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Abstract

With the increasing amount of applications relying on black box machine learning, a rising
concern about their trustworthiness is emerging. Methods deciphering how models reason
and why predictions are made could lead towards greater trust in these systems conse-
quently increase their application domain. Explainable AI (XAI) aims to provide such
methods and are gaining momentum both in the industry and in academia. This special-
ization projects focuses on these techniques and covers why such methods are needed. The
current state of the art is presented with a deep dive into their underlying theory. Further,
a model for image classification is implemented and two XAI methods are applied to the
model, LIME and SHAP. The strength and weaknesses of these explanations are discussed
and followed by an attempt to improve the model. The improved model increases the test
accuracy from 84.20% to 87.27%.
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Chapter 1
Introduction

1.1 Background and motivation

The recent advancement in machine learning (ML) and deep learning (DL) combined with
the rising availability of data has enabled experts to reach increasingly sophisticated results
in computer vision (CV) [17], image generation [25],[14], drug discovery [26] and other
intricate tasks. While the results on their own are promising, these DL systems have been
criticized for their distrusting black box approach [30]. As gradually more critical appli-
cations involves machine learning there is a huge need to provide trust in their decision.
For instance in a medical application where a system reaches an unexpected conclusion
it would be hugely beneficial to a doctor if the system could explain why it reached the
prediction. This could, as a consequence, uncover correlations unknown to experts and
potentially set new theories in motion. Take Google Brain’s AlphaGo as an example on
how an AI lead to a paradigm shift. In March 2016 the long reigning world champion
in the game of Go, Lee Sedol, faced AlphaGo, a deep reinforcement learning based AI
agent[5]. The system had reached superhuman levels in Go by observing strong human
amateur games supplemented by self play. During the match between the two, at move 37
in the 2nd game, AlphaGo performs an unprecedented move which for advanced players
would appear rather ignorant[7]. While the first impression implied a mistakenly poor
move, it turned out to be a significant decision towards gaining the upper hand and ulti-
mately win the battle. The move was so revolutionary that it later would become a part of
modern strategies together with other insights from the games [8]. If the system in some
way could’ve explained why it decided to perform the strange move, then maybe the Go
community would gain even more insights into the revolutionary thinking of the self-learnt
system.

Besides the benefit of understanding why predictions are made there is also a security as-
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Chapter 1. Introduction

pect involved in these applications. There has been examples of adversarial attacks tricking
AI systems with imperceptible perturbations to humans [24]. One such example is shown
in Figure 1.1 where small alterations of a few pixels deceives the classifier. Although these
attacks require the possibility to observe the input-output relation, it is concerning how ro-
bust these methods likely will be in the future in the hands of an unethical attacker. Since
the system is trained on a limited set of data there are edge cases unknown to the model
and these shortcomings are exploited in these attacks. The examples in Figure 1.1 show
some of the driving motivation to develop methods exposing weaknesses in the model.

Figure 1.1: Adversarial attack showcasing the issues around an opaque system unable to provide
explanations for its predictions. Input samples are shown at the top row with the model’s correctly
classified output beneath. The figures at the lower half are manufactured by altering pixels from the
legitimate inputs resulting the model to misclassify. Figure source [24]

Explainable AI and the law

As the industry increasingly apply AI methods to support human decision making, it is
expected to attain greater responsibility in a transition towards full automation. The im-
pacts on individuals by these automated decision systems may be significant in cases such
as medical treatment, access to loans, credit cards, insurance, employment and so on. The
European Union’s General Data Protection Regulation (GDPR) is a regulation imposed on
all member states of the EU and the European Economic Area (EEA) that went into effect
May 2018. It addresses data protection and privacy rights for citizens and aims to give
individuals control of their personal data as well as the right to an explanation [1]. Recital
71 states

The data subject should have the right not to be subject to a decision, which
may include a measure, evaluating personal aspects relating to him or her
which is based solely on automated processing and which produces legal ef-
fects concerning him or her or similarly significantly affects him or her, such
as automatic refusal of an online credit application or e-recruiting practices
without any human intervention [...]

In any case, such processing should be subject to suitable safeguards, which

2



1.2 Objectives

should include specific information to the data subject and the right to ob-
tain human intervention, to express his or her point of view, to obtain an ex-
planation of the decision reached after such assessment and to challenge the
decision.

The exempt clearly expresses that whenever automated decision affects an individual, they
have the right to obtain an explanation for a decision and not be subjected to solely au-
tomated decisions. The automated decision making systems therefore need to abide the
legislation by providing explanations to individuals who are affected by their decision.
This calls for action in the field of AI where not only the importance of insights and secu-
rity in such systems are relevant, but also their ability to act in accordance to legislation.

There has recently been an increasing number of proposed solution addressing the chal-
lenges with black box AI solutions. These methods are commonly referred to as eXplain-
able Artificial Intelligence (XAI) and tries to answer the question of ”why” the model
concludes with a decision. Usually this involves visual clues on how the system responds
to the input data. [30] summarizes two simple techniques, Sensitivity Analysis (SA) and
Layer-wise Relevance Propagation, LRP (proposed in [4]). These methods could be used
for any classification tasks and are shown to perform well on image classification, text
classification and even human action in video. [35] introduces Integrated Gradients, a tech-
nique similar to Sensitivity Analysis. [36] proposes Local Interpretable Model-Agnostic
Explanations (LIME) and [20] introduces SHAP. These methods are further discussed in
Chapter 3 with LIME and SHAP applied in Chapter 4.

1.2 Objectives

The main objective of the project is to acquire an overview of the newly emerging field
of Explainable Artificial Intelligence (XAI). This includes both the theoretical aspect and
their respective implementation. Training a classifier and applying various state of the art
XAI methods to the model will be essential to gain practical experience with the tech-
niques. Consequently, a deeper understanding of the strengths and weaknesses of not only
the network, but also the XAI methods themselves, is aimed to be obtained. Further, the
project intends to explore the feasibility of improving a model by feedback from expla-
nations. Finally, acquiring knowledge of how to perform literature survey, structuring a
larger project and individual work is also an objective during the course of this project.

1.3 Outline

The specialization project is structured following the conventional Introduction,Methods,
Results and Discussion (IMRAD) structure.
Chapter 1 covers the background and motivation behind XAI by looking at scientific and
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Chapter 1. Introduction

societal impacts of AI. The section concludes with an objective and the outline of the spe-
cialization project.
Chapter 2 intends to provide relevant background theory on neural network classifiers.
Chapter 3 presents an overview over some state of the art methods in XAI and insights
from a survey on explainability according to social sciences. Chapter 4 introduces the
training of a network to classify simple 32x32 pixel images into 10 classes. Further it
showcases explanations by two of the XAI methods presented in Chapter 3 applied to the
model. Finally, an attempt to improve the model based on information from the explana-
tion is conducted.
The project concludes by summarizing the findings and discussing future work in Chap-
ter 5.
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Chapter 2
Fundamental Theory

The theory presented in this section is based on the recognized Deep Learning textbook
by Ian Goodfellow et al [9] (Section 2.1 - section 2.6) with some inputs from Artificial
Intelligence: A Modern Approach by S.Russel and P.Norvig [28] (Section 2.2). The ma-
terial is intended to give a brief overview of the most relevant theory in Deep Learning to
set the foundation for the methods presented in Chapter 3 and later applied in Chapter 4.
The chapter starts with an introduction to Machine Learning in Section 2.1. The building
block for deep neural networks, the artificial neuron, is presented next in Section 2.2 fol-
lowed by multilayered deep neural networks in Section 2.3. Next, loss and optimization
is introduced in Section 2.4 before a special type of network, the convolutional neural net-
work, is presented in Section 2.5. Finally, the training process of a network is provided in
Section 2.6.

2.1 Introduction - Machine Learning

The field of machine learning (ML) is based on algorithms and statistical models that
can learn and infer from data without explicit instructions. The ML algorithms build a
mathematical model on the given data, which may be labeled, partly labeled or unlabeled.
Whenever the model learns from labeled data, meaning the data has been tagged with an
appropriate label, it is called supervised learning. Examples include which words were
spoken in an audio clip, whether the email is spam or not, if a tumor is present in an x-ray
or simply what animal is seen in a photo. Since labeling datasets generally involves asking
humans to annotate the data, it is costly, time consuming and may in some cases even be
infeasible because of the quantity or simply by being uninterpretable by humans. In such
instances the data is left as unlabeled and unsupervised learning techniques are used to
operate on such data. The unsupervised methods aims to extract information from the
unlabeled distribution by finding unknown patterns. This is typically done by clustering
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Chapter 2. Fundamental Theory

data into groups such as in k-means clustering, but other methods like anomaly detection
or autoencoders1 may be appropriate depending on the application.

There are generally considered three main categories in machine learning, two of them
being supervised- and unsupervised learning. In the last of the main three categories,
reinforcement learning, a software agent performs actions in an (un)known environment
to maximize its reward. This involves finding an optimal policy π(si) = aj for each state,
s and action a. Reinforcement learning covers machine learning tasks that are beyond the
scope of this project.

The following theory addresses the supervised learning task of classification using deep
learning, a subset of machine learning. Though there exist a range of algorithms for
this type of task2, deep neural network is of interest as it outperforms the other meth-
ods in computer vision and image classification to which it is applied in Chapter 4. In a
classification task, the system is asked to predict which of the k groups some input be-
longs to. Formally, this means to learn a function f : Rn → {1, ..., k}, such that when the
input x ∈ Rn is passed through a function f(·) it is assigned the correct category identified
by numeric code y.

