
Supervised Learning and its Development to

Generative Adversarial Networks

Lone Marselia Werness Bekkeheien

December 2019

PROJECT THESIS

Department of Engineering Cybernetics

Norwegian University of Science and Technology

Supervisor: Anastasios Lekkas, ITK

i

Preface

This project thesis represents my work at the Norwegian University of Science and Technol-

ogy(NTNU) as part of the study program Master of Science in Cybernetics and Robotics. This

work has been done under the supervision of Anastasios Lekkas during the autumn semester

of 2019, which has been a great inspiration! This thesis shows my gained knowledge about ma-

chine learning and how it can be used to generate data by utilizing generative adversarial net-

works (GANs). The work has been performed on a MacBook Air with a 1,6 GHz Intel Core i5

processor.

The theory and implementation in Section 3 is mainly based upon [1, 2]. For the implemen-

tations of basic ML methods like linear regression, logistic regression, SVM and decision trees,

JupyterNotebook was utilized together with Python version 3.6.4. The data for the linear regres-

sion is retrieved from [3]. The implementation is mainly based upon the books [2, 1], and is

inspired by an assignment in the subject TDT4173 Machine Learning and Case Based Reasoning

at Norwegian University of Science and Technology. The libraries used in the implementation

are the following:

• Pandas 0.25.3

• NumPy 1.17.3

• Matplotlib 3.1.1

• Scikit-Learn 0.21.3

The Pandas library version 0.25.3 is utilized to load the data, and the NumPy library version

1.17.3 is utilized to store the data in arrays and do manipulations on it. Scikit-Learn’s library

version 0.21.3 is utilized to do a train-test split on the data.

The main libraries utilized for the logistic regression, SVM and decision trees are exactly the

same as for the linear regression above. The Scikit-Learn library is utilized to get the differ-

ent models for the classification. The implementation is built on inspiration from [2], and the

logistic regression also gets inspiration from an assignment in the subject TDT4173 Machine

Learning and Case Based Reasoning at Norwegian University of Science and Technology .

ii

Due to a lack of processing power running on the MacBook’s processor in JupyterNotebook, the

more advanced implementations like CNN and GAN were utilizing a GPU Google Colab server.

Google Colab currently uses Python version 3.6.9 which was used for the CNN and GAN imple-

mentation. The Python version was found by importing the platform and printing its version in

Google Colab.

The main inspiration for the implementation and theory in Section 4.2 was gotten from [2, 4, 5].

Libraries utilized in the CNN implementation are the following:

• TensorFlow 1.15.0

• Keras 2.2.4

• NumPy 1.17.4

• Matplotlib 3.1.2

TensorFlow version 1.15.0 was utilized in the CNN implementation in Section 4.2. TensorFlow is

an end-to-end open source platform for ML [5]. TensorFlow provides multiple levels of abstrac-

tion, where the high-level Keras API was chosen for this implementation. The implemented

Keras version in TensorFlow 1.15.0 is Keras 2.2.4, which is utilized in this implementation. A

TensorFlow Keras sequential model is created by passing a list of layer instances to a sequential

constructor [6]. This way of making a model was chosen because of intuitive reasons. Tensor-

Flow and Keras are the main libraries for the CNN implementation, but two help libraries are

needed as well. The first help library is NumPy version 1.17.4 which is utilized to store the data

in arrays and to perform changes to the arrays. The library Matplotlib version 3.1.2 is utilized

to visualize both the data and the results from the implementation. The MNIST- and CIFAR10

images, described in Section 3, are retrieved from the Keras library’s datasets. The bar charts

visualizing the data in Figure 4.1 and 4.2 is inspired from [7]. Inspiration for visualizing the dif-

ferent images in the datasets are also gotten from [8]. An inspiring discussion with Kerstin Bach

at the Department of Computer science was also helpful when implementing the CNN.

iii

The theory and implementation in Section 5 is mainly based on [9, 4, 10]. Libraries utilized

in the GAN implementation are the following:

• TensorFlow 2.0.0

• Keras 2.2.4

• NumPy 1.17.4

• Matplotlib 3.1.2

• Python’s Time library

• IPython

• Keras Models

At first TensorFlow version 1.15.0 was also used in the GAN implementation. To be able to iter-

ate through the batches in the dataset with a for loop, TensorFlow’s eager execution had to be

enabled. By switching to TensorFlow 2.0.0, which will be default version in Google Colab in the

feature, eager execution is enabled by default. Therefore TensorFlow version 2.0.0 is utilized in

the GAN implementation. The libraries NumPy and Matplotlib are used for the same purposes

as for the CNN implementation described above. Python’s Time library is utilized to measure

how much time each epoch takes to execute. IPhyton’s Display library is used to display the

performance of the GAN after each epoch as showed in Figure 5.3 and 5.4, which are inspired by

[8].

Trondheim, 17-12-2019

Lone Marselia Werness Bekkeheien

iv

Acknowledgment

Learning about generative adversarial networks with little, up to no knowledge in field of ma-

chine learning and neural networks in advanced has been challenging. I would like to thank my

supervisor, Anastasios Lekkas, for pointing me in the right direction as well as motivating me

with his engagement in the field. I would also like to thank Kerstin Bach at the Department of

Computer science for a helpful discussion in the field of neural networks.

L.M.W.B

v

Summary

Machine learning was defined in 1959 by Arthur Samuel as the field of study that gives comput-

ers ability to learn without being explicitly programmed [2]. Basic machine learning methods

like regression and decision trees have developed to more advanced methods. Neural networks

was truly evolved by a collaboration between neuroscientists and computer scientists looking

into what intelligence actually is [11]. Convolutional neural networks has been a game changer

in the field of image recognition. Generative adversarial networks have been a further develop-

ment in the field of image recognition, where the networks can learn an unknown data distribu-

tion function to generate new images.

In this thesis, implementation of basic machine learning methods, like linear- and logistic re-

gression, decision trees and support vector machines, and convolutional neural networks have

been performed. The results showed how support vector machines and decision trees worked

better than logistic regression when the dataset include a lot of target variables and features. The

linear regression method needed a linearly separable dataset, thus it could not be used on a non

linearly seperable dataset without applying manipulations. For predictions on more advanced

datasets, like the Mixed National Institute of Standards and Technology images a convolutional

neural network was utilized. This implementation gave satisfactory results with a test accuracy

of 98.6 percent.

The knowledge gained from these implementations have been utilized to implement genera-

tive adversarial networks to generate new data from an already known data distribution. Being

familiar with neural networks was a great advance when implementing the generative adver-

sarial networks. The research in different papers, and the theory study of generative adversar-

ial networks also showed to pay off when small tweaks in the hyper parameters did drastically

changes to the generated images quality. Based on the results, generative adversarial network

shows great potential for future work in the master thesis.

Contents

Prefacei

Acknowledgment . iv

Summary . v

1 Introduction 2

1.1 Background and Motivation . 2

1.2 Objectives and Approach . 4

1.3 Structure of the Report . 5

2 Introduction to Machine Learning 6

2.1 What is Machine Learning? . 6

2.1.1 Categories . 7

2.2 Main Challenges . 9

3 Theory and Implementation 11

3.1 Linear Regression . 13

3.2 Logistic Regression . 16

3.3 Support Vector Machine . 19

3.3.1 SVM for Classification . 19

3.4 Decision Trees . 23

3.4.1 Decision Trees for Classification . 24

3.5 Comparison . 25

4 Neural Networks 27

vi

CONTENTS 1

4.1 Deep Feedforward Networks . 29

4.2 Convolutional Networks . 33

5 Generative Adversarial Networks 47

5.1 Theory . 47

5.2 Implementation . 51

6 Summary 65

List of Figures 67

List of Tables 68

A Table of Abbreviations 70

B Table of Symbols 72

Bibliography 75

Chapter 1

Introduction

This project’s thesis concerns the generative adversarial networks (GANs) and its application to

generate data. Section 1.1 presents the background and motivation for this project’s thesis. Sec-

tion 1.2 presents the main objectives and the approach that will be needed to reach the overall

goal of the thesis. Finally, Section 1.3 will give an overview of the report’s structure.

1.1 Background and Motivation

In 1959 Arthur Samuel gave the first definition for machine learning (ML), machine learning is

the field of study that gives computers ability to learn without being explicitly programmed [2].

Today ML is everywhere. One of the first ML algorithm that helped making everyone’s life eas-

ier was the spam filter for email. The spam filter can be developed with logistic regression for

classification, where the train data is labeled "spam" or "not spam". From that information, ML

algorithms extract patterns that help classify new incoming data as spam or not spam. If a spam

filter is made without the use of ML, rules for what kind of emails that should be flagged as spam

has to be written explicitly. Such a process would have been very time consuming.

Basic ML methods are for instance both linear- and logistic regression, decision trees and sup-

port vector machines (SVMs). All of these methods will be represented in this thesis.

Today there exists more advanced branches in ML, and deep learning (DL) is one of the them.

2

CHAPTER 1. INTRODUCTION 3

The field of DL makes it possible to solve more complex tasks better, like image recognition with

state of the art performance for instance. Since 2012 DL has gained a lot of attention, where

Krishevsky, Sutskever and Hinton managed to half the existing error rate on an ImageNet classi-

fication with deep convolutional neural networks (CNNs) in the Large Scale Visual Recognition

Challenge(LSVRC) competition [12]. The concept of neural networks (NNs) truly occurred with

a collaboration between computer scientists and neuroscientists looking at what intelligence

actually is [11]. Artificial NNs (ANNs) are built on the logic of how the human brain works by

areas of neurons communicating [11]. The field of study, DL, involves NN with many layers

communicating, which needs a lot of data to be able to detect patterns and make predictions.

The network constructs the world by picewise interpreting it in a nested hierarchy, where each

interpretation learns by simpler interpretations. DL has brought an enormous amount of ap-

plications in different fields. In the health sector DL has been used to detect skin cancer from

images for instance [13].

From DL another ML branch has been developed, namely the generative adversarial networks

(GANs). It was first introduced by Ian Goodfellow and other researchers at the University of

Montreal in 2014 [14]. GANs consist of two NNs, the generative and the discriminative, which

work as adversarials. The aim of a generative network is to learn the true data distribution of the

training data, and then use this distribution to generate new data that looks like it comes from

the same distribution. The discriminator aims to predict which data comes from the training

dataset and which comes from the generated dataset. Thus, the overall goal for a GAN network

is to generate data that looks as if it has been generated by the same set of rules as the training

data. To reach this goal, an unknown probabilistic distribution function that explains why some

data are more likely to be found in the training dataset and others are not, is to be found.

The main task of this project thesis is to gain enough knowledge to be able to utilize GANs to

generate data. To be able to do this sufficient experience and insight in the field of ML and DL is

needed.

Data is becoming the most valuable asset in the world. In the mid-19th century the oil industry

as we know it began extracting oil. Exploitation of oil is highly responsible for Norway’s welfare

today. Imagine if it was possible to make a data program that generates oil.

CHAPTER 1. INTRODUCTION 4

Companies like Google and Facebook own vast amounts of data which they can exploit for com-

mercial purposes, this is the reason why these companies are so valuable. Since GANs can be

used to generate data, it is actually possible to make a data program to generate the most valu-

able asset in the world!

GANs have been used to generate synthetic pieces of art, music, people and much more. In 2016

a start up company called Brud generated a fake Instagram profile under the name Lil Miquela

[15]. She has over 1.6 million followers and in 2017 she even released an album. Brud is earning

a lot of money on an artificial intelligence generated person. Another example is a portrait gen-

erated by a GAN that was sold for USD 432.000 [16]. Generative modeling is also important in

further understanding of the human brain [10]. As shown above, the potential of GANs is mas-

sive as it can mimic any distribution of data. Since GANs were first introduced in 2014 [14] it

has been researched extensively [17, 18, 19, 20, 21, 22], although there are still many application

areas where their benefits are yet to explore.

1.2 Objectives and Approach

The main goal of this work is for the author to become familiar with the main approaches within

supervised learning, and pave the way for implementing GANs in industry-relevant application

during the MSc thesis period.

To be able to reach this goal, knowledge in the field of ML is needed. The limitations on the

authors behalf is the lack of prior knowledge in this field. The approach to reach the goal will

therefore be to start with basic theory of ML and implement basic algorithms. The main lit-

erature used to reach this objective will be [1, 2]. After the basic theory, knowledge of DL will

be gained and applied by mainly using [2, 4]. In the last section, the knowledge gained on

reaching the previous objectives will be used together with theory about GANs, mainly based

on [5, 9, 4, 10], to implement GANs.

CHAPTER 1. INTRODUCTION 5

1.3 Structure of the Report

The rest of the report is structured as follows: Section 2 gives an introduction to the basic theory

in ML. The next section will focus on basic ML algorithms like linear regression, logistic regres-

sion, support vector machine and decision trees. This section will include comparison and plots

of the different methods. Section 4.2 will dig into NNs like deep feed forward- and convolutional

networks. The last chapter will use the knowledge from the previous chapters to work on GANs.

It will include discussion around a trained model for making artificial data.

Chapter 2

Introduction to Machine Learning

The representation in this section is mainly based on [2].

A computer program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with experience E.

—Tom Mitchell, 1997 [2].

2.1 What is Machine Learning?

The building block in ML is concept learning, which is when a machine is trained to learn a con-

cept by given some predefined examples. For instance, humans differentiate a certain type of

flower from all the flowers by a specific set of features among a large number of features. A fea-

ture can be the color of the flower, the length of the leaves and so on. This set of features that

are used to differentiate flowers can be called a concept. Machines can also learn this concept to

recognize a certain type of flower by training on examples to find a hypothesis that best fits this

training data. According to the definition by Tom Mitchell, if the program learns the concept

of the flowers from the training data, the performance will improve with the experience when

the data comes from the same distribution [2]. For an algorithm to support concept learning it

needs to have training data, the target concept and actual data objects to test the model. For

6

CHAPTER 2. INTRODUCTION TO MACHINE LEARNING 7

the algorithm to be able to make predictions on the test data it must be assumed that the ap-

proximation of the target function for the training data will work as an approximation for the

target function of the test data as well. This assumption is called the fundamental assumption

of inductive learning [23]. The algorithm also requires an inductive bias to learn the concept

[23]. Without the inductive bias, the algorithm is just serving as storage for the training data.

