
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Nicolas Blystad Carbone

Explainable AI for path following with
Model Trees

Master’s thesis in Cybernetics and Robotics

Supervisor: Anastasios Lekkas

June 2020





Abstract

The increasing amount of applications involving machine learning methods poses a chal-
lenge when experts aim to understand their internal workings. Deep Reinforcement Learn-
ing (DRL) is a machine learning approach using artificial neural networks to train model-
free agents to operate in an environment by trial and error and has shown promising results
on many problems. The black box nature of these systems lack transparency in their op-
eration and could lead to lost interest simply because humans cannot trust their decisions.
Explainable AI (XAI) aims to provide such transparency and is gaining momentum both
in the industry and in academia.

This thesis explores how model trees, in the view of XAI, can be applied and replace a
continuous operating agent for path following trained using Deep Deterministic Policy
Gradient (DDPG). Model trees with linear and quadratic functions at the leaf nodes are
investigated as approximated models of the black box DDPG policy. The Linear Model
Tree (LMT) transforms the opaque DDPG policy into a piecewise linear model transparent
and traceable from input to output, at the cost of a slightly degraded performance in the
environment. LMTs allowed to grow deeper showed improved approximation to the black
box policy. The transparency of the tree is reduced proportionally to the depth and a trade-
off between accuracy and transparency must be made. The LMT can be used to show each
input state’s contribution to the consequent LMT action and is usable as an approximated
explanation of the state’s importance to the DDPG agent’s output. The contribution expla-
nations by LMT appear comparable to the explanations provided by the model-agnostic
XAI method SHapley Additive exPlanations (SHAP). A series of recommendations are
finally proposed for training of model trees when applied to other black box DRL agents.
The results are promising and suggests that LMTs may replace black box agents if an ex-
pert is satisfied with the behaviour and transparency. As such they deserve further attention
in attempts towards new methods in the field of XAI.
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Sammendrag
Den økende mengden applikasjoner som involverer maskinlæringsmetoder, utgjør en ut-
fordring når eksperter prøver å forstå deres indre virkemåte. Deep Reinforcement Learning
(DRL) er en maskinlæringsmetode som bruker kunstig nevrale nettverk for å trene mod-
ellfrie agenter til å operere i et miljø ved prøving og feiling, og har vist lovende resultater
på mange problemer. Den sorte boksens natur til disse systemene mangler gjennomsik-
tighet i virkemåten og kan føre til tapt interesse siden mennesker ikke kan stole på deres
beslutninger. Forklarende AI (XAI) har som mål å gi slik gjennomsiktighet og får økende
oppmerksomhet både i industrien og i akademia.

Denne avhandlingen utforsker hvordan modelltrær, med tanke på XAI, kan brukes og er-
statte en kontinuerlig opererende agent for stifølging trent med Deep Deterministic Policy
Gradient (DDPG). Modelltrær med lineære og kvadratiske funksjoner ved løvnodene blir
undersøkt som tilnærmede modeller av den sorte boks DDPG-politikk (policy). Lineære
Modelltrær (LMT) transformerer den ugjennomsiktige DDPG-politikken til en stykke-
vis lineær modell som er gjennomsiktig og sporbar fra inngang til utgang, på bekost-
ning av en litt svekket ytelse i miljøet. LMT-er som fikk lov til å vokse dypere, viste
forbedret tilnærming til den sorte boks-politikken. Treets gjennomsiktighet reduseres pro-
porsjonalt med dybden, og det må gjøres en avveining mellom nøyaktighet og gjennom-
siktighet. LMT kan brukes til å vise hver inngangstilstands bidrag til den påfølgende
LMT-handlingen, og kan brukes som en tilnærmet forklaring på tilstandens betydning
for DDPG-agentens utgang. Bidragsforklaringene fra LMT virker sammenlignbare med
forklaringene gitt av den modell-agnostiske XAI-metoden SHapley Additive exPlanations
(SHAP). En rekke anbefalinger blir avslutningsvis foreslått for trening av modelltrær når
de brukes på andre sorte boks DRL-agenter. Resultatene er lovende og antyder at LMTs
kan erstatte sorte boks agenter hvis en ekspert er fornøyd med oppførselen og gjennom-
siktigheten. Som følger fortjener de ytterligere oppmerksomhet i forsøk på nye metoder
innen XAI.

ii



Preface
This master’s thesis concludes my 10th and final semester at Norwegian University of
Science and Technology (NTNU). The work was carried out during the spring of 2020
under the supervision of Associate Professor Anastasios Lekkas. PhD candidate Vilde
Gjærum supported the progress through several discussions.