2.2 Artificial Neuron

Artificial neurons are the fundamental building blocks in a neural network. They are
mathematical models heavily inspired by biological neurons. xi represents inputs flow-
ing across a link i where each link has a numeric weight wi portraying the strength of the
connection. An input bias term b is added and, together with the weighted sum over the n
inputs, passed through an activation function g(·). Put simply, each artificial neuron ”fires”
or activates based on the linear combination of its inputs. This input to output relation is
defined as

a = g

(
n∑
i=0

wixi + b

)
(2.1)

and a visualization is shown in Figure 2.1. Usually, the x0 input to a unit is assigned the
value 1 with an associated bias weight w0 = b such that Equation (2.1) can be rewritten as
a dot product3

aj = g
(
w>x

)
. (2.2)

x is the vector with activations from the previous units with the first element being x0 = 1.
The weight vector w consequently has the bias b as the first element followed by the n
connection weights. This condenses the expression and simplifies the practical implemen-
tation by combining the weights and bias into a single vector w. The choice of activation
function g determines the amount of activation sent over the link from a neuron j to the

1Sometimes referred to as a feature extractor neural network .
2E.g. multinomial logistic regression, decision tree, random forest, nave Bayes, k-nearest neighbor and so

on.
3This is sometimes referred to as the bias trick. See for instance http://cs231n.github.io/

linear-classify/
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�(⋅)

Activation
function �( + �)∑

�=0

�

����

�

+ �∑
�=0

�

����
��

��

�0

�0

��

��

a

Figure 2.1: One of many possible visualizations of an artificial neuron. The input xi could be the
activation sent from another neuron or a numeric raw value originating from data.

next and is chosen to be nonlinear. This is to ensure the important property that the con-
nected network of neurons can represent a nonlinear function. Even though there are a vast
range of possible activation functions, only a few are introduced, starting with the Sigmoid
activation function.

Sigmoid

The sigmoid activation function is commonly used as the first activation function intro-
duced to beginners because of its simple interpretation. It is constrained to an output
between 0 and 1 as x → ±∞ and this may be seen as a percentage of activation from
a neuron. Albeit being simple, it has been heavily criticized for its problem of vanishing
gradients[10]4 during backpropagation5 which is known in the literature. It saturates when
the input is either large positive or negative. The definition of the function is stated as

σ(x) =
1

1 + e−x
(2.3)

with its derivative σ′(x) = σ(x)(1 − σ(x)). The sigmoid function is commonly denoted
by a σ.

4First paragraph on page 5
5Backpropagation and the gradient based learning method is discussed in Section 2.4.
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Figure 2.2: The sigmoid function plotted with its derivative. The sigmoid function constrains the
output in the range (0, 1). The derivative remains small and vanishes when x takes values away from
the origin.

ReLU

Another nonlinear activation function is the rectifier linear unit (ReLu) defined as

g(x) =

{
x, if x ≥ 0

0, otherwise
(2.4)

The derivative takes the form

g′(x) =

{
1, if x > 0

0, ifx < 0
(2.5)

where it is undefined at x = 0. A workaround in practice is to define a value for the
derivative at x = 0, either the right or left derivative. Unlike the sigmoid, ReLu does
not saturate when x > 0 If the learned bias b into a neuron is sufficiently negative6,
then the activation from the unit may remain 0 and causes the neuron to never fire. This is
essentially the same as removing the neuron from the network and is described as the dying
ReLu problem7. Once this happens, the gradient will forever remain zero as f ′(x) = 0
when x < 0 and no update can correct for the learned parameters into the neuron. An
attempt to mitigate this problem is to replace the 0 with αx for x < 0. This results in a
modified ReLu, namely the LeakyReLu.

6This could be a symptom of learning rate set too high or a large gradient
7See http://cs231n.github.io/neural-networks-1/

8

http://cs231n.github.io/neural-networks-1/


2.2 Artificial Neuron
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Figure 2.3: The ReLu function plotted with its derivative.

LeakyReLu

The LeakyReLu activation function is formally stated as

g(x) =

{
x, if x ≥ 0

αx, otherwise
(2.6)

where α usually is in the range of 0.01. It allows a small, positive gradient of α when the
unit is not active. The derivative is stated as

g′(x) =

{
1, if x > 0

α, ifx < 0
(2.7)

where it is undefined at x = 0. This is solved, like in ReLu, by defining either the left or
right derivative at x = 0.
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Figure 2.4: The LeakyReLu function plotted with its derivative. The α i set to 0.1 to visualize the
slope and the positive gradient when x < 0

2.3 Deep Neural Networks

In this section Deep Neural Networks (DNN) are referring to what is sometimes called
deep feed-forward neural networks or multilayer perceptrons (MLPs). The internal struc-
ture is composed by connected layers of artificial neurons. An illustration is presented
in Figure 2.5. Each neuron in a layer is connected to every neuron in the next layer and
activates based on the signal strength received, as discussed in section 2.2. At the output
of the deep network, a vector or scalar states the final calculation by the network.

The goal in the classification task is to approximate some function f , such that y = f(x)
maps an input x to a class y. The feed-forward network approximates this function by
defining a mapping y = h(x; θ) and finding the parameters θ for the weights through
back-propagation, discussed in section 2.4. The feedforward term arise because of the
direction of computation from input x through the network h(x; θ) to the output y without
any internal feedback connections. The connections between the layers forms a directed
acyclic graph.

The output in DNNs y are commonly one-hot encoded, a method used to quantify the
categorical labels. Take a dataset with three different labels {cat, dog, human} as an ex-
ample for why this is needed. The computer needs to map the input x ∈ Rn, say an image
consisting of n pixels, to the output labels {cat, dog, human}. The labels could be trans-
lated to numeric values by mapping cat = 1, dog = 2, human = 3 but this would imply
that dog is the average of cat and human in the output space, certainly not the case. This
is solved with one-hot encoding cat = [1, 0, 0], dog = [0, 1, 0], human = [0, 0, 1]. The
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2.4 Loss function and Optimization

Input	Layer	∈	ℝ⁵ Hidden	Layer	∈	ℝ¹² Hidden	Layer	∈	ℝ⁸ Output	Layer	∈	ℝ²

Figure 2.5: A deep neural net with two hidden layers. The bias term is depicted as a unit activation
in the hidden layers. Figure made using the NN-SVG software [19]

output vector ŷ has length equal to the number of different classes presented in the labeled
dataset. If the input belongs to the jth class, then the value at the jth position in ŷ should
be highest, with the rest being (close to) zero. If the output vector ŷ is normalized such
that

∑
j ŷj = 1, then each component of ŷ may be interpreted as a prediction confidence

towards a class provided by the model. One such smooth normalization, softmax, is used
to squash the output such that it may describe a probability distribution over n classes.
It has the property of distributing the output vector ŷ such that each element describes a
probability for the specific class c, namely ŷc = p(y = c|x). The softmax function is
stated in [9], for each class c, as

softmax(ŷ)c =
exp ŷc∑
j exp ŷj

(2.8)

where ŷc is the output vale given to class c before applying softmax.

2.4 Loss function and Optimization

Once the architecture of the deep neural network is defined, tuning of weights and biases
can be performed. The objective is now to fit a nonlinear function to the input-output space
covered by the training data. The training data consist of an input x with a corresponding
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label y and is used to tune the network. A cost function, sometimes referred to as a loss
function or objective function, measures how the network performs on the training data.
The cost function tries to punish the model by a high cost whenever confident, wrong
prediction are made. A low cost is given for low confidence, correct predictions and in
the ideal case of 100% confidence to the correct class, a zero cost is attained. There are
multitudes of possible cost functions, two common are mean-squared loss

L(x, y, θ) = MSEtrain =
1

m

m∑
i=1

|ŷ(i) − y(i)|2 (2.9)

where the error increases whenever the Euclidian distance between prediction and the
target becomes larger. The second is LogLoss

L(x, y, θ) = LogLosstrain = − 1

m

m∑
i=1

y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i)) (2.10)

where ŷ(i) uses the earlier described softmax function to represent a probability. The
negative sign is used to transform LogLoss to be strictly decreasing and the optimiza-
tion problem becomes a minimization of the cost function. [9] recommends the LogLoss
function with Softmax over MSE because of numerical stability. The LogLoss function is
usually referred to as CrossEntropyLoss when it is used for multi-class classification. The
loss sums over the number of examples in the training set, m, where ŷ(i) is the prediction
for sample number i with its corresponding label y(i). The loss function now quantifies a
measure of the performance of the network. Whenever the loss is high, the network per-
forms poorly, while a low loss signifies more accurate predictions. This property is used
in the training by changing the weights in the layers of the network through optimization
by minimizing the loss. The nonlinearities in a neural network causes the loss functions
of interest to be non-convex8, thereby ruling out useful properties obtained in convex op-
timization. Therefore, iterative, gradient-based optimizers are used to minimize the loss
function. Unfortunately, because of the nature of nonlinear programming, the minimum
is unlikely to be a global minimum, no convergence is guaranteed and the minimum is
sensitive to the initial parameters. This means that the weights and biases in a feedforward
neural network impacts the resulting minimum found by optimization. The optimization
procedure by a gradient-based optimizer, gradient descent, uses the gradient of the loss
function to change the weights such that the loss decreases. The weights are updated
according to the gradient descent algorithm

θ ← θ − ηg (2.11)

where η is the learning rate. The weights, θ, are updated based on the gradient of the loss
back-propagated through the network. The loss is calculated over all training samples,
but may also be updated more than once during a training iteration. This is referred to as
updating the weights using minibatches. A minibatch contains a smaller set of samples,
drawn uniformly from the training set, and is useful if the computer struggles to keep all

8Chapter 6.2 in Deep Learning book[9]
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information in its memory. These are drawn until the complete training set has been used.
Whenever gradient descent is used with minbatches, it takes the name Stochastic gradient
descent (SGD). The gradient g in Equation (2.11) is found by computing

g =
1

m

m∑
i=1

∇θL(x(i), y(i), θ) (2.12)

where L is a chosen loss function. The (Stochastic) gradient descent algorithm is one of
many possible optimization algorithms and the book [9] gives a detailed introduction to
the most common ones, such as SGD with momentum, SGD with adaptive learning rates
(Adam, AdaGrad, RMSProp) and Newton’s method.

