
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Sondre Sagstad

Characterization of behaviour in tank
rearing of salmon using machine vision
and machine learning

Master’s thesis in Cybernetics and Robotics

Supervisor: Morten Omholt Alver

June 2020

Problem Description
For this thesis I was given the following problem description:

Summary

Being able to automatically classify salmon behaviour is a sought after solution by the
salmon industry. Good classification would help detecting unwanted events such as the
spreading of a disease or H2S congestion, early in the process. Today, these classification
processes are mostly done through manual inspection, and as a consequence they are sub-
ject to subjective opinions. Especially in the dark, determining the state of the fish tank
becomes extremely difficult. Behaviour changes can be subtle and hard to notice. Deci-
sions are based on models and experienced operators. As a consequence, the industry is
seeking a more reliable monitoring system.

Recent years have shown that Deep Learning is an excellent tool for both action recog-
nition and segmenting objects in images. In this thesis we explore the possibilities for
automatic characterization of salmon behaviour in fish tanks through machine vision and
machine learning.
We develop a Mask R-CNN[12] capable of segmenting salmon smolt in images, and by
feeding the masks generated by this network to a multiple object tracker, SORT[3], we are
able to effectively track salmon smolt in video sequences. The results are used in meth-
ods for calculating characteristics such as velocity, acceleration, vertical- and horizontal
movements.

Our results show that our setup is able to generate behaviour characteristics from fish
tank that can be used to distinguish between behaviour classes. Through visualization of
statistics we are effectively able to spot a deviance in the data from a dataset when the fish
are spooked compared to a normal behaviour dataset. We hope that the results in this thesis
will contribute to the development of automatic monitoring- and support systems in the
aquaculture industry. Future work beyond the results in this thesis concerns improvements
upon the Mask R-CNN, as well as the development of an automatic approach of finding
anomalies in the generated tank statistics.

i

Sammendrag
Automatisk klassifisering av lakseadferd er en etterspurt løsning i oppdrettsindustrien.
God klassifisering vil hjelpe med tidlig deteksjon av uønskede situasjoner, som f. eks
spredningen av en sykdom eller H2S opphopning. I dag er de fleste av disse klassifis-
eringsmetodene utført gjennom manuell inspeksjon, noe som medfører at de er utsatt for
subjektive oppfatninger. Spesielt i mørket, er det å klassifisere tilstanden i et oppdrettskar
en vanskelig oppgave. Adferdsendringer kan være subtile og vanskelig å oppdage. Som
en konsekvens, søker oppdrettsnæringen bedre og mer pålitelige overvåkingssystem.
De siste årene har vist as Dyp Læring er et ypperlig verktøy for både handlingsgjenkjen-
ning og segmentering av objekter i bilder. I denne masteroppgaven utforsker vi mu-
lighetene for automatisk karakterisering av lakseadferd i oppdrettskar gjennom maskinsyn
og maskinlæring.
Vi utvikler et Mask R-CNN[12] nettverk som klarer å segmentere laksesmolt i bilder.
Gjennom så å fôre segmenteringen gjort av nettverket gjennom en algoritme, SORT[3],
som kan tracke flere objekter samtidig, klarer vi effektivt å tracke laksesmolt i videosekvenser.
Resultatene blir brukt i metoder for utregning av hastighet, akselerasjon, vertikale- og ho-
risontale bevegelser.
Resultatene våre viser at oppsettet vårt klarer å genere kjennetegn ved adferden som gjør
det mulig å skille adferdsklasser fra hverandre. Gjennom visualisering av statistikk, klarer
vi effektivt å oppdage avvik i data fra et datasett som inneholder skremt fisk når man
sammenligner det med et normalt datasett. Vi håper resultatene i denne masteroppgaven
vil bidra i utviklingen av automatiserte overvåkings- og støttesystem i oppdrettsnærin-
gen. Framtidig arbeid utover resultatene i denne oppgaven, angår forbedringer av Mask
R-CNN, samt utviklingen av en automatisk tilnærming for å finne avvik i den genererte
karstatistikken.

ii

Preface

This thesis was prepared during the spring of 2020 at the Norwegian University of Science
and Technology, Faculty of Information Technology and Electrical Engineering, Depart-
ment of Engineering Cybernetics. The thesis was accomplished with the help of SINTEF
Ocean AS and MOWI AS, Slørdal. The GitHub libraries Mask R-CNN[1], SORT[2] and
CLoDSA[14] form the basis of modified versions, which we use in this thesis. The camera
equipment we use is made available by NTNU and SINTEF Ocean AS.

I would like to thank my supervisor Morten Omholt Alver for his guidance and clarifying
discussions through this work. Secondly, I would like to thank Torfinn Solvang at SIN-
TEF Ocean (now at ScaleAQ) for his help and thoughts throughout the project. Lastly, I
would like to thank my fellow student Andres Granberg Drønnen for his discussions and
cooperation in collecting the datasets used in this thesis.

iii

Table of Contents

Summary i

Preface iii

Table of Contents v

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Specialization Project . 2

2 Basic Theory and Previous work 4
2.1 Deep Learning . 4

2.1.1 NNs - Neural Networks . 4
2.1.2 CNN - Convolutional Neural Network 8
2.1.3 Mask R-CNN . 11
2.1.4 Transfer Learning . 12

2.2 Salmon videos . 12
2.3 Kalman filter . 13
2.4 Libraries and frameworks . 14

2.4.1 Mask R-CNN framework . 14
2.4.2 Google Colab . 15
2.4.3 SORT - Tracking . 15
2.4.4 CLoDSA - Data Augmenting Augmenting 15

3 Materials and method 16
3.1 Data collection . 16

3.1.1 Dataset . 16

iv

3.2 Method . 17
3.2.1 Testing Mask R-CNN in the Specialization Project 17
3.2.2 Pre-processing . 18
3.2.3 Other preprocessing techniques 25

3.3 Mask R-CNN . 27
3.3.1 Training Process . 27
3.3.2 Network variables . 29
3.3.3 Generating the input to SORT 30

3.4 Multiple object tracking . 33
3.4.1 Kalman Filter . 33
3.4.2 Modifying the SORT algorithm 34

3.5 Testing our complete algorithm . 37
3.5.1 Second trip to Slørdal . 37
3.5.2 Limitations . 39
3.5.3 Algorithm workflow . 39

4 Results and discussion 41
4.1 Mask R-CNN results . 41
4.2 SORT performance . 44
4.3 Movement statistics . 45
4.4 Preliminary research in finding tail beat frequency 54
4.5 Overall performance discussion and future work 60

4.5.1 Sources of error . 60
4.5.2 Future work . 60

5 Conclusion 64

Bibliography 65

v

List of Figures

1.1 A cyclical representation of PFF where operational processes are con-
sidered to consist of four phases: Observe, Interpret, Decide and Act.
The inner cycle represents the present state-of-the-art in the industry, with
manual actions and monitoring, and experience-based interpretation and
decision-making. The outer cycle illustrates how the introduction of PFF
may influence the different phases of the cycle. Adopted from [8]. 2

2.1 Illustration of how wrong and confident predictions are penalized with a
large loss. True label = 1. 7

2.2 The filter/kernel K is sliding or convolving over the image I and the Con-
volution operator is computing the feature map by computing the dot prod-
uct between the filter and its location over the image. Figure is adopted
from [22]. 9

3.1 Annotating the Partial-IR dataset using COCO annotator. Adopted from
[28]. 17

3.2 Training loss vs. validation loss. The curves are the smoothed form of the
original losses which is visible in the background. The smoothed graph
is an exponential moving average, which is used to smooth out short-term
fluctuations and highlight longer-term trends. The blue line represents the
augmented dataset, while the orange line represents the original dataset. . 19

3.3 Illustration of the global thresholding method. In our case this method
is very sensitive to the threshold value. The optimal threshold value is
different for each image, making it unsuited for our application. 20

3.4 Illustration of the Adaptive Mean tresholding. This method very good at
extracting the features of the fish in the image. Some noise remains in the
image. 21

3.5 Illustration of the Adaptive Gaussian method. This image is very similar
to the Mean Method image, but with a little less noise and less distinct
features. 22

vi

3.6 Resulting image when applying Otsu’s method. This thresholding method
has the worst performance. The reason behind this is the image histogram,
which we see in figure 3.7. This algorithm wants to find a value between
two peaks in the histogram, which makes the variances of the two classes
minimal. As can see from the histogram, we only have one peak. 24

3.7 Histogram of our example image. As we can see there is only one peak,
which makes Otsu’s method unusable. 25

3.8 Augmentation techniques applied to an image. From left to the right, we
have: original, sharpen, dropout, elastic deformation 26

3.9 Augmentation techniques applied to an image. From left to the right, we
have: histogram equalization, salt and pepper noise, Gaussian noise, Gaus-
sian blur. 26

3.10 Validation loss with Gaussian noise applied on 50% of the training images.
The smoothed graph is an exponential moving average, which is used to
smooth out short-term fluctuations and highlight longer-term trends. The
blue line represents the original dataset, while the orange line represents
the augmented dataset. 27

3.11 Configuration for Mask R-CNN. 30
3.12 Illustration of the input image to equation 3.14. 31
3.13 Illustration of ellipse drawn over the masked fish. 32
3.14 Original image of fish we draw an ellipse on. 33
3.15 Illustration of the velocity problem. Object A and Object B are the ob-

served size of two similar sized objects. They move with the same veloc-
ity, which is one body length each second. If the body length in reality is

4m, we have to multiply by the constant 4
2√
6
m to find the real velocity,

which is 4m/s. 36
3.16 Image from the new dataset. 38

4.1 Illustration of good masks. 42
4.2 Illustration of a failed segmentation by an early version of our network.

There are feed pellets in the image that disturbs the masking. 42
4.3 Illustration of a bad segmentation when using thresholded images. 43
4.4 Illustration of a good mask when using thresholded images. 44
4.5 Illustration of the visual interface when using the SORT tracker. This im-

age is taken before we added acceleration, area and angle. 45
4.6 Comparison between the number of detections over the last 5 frames for

each class. 47
4.7 Comparison between the velocity of each class. 48
4.8 Comparison between the acceleration of each class. 49
4.9 Comparison between average velocity over every detection in the last 5

frames of each class. 50
4.10 Distributions of velocities. Here we can see a clear difference between the

spooked class and the two other classes. 51
4.11 Comparison between the average acceleration over every detection the last

5 frames of each class. 52

vii

4.12 Distributions of accelerations. The difference between the spooked class
and the two other classes is less distinct here, compared to the velocity
distributions. 53

4.13 A circular histogram visualizing the angles of each detected fish. The area
of each bin represents how many data points are in each bin. A doubling
of data points in a bin results in a doubling of the area(not the radius). As
expected, we see that almost all fish are pointed towards the current. . . . 54

4.14 Illustration of the extracted circle around a fish tail. 55
4.15 Illustration of a isolated and masked tail. 56
4.16 Time series of the area of the isolated tail. 57
4.17 Times series of mean pixel intensity of a masked tail. 57
4.18 Optical Flow image of a masked tail. 59
4.19 Time-series of mean pixel intensity when using Optical Flow and convert-

ing to gray-scale. 59
4.20 Distribution of how long the fish is detected for. 62

viii

Abbreviations

VIS = Visual spectrum of light
NIR = Near infrared spectrum
DL = Deep Learning
PFF = Precision Fish Farming
FPS = Frames Per Second
NN = Neural Network
CNN = Convolutional Neural Network
RoI = Region of Interest

ix

Chapter 1
Introduction

In this chapter we will explain the motivation for the thesis, which is building on what we
learned from the preceding Specialization Project [28].

1.1 Motivation
As described in the Specialization Project, the aquaculture industry is seeking automated
monitoring and support systems. Building on what we learned from the project we will
continue to explore the possibilities for automatic monitoring and classification of the state
within fish tanks. With such systems we hope to discover behaviour changing events early
the process. Examples of events to detect include include H2S congestion, the spread of
a disease and general deviance from normal behaviour. Such events can be hard to spot
for an operator. Computers, on the other hand, can process enormous amounts of data and
providing it with the right data it can help the operator arrive at the right conclusion.