The tools used to perform the experiments includes open source software and multiple
libraries. The Python programming language (v3.7.2) was used with the with the NumPy
[43], Matplotlib [18], scikit-learn [45] and SciPy [63] packages. The PyTorch deep learn-
ing framework [44] is used to build the neural networks in the Deep Deterministic Policy
Gradient (DDPG) algorithm. The DDPG algorithm from [28] used in Chapter 4 is based
on an implementation by Udacity [60]. The main modifications include a change of noise
function to Gaussian distributed noise instead of Ornstein-Uhlenbeck noise and parameter
adjustments. The model tree implementation used in Section 2.4 and Chapter 4 is built
upon the implementation by Anson Wong [66]. The code was adapted to support polyno-
mial regression at the leaf nodes and rendering of the function expressions when exporting
the model tree as a figure. The software package for the model-agnostic XAI method
SHAP[32] was used to examine insights in the DDPG policy in Section 4.7.1.

Google Colab (Google Colaboratory) [15], a free Jupyter notebook environment, was used
to support GPU-accelerated training of the Deep Reinforcement Learning DDPG agent in
Chapter 4. The free file hosting service Google Drive [30] was integrated with Google
Colab, enabling the project to be accessible from any computer as long as a stable internet
connection was available. Some effort had to be put into solving issues in the Google
Colab environment normally not present on a local machine, like saving figures in vector
format, calculation timeout, store and retrieve data in Google Drive, but workarounds were
found. The version control software provided by GitHub [13] added a layer of security by
allowing routinely backup of the code. NTNU provided a workplace at the university with
a Dell Inc. OptiPLex 7060 computer and dual monitor setup.

The work behind the thesis relies partly on research performed during the specialisation
project fall 2019. Some parts are therefore included while undergoing refinement, modifi-
cations and extensions. This includes the exempt on GDPR in Chapter 1, parts on neural
networks and optimisation in Section 2.5.1-Section 2.5.4, Requisites for interpretable ex-
planations in Section 3.2, LIME in Section 3.3 and SHAP in Section 3.4 [5]. These are
modified and refined such that the thesis can be read independently from the specialisa-
tion project. Unless otherwise stated, all work has been performed independently and is
original.

Finally, the ongoing COVID-19 pandemic that resulted in the university closing from 12th
of March 2020 [55] presented challenges for the work on this thesis. The work was in-
tended to be applied on a drone in collaboration with other ongoing projects. This could’ve
shown whether the proposed method worked in a physical experiment. The scope had to
be adjusted accordingly.
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Chapter 1
Introduction

1.1 Background and motivation
The advancement of Machine Learning (ML) and Artificial Intelligence (AI) systems has
enabled computers to achieve impressive results on problems where humans traditionally
outperformed machines such as autonomous driving [67, 16], drug discovery [23, 9] and
recommender systems [68] amongst others. The advancement in these areas contributes
towards an increasingly algorithmic driven society. Though the results are promising, these
approaches have been criticised for operating in a black box manner lacking transparency
in their operation[52, 1]. This creates difficulties to understand their full workings and
ensuring safe behaviour during unexpected events. The opaqueness of modern AI systems
could lead to unused potential and lost interest simply because humans can’t trust their
decisions. For medical applications, where a system reaches an unexpected conclusion, it
would be hugely beneficial if the system could explain why it reached the prediction so
that the doctor and the patient can take well informed decisions. Unknown correlations
could be brought to light and guide experts to new theories.