2.5 Convolutional Neural Networks

Originally introduced in 1989 [18], Convolutional Neural Networks (CNNs) have been
seen to perform exceptionally well in computer vision applications[17]. The CNN is a
specialized kind of feedforward neural network which applies a sliding convolution op-
eration over the input with a kernel, sometimes called a filter. The kernel consists of a
grid of weights which performs a weighted sum over the input. The sum is then passed to
the output, before the kernel strides a distance S and performs the convolution operation
over the new input. This is done in sequence until the kernel has swept across the whole
input and created a feature map at the output. A simple illustration is shown in Figure 2.6.
Multiple number of kernels, K, may perform the same operation with different weights
and create distinct feature maps based on the same input. This allows each filter to activate
based on various features found in the input. The stacked sequence of feature maps may
then be passed a new convolutional layer where a new set of kernels perform the convo-
lution operation yet again. The stacked feature maps now takes up a width Wout, depth
Dout = K, the kernel has size FxF and slides over the input with step size, stride, S.
A zero padding around the input P could be added to fix the output to a desired width,
normally such that Wout = Win. The feature map then has the output size according to
the formula Wout = Win−F+2P

S + 1. Common hyperparamters are filter size FxF of 3x3
or 5x5, stride S = 1 and padding P = 1 or P = 2. Each element in the feature map is fur-
ther passed through an nonlinear activation function, introduced in Section 2.2, to ensure
nonlinear relationships between each layer. The nonlinear activation may be performed
later if a pooling layer is used.

Pooling

A pooling layer helps the network to make features become invariant to small translations.
The layer outputs a summary of the nearby inputs. For instance, the max pooling layer
reports the maximum in an area of desired size, FxF. Other types of pooling layers exist,
like average pooling taking the average of the nearby FxF pixels and the L2-norm pooling.
Common sizes for the filter is 2x2 and stride 2 as depicted in Figure 2.7
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Figure 2.6: A simple convolutional layer with a 3x3 kernel illustrated in red writing. The feature
map is show to the right, although not yet completed. The kernel has to stride over the last parts
of the image to produce the two missing entries. Figure from towardsdatascience.com/
beginners-guide-cnn

Figure 2.7: A downsampling max pooling layer with 2x2 filter and stride of 2. Figure from Stanford
CS class CS231n http://cs231n.github.io/convolutional-networks/#pool

The kernel weights are updated during the training phase of model using loss and optimiza-
tion as introduced in Section 2.4. Though CNNs are well suited for image applications,
they are seldom used alone. Multiple CNN layers with pooling are usually stacked with a
fully connected neural network (Section 2.3) to finally classify the input.

2.6 Training process

Once the architecture, loss function and optimization technique is chosen, the training
of the model may begin. The model observes the training set and adjusts its network of
weights by minimizing the loss measured by the loss function. Once a full sweep across
the dataset is complete, the model has finished an epoch. Several epochs are needed to
adjust the network until loss and accuracy converges. Even though the performance on
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2.6 Training process

this dataset may be exceptional, it does not tell how well the model performs on new data.
Therefore it is common to split the dataset into three sets: training set, validation set and
test set. The validation set is used to validate the model during epochs. The expert may
then evaluate the generalization by observing the accuracy on unseen data. It may further
provide the designer feedback on the hyperparameters chosen to ensure convergence and
desired performance. The hyperparameters could, but is not limited to, include the learn-
ing rate, weights, weight decay, network architecture etc9. The expert may interrupt the
training at any point if the accuracy on the unseen validation set starts to decline, while
it still increases on the training set. This is an indication that the model is transitioning
towards overfitting or overtraining, meaning that the model learns features in the training
data and not generalizing characteristics. This can be interpreted as the model is starting
to ’remember’ data seen in the training set and perform poorly on the unseen validation
data. Finally, when the model has finished training, the test set provides an unbiased esti-
mation on the accuracy of the final model by exposing it to unseen data. The expert may
observe the percentage of accuracy and decide whether it performs sufficiently. If the ac-
curacy decreases significantly, this may indicate overtraining and a modified architecture,
more data, preprocessing, data augmentation or other generalization methods may be nec-
essary to improve performance. One such generalization technique, Dropout, randomly
deactivates neurons during training with probability p and has been shown to be effective
[34]. A common preprocessing technique is to ensure that the data is centered with mean
µ = 0 and then either normalize such that the data is in range [−1, 1] or normalize us-
ing a standard deviation σ. For images, Global contrast normalization performs such a
normalization by scaling the different RGB color channels.

9It is worth mentioning that the fitted model is introduced to some bias as information from the validation
set is used to influence the parameters in the model.
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Chapter 3
Explainable Artificial Intelligence

The aforementioned methods in Chapter 2 have shown exceptional results, in cases even
outperforming humans in applications discussed in Chapter 1. The techniques, however,
do not obey conventional modelling where human experts carefully decide important at-
tributes and features, but rather learns hidden patterns often unknown to the expert. These
relationships may be causal and could lead to a poor generalization if the learned charac-
teristics happen to be either oversimplified or too specific. The datasets used to train these
methods are commonly intended to represent a wide array of conditions in order to obtain
models which infer well on unobserved data. Explainable AI aims to help bridge the gap
between the model and human interpretability.

The first three methods, Sensitivity Analysis, Layer-wise Relevance Propagation and Inte-
grated Gradients, use the internal network structure to produce explanations. For images
this would result in saliency maps or what is knowns as heatmaps. In contrast, LIME and
SHAP performs transforms of the inputs and observe the output without relying on internal
calculations in the network and are therefore model agnostic.

3.1 Requisites for interpretable explanations

Establishing a foundation for what is required from an explanation is essential before div-
ing into some suggested XAI methods. A simple yes or no answer may be sufficient to
reason for a prediction in some applications like random forest classifiers. However, in
application requiring more sophisticated approaches, such as natural language processing,
computer vision and robotics, binary explanations is of limited value. Instead, a visualiza-
tion of where important features are present or their structure could be more relevant. This
principle is illustrated in Figure 3.1. Since an explicit metric of explainability currently
is unknown in the AI literature, most XAI methods are based on the researchers intuition
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of a good explanation. This could limit the advancement of these methods as understand-
ings from explanations varies greatly with the depth of knowledge in these systems. For
this reason, Miller [22] argues that multiple viable strategies to attain interpretable ex-
planations in AI should be built with consideration from known research in philosophy,
psychology, and cognitive sciences. From these fields it is known that people exert biases,
social expectations and explanation selection whenever reasoning is presented. Miller pin-
points four major findings in his review which he claims that researchers and practitioners
currently are unaware of:

1. Explanations should explain why event A happened instead of B. People seldom ask
why event A occurred, but rather seek reasons for it over another case. Looking at
Figure 3.1 as an example, then this could be an understanding of why the model
predicted a frog as opposed to a flower or some other animal.

2. Selective explanations induce biases. Humans select one or two reasons for an event
from a pool of infinite possible causes. It is therefore, subconsciously, rarely ex-
pected a complete explanation for an event. This has the unavoidable effect of in-
ducing cognitive biases whenever a reason is selected and being presented.

3. Statistical relationships are ineffective at delivering an explanation to humans. While
they do have some value, causal relations provide more meaningful reasoning com-
pared to probabilities. The net takeaway from this point is the accompanied value
of using both at the same time and avoid likelihoods alone.

4. An explanation is a conversational transfer of knowledge presented in belief of the
recipient’s view. This implies that an explanation is a social interaction conveyed
through a communicative medium, that being e.g. an image, natural language, body
language, text etc. or any combination of these.

Black Box ML

Frog (87.4%)

Predict
ion

Explanation

Figure 3.1: Illustration showcasing an interpretable explanation of a black box prediction. The
learned features of the frog is highlighted by a heatmap, visualizing the importance of its head, eyes
and colour. The expert may asserts higher trust to the classifier based upon the explanation.

Applying practices inferred from these findings will likely increase the explanation value
for the layman. This is essential for societal trust to future AI driven systems as it’s taking
over evermore tasks in the industry, infrastructure, transportation, medicine and ultimately
peoples daily lives. If - or for that matter when - AI systems are handed these responsi-
bilities, it is vital that their decisions are deeply understood such that the public opinion
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maintains trust even in the off chance of failure. The XAI methods presented next aims to
open the black box models and lay the foundation for future applications.

3.2 Sensitivity Analysis - SA

Sensitivity Analysis (SA) is a simple method for explainability with traces back to at least
the 60’s [11]. The author shows how it’s possible to explain the importance of each feature
by an iterative sweep across inputs and measure the change in output. This laid the founda-
tion of the SA discussed in [30] where it is applied to network predictions on images, text
and video. Other works have applied SA to visualize different model explanations, such
as in [27] where the authors use SA on a model trained on functional magnetic resonance
(fMRI) data. The authors show how SA is a flexible and computationally efficient tool to
visualize nonlinear kernel models1 in neuroimaging. SA measures the output importance
of each input, i, by the relationship

Ri = || ∂
∂xi

f(x)||. (3.1)

Sensitivity Analysis, as a means to explanation, assumes that the most important input fea-
tures are the output prediction most sensitive to. Contrary to other explainable methods,
it looks at the change in output rather than the output value itself f(x). This could lead
to mediocre or, in the worst case, misleading explanations. For example on images, using
Sensitivity Analysis produces a heatmap pointing at pixels the model prediction is sensi-
tive to. The misleading explanations appears on images where the ground truth class is
somewhat occluded. Using Figure 3.1 as an example, one would, according to Sensitivity
Analysis, expect a large sensitivity around the visible parts of the frog’s head. However,
over the pixels where the flower petal hides the body of the frog, one could reconstruct
its body by altering the pixels in a particular way. This would potentially increase the
confidence for the prediction and Sensitivity Analysis might potentially. Picking up on
this, Sensitivity Analysis could suggest that the petal is more important for increasing
the prediction than the frog itself. An example of SA is also shown in Figure 3.2 from
the paper [30]. Here both SA and LRP (introduced in next session) are compared in the
task image classification. SA provides some explanation value, but is inferior to methods
such as LRP when Miller’s points from Section 3.1 are used as the comparison baseline.
Figure 3.2 compares the two methods and a brief discussion based on Miller’s points are
discussed in the caption.

3.3 Layer-wise Relevance Propagation - LRP

Layer-wise Relevance Propagation, or LRP, is a method for decomposition of a classi-
fier proposed in [4]. The authors have provided a toolbox available at http://www.

