initial cross-track error of 0.6m
using the dynamic formulation. The dark red lines represent the associated control input constraints.

65

Chapter 5. Results

Figure 5.24: The vehicle states while tracking the centerline with an initial cross-track error of 0.6m
using the dynamic formulation. The dark red lines represent the associated state constraints.

5.1.3 Formula Student Driverless Track

The final experiment is a track containing all elements in a Formula Student Track, includ-
ing

• Straights: No longer than 80 m,

• Constant Turns: up to 50 m diameter,

• Hairpin Turns: Minimum of 9 m outside diameter (of the turn),

• Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc [1].

The generated track is displayed in Figure 5.25.

66

5.1 Performance Results

-40 -20 0 20 40 60
Longitudinal Distance (m)

-20

-10

0

10

20

30

40

50

L
at

er
al

D
is

ta
nc

e
(m

)

Formula Student Driverless Track

Figure 5.25: Track layout for the Formula Student Track. The yellow line represents the centerline,
and the black lines are the boarder of the track with a track width of 3m. The blue objects represents
the autonomous vehicle, Atmos Driverless.

Kinematic Vehicle Model

The vehicle path when tracking the centerline of the generated Formula Student Track
is displayed in Figure 5.26. The respective error states are displayed in Figure 5.27, the
control input is displayed in Figure 5.28, and the vehicle states are displayed in Figure
5.29, all with its associated constraints. The experiment was conducted with a constant
longitudinal velocity of u = 17m/s.

-40 -20 0 20 40 60 80
Longitudinal Distance (m)

-20

-10

0

10

20

30

40

50

60

L
at

er
al

D
is

ta
nc

e
(m

)

Formula Student Driverless Track

Figure 5.26: Lateral Tracking of the track using kinematic formulation. The blue line is the path
driven by the vehicle.

67

Chapter 5. Results

Figure 5.27: Error states while tracking the centerline of the Formula Student track using the
kinematic formulation. The orange lines represent the zero references.

Figure 5.28: Vehicle states while tracking the centerline of the Formula Student track using the
kinematic formulation. The dark red lines represent the associated state constraints.

68

5.1 Performance Results

Figure 5.29: The control effort while tracking the centerline of the Formula Student track using the
kinematic formulation. The dark red lines represent the associated control input constraints.

Dynamic Vehicle Model

The vehicle path when tracking the centerline of the generated Formula Student Track
using the dynamic vehicle model is displayed in Figure 5.30. The respective error states
are displayed in Figure 5.31, the control input is displayed in Figure 5.33, and the vehicle
states are displayed in Figure 5.32, all with its associated constraints. The experiment was
conducted with a constant longitudinal velocity of u = 5m/s.

-40 -20 0 20 40 60 80
Longitudinal Distance (m)

-20

-10

0

10

20

30

40

50

60

L
at

er
al

D
is

ta
nc

e
(m

)

Formula Student Driverless Track

Figure 5.30: Lateral Tracking of the track using dynamic formulation. The blue line is the driven
path of the vehicle.

69

Chapter 5. Results

Figure 5.31: Error states while tracking the centerline of the Formula Student track using the
dynamic formulation. The orange lines represent the zero references.

Figure 5.32: The control effort while tracking the centerline of the Formula Student track using the
dynamic formulation. The dark red lines represent the associated control input constraints.

70

5.2 Computational Effort Results

Figure 5.33: Vehicle states while tracking the centerline of the Formula Student track using the
dynamic formulation. The dark red lines represent the associated state constraints.

5.2 Computational Effort Results
To calculate the computational effort of the MPC implementations, the MATLAB func-
tions tic and toc have been used. Both the straight driving track and the constant radius
track has been utilized in the experiments for better validation. The experiments are con-
ducted with a constant velocity of u = 5m/s. When calculating the computational effort,
only the formulation of the MPC matrices and the qpOASES solver are included.

Figure 5.34 displays the computational effort for the kinematic vehicle model while track-
ing a straight path, and Figure 5.35 shows the effort while tracking a constant radius circle
ofR = 9.125m. The same experiments are conducted for the dynamic vehicle model. Fig-

71

Chapter 5. Results

ure 5.36 represents the computational effort for the straight-line tracking, and Figure 5.37
displays the computational effort for tracking the constant radius, both using the dynamic
vehicle model.

0 500 1000 1500 2000 2500 3000

Iteration

0

0.002

0.004

0.006

0.008

0.01

Ti
m

e(
s)

Computational Effort

Time

Figure 5.34: The computational effort of the MPC using the kinematic vehicle model, while driving
a straight path.

0 200 400 600 800 1000 1200
Iteration

0

0.002

0.004

0.006

0.008

0.01

Ti
m

e(
s)

Computational Effort

Time

Figure 5.35: The computational effort of the MPC using the kinematic vehicle model, while driving
a constant radius circle.

72

5.2 Computational Effort Results

0 500 1000 1500 2000 2500 3000
Iteration

0

0.005

0.01

0.015

0.02

Ti
m

e(
s)

Computational Effort

Time

Figure 5.36: The computational effort of the MPC using the dynamic vehicle model, while driving
a straight path.

0 200 400 600 800 1000 1200
Iteration

0

0.002

0.004

0.006

0.008

0.01

0.012

Ti
m

e(
s)

Computational Effort

Time

Figure 5.37: The computational effort of the MPC using the dynamic vehicle model, while driving
a constant radius circle.