The use of black box automated systems poses safety concerns since operators may not
know their limits, hidden biases and flaws. Attention was drawn to this type of use after the
two latest real-world accidents with the Boeing 737 MAX Lion Air Flight 610 on October
29, 2018 and Ethiopian Airlines Flight 302 on March 10, 2019. The error that likely lead
both flights to crash minutes after takeoff are traced back to a flaw in the automated system
MCAS. This was allowed to happen because of a late stage overhaul in the development
phase [42]. Pilots were uninformed about the changes in the new planes and were unaware
of how the flight control software worked. Because of the improved engines fit on the
737 MAX, the nose would get pushed upwards during takeoff. The MCAS system was
supposed to push the nose down such that the aircraft remained in control and avoid a
stall during takeoff. This helped the MAX to being similar to the previous version of 737
and consequently avoid airlines spending millions of dollars on further pilot training. As

1



Chapter 1. Introduction

such, most pilots did not know about this system until the crash in October 2018 [42]. An
error in the angle-of-attack sensor used by to the MCAS system resulted in the software
pushing the nose downwards at unexpected instances and the pilots of Lion Air Flight 610
had to work against the system to keep the aircraft from nose diving [22]. The pilots did
not manage to turn off the malfunctioning system in time. Evidence retrieved of Ethiopian
Airlines Flight 302 suggests that the aircraft was in a nose dive similar to Lion Air Flight
610 [24]. The cause of accident of Ethiopian Airlines Flight 302 is still under investigation.
These two incidents demonstrate the importance of operators needing to know how the
black box systems work and ultimately how to turn them off.

As the industry increasingly apply AI methods to support human decision making, it is
expected to attain greater responsibility in a transition towards a society driven by automa-
tion. The impacts on individuals by these automated decision systems may be significant
in cases such as medical treatment, access to loans, credit cards, insurance, employment
and so on. The European Union’s General Data Protection Regulation (GDPR) is a regula-
tion imposed on all member states of the EU and the European Economic Area (EEA) that
went into effect May 2018. It addresses data protection and privacy rights for citizens and
aims to give individuals control of their personal data as well as the right to an explanation
[11]. Recital 71 states:

The data subject should have the right not to be subject to a decision, which
may include a measure, evaluating personal aspects relating to him or her
which is based solely on automated processing and which produces legal ef-
fects concerning him or her or similarly significantly affects him or her, such
as automatic refusal of an online credit application or e-recruiting practices
without any human intervention [...]

In any case, such processing should be subject to suitable safeguards, which
should include specific information to the data subject and the right to ob-
tain human intervention, to express his or her point of view, to obtain an ex-
planation of the decision reached after such assessment and to challenge the
decision.

The exempt expresses that an individual affected by automated decisions have the right to
obtain an explanation for a decision and not be subjected to solely automated decisions.
These systems therefore need to abide the legislation by providing explanations to indi-
viduals who are affected by their decision. This calls for action in the field of AI where
not only the importance of insights and security in such systems are relevant, but also their
ability to act in accordance to legislation.

The field of Explainable Artificial Intelligence (XAI) has been gaining attention as a re-
sponse to the rising need for transparent AI systems. It is attempting to open the black
box in order to decipher the internal workings, in essence solving the problem of algo-
rithmic opacity. There exist a multitude of methods aimed at guiding experts to decipher
these algorithms. A large portion are designed for computer vision tasks and deep neural
networks such as Layer-Wise Relevance Propagation [2] and Integrated Gradients [56].
Some methods have been developed to be model agnostic, meaning they can be applied to
all black box systems. These could require heavy computation depending on the amount

2



1.1 Background and motivation

of features to explain. Two commonly mentioned are Local Interpretable Model-agnostic
Explanations (LIME) [59] and SHapley Additive exPlanations (SHAP) [33] introduced in
Chapter 3 and illustrated in Figure 1.1.

Figure 1.1: An example of an XAI method deciphering the internal workings of a black box model.
The importance of each feature in the model is shown as either a positive or negative contribution
towards the output. The information can be used to understand how features impact the model
prediction. Figure from [32].