1Some kernel models include Support Vector Machine, nonlinear kernel logistic regression and kernel Fisher
discriminant.
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explain-ai.org/ with open source implementation of the method. LRP aims to un-
derstand the contribution by each individual input (e.g. pixel in an image or a word in a
paragraph), x, to the prediction f(x). This may either be a positive or a negative contri-
bution. The classification function, f , is assumed to be positive and real-valued. This is
a valid assumption as most classifiers use the softmax function2 at their final layer, out-
putting a type of confidence probability. The technique explains the prediction by redistri-
bution of the prediction f(x) backwards with a rule for relevance score Ri to each input.
The redistribution technique obeys what the authors refers to as relevance conservation
summarized from [30] with the equation

∑
i

Ri =
∑
j

Rj = ... = f(x). (3.2)

Equation (3.2) states, in each layer of the network, that the total relevance is constant. This
means that it’s only redistributed amongst the nodes in between each layer.

Finally, when the relevance score for each input is computed, then each Ri quantifies how
much the input variable contributes to the final prediction f(x).

The redistribution function is dependant on which network architecture that is used. For
regular neural networks this is simply performed backwards from layer l+1 to layer l with

Rj =
∑
k

xjwjk∑
j xjwjk + ε

Rk (3.3)

where ε is a term added to prevent division by zero. In short, the relevance is redistributed
by the weighted input xjwjk from layer l to l + 1 where xj is the neuron activation and
wjk is the connection strength. [4] also proposes the alpha-beta rule as an alternative to
the simplest form presented in Equation (3.3). The alpha-beta rule is defined as

Rj =
∑
k

(
α

(xjwjk)+∑
j(xjwjk)+

− β (xjwjk)−∑
j(xjwjk)−

)
Rk (3.4)

with + and − denoting positive and negative parts of the expression. Additionally, another
constraint is applied to enforce the relevance conservation: α− β = 1.

Other redistribution functions have been proposed for different architectures, but are out-
side of the scope for this project. Further literature covers these and are summarized in
[29]. With the proposed redistribution functions, the LRP method is extended to a multi-
tude of possible use cases other than regular feed forward neural networks. Meanwhile,
LRP was recently criticized for a slow performance when applied to real-time video and
it was therefore proposed, in the same paper, a method orders of magnitude faster with
similar visualization result as LRP, namely VisualBackProp [6].

2Softmax has the property of transforming the input to positive values with a total sum of unity.
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Figure 3.2: Left: Figure illustrating the explanation of a class prediction based on an image using
Sensitivity Analysis and Layer-wise Relevance Propagation. Right: Another application of SA and
LRP to explain text classification. The model is a black-box in both examples, and both methods
provide an explanation of how the model perceives the data. Unlike SA, LRP is able to highlight
both negative and positive contributions towards the prediction. Applying Miller’s findings for ex-
planations introduced in Section 3.1, LRP is superior to SA because it highlights both positive and
negative reasons in its explanation, rather than only emphasizing what the output is sensitive to. The
issues presented as point number two are addressed in LRP by providing two explanation, reason for
and againts, rather than a single reasoning in SA, thereby reducing a biased selective explanation.
Figure source [30].

3.4 Integrated Gradients

Integrated Gradients is a technique based on similar principles as SA (Section 3.2), but
instead of calculating a gradient based on only the specific input, Integrated Gradients ac-
cumulates gradients in a linear path going from a baseline x′ input to the input at hand, x,
finally finding the average output gradient. In the original paper [35], the authors define a
baseline vector x′ ∈ Rn being for instance a black picture for an image model or a zero
vector for a text network. Reasoning for a baseline stems from the human intuition of
assigning cause for an outcome by comparing to the absence of an event. This is exactly
what was pinpointed in point 1 in Section 3.1 as being essential for an interpretable expla-
nation. While it is possible to define an image consisting of noise as the baseline, it does
not preserve the human intuition of absence like the black image. This choice of baseline
selection also contributes towards detecting adversarial perturbations, unlike a noisy base-
line. Further, x ∈ Rn is the input with ∂f(x)

∂xi
being the gradient of the output prediction

f(x) along the ith dimension. Finally, the formula is defined as

IntegratedGradsi(x) := (xi − x′i)
∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα (3.5)

where the chosen path, x′+α(x−x′), α ∈ [0, 1], is a straight line between the baseline x′

and the input x. The authors also discusses taking other curved paths, but concludes that
a straight line should be used as it’s the simplest mathematical path while also preserving
symmetry3.

3This is discussed in 4.2 in [35].
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An example of Integrated Gradients is illustrated in Figure 3.3 where the model has to
identify the type of expected answer. Since the model works with text data, the baseline
used by Integrated Gradients is the zero embedding vector. Intuitive attributes such as ’how
many’, ’difference’ and ’total number’ are identified as triggers towards the ’Numeric’
class. Notice in the last question how the name ’Charles’ is emphasized as a feature
for a simple ’Yes/No’ question. This is an undesirable trait of the model and the expert
may conclude that the model is unreliable towards this class even though the prediction is
correct. A more reasonable attribute would be to rely on the word ’did’ which intuitively
expects a binary True/False or Yes/No answer. The expert may need to feature engineer
the data, collect more samples and retrain the model to increase the trust.

Figure 3.3: Integrated Gradients applied to a question classification model. The explanation high-
lights positive (red), negative (blue) and neutral (grey) attribution strength. Figure source [35].

Finally, the authors claim simplicity in the implementation of Integrated Gradients as it
only needs a few calls to the standard gradient operator. This is confirmed in another
paper published in 2018 [2] (in its section 3, Listing 1). One of the limitations of Integrated
Gradients, argues [3], is the high computational cost by evaluating the average gradient by
numerical integration several times with slightly different inputs. This is especially heavy
for large models, and should be taken into account whenever explanation techniques for
more complex models are considered.

3.5 LIME

LIME [36], short for Local Interpretable Model-Agnostic Explanations, is an explanation
framework created to guide experts on the behaviour of a trained black box model. It
aims to answer the question of ”why should I trust the model?” by finding an interpretable
model that is locally reliable to the classifier. The framework is open sourced and available
at the lead author’s GitHub [37]. Summarized, LIME approximates the black-box model
around an input by assuming that the input space is locally accurate to the classifier. This
means that the explanation are made at the individual level.

A vector x ∈ Rd represents the unaltered input while x′ ∈ {0, 1}d′ symbolizes a binary
vector for the explainable representation. This could for instance be whether a set of
pixels are present or not. An explanation is defined as a model g ∈ G, where G denotes all
possible interpretable models. The model g could for instance be a linear model, decision
tree or a falling rule list [38] with ”IF-THEN” statements. This implies that it needs
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3.5 LIME

to facilitate simple, interpretable visual or textual explanations. Furthermore, as not all
possible explanation models g are simple enough for human interpretability, the authors
introduce Ω(g) to be a measure of complexity of the explanation model. As an example,
for a decision rule, Ω(g) could be the number of statements needed in a IF-THEN rule
or the number of non-zero weights for a linear model. The fewer statements or non-zero
weights needed, the simpler the model and less penalty is introduced by the Ω(g) term.
The classifier being explained, f : Rd → R, outputs the probability f(x) that an input x
belongs to a specific class4. z is a sample of x and πx(z) is used as a measure of proximity
between z to x. The locality in LIME is obtained through the weighting term πx. Finally,
L(f, g, πx) is defined as a measure of how inaccurate g approximates f . This could for
instance be a distance measure between f and g. LIME tries to minimize the objective
function stated as

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.6)

in order to obtain a valid local approximation of f while reducing the complexity of g to
ensure human interpretability. LIME is model-agnostic, meaning that the explanation is
separated from the choice of model. The objective function in Equation (3.6) establishes
this foundation by conveniently allowing individual choices for G,L and Ω. The term
L(f, g, πx) is approximated, since it should be independent of f , by drawing non-zero
elements of x′ uniformly at random. A such perturbed sample z′ ∈ {0, 1}d′ is passed
through the model to obtain f(z), which is the prediction probability of z′ belonging to
the specified class. Given enough perturbed samples, Equation (3.6) is optimized to get an
explanation of x, namely ξ(x).

Linear Explanations

This project bases upon the authors implementation of LIME for images5, which utilizes
a linear explanation model g ∈ G, such that g(z′) = wg · z′. The square loss, also known
as quadratic loss, is used for L and πx = exp (−D(x,z)2

σ2 ) is the measure weighting the
proximity between z and x where D is a distance function. The D is defined in the code
as the l2 norm, with σ = 0.75 ·

√
number of columns. The term is finally set to

L(f, g, πx) =
∑
z,z′∈Z

πx(x)(f(z)− g(z′))2. (3.7)

The model complexity penalization term Ω is, for images, based on ”superpixels” found by
segmentation techniques. The authors provide a default segmentation technique, ”quick-
shift”, but it is possible to provide others. This is explored further in Section 4.5. The

4This is slightly different from conventional notation where f is defined with k-outputs, f : Rd → Rk . The
author rather defines f(x) to be the prediction probability of chosen class instead, simplifying the notation in the
process.

5The authors implementation also support explanations of tabular data and text models.

23



Chapter 3. Explainable Artificial Intelligence

interpretable representation x′ ∈ {0, 1}d′ indicates 1 for superpixels present in the orig-
inal image x, and 0 for removed superpixels displayed in grey. Ω is approximated using
K features from the image, and finding the weights w with a least squares regression
(Lasso6). Algorithm 1 finds the weights wg used in the linear model g and is stated as

Algorithm 1 Sparse Linear Explanations using LIME — Source: [36]
Require: Classifier f , Number of samples N
Require: Instance x and its interpretable version x′

Require: Similarity kernel πx and the length of explanation K
1: Z ← {}
2: for i ∈ {1, 2, ..., N} do
3: z′i ← sample around(x′)
4: Z ← Z∪ < z′i, f(zi), πx(zi) >
5: end for
6: w ← K − Lasso(Z,K) . using z′i as features, f(z) as target
7: return w

Figure 3.4: Linear LIME applied to an image passed to Google’s Inception neural network. LIME
highlights superpixels which contribute towards the class being explained. Figure source [36]

3.6 SHapley Additive exPlanations - SHAP

SHapley Additive exPlanations or SHAP for short, is a proposed framework to interpret
predictions provided by a model [20]. It is a game theoretic approach to explain any black
box model, and is therefore model agnostic. The authors have open sourced their work and
published it freely available at GitHub [21]. The authors propose SHAP values, similar to
Shapley values, as a unified measure of feature importance.