The inductive bias is an a priori assumption regarding the identity of the target concept, and

without it there is no rational basis for being able to classify unseen instances [23].

2.1.1 Categories

The ML algorithms can be categorized into three main categories. The first category is based on

whether or not the correct answers to the classification problems are known.

Supervised learning algorithms have both the input and output data available in the training

set, that is, the data is labelled [2]. Two typical types of supervised learning is classification and

regression, which will be introduced in later sections. The email spam filter is a typical classi-

fication example, where the training data consists of different emails with corresponding labels

classifying them as spam emails or not. A typical regression task is to predict the type of flower

based on different kinds of features. The training data for this regression task will consist of sets

of features for different flowers with their corresponding type. Linear regression, logistic regres-

sion, SVM, decision trees and NNs are supervised learning algorithms that will be written about

in this paper.

Unsupervised learning algorithms operate on unlabeled training data [2]. Some important un-

supervised learning algorithms are clustering and visualization and dimensionality reduction.

The clustering algorithm is trying to group the input data in clusters based on similarity. For

instance, you can use a clustering algorithm to detect what kind of groups are visiting an on-

line newspaper, and at what times. This information can further be used to target the specific

readers at specific times. Visualization algorithms can be used to input data and get a graphi-

cal representation as output. In unsupervised learning, the algorithms try to understand and

learn from the data without the solution given in the training data, as for supervised learn-

ing. It is possible to make a hybrid of supervised- and unsupervised learning, which is called

CHAPTER 2. INTRODUCTION TO MACHINE LEARNING 8

semi-supervised learning. Algorithms like this will have a data set consisting of a mix between

unlabeled- and labeled data.

Reinforcement learning (RL) algorithms learn based on penalties/rewards received on the last

action performed [2]. RL algorithms can also work in a changing environment, which is typically

used for an algorithm that plays a game. The player is then called an agent, the game is the en-

vironment, and the player is selecting action based on a policy [2]. This policy is updated based

on penalties/rewards from previous actions. The algorithm will play the certain game until the

optimal policy is reached.

A ML algorithm can also be categorized based on if they learn "as they go" or not.

Online learning is when an algorithm learns online, which means that it can learn "as it goes"

[2]. New data is utilized to train the algorithm and updates will happen while it is being used.

An example of this is the e-mail spam filter. As the user receives new emails the spam filter can

use them as train data to improve the filter, while it is flagging the emails as spam or not. A

learning rate can be set according to how fast the user wants the algorithm to adapt to the new

data. The drawback of this type of algorithms is that they might get poor input which will lead

to unwanted performance. It is therefore important to closely watch the performance and react

to abnormal input data.

Batch learning algorithms, in opposition to online learning algorithms, will learn offline [2].

The model will be trained using all available data, and will not learn anymore when it is de-

ployed. If new data is available, the model needs to be trained with the whole data set, which

means that updating the model might take a while. This is why an online learning algorithm is

a better option for certain tasks that need to be updated frequently.

The last category for ML algorithms is based on if they work by comparing data points or detects

patterns in the data to build a predictive model.

Instance based learning algorithms learns based on the input instances for training, then it

generalizes to test data by similarity measure [2]. This means that if the algorithm learns that

an email with the word "sale" is spam from the train data, it could also flag that a new email

including "super sale" is spam depending on the similarity measure chosen.

Model based learning algorithms generalizes from a set of examples by searching for an optimal

value for the model parameters [2]. This type of algorithms detects patterns in the training data

CHAPTER 2. INTRODUCTION TO MACHINE LEARNING 9

and uses them to build a predictive model. To achieve this a cost function is utilized as well as a

penalty for the model complexity.

2.2 Main Challenges

The main challenges of ML algorithms either concerns the algorithm itself or the data it uses [2].

The training data can be insufficient, non-representative, of poor quality or have irrelevant fea-

tures. ML algorithms need a lot of data to be able to learn a concept, and the more complex the

problem is, the more data is needed. Having representative training data means that it should be

representative of the new data the algorithm aims generalizing to. Sample bias occurs when the

training data does not represent the actual environment the model will be running in [2]. Data

of poor quality typically has a substantial amount of outliers, errors and noise. It can therefore

be an idea to clean up the training data by removing outliers before training the algorithm. It

is also important that the training data contains enough relevant features for the problem to be

solved, and few irrelevant ones.

Models suffering from poor performance on the test data can either suffer from overfitting or

underfitting.

Overfitting is a phenomenon that it is important to be aware of. It happens when the algo-

rithm takes the training data to literal, when it contains white noise or when it does not contain

enough data to represent the actual problem. For instance, by looking at the graph plotted in

the linear regression Section 3, it can be seen that a linear prediction function is utilized. A naive

way of thinking could be, "why do not I use a prediction function that runs through every single

point, this way I will have no error what so ever". If this is done there will be a perfect fit between

the training data points given and the model. Why is it then desired to use the linear model as

was done in the linear regression implementation in Section 3? The point is to predict output

values based on input values, and this works great on the training data when the linear model

is utilized. After the model is trained it has to be tested on the test data. The overfitted predic-

tion function works perfect on the training dataset, but is not generalized enough to perform

CHAPTER 2. INTRODUCTION TO MACHINE LEARNING 10

well on new data. The prediction function, which is the red line in Figure 3.2, is more general

and will therefore give a better prediction for the test data. It can therefore be seen that it is not

preferable to make a model that is tailored toward the training data. The model has to work for

data it has never seen before, which is the whole point in learning. The risk of overfitting can

be reduced by regularization, which is done by penalizing one of the parameters in the model

so it becomes simpler [2]. It is not desirable to penalize the parameters too much because then

the model will not fit the training data. The regularization is done through a hyperparameter in

the algorithm before training the model. Tuning hyperparameters is an important part of ML

algorithms.

Underfitting on the other hand is when the model learns from only some part of the training

data. For instance, a model implemented to perform classification on the Canadian Institute

For Advanced Research 10 (CIFAR10) dataset, described in 4.2, trains on training data that does

not have images of airplanes and birds. When the trained model is being tested on a dataset

including airplanes and birds it might not perform well, thus the model is underfitted. Under-

fitting can be fixed by for instance reducing the regularization hyperparameter, finding better

features or finding a training dataset that is representative.

Cross-validation is a way to compare different ML methods and get a sense of how well they

will work in practice. It can be performed by firstly splitting the data into four subsets for in-

stance, and then taking the first three blocks for training and the last for testing. Secondly, the

first block can be used for testing and the last three for training. This procedure continues until

every block/subset of data has been used for testing and then average the results from each test.

This is used to see how well the model generalizes, which also means if the model is overfitted

or underfitted. Since the data is divided into four blocks in this example, it is called Four-Fold

Cross Validation. However, the number of blocks/subset could be chosen arbitrarily. By using

cross-validation different ML methods can be compared to see which model performs best on

the test data.

Chapter 3

Theory and Implementation

The representation and implementation in this Section is mainly inspired by [1, 2].

Dataset

The dataset utilized for the implementation of the linear regression method is a set of 200 input-

output vectors containing information about money spent on television advertisement and

their generated sales.

The dataset used for the implementation of the SVM, logistic regression and decision trees is

Python’s iris data set, consisting of 150 flowers. This data set contains four features which are the

petal- and sepal length and width of three different iris species called Setosa, Versicolor and Vir-

ginica. An example of the iris flowers are shown in Figure 3.1. The dataset is split into training-

and test data using Python’s Sickit-Learn train-test-split, where 80 percent of the data is used for

training and 20 percent is used for testing. All methods are applied on the whole dataset, as well

as a subset of the dataset.

The subset consists of the features sepal length and width and is used to classify whether or not

the flower is of the species Setosa. This subset is used because the classes Septosa or not Septosa

are linearly separable.

To represent the result of logistic regression, SVM and decision trees Python’s Sickit-Learn con-

fusion matrix will be utilized. It will be represented as shown in Table 3.1. Table 3.1 shows that

11

CHAPTER 3. THEORY AND IMPLEMENTATION 12

Figure 3.1: Flowers of three iris plant species [2].

Predicted species
Setosa Versicolor Virginica

Actual species
Setosa a b c
Versicolor d e f
Virginica g h i

Table 3.1: An example of a generic confusion matrix

CHAPTER 3. THEORY AND IMPLEMENTATION 13

a,e, i on the diagonal represents the correct predictions, while b,c,d , f , g ,h represents incorrect

predictions. Python’s Scikit-Learn accuracy score will also be used to evaluate the performance.

3.1 Linear Regression

Linear regression is used when the goal is to predict continuous output variables, y , based on

input variables represented by a vector x. The aim is to use training data, consisting of x and its

corresponding target values t, to find weights that fit the model so that when new data is used

the prediction of the output based on the input is quite accurate [1]. The model is based on

linear combinations of functions of the input variables, known as a basis functions [1]. There

are many possible choices for the basis functions, but in this section the focus will be on the

simplest linear models for regression, the linear basis function models. This means that the

functions of the input variables are linear, as shown below.

y(x,w) =
M−1∑
j=0

w jφ j (x) = wTφ(x) (3.1)

In (3.1) the basis function is represented byφ j (x), and j = 0 represents the bias parameter in the

model [1]. This means that the bias is integrated in the model, and to be able to do so the first

element in the basis function, φ0(x) is equal to 1, and w0 is the bias. The equation represents

a linear model because it is linear in x. For the rest of this section the basis function vector

φ(x) will be equal to the input vector x, as shown in (3.2). There will also only be a single target

variable, t .

y(x,w) =
M−1∑
j=0

w j x j =
[

w0 w1 . . . wM−1

]


1

x1

...

xM−1

= wT x (3.2)

After getting familiar with the model for linear regression, the next step is how to find the weights.

CHAPTER 3. THEORY AND IMPLEMENTATION 14

The aim is to select weights w so that the sum-of-squares error function, which is shown in (3.3)

is minimized [1].

ED (w) = 1

2

N∑
n=1

{
tn −wTφ(xn)

}2 (3.3)

Minimizing this function is equivalent to maximizing a likelihood function under a conditional

Gaussian noise distribution for a linear model [1]. Below the logarithm of this function is de-

fined.

ln p(t|w,β) = N

1
lnβ− N

2
ln(2π)−βED (w) (3.4)

In (3.4) the noise precision parameter is represented by β. To find the maximum of this function

the gradient can be found and set to zero as shown below.

∇ ln p(t|w,β) =
N∑

n=1

{
tn −wTφ(xn)

}
φ(xn)T = 0 (3.5)

Solving for w the weights can be,

wML = (φTφ)−1φT t. (3.6)

The weights found in (3.6) can now be used in (3.1) to find the predicted output. This has been

done in an implementation of the linear regression model, with the base function φ equal to x.

As described in Section 3 the data is a set of 200 input-output vectors (xi , yi) divided into test

data and training data. It contains information about money spent on television advertisement

and their generated sales. The input vector x is added a one for every data point to be able to

represent the bias. First, the weights are found by using the (3.6) on the training data. Then

these weights were used in (3.1) along with the test data to predict the generated sales.

Figure 3.2 shows that there exist a linear relationship between sales and money spent on TV

advertisement, and a straight line can be fitted to the data. This line is known as the decision

CHAPTER 3. THEORY AND IMPLEMENTATION 15

Figure 3.2: Simple linear regression model tested on the test data

boundary [1]. The figure also shows that the data points are quite spread, and therefore the sum-

of-squares error is calculated to be 12.097 based on the test data. The sum-of-squares error for

the training data is 9.341, which means that the model is not generalizing well. One reason for

this might be the way the data was split. In Figure 3.2 the data was split in half to create a test-

and training set. A general rule is to have 80 percent of the data in the training set and 20 percent

as test data [2]. By using this split the sum-of-squares error for the training data is 9.700 and for

the test data, it is 14.129, which is worse than it was for just dividing the data in half. This means

that it is not known which chunk of the data is best for training and testing the model. Therefore

the Python Scikit-Learn train-test-split function is better to split the data in 80 percent training

data and 20 percent test data [2]. By doing this the error for the training data is 11.05 and for the

test data, it is 8.41, which proves that the self-picked chunk of data was not the best. The result

is shown in Figure 3.3. Cross-validation could be used to see how well the model is generalizing,

and will flag problems like overfitting as explained in the previous Section 2.

One of the benefits of linear regression is how simple the model is. For someone with little

knowledge in ML it is very simple to understand and use this method. It can be used to find a

relationship between the two variables even if it does not fit the data. On the other hand not all

data has this linear relationship that the method assumes. If most of the data is quite dense, and

CHAPTER 3. THEORY AND IMPLEMENTATION 16

Figure 3.3: Simple linear regression with the scikit-learn split of data

there is one data point that is by itself it will influence the model coefficients significantly.

3.2 Logistic Regression

Logistic regression can be used to do binary classification. Looking at two-class classification,

the model returns the probability that the input x belongs to the classification y = 1, C1.The

probability of the input belonging to class C1 can be written as a logistic sigmoid function acting

on φ

p(C1|φ) = y(φ) =σ(wTΦ). (3.7)

The sigmoid function is represented by σ(.), and is shown in Figure 3.4. The function is used to

capture the probability. The logistic regression model is based on the same linear equation as

for linear regression, shown in (3.1). The computation of the weights is a bit more complex for

the logistic regression. It is done by starting with an initial set of weights, for instance setting

the weights to zero. If the initial weights are zero, Figure 3.4 shows that the probability for the

input xi to belong in class y = 1 is equal to 0.5. The weights can be learned by either maximizing

CHAPTER 3. THEORY AND IMPLEMENTATION 17

the likelihood function or minimizing the negative likelihood function. The likelihood function

takes the form as shown below.

p(t|w) =
N∏

n=1
y tn

n
{
1− yn

}1−tn (3.8)

When the data sets are linearly separable the maximum likelihood function should not be used.