73

Chapter 5. Results

74

Chapter 6
Discussion

The results of the MPC implementations are presented in Chapter 5 and will be discussed
in this chapter. The implementations are tested using the four-wheel model presented
in Section 4.3, using the designated parameters for Atmos Driverless. The experiments
conducted, and that are the basis of the discussion are listed in Table 6.1.

Track Initial State Prediction Model
Straight-Line Initial cross-track error Kinematic bicycle model
Straight-Line Initial cross-track error Kinematic bicycle model

and initial heading error
Straight-Line Initial cross-track error Dynamic bicycle model
Straight-Line Initial cross-track error Dynamic bicycle model

and initial heading error
Constant Radius Circle Initial cross-track error Kinematic bicycle model
Constant Radius Circle Initial cross-track error Dynamic bicycle model

Formula Student inspired track - Kinematic bicycle model
Formula Student inspired track - Dynamic bicycle model

Table 6.1: Experiments including track, initial state and the used prediction model.

For the constant radius cornering path and the Formula Student inspired track, the suddenly
varying steering angle rate at the end of the reference spline is due to an unclosed spline.

A discussion about the performance result will be presented in Section 6.1, and a discus-
sion about the computational effort results will be conducted in Section 6.2. The experi-
ments conducted for testing the computational effort are listed in Table 6.2.

75

Chapter 6. Discussion

Track Prediction Model
Straight-Line Kinematic bicycle model
Straight-Line Dynamic bicycle model

Constant Radius Circle Kinematic bicycle model
Constant Radius Circle Dynamic bicycle model

Table 6.2: Experiments for testing the computational effort including track and the used prediction
model.

6.1 Performance
In Section 5.1 the performance results of the MPC with both a kinematic and a dynamic
vehicle model are presented. Throughout the experiments conducted, both MPC methods
have shown results of different levels.

Straight-Line Experiment

The straight-line experiments show that the MPC implementation with both the kinematic
and the dynamic vehicle model, controls the vehicle to the given centerline. Figure 5.3
shows the error states during the experiments, and it is seen that the MPC implementation
using the kinematic vehicle model controls the vehicle to both zero cross-track error and
zero heading error within a short amount of time. The expected behavior is also seen
where the heading error increases rapidly in the beginning and slowly increases as the
vehicle closes up on the centerline. In Figure 5.4 and Figure 5.5, it is seen that the MPC
states and the control input stay safely within the given constraints and act stable. When
including an initial heading error, the response is still quite fast, as seen in Figure 5.6,
where the error states are presented. In this case, the steering angle rate is limited by the
given constraint, as seen in Figure 5.5. However, the state response, seen in Figure 5.7,
does not have any undesired behavior as a result of the constrained control input.

For the straight-line experiment with an initial cross-track error, the error response and the
state response of the MPC using the dynamic vehicle model is similar to the response of
the MPC using the kinematic vehicle model. However, the response is somewhat slower
than the response when using the kinematic vehicle model. Additionally, the control input,
seen in Figure 5.12, changes quite rapidly, which may be a sign of bad tuning. The error
response and the state response of the MPC implementation using the dynamic model are
seen in Figure 5.10 and Figure 5.11, respectively. Similar response as for only initial cross-
track error is seen when having both an initial cross-track error and an initial heading error.
In Figure 5.13, it is seen that the response is somewhat slower when having both initial
cross-track error and heading error, than only having an initial cross-track error. The same
rapid change in steering angle is also seen for the experiment with both initial cross-track
error and initial heading error, seen in Figure 5.15.

Comparing the straight-line results of the two implementations of the MPC methods and
the feedback linearization result, presented in Appendix E, the MPC method shows greater
results than the feedback linearization result. To tune the feedback linearization controller

76

6.1 Performance

to be critically damped is a non-trivial and highly time-consuming task. With the current
tuning of the feedback linearization controller, the system response is under damped, in
addition to having a constant deviation of approximately 0.3m. This response is seen in
Figure E.1. The steering angle is also rapidly shifting from side to side, which may damage
the control actuator.

Constant Radius Circle Experiment

The constant radius experiment is conducted with different velocities. For velocities higher
than 10m/s the QP problem of the MPC implementation using the dynamic vehicle model
was unfeasible. Even with lower velocities, the performance is somewhat poorer than
for the MPC implementation using the kinematic vehicle model. The implementation
using the kinematic vehicle model has the highest cross-track error at approximately 0.1m
after correcting for the initial cross-track error, while the implementation with the dynamic
vehicle model gets a cross-track error of approximately 0.2m after correcting for the initial
error. This can be seen in Figure 5.18 and Figure 5.22 for the MPC method using the
kinematic vehicle model and the dynamic vehicle model, respectively. Additionally, the
cross-track error for the MPC with the kinematic vehicle model seems to stabilize at zero
cross-track error, while the MPC with the dynamic vehicle model overshoots slightly.

The control input for the MPC using the dynamic vehicle model, seen in Figure 5.23, is a
little too aggressive, which is visible in the heading error plot in Figure 5.22. The heading
of the vehicle is rapidly changing and does not have the expected behavior, which can
be seen in Figure 5.18 where the kinematic vehicle model is used. Additionally, small
oscillations are visible in the control input figure, which is due to poor tuning. In this
formulation, the control input is staying at its limit of steering angle rate until the desired
steering wheel angle is met, as seen in Figure 5.20. This discussion reflects the state
response displayed in Figure 5.19 and Figure 5.24, for the kinematic formulation and the
dynamic formulation, respectively.