3.6.1 Shapley values

A brief introduction to Shapley values is given as it forms the basis on which the SHAP
method is built upon. The Shapley values were introduced by Lloyd S. Shapley in 1953

6https://scikit-learn.org/stable/modules/linear_model.html#lasso
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3.6 SHapley Additive exPlanations - SHAP

[31] as a concept in cooperative game theory. A Shapley value is assigned to each player
in a game stating how important they are in the cooperation to a surplus. It provides one
way of fairly distributing the payout to players based on their contribution in the game.
The coalition game is described using the set N of n players. Let a coalition of players
S be a subset of N , i.e S ⊆ N , and define a payout function v, describing the expected
payout to each possible coalition. In a coalition game (v,N), the amount player i collects
is the Shapley value

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i})− v(S)]. (3.8)

The term [v(S ∪ {i}) − v(S)] can be interpreted as calculating the payout to a coalition
with player i minus the payout without player i. The term is weighted by |S|!(|N |−|S|−1)!|N |!
and together with the sum

∑
S⊆N\{i}, represents, for each player, the average contribu-

tion over different possible permutations in which the particular coalition can be formed.
Summarized, the Shapley value for player i (Equation (3.8)) states the importance of the
player by comparing the payout with and without them in a coalition of players. Since the
order in which the players contributes may affect the payout, the contribution is calculated
with all possible permutations of the coalition, across all possible coalitions.

The Shapley value obeys properties important to obtain a fair and unique distribution.
It is also the only attribution method that satisfies these desirable properties [13]. The
original paper [31] states these properties in the definition as symmetry, efficiency and law
of aggregation (=linearity). Finally, the property of a dummy or null player is explicitly
stated in the paper’s definition section. These properties are

Symmetry

If two players are equal and contribute the same, then they receive equal payout. Formally,
if v(S ∪ {i}) = v(S ∪ {j}) then φi(v) = φj(v).

Efficiency

The sum of the Shapley values of all players equal the payout for the total coalition∑
N

φi(v) = v(N) (3.9)

Law of aggregation

If two independent games are combined, then the payout equal the payout sum for each
individual game

φi(v + w) = φi(v) + φi(w) (3.10)
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Null player

A player that does not contribute to the payout receives no payout. If v(S ∪ {i}) = v(S)
for all coalitions S without i, then φi(v) = 0

3.6.2 SHAP Method overview

Even though the concept of Shapley values was proposed in the field of cooperative game
theory, it may be used as a means to explain a prediction. By assuming that each feature
is a player and the prediction is the total payout, then the Shapley value tells how much
each individual feature contributed towards the prediction. Unfortunately, calculating the
Shapley value going through all possible combinations of features becomes computation-
ally infeasible. Computing the marginal contribution of every feature to every coalition is
O(2|N |) [13]. Assuming each pixel in a 32x32 image is a feature, this results in 1024 fea-
tures, giving 21024 ≈ 1.79x10308 possible combinations7, making the direct calculation
infeasible. Approximations using Monte Carlo sampling has been proposed in [] Strum-
belj et al. (2014)., Shapley sampling value estimation, Quantitative Input Influence also
similar approximations, SHAP values are based on the Shapley values and obeys their
properties, adding strong mathematical theory behind it. The authors propose a model
agnostic method to obtain the SHAP values, namely Kernel SHAP.

Kernel SHAP

Kernel SHAP is presented in the SHAP paper[20] as model agnostic approximation method
to obtain Shapley values. It has similar accuracy as other Shapley estimation techniques
like Shapley sampling values and Quantitative Input Influence. Kernel SHAP uses eq. (3.6)
to obtain the Shapley values, but unlike LIME, avoids heuristically choosing the parame-
ters for loss function L, weighting kernel πx and regularization term Ω. Rather, they are
chosen such that the properties of Shapley values are retained. These are shown to be

Ω(g) = 0, (3.11)

π′x(z′) =
(M − 1)

(M choose |z′|)|z′|(M − |z′|)
, (3.12)

L(f, g, πx) =
∑
z,z′∈Z

(f(hx(z′))− g(z′))2π′x(z′). (3.13)

M is the maximum number of features in a coalition, being the size of set N, |N |, in the
original description of Shapley values. M choose |z′| is the binomial coefficient

(
M
|z′|
)

=
M !

|z′|!(M−|z′|)! . The g in Equation (3.13). The kernel π′x in Kernel SHAP essentially merges
the theory of Shapley values with the model agnostic approach of LIME. Even though Ker-
nel SHAP is model agnostic like LIME, it is unfortunately slow. Deep SHAP is presented

7In comparison, the commonly stated number of atoms in the Universe is around 1080.

26



3.6 SHapley Additive exPlanations - SHAP

in the paper to utilize the characteristics of deep neural networks to enhance computational
performance.

Deep SHAP

Deep SHAP was developed to be a faster model specific approximation method to the
SHAP values. It is faster, but only approximate and is based on connections between
SHAP and another explanation technique, DeepLIFT proposed in [32]. DeepLIFT de-
composes the output prediction by backpropagating the contributions of all neurons to the
input, similar to LRP. What mainly differs DeepLIFT and LRP is that it uses a different
redistribution function. The details are further described in [32] and in [2]. DeepSHAP
modifies the redistribution function to include the SHAP values, leading to effective com-
putation. The method requires background samples to approximate the expected output
of the model. The expected output is used to approximate the SHAP values. The found
SHAP values sum up to the difference between the expected model output and the current
model output. This adds some confusion to what the SHAP values represent as it is not the
difference of the predicted value after removing the feature. Further details of Deep SHAP
are described in [20]. An example of a plot using Deep SHAP is shown in Figure 3.5.
An interesting observation in this explanation is that the absence of pixels on top of the
’four’ is a strong indicator of being four rather than nine. The lack of pixels in the middle
of ’zero’ is important for the explanation of the class. This is likely the case because the
other digits usually have pixels in the middle of the image

Figure 3.5: A plot of SHAP values using Deep SHAP on a model trained on the MNIST dataset.
The red pixels increase the output while the blue decrease the output. Figure source [21]
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Chapter 4
Experiments and Results

The chapter walks through the training of a convolutional neural network on a labeled
image dataset in Section 4.1 and Section 4.2. Having trained a model, Section 4.3 contains
an analysis of its performance. Section 4.4 visualizes the feature maps in between layers
to showcase the abstract features learned by the model. Section 4.5 and Section 4.6 shows
how the XAI methods perform on the model followed by a comparison and discussion
in Section 4.7. Finally, Section 4.8 showcases how data augmentation based on model
explanations improve the model training. Note that the terms model, system, network and
the classifier are used interchangeably throughout Chapter 4 referring to the trained deep
neural network in the chapter.

4.1 CIFAR-10

In order to demonstrate the strength of the aforementioned XAI methods in Chapter 3, a
thorough experiment on the known CIFAR-10 dataset1 is conducted. The dataset consists
of 60,000 colored (RGB) images of pixel size 32x32 labeled with 10 different classes [15],
[16]. The 10 labels include: plane, car, bird, cat, deer, dog, frog, horse, ship, truck and are
uniformly distributed with 6,000 images each. The training dataset contains 50,000 of the
images (5,000 for each class) resulting in 10,000 images remaining for the test set. Each
class is mutually exclusive, implying no overlap. Cars, for instance, include SUVs, sedans
and other small cars. The truck class only consist of big, cargo, road-driven vehicles such
as trailers, concrete mixers and fire trucks. The two classes exclude pickup trucks in their
set. A portion of the training set is showcased in Figure 4.1.

1CIFAR - Canadian Institute For Advanced Research
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Figure 4.1: 104 arbitrarily collected training images from the CIFAR-10 dataset. The resolution of
each individual image in the figure is somewhat degraded.

4.2 Model Architecture and Training

A simple neural network structure is used to ease the visualization of the neural network
in Section 4.4. The implementation of the model is based on a starter code provided in
the NTNU course TDT42652 and further functionality is built upon it. The architecture of
the model trained on the dataset consist of a 6-layered CNN followed by a fully connected
neural network with a single hidden layer. Each of the 6 convolution layers uses a kernel
size of 5x5 with batch normalization. Convolutional layer number 2, 4 and 6 also includes
a 2x2 max pooling and dropout. The random dropout of weights aims to restrain the
network from overfitting, resulting in better generalization. The downsampling by max-
pooling helps the network with invariance, meaning that features detected are invariant to
small translations of the input [9]. If an image is ever so slightly shifted, then most of
the output from pooled outputs do not change. This is, like other methods, to improve
the generalization. The 6th and final convolution layer is connected to a dense neural
network with 64 hidden neurons. The 64 hidden neurons are finally connected to 10 output
neurons each one representing a class. This is often referred to as a one-hot encoded
output, discussed in Section 2.3. The last layer utilizes softmax, described in Section 2.3,
to normalize the output sum to 1, such that each output can be interpreted as a percentage
of confidence. Table 4.1 summarizes the architecture in detail and a visualization of the

2https://github.com/hukkelas/TDT4265-A3-starter-code
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network is depicted in Figure 4.2.