The reason for this is that the solution of the maximum likelihood happens when the hyper-

plane, σ = 0.5, separates the two classes and w’s magnitude goes to infinity. This could po-

tentially lead to over-fitting. Therefore the negative logarithm of the likelihood will be chosen,

which can be represented as,

E(w) =− ln p(t|w) =−
N∑

n=1

{
tn ln yn + (1− tn) ln(1− yn)

}
, (3.9)

where yn = σ(wTφn). This function can also be called cross-entropy error function and will be

used to see how good the model is.

To minimize (3.9), the gradient with respect to w will be performed, which results in

∇E(w) =
N∑

n=e
(yn − tn)φn . (3.10)

The cross entropy error function can be minimized by the Newton-Raphson iterative optimiza-

tion scheme, which is shown below.

w(new) = w(ol d) −H−1∇E(w) (3.11)

This means that for every iteration new weights will be generated based on the old ones. The

matrix H represents the Hessian matrix, which is

H =∇∇E(w) =ΦT RΦ. (3.12)

CHAPTER 3. THEORY AND IMPLEMENTATION 18

Figure 3.4: The logistic function represented by a sigmoid function [2]

Predicted species
Setosa Versicolor Virginica

Actual species
Setosa 3 2 3
Versicolor 4 2 3
Virginica 2 6 5

Table 3.2: Confusion matrix for the logistic regression implementation

Where R is an N ×N diagonal matrix with elements like

Rnn = yn(1− yn). (3.13)

Logistic regression have been implemented and trained on the data set described above in Sec-

tion 3. When using the whole data set, Python’s Sickit-Learn model for logistic regression is used.

To represent the performance of the model a confusion matrix and accuracy score is used. After

fitting the data to our model and making the predictions, the confusion matrix turned out to be

the following.

The first row in a confusion matrix represents the actual label of the first target variable, while

the first column represents the predicted label of the first target variable. The second row and

column represent the second target variable and the same for the third. This means that the

diagonal of the matrix represents the correct predictions, as described in Section 3. From the

matrix in 3.2 it can be seen that the first element on the diagonal is 3, which means that three

Setosas were correctly predicted. From the rest of the elements in the first row and column

it can also be interpreted that 2+ 3+ 4+ 2 = 11 Satosas were predicted incorrectly. The same

CHAPTER 3. THEORY AND IMPLEMENTATION 19

Predicted species
Septosa Not Septosae

Actual species
Septosa 9 0
Not Septosa 0 10

Table 3.3: Confusion matrix for the logistic regression implementation on the sub dataset

interpretation can be done for the rest of the target variables, Versicolor and Virginica. It can see

that the overall performance is quite bad. There exists more incorrect predictions than correct

ones. This also explains why the accuracy score is 0.333. When trying logistic regression on only

the subset of the data set, which is linearly separable, the performance is better. The confusion

matrix is

which shows that all of the predictions are correct, and therefore the accuracy score is 1. By this

it can be seen that the logistic regression performs better when there are fewer target variables

and features, and the dataset is linearly separable.

3.3 Support Vector Machine

The SVM algorithm is kernel-based, which means that the kernel function only needs to evalu-

ate a subset of the training data points to predict output based on new input. SVM can perform

linear or nonlinear classification, regression and even outlier detection. In this paper the focus

will be on SVM for classification to get a basic understanding. To find the model parameters a

convex optimization problem has to be solved. This means that any local solution is also a global

solution. Posterior probabilities are not the output for this method because SVM is a decision

machine.

3.3.1 SVM for Classification

To explain how the SVM a two-class classification problem will be introduced. The linear model

for this problem looks a lot like the one described previously for one-class classification in (3.2).

The only difference is that the input representation, x, needs to be replaced with a fixed feature

CHAPTER 3. THEORY AND IMPLEMENTATION 20

space transformation φ(x). The equation is

y(x) = wTφ(x)+b. (3.14)

In (3.14) it can be seen that the bias b has been made explicit. The data set for training consist

of input vectors x1,,xN and their corresponding binary target values t1,, tN .

It will be assumed that the training data is linearly separable. A perceptron algorithm can be

used to find a solution but is dependent on the chosen initial bias, weights and the order of

the data points. This algorithm uses the perceptron criterion to find the weights w. Roughly

explained, this algorithm tries to minimize the quantity −wTφ(xn)tn for all incorrectly classified

patterns, which is called the error function Ep . To find the change in the weight vector w for each

iteration the stochastic gradient descent (SGD) algorithm is applied to the error function defined

above. The gradient descent was truly proposed in 1847 by M. Augustin Cauchy [24], and was

not utilized in ML purposes until many years later [2]. Applying the SGD algorithm iteratively

results in the following expression

w(τ+1) = w(τ) −η∆Ep (w) = w(τ) +ηφn tn . (3.15)

The aim of this (3.15) is to find the weights w and bias b that maximizes the margin. where the

learning rate is described by η and the current iteration of the algorithm is represented by τ. It

can be seen from (3.15) that the weight vector is only changed when the pattern is incorrectly

classified. If there exists more than one solution that classifes the training data exactly, then

the one which generalizes best should be chosen. SVM does this by using the smallest distance

between the decision boundaries and any of the samples, which is called the margin concept.

The decision boundary is found by using statistical learning theory to maximize the margin.

This is done as shown below

argmax
w,x

{
1

||w||min
n

[tn(wTφ(x)+b)]

}
. (3.16)

CHAPTER 3. THEORY AND IMPLEMENTATION 21

Equation 3.16 is quite hard to solve and will therefore be simplified by utilizing some of its prop-

erties. First it can be noticed that there exists a gain κ for w and b such that the distance from

any given point xn to the decision surface stays unchanged. By utilizing this property the part

that is aimed to be minimized in (3.16) can be constrained to one for the point that is closest

to the surface, and greater than one for all the other points. To find the maximum of 1
||w|| the

quadratic programming problem is used. This results in the following expression,

argmin
w,x

1

2
||w||2, (3.17)

where the factor 1
2 is just there for practical reasons. This is a constrained optimization problem

that can be solved by the Lagrangian function,

L(w,b,a) = 1

2
||w||2 −

N∑
n=1

an{tn(wTφ(xn)+b)−1}, (3.18)

where a = (a1,aN)T is the Lagrange multipliers. It can be seen from (3.19) that w and b is being

minimized and a is maximized. The Lagrangian (3.19) is derived with respect to w and b, and

these two equations are set equal to zero. Inserting the result in (3.19) the dual representation of

the maximum margin problem is obtained,

L̃(a) =
N∑

n=1
an − 1

2

N∑
n=1

M∑
m=1

an am tn tmκ(xn ,xm), (3.19)

which is maximized with respect to a. The kernel function is here defined asκ(x,x′) =φ(x)Tφ(x′).

Reformulating the model using kernels makes the application of the maximum margin classifier

efficient even to infinite feature spaces. From the Lagrangian constraints it is known that the ker-

nel function is positive definite, because the Lagrangian function needs to be bounded below.

To classify new data points the following equation can be found by using the partial derivative

of the Lagrangian function with respect to w and (3.14) and the resulting function is

y(x) =
N∑

n=1
an tnκ(x,xn)+b. (3.20)

CHAPTER 3. THEORY AND IMPLEMENTATION 22

Since the Lagrangian optimization problem is utilized the Karush-Kuhn-Tucker (KKT) condi-

tions have to be satisfied

an ≥ 0 (3.21)

tn y(xn)−1 ≥ 0 (3.22)

an{tn y(xn)−1} = 0. (3.23)

From constraint (3.21) and (3.20) it can be seen that the data points with their correspond-

ing an equal to zero will not affect the prediction of new data points. The data points with

a corresponding an greater than zero are called suppor t vector s. From constraint (3.23) the

tn y(xn) = 1 has to be true, and therefore the support vectors lie on the maximum margin hyper-

planes in feature space. Once the model is trained only the support vectors are left and the rest

of the data points can be discarded.

The quadratic problem is now solved and the only thing left is to find the bias b. This can be

done by utilizing (3.20) and constraint (3.23) which gives,

b = 1

Ns

∑
n∈s

(tn − ∑
m∈s

am tmκ(xn ,xm)), (3.24)

where Ns denotes the total amount of support vectors.

For the implementation of SVM Python’s Iris data set is used which is explained more in detail in

Section 3. First of all the linearly separable subset will be used, which means that a linear kernel

can be used. Using a linear kernel is beneficial because the training with a linear kernel is faster

than any other kernel. It is also only required to optimize one parameter when training, which

is the regularisation parameter. With low regularization some errors could occur, but it might

even be better for the model. The decision boundary is to be chosen, and it is desired to choose

the one with the highest margin. This is because it classifies the two different groups in a better

way. This is what the SVM tries to do, choose the decision boundary with the highest margin.

The data points nearby the chosen boundary are the ones called support vectors, as explained

CHAPTER 3. THEORY AND IMPLEMENTATION 23

Predicted species
Setosa Versicolor Virginica

Actual species
Setosa 8 0 0
Versicolor 0 8 1
Virginica 0 0 13

Table 3.4: Confusion matrix for the SVM implementation

in the theory section above. It is also chosen to focus on only two of the species because then

the decision boundary is a straight line instead of a plane, which is done to compare the result

with the classification gotten with logistic regression. Python’s Scikit-Learn Linear Support Vec-

tor Classification (LinearSVC) is used, with the default regularization parameter which is equal

to 1. The result is actually the same as in the confusion matrix for logistic regression 3.3. The

maximum number of iterations to be run for the model is kept at the default of 1000 iterations.

When using SVM on the whole dataset, the decision boundary is a hyperplane because it in-

cludes more than three target values. The LinearSVC is also used for this dataset. When using

the default maximum number of iterations at 1000, the model did not manage to converge. This

parameter was changed to 4000 maximum iterations to run. For the rest of the parameters the

default values were kept. The result is shown below.

The matrix in 3.4 shows a good prediction where only one species was incorrect predicted, which

means that the accuracy score is 0.967. By being able to choose the kernel in the SVM model it

is possible to solve complex problems, but it is quite difficult to choose a "good" kernel func-

tion. Since 4000 iterations were needed when using the LinearSVC model on the whole dataset,

another kernel could be better.

3.4 Decision Trees

In a decision tree the input space is recursively partitioned into cuboid regions aligned with the

axes of the feature space. Each region is assigned a simple model. Only one of these models is re-

sponsible for making predictions at any given point. The model is chosen through the traversal

of a binary tree. In this section the focus will be on classification trees.

CHAPTER 3. THEORY AND IMPLEMENTATION 24

3.4.1 Decision Trees for Classification

After dividing the input space into cuboids, one can classify new input by starting at the root

node and then following a certain path based on criteria at each node. When arriving at the

leaf node of the tree the specific class that this input belongs is found. This means that every

leaf node represents one cuboid region, and this region will represent a class in a classification

problem. Decision trees determine which class an input belongs to, not the probability that an

input belongs to a class as for logistic regression described above. In classification, the model

that is assigned to each region, is therefore a specific class. One of the reasons why decision trees

are so popular is of because how intuitive the method is for humans. For instance, as will be

shown below, when trying to classify if an iris flower is a certain species the sequence of binary

decisions is taken by comparing the flower with the criteria. To be able to learn such a model, a

few parameters have to be set. A greedy algorithm can be used to grow a tree. This way a large

tree will be grown using a stopping criterion based on the number of targets for classification,

and then prune the tree afterward. Roughly explained, the pruning is done by removing certain

nodes by merging regions/classifications that correspond to each other. In the code example for

classification below, a Gini criterion is used. The Gini index can be expressed as follows

Qτ(T) =
K∑

k=1
pτk (1−pτk) (3.25)

where pτk is the proportion of data points in region Rτ assigned to class k. τ represents a leaf

node, and T is the total amount of leaf nodes. The cross-entropy error for classification prob-

lems are

Qτ(T) =
K∑

k=1
pτk l npτk . (3.26)

Equation 3.26 and 3.25 is used to measure the performance. It can be seen that both the Gini

index and the cross-entropy error is zero for the proportion of data points in a region equal to

1 and 0. The equations are both maximum when this proportion is 0.5. This way the model

tries to create regions that represent a class with a high proportion of data points. The general

CHAPTER 3. THEORY AND IMPLEMENTATION 25

Predicted species
Setosa Versicolor Virginica

Actual species
Setosa 8 0 0
Versicolor 0 8 1
Virginica 0 0 13

Table 3.5: Confusion matrix for the decision tree implementation

optimal prediction for region Rτ is

yτ(T) = 1

Nτ

∑
xn∈Rτ

tn . (3.27)

Even though the tree structure is intuitive for humans,it is sensitive to small changes to the train-

ing data. Another drawback with the tree method is that the region splits are aligned with the

axis which might not always be optimal when it comes to finding the decision boundary be-

tween two regions.

A decision tree is implemented to solve the same classification problem as in the previous sec-

tions, classify the iris species. The algorithm is used both on the whole data set with four features

and three target values, and on a subset of it where there are only two features and classes which

are linearly separable. Using the decision tree model on the subset gives the same result as for

logistic regression 3.2. The result for the whole dataset is the same as for SVM and is shown

below.

Different tree depths were tested. The best result is the one shown in the matrix above 3.5 with

the tree depth of three. An advantage of this algorithm is that the visual representation of the

tree is quite easy to understand, as can be seen in Figure 3.5 which represents an example ,

retrieved from [2], of a decision tree for the Iris dataset.