For the constant radius circle experiment, the feedback linearization does not show accept-
able results. The cross-track error seen in Figure E.2, shows an under damped response,
in addition to stabilizing at a cross-track error of 3m. The steering angle response, in Fig-
ure E.2, shows also an undesired behavior, which may not be safe for the vehicle, and an
uncontrollable behavior may occur.

Formula Student Track Experiments

The implementation of the MPC using the kinematic formulation performs near to perfect.
The MPC implementation stays within all constraints, as seen in Figure 5.27, Figure 5.28
and Figure 5.29, that present the error states, MPC states, and the control input, respec-
tively. The MPC method manages to track curves with changing curvature, and maximum
cross-track error while tracking is approximately 0.6m, which will be sufficient for a For-
mula Student dynamic event.

The experiment using the MPC implementation with the dynamic vehicle model is not
performing as well as the MPC implementation using the kinematic vehicle model. Figure

77

Chapter 6. Discussion

5.31, Figure 5.32, and Figure 5.33 display the resulting error states, the control input, and
the MPC states, respectively. As seen in Figure 5.31, the method does not manage to
keep the vehicle within the given cross-track error constraint, even though the velocity
is decreased to 5m/s. The poorer results may be because it is tested at higher velocities,
which results in a higher acceleration than the method and the vehicle can operate at.

Even though, the method using the dynamic vehicle model does not show the best results
in the simulations it has several features that may increase the performance in a real-world
application. Features like limitations of the lateral velocity and yaw rate. In Section 2.2,
it is mentioned that the bicycle model is only a valid vehicle model for an MPC method
when the lateral acceleration is constrained.

The experiments conducted reveals some shortcomings when it comes to the used simula-
tor. Figure 5.26 shows the simulation results when using the kinematic vehicle model in
the MPC method. During the simulation the constant longitudinal velocity of the vehicle is
u = 17m/s. The given track has a 3m radius corner, which results in a lateral acceleration
of

ay =
(17m/s)2

3m
= 96.3333

m

s2
. (6.1)

In Appendix B, it is concluded that the nonlinear behavior of the vehicle is present already
at approximately ay = 10m/s2. This behavior is not as clearly present in the simulations,
as it would be in the real world.

6.2 Computational Effort

Section 5.2 presents the computational effort results for the MPC implementation using
both the kinematic vehicle model and the dynamic vehicle model.

Table 6.3 lists all the key values,

• maximum computational effort,

• minimum computational effort, and

• average computational effort,

for all experiments, including the experiments for the feedback linearization controller.
The key values are derived from the result figures in Section 5.2, thus Figure 5.34, Figure
5.35, Figure 5.36, and Figure 5.37. The computational effort results from the feedback
linearization controller displayed in Appendix E, Figure E.3, and Figure E.4, are also
included.

78

6.2 Computational Effort

Controller/Event Max Time [s] Min Time [s] Average Time [s]
MPC using kinematic model/ 0.0089 2.8000e-04 3.9090e-04

Straight-Line
MPC using kinematic model/ 0.0081 3.0900e-04 5.0793e-04
Constant Radius Cornering
MPC using dynamic model/ 0.0172 0.0039 0.0050

Straight-Line
MPC using dynamic model/ 0.0116 0.0036 0.0045
Constant Radius Cornering

Feedback Linearization/ 0.0134 0.0035 0.0046
Straight-Line

Feedback Linearization/ 0.0158 0.0036 0.0047
Constant Radius Cornering

Table 6.3: Computational Effort Results

The experiments reveal that the MPC method using the kinematic vehicle model has the
lowest computational efforts. When comparing the two MPC methods, the method using
the dynamic vehicle model requires a longer prediction horizon, than the method using
the kinematic vehicle model. Using a longer prediction horizon, results in a bigger op-
timization problem, as the sequential formulation defines the size of the QP problem as
u ∈ Rn×N , where u is the minimization variable, n is the number of minimization vari-
ables, and N is the prediction horizon.

The key values for the MPC method using the dynamic vehicle model and the feedback
linearization method are quite similar, and they have a quite high computational effort. The
feedback linearization controller includes several nonlinear elements which are computa-
tionally heavy and is one of the reasons of the high computational effort for this controller.

79

Chapter 6. Discussion

80

Chapter 7
Epilogue

The goal of this thesis is to design and implement a control regime for lateral tracking of
a given path, performing better than the existing feedback linearization controller. The
new regime should also reach the goals presented in Chapter 1. To improve the lateral
tracking, two MPC methods, one using the kinematic vehicle mode, and one using the
more complex dynamic vehicle model, are implemented. The methods are implemented in
MATLAB using the industrial QP problem solver, qpOASES. The conclusion is presented
in Section 7.1. Improvements can be made for both the MPC implementations and the
simulation environments. These are presented in Section 7.2.