Deep Reinforcement Learning (DRL) is the approach of using neural networks and rein-
forcement learning to enable an agent learning to operate in an environment by trial and
error. The behaviour of an agent is known as the policy which suffers from opaqueness
when applying current state of the art DRL methods. The combination of DRL and XAI,
the scope of this thesis, have seen limited attention in the research community. There
are nonetheless some noticeable papers attempting to increase explainability of learned
policies of the agents. In [7] the authors succeed to train an agent with Proximal Policy
Optimization (PPO) to play Mario AI benchmark with a discrete action space. The DRL-
based policy is transformed into a Soft Decision Tree (SDT) of various depths. The SDT
uses a neural network as the split condition. Using SDT allowed for valuable insights into
the SDT policy, however with a lower performance in terms of episode rewards compared
to the DRL-based PPO policy. The authors also discuss the tradeoff between accuracy and
interpretability as the SDT became deeper. A drawback noted the by the writers is the lack
of explanations in a symbolic form by the SDTs, only in heatmaps and probabilities. It
is therefore not clear whether the SDTs may be used to explain the black box PPO policy
[7]. In [29], Linear Model U-trees (LMUTs) are proposed to mimic the Q-function of a
black box policy. The Q-function uses the state-action pair to estimate the Q-value, the
measure for quality of an action in a state. The LMUTs uses a tree structure with linear
leaf nodes to approximate the Q-value for each discrete action possible in the given state.
The action with the highest Q-value is then selected. By interpreting the approximated
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Q-function by LMUTs, the authors extracts rules and may examine the contributions of
the input features. It is however not clear how to apply LMUTs for a Q-function in an
environment with continuous action agents, if at all possible.

1.2 Objectives
An AI agent learning to control a cyber-physical system using Deep Reinforcement Learn-
ing with neural networks will likely discover a nonlinear policy acting as a black box for a
human expert. The opaqueness makes these systems difficult to trust and safety could be
of concern if they are deployed without a clear understanding of their internal workings.
Extensive testing could help, but is not always feasible, nor possible, to test all possible
scenarios. This thesis aims to investigate how a black box DRL policy for a cyber-physical
system can be transformed into a fully transparent policy though model trees in the view
of XAI. Specifically if model trees can be applied on an AI controlled path following sys-
tem trained using DDPG. It is also of interest to investigate how different depths and leaf
node functions may impact both the performance and transparency. Finally, it is aimed
to explore if an LMT can provide contribution explanations and how they compare to the
model agnostic XAI method of SHAP.

1.3 Outline
This thesis is organised according to the conventional Introduction,Methods, Results and
Discussion (IMRAD) structure.

• Chapter 1 introduces the reasoning and motivation behind the field of Explainable
Artificial Intelligence by looking at scientific and societal impacts of AI. A brief
look at previous work in XAI and Deep Reinforcement Learning is presented. The
objectives and contributions of the thesis are finally addressed.

• Chapter 2 gives an overview of the theoretic background for the methods used
throughout the thesis. This includes ordinary least squares regression, regression
and model trees, neural networks, reinforcement learning and Deep Deterministic
Policy Gradient.

• Chapter 3 introduces common terminology and two recognised model-agnostic ex-
planation techniques used in XAI.

• Chapter 4 presents the vehicle model and both the straight-line and the curved path
following problem. A DRL agent is trained to control the vehicle to follow the
straight-line path using DDPG. Next, the black box policy is transformed into a
piecewise linear policy using Linear Model Trees of various depths. A piecewise
quadratic policy is also created by employing model trees with a quadratic function
at the leaf nodes. These are further compared to the original DDPG policy. Using
the XAI method SHAP on the DDPG policy is performed in an attempt to provide
insights of the black box policy. A discussion of LMT and explainability follows.
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Next, the DDPG agent and a suitable LMT agent is tested on the more difficult prob-
lem of curved path following before a series of recommendations for transforming
a DRL policy into a LMT are presented.

• Chapter 5 concludes the thesis by summarizing the findings and and proposing fur-
ther work.
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Chapter 2
Theoretical background

The presented theory in Section 2.1-Section 2.3 is primarily based on chapter 1, chapter 7
and chapter 16 in the book Machine Learning: A Probabilistic Perspective by Murphy et
al. [41]. Note that some of the notation has been slightly altered to increase consistency
of the sections. Section 2.4 is primarily based on the original paper of M5-Model Trees
[48]. Section 2.5 is based on the recognized Deep Learning textbook by Ian Goodfellow
et al. [14] with inputs from the book Artificial Intelligence: A Modern Approach by
S.Russel and P.Norvig [51] in Section 2.5.1. Section 2.6 is primarily based on the book
Reinforcement Learning: An Introduction by Sutton et al. [57]. Finally, Section 2.7 is
based on the work in [28].