3.5 Comparison

As shown above, logistic regression, SVM and decision trees all work for classification problems.

Logistic regression is dependent of linearly separable classes, and if this is not the case the data

CHAPTER 3. THEORY AND IMPLEMENTATION 26

Figure 3.5: Decision tree example of the Iris dataset retrieved from [2].

needs to be transformed. SVM, on the other hand, projects the feature space into kernel space

which makes the classes linearly separable. This means that it does not matter if the classes are

linearly separable or not when using the SVM algorithm. A drawback with SVM is that it might

be difficult to choose a "good" kernel. Decision trees will try to fit the decision boundary as

well as it can be based on the depth of the tree. That is, if the classes are not linearly separable

more depth is needed to make a decision boundary fit. It has also been showed that the logistic

regression gives probabilities as output. With this method, the threshold can be adjusted to get

different classification for the same model. For the subset used here the logistic regression works

quite well, the problem comes when the data includes a lot of target variables and features. This

is the reason why more advanced methods like decision trees and SVMs are needed. When a lot

of data is available, NNs will in most cases perform better than decision trees and SVMs.

Chapter 4

Neural Networks

This section is mainly based on knowledge from [2, 4, 5].

The ANNs have truly evolved from a collaboration between neuroscientists and computer sci-

entists looking into what intelligence is [11]. Tomaso Paggio is a professor at Massachusetts

Institue of Technology and started looking at the problem of intelligence around 1990[11]. He

was making computer vision algorithms for detecting faces and people in street scenes. He

started collaborating with experimental neuroscientists about how the brain detects faces and

people. Neuroscientists have known that the brain’s visual system is built up by a hierarchy of

areas since the 1960s [11]. Paggio tried to mimic the brain in his model for visual recognition.

In Paggio’s model the low levels recognize edges and lines and the higher ones could turn the

edges and lines into object parts and then objects. The brain is built up by 100 billion neurons

communicating [11]. The neurons in the brain are the ones doing the recognition, and from

communicating it among each other the neurons in the highest level can detect the objects.

The word "neural" in NNs comes from the neurons in the brain. The NN is a set of algorithms

loosely modeled after the human brain.

An example of a NN can be one for recognizing a person in an image, as what Paggio looked into.

The overall goal is to map the input which is an image with a person in it, to the output which is

the recognized person.

27

CHAPTER 4. NEURAL NETWORKS 28

In the previous Section 3, we looked at how a system can acquire knowledge by extracting pat-

terns from raw data. We found a few features that we decided to extract for the task and provided

them to the used ML algorithm. Sometimes these features might be hard to find. To make the

algorithm recognize a face, you know that one of the features to look at is the nose. But it is

quite hard to explain what a nose looks like. When designing the features you also need to sep-

arate the factors of variation that explain the observed data [4]. These factors can be looked at

as abstractions that are needed to make sense of variability in the data. For instance, when the

algorithm is trying to recognize the face from the picture, factors like the angle of the face and

brightness of the sun are important. The pixels colors might look a bit different than they are by

night for instance. Due to this we need to find the factors of variation that is important for the

specified task and take these into consideration. The only problem is that these factors might

be quite difficult to extract and therefore when looking at this as one mapping, the task is very

complex. By dividing this mapping into smaller, nested mappings the task is less complex. This

is exactly what Paggio did when he decided to build his vision recognition model based on the

brain’s hierarchy of areas. The mapping of input to output is done by processing the input by a

set of functions, and then pass the output to the next layer. A layer, in a NN, represents the state

of the computer’s memory after executing another set of instructions in parallel [4].

The first layer’s task can be to identify edges by comparing the brightness of neighboring pixels.

The output from the first layer is given to the second layer, and the second layer can look for

corners and extended contours. By using the second layers explanation of the image by corners

and contours, the third layer can find specific collections of contours and corners which will re-

sult in entire parts of objects. The fourth layer can use the third layer’s description of the image

by object parts to recognize the different objects in the image. We have now solved the overall

task of mapping the input image to the output as a recognized object by dividing the mapping

into smaller, nested mappings. This is how NNs generally work by learning a concept at each

layer and communicating it to the other layers.

The difference between DL and NNs is the "deep" part, which means that DL has more learned

concepts or a greater amount of compositions than NNs [4]. The definition of how many learned

concepts or compositions that are needed to be a deep NN is a bit vague. DL is a branch in ML

which learns to represent the world by a nested hierarchy of concepts, where each concept is

CHAPTER 4. NEURAL NETWORKS 29

represented by simpler concepts [4]. This way DL achieves great power and flexibility. The rest

of Section 4.2 will look at deep feedforward- and convolutional networks.

4.1 Deep Feedforward Networks

To explain what deep feedforward networks are, we will start by looking at what a Perceptron is.

The Perceptron was truly intevented by Frank Rosenblatt in 1957 [25], and is one of the simplest

ANN architectures. Rosenblatt’s perceptron contributed to the first popularity wave of ANN [2].

The neurons in a Perceptron has numbered inputs with weights. A linear threshold unit (LTU)

sums the weighted inputs and puts the result in a step function. This step function is typically

a Heaviside function, where the output is dependent on the weighted sum of the inputs. Per-

ceptrons are based on linear models, which means that they cannot learn XOR functionality for

instance. The XOR learning inability, among other limitations the Perceptron has, is pointed

out by Marvin Minsky and Papert Seymour in the book Perceptrons: An Introduction to Com-

putational Geometry [26]. When flaws like the ones mentioned in Minsky- and Seymour’s book

where known, it backlashed against NN approach.

Some of the Perceptron’s limitations, like learning the XOR functionality, can be fixed by intro-

ducing the Multi-Layer Perceptron (MLP). A MLP consists of stacked Perceptrons, and is also

called feedforward NN. The network is called feedforward because the information flows from

the input x, through the intermediate layers with the computations used to define the approx-

imated function f , and at the end the information goes to the output y. The approximated

function, f , is formed by each layer’s sub function, where every layer’s function uses the pre-

vious layer’s function. The layers between the input and the output layers are called hidden

layers because the input does not include a description of what each layer should do to create

the output. The hidden layers contain hidden units, and the output of every unit in one layer

is connected to the input of every unit in the next layer. Having this connection between the

units means that the feedforward network has fully connected layers. The algorithm itself has

to choose what each layer should be to find the best approximated function. The overall goal

of a feedforward network is to approximate some function, f ∗, to generate the most accurate

CHAPTER 4. NEURAL NETWORKS 30

prediction of the output based on the input.

y = f (x;θ,w) =φ(x;θ)T w (4.1)

An example of a mathematical representation of the feedforward NN is showed in (4.1). The pa-

rameters θ are used to learn the hidden layer’s function, φ. w is mapping the learned function,

φ(x), to the output, y. The hidden layers functions can be called activation functions. The activa-

tion function will compute the layer’s values. In todays NNs, it is normally recommended to use

the rectified linear unit (ReLU) as activation function. A ReLU computes a linear function of the

inputs and outputs the result if it is positive, and 0 otherwise [4]. For the feedforward network to

be able to learn, the gradients of complicated functions are needed. We call this gradient-based

learning.

To train NNs, iterative, gradient-based optimizers that derive the cost function to a very low

value are usually used [4]. That is, the training algorithm is based on using the gradient to de-

scend the cost function for the feedforward NN. This means that the training of a NN is not very

different from the training of the basic ML algorithms described in Section 3. Computing the

gradient for a NN might be a bit more complicated than for the basic ML methods. An efficient

way of computing the gradient is built on the mathematical chain-rule concept. This principle

is called the back-propagation algorithm, which was presented in 1986 by David E. Rumelhart

and other researchers [27]. After this algorithm was introduced, NNs gained popularity and had

a peak in the 1990s. Today’s feedforward NN has approximately the same back-propagation

and approach to gradient descend as in the 1980s. The feedforward NN itself does not use the

back-propagation algorithm, but the back-propagation algorithm uses the feedforward NN. The

network is used to feed forward the values from input to output, and then the back-propagation

algorithm will calculate the error and propagate it back to the previous layers. That is, the al-

gorithm will go through the network in reverse to measure each layer’s error contribution from

each connection. The gradient descend is used after the back-propagation algorithm to adjust

the weighted connections to reduce the overall error. The error that will propagate back is found

by utilizing a cost function.

For NNs the cost function is usually defined as the cross-entropy between the training data and

CHAPTER 4. NEURAL NETWORKS 31

the model’s predictions plus a regularization term, which has already been mentioned for basic

ML algorithms in Section 2. The regularization term in the cost function is used to make the

model generalize well. That is, to make the model not only perform well on the training data

but also on new instances. From Section 2 we know that this means to avoid overfitting. The

regularization term in the loss function therefore penalizes for large weights. One type of reg-

ularization that can be used by a broad family of models is called dropout. This technique to

avoid overfitting will randomly ignore or dropout some hidden units in a given layer.

Saying that the NNs is trained using the cross-entropy error is equivalent to the negative log-

likelihood, as discussed in Section 3. To be able to compensate for the error, the negative log-

likelihood is minimized. The minimization can be done by using a gradient descend algo-

rithm.

J (θ) =−E,∼p̂ log pmodel (y|x) (4.2)

(4.2) shows a general form of the cost function for a NN. The form of this cost function depends

on the model.

We want to find the gradient, ∇J (θ), of the cost function with respect to the parameters. The

evaluation of the gradient is done by the back-propagation algorithm. Each layer has to change

its weights according to a back-propagated error message from a later layer, and calculate an

error message for the previous layer. The error is calculated using the gradient, and this is done

efficiently with the back-propagation algorithm. Let us say that we have the input and output

vectors x ∈ Rm and y ∈ Rn respectively, and g maps from Rm to Rn . This means that g is the

activation function defined for each hidden unit. A function f maps from Rn to R, y = g (x) and

z = f (y). Then we can use the chain rule in the back-propagation algorithm to get the gradient

as follows.

∇z = ∂y

∂x

T

∇z (4.3)

Equation (4.3) shows that the gradient can be computed using the chain rule, which means that

the gradient of a variable x is computed by multiplying the Jacobian matrix ∂y
∂x by the gradient

CHAPTER 4. NEURAL NETWORKS 32

∇z for each node in the graph [4]. This technique is used to find ∇J (θ). Normally the back-

propagation algorithm is applied to tensors rather than vectors, but the principle is the same as

in (4.3) by doing some rearranging in the tensor before we run the algorithm.

The SGD is used to perform learning utilizing the gradient found by the back-propagation algo-

rithm. The SGD algorithm finds an estimate of the gradient by finding the average gradient on a

minibatch of m examples drawn independent and identical distributed from the data generat-

ing distribution [4]. The learning rate is a crucial part of the SGD, and it is gradually decreasing

throughout the algorithm until a certain iteration is reached. The iterations after this iteration

will have a constant learning rate.

Batch Normalization (BN) is usually used in the gradient descend algorithm to optimize the

learning. BN addresses the problem that the distribution of each layer’s input changes during

training [2]. This happens because the parameters of the previous layers change. The BN op-

eration is done before the activation function in each layer. The operation includes scaling and

shifting of the layer’s input. BN makes it possible for the NNs to have a larger learning rate, and

make them less sensitive to weight initialization. Without using the BN, the exploding gradient

could occur which can make the learning unstable. The gradient is found by looking at the dif-

ference between the predicted values and the actual values, which means that if the error is big

the gradient will get big and could "explode".

We have now seen how the feedforward nerual network operates, and how it learns by using

gradient-based learning. The deep feedforward network is a fully connceted network and there-

fore it has a lot of paramteres to tune for complex data. In the introduction of Chapter 4 we

mentioned an example of recognizing a person in an image. This will work fine with deep feed-

forward NN if the image is small, but with larger images the network will break down [2]. To

perform image recognition on larger images a specialized kind of deep feedforward networks

called convolutional networks can be used.

CHAPTER 4. NEURAL NETWORKS 33

4.2 Convolutional Networks

The human perception of differentiating objects seems effortless, but for a computer this task

is extremely complex. The perception happens outside the human’s consciousness, within spe-

cialized visual, auditory, and other sensory modules in our brains [2]. This type of NNs, which

also goes under the name convolutional neural networks (CNNs), are specialized in processing

data that has a known grid-like topology [4]. The CNNs are typically used for processing images,

which has a 2D grid of pixels, and has occurred from studying the visual cortex of the brain.

[2]. These networks performs better on image recognition for large images than the deep feed-

forward NN because it has partially connected layers. This way the CNN has less parameters

to tune than the feedforward NN. The CNNs also uses convolution instead of matrix multiplica-

tion, as the deep feedforward NNs uses, in at least one of the layers. The neurons in the first con-

volutional layer is not connected to every pixel in the input image, instead it is just connected to

neurons located in a small rectangle of the input image [2]. Every convolutional layer’s neurons

in the CNN is only connected to a small rectangle of the neurons in the previous layer. For a

layer to have the same height and width as the previous layer, zero padding is used around the

input.

The input of a convolution in ML is usually a multidimensional array of data. The kernel is

usually a multidimensional array of parameters that the learning algorithm adapts. The kernel

represents the neuron’s weights, and can also be called a filter. A multidimensional array will

from now on be called a tensor. We can represent the discrete convolution between a filter and

an image as done below.

s(i , j) = (K ∗ I)(i , j) =∑
m

∑
n

I (i −m, j −n)K (m,n) (4.4)

In (4.4) the input is the image I , and the kernel is also two-dimensional and is represented by K .