7.1 Conclusion
Several experiments are conducted, including static and dynamic curvature. The exper-
iments are conducted for testing the functionality and performance of the implemented
MPC methods. The MPC method using the kinematic vehicle model achieves great re-
sults of tracking the given path. For the straight-line experiment, the vehicle is controlled
smoothly on the line, and follows it, even with initial cross-track and heading errors. For
the constant radius experiment, the vehicle deviates somewhat from the line. However, it
is within the given constraint of 0.8m. For the Formula Student inspired track, the method
is following the given path, even during high-velocity cornering.

The MPC method using the dynamic vehicle model shows varieties of results. For the
straight-line experiment, the method follows the given line with both initial cross-track
error and heading error. For the constant radius circle, the method does not manage to
follow the centerline at the same velocities as the MPC method using the kinematic vehicle
model. However, at 10m/s, the method follows the circular path, and the vehicle is within
its constraints. The MPC method has some difficulties staying within the given constraints
for the varying curvature of the Formula Student inspired track, even at low velocities.

81

Chapter 7. Epilogue

The computational effort of the implementations is in favor of the MPC method using the
kinematic vehicle model. This method has lower computational effort than the method us-
ing the dynamic vehicle model due to a smaller model, and also shorter prediction horizon.
The low computational effort is beneficial for real-time execution.

The MPC method using the kinematic vehicle model should be prioritized when testing
the lateral behavior of the autonomous vehicle. This MPC method out-performs the feed-
back linearization controller in simulations, both in performance and computational effort
results. Also, the results show signs of reaching the given goals, by competing the Formula
Student inspired track at an average velocity of 17m/s.

7.2 Further Work
The work conducted throughout this thesis consists of two working implementations of the
MPC method. However, as mentioned, the simulation environment is far from realistic.
Therefore, it is important to analyze the environment and find solutions on how to improve
it. An example of this is to include the Runge-Kutta method for integrating the states in the
simulation environment [29], and not the simple Euler discretization, described in Chapter
3.3. With a more realistic simulation environment, aspects of the MPC method can be
tested more thoroughly.

The MPC implementation using the dynamic vehicle model shows signs of being poorly
tuned. The method should go through a new tuning process, and also tested more in
simulations. There are beneficial features included in this implementation, as mentioned
in Section 6.1. The possibility of limiting the lateral velocity or acceleration should be
explored. Therefore, the method should be thoroughly tested using the autonomous race
car to unveil its potential.

Several features can be implemented for improving the performance of the method, and are
presented in the following sections. The method should be code generated before testing
in a real-time environment. Some final tuning will also be necessary.

7.2.1 New Features
Slack Variables

There may be situations where the vehicle states are outside its given constraints. In these
cases, it is important to have a safe way of returning to the legal area. In optimization, a
useful tool for this problem is the introduction of slack variables [18].

Linearization

Throughout the report, the small-angle approximation has been used, which may not be a
valid assumption during high-velocity cornering or small radius cornering. Therefore, it
may be useful to use the method described in Section 3.2, and linearize functions included
in the state-space models around the current operating point for every iteration, instead of
at zero.

82

7.2 Further Work

Changing Curvature over Horizon

When driving a track with varying curvature at high speed, the assumption about constant
curvature is less valid. Therefore, including changing curvature over the entire Horizon
may improve the accuracy of the MPC.

Include Velocity

The current MPC implementation facilitates LPV system, which is currently not utilized.
It is a common understanding that the steering angle is highly dependent on the velocity,
hence, including the change of longitudinal velocity over the entire horizon will most
likely improve the performance.

7.2.2 Vehicle Implementation
The current implementation of the MPC does have some last requirements before it can
run safely on an autonomous vehicle. The following must be done,

• code generation, and

• testing and tuning.

C-Code Generation

The MPC is currently implemented in MATLAB. However, this may not be the optimal so-
lution when running the implementation in real-time. Code programmed in the C language
generally executes faster than the same code programmed in the MATLAB language. This
is one of the key factors for satisfactory results when driving in real-time. Additionally, the
pipeline, described in Appendix A, is implemented in C++ using Robot Operating System
(ROS)1. Therefore, it is beneficial to code generate the MPC implementation to C code to
embed it into the existing pipeline for testing the systems altogether.

Testing & Tuning

When the code is embedded into the processing unit, that is the brain of the vehicle, the
MPC implementation must be tested and tuned online. The tuning described in Section
4.1, is a preliminary tuning, and it is not a given that this will be sufficient when running the
implementation online with a driving vehicle. The simulation environment is not complex
enough for capturing all uncertainties in the real world.

1For further information about ROS, see https://www.ros.org/

83

Chapter 7. Epilogue

84

Bibliography

[1] Formula student rules 2020. [rev. 1.0], 2019. URL https://www.
formulastudent.de/fileadmin/user_upload/all/2020/rules/
FS-Rules_2020_V1.0.pdf.

[2] Revolve NTNU. Revolve ntnu - about us. URL https://www.revolve.no/
about-us/.

[3] C. S. Borg. Control system for a driverless formula student race car. 2020.

[4] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
Wiley, 2011.

[5] Rajesh Rajamani. Vehicle Dynamics and Control. Springer, 2006.

[6] Philip Polack, Florent Altché, Brigitte Novel, and Arnaud de La Fortelle. The kine-
matic bicycle model: A consistent model for planning feasible trajectories for au-
tonomous vehicles? pages 812–818, 06 2017. doi: 10.1109/IVS.2017.7995816.