2.1 Machine Learning
Machine Learning (ML) is defined in [41] as a set of methods that can automatically detect
patterns in data, and then use the uncovered patterns to predict future data, or to perform
other kinds of decision making under uncertainty. There are generally considered three
main categories in ML, two of them being supervised- and unsupervised learning[41].

The goal in supervised learning is to learn a mapping from inputs x to the the outputs
y, given a set of training data. The training data consists of labeled data, meaning input-
output pairs (xi, yi) are given. The label, yi, may be categorical in a finite set (for instance
cat or dog) for which the task is called classification. It may also be a scalar, in which the
problem is called regression which is discussed in Section 2.2.

When the training set does not have a label, unsupervised learning techniques are used
to operate on such data. The unsupervised ML methods aims to extract information by
finding unknown patterns. This is typically done by clustering data into groups such as
in k-means clustering, but other methods like anomaly detection or autoencoders may be
appropriate depending on the application.
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In the last of the main three categories, reinforcement learning, a software agent aims to
learn actions in an (un)known environment to maximize its reward signal. The agent acts
in trial and error to gather experience in the environment and observes the given rewards.
Over time it learns a policy, π, which maps a state si to an action aj by π(si) = aj . This
type of ML is of further introduced in Section 2.6.

2.2 Regression
Regression is a technique used to fit a model to observed targets in a dataset. The fit-
ted model is a function f : Rn → R which later may be applied to predict values given
new observations. In its simplest form, regression aims to find the linear relationship in the
data. This method is referred to as linear regression and is discussed in Section 2.2.1. Aug-
menting linear regression to model nonlinear relationships is possible with basis function
expansion, further discussed in Section 2.2.2. More advanced regression methods such
as regression trees, model trees and artificial neural networks are covered in Section 2.3,
Section 2.4 and Section 2.5, respectively.

2.2.1 Linear regression - ordinary least squares

A widely used model for regression is linear regression. The model assumes a linear
relationship between the input and output variable and takes the form

y(x) = w>x + ε =

N∑
j=1

wjxj + ε (2.1)

where w>x is the inner product between the input vector x and the model weights w.
ε is the residual error between the predicted linear output and the true value. It is also
referred to as the error term, disturbance term, or noise. In ordinary least squares this error
is assumed normally distributed, denoted ε ∼ N (µ, σ2).

A collection of training data (X,y) is used in order to find the optimal weights w for the
model. The system can be written as Xw = y where

X =


1 x11 x12 . . . x1m
1 x21 x22 . . . x2m
...

...
...

. . .
...

1 xn1 xn2 . . . xnm

 , w =


w0

w1

w2

...
wn

 , y =


y1
y2
y3
...
yn

 .

The first column in X contain ones such that w0 corresponds to the intercept term. The
system is not guaranteed to have an exact solution and the task becomes to find the coeffi-
cients w that best fits the equation. Residual sum of squares (RSS), also known as sum of
squared errors (SSE), is used as the measure of fit in ordinary least squares and is defined
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2.2 Regression

as

RSS(w) ,
N∑
j=1

(yi −w>xj)
2. (2.2)

The goal is to find the weights ŵ that minimise the objective function RSS(w) i.e.

ŵ = argmin
w

RSS(w). (2.3)

Given that the number of equations n is larger than the m coefficients and that X is non-
singular, then there exist a unique solution for ŵ. The gradient with respect to w in (2.2)
is set equal to zero and rearranging gives the expression for ŵ as1

ŵ = (X>X)−1X>y. (2.4)

Two examples showcasing linear regression on noisy data are shown in Figure 2.1.
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Figure 2.1: Linear regression using residual sum of squares as the measure of fit. a) Regression
performed on noisy samples from the function y(x) = 3x+ 4. The resulting fit is ŷ(x) = 3.04x+
3.98. b) Regression on noisy 2d data sampled from y(x) = −2x1 + x2 + 1. The quadratic fit takes
the form ŷ(x) = −2.03x1 + 1.04x2 + 0.33.