The convolution has a commutative property because the kernel in this example is flipped rela-

tive to the input. This is a property that is not needed for the implementation of NNs. Therefore

we say convolution, but the networks are normally using cross-correlation, which is the same as

convolution except it does not do the flip operation. In this paper the same convention will be

CHAPTER 4. NEURAL NETWORKS 34

used, and it will be specified if the kernel is flipped. A representation of the convolution without

a flipped kernel, the cross-correlation, is shown in Figure 4.5.

s(i , j) = (K ∗ I)(i , j) =∑
m

∑
n

I (i +m, j +n)K (m,n) (4.5)

This convolution is used in the layers to recognize patterns like edges, object parts, full objects

and so on. The kernel is convolved with the input in the convolutional layer, and the result,

s(i , j), is the output that is given to the next layer. A layer of neurons using the same filter gives

a feature map where the pixels in the image that are similar to the filter are highlighted [2]. Mul-

tiple feature maps like this are stacked upon each other and compose a 3D convolutional layer.

The layer does multiple convolutions simultaneously to its input, where each feature map has

its weights and bias [2]. An image also consists of layers, which are called channels in the image,

where a colored image has three layers. One layer for red, one for green and one for blue.

To understand how this discrete convolution works in practice, you can look at it as a matrix

multiplication. Where the matrix have certain constraints depending on the input.

The interaction between input and output in CNNs is referred to as sparse interactions or sparse

weights. Compared to traditional NNs where every input interacts with every output, convolu-

tional networks have a small kernel that only occupies some of the important pixels. We see that

there is an obvious improvement in efficiency.

Another difference from traditional NNs are the concept of parameter sharing, which means

that each parameter can be used for more than one function in a model in convolutional net-

works. As mentioned earlier, traditional NNs use matrix multiplication between the input ma-

trix and the weight matrix. This means that each element in the weight matrix is only multiplied

with one of the input elements, we call this tied weights. This means that we need to learn a set

of parameters for every location. With CNNs on the other hand, each parameter of the kernel is

used by every input parameter, with a few expcetions. By using this method the network only

needs to learn one set of parameters, which reduces the storage.

The CNNs also have a equvariant representation, which means that if the input changes, the

output changes the same way. For example if we shift the input by time, the output will be the

same as before but shifted the same amount of time as the input.

CHAPTER 4. NEURAL NETWORKS 35

A convolutional layer typically consists of three stages. The first one does the convolutions in

parallel and gives its output, a set of linear activation, to the next stage. Stage two feeds the

linear activation into a nonlinear activation function, sometimes called the detector stage. In

the last stage, a pooling function is used to for instance make the representation more robust

against small translations in the input, invariance. This becomes handy when we want to check

if a feature is present rather than exactly where it is. Pooling can also be used to reduce the size

of the representation to speed up the computation and to make it possible to use input of dif-

ferent sizes. Different pooling functions exist to make the wanted output for the specific task.

A typical pooling function can be max or mean. Say for instance the max pooling kernel is of

size 2x2, and the input is of size 4x4. When the pooling kernel moves over each quadruple of

pixels, it only keeps the maximum value. The pooling kernel that will be sent to the next layer

will therefore consist of 4 pixel elements, where each represents the maximum of its quadruple

in the input. 75 percent of the input is dropped in the output. The neurons in the pooling layer

do not have any weights. The pooling layer’s task is only to optimize the convolutional layer. A

clustering algorithm can, for example, be used to dynamically pool features together.

Dataset

The first dataset that will be used to implement CNN is the Mixed National Institute of Stan-

dards and Technology (MNIST) dataset of handwritten digits. The MNIST dataset is distributed

by Yann LeCunn’s "THE MINST DATABASE of handwritten digits". This dataset consists of grey-

scale images with handwritten digits. Grey-scale images have just one channel, compared to

the colored images with three channels. Each image has a corresponding label of which digit is

represented by the image. The dataset consists of 60000 pairs of handwritten digits and labels

for training, and 10000 for testing. The training set is split into 9999 data set for validation of

the model, and 50000 for training. One sample is left out to make sure that the validation- and

training set do not have any similarities. This dataset will be used for image recognition classifi-

cation, and the result is showed in the implementation section. Before implementing CNN and

applying it to the MNIST dataset, the dataset needs to be analyzed.

The matrix of an image consists of 28x28 pixels, which means that the image is relatively small.

CHAPTER 4. NEURAL NETWORKS 36

Figure 4.1 shows the data distribution for the train-, test- and validation data. All of the datasets

have the most occurrences of the digit one, and it could look like the second most occurred digit

is number seven. These two digits might be a bit hard to differentiate because of their similar

appearance. The digits six and eight might also be a bit hard to differentiate because of their

appearance. Since the distribution for all of the dataset is quite similar, digits that might be hard

to differentiate should affect the datasets more or less equally. By looking at the different images

in the datasets there is no obvious difference in quality when it comes to resolution and bad

handwritten digits. If the resulting performance for the implementation acts strangely on the

different datasets this could be investigated more carefully.

(a) Training data distribution (b) Test data distribution

(c) Validation data distribution

Figure 4.1: Data distribution for the MNIST dataset

CHAPTER 4. NEURAL NETWORKS 37

The second dataset that will be used for implementing a CNN is the CIFAR10 dataset. The CI-

FAR10 includes 60000 32×32 pixel color images, which implies that these images are a bit bigger

than the MNIST images. The 60000 images are divided into ten classes which are airplane, au-

tomobile, bird, cat, deer, dog, frog, horse, ship and truck. These classes are completely mutually

exclusive, which means that an image can only be in one of the classes. Since the images are

colored, compared to the ones in the MNIST dataset, each pixel will have three channels. Each

image has a corresponding class label. The 60000 sets of image and label are divided into 50000

for training and 10000 for testing. To decrease computation time only the first four classes will

be used in the implemented CNN. The training data therefore consists of 20000 datasets, the

validation data consist of 4000 datasets and the test data consists of 3999 datasets.

Figure 4.2 shows the data distribution of the train-, test- and validation data. The distribution

for the train- and test data appears to be quite similar and uniformly distributed. The test distri-

bution, on the other hand, stands out with more variation in the amount of data for each class.

The bird class seems to have the most data, and the automobile class seems to have the least

amount of data. If it is harder to interpret a bird than an automobile, this could be a reason why

the performance is worse on the test data or vice versa.

CHAPTER 4. NEURAL NETWORKS 38

(a) Training data distribution (b) Test data distribution

(c) Validation data distribution

Figure 4.2: Data distribution for the CIFAR10 dataset

Implementation

CNN for the MNIST Dataset

The first implementation of CNN to perform image recognition is done in Python using the

MNIST dataset described in Section 4.2. The goal is to predict the correct handwritten digits

with good accuracy. The implementation is built on knowledge from [2, 5].

The only feature engineering operation done is normalization on the images. This is done by

dividing every feature in the 28× 28 matrix, representing an image, by 250.0. This way every

feature, pixel, is in the range [0, 1].

Tensorflow’s Keras is used to create a sequential model in which layers are added to. Keras is

a high-level API for Tensorflow. The knowledge of the Keras implementation is obtained from

CHAPTER 4. NEURAL NETWORKS 39

Tensorflow’s homepage [5]. TensorFlow is developed by Google and has an emphasis on the

manipulation of tensors, hence the name [10]. The first layer added is a 2 dimensional convolu-

tional layer with 32 nodes or neurons. The layer’s kernel is of size 3×3 and the activation function

used is the ReLU function mentioned in Section 4.2. This is the only convolutional layer in this

network, but it is enough for the network to be convolutional. It also has a he uniform kernel

initializer.

The next layer added is just a flatten layer with no parameters. This layer flattens the dimension

of its input, but does not affect the batch size. The flatten layer serves as a connection between

the convolutional and dense layer. The flatten layer is thus followed by a dense layer, with 128

nodes and the ReLU activation function. A dense layer is a fully connected layer, which is ex-

plained in Section 4.2. The last layer is also a dense layer with 10 nodes but with the activation

function softmax. The softmax activation function is used in the output layer to output the esti-

mated class probabilities for the 10 mutual exclusive classes [2]. The epochs are set to ten, which

means that this dense layer will go through the training set ten times. The number of epochs is

set to the number of classes in the dataset.

This CNN model is compiled with the Adam optimizer and the sparse categorical crossentropy

loss function. Finding the correct learning rate for the network might be tricky. If it is too high

the training could diverge, and if it is too low the training will take quite a while to converge to

the optimum [2]. Adam is an adaptive learning rate optimization algorithm, which makes the

implemented CNN converge to the optimum, but it still takes some time. The first CNN created

had a problem with overfitting, that is, the accuracy for the training data was quite higher than

the one for the validation data. To solve this problem different regularisation techniques were

tested. A dropout layer with a dropout of 0.5 was added to the model. The dropout layer is only

in the model to optimize the its performance, but it slows down training. A dropout of 0.5 means

that there is a 50 percent chance that the outputs from the previous layer, which will be the input

to the next layer, is set to zero or dropped out. Adding this layer made the accuracy gap between

the training data and the validation data smaller. Adding another dropout layer with the same

dropout rate between the flatten and the dense layer resulted in an even smaller gap. The CNN

implemented for the EMNIST dataset can be shown in Table 4.1.

CHAPTER 4. NEURAL NETWORKS 40

Layer Neurons Kernel initializer Kernel size Activation function

Convolutional 32 He uniform 3×3 ReLU
Dropout 0.5 rate - - -
Flatten - - - -
Dropout 0.5 rate - - -
Dense 128 He uniform - ReLU
Dense 10 He uniform - Softmax

Table 4.1: The CNN architecture of the implementation for the MNIST dataset

(a) Accuracy (b) Loss

Figure 4.3: CNN implementation for MNIST dataset evaluation

Figure 4.3 shows the resulting loss and accuracy for the training- and validation data. From the

figure it looks like the training accuracy starts at approximately 0.93 in the very beginning of the

first epoch. The CNN learns the relatively simple MNIST dataset quite fast, which means that

even though the accuracy starts low as expected it goes up so fast that it is not showing in the

figure. The validation accuracy is calculated after the model has trained on the training dataset

and is therefore not expected to start low. Figure 4.3 shows that the validation accuracy starts

at approximately 0.97 which is quite high. One reason for this could be that the validation data

is quite similar to the training data and is therefore simple for the model to interpret. As shown

in Section 4.2 the distribution of the training- and validation data is quite similar. For the first

three epochs it looks like the model is underfitting the training data, but after epoch four the

CHAPTER 4. NEURAL NETWORKS 41

Figure 4.4: Digit number four in the test set for the MNIST data

model is overfitting the data. The overall loss for the training data is decreasing. The loss for the

validation data is increasing until epoch four where it starts to increase, which is another proof

of overfitting. The best accuracy achieved for the training data is 0.9912, and for the validation

data it is 0.9857. The test accuracy is 0.986 and the test loss is 0.056 which is quite good!

The CNN implementation with its performance showed in Figure 4.3 predicted the digit in Fig-

ure 4.4 with a probability of 1 to be a digit number four. The next highest probability was of

1.2133750×10−6 for the digit number nine. This is a quite low probability, but the probabilities

for the other digits starts at 10−11 and gets lower. It makes sense that the digit number nine has

a quite high probability compared to the others since the digit in Figure 4.4 could be a number

nine if it was closed on the top. As explained in the theory Section 4.2, the CNN looks at parts of

the digit and puts the information together at the output of the network to give a probability. By

not looking at the top of the digit in Figure 4.4 it could be both a four and a nine.

CHAPTER 4. NEURAL NETWORKS 42

CNN for the CIFAR10 Dataset

A CNN is also implemented to perform image recognition on the CIFAR10 dataset described

in 4.2. The goal is to predict the correct animals and vehicles with good accuracy. The imple-

mentation is built on the CNN network used for the MNIST dataset, which again was built on

knowledge from [2, 5].

The feature engineering done for this dataset is the same as was done for the MNIST dataset.

Normalization is performed by dividing each feature in the images for the datasets by 250.0,

which gives features in the range [0,1].

Since this project thesis serves as a learning period three different CNN models will be imple-

mented and applied to the CIFAR10 dataset to evaluate the performance. All of these three

CNN models are compiled with the same optimizer and loss function as the CNN for the MNIST

dataset, that is, the Adam optimizer and the sparse categorical crossentropy loss function. Each

of these CNNs is built using a Sequential model from the Tensorflow’s Keras library.

Model 1

Using the same CNN for the CIFAR10 dataset as for the MNIST dataset resulted in bad perfor-

mance. To get better performance, two more convolutional layers were added to the CNN for

the CIFAR10 dataset. All of these layers have 64 neurons, a kernel size of 3× 3, the activation

function ReLU and the he uniform kernel initializer. The first convolutional layer serves as in-

put layer, while the other two serves as hidden layers. A flatten layer is implemented after the

convolutional layers and before the dense layer. The flatten layer flattens the dimensions of

the output from the convolutional layer to make it compatible for input data to the dense layer.

The dense layer has 128 neurons and the ReLU activation function. After these hidden layers,

a dense layer serves as the output layer. The output layer has 4 neurons, one for each of the

classes to predict, and has the softmax activation function. This network is shown in Table 4.2.

The result from the CNN described Table 4.2 is shown in Figure 4.5.

CHAPTER 4. NEURAL NETWORKS 43

Layer Units Kernel initializer Kernel size Activation function

Convolutional 64 He uniform 3×3 ReLU
Convolutional 64 He uniform 3×3 ReLU
Convolutional 64 He uniform 3×3 ReLU
Flatten - - - -
Dense 128 He uniform - ReLU
Dense 4 He uniform - Softmax

Table 4.2: The CNN architecture of model 1 for the CIFAR10 dataset

(a) Accuracy (b) Loss

Figure 4.5: Model 1: CNN implementation for MNIST dataset evaluation

These fiugres shows that the model is overfitting the training data, but the test accuracy is 0.9882.

One reason for this could be that the quality of the images in the validation dataset overall is

worse than it is for the test dataset, and that the validation dataset is a bit similar to the training

dataset.