[7] W. F. Milliken and D. L. Milliken. Race Car Vehicle Dynamics, volume 400. Society
of Automotive Enineers Warrendale, Inc, 1995.

[8] H. B. Pacejka. Tire and Vehicle Dynamics. Elsevier Butterworth Heinemann, 2005.

[9] Mathworks. Tire-road interaction (magic formula). URL
https://se.mathworks.com/help/physmod/sdl/ref/
tireroadinteractionmagicformula.html.

[10] M. Meywerk. Vehicle Dynamics. Automotive Series. Wiley, 2015.
ISBN 9781118971369. URL https://books.google.no/books?id=
qYG4CAAAQBAJ.

[11] Marcus Engebretsen. Revolve wiki, vehicle dynamics and control system/reactive
control system. internal document. trondheim, no: Revolve ntnu. 2019.

85

https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.revolve.no/about-us/
https://www.revolve.no/about-us/
https://se.mathworks.com/help/physmod/sdl/ref/tireroadinteractionmagicformula.html
https://se.mathworks.com/help/physmod/sdl/ref/tireroadinteractionmagicformula.html
https://books.google.no/books?id=qYG4CAAAQBAJ
https://books.google.no/books?id=qYG4CAAAQBAJ

[12] S. N. Midtskogen. Trajectory following for formula student driverless vehicle. august
2018.

[13] E. F. Camacho and C. Bordons. Model Predictive Control. Springer London, 2007.

[14] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and dynamic vehicle
models for autonomous driving control design. In 2015 IEEE Intelligent Vehicles
Symposium (IV), pages 1094–1099, 2015.

[15] Ugo Rosolia, Ashwin Carvalho, and Francesco Borrelli. Autonomous racing using
learning model predictive control, 2016.

[16] Alexander Liniger. Path planning and control for autonomous racing. 2018.

[17] Jan Filip. Trajectory Tracking for Autonomous Vehicles. PhD thesis, 05 2018.

[18] J. Nocedal and S. Wright. Numerical Optimization. Springer New York, 2006.

[19] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, 2013.

[20] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Control. Depart-
ment of Engineering Cybernetics Norwegian University of Science and Technology
— NTNU, 2016.

[21] Tor A. Johansen. Introduction to nonlinear model predictive control and moving
horizon estimation, chapter 1.

[22] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES: A para-
metric active-set algorithm for quadratic programming. Mathematical Programming
Computation, 6(4):327–363, 2014.

[23] Alexander Domahidi and Juan Jerez. Forces professional. Embotech AG,
url=https://embotech.com/FORCES-Pro, 2014–2019.

[24] Gianluca Frison and Moritz Diehl. Hpipm: a high-performance quadratic program-
ming framework for model predictive control. ArXiv, abs/2003.02547, 2020.

[25] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen
Boyd. OSQP: An operator splitting solver for quadratic programs. Mathemati-
cal Programming Computation, 2020. doi: 10.1007/s12532-020-00179-2. URL
https://doi.org/10.1007/s12532-020-00179-2.

[26] MATLAB. 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts,
2019.

[27] Inc. The MathWorks. Control System Toolbox. Natick, Massachusetts, United State,
2019. URL https://se.mathworks.com/help/control/.

[28] Inc. The MathWorks. Curve Fitting Toolbox. Natick, Massachusetts, United State,
2019. URL https://se.mathworks.com/help/control/.

86

https://doi.org/10.1007/s12532-020-00179-2
https://se.mathworks.com/help/control/
https://se.mathworks.com/help/control/

[29] Rolf Johansson. Modeling and simulation for automatic control, olav egeland, jan
tommy gravdahl marine cybernetics, trondheim, norway, 2002, 1st edition, 656pp.
isbn 82-92356-01-0. International Journal of Robust and Nonlinear Control, 14
(7):683–684, 2004. doi: 10.1002/rnc.915. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/rnc.915.

[30] LLC VectorNav Technologies. Vn-300 user manual, 2017. URL https:
//www.vectornav.com/docs/default-source/documentation/
vn-300-documentation/vn-300-user-manual-(um005).pdf?
sfvrsn=c7f6e7b9_26.

[31] Ouster os1. URL https://ouster.com/products/os1-lidar-sensor.

[32] Basler. aca1300-200uc camera. URL https://www.baslerweb.com/en/
products/cameras/area-scan-cameras/ace/aca1300-200uc/.

[33] Adrian Skibelid. Odometry, mapping and localisation of an autonomous race car for
revolve ntnu. august 2019.

[34] Christoph Sprunk. Planning motion trajectories for mobile robots using splines.
2008.

87

https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.915
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.915
https://www.vectornav.com/docs/default-source/documentation/vn-300-documentation/vn-300-user-manual-(um005).pdf?sfvrsn=c7f6e7b9_26
https://www.vectornav.com/docs/default-source/documentation/vn-300-documentation/vn-300-user-manual-(um005).pdf?sfvrsn=c7f6e7b9_26
https://www.vectornav.com/docs/default-source/documentation/vn-300-documentation/vn-300-user-manual-(um005).pdf?sfvrsn=c7f6e7b9_26
https://www.vectornav.com/docs/default-source/documentation/vn-300-documentation/vn-300-user-manual-(um005).pdf?sfvrsn=c7f6e7b9_26
https://ouster.com/products/os1-lidar-sensor
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-200uc/
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-200uc/

88

Appendix A
Introduction to Atmos Driverless

This chapter is based on Chapter 1 from the specialization project associated with this
thesis. Modifications have been made according to changes during the latter part of the
project.