The concept called Precision Fish Farming(PFF) [8], is a good example of this. It is
explained in the preceding project[28], but we will repeat the vision behind the idea, which
Martin Føre, a researcher behind the concept told kyst.no:

”The vision behind the use of high-tech equipment is to provide the farmer a safer and
simpler everyday life as well as achieving higher production efficiency, better fish welfare
and reduced environmental effects from the production. Examples on such solutions in-
cludes underwater cameras which together with automated algorithms provides quantified
data on fish swimming speed, and solutions which combines online sensor data with math-
ematical models to better estimate the biomass and size distribution in the cages”[15].

A figure representing PFF can be seen in Figure 1.1.

1

1.2 Specialization Project

Figure 1.1: A cyclical representation of PFF where operational processes are considered to consist
of four phases: Observe, Interpret, Decide and Act. The inner cycle represents the present state-of-
the-art in the industry, with manual actions and monitoring, and experience-based interpretation and
decision-making. The outer cycle illustrates how the introduction of PFF may influence the different
phases of the cycle. Adopted from [8].

Recently, MOWI with SINTEF and NTNU as partners were forming the idea of a
very interesting project called Yngelsens. Between this thesis and the preceding project
the decision that Yngelsens is not going to move forward was made. However, the ideas
behind the project represents the motivation for this thesis and will therefore stand. The
main focus in Yngelsens was to develop new camera based sensors to help monitor and
quantify fish behaviour. Examples of behaviour characteristics included swimming speed,
acceleration, movement patterns and breathing frequency.

Based on our experience from the Specialization Project, the data we collected and the
goals from Ynglesens, this thesis’s focus will be the Observe quadrant in the outer cycle
in figure 1.1(PFF).

1.2 Specialization Project
During the fall of 2019, I started to work towards the goals of Yngelsens in TTK4550 -
Engineering Cybernetics, Specialization Project. A part-goal of Yngelsens was to identify
state of the art machine learning methods for fish behaviour in video streams, and I chose
that as my project. The main objective of the Specialization Project was to collect video

2

1.2 Specialization Project

data and prepare it for use in deep learning segmentation algorithms. Initial tests were
conducted using a Mask R-CNN to see how well the network would segment fish in a
Near-Infrared Spectrum(NIR) image. The reason we use NIR instead of the Visual Light
Spectrum(VIS) is because there is interest from the industry to monitor the fish at night
as well as during the day. This master thesis is a natural extension of that work and
will use the findings and conclusions from the Specialization Project as inspiration. We
learned a lot in the Specialization Project regarding the difficulties in capturing high quality
underwater images with limited lighting capabilities. As a consequence, the focus in the
images will vary, and high detail characteristics such as breathing is hard to effectively
spot. Therefore our main focus will first lie on characteristics that doesn’t necessarily need
the highest level of focus. These characteristics include swimming speed, acceleration and
movement patterns.

We then propose the goals for this thesis to be:

1. Create a network that can successfully segment salmon in NIR images.

2. Create a tracker that can successfully track salmon in a video stream.

3. Generate data based on the tracking which includes velocity, acceleration and swim-
ming/moving direction.

4. Test the program on new videos to check if we are able to distinguish between the
data generated from three different behaviour classes: feeding, normal and spooked.

3

Chapter 2
Basic Theory and Previous work

This chapter is intended for readers which are unfamiliar with the topics to help them
better understand the content, and covers the theoretical background for this thesis. In 2.1
it will cover Deep Learning. In 2.3 it proceeds to cover Kalman filters, which are used
in our object tracking algorithm. Finally, in 2.4 it will give an overview of the tools and
frameworks that are used in this thesis.

2.1 Deep Learning
This chapter will give the reader an overview of the field of deep learning. It will also
cover previous work on models that are leading up to the model that we use. The field was
briefly covered in the Specialization Project, and it will continue from there.

2.1.1 NNs - Neural Networks
Neural networks are graphs that consists of connected neurons or nodes. Each node has a
set of learnable weights, W, at its connections and a learnable bias, b. The bias enables the
neuron to activate even for zero-valued inputs. This an important part of the network to
help it converge or learn ’good’ weights and biases. A typical neural network has anything
from a couple dozen to millions of nodes arranged in layers. Some of the nodes are input
nodes. These receive some form of information from the outside world that the network
will attempt to learn about. On the other side of the network are the output nodes. These
nodes signal how the network responds to the input. In between the input and output nodes
we have the hidden nodes, which form the majority of the neural network. The input nodes,
output nodes and hidden nodes are divided into layers; an input layer, an output layer and
hidden layers respectively. Most of the neural networks are fully connected. This means
that each hidden node and output node is connected to every node in the layer on each
side. These connections are represented by the learnable weights, W, which is a number
that represents how much a node influences the node it is connected to. This number can
both be positive or negative, and the higher the number, the higher influence one node

4

2.1 Deep Learning

has on another. Information in neural networks flow two ways. In the learning process,
information are fed to the network through the input nodes, which triggers the hidden
nodes, which in turn trigger the output nodes. This way of information flow constitutes
the common design called a feed forward network. How information flow backwards will
be mentioned later in the chapter. When a neuron receives a set of inputs, x, it computes
the dot product over these inputs with the weights W. It adds the biases and then feeds the
result through a non-linear activation function to produce an output, y. The mathematical
expression is shown in 2.1.

y = f(
∑
i

Wi · xi + b) (2.1)

The use of a non-linear activation function lets the neural networks approximate any
function. The universal approximation theorem was first posed by George Cybenko and
goes as follows:

A feed-forward network with a single hidden layer containing a finite number of neurons
can approximate continuous functions on compact subsets of Rn.

The most common activation functions are the Sigmoid, tanh and ReLU function. They
are mathematically expressed as:

Sigmoid:
σ(x) =

1

1 + e−x
(2.2)

Tanh:
tanh(x) (2.3)

ReLU:
max(0, x) (2.4)

Backpropagation

The way neural networks learn is through a process called backpropagation. This is a
feedback process where information flows backwards in the network. It involves compar-
ing the output of the network to ground truth labels in our training data, and using the
difference to adjust or train the parameters (W and b) in the network. Starting at the output
nodes it works its way through the hidden layers and then to the input layer. In time, this
algorithm will cause the network to learn, and the difference between the output and the
ground truth labels will go towards zero.

5

2.1 Deep Learning

Loss function

The evaluation on how well the network predicts the correct ground truth labels can be
seen in the means of a loss function. If predictions deviate too much from the original
data, the loss function will output a large number. The goal is to gradually, with the help
of an optimization function reduce the deviation in the prediction. While there are sev-
eral loss functions that are used in the field of deep learning, there are no one-size-fits all.
Some of the most used are:

Mean Squared error/L2 Loss

MSE =

∑n
i=1(yi − ŷi)2

n
(2.5)

where n is the number of training examples, i is the ith training example in a dataset,
yi is the ground truth label for the ith training example and ŷi is the prediction for the
ith training example. This loss function is concerned with the average magnitude error,
irrespective of the direction. Predictions which are far away from the ground truth are
penalized heavily due to squaring.

Mean Absolute Error/L1 Loss

MAE =

∑n
i=1 |yi − ŷi|

n
(2.6)

This function is concerned with the average sum of absolute differences between predic-
tions and ground truth labels. This function does not either consider the direction of the
error. Due to the absolute term, calculating gradients for this loss function is a harder task
compared to the MSE loss function.

Cross Entropy Loss

CrossEntropyLoss = − 1

N

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (2.7)

for binary classification and

CrossEntropyLoss = −
n∑

i=1

c∑
k=i

yki log(ŷki) (2.8)

for multiclass classification, where c is the number of categories in the dataset.

This is a common loss function in the field of deep learning and it has the property that
confident predictions which are wrong are heavily penalized . This can be seen in figure
2.1.

6

2.1 Deep Learning

Figure 2.1: Illustration of how wrong and confident predictions are penalized with a large loss. True
label = 1.

Optimization algorithm

The goal of of the optimization algorithm is to find a set of parameters that minimizes the
loss function. The most common strategy to solve this problem is through gradient descent.
In gradient descent we first compute the gradient of the loss function with the current
parameters, and then update the parameters in the negative direction of the gradient. This
is an iterative process which continues until optimal parameters are found.

If we now wish to calculate the gradient we can use a classifier/activation function
such as the softmax function as example. Softmax is typically used for the output layer in
a network, while the other mentioned activation functions are used for the hidden layers.
Given an input xi the softmax will output a vector yi where each element in the vector, yki ,
represents the probability of the input xi being a member of category k. We get:

ŷki =
ea

k
i∑

k′ ea
k′
i

(2.9)

where
ea

k
i = wT

k xi (2.10)

where wk is a weight vector. Softmax also hast the property that
∑

k ŷ
k
i = 1. Using the

chain rule and the quotient rule, we can find the gradient with respect to the weights as:

− ∂Ei(w)

∂wkj
= xki (yki − ŷki) (2.11)

7

2.1 Deep Learning

where wkj is the weight from node j to node k. The same can be done for the biases. Col-
lectively denoting the weights and biases as θ, the update rule for the parameters becomes:

θt+1 = θt − α∂E(n, θt)

∂θ
(2.12)

where α is the learning rate and t is the iteration.
The training of a neural network can then be summed up as: feed the network some training
data, calculate a loss based on the predictions the network makes, use backpropagation to
perform a backwards pass to find adjustments for the parameters in the network and then
update the network parameters.

2.1.2 CNN - Convolutional Neural Network
Convolutional Neural Networks are similar to ordinary Neural Networks in many ways
as they are made up of nodes/neurons, biases and weights. They use the same activation
functions and loss functions. The key property that is different between ordinary NNs and
a CNNs is that CNNs assume that the input are images. This enables us to encode key
features into the network architecture. The forward pass is more efficient and the network
parameters are greatly reduced. Unlike NNs, CNNs have the nodes arranged in three
dimensions, depth, width and height. Depth in this context does not refer to the number
of layers in the network. Contrasting the fully connected structure of NNs, the neurons in
a layer of a CNN are only connected to a small region in the layer before. A layer in a
CNN essentially does a transformation from a 3D volume to a new 3D volume through a
differentiable function.
The CNN architecture usually consist of convolutional layers, activation function layers,
pooling layers and fully connected layers. After the input layer, the next layer is always a
convolutional(conv) layer in a CNN. A typical input to such a conv layer is an image of
32 pixels in width, 32 pixel in height and 3 colour channels, RGB. Then, the input will be
on the form 32x32x3. The conv layer uses a filter/kernel that slides over the regions of the
input image. The local region it is sliding over is called the receptive field or filter size. A
typical filter size is 3x3 or 5x5 along the width an height. The depth of a filer is the same
as the input, which is 3 in this example. The numbers within the filters are the weights or
parameters. As the filter is sliding, or convolving around the image it performs element
wise multiplications that are summed up to a single number for each position of the filter.
If a 5x5 filter is used it can fit on 784 different locations on the 32x32 input image. This
is then mapped to a 28x28 array, which is called the feature map or activation map. The
depth on the output will depend on how many filters were used. If 8 filers were used we
would get 32x32x8 (zero-padding can be used to preserve the spatial dimensions) as the
output from that layer. We calculate the feature map using the Convolution operator.It
uses a two-dimensional image I and a filter/kernel K of size h× w. The equation is given
by equation 2.13, and an example of how it works is seen in figure 2.2.

(I ∗K)xy =

h∑
i=1

w∑
j=1

Kij · Ix+i−1,y+j−1 (2.13)

8

2.1 Deep Learning

Figure 2.2: The filter/kernel K is sliding or convolving over the image I and the Convolution oper-
ator is computing the feature map by computing the dot product between the filter and its location
over the image. Figure is adopted from [22].