Model 2

To get rid of overfitting, regularization techniques can be used. The first technique tested is done

by adding three dropout layers with a dropout of 0.4. With the dropout layers the accuracy gap

between the training- and the test data got decreased, but the model is still overfitted, as can be

CHAPTER 4. NEURAL NETWORKS 44

seen in Figure 4.6. The test accuracy is 0.9517 for the second model. This could be another sign

that the training data is more similar to the test data than the validation data, or the validation

data images are of poor quality.

(a) Accuracy (b) Loss

Figure 4.6: CNN implementation for MNIST dataset evaluation

CHAPTER 4. NEURAL NETWORKS 45

Layer Units Kernel initializer Kernel size Activation function

Convolutional 64 He uniform 3×3 ReLU
Max pooling 2×2 dim. - - -
Dropout 0.4 rate - - -
Convolutional 64 He uniform 3×3 ReLU
Max pooling 2×2 dim. - - -
Dropout 0.4 rate - - -
Convolutional 64 He uniform 3×3 ReLU
Flatten - - - -
Dropout 0.4 rate - - -
Dense 128 He uniform - ReLU
Dense 4 He uniform - Softmax

Table 4.3: The CNN architecture of model 3 for the CIFAR10 dataset

Model 3

The next regularization technique used to get rid of the overfitting is max pooling. Two max

pooling layers with the 2× 2 dimension was added to the CNN, and the resulting network is

shown in the Table 4.3. The resulting performance from the network in Table 4.3, which is shown

in Figure 4.7 is not overfitting the training data, but rather underfitting. The test accuracy is

0.8900 for this model.

(a) Accuracy (b) Loss

Figure 4.7: CNN implementation for MNIST dataset evaluation

The validation dataset is used after each epoch to validate the model. The validation loss and

accuracy should indicate if the model is underfitting or overfitting the training data. For these

CHAPTER 4. NEURAL NETWORKS 46

three CNNs represented in this section it looks like the better the performance for the valida-

tion dataset is, the performance for the test dataset gets worse. From this it can be concluded

that the validation dataset chosen is not the best for the training dataset, or the test dataset is

too similar to the training dataset. The model can be tested on the different dataset to see if

it is generalizing well. Cross-validation can also be used to see if there are better splits for the

validation dataset.

Chapter 5

Generative Adversarial Networks

The theory and implementation in this section is mainly based on knowledge from [9, 4, 10].

In the proposed adversarial nets framework, the generative model is pitted against an adversary:

a discriminative model that learns to determine whether a sample is from the model distribution

or the data distribution [14].

5.1 Theory

The NNs and basic ML methods in the previous Sections 3 and 4, goes under the category of

discriminative modeling. A discriminative model will be able to learn from labeled training data

to predict the label of new data. For instance, in the CNN implementation for predicting the

digits in the MNIST dataset the training data had images of digits between zero and nine and

their corresponding label 4.2. When giving the trained CNN model new input it had never seen

before it was able to predict the labels of the digits with quite a good accuracy. In section five 5,

generative modeling will be introduced and utilized, together with discriminative modeling, to

be able to generate new data from a set of training data.

47

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 48

Generative Models

The input for a generative model is usually unlabeled, but it can also be labeled. The output

of the generative model will be a set of pixels, for instance, that have a high chance of being

predicted to belong to one of the classes in the training dataset. With generative modeling it is

possible to figure out how the data was generated, and not only make predictions on it as with

discriminative models. The generative model is also probabilistic, which means that it does not

produce the same output every time. This is accomplished by introducing a random element,

which is done in the implementation below by generating a vector of random noise. A gener-

ative model aims is to learn the true data distribution of the training data, and then use this

distribution to generate new data that looks like it comes from the same distribution.

The Naive Bayes model builds on the naive assumption that each feature is independent of every

other feature [10]. This kind of model will estimate the probability of seeing each feature inde-

pendently. The probability of the Naive Bayes model to generate an observation is calculated by

multiplying the probability of the appearance of each feature itself. This model can work well

as a generative model for features that are reasonable to expect to be independent. The Naive

Bayes model does not work well on raw image data though. This is because the pixels, which

will be the features, are not independent of each other. Creating a generative model for images

involves DL for the model to find the features itself and learn the unknown probabilistic distri-

bution function for the features in the training dataset.

Representational learning is used in a generative model to represent an observation, for instance

an image, in a lower dimensional latent space. The generator finds a function to map a pixel

point in the latent space to a point in the high-dimensional image [10]. The random noise vec-

tor fed into the generator in the implementation below is the representation of the image in

the latent space. Using a latent space representation of the image instead of using raw pixels

simplifies the problem and gives better performance. Humans also use a latent space represen-

tation when playing the Catch Phrase game for instance. This is a word guessing game where

the player wants their partners to guess the word on the player’s card without saying the word

itself. For instance, if the word is "apple", the player can describe "batches" of pixels like its

shape, color and so on and assume the partners have an idea of how these batches look like in

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 49

pixels. The player’s partners are then mapping the explanation in the latent space to pixels to

generate an image of an apple. Latent space also comes handy for manipulations of an image,

which we can call latent arithmetics [10]. For instance, it is possible to change the latent space

vector of an image of a smiling person to make the decoded image be the same person but sad.

This same technique can be used to morph between two faces. This way complex problems can

be solved by dividing it into smaller and easier problems.

Deep Generative Models

Variational autoencoders (VAE) is a famous and fundamental generative DL model [10]. An au-

toencoder can be used to do the mapping from a high dimensional space to a low dimensional

latent space and vice versa. An image can be encoded to a vector in the latent space, which again

can be decoded to an image in the high dimensional space. When decoding back to the high di-

mensional space some information will be lost which means that it is hard to reconstruct the

input image. An autoencoder network can be trained to find weights that will minimize this loss

of information. Comparing the autoencoder to known models, one can see that the decoder is a

bit similar to the generative model and the encoder is a bit similar to the discriminative model.

The implementation is also quite the same. To create the autoencoder, a third model has to be

implemented where the encoder model’s output is taken as input in the decoder model. When

this third model is created, it needs to be compiled with an optimizer and loss function, just

as for the NN in section 4.2. The model will be fitted to a training dataset with corresponding

labels. This model takes an image, passes it through the encoder and back through the de-

coder to reconstruct the image again. There are some drawbacks with the autoencoder which

can be solved with the variational autoencoder. Each image is in the variational autoencoder

mapped to a multi rate normal distribution around a point in the latent space, instead of just

being mapped to a point in the latent space as was the case for the autoencoder [10]. This in-

troduces a randomness to the model which results in a point in the latent space that has not

been seen by the decoder before to still be decoded to a well-formed image. VAE works fine as

a generative model when a low dimensional latent space, for instance of two dimensions, can

be used. With higher dimensions of the latent space, the VAE will have trouble performing well.

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 50

VAE can be used to generate "fake" images of people based on a training dataset with a lot of

images of "real" people. The images will have quite low quality and resolution, but it will still

be possible to see that it is an image of a person. To generate images of people with a higher

resolution, GANs can be utilized.

A GAN consists of two networks, one called the generative network and the other called the dis-

criminative network. These two networks are adversarial, thus the name GANs. The networks

are generative because they are probabilistic, which implies that the model does not produce

the same output every time. The generative network generates samples from random noise,

while the discriminative network takes both the actual data and the generated samples as input

and labels it as "fake" or "real". The generative network wants to generate good "fake" data to

"trick" the discriminative network to label it as "real", while the discriminative network does not

want to be "tricked". This is how the networks are adversarial. If enough data are available the

GAN can converge. The goal is to find an unknown probabilistic distribution that explains why

some images are more likely to be found in the training dataset, and others a not [9].

An example of a GAN can be an iterative two-player minmax game with the value function

V (G ,D), as shown in 5.1 [14]. The generator, G , minimizes its loss when its generated samples

get a probability of one from the discriminator, D , that is D(G(zl atent)) = 1. The discriminator,

on the other hand, minimizes its loss when the probability is one for "real" data, D(x) = 1, and

zero for the generated samples, D(G(zl atent)) = 0. The main principle of GAN is the alternate

training of the discriminator and generator and the aim is to reach convergence. The conver-

gence requires enough capacity, computation time and data.

min
G

max
D

V (D,G) = Ex∼pd at a [log(D(x))] +Ezl atent∼pzl atent
[log(1−G(zl atent))] (5.1)

In the implementation GANs will be used for generating images GANs. The goal is to be able

to generate new sets of pixels that look like they have been generated by the same set of rules

as the pixel sets in the training data. The discriminator in the GAN is built with a convolutional

architecture, in a similar way as the CNN is built in section 4.2. That is, starting with an image,

getting the feature maps and down sampling the image [14]. For the CNN the output was either

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 51

Figure 5.1: The layer architecture of the generator and descriminator of a GAN [10]
,

four or ten probabilities, but for the discriminator network there will always be just one proba-

bility in the output. This probability will be one if the image is a "real" sample, and zero if it is a

generated sampled data.

The generative network is built on a transposed convolutional architecture, which is in a way

opposite to the convolutional architecture. The generative network will not start with an image

but with a latent vector and end up with an image. Transposed convolutional layers are used to

increase the dimensionality from the dimensions of the latent vector to the dimensions of the

image to be generated. The layers of the generator and discriminator is shown in Figure 5.1,

which shows how the generator maps a vector to an image and the discriminator maps an im-

age to a probability that the image is "real" or "fake" [10]. The generator generates the images

only based on the vector, and not by using the training data. The dimensions in 5.1 is for an

example of a GANs implementation done for the CIFAR10 dataset [10] and may differ a bit in

the following implementation, but the concept is the same.

5.2 Implementation

GAN for the MNIST Dataset

This GAN implementation will be built on the CNN implementation described by 4.3, in sec-

tion 4.2, where the MNIST dataset is described as well. The goal is to generate images of digits

that will pass as digits from the MNIST dataset in the discriminator network. This will be imple-

mented utilizing Tensorflow’s Keras, as was done for the CNN.

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 52

Layer Units Input Output Kernel size Activation Strides

Convolutional 64 28×28 14×14 3×3 ReLU 2×2
Convolutional 128 14×14 7×7 3×3 ReLU 2×2
Dropout 0.5 rate 7×7 - - - -
Flatten - 7×7 - - - -
Dense 1 - - - Sigmoid -

Table 5.1: The discriminator’s architecture for the GAN implementation on the MNIST dataset

The feature engineering applied is scaling the pixels to a range of [−1,1] which is common prac-

tice when dealing with GANs for images. This is done by first dividing the pixels by 250.0 as was

done for the CNN implementations in section 4.2. Secondly, the pixels are scaled by two and

shifted by minus one.

The discriminator has the same principal as the CNN implemented in section 4.2. The code

to create the discriminator will therefore be quite similar. One difference is that the last dense

layer will not output ten probabilities anymore, but one. Strides will also be added to the con-

volutional layers, which will reduce the size of the width and height of the output tensor with

respect to the input tensor. A stride of 2×2 will output a tensor with half the size of the input

kernel. This is handy to decrease the dimensions. Padding will also be added to not lose any

information. This means that if the stride is set to one and the padding to "same", the output

size will be the same as the input size no matter the size of the kernel.

As can be seen in Table 5.1, which shows the discriminator’s architecture, the stride reduces the

width and height from input to output in the two convolutional layers. The first two layers also

have 64 and 128 filters respectively. The output of a dropout layer is unknown, and is therefore

not written in the table. The ReLU activation function and the dropout layers are taken from the

CNN implementation 4.3. The output layer of the discriminator network is a dense layer with

one node and the sigmoid activation function. The discriminator will output a single number

between zero and one, thus the probability of ""real"" or "fake" image. The sigmoid function

was introduced in the Logistic Regression section 3.4. If the discriminator outputs a number

above 0.5, the input will be classified as "real", and if the output of the discriminator is below 0.5

it will be classified as "fake".

The generative network is also inspired by the CNN implemented 4.3, but the convolutional lay-

ers are replaced with transposed convolutional layers. The reason for this replacements is that

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 53

Layer Units Input Output Kernel size Activation Strides

Dense 12544 100× 12544 - ReLU -
Reshape - 12544 7×7×256 - - -
Transposed Con-
volutional

128 7×7×256 7×7×128 3×3 ReLU 1×1

Transposed Con-
volutional

64 7×7×128 14×14×64 3×3 ReLU 2×2

Transposed Con-
volutional

1 14×14×64 28×28×1 3×3 tanh -

Table 5.2: The generator’s architecture for the GAN implementation on the MNIST dataset

the goal is to generate a 28×28×1 dimensional image from a lower dimensional latent vector.

The stride in a transposed convolutional layer will increase the dimensions, this is called up-

sampling. When the stride is 2×2 in a transposed convolutional layer the width and height is

doubled, compared to the convolutional layer in the discriminator where the same stride made

an output tensor with half the width and height as the input tensor. For the convolutional layer

the gaps between pixels are filled with zeros, but in the transposed convolutional layer the ex-

isting pixel values are just repeated in the gaps [10].

As can be seen in Table 5.2, which shows the generator’s architecture, the dimensions in the

transposed convolutional layer is increasing with the stride dimension. The transposed convo-

lutional layers also have padding set to "same" which means that no information is lost between

layers. The output from the generator is a 28×28×1 dimensional image. The generator takes a

vector as input, which consists of 100 values per instance. This vector is generated by Numpy’s

random.uniform between minus one and one. This vector consists of the same amount of ran-

dom noisy images as the batch size, which is 200. The activation function of the output layer is

the tanh function which looks like the sigmoid function except it goes from minus one to one.

This activation function is chosen because the pixels of the training data is scaled and shifted to

be in the range [−1,1]. The tanh function will map the range of the generator to the range of the

image data, which is [−1,1] [10].