Atmos Driverless is Revolve NTNU’s driverless vehicle. The vehicle was designed and
manufactured by Team 2018 of Revolve NTNU and competed in the electric vehicle class
the respective summer before it was reconfigured to a driverless vehicle by Team 2019.

Figure A.1: Overview of the autonomous pipeline

To reconfigure a manned vehicle to an autonomous vehicle, significant changes are re-
quired for both the hardware and the software aspect of the vehicle. When removing the
driver, one is forced to create a fully autonomous pipeline, including visual perception, in
addition to an advanced control system. Figure A.1 shows a simplified overview of the
complex pipeline of the autonomous vehicle, Atmos Driverless. The modules before the
control system modules will be described briefly in the upcoming sections.

89

A.1 Sensors

Sensors mounted to the vehicle are the only method for capturing the different states of
the vehicle, which is crucial for an autonomous race car. For observing the states of the
vehicle there are four types of sensors mounted to the vehicle,

• a Global Navigation Satellite System (GNSS)-Aided Inertial Navigation System
(INS),

• an optical sensor,

• a Light Imaging, Detection and Ranging (LIDAR) sensor, and

• a camera.

As the GNSS/INS sensor, a VN-300 [30] is mounted to the vehicle. The VN-300 outputs
the linear acceleration and the angular velocities in three dimensions, in addition to the
heading angle and the position data from the GNSS.

It is highly important to know the angular velocity of the four wheels, in addition to the
steering wheel angle. To measure these states, an optical sensor is attached to the wheels.

To perceive the world, both LIDAR’s and cameras are used in conjunction as a visual
sensor. The objective of the visual sensors is to detect the cones that define the track
boundaries, in addition to work as safety sensors for detecting hazardous situations where
objects suddenly enter the track.

The LIDAR sends out a grid of light and uses the time it takes for the light to return to
measure distances. Two LIDARs are placed on the vehicle for redundancy and a better
field of view. The rotation of the LIDARs results in a 360◦ field of view. The onboard
LIDARs are two Ouster O1 [31] with 16 and 64 channels, meaning it sends 16 or 64
arrays of light simultaneously as the LIDARs rotates.

For the same reasons as for the LIDARs, two cameras are mounted to the vehicle. The
cameras are two Basler Ace cameras [32] and are placed at the front of the vehicle. The
cameras are used both for detecting cones and estimating the distances between the vehicle
and the cones.

The cone representation from the LIDARs and the cameras are passed to the Simultaneous
Localization and Mapping (SLAM) module. Figure A.2 shows the LIDAR and camera
detection.

90

Figure A.2: Visualization of LiDAR detection to the left, where the red circles represent the light
channels, all visualized using Rviz. The camera detection is visualized to the right, where the cones
are marked using the camera detection algorithm.

A.2 State Estimation

The desired states not available for the sensors are estimated in the state estimation module.
In addition to estimating new states of the vehicle, state estimation works as a safety check
for validating the sensor signals and making sure the rest of the modules are using valid
and correct sensor values for their tasks.

One of the main objectives of the state estimation module is odometry. The odometry
utilizes all the sensor data for estimating the change in pose over time, which can further
be exploited to keep track of where the vehicle is in the world frame [33].

A.3 Visual Perception

By using the aforementioned outputs from the state estimation module both the position of
the cones in the world frame and the odometry can be estimated [33]. SLAM is deployed
for creating a map of the world with the cones and places the vehicle in this map using
the odometry. Figure A.3 visualize the odometry and the cone placement from the SLAM
module.

91

Figure A.3: Visualization of the estimated position indicated by the red line. The green circles
are the predicted location of the cones and the yellow and blue circles are incoming cones. The
visualization is from a simulation of the FSG 2018 race track using Rviz.

A.4 Path Planning
The path planning module is using the mapping from SLAM to find the most likely repre-
sentation of the centerline of the track and passes this as a smooth input to both the speed
profile and the control system.

A particle filter algorithm is used for estimating the centerline during the first round, as
this is the only round with an unknown path. Hence when driving the track drive event,
the particle filter will be planning during the first round and then optimizing the path for
the rest of the race. Figure A.4 visualize the particle filter where the red lines have the
highest probability of being the centerline and the green lines have a lower probability of
being the centerline.

92

Figure A.4: Visualization of the particle filter using Rviz.

A.5 Speed Profile
The speed profile module aims to find the target velocity based on the curvature of the
path and the kinematics of the vehicle. Using the forward-backward consistency algorithm
described in [34] as the speed profile, a feasible velocity and acceleration can be computed
along the given centerline. This algorithm allows one to constrain the acceleration to a
reasonable value, regarding the demands for the current event.

93

94

Appendix B
Nonlinear Region Analysis

The lateral nonlinear behavior of the vehicle may be defined as when the slip angle of the
rear wheels is significantly larger than the slip angle of the front wheels. The region where
this behavior occurs is dependent on the vehicle design and is different from vehicle to
vehicle.

Before Atmos driverless was reconstructed to a driverless vehicle, it was a highly func-
tional vehicle driven by a driver. Hence, to estimate the nonlinear region of Atmos driver-
less data from when the vehicle was manned is utilized.