Figure 4.2: The model architecture visualized. The leftmost cuboid depicts an input image of
32x32 pixels with a depth of 3 being the rgb values. Six cubes depicts the CNN layers and the last
two vertical cuboids represents the dense neural network. The sixth (and final) layer in the CNN has
128∗4∗4 = 2048 datapoints. These are connected to the hidden layer with 64 neurons which again
are connected to the 10 output neurons. Figure made with the NN-SVG software [19]

The 50,000 training images are further randomly split 10% to a validation set of 5,000
images with the remaining 90% left in the training set. This split allows the training to be
stopped when the training loss consistently decreases while the validation loss increases.
This is, as mentioned in Section 2.6, a sign of overfitting and early stopping aims to prevent
the phenomena. The model is trained using the described architecture in Table 4.1 with
a learning rate set to 0.02 and early stop epoch count of 3. Figure 4.3 shows the training
procedure. The test training loss and accuracy is added to the figure to show how the
validation set is able to estimate the model performance on the test data. Note that the
model only updates its weights with the training data. In summary, the model is trained on
the training data, uses the validation data to early stop and reports final accuracy using the
test data.
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Layer Filter size Nx(DxWxH) Output DxWxH
InputImage - 3x32x32

Conv2D 32x(3x5x5 kernel) 32x32x32
BatchNorm2D - 32x32x32

LeakyRelu - 32x32x32
Conv2D 32x(32x5x5 kernel) 32x32x32

MaxPool2D 32x2x2 kernel 32x16x16
BatchNorm2D - 32x16x16

Dropout (p = 0.2) - 32x16x16
LeakyRelu - 32x16x16

Conv2D 64x(32x5x5 kernel) 64x16x16
BatchNorm2D - 64x16x16

LeakyRelu - 64x16x16
Conv2D 64x(64x5x5 kernel) 64x16x16

MaxPool2D 64x2x2 64x8x8
BatchNorm2D - 64x8x8

Dropout (p = 0.3) - 64x8x8
LeakyRelu - 64x8x8

Conv2D 128x(64x5x5 kernel) 128x8x8
BatchNorm2D - 128x8x8

Conv2D 128x(128x5x5 kernel) 128x8x8
MaxPool2D 128x2x2 128x4x4

BatchNorm2D - 128x4x4
Dropout (p = 0.4) - 128x4x4

LeakyRelu - 128x4x4
Reshape - 2048

FullyConnected - 64
BatchNorm1D - 64

Relu - 64
FullyConnected - 10

SoftMax - 10

Table 4.1: The full model architecture used in the training phase. Each consecutive output is the
input to the next step. The model is set in evaluation mode, removing dropout, when the test dataset
is employed. A visualization of the layers is presented in Figure 4.2. It is debatable whether the
activation function (here LeakyRelu α = 0.01 presented in Section 2.2) should be applied before
or after the batch normalization. In the paper proposing batch normalization, the activation func-
tion was applied after the normalization and is followingly in the experiment [12]. Though newer
experimentation in the area show that it is slightly better to use activation function afterwards.
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Figure 4.3: The loss and accuracy plotted over epoch count. An epoch contains a full training
iteration across the whole training data. The validation is used for finding optimal hyperparameters
with an early stop. Finally, the model achieves an accuracy over the test set at 84.20%.

4.3 Performance analysis

The accuracy across the 10,000 test images for each class is listed in Table 4.2 with an av-
erage of 84.20%. The expected prediction accuracy over 10 classes using random guessing
is 10%, signifying that the network has learned features to distinct the images from each
other. Observing Table 4.2, Cat, Dog and Bird suffers from lowest prediction accuracy
with 72.0%, 76.0% and 76.9% respectively. This could indicate for instance either that the
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training and test data are vastly different for these classes or alternatively that these classes
have similar features, somehow confusing the model.

Next, a confusion matrix is used. The confusion matrix is a metric used to attain an
overview of the model’s performance across all predictions. It visualizes which classes
that confuses the model and summarizes the performance even in cases where the dataset is
imbalanced. Using only the accuracy as a metric would result in an average accuracy, while
using a confusion matrix showcases which classes perform better than others, highlighting
inaccuracies in the model likely occurring from dataset imbalances. Correct predictions
are reported along the diagonal. The values are either a count or a normalized percentage
of predictions over the ground truth label. Looking at Figure 4.4, it appears that most
errors arise from predicting dogs as the wrong label cats, 14.3%, and vice versa, 11.5%.
Not unexpectedly, the model struggles in some instances to distinguish between cars and
trucks, reporting 4.8% trucks as cars, and 4.5% of cars as trucks. Furthermore, 4.5% ships
are reported as planes, 4.1% birds are mistaken as planes but only 3.0% ships are stated
as planes. Supringsly, the model seems to have found features where horses and deers
are vastly different with only deers predicted as horses 1.9% and horses predicted as deers
2.7%. For instance, deers are predicted as cats 5.8%, frogs 4.0% and birds 3.9%, all higher
than the 1.9% predicted as horses. From the perspective of humans, it seems rather strange
to predict cats, frogs and even birds rather than a horse in the case where the true category
is a deer. The argument holds the other way around by the same analysis on the true class
of horse. 4.1% of the horses are reported as dogs, 3.1% as cats, 2.7% as deers but only
1.6%, 0.8% and 0.3% as birds, planes and frogs respectively. Again, the model predicts
some other smaller animal, here dogs and cats, over the horses. Finally, inferring from the
analysis of the confusion matrix is that the features found by the model clusters the classes
in regions where animals are close to each other and the vehicles are clustered in another
region, separating the two superclasses.

Class Test accuracy
Plane 85.8%
Car 93.0 %
Bird 76.9 %
Cat 72.0 %
Deer 80.4 %
Dog 76.0 %
Frog 89.7 %
Horse 87.0%
Ship 92.5 %
Truck 88.9 %

Table 4.2: Data showcasing the accuracy over each individual class. Finally, the model achieves an
average accuracy of 84.20%
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Figure 4.4: Confusion matrix without and with normalization, respectively. The figure is plotted by
slightly altering the scikit-learn plot confusion matrix() function.
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4.4 Visualizing the Convolutional Neural Network

The analysis of the model presented in the previous section provides some understanding
of the network performance. However, the performance metrics do not address how the
model interprets and reaches a prediction, thereby providing little to no explanation of its
internal workings. A simple method to visualize the model’s understanding of input data
is to pass an image and observe activation at individual layers throughout the network.
Another method is to generate an image which maximizes the class score, as the authors
do in the paper Deep Inside Convolutional Networks [33]. The first approach is performed
in this section.

A single image labeled as a plane, seen in Figure 4.5, is passed through the first convolu-
tional layer. The convolution operation is performed with kernels of size 5x5 as described
in Table 4.1. The first layer produces 32 feature maps, or activation maps, and are por-
trayed in Figure 4.6. Figure 4.7 shows the feature maps for layer 2, Figure 4.8 for layer 3
and 4, Figure 4.9 for layer 5 and Figure 4.10 for the 6th and final CNN layer. Visualization
of the values over the fully connected layer towards the output are omitted.
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Figure 4.5: To the left: the input image to the trained network. The network classifies this correctly
as an airplane with 99.471% confidence. The 2nd and 3rd class predictions are given as ’bird’
and ’cat’. To the right: the same plane image displayed using bicubic interpolation to enhance the
visibility.

The 32 feature maps in Figure 4.6 are all a transformation of the input image, but what
kind of transformation they represent is not entirely clear. The attributes and traits each
map is picking up on up may be understood as an edge or feature detection. However, it is
not explicitly clear what the network is doing. Going further into the network and looking
at layer 2, 3 and 4 in Figure 4.7 and Figure 4.8, less and less of the plane is visible. At

36



4.4 Visualizing the Convolutional Neural Network

0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30

0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30

0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30

0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30
0 20

0

10

20

30

CNN layer 1

Figure 4.6: The resulting 32 feature maps after the first convolutional layer. As the image is passed
in as a 3-layered RGB picture, each feature map produces a transformed output, here visualized in
grayscale.
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Figure 4.7: The feature maps in the second layer.

layer 4 there appears to be blobs of high activation (in white) at different positions in each
feature map.

Analyzing the final layer transformation before the fully connected neural network may

37



Chapter 4. Experiments and Results

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15
0 10

0

5

10

15

CNN layer 3

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6

0 5

0

2

4

6
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Figure 4.8: The feature maps of the third and fourth layers. The features appears more abstract as
the image is passed forward in the convolutional layers.
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Figure 4.9: After the fifth layer, no resemblance of the original image is left.

give an understanding the model’s decipherment. This is depicted in Figure 4.10. Even the
last layer does not give an intuitive explanation of important features. Arguably, the final
convolutional layer performs an abstract conjunction of the previous layer’s output in order
to classify the image. What the math behind the model indisputably expresses is that the
weight space has converged values where the loss is minimized. It may therefore be argued
that it is highly unlikely for humans to understand the individual transformations between
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Figure 4.10: Output from the last CNN layer (layer 6) before fully connected neural network to
prediction, showing how abstract the model interprets the image. The different points contain infor-
mation which the final neural network uses to classify the input.

the model’s layers looking at each feature map. The black box transformation performed
by the network is not interpretable by human inspection and it becomes evident that a
better approach to explain the model is needed. It is here the tools from XAI methods,
introduced in Chapter 3 comes into play.

4.5 LIME explanation

The average test accuracy of the trained model is 84.20% as described in Section 4.3. Al-
though the network performs fairly well, it is unclear whether it has learned what humans
describes as important features or if it exploits biases in the dataset. These biases could
for instance be that all dogs in the dataset are white, all cats are black or that all horses are
brown. The surroundings could also be biased in the sense that all cars and trucks images
have asphalt in the background while the sky is blue in airplane and boat images. To avoid
these biases one may include a diverse enough dataset with all possible varieties of the
given class, angles, light shading and so on. This is in practice not only a tedious task, but
it might also be infeasible. Whether the dataset diversification is balanced or not, directly
impacts the features picked up by the model. This imbalance is however not easily dis-
covered, especially in datasets containing ten to hundreds of thousands different samples.
An expert may discover these biases, correct for them and hopefully increase performance
with help from explainable methods such as the ones discussed in Chapter 3.

One such method, the LIME framework (introduced in Section 3.5), is applied to the
trained model to inspect predictions and their respective LIME explanations. Since the
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Chapter 4. Experiments and Results

method requires superpixels to find areas that impacts the prediction, it is crucial to en-
sure that the segmentation divides areas of fairly equal sizes. This is because LIME uses
perturbed versions of the image, randomly hiding segments while observing the accuracy.
If the segmented areas have disproportional sizes, small but highly important parts of the
image may be present in these larger superpixels, thereby creating an illusion of the whole
superpixel being of high importance. Even though a weighting of the similarity between
the occluded image and its original version is performed, larger superpixels should be
avoided because of the inaccuracies they may produce in the linear approximation. The
linear approximation used to find the weights of g might struggle as a consequence of
the few samples it is provided if only bigger areas are present. It therefore needs a bal-
ance between enough samples and also large enough samples to provide impact towards
the prediction. The use of a low resolution model may struggle because of these draw-
backs. The authors do not stress this in their work, but is an observation noted through this
project. Six segmentation techniques are used to inspect the performance on some of the
test images. Starting with an image of a horse in Figure 4.11, the different segmentations
are performed on the image displayed in Figure 4.12.