Filters are often thought of as feature identifiers as they are often used to identify fea-
tures such as curves, horizontal lines, vertical lines etc. in an image.
The next layer is an activation layer which will apply an activation function, such as the
ReLU function, element wise. The output volume will stay the same. In our case it would
stay at 32x32x8.
The next step is often a pooling layer. This is a much used layer between the convolutional
layers in a CNN. This layer applies a down-sampling operation along the spatial dimen-
sions (width and height). This is done to reduce the number of parameters in the network,
thereby reducing the computational load. It also counteracts the phenomena of over-fitting
due to the reduction of trainable parameters. These layers also use filters(not trainable),
with a usual size of 2x2 applied with a stride of two. It works independently on each depth
slice. Usually the MAX operation is used on each receptive field, which is called MAX
pooling, but there can also be average pooling or L2-norm pooling. With a filter size of
2x2 and a stride of 2, it will down-sample the input height and width by two. In our case
the volume will now be 16x16x8.
At the end of the network we find the fully connected layer. This layer takes an input
volume and transforms it to a N dimensional vector where N is the number of classes the
network can choose from. In our example the volume would now be 1x1xN. Each number
in the vector represents the class score. As an example, N = [0.9, 0.1] if we have two
classes and the softmax function is used in the last layer.
A typical architecture of a CNN takes the form: input layer → convolutional layer →
ReLU layer→ convolutional layer→ ReLU layer→ pool layer→ ReLU layer→ convo-
lutional layer→ ReLu layer→ pool layer→ fully connected layer.
There are several well know architectures in the field of Convolutional networks, which
include:

LeNet

LeNet [20] was one of the first successful applications of CNNs. Released in 1998, the
network had a very simple architecture consisting of seven layers with around 60 000

9

2.1 Deep Learning

parameters in the network.

AlexNet

The AlexNet [18] was released in 2012 and built on the structure of the LeNet, but was
deeper and had significantly more parameters with its 60 million parameters.

GoogLeNet/Inception v1

Released in 2014, the GoogLeNet [31] network also built upon the LeNet, and contributed
with a new element called an Inception Module. It performed very close to human perfor-
mance on the task it was set to solve. Even though it was 22 layers deep, the parameters in
the network were greatly reduced with only around a 10th of the parameters the AlexNet.

VGGNet

In 2014, the VGGNet [30] showed that depth is an important aspect of a network. Essen-
tially stacking more layers on-top of the AlexNet, this uniformly designed network became
the runner up for the ILSVRC 2014[27] contest, which the GoogLeNet won the same year.
One of the downsides of this network is that it has close to 140 million parameters, which
takes up a lot of space and computational power.

ResNet

ResNet [13] was the winner of the ILSVRC 2015 [27] competition. It introduced skip con-
nections and removed fully connected layers at the end. Thanks tho the skip connections
they were able to develop a 152 layer network while still having a lower complexity than
the VGGNet.

Region-Based Convolutional Neural Networks (R-CNN)

Introduced by Ross Girshick et al.[9] in 2013, R-CNNs improved regular CNNs through
using the Selective Search algorithm [32] to select a manageable number of region pro-
posals. Region proposals are regions in the image where there might be an object. A
drawback of ordinary CNNs comes when there are multiple objects in the image to de-
tect. When there are a variable number of objects in the image, the length of the output
layer (fully connected) is variable. To overcome this problem, Ross Girshick et al. used
the selective search algorithm to identify a manageable number of bounding-box object
candidates or ”regions of interest” (RoI). The number of original region proposals were
around 2000. After the regions were identified, they used a CNN to extract features from
each region independently. Then they classified each region using a class-specific linear
SVM(Support Vector Machine). Even though the introduction of R-CNN made improve-
ments upon the regular CNNs there were still drawbacks. The amount of time to train the
network was huge due to the fact that it would have to classify ∼ 2000 region proposals
per image. Real time applications were therefore not possible as it took around 47 seconds
to classify each test image.

10

2.1 Deep Learning

Fast R-CNN and Faster R-CNN

The same person(Ross Girshick) improved some of the drawback of the R-CNN when
he developed the Fast R-CNN [10]. The approach is similar to the original network, but
instead of using the CNN to extract features from each region independently, the whole
image were fed into a deep CNN at the start of the algorithm. This created a feature map
that were then used generate region proposals. A pooling layer, some fully connected
layers and a softmax layer were then used to predict the class of the region proposal. This
algorithm improved upon the regular R-CNN algorithm by quite a bit in terms of speed.
Now, instead of feeding 2000 region proposals to a CNN, the convolution operation is only
done once per image. While the training time of R-CNN was 84 hours, the Fast R-CNN
”only” used 9,5 hours. Classifying the testing images also showed great improvements
by only using 0.32 seconds compared to 47, which made it more applicable for real-time
applications. The speed was improved even further with the introduction of Faster R-
CNN [26]. This design got rid of the selective search algorithm, which is quite time
consuming. It was replaced by a separate network, which were used to predict the region
proposals. Selective Search uses 1-2 seconds on each image(not accounted for in the
mentioned running times for R-CNN and Fast R-CNN), depending on content, while the
Faster R-CNN design only uses 198ms for both proposal and detection.

2.1.3 Mask R-CNN
Building on Fast R-CNN and Faster R-CNN, the Mask R-CNN [12] was developed. This
is the network architecture that will be used in this thesis. The goal of Mask R-CNN was
to take Faster R-CNN to a level that could also do pixel level segmentation. By adding
a branch to Faster R-CNN that outputs a binary mask that tells whether a given pixel is
part of an object or not, they made a network that not only detected different objects,
but also segmented and classified them. In addition to this branch, they also replaced
the Region of Interest Pool Layer with a new Region of Interest Align Layer to increase
the alignment of regions throughout the network, which is needed when working with
pixel level classification. Both Faster R-CNN and Mask R-CNN uses the ResNet101 as a
backbone. The backbone act as the feature extractor in the design (it creates the feature
map), before the region proposal happens. For efficiency, during the Region Proposal
process, Mask R-CNN and Faster R-CNN uses something called anchors or anchor boxes
to detect multiple objects, overlapping objects and objects of different scales. They are a
set of predefined bounding boxes with predefined location relative to the images. Ground
truth bounding boxes and classes are assigned to individual anchors. Some filtering is done
to remain with the anchors that have a high confidence score(a predicted bounding box
that overlaps much of the ground truth bounding box). The way Mask R-CNN essentially
works can be summed up as:

1. The backbone creates a feature map.

2. RPN proposes regions that may contain objects with the help of anchors.

3. The algorithm uses the proposed region to predict bounding boxes, classifications
and masks.

11

2.2 Salmon videos

The reason we choose the Mask R-CNN design for our task of segmenting salmon smolt
in videos is due to its state-of the art performance since its arrival. Only in the recent year,
some methods have outperformed Mask R-CNN on object instance segmentation [25].
However, the amount of resources and documentation on the MASK R-CNN is very large
and will therefore be the preferred design.

2.1.4 Transfer Learning
A technique we will be using when training our Mask R-CNN is transfer learning. The
general idea behind this technique is to use knowledge from previously learned tasks and
apply it in a new situation. In the same way as when humans encounter a new situation
and uses previous experiences and knowledge to solve a task, transfer learning will do the
same. Creating or labelling our training and validation data requires a lot of time. Transfer
learning make use of existing datasets to reduce the size of training data needed. Cases
with limited training sets such as ours, with∼ 1000 images, can make great use of models
trained with 1 million images to gain low- and mid level feature definitions. We essentially
want to make our model generalize to unseen data, so it is able to classify and segment the
images as good as possible. Therefore, in this thesis, instead of starting from scratch, we
will use a model trained on a similar task as our starting point. More specifically, we will
use a model that is pre-trained on the COCO[21] dataset. This model is trained to segment
and classify different objects in images.

2.2 Salmon videos
Segmenting objects in videos and images are a common task within the field of computer
vision and deep learning. However, most of these videos are captured on land. Filming
under water on the other hand introduces several challenges, as light behaves different in
air than in water. Depending on the environment, the lighting will vary. When filming
in the ocean, lighting condition will depend heavily on the weather, but also on the depth
placement of the camera and overall visibility in the water(due to particles). When filming
in fish tanks indoor, the environment is more controlled and it is easier to reproduce the
same lighting conditions. Yet, light will still be scattered and absorbed. This is is men-
tioned in greater detail in my Specialization Project report[28]. The videos used and filmed
during this thesis will come from an indoor fish farm at Slørdalen, MOWI, where we had
relatively controlled conditions. The salmon there are kept in tanks which are ∼5m in
diameter. The lighting within the room is controlled to control the salmons life cycle, and
feeding happens automatically every couple of minutes (small amounts of feed dropped in
at a time). The experience we got during the Specialization Project highlighted many of
the difficulties when it comes to filming underwater, especially regarding the lighting. For
NIR videos this became very prominent as we only had one source of light. Balancing the
angle of the camera and the angle of the light beam to capture images without too much
reflection from the fish and particles, and still lighting up the the image sufficiently were a
difficult task. To accomplish this we had to use a large lens aperture and a slightly adjusted
exposure time. The downside was that the focus in the images suffered slightly from these

12

2.3 Kalman filter

adjustments. In this thesis, we will use the videos captured in my Specialization Project as
training data, and we will capture new videos for testing our setup.

2.3 Kalman filter
In this thesis we will be using Kalman filters[16] for tracking purposes. The Kalman filter
or linear quadratic estimator, which it is also called, is essentially used to calculate esti-
mates of unknown variables in a system. It does so based on a model of the system, the
uncertainty of the model, measurements and the uncertainty of the measurements. Sys-
tems where you have uncertain or noisy information are often a good place to use the
filter. Kalman filters are well suited for systems that are continuously changing and have
the advantage that they are fast and do not require a lot of memory since only the previous
state has to be saved(it is recursive). It has long been regarded as the optimal solution for
tracking and prediction tasks [6]. The goal is to minimize a loss function, and we measure
the performance through this function. The purpose of using this filter is to extract useful
information from a signal while ignoring everything else. The Kalman filter works in two
steps, a prediction step and an update step.

In the prediction step it produces a state estimate for the current time-step based on the
state estimate in the previous time step. It does not include observation information from
the current time step and is therefore known a an a priori state estimate. An a priori
covariance prediction is also is also calculated in the prediction step. This matrix puts a
number on the uncertainty in our model.

In the update step, the state estimation is refined by combining the calculations made in
the prediction step with current observations. This is called the a posteriori state estimate.
Writing this mathematically we first define the variables:

• x̂k|k−1 is the state estimate at time step k before the k-th observation is made

• Pk|k−1is the a priori covariance matrix (estimate of the accuracy of the model) at
time step k

• Fk is the state transition model

• Hk is the observation model

• Qk is the covariance of the process noise

• Rk is the the covariance of the measurement noise

• Bk is the control input

• zk is an observation of the true state xk.
zk = Hkxk + vk, where vk is the observation noise. This noise is assumed to be
zero mean Gaussian white noise with covariance Rk : vk ∼ N (0,Rk)

13

2.4 Libraries and frameworks

The a priori/prediction equations become:

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (2.14)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (2.15)

The a posteriori/update equations become:

ỹk = zk −Hkx̂k|k−1 (2.16)

Sk = HkPk|k−1H
T
k + Rk (2.17)

Kk = Pk|k−1H
T
k S
−1
k (2.18)

x̂k|k = x̂k|k−1 + Kkỹk (2.19)

Pk|k = (I−KkHk)Pk|k−1 (2.20)

This ordinary version of the filter are used on linear process models with Gaussian dis-
tributed process- and measurement noise. This is the basics of the Kalman filter. The
reason we are going to use this tool is because we need a way to track the salmon in our
videos after the instance segmentation process.