2.2.2 Basis function expansion
Under certain circumstances it is often enough to assume a linear relationship between
the input features and the target. However, capturing the underlying nonlinearities may
yield higher predictive power and could therefore be desirable. It is possible to model
nonlinear relationships using linear regression by replacing the input features x with a
transformation z = φ(x). Rewriting (2.1) and applying the transformation yields

y(x) = w>φ(x) + ε = w>z + ε (2.5)

1See Chapter 7.3 in [41] for further details on the derivation.
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Chapter 2. Theoretical background

which is linear with respect to z and the theory from Section 2.2.1 is again applicable.

As an example, consider a two-dimensional fitted model with a linear regression

ŷ = w>x = w0 + w1x1 + w2x2 (2.6)

where x = [1, x1, x2]>. Instead of fitting a plane, a polynomial model can be used. For
instance the paraboloid

ŷ(x) = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2 (2.7)

suffices in this case. Applying the basis function expansion z = φ(x) = [1, x1, x2, x
2
1, x1x2, x

2
2]

to (2.6) yields

ŷ(z) = w0 + w1z1 + w2z2 + w3z3 + w4z4 + w5z5. (2.8)

As a result, the polynomial regression is transformed to linear regression by expanding the
model to a higher-dimensional space built by the basis function. Two examples are plotted
in Figure 2.2.
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Figure 2.2: Linear regression using basis function expansion. a) Regression performed on noisy
samples from the function y(x) = −x2 +8x. The resulting fit is ŷ(x) = −1.05x2 +8.58x− 0.69.
b) Regression on noisy 2d data sampled from y(x) = 2 + x21 + x1x2 − x22. The quadratic fit takes
the form ŷ(x) = 0.08− 0.04x1 + 0.08x2 + 1.01x21 + 0.94x1x2 − 0.99x22.

2.3 Classification and Regression Trees
A classification tree, also referred to as a decision tree, is a rule based prediction method
in Machine Learning often described in graphical terms. The predicted variable is cate-
gorical, meaning a classification is performed. In a similar way, a regression tree predicts
a constant numerical value.

The input space is partitioned into regions with each containing a prediction model [41].
This subdivision may be represented by a tree with branches with a final leaf for each
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region. The two methods are described as Classification and regression trees (CART) and
were coined by Breiman et al. in [4]. Regression trees are mainly discussed forward since
the scope of this thesis concerns regression models and not classification.

The model for regression trees can be written on the form

f(x) = E[y|x] = wmI(x ∈ Rm) (2.9)

where Rm is the m’th region with wm being the mean value in this region. Classification
and regression trees are constructed using the greedy divide-and-conquer method follow-
ing the procedure in Algorithm 1. There exist different variants of trees, such as CART [4]
and ID3 [47], which uses this procedure for growing a tree [41].

Algorithm 1 Recursive procedure to grow a classification/regression tree — Source: [41]

Require: node, Training data D, depth
1: function FITTREE(node,D, depth)
2: node.prediction← MEAN(yi : i ∈ D) . or class label distribution if classification
3: (j∗, t∗,DL,DR)← SPLIT(D)
4: if not WORTHSPLITTING(depth, cost,DL,DR) then
5: return node
6: else
7: node.test← {xj∗ < t∗}
8: node.left← FITTREE(node,Dl, depth+ 1)
9: node.right← FITTREE(node,DR, depth+ 1)

10: return node
11: end if

The SPLIT function chooses the best threshold t∗ over the set of possible threshold Tj for
feature j

(j∗, t∗) = argmin
j∈{1,...,D}

min
t∈Tj

cost({xi, yi : xij ≤ t}) + cost({xi, yi : xij > t}). (2.10)

The set Tj is obtained by identifying each unique value of xij for feature j. This choice
of splitting results in axis parallel splits. The cost function is defined by the expert im-
plementing the regression tree. Common choices are residual sum of squares (RSS), see
(2.2), mean squared error (MSE) or mean absolute error (MAE).

The MEAN function is simply the mean over the current regions data, ȳ = 1
|D|
∑
i∈D yi.

The function WORTHSPLITTING decides if the cost of the best split from SPLIT satisfies
the various possible criterion. Some potential conditions are listed as

• Does the reduction of cost of the split improve the current split? I.e. ∆ > 0 where
∆ is defined as

∆ , cost(D)−
(
|DL|
|D|

cost(DL) +
|DR|
|D|

cost(DR)

)
(2.11)
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• Has the maximum depth not been reached?