Ground truth: horse
Predicted: horse (100.0%)

2nd: dog (0.0%)
3rd: cat (0.0%) Bicubic interpolation

Figure 4.11: Image from test set with top three predictions. The right image is visualized using
bicubic interpolation.

As seen in the figure, the default segmentation technique provided in the authors GitHub
implementation, ”Quickshift”, fails to produce fair-sized superpixels. The larger patches
covers vastly bigger areas compared to the smaller sized segments. The three segmentation
algorithms at the bottom row in Figure 4.12, all fail to produce clear and general segmen-
tation. Finally, Felzenszwalb and SLIC are able to produce superpixels which separate the
image into regions based on edges, while preserving areas of about similar sizes. SLIC
is slightly more consistent in the area sizes compared to Felzenszwalb. Different results
for the segmentation is obtained by experimenting with different parameters, and the ones
selected generalized well over a variety of test images3.

3Further details on the segmentation techniques are available at the package documentation https://
scikit-image.org/docs/dev/api/skimage.segmentation.html
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4.5 LIME explanation

Felzenszwalbs' method SLIC Quickshift

Watershed (sobel) Watershed (scharr) Watershed (prewitt)

Figure 4.12: Six different segmentation techniques to showcase their performance on the im-
age. The segmented areas become superpixels which LIME uses to build a local model. LIME
uses the superpixels to perturb the image by randomly removing some of them. The three Wa-
tershed based segmentation algorithms uses three different edge detectors: Sobel, Scharr and
Prewit. The segmentations are performed using the scikit-image segmentation module https:
//scikit-image.org/docs/dev/api/skimage.segmentation.html.

Next, the segmented image is sent through LIME where a local explainable model is ap-
proximated. This is done six times, one for each segmentation algorithm. The obtained
explanation for the predicted class ’horse’ is shown in Figure 4.13. Looking at the figure it
becomes evident that the choice of segmentation algorithm heavily influences the explana-
tion. ”Quickshift”, ”Watershed (sobel)”, ”Watershed (scharr)” and ”Watershed (prewitt)”
struggles to produce a explanation, likely a result of poor segmentation. Finally Felzen-
szwalb and SLIC provide an explanation highlighting parts of the horse as an important
feature.

Next a couple of examples using LIME with Felzenswalb and SLIC are shown. In Fig-
ure 4.15b the model gives the prediction of the class Dog with about 59.8% confidence,
and explains this with both segmentation techniques by highlighting the dogs head and
parts of its body. The two explanations appear consistent with each other, though some
parts of the dog is highlighted slightly differently because of the different segmentation
techniques. An interesting observation produced by LIME is that the model uses parts of
the background as a feature. This is prevalent in Figure 4.15b, Figure 4.16, Figure 4.17a
and Figure 4.18b. This suggest that the model is slightly biased by using parts of the
background to provide a prediction. A better model may be produced if such features are
removed, and is further discussed in Section 4.8.
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Chapter 4. Experiments and Results

Felzenszwalb SLIC Quickshift

Watershed (sobel) Watershed (scharr) Watershed (prewitt)

Figure 4.13: The six different segmented images are sent through LIME to obtain the shown expla-
nation. The top 3 pro (in green) features are highlighted in each explanation image. The head is part
of the larger superpixel in the LIME explanation using Felzenszwalb segmentation technique. The
segmentation techniques makes the explanation slightly inconsistent, showing some of the issues
with LIME on low resolution images.

Ground truth: horse
Predicted: horse (100.0%)

2nd: dog (0.0%)
3rd: cat (0.0%)

LIME explanation for horse
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for horse
SLIC segmentation

Top 5 features (pro) - Hide rest

Figure 4.14: The figure shows the superpixels which LIME finds are most important towards the top
prediction ’horse’. The head is part of the larger superpixel which also includes the background in the
LIME explanation using Felzenszwalb segmentation technique. This does not happen in SLIC, and
the head is still part of the explanation. This illustrates how the segmentation techniques makes the
explanation slightly inconsistent, showing some of the issues with LIME on low resolution images.
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4.5 LIME explanation

Ground truth: dog
Predicted: dog (59.796%)

2nd: cat (33.116%)
3rd: deer (3.225%)

LIME explanation for dog
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for dog
SLIC segmentation

Top 5 features (pro) - Hide rest

(a) Image from test set with top three predictions according to the model. The middle and rightmost
image shows the LIME explanation of top 5 features (pro) with the rest hidden.

Ground truth: dog
Predicted: dog (59.796%)

2nd: cat (33.116%)
3rd: deer (3.225%)

LIME explanation for cat
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for cat
SLIC segmentation

Top 5 features (pro) - Hide rest

(b) The same image with LIME explanation of the second top prediction ’cat’. Interestingly, by
occluding the head of the dog the model sees a cat. It is understandable, looking from a humans
perspective when the face is occluded.

Figure 4.15: By observing the two LIME explanation for both ’dog’ and ’cat’. The model may be
trusted since it picks up the dog’s head and body as an important attribute.
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Ground truth: plane
Predicted: plane (99.471%)

2nd: bird (0.429%)
3rd: cat (0.054%)

LIME explanation for plane
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for plane
SLIC segmentation

Top 5 features (pro) - Hide rest

Figure 4.16: Image from test set with top three predictions according to the model. The middle and
rightmost image shows the LIME explanation of top 5 features (pro) with the rest hidden.

Ground truth: car
Predicted: car (99.998%)

2nd: truck (0.002%)
3rd: ship (0.0%)

LIME explanation for car
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for car
SLIC segmentation

Top 5 features (pro) - Hide rest

(a) A highly confident prediction towards a ’car’. The wheels along with the lower chassis of the car
makes up the most part of the features towards the prediction. Trust may be asserted to the model
following the explanation given by LIME.

Ground truth: car
Predicted: car (99.998%)

2nd: truck (0.002%)
3rd: ship (0.0%)

LIME explanation for truck
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for truck
SLIC segmentation

Top 5 features (pro) - Hide rest

(b) The second top prediction class ’truck’. The model explains the class by looking only at the
wheels and occluding parts of the car. The background also becomes a part of the explanation
towards truck.
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Ground truth: bird
Predicted: plane (78.049%)

2nd: bird (21.61%)
3rd: frog (0.203%)

LIME explanation for plane
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for plane
SLIC segmentation

Top 5 features (pro) - Hide rest

(a) Explanation for the top prediction ’plane’ which is wrong compared to ground truth. The expla-
nation highlights the stem of the three on which the bird is standing on. When occluding the bird,
the feature does resemble a wing or parts of a plane even though the model is wrong.

Ground truth: bird
Predicted: plane (78.049%)

2nd: bird (21.61%)
3rd: frog (0.203%)

LIME explanation for bird
Felzenszwalb segmentation

Top 5 features (pro) - Hide rest

LIME explanation for bird
SLIC segmentation

Top 5 features (pro) - Hide rest

(b) Explanation for the second top prediction ’bird’, which is the correct class. The explanation
highlights the body of the bird, but unfortunately this feature is not strong enough according to the
model. Rest assure, the model is slightly uncertain whether this is a plane or bird, and trust may be
asserted to the model because of the features it is picking up on, even though the prediction is wrong.
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4.6 SHAP explanation

SHAP calculates the average contribution of a feature value to the prediction, as described
in Section 3.6. 200 random test images are loaded from the test set and these are used
throughout the experiment as the background set. These images are used to produce the
expected model output and to approximate the SHAP values. By using the same randomly
drawn images for calculating the SHAP values, variance across the explanations are kept
to a minimum even though an unwanted bias might be present. The number of images for
each class for the random baseline images may be imbalanced. This is not addressed in
the documentation of the package, but it is recommended to use at least 100 samples to
obtain the expected model output.

Next, it is mentioned that the explanation is sensitive to the output representation created
by the model4. If a softmax is used at the output, then each value represents the probability
and confidence towards the predicted class. Explaining such a model is referred to as us-
ing SHAP on the probability space. If no squashing function is used, then the explanation
is performed on the margin space. The margin space is unbounded and in units of infor-
mation, while the probability space uses units of probability. The choice of output space
directly impacts the explanation provided by SHAP. The probability space SHAP gives
larger weight to evidence increasing the output from 40%-50% compared to 98%-99%.
This is because it requires far less information to go from 40% to 50% in comparison to
98% to 99%. The margin space directly corresponds to evidence and changes in the output
are not saturated by squashing.

The displayed explanations of SHAP are shown in Figure 4.19, Figure 4.20 and Fig-
ure 4.21 with a discussion of their explanation in their respective captions. Even though
the underlying theory behind SHAP is understood, the resulting explanation provided on
this model appear rather complex and somewhat confusing. This could be a result of either
a poor adaption of the model to SHAP or that it performs poorly on this type of data.

4See https://github.com/slundberg/shap/blob/master/notebooks/kernel_
explainer/Squashing%20Effect.ipynb
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4.6 SHAP explanation

car truck ship

0.6 0.4 0.2 0.0 0.2 0.4 0.6
SHAP value

(a) Margin space SHAP.
car truck ship

0.10 0.05 0.00 0.05 0.10
SHAP value

(b) Probabilistic space SHAP.

Figure 4.19: The effects on feature importance by choosing the output space. This on a correctly
predicted ’car’ 99.998%, followed by ’truck’ 0.002% and third ’ship’. The probabilistic space SHAP
gives low value the features in the explanation of ’car’ as there is little change in the output. The
SHAP values around the fender of the car are highlighted in red, meaning they contribute towards
the prediction of a car.
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dog cat deer

0.4 0.2 0.0 0.2 0.4
SHAP value

(a) Margin space SHAP.
dog cat deer

0.075 0.050 0.025 0.000 0.025 0.050 0.075
SHAP value

(b) Probabilistic space SHAP.

Figure 4.20: The effects on feature importance by choosing the output space. This on a correctly
predicted ’dog’ 59.796 %, followed by ’cat’ 33.116% and ’deer’ 3.225%. The dogs head appears
to be an important feature towards the prediction of a dog. Some of the pixels in the background
also appears to contribute. These observations are prevalent in both the margin and probabilistic
space SHAP. For the margin explanation towards a ’deer’, most of the background appears to con-
tribute, while most parts of the dog itself appears to be ignored. The SHAP values for ’deer’ in
the probabilistic space SHAP attain a low value compared to the other explanations and are barely
visible.
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plane bird frog

0.4 0.2 0.0 0.2 0.4
SHAP value

(a) Margin space SHAP.
plane bird frog

0.04 0.02 0.00 0.02 0.04
SHAP value

(b) Probabilistic space SHAP.