2.4 Libraries and frameworks
This section will present tools, libraries and frameworks used for this thesis.

2.4.1 Mask R-CNN framework
There are multiple implementations of Mask R-CNN that already exist, and for this thesis
we will use Matterports[1] implementation of the algorithm. This framework is built using
both the Keras and TensorFlow libraries. It uses Feature Pyramid Network as feature
extractor with a ResNet101 backbone. Our version will be a modified version of Adam
Kellys [17] usage of the Matterport implementation. He trained the network on a dataset
consisting of cigarette butts instead of the original COCO dataset. This library is then
modified to fit our dataset. (Throughout this thesis modifications were also made to the
original Matterport code to extract or add needed functions. Changes also had to be made
to combat the continuous updating of Python libraries which would sometimes break the
program.)

14

2.4 Libraries and frameworks

2.4.2 Google Colab
Due to the heavy computational load of training we need to make use of the parallelization
properties of a GPU. For this thesis, we use the Google Colaboratory service for training
the Mask R-CNN. This is a free cloud service which allows you to run code on powerful
GPUs. The GPUs avalable when running your code are usually Nvidia K80s, T4s, P4s
and P100s. There is no way, however, to know which exact one you are using. Colab is
a hosted Jupyter Notebook service and runs Notebooks which are saved on Google Drive.
It also has the property that one can work on the notebook from anywhere (only a web
browser is needed).

2.4.3 SORT - Tracking
Simple Online and Realtime Tracking, SORT [3]. This algorithm is able to track multiple
2D objects in a video sequence with the help of a Kalman filters. It is designed for online
tacking applications where you only have current and past frames are available. When it
was released in 2017, it was ranked as the best open source multiple object tracker on the
MOT benchmark 2015 [19]. The library[2] we will be using for this thesis uses detections
made by a Faster R-CNN network. Modifications will therefore be made to our Mask
R-CNN to output detections in the required format.

2.4.4 CLoDSA - Data Augmenting Augmenting
To improve robustness and reduce overfitting from our Neural Network we will propose
several augmenthing techniques. For this task we will use CLoDSA, which is an open-
source image augmentation library for object classification, localization, detection, se-
mantic segmentation and instance segmentation. This library will be used to make our
dataset bigger as the original dataset is very small for deep learning algorithms.

15

Chapter 3
Materials and method

This chapter will present the materials and methods used for this thesis. First, we will
present the collected data that is used for training the Mask R-CNN. Then, we will present
certain pre-processing techniques which we will use before feeding images to the network.
The training process will then be explained, before we go through the SORT algorithm and
how we modify it for our purpose. Then, we will explain how the behaviour characteristics
are calculated. At the end of the chapter we present how we collected a new dataset from
Slørdalen fish farm, which we will use to test our setup.

3.1 Data collection
The data used in the training process is a collection of data that I collected during the Spe-
cialization Project[28]. This data is a set of underwater videos of smolt from the Slørdalen
fish farm.

3.1.1 Dataset
The collected dataset consists of two subsets, one with IR videos and one with visible
light(VIS) videos. Both subsets are filmed in the same indoor fish tank. The IR videos were
filmed using a waterproof Metaphase Technologies WideBeam LED Spot Light as the only
light source, simulating night time. It outputs light at a wavelength of 850nm. The VIS
videos were filmed in daylight conditions provided by the fluorescent lamps the facility
used at the time. No extra lighting were used for these videos. To capture the underwater
videos, we used a FLIR Blackfly S 5.0 MP,22 FPS, monochrome (Black&White) camera
with a custom underwater housing. This camera has no IR cut-off filter, which enables us
to capture IR videos without having the IR light blocked. For the lens, we used a 16mm C
Series VIS-NIR Fixed Focal Length Lens from Edmund Optics. The videos were filmed
with 15/18 FPS. They were then split into image sets consisting of 900/1080 images for
each video, respectively. A number of random images from different videos were selected
to realize the training set. Initially, IR images and VIS images are separated and we will, in

16

3.2 Method

this thesis, only consider the IR sets. Another smaller set of random images were created
to constitute the validation set. At last, a test set was created to enable us to check the
network performance. Labeling of our data was done using the COCO-annotator tool[5].
This tool creates a dataset with simailar format as the COCO dataset [21]. It outputs a .json
file which contains the relevant information about the annotated image such as categories,
annotations, licenses etc. Initially, in the Specialization Project we created three different
datasets: Whole-IR, Partial-IR and Whole-VIS. The Whole datasets consist of images
where only whole fish in the image are masked and annotated, while the Partial dataset
consist of images where all fish, both whole and partial fish are annotated. We decided to
only continue with the Whole-IR dataset. An example of the annotation process is shown
in figure 3.1. For more details about the camera setup and the collection of the dataset we
refer to the Specialization Project[28].

Figure 3.1: Annotating the Partial-IR dataset using COCO annotator. Adopted from [28].

3.2 Method

3.2.1 Testing Mask R-CNN in the Specialization Project
As the Mask R-CNN have shown great performance on instance segmentation applications
for a long time[25], in addition to the amount resources available, it became the network
of choice for our task of segmenting salmon smolt in images. An initial test run on the net-
work was done during the Specialization Project [28]. The initial results showed promise,
but was not quite satisfactory. In this thesis we will look to improve upon the network by
using some of the improvement possibilities we discussed in the Specialization Project.

17

3.2 Method

3.2.2 Pre-processing
When training a network, an important aspect is the quality of our data. The higher quality
of the data we feed our model, the higher quality the model itself will be. To increase the
quality of a dataset, a step called pre-processing is often used. It involves transforming the
data in various ways before feeding it into the network. Techniques used for this purpose
includes normalization, data centering, shearing, smoothing, thresholding etc. For this
thesis, we will explore several pre-processing techniques. First, we will start with data
augmenting.

Data Augmenting

As a larger dataset can improve the performance of the network, this is decided as a first
step to improve network accuracy. Labeling data with the COCO-annototor tool is a man-
ual and time-consuming process. Therefore, to avoid spending too much time at this step
in the thesis, a more time-saving approach called data augmentation is used. First, a cer-
tain amount of data is labeled by hand. Then, simple augmentation methods such as flips
and rotation are used to increase the dataset. Here we use four rotations,[0,90,180,270],
in degrees. Each rotation is also flipped. As the set is doubled for each flip and rotation
we get a dataset 8x the size of the original. The Github library called CLoDSA [14] is
used to help perform these. It accepts the COCO format as input and outputs the data in
the same format. The goal of these augmentations is to achieve better performance on the
validation set (lower loss). In addition to increasing the size of the dataset it will also help
generalize the network. Many of the images might contain fish which are orientated in a
specific direction. This can cause the network to be biased towards that specific orientation
of the fish. By flipping and rotating the images, the network will be less sensitive to such
properties.

The first runs with the new dataset shows an increased performance in the accuracy of
the network. This can be seen in figure 3.2. We see that when the data is augmented it
performs better on the validation set while it performs worse on the training set. This is an
indication of over-fitting by the network when training on the original images. This is not
unexpected as the original set is very small for this type of network architecture.

18

3.2 Method

(a) Training loss.

(b) Validation loss.

Figure 3.2: Training loss vs. validation loss. The curves are the smoothed form of the original
losses which is visible in the background. The smoothed graph is an exponential moving average,
which is used to smooth out short-term fluctuations and highlight longer-term trends. The blue line
represents the augmented dataset, while the orange line represents the original dataset.

Thresholding

Another pre-processing technique we will try is called thresholding. Thresholding is a
binary classification of pixels based on a global or local threshold value. Thresholding
itself can be looked upon as an image segmentation tool. Instead of using machine learn-
ing we can use this technique to segment objects in images. The goal of this process, for
this thesis, is to remove unwanted objects and background, highlighting the objects we
want to segment. Here, we explore 4 different thresholding methods: global thresholding,
adaptive mean tresholding, adaptive Gaussian tresholding and Otsu’s tresholding[24] with
Gaussian filtering. We will use an example image from our dataset to illustrate the effects
these tresholding methods will have. The algorithms uses gray-scale images as input.

19

3.2 Method

Global Thresholding

This is a simple thresholding method, as we for every pixel apply the same threshold
value. We will use a binary threshold, meaning that if the pixel value is higher than the
threshold value, we will assign it a pixel value of 255(max). If it is lower than that value,
we will assign it a pixel value of 0(minimum). The results of this method is shown in
figure 3.3.

Figure 3.3: Illustration of the global thresholding method. In our case this method is very sensitive
to the threshold value. The optimal threshold value is different for each image, making it unsuited
for our application.

Adaptive Mean- and Adaptive Gaussian Thresholding

In the previous method we used a global threshold value. Consequently, with varying
lighting conditions the previous method will struggle. Adaptive thresholding uses the re-
gion around a pixel to decide its threshold value. This implies that there will be different
threshold values around the picture. The Adaptive Mean method uses the mean of the
neighbouring area while the Adaptive Gaussian method uses a Gaussian-weighted sum of

20

3.2 Method

the neighborhood around the pixel to calculate the threshold value. The effects of these
two methods are shown in figure 3.4 and figure 3.5.

Figure 3.4: Illustration of the Adaptive Mean tresholding. This method very good at extracting the
features of the fish in the image. Some noise remains in the image.

21

3.2 Method

Figure 3.5: Illustration of the Adaptive Gaussian method. This image is very similar to the Mean
Method image, but with a little less noise and less distinct features.

Otsu’s method

Instead of choosing the threshold value, Otsu developed an algorithm that determines it
automatically. It chooses the optimal threshold value based on the image histogram. It
works in the way that it searches for the threshold which minimizes the intra-class vari-
ance, defined as the weighted sum of variances of the two classes. The weighted sum of
variances is given as:

σ2
w(t) = φ1(t)σ2

1(t) + φ2(t)σ2
2(t) (3.1)

22

3.2 Method

Where:

φ1(t) =

t∑
i=1

P (i), (3.2)

φ2(t) =

255∑
i=1+t

P (i), (3.3)

µ1(t) =

t∑
i=1

iP (i)

φ1(t)
, (3.4)

µ2(t) =

255∑
i=1+t

iP (i)

φ2(t)
, (3.5)

σ2
1(t) =

t∑
i=1

(i− µ1(t))2
P (i)

φ1(t)
, (3.6)

σ2
2(t) =

255∑
i=1+t

(i− µ2(t))2
P (i)

φ2(t)
(3.7)

P(i) is the probability of a gray level in the image histogram. We iterate on t (from 0 to
255) and choose t so that σ2

w(t) is at its minimum.
Before we feed images into the algorithm we use a Gaussian filter to get rid of the noise in
the images. The result can be seen in figure 3.6. The reason behind the poor performance
of this method lies in the image histogram, which is seen in figure 3.7.

23

3.2 Method

Figure 3.6: Resulting image when applying Otsu’s method. This thresholding method has the worst
performance. The reason behind this is the image histogram, which we see in figure 3.7. This
algorithm wants to find a value between two peaks in the histogram, which makes the variances of
the two classes minimal. As can see from the histogram, we only have one peak.

24

3.2 Method

Figure 3.7: Histogram of our example image. As we can see there is only one peak, which makes
Otsu’s method unusable.

Thresholding conclusion

As we see from the examples provided, tresholding can do a good job at segmenting the
fish, especially the adaptive methods. The other methods looses a lot of information in
the image. We will do an initial test on our mask R-CNN with the images that are thresh-
olded using the Adaptive Mean method to see how the network performs. Furthermore,
in chapter 4.5, we will be discussing a dual stream network architecture approach, which
uses both unprocessed images and thresholded images.

3.2.3 Other preprocessing techniques
Before we feed the images to the network we also propose several other techniques. These
are intended to make our network more robust when the quality of the input data is lacking.
The techniques are:

Sharpen: This will sharpen the image.
Dropout: This will set some pixels to zero.
Elastic deformation: This will apply an elastic deformation given by paper [29].
Histogram equalization: This will apply a histogram equalization to the image.
Salt and pepper noise: This will add salt and pepper noise to the image.
Gaussian noise: This will apply Gaussian noise to the image.
Gaussian blur: This will blur the image, using a Gaussian filter.
The results of applying these techniques can be seen in figure 3.8 and figure 3.9.