The lateral region is dependent on the velocity of the vehicle and the radius of the corner.
It is known that the lateral acceleration is defined by these two variables as

ay =
u2

R
, (B.1)

where ay is the lateral acceleration, u is the longitudinal velocity andR is the radius of the
current corner.

Figure B.1 displays the variables during a competition when Atmos driverless was a
manned vehicle. For the current position, it is seen by the steering wheel angle graph
that the driver is counter-steering for keeping the desired path. Simultaneously, the longi-
tudinal velocity is low and the absolute value of the lateral acceleration is high. This may
indicate that the vehicle has entered the nonlinear region. Hence, the nonlinear region is
in the region where the lateral acceleration is at approximately ay = | − 10|m/s2.

95

Figure B.1: Vehicle data from Autocross run during the Formula Student competition at Hock-
enheim. August 2018. Left plot displays the path of the track, using GNSS, where the red cross
is the current position of the vehicle. The upper right plot shows the longitudinal velocity of the
vehicle. The middle plot shows the lateral acceleration of the vehicle, and the bottom graph shows
the steering wheel angle. The red line represents the current position in time.

96

Appendix C
Tuning Process

The tuning process of the MPC has been conducted using a straight-line reference path,
driving at a velocity of 15m/s. The same process has been conducted for both the kinematic
problem formulation and the dynamic problem formulation.

C.1 Prediction Horizon

The experiment conducted for deciding the prediction horizon is to let the vehicle follow a
straight-line without initial errors. The initial weighting matrices for tuning the prediction
horizon are chosen approximately similar to the magnitude of the error states, hence the
weighting matrices result in

Q =

[
1 0
0 10

]
, R = 1, (C.1)

for both problem formulations.

When choosing a too short or too long prediction horizon the system results in unstable be-
havior. This behavior is displayed in Figure C.1 and Figure C.2 for the kinematic problem
formulation.

The error response with an appropriate prediction horizon is deployed in Figure C.3 for
the kinematic vehicle model and in Figure C.4 for the dynamic vehicle model.

97

Figure C.1: Straight-line driving using the kinematic problem formulation with too short prediction
horizon.

Figure C.2: Straight-line driving using the kinematic problem formulation with too large prediction
horizon.

98

Figure C.3: Straight-line driving using the kinematic problem formulation with an appropriate
prediction horizon.

Figure C.4: Straight-line driving using the dynamic problem formulation with an appropriate pre-
diction horizon.

99

C.2 Weighting Matrices

The experiment conducted for tuning the weighting matrices is to let the vehicle try to
track a straight-line path with an initial cross-track error of 0.6m. This is to provoke a
steering angle. With the weighting in Equation C.1, the vehicle has an undesirable unstable
response leading to infeasible solutions that violate the constraints, both for the kinematic
and the dynamic vehicle model, as seen in Figure C.5 and Figure C.6, respectively.

Figure C.5: Error state response for the kinematic vehicle model with the initial weighting matrices
in Equation C.1.

Figure C.6: Error state response for the dynamic vehicle model with the initial weighting matrices
in Equation C.1.

100

When reducing the control input weight significantly, R = 0.01, for the MPC method
using the kinematic vehicle model, the behavior stabilizes at the desired zero references
with a quite smooth approach towards the reference. The response with a reduced control
input weight is displayed in Figure C.7.

To decrease the response time, the cross-track error may be weighted higher, as seen in
Figure C.8. However, the response is still not acceptable as the response is under damped.
By also increasing the weight on the heading error, the system response gets critically
damped, as seen in Figure C.9. The critically damped behavior is the desired behavior and
the weighting matrices used for the critically damped system are

Q =

[
5 0
0 30

]
, R = 0.01. (C.2)

The tuning is also applicable to the dynamic model formulation as displayed in Figure
C.10.

Figure C.7: Error state response for the kinematic vehicle model with decreased weight on the
control input.

101

Figure C.8: Error state response for the kinematic vehicle model with increased decreased weight
on the cross-track error, Q(1, 1) = 5.

Figure C.9: Error state response for the kinematic vehicle model with increased decreased weight
on the heading error, Q(2, 2) = 30.

102

Figure C.10: Error state response for the dynamic vehicle model with the initial weighting matrices
in Equation C.2.

103

104

Appendix D
Code

D.1 Sequential Reformulation
1 function [H_hat, g_hat, A_constraints, lbA, ubA] =

sequential_reformulation(A, B, C, E, Q, R, m, n, H, x_n, d_bar, x_lb,
x_ub)

2
3 A_hat = A;
4 A_hat((m + 1):2*m, 1:m) = A*A;
5 AB = B;
6 AB(m + 1:2 * m,1:n) = A*B;
7 AE = E;
8 AE(m + 1:2 * m,1:n) = A*E;
9

10 Q_hat = C’*Q*C;
11
12 A_exp = A;
13 for i = m+1:m:H*m
14 AB(i:(i + m - 1),1:n) = A_exp*B;
15 AE(i:(i + m - 1),1:n) = A_exp*E;
16 A_exp = A_exp*A;
17 A_hat(i:(i + m - 1), 1:m) = A_exp;
18 end
19
20 counter = 1;
21 for i = 1:n:n*H
22 k = 1;
23 for j = counter:m:H*m
24 B_hat(j:(j + m - 1),i:(i+n-1)) = AB(k:(k + m - 1), 1:n);
25 E_hat(j:(j + m - 1),i:(i+n-1)) = AE(k:(k + m - 1), 1:n);
26 k = k + m;
27 end
28 counter = counter + m;
29 end
30