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 54

Figure 5.2: The training process of GAN illustrated [10]
,

When the discriminator and generator are implemented, the training of the GAN can begin. Fig-

ure 5.2 illustrates the training process of a GAN on a dataset of animals. The training process for

this implementation will be exactly the same except it will be done on the MNIST dataset.

Firstly the discriminator’s training process will be explained. Random noise is generated and

given as input for the generator network. The output from the generator based on the random

noise vector given as input, is given as input to the discriminator. The output from the discrim-

inator is a prediction of the label of this input. A label of zero indicates that the discriminator

has predicted that the input comes from the generated training batch. The discriminator also

gets inputs from the actual training batch, which will give a label of one if it is predicted as "real"

data from this batch. Thus, in the training period for the discriminator, is given both generated

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 55

images and "real" images from the batch. The discriminator uses a binary cross-entropy func-

tion to compare the predicted output from the generated samples with a tensor of zero. The

predicted output from the discriminator when images from the training batch are the input is

compared with a tensor of ones in the binary cross-entropy function, and a tensor of zeros if the

images come from the generated batch. This means that the binary cross-entropy function is

the loss function for the discriminator, and is the one to minimize. The Adam optimizer with

default parameters is used when compiling the discriminator model [28].

For the generator’s training process, a Keras model with both the generator and discriminator is

needed. The weights of the discriminator is frozen so that they will not be updated during the

generator’s training process. The discriminator is added to the model, and then the generator is

added. This model will take a random noise vector as input, and output a prediction. The gen-

erator aims to get this predicted output as close to one as possible. The loss function is a binary

cross-entropy function comparing the predicted output from the discriminator, based on the

generated training batch, with a tensor of ones. This loss function will be minimized since the

generator wants its generated image to be predicted as a "real" image by the discriminator, that

is, close to one. The Adam optimizer with default parameters is also used to compile this mixed

model of the generator and discriminator. The weights of the discriminator in this mixed model

will be updated during the discriminator’s training process.

Figure 5.4a shows sixteen images of digits from the MNIST dataset. These are the ones fed into

the discriminator, and should be predicted as "real". After running the GAN on the MNIST

dataset for 8 epochs, Figure 5.4b shows some of the generated images. These generated im-

ages are not even looking like digits. Figure 5.3a shows that the accuracy for the generator stays

at zero after approximately the first 300 batches. The discriminator’s accuracy converges to one

after approximately 1500 batches. Running the networks over more epochs could result in better

generated images, but it will be time-consuming. BN layers could be added to the convolutional

layers to speed up training and improve the performance. Using different minibatches to com-

pute the normalization statistics on each training step results in fluctuation in the normalizing

constants [14]. When these batches are small the fluctuations can become large, which could

result in the fluctuations affecting the generated image more than the actual latent vector. A

solution to this fluctuation problem is to utilize a reference BN. This solution consists of running

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 56

the network once on the reference minibatch, and once on the actual minibatch to train on [14].

Mean and standard deviation is then computed for every feature utilizing this reference mini-

batch, and then the features in both batches are normalized using these normalization statistics.

This can be a great solution to the fluctuation problem unless the model overfits the reference

batch. Another BN called virtual BN is avoiding this overfitting problem by computing the mean

and standard deviation by a union between the reference- and actual minibatch [14]. The mini-

batch’s examples are processed independently for both of the new techniques introduced above.

The accuracy for the generator stays at zero, and the accuracy for the discriminator stays at one

after running the implementation over more epochs.

(a) Accuracy over 8 epochs (b) Loss over 8 epochs

Figure 5.3: Evaluation of the GAN implementation without tuning over batches

Another problem when training the GAN can be inconsistent fluctuations in the loss of the dis-

criminator and generator. It is desired to have a loss that stabilizes or gradually increases or

decreases in the long term [9]. This is desired to make sure that the GAN will converge over

time. As can be seen from Figure 5.3b the generator’s and discriminator’s loss has converged,

but not to the desired value.

Modal collapse could also occur during the training of the GAN. This phenomenon could hap-

pen if the generator has been trained over several batches without updating the discriminator,

and it finds a set of samples that always "fools" the discriminator [9]. All the points in the latent

space will be mapped to this set of samples, thus the gradient of the loss function will collapse

to near zero. Even if the discriminator is being trained and updated, the generator will have

the upper hand and the GAN will get stuck. Figure 5.5 shows a result of the modal collapse [9].

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 57

(a) Images of digits from MNIST dataset (b) Generated images over 8 epochs

Figure 5.4: "real" and generated MNIST data digits without tuning

Figure 5.5: Example of modal collapse [9]
,

Modal collapse is not the issue for this implenetation since the generator’s accuracy is zero, 5.3a,

thus the discriminator has not been "fooled".

The overall performance of the GAN can be a bit difficult to evaluate during the training process

because of the uninformative generator loss [9]. The loss of the generator can increase even

though the quality of the generated images are improving and vice versa. During the training

of the implementation in section 5 the performance over each epoch is evaluated by displaying

the generated images as shown in Figure 5.4 and the accuracy for both the discriminator and

generator as shown in Figure 5.3a.

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 58

The generated images could also be improved by changing the networks in the GAN. Hyperpa-

rameters like dropout, stride, learning rate, kernel size, BN parameters, latent space size, activa-

tion layers, convolutional filters and batch size could be tuned. The architecture for the gener-

ator and discriminator could also be changed to improve the performance of the implemented

GAN. The tuning can be time-consuming and requires great knowledge in the field of GAN.

The optimizer used in this implementation is the Adam optimizer with the default hyperpa-

rameters, where the learning rate is 0.001, the momentum decay is 0.9 and the scaling decay

is 0.999 [2]. In section 4.2 the default hyperparameter settings for the Adam optimizer worked

fine, but for the GAN implementation they might need some tuning. Since the Adam optimizer

is an adaptive learning rate algorithm, as mentioned in section 4.2, the learning rate requires

less tuning and will therefore remain at the default value for now. The momentum decay pa-

rameter can be between zero and one. By keeping the implementation as it was for 5.3, and only

decreasing the momentum decay parameter, the performance increases significantly! Figure 5.7

and 5.6 shows the resulting performance of the GAN implementation over 50 epochs by setting

the momentum decay to 0.5. The accuracy of the discriminator is increasing while the accuracy

of the generator is decreasing over time. This is an unwanted behavior which shows that more

tuning is needed.

(a) Accuracy over 50 epochs (b) Loss over 50 epochs

Figure 5.6: Evaluation of the GAN implementation with momentum of decay equal 0.5

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 59

(a) Images of digits from MNIST dataset (b) Generated images over 50 epochs

Figure 5.7: "real" and generated MNIST data digits with tuning

By setting the learning rate to 0.0002 and keeping the momentum decay at 0.5, inspired by [28],

gave the results shown in Figure 5.8 and 5.9. Running this implementation over 50 epochs shows

a good performance when looking at the accuracy for the generator and the discriminator 5.8a.

Compared to the accuracy in Figure 5.6a, the accuracy for the generator and discriminator in

Figure 5.8a appears more stable over 50 epochs.

(a) Accuracy over 50 epochs (b) Loss over 50 epochs

Figure 5.8: Evaluation of the GAN implementation with tuning over batches

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 60

(a) Images of digits from MNIST dataset (b) Generated images over 50 epochs

Figure 5.9: "real" and generated MNIST data digits with tuning

Implementing a GAN for the MNIST dataset is said to be relatively simple compared to imple-

mentations for other datasets. It is therefore assumed generated images with high quality when

utilizing a "perfect" GAN implementation. Thus there are be room for improvement in the im-

plementation discussed in section 5.

Executing the implementation over more than 50 epochs seemed to make the performance

worse thus the quality of the generated images got slightly decreased. Trying to predict the gen-

erated digits with the CNN implementation in section 4.2 gave non-satisfactory results. The

GAN implementation can therefore be changed according to the following papers to improve

the results [29, 28, 30]. The ReLU function in the discriminator’s layers will be changed to a

LeakyReLU function with a slope of 0.2 [28]. This change made the predictions done by the

CNN more accurate. After the success of adding the LeakyReLU to the discriminator, it is also

added to the generator. The result from running this final GAN over 200 epochs can be shown

in Figure 5.10 as well as its corresponding predictions which are shown in Table 5.3. When ex-

ecuting the implementation the predictions done by the CNN were displayed after each epoch,

and it showed how it took a while to predict the different digits correctly. The digit in position

(4,1) in Figure 5.10b, which appears to represent zero, was not predicted to be a zero until more

than 100 epochs were run. Before it was predicted to be a zero, it was predicted to be a num-

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 61

2 2 1 4
2 2 2 2
2 2 2 6
0 6 5 2

Table 5.3: Predictions done by the CNN implementation in section 4.2

ber two like the digit in position (4,4) that appears to be zero in the Figure 5.10b. Running the

implementation over 200 epochs have shown how the performance improves over time.

(a) Images of digits from MNIST dataset (b) Generated images over 200 epochs

Figure 5.10: "real" and generated MNIST data digits over 200 epochs

GAN for the CIFAR10 Dataset

The GAN implementation for the CIFAR10 dataset will be built on the GAN implementation for

the MNIST digits dataset as well as the CNN implementation for the CIFAR10 dataset described

in section 4.2. The CIFAR10 dataset is described in section 4.2, but for this GAN all of the ten

classes will not be utilized. The goal is to generate synthetic images of airplanes that will pass

as airplanes from the CIFAR10 dataset in the discriminator network. This will be implemented

utilizing Tensorflow’s Keras, as was done for the MNIST GAN and the CNN.

The feature engineering done is scaling the pixels to a range of [−1,1] which is common prac-

tice when dealing with GANs for images. The procedure for this feature engineering technique

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 62

Layer Units Input Output Kernel size Activation Strides

Dense 4096 100× 4096 - LeakyReLU -
Reshape - 4096 3×3×256 - - -
Transposed Con-
volutional

128 4×4×256 8×8×128 3×3 LeakyReLU 1×1

Transposed Con-
volutional

128 8×8×128 16×16×128 3×3 LeakyReLU 2×2

Transposed Con-
volutional

128 16×16×128 32×32×128 3×3 LeakyReLU 2×2

Transposed Con-
volutional

3 32×32×128 32×32×3 3×3 tanh -

Table 5.4: The generator in the GAN implementation for the airplanes from the CIFAR10 dataset

Layer Units Input Output Kernel size Activation Strides

Convolutional 64 32×32 32×32 3×3 LeakyReLU -
Convolutional 128 32×32 16×16 3×3 LeakyReLU 2×2
Convolutional 128 16×16 8×8 3×3 LeakyReLU 2×2
Convolutional 128 8×8 4×4 3×3 LeakyReLU 2×2
Flatten - 7×7 - - - -
Dropout 0.5 rate 7×7 - - - -
Dense 1 - - - Sigmoid -

Table 5.5: The discriminator in the GAN implementation for the airplanes from the CIFAR10
dataset

is the same as in the GANs implementation for the MNIST dataset. The architecture of both

the discriminator and generator was changes to have three channels instead of one due to the

colored images in the CIFAR10 dataset 4.2. The filters in the convolutional and transposed con-

volutional layers were also changed to fit the 32×32 sized images. The resulting architecture for

the generator and discriminator can be shown in Table 5.4 and 5.5 respectively. The evaluation

from running this implementation over 94 epochs is shown in Figure 5.13. It can be seen that the

accuracy over 94 epochs is stable 5.13a, but could have been higher than oscillating around 0.2.

The resulting generated images is shown in Figure 5.12, and the actual images of airplanes from

the CIFAR10 dataset are shown in Figure 5.11. The figures shows that the actual images have

a higher resolution, however, the generated images still have some airplane characteristics.

Different techniques are tested to see if the resolution in the generated images can improve.

The label smoothing technique [31] was tested to see if it could improve the performance. Its

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 63

Figure 5.11: Actual images of airplanes from the CIFAR10 dataset
,

Figure 5.12: Generated images of airplanes over 94 epochs
,

CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 64

(a) Accuracy over 94 epochs (b) Loss over 94 epochs

Figure 5.13: Evaluation of the GAN implementation for airplanes in the CIFAR10 dataset

purpose is to prevent the model from making overly confident predictions on the training data

[32]. The label smoothing is performed by using 0.1 instead of zero and 0.9 instead of one. La-

bel smoothing resulted in the accuracy of both the discriminator and generator to start at zero

and remain unchanged when running over 40 epochs, this modification is therefore removed. It

was also tested to add batch normalization layers with a momentum of 0.9 after every convolu-

tional layer in the discriminator and generator, which resulted in a modal collapse. Virtual batch

normalization, described above, could have been tested but there were some problems imple-

menting this. Weight normalization is said to be better than batch normalization for GANs, and

could be used to get better performance [33]. Overall the resulting images in 5.12 and 5.10b is

adequate for now, however, a better performance could be achieved by more tuning of hyperpa-

rameters, execution over a greater amount of epochs and more testing of different techniques

[29, 28, 30].

Chapter 6

Summary and Conclusion

During this project thesis, a theoretical foundation and practical experience were obtained within

the field of ML. In Section 3 basic ML methods like linear regression, logistic regression, SVM

and decision trees were implemented. The results showed how SVM and decision trees worked

better than logistic regression when the dataset includes a lot target variables and features. The

linear regression method needed a linearly separable dataset, thus it could not be used for the

whole dataset described in 3 unless manipulation was applied.

For predictions on more advanced datasets, like images, NN performs quite well if enough

data is available. In Section 4.2 CNN was implemented and applied for both the MNIST digits-

and CIFAR10 dataset described in Section 4.2. The results for the CNN implementation on the

MNIST dataset were quite good, with a test accuracy of 0.986. The three different models imple-

mented and applied on the CIFAR10 dataset shows how changes in the network’s architecture

and tuning of hyperparameters influences the overall performance of the model.