25

3.2 Method

Figure 3.8: Augmentation techniques applied to an image. From left to the right, we have: original,
sharpen, dropout, elastic deformation

Figure 3.9: Augmentation techniques applied to an image. From left to the right, we have: his-
togram equalization, salt and pepper noise, Gaussian noise, Gaussian blur.

The network is first trained without using any techniques, and it becomes clear that it
performs very well. The reason we want to apply these techniques to our dataset is to
improve generalization. Generally, CNN networks seems to have a bias towards texture
rather than form[4]. To avoid over-fitting towards high frequency features(patterns that
occur a lot) we chose to apply Gaussian noise on some of the images. Gaussian noise (zero
mean) has data points in all frequencies, meaning we effectively distort high frequency
features. The Gaussian filter was applied on 50% on the training images we fed to the
network. The results are seen in figure 3.10. We can see that the data augmentation
actually seems to deteriorate the performance of our model. We believe that there are two
possibilities for this deterioration. One is that the training set contains enough variation in
the data to produce a robust model. The other possibility is that the validation set we use
is taken from the same tank with the same conditions, which makes the training data and
validation data similar. If we had used a validation set with different conditions, we might
have seen a better effect from using the augmentation technique. The reason we do not

26

3.3 Mask R-CNN

explore all augmentation techniques is partly due to the result when applying the Gaussian
filter and partly due to the time-schedule of the thesis (the amount of time each training
period takes is ∼ 8 hours).

Figure 3.10: Validation loss with Gaussian noise applied on 50% of the training images. The
smoothed graph is an exponential moving average, which is used to smooth out short-term fluctua-
tions and highlight longer-term trends. The blue line represents the original dataset, while the orange
line represents the augmented dataset.

3.3 Mask R-CNN
As mentioned, the Mask R-CNN [12] is a network intended for object instance segmen-
tation and had state of the art performance on the COCO dataset when the paper was
released in 2017. Our project uses this network architecture. The implementation is based
on Adam Kellys usage [17] of Matterports implementation of the Mask R-CNN [1], with
ResNet101 as backbone. The network is trained using Google Colabs computing services.
After initial training on the three datasets in our Specialization Project, the Whole-IR
dataset provided the most promising results. As time is of the issue, this is the only set
that is expanded and considered further for this thesis. It is described in greater detail in
the Specialization Project.

3.3.1 Training Process
This chapter will go through the complete process of training the network. Relevant code
used will be appended with the thesis.

1. We first import relevant libraries, such as the Mask R-CNN library. In this thesis
we use Adam Kellys version which fixed a bug in Matterports original version that

27

3.3 Mask R-CNN

would break the program when loading an existing model. In addition, the file
model.py is replaced with a slightly modified version to combat another bug that
appeared.

2. Since Google Colab is used, our data is not stored locally, so it has to be loaded to
the virtual machine. The training data is stored in Google Drive and imported from
there. The data-folder that is loaded consists of a training set, a validation set, and
their respective .json files containing all the relevant information, such as categories,
annotations etc.

3. A directory to save the different versions of our network is set up, and a pre-trained
COCO model is downloaded. This model will be used as a starting point when
training the network, instead of starting from scratch. This is the technique called
transfer learning, which we mentioned in chapter 2.1.4.

4. Now, we set up all the configurations in the network. These can be tuned and
changed to see if it improves performance. A more detailed explanation of which
variables that affects our network the most are mentioned in 3.3.2. A full overview
of the configuration is seen in figure 3.11.

5. While we use COCO format for our dataset, there are many variations of the format
itself. Therefore, a way to use the different variations is set up when the dataset class
is defined.

6. Now, the training and validation set is loaded with the dataset class defined in the
last step. The model is created in training mode and is initialized with the pre-trained
coco weights from step 4. In this step, the network can alternatively be initialized
with a set of weights that we have previously trained.

7. Now, we can choose which layers to train as well as adding additional augmentation.
We then choose how many epochs the model will train for. Lastly, the training
process is started using the chosen configuration.

We evaluate the performance based on the loss (see figure 3.10 and 3.2), which should
be as low as possible. This is achieved by minimizing the loss function given by:

L = Lcls + Lbox + Lmask (3.8)

Lcls + Lbox is the loss function of Fast R-CNN and defined as follows:

Lcls(p, u) = − log pu (3.9)

Lbox(tu, v) = λ[u ≥ 1]
∑

x,y,w,h

Lsmooth
1 (tui − vi), (3.10)

where

Lsmooth
1 (x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
(3.11)

28

3.3 Mask R-CNN

and

λ[u ≥ 1] =

{
1, if u ≥ 1

0, otherwise
(3.12)

Symbol Explanation
p Discrete probability distribution per RoI, p = (p0, ..., pK), over K + 1 cat-

egories.
u True class label, u ∈ (0, 1, ...,K) Background class is labeled u = 0 by

convention.
λ Hyper-parameter that controls the balance between the two task losses. λ =

1 in the original paper.
tu Predicted bounding box. tu = (tux, t

u
y , t

u
w, t

u
h). The parameterization of tk is

given in[11].
v True bounding box. v = (vx, vy, vw, vh).

Lmask, which is new for Mask R-CNN is defined as the average binary cross-entropy loss:

Lmask = − 1

m2

∑
1≤i,j≤m

[yij log(ŷuij) + (1− yij) log(1− ŷuij))], (3.13)

where u is the ground truth class, m2 is the mask generated by the mask branch in the
Mask R-CNN, yij is ground truth value of a cell within the mask and ŷuij is the predicted
value of the same cell for class u.

3.3.2 Network variables
To increase the accuracy of the network further, tuning of the network variables is tried.
As tuning many of the variables is a somewhat trial and error process, the network is
trained multiple times with different combinations of variables. Of the variables that
was tuned, RPN ANCHOR SCALES is found to have a great impact on how well the
network performs. This is the length of the square anchor side in pixels. Therefore,
RPN ANCHOR SCALES is changed to better match the pixel size of salmon in images.
The most notable variables that are tuned are RPN ANCHOR SCALES,
TRAIN ROIS PER IMAGE, which is the number of of RoIs per image to feed to the clas-
sifier/mask heads and MAX GT INSTANCES, which is the maximum number of ground
truth instances to use in one image. The images don’t contain a high number of whole
smolt. Therefore, this number were set lower than the original value. The specific settings
of the network can be seen in figure 3.11.

29

3.3 Mask R-CNN

Figure 3.11: Configuration for Mask R-CNN.

3.3.3 Generating the input to SORT
To be able to classify the behaviour of the fish, looking at the movement patterns is chosen
as the element to explore in this thesis.
When the network is tuned to a satisfactory level where it is able to segment smolt in
the images consistently, a new dataset is created. This new dataset contains information
about the placement of each detected smolt in the image(the bounding box), a confident
score(how certain the network is that it has detected a fish) and a frame ID which connects
the data to each image. In addition it contains information of the angle of the fish, i.e the
orientation in degrees from 0-360. This is not a property which Mask R-CNN calculates,
but a property we have added for this thesis. To calculate the angle, we first calculate the
raw moments for a gray-scale image with pixel intensity I(x, y) as:

mij =
∑
x

∑
y

xiyyI(x, y) (3.14)

The input we give the function is a binary masking of one fish at a time as seen in fugure
3.12.

30

3.3 Mask R-CNN

Figure 3.12: Illustration of the input image to equation 3.14.

We then fit an ellipse over the masked fish. The reason we do this is because the body of
a salmon resembles an ellipse. We calculate the ellipse with the following equations based
on the paper Fitting an ellipse to an arbitrary shape: implications for strain analysis [23]:

xcenter =
m10

m00
(3.15)

ycenter =
m01

m00
(3.16)

u00 = m00 (3.17)

u20 =
m20

m00
− m2

10

m2
00

(3.18)

u20 =
m02

m00
− m2

01

m2
00

(3.19)

u11 =
m11

m00
− m10m01

m2
00

(3.20)

∆ =
√

4u211 + (u20 − u02)2 (3.21)

θ =
1

2
arctan(

2u11
u20 − u02

) (3.22)

31

3.3 Mask R-CNN

width =
√

6(u20 + u02 −∆) (3.23)

length =
√

6(u20 + u02 + ∆), (3.24)

where uij represents the central moments of order i + j. If we now draw the ellipse with
the calculated center coordinates, the angle, the width and the length we get a resulting
image as seen in figure 3.13.

Figure 3.13: Illustration of ellipse drawn over the masked fish.

To find the front- and tail region of the fish we fill the ellipse and split it along the
minor axis. As the fish is thinner in the tail region, we count the overlapping pixels from
the ellipse we placed on the masked fish. The region with fewer overlapping pixels is
defined to be the tail region of the fish. From this we can determine which angle the head
points. The original image is seen in figure 3.14. With this technique it is also possible
to segment certain parts of the fish for further analysis which we will discuss further in
chapter 4.4.

32

3.4 Multiple object tracking

Figure 3.14: Original image of fish we draw an ellipse on.

The data we generate (frame, angle, position, etc.) is stored in a text document where
each line represents one detected fish. It will be used as input to SORT to track the fish in
image sequences.

3.4 Multiple object tracking
In this chapter we will explain how we will track salmon in video sequences. We will also
assign attributes such as velocity, acceleration and moving direction to each salmon.

3.4.1 Kalman Filter
The MASK R-CNN is able to segment fish at a decent level. However, it is not able
to tell us anything about the behaviour of fish. Furthermore, it is not able to tell if the
fish it detects is the same fish as it detected in the frame before. Movement patterns
are our main focus for this thesis, and therefore tracking fish between frames is a key
factor in being able to describe these movement patterns. A widely used technique for this
purpose is the Kalman filter, and the choice of algorithm to track the smolt is the SORT
algorithm, described in the paper SIMPLE ONLINE AND REALTIME TRACKING [3].
The estimation model they use approximate the inter-frame displacement of each object
with a constant velocity model, independent of other objects and the camera motion. They

33

3.4 Multiple object tracking

model the state of each object as:

x = [u, v, s, r, u̇, v̇, ṙ] (3.25)

where u and v represents the horizontal location of the center of each target, while s and
r represent the area and the aspect ratio of each target. When a detection is made, the
detected bounding box is used to update the target state. Then, by using a Kalman filter
framework, the velocity components are optimally calculated. If there is no detection, a
prediction of the state is made using the linear velocity model. To assign detections to an
existing target, they use an assignment cost matrix that is optimally calculated using the
Hungarian algorithm. The data we export from the Mask R-CNN, which we mentioned in
the previous chapter, is used as the true state in this algorithm.

As we now have an algorithm to track objects from frame to frame, we feed the Mask
R-CNN generated data to the SORT framework. Since all the information needed is saved
in the text document(displaying the images is an optional property), this a fast algorithm,
suited for real-time applications. We see that the algorithm is able to track salmon smolt
at a high level in the images. However, there are certain limitations in the current frame-
work when it comes to describing the movement of each fish. Therefore, we have to make
several modifications in order to output attributes such as velocity, acceleration and verti-
cal/horizontal movement.

3.4.2 Modifying the SORT algorithm
To describe the velocity of each fish, we will use the average speed over the last n frames,
where n is a variable of our choosing. We use the standard equation for calculating the
average velocity:

v =
∆x

∆t
, (3.26)

where ∆x is the displacement and ∆t is the change in time, which in our case will be n.
∆x is calculated as the distance between the center point of two bounding boxes (which
represents the same object) after n frames. We save each object position in an array over
the last n frames and continuously calculate the velocity of each object. We create a
velocity array, which saves the velocities over n frames, which we will use to calculate
the acceleration. We save both the total velocity as well as the x-component and the y-
component. It is important to note that we actually have to detect the same fish over n
frames before we can begin to calculate velocity. Calculating the direction each fish is
moving comes naturally as we can look at which way the center point of each bounding
box moves. Directions are divided into horizontal and vertical direction. If the velocity
in a direction lower than a given threshold, the fish is said to be stationary. Horizontal
direction is divided into the categories: left, right and stationary, and vertical direction is
divided into the categories: up, down and stationary. In calculating the acceleration we
use the formula for average acceleration:

a =
∆v

∆t
, (3.27)

34

3.4 Multiple object tracking

where ∆v is the change in velocity and ∆t is the change in time (n). We then calculate the
acceleration using the saved velocities. As for the velocity, we calculate total acceleration,
and the x- and y component. The reason we also calculate the x- and y component is that
we believe that it can prove helpful when describing the behaviour of the fish. Here, it is
also important to note that we need to detect the fish in n x 2 frames before we start to
calculate the accelerations.