Figure 4.21: The effects on feature importance by choosing the output space. The model has pre-
dicted the wrong class ’plane’ 78.049% followed second by ’bird’ 21.61%(the actual class) and third
’frog’ 0.203%. The model sees the body of the bird as a negative feature and the parts of the stick
as positive feature according to the explanation for ’plane’. This is consistent with the LIME expla-
nation of the same image. The head of the bird appears important for the explanation of ’bird’, also
similar to the LIME explanation.
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4.7 Comparing explanations by LIME and SHAP

Looking the four points by Miller presented in section 3.1, LIME satisfies the requisites
to a greater extent in comparison to SHAP. The first point, explaining why event A hap-
pened over B, is possible with both methods. They are able to explain for and against
any class, essentially explaining why a class was predicted over any of the other. On the
second point where humans expects few reasons for a cause, LIME conforms better than
SHAP. LIME presents only a few superpixels rather than showing the SHAP value for
each pixel. This simplifies the explanation to a few regions highlighting the pros and cons.
Unfortunately this means that the LIME explanation is a simplification, but for the layman
the literature researched by Miller suggest such a method to be superior. The third point
outlines the ineffectiveness of statistical explanations alone. Both SHAP and LIME are
tools used together with the prediction confidence to explain an instance. Miller’s third
point therefore argues that there’s greater value whenever probabilities and an explanation
technique is used together, rather than a prediction confidence alone. The fourth point,
an explanation being a conversational transfer of knowledge, implies that the explanation
should be conveyed through a communicative medium. The image explanations provided
by both methods comply with this point. Assuming an explanation is a social interaction
between the model and the user, the fourth point may be interpreted as stating that an ex-
planation should mimic how humans explain to each other. It would therefore imply that
an improved explanation would include more elements used in human explanations such
as natural language, body language, text, signs, expressions and other possible commu-
nicative interactions. Since a model is limited by its nature, this might not be feasible for
most interaction types, but simple combinations of text, language, images etc. could be a
viable strategy for future explainable methods.

The Shapley values, in which the SHAP values are based on, can easily be misinterpreted.
The Shapley value does not represent the difference in prediction by removing a feature.
It rather represents the change of contribution of a feature value compared to the mean
output[23]. In other words, the Shapley value is the average marginal contribution of a
feature.

A major drawback of the LIME method on images is the fact that the explanation model
relies on the given segments. The superpixel from one segmentation technique to another,
or even the same with different parameters, results in different explanations. An expert
therefore needs to consider the choice of segmentation before applying LIME to the model.
It is likely that the segmentations would perform better on higher resolution images, and
the issues only apply to lower resolution datasets such as CIFAR-10. The utilized SHAP
method on the other hand, does not use superpixels and avoids the issues obtained by
segmentation, but the interpretation of the values are more difficult in comparison to LIME.
Next, in both SHAP and LIME for images, the feature explanations are local and only
applies to the instance being explained. This means that a global explanation of the model
is not possible and a new explanation has to be computed for each instance. SHAP do,
however, have a global explanation technique where the SHAP value of a feature is plotted
over all the examples in a dataset, but this is mainly applicable for tabular data5.

5An example is illustrated in the SHAP documentation https://github.com/slundberg/shap#
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4.8 Automated data augmentation and retraining model

For the layman, LIME would likely be a better choice, as it greatly simplifies the expla-
nation. For an expert, LIME is a great tool, but unfortunately it does not have the same
mathematical strength as SHAP. As presented in Section 3.6.1, the game theoretic Shapley
values obeys properties important for a fair and unique distribution of feature importance.
For automated decision systems where decisions affects individuals, a fair and unique ex-
planation may only be attainable by Shapley value based explanation methods. Therefore,
as also stated in the interpretable machine learning book [23], SHAP may be the only
novel technique which obeys the law by guaranteeing equality in the explanation.

Finally, it is worth noting that the implemented SHAP method is the Deep SHAP with
single pixel explanations. However, Kernel SHAP, presented in section 3.6, allows for
explanations using superpixels as features. The superpixels are, like LIME, found by seg-
mentation algorithms and their respective SHAP values are found using the Kernel SHAP
method. This was attempted to implement for the model, but unfortunately unsuccessful.
It is likely that a Kernel SHAP segmented method would be as good or better than LIME.

4.8 Automated data augmentation and retraining model

In an attempt to improve the model, an automated augmentation of the dataset is per-
formed. Since the background appears to be a part of the explanation from both LIME
and SHAP, it would be interesting to see if partly removing the color information in the
background could improve the performance. By removing the background colour, features
prevalent in the foreground are undisturbed and the network is encouraged to use features
in the foreground. Multiple efforts at detecting the background using edge detection and
morphology were attempted to little success. Inspired by an online blogpost6, a solution
with edge detection and blurring is implemented with a satisfying performance. Each im-
age is filtered with the sobel filter7 to detect the edges in the image. The object of interest in
the datasets appears in the foreground, leaving the background with less prominent edges.
Next, the image is blurred using a two-dimensional gaussian blur8. This enlarges the edges
such that areas with several edges obtain a higher value which saturates to 1. Components
without any detected edges receives a value close to zero. Tuning the gaussian blur kernel
results in either too large portions grayed out or none at all. A reasonable performance
occured using a kernel of σ = 3. Finally, the parts of the image with a blur ≤ 0.20 are
converted to grayscale. The result after graying the background with the aforementioned
technique are displayed in Figure 4.21. A subset of the augmented training data are shown
in Figure 4.22.

The original, unprocessed, dataset is used in combination with the preprocessed training
data. This essentially doubles the data, half of which with the original color, and final half

tree-ensemble-example-with-treeexplainer-xgboostlightgbmcatboostscikit-learnpyspark-models
6https://flothesof.github.io/removing-background-scikit-image.html
7Using the scikit-image package https://scikit-image.org/docs/dev/api/skimage.

filters.html#skimage.filters.sobel
8https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.

filters.gaussian
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Chapter 4. Experiments and Results

Figure 4.21: From left: The original images. 2nd: The images after the sobel transform. 3rd: A
gaussian filter is applied to blur and enlarge the edges. 4th: The images with its background grayed
out.

Figure 4.22: A sample of 40 images from the augmented training set after automatically graying
out the background.

with parts of the background grayed out. This results in an augmented training set. The
same architecture from Section 4.2 is used to obtain an unbiased performance comparison.

Retraining a new model with the augmented dataset results in a final test accuracy of
84.54%. This is an increased accuracy of 0.14% percentage points by comparison to the
previous model with 84.20%. Therefore, the training was performed again, this time re-
sulting in a test accuracy of 85.53%, an increase of 1.33% percentage points to the old
model. Although the accuracy increases, it is unlikely that the augmented data is the rea-
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son alone for the increased performance. The random initialization of weights, random
dropout and early stopping may have a larger impact on the final accuracy.

As the augmented training data contains two sets of identical images where half have the
background partly grayed out, it may help generalization to mirror the images about the
vertical axis. This is a common strategy in data augmentation. A new model is trained with
the preprocessed images mirrored and the parts of the background grayed out. The result-
ing model achieves a test accuracy of 87.27%, a noticeable increase of 3.07% percentage
point compared to the old model. This shows a clear model improvement by performing
data augmentation. Finally, a table with a comparison of the best performing model’s and
the old model’s individual class accuracy is listed in Table 4.3.

Class New model test accuracy Old model test accuracy
Plane 91.1% 85.8%
Car 93.0 % 93.0 %
Bird 78.0 % 76.9 %
Cat 70.0 % 72.0 %
Deer 88.8 % 80.4 %
Dog 83.7 % 76.0 %
Frog 89.6 % 89.7 %
Horse 91.0% 87.0%
Ship 93.8 % 92.5 %
Truck 93.7 % 88.9 %
Average 87.27% 84.20 %

Table 4.3: Table showcasing the accuracy over each individual class for both the new and the previ-
ous model. The new model trained on the augmented data generalizes better and achieves a higher
test accuracy.
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Chapter 5
Conclusion

Explainable AI is an emerging field highly necessary in a world where evermore models
are made using black-box approaches. Due to concerns regarding trust in safety critical
applications, medical AI systems, automated decision systems amongst other, XAI aims to
provide explanations and increase trust. Such AI systems also need to abide legislation by
providing fair and unique explanations for their decision. A greater understanding of the
theory behind prominent methods and some of their implementations has been obtained
through this specialization project. LIME and SHAP were used on a computer vision
model trained from scratch. The explanations from these two methods suggested parts
of the background as a learned feature in the model and this information was used to
augment the training data. The background was grayed out using a combination of edge
detection and blur to identify the rich parts of the foreground. The images were mirrored
and added to the training data, doubling its size. The resulting test accuracy increased from
84.20% to 87.27%. It is unclear whether the mirroring alone or the mirroring together
with the grayed out background helped the model to generalize better. Nevertheless, the
explanations provided insights in the data, helping to understand features the black box
model activates on images. This was especial insightful for an example where a wrong
prediction was made. Finally, a deeper knowledge on how to work towards a larger project,
literature survey and individual work was achieved.

5.1 Further work

While the outcomes of the project itself are exciting, there is still endless potential in the
field of XAI:

• The previous work presented in Chapter 3 only covers explanations utilizing input-
output pairs to a single type of data. It would therefore be of interest to investigate
if XAI methods could be applied to cyber-physical systems where multiple sensor
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inputs are needed. This could as an example be a fusion of sensors on a robotic
system, e.g. cameras, LIDARs, pressure sensors, GPS, gyroscopes and so on.

• Another interesting approach would be to combine training with metaprogramming
and XAI. Using metaprogramming, the training process could be adjusted with feed-
back loops from XAI explanations.

• Improving current XAI methods such that more human centered explanation are
provided.

• Investigate how XAI may help detect adversarial attacks aiming at tricking the
model.

56



Bibliography

[1] , 2016. General data protection regulation.
URL https://eur-lex.europa.eu/eli/reg/2016/679/oj
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