• Are the number of samples in both DL and DR larger than some minimal value?

If all of the selected criterion are True, then the region is split and the algorithm is called
recursively in the left- and right child node until WORTHSPLITTING is evaluated to False.

Figure 2.3 shows an example of how the depth of the regression tree affects the prediction
accuracy when approximating a fifth degree polynomial. The resulting regression tree
depth 5 is further visualised in Figure 2.4.
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Regression tree with different depths

Figure 2.3: The fit of six regression trees trained with 1000 evenly spaced sample points between
x = 0 and x = 8.5 from the continuous function y = (x − 1)(x − 2)(x − 4)(x − 6)(x − 8).
Increasing depth results in a closer approximation to the function. The regression tree of depth 5 is
visualised in Figure 2.4. Figure made based using [66].

The advantage of CART models are their ability to visually express rules intuitively. They
are easy to interpret since the representation is natural for humans. Flowcharts and ”How
to” manuals are both examples of decision trees used widely in society. The high inter-
pretability of CART models does however come at a price. The most significant drawback
is their reduced accuracy compared to other types of models due to the greedy tree con-
struction algorithm [41]. The buildup of a tree also affects the stability; small changes
in input may cause significant changes in the tree structure and overall predictions. A
common technique to mitigate the high variance in CART models is to train an ensemble
of trees, namely random forests [3]. Unfortunately, the simplicity and interpretability of
CART models are lost by introducing multiple trees and should be taken into account.

Alternatively, rather than a mean value at the leaf nodes, a linear, polynomial or some other
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Figure 2.4: The regression tree of depth 5 used in the example in Figure 2.3. The regression tree is
read starting from the root node (top). The datapoint, x, is compared to the threshold x ≤ 0.451. If
the condition is True, the left path to the next node is taken. The condition may on the other hand
evaluate to False and consequently the right arrow is followed. These steps are repeated until a leaf
node is reached and an expression for y is given.

function is possible at the leaf nodes. Using these types of regression at the leaves opens a
new type of trees, namely model trees further discussed in Section 2.4.

2.4 Model trees
By introducing multivariate linear regression at the leaf nodes, model trees broadens the
concept of regression trees and becomes analogous to piecewise linear functions. How-
ever, the function is not constrained to be continuous between the intersection of the input
regions. The concept is introduced as M5-Model trees in [48] where the author also sug-
gests regression with other non-linear functions, though at a higher computational cost.
The term Linear Model Tree (LMT) is used when referring to model trees with linear
regression, while the term model trees describe the general group of trees with various
regression models at the leaf node. The main advantage of model trees in comparison to
regression trees is the prediction of continuous numerical values in each region instead of
a mean value. This reduces the size of the tree and increases accuracy for tasks with very
high dimensionality [48].

Building a Model tree

Building a model tree follows the same steps as in algorithm 1, while instead of using a
MEAN function, a specified function (i.e. multivariate linear function) is fit using standard
regression techniques. For instance the ordinary least squares method introduced in Sec-
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tion 2.2.1. The cost function in M5-Model tree is chosen as the standard deviation [48]. In
the implementation used in this thesis it is however chosen as mean squared error (MSE)
as in a regression tree introduced in Section 2.3. An example of how a model tree solves
the regression task of a fifth order polynomial is shown in Figure 2.5 with the LMT depth
2 visualised in Figure 2.6.
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Model tree using linear regression with different depths

Figure 2.5: The fit of six model trees trained with 1000 evenly spaced sample points between x = 0
and x = 8.5 from the continuous function y = (x− 1)(x− 2)(x− 4)(x− 6)(x− 8). Increasing
depth results in a closer approximation to the function. The model tree of depth 2 is visualised in
Figure 2.6. MSE as cost function results in high penalty for points far away from the straight line.
Figure made based using [66].