There is, however, a problem with our approach of calculating velocity as we only
calculate the relative velocity with respect to the captured image. A fish that is closer to
the camera will appear larger than one that is further away. Naturally, if they are the same
size and swim with the same velocity, the fish that is the closest to the camera will appear
to swim faster than the fish that is further away.

To overcome this problem we first made the assumption that each fish have the same
size. From a geometric perspective we know that if the distance from an object to an
observer is doubled, the observer will see the object as twice as small in both vertical and

horizontal direction, meaning the observed area will be
1

4
of the original area. The area is

inversely proportional to the squared distance:

d2 ∝ 1

A
, (3.28)

where d is the distance to the object and A is the area of the object. The implications of
this is that if two objects of equal size moves with the same velocity, but one is twice as
far away, it will appear to move twice as slow. However, if we multiply both velocities by
their respective distance to the observer we will end up with the same number. In our case

we have no way to calculate the distance to each fish, so instead we multiply by
1√
A

. The

area of the fish is a new property we will export from the Mask R-CNN algorithm. An
illustration of the described problem is seen in figure 3.15.

35

3.4 Multiple object tracking

Figure 3.15: Illustration of the velocity problem. Object A and Object B are the observed size of
two similar sized objects. They move with the same velocity, which is one body length each second.

If the body length in reality is 4m, we have to multiply by the constant 4
2√
6
m to find the real

velocity, which is 4m/s.

The exported properties for each detected object in the SORT algorithm is as follows:

1. Frame ID: Tells us which frame in the video we are referring to.

2. Fish ID: Tells us which fish in the image we are referring to.

3. x-position: Tells us the x-coordinate of the center point of the bounding box around
the fish.

4. y-position: Tells us the y-coordinate of the center point of the bounding box around
the fish.

5. y-velocity: Tells us the x-component of the velocity.

6. x-velocity: Tells us the y-component of the velocity.

36

3.5 Testing our complete algorithm

7. Total velocity: Tells us the total velocity.

8. x-acceleration: Tells us the x-component of the acceleration.

9. y-acceleration: Tells us the y-component of the acceleration.

10. Total acceleration: Tells us the total acceleration.

11. x-direction: Tells us whether the fish moves left or right in the image.

12. y-direction: Tells us whether the fish moves up or down in the image.

13. Area: tells us the masked area (not the area of the bounding box), in pixels, of the
fish we are referring to.

14. Fish angle: Tells us the angle of the fish (which way the head is pointing).

15. Prediction: Tells us whether a prediction or the true state was used in the current
frame (true/false).

These calculations are only done in the 2D-plane, meaning we have no way to tell of
the fish is moving towards or away from the camera. The velocities and accelerations
calculated also have no physical meaning as they are. To find the actual velocity one
would have to multiply by a constant based on real measurements. It is also important
to note that there is a current in the water, meaning the fish can appear to stay still but
in reality swim with a certain velocity. The goal of this thesis, however, is not accurately
describe the true velocity or acceleration of each fish, but rather to look for differences in
the generated data based on the situation in the fish tank.

3.5 Testing our complete algorithm
This section will explain how we will test our complete setup for classifying simple be-
haviour classes.

3.5.1 Second trip to Slørdal
In order to see how well our setup is able to detect different situations in the fish tank
we need new videos, which represents different salmon behaviour. As we are not able
to dramatically change the behaviour of the fish in any way, such starving or making the
fish sick, we propose three simple categories: feeding behaviour, normal behaviour and
spooked behaviour.

Equipment and setup

The camera and lighting equipment used in this trip is similar to what we used in our
Spesialization Project. However, as the salmon does not feed at night we need to film
in normal lighting. Therefore, we add a UV/VIS cut-off filter so that we end up with IR
videos.

37

3.5 Testing our complete algorithm

IR Pass filter Model:M25.5 x 0.5 Mounted UV/VIS Cut-Off, IR Pass Filter (R-72).
These filters absorb most of the ultra violet and visible region. Our filter lets through waves
of length 720nm and above. To film approximately the same size of salmon we had to film
in a different part of the facility than in the preceding project. The smolt were now in much
larger fish tanks than compared to the Specialization Project. The lens aperture we ended
up with was both f1.4 and f2.8. Ideally we want this number a little larger (smaller aper-
ture) so that our focus range increases, but due to the difficult lighting capabilities(only
one IR-lamp), we had to keep it relatively small. The IR-lamp was placed on top of, and
also submerged together with the camera rig. This is a slightly different setup than what
we used in the Specialization Project. This was due to the nature of our working environ-
ment, which provided it impossible to hold the lamp in the same way as in the project. In
the software SpinView, we also changed the variables Gain and Gamma to ∼36 and ∼0.9
to increase the apparent brightness and luminance in the videos. The shutter speed was
set to automatic. The general goal was to capture similar videos to the ones we collected
in our Specialization Project. We believe we achieved that goal and actually increased the
quality of the images, especially in terms of focus. An image from the new video set can
be seen in figure 3.16.

Figure 3.16: Image from the new dataset.

38

3.5 Testing our complete algorithm

Feeding behaviour, normal behaviour and spooked behaviour

To capture the natural response in the three different situations we first had to familiarize
the fish to the camera rig. After the rig was submerged we waited 30 minutes to let the
fish enter their natural state. The videos were filmed at 18 FPS, and we used the same
compression as in the preceding project to save both disk space and preventing our RAM
to run out of memory. The rig was placed in a position which allowed us to capture all
three situations from the same spot.

Feeding: We stared filming when the food entered the water, leaving it passing by the
camera, before stopping the recording after 20 seconds. The salmon were automatically
fed a little amount of food approximately every 2 minutes. This means that the salmon
will not be particularly hungry when the food is dropped. Looking at the videos, there
were no clear sign that the fish were behaving differently. Even when looking from above
the water, having an overview of the whole tank, it was difficult to spot changes in be-
haviour when the food was dropped in. Therefore, before we test our algorithm we form
the hypothesis: Differentiating between normal behaviour and feeding behaviour will be
particularly tricky for our algorithm, unless we have much more data.

Normal behaviour: Normal behaviour was filmed for 20 seconds between the automatic
feeding. Nothing special is happening within the fish tank when these are filmed.

Spooked: In order to film this behaviour we let the fish enter their natural behaviour,
before quickly submerging a stick next to the camera. These videos were also filmed for
20 seconds. Looking at the videos, this behaviour is easily distinguishable from the nor-
mal behavior as when the stick is submerged, all the salmon quickly disappear from the
camera view, before they return some time after the stick is gone. As a result, we believe
that this behaviour is easier to spot for our algorithm than the feeding behaviour.

3.5.2 Limitations
Since Slørdal fish farm is a commercial facility there were certain limitations to how we
could affect the fish and create different situations in the tank. Longer lasting situations
in the fish tank would create an interesting addition to the collected dataset. An example
is data from a tank where the fish is not fed for a longer amount of time. Other examples
could be data with different lighting- or temperature conditions. Collecting such datasets
is a component in the suggestions for future work, which we discuss further in chapter 4.5.

3.5.3 Algorithm workflow
Now that we collected the videos, we will test our setup, where the complete workflow is
as follows:

1. Extract the images from the video sequences.

2. Feed the images to the Mask R-CNN.

39

3.5 Testing our complete algorithm

3. Extract image data from the Mask R-CNN

4. Feed the extracted data to our multiple object tracker, SORT.

5. Calculate movement statistics such as velocity, position, acceleration and direction.

6. Plot the collected statistics to look for difference in behavior in our three video
classes: normal, feeding and spooked.

We will discuss the results of our setup in the next chapter.

40

Chapter 4
Results and discussion

We will divide this chapter into five parts. In part 1 we will discuss the performance
of the Mask R-CNN. In part 2 we will discuss the performance of the SORT algorithm,
in part 3 we will discuss the plotted statistics, in part 4 we will discuss a preliminary
exploration in finding the tail beat frequency of a fish, and in part 5 we will discuss the
overall performance and future work.

4.1 Mask R-CNN results
Compared our Specialization Project, we can see a great improvement in how well the
Mask R-CNN segments and detects salmon in each image. The reason behind this is
partly due to better tuning of the network parameters/variables and partly due to a larger
dataset. A comparison between the loss of the old- and new dataset was shown in figure
3.2 in chapter 3.2.2.

For the most part, the network does a good job at masking the fish, as seen in figure 4.1.
However, the network still suffers from problems where it fails to mask the fish as seen in
figure 4.2.

41

4.1 Mask R-CNN results

Figure 4.1: Illustration of good masks.

Figure 4.2: Illustration of a failed segmentation by an early version of our network. There are feed
pellets in the image that disturbs the masking.

To overcome the problem of bad masks, we set the parameter

42

4.1 Mask R-CNN results

DETECTION MIN CONFIDENCE to 0,996. This is a measure of how sure the network
is that it has detected a fish. By setting this parameter higher we exclude several bad masks
when exporting the generated data. The downside, however, is that some good masks also
will disappear.
While the overall performance of the network is good, we could still see improvements.
A much larger dataset (10 000+ images) would be ideal for improving the network further
and combat the over-fitting problem, which particularly occurs with small datasets. More
tuning of network variables could also be beneficial for the performance. Generally im-
proving the quality of the dataset would also be a way to increase the network accuracy.
Yet, these improvements requires a lot of time and are infeasible with this thesis’ time
schedule.

In addition to our original dataset, we also do a test on thresholded images, which shows
promising results for segmenting the images. In terms of loss, the two methods preformed
close to the same, and the issue of bad masks is also present here. As for the original set,
we can use the technique with the variable DETECTION MIN CONFIDENCE to over-
come some of the bad masks. Illustrations of segmenting using thresholded images are
shown in figure 4.4 and figure 4.3.

Figure 4.3: Illustration of a bad segmentation when using thresholded images.

43

4.2 SORT performance

Figure 4.4: Illustration of a good mask when using thresholded images.

4.2 SORT performance
This algorithm does an excellent job at tracking the detected objects. A visualization of
the interface is shown in figure 4.5. While it does a great job at tracking objects, it needs
stable detections from the Mask R-CNN, meaning the network has to mask the same fish
multiple frames in a row. This is usually not a problem when the masked salmon stays
within the frame. However, the captured angle is quite small, meaning that fish that would
partially or completely go outside the frame would not be tracked anymore. The same
would also happen if an untracked fish swims in front of a tracked fish. A solution to
this problem could be to adjust the parameter for how many skipped detections we allow.
However, for this thesis, this parameter is set to 1, meaning we allow one skipped detec-
tion. A prediction with the help of a Kalman filter is then used as the position. The reason
we want to keep it quite low is to avoid false tracking.
To allow calculations of velocity we also need to track the fish for 5(n) frames to find the
average velocity over these frames. 5 more frames is needed for the acceleration calcu-
lations. These numbers can be adjusted, but for this thesis they are set to 5 to make the
calculations somewhat robust to noise.

When the visual interface is not running, we are able to run the whole modified SORT
algorithm in real-time, achieving 76.9 FPS, making it suitable for real-time applications.
It stores the generated statistics in a separate text file for each video sequence.

44

4.3 Movement statistics

Figure 4.5: Illustration of the visual interface when using the SORT tracker. This image is taken
before we added acceleration, area and angle.