The knowledge and experience about CNN were utilized in Section 5 to implement a GAN ap-

plied on the MNIST digits dataset and a GAN for the airplane class in the CIFAR10 dataset to

generate synthetic images. The implementations showed how tiny tweaks in the hyperparam-

eters of the optimizer could boost the performance. Thus training a GAN is difficult and good

knowledge in the field of GAN is needed to generate the desired data.

The results from this project thesis show the power of both the different techniques and the pro-

grammer utilizing them. This project thesis has been looking at some "basic" implementations

65

CHAPTER 6. SUMMARY 66

due to the lack of knowledge beforehand. It can still be seen that GANs have great potential

in many different fields. For future work in the master thesis, this technology will be utilized

together with a simulator of a marine vessel for instance as well as actual data of the marine ves-

sel. Images of the marine vessel will be extracted from the simulator and fed into the generator

together with the "real" images of the marine vessel. The actual images are "expensive", and

the aim is therefore to mainly use the images from the simulator together with some of the ac-

tual images to generate images that look like they came from the actual data distribution. This

way it is possible to increase the amount of the data in the actual data distribution. This is one

of the ways GANs can be utilized in the industry to save money and time, and as mentioned

introduction wise, the field of GAN is yet to explore!

List of Figures

3.1 Flowers of three iris plant species [2]. 12

3.2 Simple linear regression model tested on the test data 15

3.3 Simple linear regression with the scikit-learn split of data 16

3.4 The logistic function represented by a sigmoid function [2] 18

3.5 Decision tree example of the Iris dataset retrieved from [2]. 26

4.1 Data distribution for the MNIST dataset . 36

4.2 Data distribution for the CIFAR10 dataset . 38

4.3 CNN implementation for MNIST dataset evaluation 40

4.4 Digit number four in the test set for the MNIST data 41

4.5 Model 1: CNN implementation for MNIST dataset evaluation 43

4.6 CNN implementation for MNIST dataset evaluation 44

4.7 CNN implementation for MNIST dataset evaluation 45

5.1 The layer architecture of the generator and descriminator of a GAN [10] 51

5.2 The training process of GAN illustrated [10] . 54

5.3 Evaluation of the GAN implementation without tuning over batches 56

5.4 "real" and generated MNIST data digits without tuning 57

5.5 Example of modal collapse [9] . 57

5.6 Evaluation of the GAN implementation with momentum of decay equal 0.5 58

5.7 "real" and generated MNIST data digits with tuning 59

5.8 Evaluation of the GAN implementation with tuning over batches 59

5.9 "real" and generated MNIST data digits with tuning 60

67

LIST OF FIGURES 68

5.10 "real" and generated MNIST data digits over 200 epochs 61

5.11 Actual images of airplanes from the CIFAR10 dataset 63

5.12 Generated images of airplanes over 94 epochs . 63

5.13 Evaluation of the GAN implementation for airplanes in the CIFAR10 dataset 64

List of Tables

3.1 An example of a generic confusion matrix . 12

3.2 Confusion matrix for the logistic regression implementation 18

3.3 Confusion matrix for the logistic regression implementation on the sub dataset . . 19

3.4 Confusion matrix for the SVM implementation . 23

3.5 Confusion matrix for the decision tree implementation 25

4.1 The CNN architecture of the implementation for the MNIST dataset 40

4.2 The CNN architecture of model 1 for the CIFAR10 dataset 43

4.3 The CNN architecture of model 3 for the CIFAR10 dataset 45

5.1 The discriminator’s architecture for the GAN implementation on the MNIST dataset 52

5.2 The generator’s architecture for the GAN implementation on the MNIST dataset . 53

5.3 Predictions done by the CNN implementation in section 4.2 61

5.4 The generator in the GAN implementation for the airplanes from the CIFAR10

dataset . 62

5.5 The discriminator in the GAN implementation for the airplanes from the CIFAR10

dataset . 62

69

70

APPENDIX A. TABLE OF ABBREVIATIONS 71

Appendix A

Table of Abbreviations

Abbreviation Description

GAN Generative Adversarial Network

NN Neural Network

LSVRC Large Scale Visual Recognition

Challenge

MSE Mean Square Error

ML Machine Learning

DL Deep Learning

CNN Convolutional Neural Network

RL Reinforcement Learning

KKT Karush-Kuhn-Tucker

MLP Multi Layer Perceptron

LTU Linear Threshold Unit

ANN Artificial Neural Network

BN Batch Normalization

SGD stochastic gradient descent

MNIST Mixed National Institute of Stan-

dards and Technology

CIFAR10 Canadian Institute For Advanced

Research 10

VAE Variational Autoencoders

72

APPENDIX B. TABLE OF SYMBOLS 73

Appendix B

Table of Symbols

Symbol Description

x Vector of input variables

t x’s corresponding target values

φ(x) Basis function of input variables

w Vector of weights

y Predicted output based on x

ED (w) Sum-of-squares error function

β Noise precision parameter

σ(.) Logistic sigmoid function

C1 Classification y = 1

p(t|w) The likelihood function

H The Hessian matrix

R N × N diagonal matrix with ele-

ments yn(1− yn)

b Bias parameter

η Learning rate

τ Current iteration of the algorithm

κ Gain for w

a The Lagrange multipliers

APPENDIX B. TABLE OF SYMBOLS 74

Symbol Description

L̃(a) Dual representation of the maxi-

mum margin problem

κ(x,x′) Representation of the kernel func-

tion φ(x)Tφ(x′)

Ns Total amount of support vectors

Qτ Gini index or cross-entropy error,

with τ as leaf node

T Total amount of leaf nodes

k Class

R Region

pτk Proportion of datapoints

J (θ) model dependent cost function

g The activation function for a unit

in NN mapping from Rm to Rn

f A function mapping from Rn to R

z Is g (x) mapped by f

s(i , j) Convolution between a kernel and

an image, where i , j represents

rows and columns respectively

I An image

K A kernel, also called a filter

G Generator

D Discriminator

V (D,G) Value function of an iterative two-

player minmax game

zl atent Vector from in the latent space

pd at a Actual model variables

pzl atetnt Input noise variables

Bibliography

[1] Bishop CM. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag; 2006.

[2] Géron A. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts,

tools, and techniques to build intelligent systems. O’Reilly Media, Inc.; 2017.

[3] Marcopeix. marcopeix/ISL-linear-regression; 2018. Available from: https://

github.com/marcopeix/ISL-linear-regression.

[4] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press Ltd; 2016.

[5] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR.

2016;abs/1603.04467. Available from: http://arxiv.org/abs/1603.04467.

[6] Keras: The Python Deep Learning Library;. Available from: https://keras.io/.

[7] Python. Python Tutorials; 2016. Available from: https://pythonspot.com/.

[8] Brownlee J. Machine Learning Mastery;. Available from: https://

machinelearningmastery.com/.

[9] Foster D. Generative Deep Learning: Teaching Machines to Paint, Write, Compose,

and Play. O’Reilly Media, Inc.; 2019.

[10] Valle R. Hands-On Generative Adversarial Networks with Keras: Your guide to im-

plementing next-generation generative adversarial networks. Packt Publishing Ltd.;

2019.

75

https://github.com/marcopeix/ISL-linear-regression
https://github.com/marcopeix/ISL-linear-regression
http://arxiv.org/abs/1603.04467
https://keras.io/
https://pythonspot.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/

BIBLIOGRAPHY 76

[11] Delude CM. Computing Intelligence. Brain Scan. 2011;Available from: https://

mcgovern.mit.edu/wp-content/uploads/2019/01/brainscan{_}issue19.pdf.

[12] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convo-

lutional Neural Networks. In: Advances in Neural Information Processing Systems

25: 26th Annual Conference on Neural Information Processing Systems 2012.

Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United

States; 2012. p. 1106–1114. Available from: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

[13] Rezvantalab A, Safigholi H, Karimijeshni S. Dermatologist Level Dermoscopy Skin

Cancer Classification Using Different Deep Learning Convolutional Neural Networks

Algorithms. CoRR. 2018;abs/1810.10348. Available from: http://arxiv.org/abs/

1810.10348.

[14] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Gen-

erative Adversarial Nets. In: Advances in Neural Information Processing Systems

27: Annual Conference on Neural Information Processing Systems 2014, Decem-

ber 8-13 2014, Montreal, Quebec, Canada; 2014. p. 2672–2680. Available from:

http://papers.nips.cc/paper/5423-generative-adversarial-nets.

[15] Shieber J. The makers of the virtual influencer, Lil Miquela, snag real money from

Silicon Valley. TechCrunch; 2018. Available from: https://tcrn.ch/38Vj7UK.

[16] Vincent J. How three French students used borrowed code to put the first AI portrait

in Christie’s. The Verge; 2018. Available from: https://bit.ly/2RWYktE.

[17] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. CoRR. 2017;abs/1701.07875.

Available from: http://arxiv.org/abs/1701.07875.

[18] Donahue C, McAuley JJ, Puckette MS. Adversarial Audio Synthesis. In: 7th In-

ternational Conference on Learning Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019; 2019. Available from: https://openreview.net/forum?id=

ByMVTsR5KQ.

https://mcgovern.mit.edu/wp-content/uploads/2019/01/brainscan{_}issue19.pdf
https://mcgovern.mit.edu/wp-content/uploads/2019/01/brainscan{_}issue19.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://arxiv.org/abs/1810.10348
http://arxiv.org/abs/1810.10348
http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://tcrn.ch/38Vj7UK
https://bit.ly/2RWYktE
http://arxiv.org/abs/1701.07875
https://openreview.net/forum?id=ByMVTsR5KQ
https://openreview.net/forum?id=ByMVTsR5KQ

BIBLIOGRAPHY 77

[19] Durugkar IP, Gemp I, Mahadevan S. Generative Multi-Adversarial Networks. CoRR.

2016;abs/1611.01673. Available from: http://arxiv.org/abs/1611.01673.

[20] Ledig C, Theis L, Huszar F, Caballero J, Aitken AP, Tejani A, et al. Photo-Realistic

Single Image Super-Resolution Using a Generative Adversarial Network. CoRR.

2016;abs/1609.04802. Available from: http://arxiv.org/abs/1609.04802.

[21] Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J. Learning a Probabilistic Latent Space

of Object Shapes via 3D Generative-Adversarial Modeling. In: Advances in Neural

Information Processing Systems 29: Annual Conference on Neural Information Pro-

cessing Systems 2016, December 5-10, 2016, Barcelona, Spain; 2016. p. 82–90. Avail-

able from: https://bit.ly/38O7AGq.

[22] Zhang H, Xu T, Li H, Zhang S, Huang X, Wang X, et al. StackGAN: Text to Photo-

realistic Image Synthesis with Stacked Generative Adversarial Networks. CoRR.

2016;abs/1612.03242. Available from: http://arxiv.org/abs/1612.03242.

[23] Mitchell TM. Machine Learning. McGraw-Hill, Inc.; 1997.

[24] Cauchy A. Méthode générale pour la résolution des systemes d’équations simul-

tanées. Comp Rend Sci Paris. 1847;25. Available from: https://cs.uwaterloo.

ca/~y328yu/classics/cauchy-en.pdf.

[25] Rosenblatt FF. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review. 1958;65 6. Available from: https:

//doi.org/10.1037/h0042519.

[26] Minsky M, Papert S. Perceptrons: An Introduction to Computational Geometry; 1969.

[27] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-

propagating errors. Nature. 1986;323. Available from: https://www.nature.com/

articles/323533a0.

[28] Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks. In: 4th International Conference on

Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Con-

http://arxiv.org/abs/1611.01673
http://arxiv.org/abs/1609.04802
https://bit.ly/38O7AGq
http://arxiv.org/abs/1612.03242
https://cs.uwaterloo.ca/~y328yu/classics/cauchy-en.pdf
https://cs.uwaterloo.ca/~y328yu/classics/cauchy-en.pdf
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

BIBLIOGRAPHY 78

ference Track Proceedings; 2016. Available from: http://arxiv.org/abs/1511.

06434.

[29] Arjovsky M, Bottou L. Towards Principled Methods for Training Generative Adversar-

ial Networks. In: 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings; 2017. Avail-

able from: https://openreview.net/forum?id=Hk4_qw5xe.

[30] Salimans T, Goodfellow IJ, Zaremba W, Cheung V, Radford A, Chen X. Improved

Techniques for Training GANs. In: Advances in Neural Information Processing Sys-

tems 29: Annual Conference on Neural Information Processing Systems 2016, De-

cember 5-10, 2016, Barcelona, Spain; 2016. p. 2226–2234. Available from: http:

//papers.nips.cc/paper/6125-improved-techniques-for-training-gans.

[31] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Archi-

tecture for Computer Vision. CoRR. 2015;abs/1512.00567. Available from: http:

//arxiv.org/abs/1512.00567.

[32] Hazan T, Papandreou G, Tarlow D. Perturbations, Optimization, and Statistics. MIT

Press Ltd.; 2016.

[33] Xiang S, Li H. On The Effects of Batch and Weight Normalization in Generative Ad-

versarial Networks. arXiv preprint arXiv:170403971. 2017;Available from: https:

//arxiv.org/abs/1704.03971.

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://openreview.net/forum?id=Hk4_qw5xe
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1704.03971
https://arxiv.org/abs/1704.03971

	Preface
	Acknowledgment
	Summary

	Introduction
	Background and Motivation
	Objectives and Approach
	Structure of the Report

	Introduction to Machine Learning
	What is Machine Learning?
	Categories

	Main Challenges

	Theory and Implementation
	Linear Regression
	Logistic Regression
	Support Vector Machine
	SVM for Classification

	Decision Trees
	Decision Trees for Classification

	Comparison

	Neural Networks
	Deep Feedforward Networks
	Convolutional Networks

	Generative Adversarial Networks
	Theory
	Implementation

	Summary
	List of Figures
	List of Tables
	Table of Abbreviations
	Table of Symbols
	Bibliography