105

31 for i = 1:m:(m*H)
32 Q_bar(i:(i+m-1),i:(i+m-1)) = Q_hat;
33 x_bar_lb(i:(i+m-1),1) = x_lb;
34 x_bar_ub(i:(i+m-1),1) = x_ub;
35 end
36
37 for i = 1:n:(n*H)
38 R_bar(i:(i+n-1),i:(i+n-1)) = R;
39 end
40
41 g_hat = B_hat’*Q_bar*[A_hat E_hat]*[x_n; d_bar];
42 H_hat = B_hat’*Q_bar*B_hat + R_bar;
43
44 A_constraints = B_hat;
45 lbA = x_bar_lb - A_hat*x_n - E_hat * d_bar;
46 ubA = x_bar_ub - A_hat*x_n - E_hat * d_bar;
47 end

D.2 Run qpOASES

1 [H_hat, g_hat, A_constraints, lbA, ubA] = sequential_reformulation(Ad, Bd,
Cd, E, x_n, d_bar(:,i), config);

2 [DeltaU,fval,exitflag,iter] = qpOASES(H_hat,g_hat, A_constraints, -config.
c_u, config.c_u, lbA, ubA);

106

Appendix E
Feedback Linearization Results

E.1 Performance Results

The performance results of the feedback linearization controller are presented in this sec-
tion. Two experiments are conducted,

• straight-line driving with an initial cross-track error, and

• constant radius cornering with a radius of R = 9.125.

The simulation environment includes a four-wheel model of a vehicle, using the designated
parameters for Atmos Driverless, as described in Section 4.3. The vehicle is driving at
a velocity of u = 15m/s. The cross-track error and the resulting steering angle from
the straight-line experiment is displayed in Figure E.1. For the constant radius cornering
experiment, the cross-track error and the steering angle are seen in Figure E.2.

107

Figure E.1: Cross-track error and the resulting steering angle using the feedback linearization con-
troller, driving a straight-line path. The initial cross-track error is 0.6m. The orange line represents
the zero references.

Figure E.2: Cross-track error and the resulting steering angle using the feedback linearization
controller, driving a constant radius corner. The initial cross-track error is 0.6m. The orange line
represents the zero references.

E.2 Computational Effort Results
To evaluate the computational effort the MATLAB function tic and toc are used. The
tracking experiment of a straight-line path and the tracking experiment of a constant radius
corner, with a radius of R = 9.125m, are conducted at a velocity of 5m/s. The three

108

controllers that are in cascade, are included in the timing experiment. The results of the
timing of the controllers during straight-line driving are displayed in Figure E.3, while the
timing results while driving a constant radius circle is shown in Figure E.4.

0 200 400 600 800 1000 1200
Iteration

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Ti
m

e(
s)

Computational Effort

Time

Figure E.3: The computational effort of the feedback linearization controller, while driving a
straight path.

0 200 400 600 800 1000 1200
Iteration

0

0.005

0.01

0.015

Ti
m

e(
s)

Computational Effort

Time

Figure E.4: The computational effort of the feedback linearization controller, while driving a con-
stant radius circle path.

109

110

Christine Sääv Borg
M

odel Predictive Control for Lateral Path Tracking of an Autonom
ous Form

ula Student Race Car

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Christine Sääv Borg

Model Predictive Control for Lateral
Path Tracking of an Autonomous
Formula Student Race Car

Master’s thesis in Cybernetics and Robotics

Supervisor: Sebastien Gros

June 2020

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Formula Student Driverless
	Revolve NTNU
	Contributions
	Report Structure

	Background
	Nomenclature
	Mathematical Notation
	Frames

	Lateral Vehicle Modeling
	Lateral Kinematics of Bicycle Model
	Lateral Dynamics of Bicycle Modeling
	Tire Modeling
	Linear Tire Modeling

	Earlier Approach
	Path Representation
	Lateral Controller

	Theory
	Model Predictive Control
	Motivation for using Model Predictive Control
	General Formulation of Model Predictive Control
	Model Predictive Control for Trajectory Tracking
	Solvers for Model Predictive Control

	Linearization
	Discretization
	Exact Discretization
	Euler Discretization

	Implementation
	Problem Formulation
	Kinematic Formulation
	Dynamic Formulation
	Minimization Variables
	System Constraints
	Controller Tuning

	Implementation Interface
	qpOASES Specific Implementation

	Simulation Environment
	Vehicle Simulation
	Path Representation

	Results
	Performance Results
	Straight-Line
	Constant Radius Cornering
	Formula Student Driverless Track

	Computational Effort Results

	Discussion
	Performance
	Computational Effort

	Epilogue
	Conclusion
	Further Work
	New Features
	Vehicle Implementation

	Bibliography
	Appendices
	Introduction to Atmos Driverless
	Sensors
	State Estimation
	Visual Perception
	Path Planning
	Speed Profile

	Nonlinear Region Analysis
	Tuning Process
	Prediction Horizon
	Weighting Matrices

	Code
	Sequential Reformulation
	Run qpOASES

	Feedback Linearization Results
	Performance Results
	Computational Effort Results