4.3 Movement statistics
Based on the generated statistics by the modified SORT algorithm, we plot the data for
each class: normal, feeding and spooked. In figure 4.6 we see the number of salmon de-
tected in the frames. We use a step of 5 frames to make the graph smoother and easier to
read. As we can see, there is no visible difference between the feeding and normal class.
However, we see a large difference from the spooked class. There is next to no detected
fish after the fish is spooked. We have used 5 videos of 20s for the feeding and normal
class, while we have used 10 videos for the spooked class. The reason we have used 10
videos for the spooked class is that we want to make sure we capture the change in be-
haviour. The fish disappears in a split second. This means that if we do not track a fish
just as it is spooked, we are not able to detect the change in behaviour. Looking through
the masked images, we see that this problem happens sometimes. To enable our setup to
better spot the sudden change in behaviour we decided to use more videos.

What we look for in the statistics is deviance from the normal behaviour. We do not
look at individual statistics, but rather shoal statistics. When it comes to acceleration and
velocity we expect higher velocities and accelerations in the spooked class. Deviance can
also come from the direction the fish swims or the angle of the fish. Usually, the head
of the fish is pointing towards the current and detections where the fish points away from
the current could indicate an anomaly. This method of looking through the plotted data
is visual and manual approach. Later, we will discuss possibility of adding automatic
anomaly detection in the future.

45

4.3 Movement statistics

Statistic Normal behaviour Feeding behaviour Spooked behaviour
Number of detections 1600 1204 1115
Number of velcoity
detections 1236 906 763

Number of acceleration
detections 973 735 528

Average velocity 2.95 2.67 4.60
Average acceleration 0.36 0.30 0.46
Number of apparent
movements in
x-direction

Left: 97
Right: 258
Stationary: 881

Left: 53
Right: 151
Stationary: 702

Left: 216
Right: 136
Stationary: 411

Number of apparent
movements in
y-direction

Up: 84
Down: 26
Stationary: 1126

Up: 51
Down: 26
Stationary: 829

Up: 124
Down: 44
Stationary: 595

Cases handled by
Kalman filter 27 30 21

Table 4.1: Statistics generated from the SORT algorithm.

The plotted velocities and accelerations of each class is shown in figure 4.7 and figure
4.8. We also plot the average velocity and acceleration over the last 5 frames to make the
graphs easier to read when looking changes in behaviour. They are seen in figure 4.9 and
figure 4.11. Distributions of velocities is seen in 4.10 and distributions of accelerations
is seen 4.12. Again it is hard to spot a difference between the normal and feeding class.
One could say that the feeding behaviour is more uneven than the normal behaviour, but
without more data it is impossible to say. The clear difference again is seen with the
spooked class. We can clearly see when the fish are spooked both from the acceleration-
and velocity plots. The time at which they are spooked in each video may vary a little,
but effort was put into spooking them at the same time in each video. Looking at angles,
i.e the angle direction the fish head points, we can not spot a clear difference between the
classes. The angles are seen in 4.13. A summary of other statistics is seen in table 4.1.
In this table we see that the apparent movement of the fish dominated to the right side,
except for the spooked class, which is another indication of the spooked class behaving
different. From the angles in figure 4.13, we see that most fish has their head pointed in
the left direction. The reason the normal class and the feeding class have a higher amount
of apparent movements to the right side, when most angles are pointing towards left, is
due to the current in the water, which flows to the right side. When the fish is pointed to
the right it is much easier to swim with the current and trigger the threshold for a velocity
higher than stationary.
The total number of detections refers to the count of every tracked object in each frame
over the total number of frames (does not necessarily mean different ID). Stationary refers
to a velocity of less than 3. This number can be adjusted in the SORT algorithm.

46

4.3 Movement statistics

(a) Normal detections.

(b) Feeding detections. (c) Spooked detections.

Figure 4.6: Comparison between the number of detections over the last 5 frames for each class.

47

4.3 Movement statistics

(a) Normal Velocity.

(b) Feeding velocity. (c) Spooked velocity.

Figure 4.7: Comparison between the velocity of each class.

48

4.3 Movement statistics

(a) Normal acceleration.

(b) Feeding acceleration. (c) Spooked acceleration.

Figure 4.8: Comparison between the acceleration of each class.

49

4.3 Movement statistics

(a) Average velocity, normal. (b) Average velocity, feeding.

(c) Average velocity, spooked. (d) Average velocity in the same plot.

Figure 4.9: Comparison between average velocity over every detection in the last 5 frames of each
class.

50

4.3 Movement statistics

Figure 4.10: Distributions of velocities. Here we can see a clear difference between the spooked
class and the two other classes.

51

4.3 Movement statistics

(a) Average acceleration, normal. (b) Average acceleration, feeding.

(c) Average acceleration. (d) Average acceleration in the same plot.

Figure 4.11: Comparison between the average acceleration over every detection the last 5 frames of
each class.

52

4.3 Movement statistics

Figure 4.12: Distributions of accelerations. The difference between the spooked class and the two
other classes is less distinct here, compared to the velocity distributions.

53

4.4 Preliminary research in finding tail beat frequency

(a) Angle, normal. (b) Angle, feeding.

(c) Angle, spooked.

Figure 4.13: A circular histogram visualizing the angles of each detected fish. The area of each
bin represents how many data points are in each bin. A doubling of data points in a bin results in a
doubling of the area(not the radius). As expected, we see that almost all fish are pointed towards the
current.

4.4 Preliminary research in finding tail beat frequency
In addition to the statistics we have already generated, we started researching possible
ways of finding the tail beat frequency of each fish. While the statistics are based on sev-
eral thousands of frames, we have only carried out a small test consisting of 53 frames
for this approach. In this sequence we have used the MASK R-CNN to generate masks
of a fish that does approximately 4 tail beats in the duration of the sequence. To describe
the tail beat frequency, we first want to isolate the tail of the fish to reduce disturbances.
For this, we have used the technique of placing an ellipse over the fish. We then placed a
circle with center at the tail end of the major axis of the ellipse. All the pixels within this
circle is extracted and the results is seen in figure 4.14. Then, we extract the pixels which

54

4.4 Preliminary research in finding tail beat frequency

is overlapping between the circle and the mask. This method will isolate the tail of the fish
and the result is seen in figure 4.15.

Figure 4.14: Illustration of the extracted circle around a fish tail.

55

4.4 Preliminary research in finding tail beat frequency

Figure 4.15: Illustration of a isolated and masked tail.

To look for a periodic signal, we first tried simple methods as plotting a time-series
of the area and mean pixel intensity of the isolated tail. These time-series can be seen in
figure 4.16 and figure 4.17. Both series have their similarities, but they didn’t show enough
resemblance of a periodic signal for further exploration.

56

4.4 Preliminary research in finding tail beat frequency

Figure 4.16: Time series of the area of the isolated tail.

Figure 4.17: Times series of mean pixel intensity of a masked tail.

The second method we tried involves using Optical Flow. Optical Flow is the pattern

57

4.4 Preliminary research in finding tail beat frequency

of the apparent movement of a camera or an object between two consecutive frames. It is
also referred to as apparent motion of image brightness patterns in an image sequence. If
we consider a pixel P (x0, y0, t0) in the first frame that is moved by a distance (dx, dy) in
the second frame taken after dt, we end up with the equation:

P (x1, y1, t1) = P (x0 + dx, y0 + dy, t0 + dt) (4.1)

Then, by taking the Taylor series approximation of the right-hand side, removing the com-
mon terms and dividing by dt, we get:

fxu+ fyv + ft = 0 (4.2)

where:
fx =

δf

δx
; fy =

δf

δy
(4.3)

u =
dx

dt
; v =

dy

dt
(4.4)

fx and fy are the image gradients, and ft is the gradient along the time dimension. To find
u and v, there exists several methods. Here, we used Dense Optical Flow, which is based
on Gunner Farneback’s algorithm explained in the paper Two-Frame Motion Estimation
Based on Polynomial Expansion[7].

We center the tail in each image to remove the motion of the fish to focus on how the
brightness moves as the tail beats. The output of the Dense Optical Flow algorithm is a 2-
channel array with Optical Flow vectors (u, v). We convert to HSV color space, where H
(Hue) represents the direction, V (Value) represents the magnitude and S (Saturation) is set
to 255. This is then converted to the RGB color space to produce an Optical Flow image as
seen in figure 4.18. To look for a periodic pattern, some experimenting was done with the
generated flow vectors. By our findings, converting to gray-scale and computing the mean
pixel intensity over each frame results in a promising periodic time-series. We then filter
the signal using a low-pass filter to generate a filtered time-series as seen in figure 4.19.
We compute the fast Fourier transform(FFT) of the time-series and extract the largest peak
in the FFT to receive the strongest periodicity. By multiplying this frequency(0.0755) by
the total number of frames(53) we believe to have found the number of tail beats(4.001) in
the video sequence. An animation of the time-series and tail beats is attached to this thesis.
In the animation we can see a clear connection between each cycle and the tail beats. It is
important to note that this has only been tested on one video sequence. Further testing has
to be conducted to verify if this is a an approach that can be used or not.

58

4.4 Preliminary research in finding tail beat frequency

Figure 4.18: Optical Flow image of a masked tail.

Figure 4.19: Time-series of mean pixel intensity when using Optical Flow and converting to gray-
scale.

59

4.5 Overall performance discussion and future work

4.5 Overall performance discussion and future work
As we have seen, by looking at the statistics from our setup, we are able to clearly dis-
tinguish between the spooked class and the two others. Finding a difference between the
feeding class and normal class is a more challenging task, which confirms the hypothe-
sis we made when we captured the videos. Even when having an overview of the whole
tank when filming the videos, a change in behaviour when the feed was dropped was hard
to spot. We believe the reason behind this is because the salmon are fed so consistently.
When we were filming, they were fed approximately every 2 minutes. If the feeding had
happened once or twice a day, it might have been easier to spot a difference. For now,
the normal situation represents the 2 minutes between the feeding. The fish might behave
differently if the fish goes longer periods without feed. As a result, the definition normal-
and feeding behaviour could be changed. An alternative is to merge the two classes or
define the normal class as a period where the fish is not fed for a certain amount of time
(for example at night).

4.5.1 Sources of error
There are certain elements in our approach that can cause wrong calculations in the gen-
erated statistics. Mostly, it comes down to the Mask R-CNN. Most of the calculations we
use in our approach rely on the masks created by the Mask R-CNN. Usually, the problem
which occurs is masks that are not complete(e.g missing part of the tail) or masks that
contain elements which are not part of the fish as we saw in figure 4.2. This can cause the
resulting bounding box to be wrongly placed on the fish. The exported area is also affected
by this. As a consequence, all the underlying calculations can or will be affected.
We also have a source of error when it comes to the 2D calculations. For fish that swims
perpendicular to the camera the approach works, but when fish moves towards or away
from the camera, we loose/ignore a component and are not able to accurately describe the
actual movement. It also uses the assumption that the salmon are equal in size, which
might not always be the case.
In some situations is is also possible that the the tracker makes a mistake. If two fish are
swimming close or on top of each other, there is a possibility for the tracker to mistake
one fish for the other one. This doesn’t necessarily affect the resulting shoal statistics, but
rather individual statistics.

4.5.2 Future work
The largest bottleneck of our network is the Mask R-CNN. It is not able run in real-time,
and could still see improvements. Since the tracker relies on the segmentation from this
network, it should be the priority when improving the complete setup. To increase the
performance the network we make the following suggestions:

60

4.5 Overall performance discussion and future work

1. Increase the dataset by a large margin. Mask R-CNN is a powerful network capable
of handling large datasets. Usually, the rule the more the better applies here.

2. Improve the quality of the dataset. The performance of deep learning networks are
dependent on the quality of the data they are training on. With a better camera setup,
especially regarding the illumination, we could achieve better focus in the images
and have sharper edges between the fish and the background, which makes it easier
to segment the fish. Another problem for our setup was that the fish would not stay
in the captured frame for a long time. Looking through the distribution of how long
the fish is detected for in figure 4.20, we can see that most fish are not tracked for
more than ∼20 frames, which is around a second(we use 18 FPS). Therefore, a
wider camera angle could be tried to enable tracking over longer distances.

3. Use as stereo setup when capturing videos. Capturing 3D images could provide us
with more information regarding the movements of the fish in the image. In this
thesis we only consider the 2D plane, but when using 3D we could both extend and
improve our calculations.

4. Exploring the possibilities of a dual stream architecture. This means that we could
train two parallel networks, for example one that is trained on thresholded images
and one that is trained on normal NIR-images. The final output will be a weighted
sum of the output of each stream.

5. Use another network architecture. In the recent year, several new architectures
which achieves state of the art performance in instance segmentation have surfaced.
Experimenting with a new architecture could prove beneficial. State of the art meth-
ods can be found here [25].

61

4.5 Overall performance discussion and future work

Figure 4.20: Distribution of how long the fish is detected for.

For a large scale test of the setup, we could use multiple cameras to cover a larger
part of the tank. Then, behaviour classes could be tested over a longer period of time. An
example is where the fish is sick. If one tank contained sick fish, the data generated from
this tank could be compared to the data generated from a normal tank.

As for now, we have only used visualization of one variable at a time to look for de-
viance in the statistics. However, it is not always one variable alone that allows us to find
an anomaly, but rather a combination of variables. The goal of this thesis is not to pro-
duce statistics that will be manually inspected through visualisation, but rather create data
which can be used in automatic approaches to detect anomalies in such data.

There are many approaches of finding anomalies in data series. Examples include
simple statistical methods as traversing the mean over a time-series, but also machine
learning methods as clustering-based anomaly detection and support vector machine-based
anomaly detection. Another example is to use auto-encoders. These neural networks try
to reproduce the input data. They have as many input nodes as output nodes, while the
hidden layers have fewer nodes. This way, the hidden layers will extract useful information
from the input to effectively reproduce it at the output layers. A well trained auto-encoder

62

4.5 Overall performance discussion and future work

reproduces the input with minimal error and learns to reconstruct data that follows a certain
format. It is trained on normal data and learns how the features will look for this data.
When an anomaly is fed through the model, it fails to reproduce it and ends up with a large
error term. A successful implementation could, in the future, result in a fully automated
approach of detecting anomalies in the fish tank.
An architecture where not the statistics, but the original videos are fed to network could
also be tried. This field is known as Action Recognition. However, this method will only
classify each behaviour and not provide any statistics from the tank.

63

Chapter 5
Conclusion

In this thesis, we present an approach for classifying different behavior characteristics
through deep learning and multiple object tracking. Through manual inspection of the
generated tank statistics, we found the method able to distinguish one class from two other
classes. A summary of the goals we presented in the beginning of the thesis is a follows:

1. Create a network that can successfully segment salmon in NIR images:
The Mask R-CNN we used, segments salmon to a satisfactory level, when filtering
the the segmentation based on confidence score. Future improvements can greatly
increase the performance of our method.

2. Create a tracker that can successfully track salmon in a video stream:
The modified SORT algorithm we use, is successful in tracking the segmented
salmon from the Mask R-CNN.

3. Create data based on the tracking which includes velocity, acceleration, and
swimming/moving direction:
We are able to generate statistics on velocity, acceleration and moving direction
using the 2D calculations we presented in chapter 3.4.

4. Test the program on new data to check if we are able to distinguish between
the data generated from three different behaviour classes: feeding, normal and
spooked.:
We have tested our approach on three classes, where we can distinguish the spooked
class from the two other classes.

The proposed approach is only tested on a small dataset and further improvements must
be made before carrying out a large scaled test. Successfully improving the method, could
result in practical industrial relevance given we are able to provide valuable information
about the state in the tank.

64

Bibliography

[1] Abdulla, W., 2017. Mask r-cnn for object detection and instance segmentation on
keras and tensorflow. https://github.com/matterport/Mask_RCNN.

[2] abewley, 2020. Sort. https://github.com/abewley/sort.

[3] Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime
tracking, in: 2016 IEEE International Conference on Image Processing (ICIP), pp.
3464–3468. doi:10.1109/ICIP.2016.7533003.

[4] Brochu, F., 2019. Increasing shape bias in imagenet-trained networks using transfer
learning and domain-adversarial methods .

[5] Brooks, J., 2019. COCO Annotator. https://github.com/jsbroks/
coco-annotator/.

[6] Brown, R.G., Hwang, P.Y.C., 1997. Introduction to random signals and applied
kalman filtering: with MATLAB exercises and solutions; 3rd ed. Wiley, New York,
NY. URL: https://cds.cern.ch/record/680442.

[7] Farnebäck, G., 2003. Two-frame motion estimation based on polynomial expansion,
in: Proceedings of the 13th Scandinavian Conference on Image Analysis, Gothen-
burg, Sweden. pp. 363–370.

[8] Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Demp-
ster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L.M., Schelle-
wald, C., Skøien, K.R., Alver, M.O., Berckmans, D., 2018. Preci-
sion fish farming: A new framework to improve production in aquacul-
ture. Biosystems Engineering 173, 176 – 193. URL: http://www.
sciencedirect.com/science/article/pii/S1537511017304488,
doi:https://doi.org/10.1016/j.biosystemseng.2017.10.014.
advances in the Engineering of Sensor-based Monitoring and Management Systems
for Precision Livestock Farming.

[9] Girshick, R., Donahue, J., Darrell, T., Malik, J., 2013a. Rich feature hierarchies for
accurate object detection and semantic segmentation. arXiv:1311.2524.

65

https://github.com/matterport/Mask_RCNN
https://github.com/abewley/sort
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://github.com/jsbroks/coco-annotator/
https://github.com/jsbroks/coco-annotator/
https://cds.cern.ch/record/680442
http://www.sciencedirect.com/science/article/pii/S1537511017304488
http://www.sciencedirect.com/science/article/pii/S1537511017304488
http://dx.doi.org/https://doi.org/10.1016/j.biosystemseng.2017.10.014
http://arxiv.org/abs/1311.2524

[10] Girshick, R.B., 2015. Fast R-CNN. CoRR abs/1504.08083. URL: http://
arxiv.org/abs/1504.08083, arXiv:1504.08083.

[11] Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2013b. Rich feature hierarchies for
accurate object detection and semantic segmentation. CoRR abs/1311.2524. URL:
http://arxiv.org/abs/1311.2524, arXiv:1311.2524.

[12] He, K., Gkioxari, G., Dollár, P., Girshick, R.B., 2017. Mask R-CNN.
CoRR abs/1703.06870. URL: http://arxiv.org/abs/1703.06870,
arXiv:1703.06870.

[13] He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recogni-
tion. arXiv:1512.03385.

[14] Heras, J., 2020. Clodsa. https://github.com/joheras/CLoDSA.

[15] Hosteland, L.T.S., 2017. Nytt konsept skal øke menneskets evne
til å overvåke oppdrettsfisk. https://www.kyst.no/article/
nytt-konsept-skal-oeke-menneskets-evne-til-aa-overvaake-oppdrettsfisk/.

[16] Kalman, R.E., 1960. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering 82, 35–45.

[17] Kelly, A., 2018. Mask r-cnn training and inference. https://github.
com/akTwelve/tutorials/blob/master/mask_rcnn/MaskRCNN_
TrainAndInference.ipynb.

[18] Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks, in: Pereira, F., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (Eds.), Advances in Neural Information Processing Systems 25. Curran
Associates, Inc., pp. 1097–1105. URL: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

[19] Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K., 2015. Motchallenge 2015:
Towards a benchmark for multi-target tracking. arXiv:1504.01942.

[20] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86, 2278–2324.

[21] Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: common objects in
context. CoRR abs/1405.0312. URL: http://arxiv.org/abs/1405.0312,
arXiv:1405.0312.

[22] Moutarde, F., . Tutorial deep learning. http://perso.mines-paristech.
fr/fabien.moutarde/ES_MachineLearning/TP_convNets/
convnet-notebook.html.

66

http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1512.03385
https://github.com/joheras/CLoDSA
https://www.kyst.no/article/nytt-konsept-skal-oeke-menneskets-evne-til-aa-overvaake-oppdrettsfisk/
https://www.kyst.no/article/nytt-konsept-skal-oeke-menneskets-evne-til-aa-overvaake-oppdrettsfisk/
https://github.com/akTwelve/tutorials/blob/master/mask_rcnn/MaskRCNN_TrainAndInference.ipynb
https://github.com/akTwelve/tutorials/blob/master/mask_rcnn/MaskRCNN_TrainAndInference.ipynb
https://github.com/akTwelve/tutorials/blob/master/mask_rcnn/MaskRCNN_TrainAndInference.ipynb
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://perso.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html
http://perso.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html
http://perso.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html

[23] Mulchrone, K.F., Choudhury, K.R., 2004. Fitting an ellipse to an arbitrary
shape: implications for strain analysis. Journal of Structural Geology 26,
143 – 153. URL: http://www.sciencedirect.com/science/
article/pii/S0191814103000932, doi:https://doi.org/10.
1016/S0191-8141(03)00093-2.

[24] Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics 9, 62–66.

[25] Papers-With-Code, 2020. Instance segmentation on coco test-dev. URL: https:
//paperswithcode.com/sota/instance-segmentation-on-coco.

[26] Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. arXiv:1506.01497.

[27] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115, 211–252. doi:10.1007/s11263-015-0816-y.

[28] Sagstad, S., 2019. Collecting and preparing an image dataset of salmon smolt for
use in deep learning based behavioral analysis and classification. Project report
in TTK4550. Department of Information Security and Communication Technology,
NTNU – Norwegian University of Science and Technology.

[29] Simard, P.Y., Steinkraus, D., Platt, J.C., 2003. Best practices for convolutional neural
networks applied to visual document analysis, in: Seventh International Conference
on Document Analysis and Recognition, 2003. Proceedings., pp. 958–963.

[30] Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-
scale image recognition. arXiv 1409.1556 .

[31] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions.
arXiv:1409.4842.

[32] Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A., 2013. Selective search for
object recognition. International Journal of Computer Vision URL: http://www.
huppelen.nl/publications/selectiveSearchDraft.pdf, doi:10.
1007/s11263-013-0620-5.

67

http://www.sciencedirect.com/science/article/pii/S0191814103000932
http://www.sciencedirect.com/science/article/pii/S0191814103000932
http://dx.doi.org/https://doi.org/10.1016/S0191-8141(03)00093-2
http://dx.doi.org/https://doi.org/10.1016/S0191-8141(03)00093-2
https://paperswithcode.com/sota/instance-segmentation-on-coco
https://paperswithcode.com/sota/instance-segmentation-on-coco
http://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.4842
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1007/s11263-013-0620-5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Sondre Sagstad

Characterization of behaviour in tank
rearing of salmon using machine vision
and machine learning

Master’s thesis in Cybernetics and Robotics

Supervisor: Morten Omholt Alver

June 2020

	Summary
	Preface
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Specialization Project

	Basic Theory and Previous work
	Deep Learning
	NNs - Neural Networks
	CNN - Convolutional Neural Network
	Mask R-CNN
	Transfer Learning

	Salmon videos
	Kalman filter
	Libraries and frameworks
	Mask R-CNN framework
	Google Colab
	SORT - Tracking
	CLoDSA - Data Augmenting Augmenting

	Materials and method
	Data collection
	Dataset

	Method
	Testing Mask R-CNN in the Specialization Project
	Pre-processing
	Other preprocessing techniques

	Mask R-CNN
	Training Process
	Network variables
	Generating the input to SORT

	Multiple object tracking
	Kalman Filter
	Modifying the SORT algorithm

	Testing our complete algorithm
	Second trip to Slørdal
	Limitations
	Algorithm workflow

	Results and discussion
	Mask R-CNN results
	SORT performance
	Movement statistics
	Preliminary research in finding tail beat frequency
	Overall performance discussion and future work
	Sources of error
	Future work

	Conclusion
	Bibliography