Model trees have several advantages over regression trees by exploiting linear relationships
in the data in terms of reduced size while maintaining higher accuracy [48]. The model tree
also inherits the intuitive nature of CART models while predicting continuous numerical
values. A noteworthy remark is that regression trees always predict a value within the
bounds of the training data, while the model tree extrapolates and may predict values
outside these (safe) regions [48]. Whether this is an advantage or of concern depends on
the nature of the model and application.
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Figure 2.6: The model tree of depth 2 used in the example in Figure 2.5. The regression tree is read
starting from the root node (top). The datapoint, x, is compared to the threshold x ≤ 0.757. If the
condition is True, then follow the arrow down along the left path to next node. If the condition on the
other hand evaluates to False, follow the path in the opposite direction. These steps are performed
until a leaf node is reached and a value for y is consequently given.

2.5 Artificial Neural Networks
Artificial Neural Networks (ANN) can be used as a nonlinear regression method. Before
diving into how they may do so in Section 2.5.3, an introduction to the building block of
ANN, the Artificial Neuron and some activation functions is provided.

2.5.1 Artificial Neuron
Artificial neurons are the fundamental building blocks in a neural network. They are
mathematical models heavily inspired by biological neurons. xi represents inputs flow-
ing across a link i where each link has a numeric weight, wi, portraying the strength of the
connection. An input bias term b is added and, together with the weighted sum over the n
inputs, passed through an activation function g(·). Put simply, each artificial neuron ”fires”
or activates based on the linear combination of its inputs. This input to output relation is
defined as

a = g

(
n∑
i=0

wixi + b

)
(2.12)

and a visualisation is shown in Figure 2.7. Usually, the x0 input to a unit is assigned the
value 1 with an associated bias weight w0 = b such that (2.12) can be rewritten as a dot
product2

aj = g
(
w>x

)
. (2.13)

x is the vector with activations from the previous units with the first element being x0 = 1.
The weight vector w consequently has the bias b as the first element followed by the n

2This is sometimes referred to as the bias trick. See for instance http://cs231n.github.io/
linear-classify/
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Figure 2.7: One of many possible visualisations of an artificial neuron. The input xi could be the
activation sent from another neuron or a numeric raw value originating from data.

connection weights. This condenses the expression and simplifies the practical implemen-
tation by combining the weights and bias into a single vector w. The choice of activation
function g determines the amount of activation sent over the link from a neuron j to the
next and is chosen to be nonlinear. This is to ensure the important property that the con-
nected network of neurons can represent a nonlinear function.

2.5.2 Activation functions
Sigmoid

Even though there are a vast range of possible activation functions, only a few are com-
monly used. For starters, the sigmoid is an activation function which constrains the output
between 0 and 1 as the input x → ±∞ and this may be seen as a percentage of activa-
tion from a neuron. Albeit being simple, it has been heavily criticised for its problem of
vanishing gradients[17] during backpropagation3. The definition of the function is stated
as

σ(x) =
1

1 + e−x
(2.14)

with its derivative σ′(x) = σ(x)(1− σ(x)).

Relu

Another nonlinear activation function is the rectifier linear unit (ReLu) defined as

g(x) =

{
x, if x ≥ 0

0, otherwise
(2.15)

3Backpropagation and the gradient based learning method is discussed in Section 2.5.4.
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Figure 2.8: The ReLu function plotted with its derivative.

The derivative takes the form

g′(x) =

{
1, if x > 0

0, if x < 0
(2.16)

where it is undefined at x = 0. A workaround in practice is to define a value for the
derivative at x = 0, either the right or left derivative. Unlike the sigmoid, ReLu does
not saturate when x > 0. If the learned bias b into a neuron is sufficiently negative4,
then the activation from the unit may remain 0 and causes the neuron to never fire. This is
essentially the same as removing the neuron from the network and is described as the dying
ReLu problem5. Once this happens, the gradient will forever remain zero as f ′(x) = 0
when x < 0 and no update can correct for the learned parameters into the neuron. An
attempt to mitigate this problem is to replace the 0 with αx for x < 0 which results in the
LeakyReLu function, not further discussed.

Tanh

The tanh activation function squashes its input between -1 and 1 through 6 the function

tanh (x) =
ex − e−x

ex + e−x
=

2

1 + e−2x
− 1. (2.17)

4This could be a symptom of learning rate set too high or a large gradient
5See http://cs231n.github.io/neural-networks-1/
6Unlike sigmoid which squashes between 0 and 1.
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This activation function also suffers from the vanishing gradient problem and should be
avoided for deep neural networks. It can, along with the sigmoid, be used at the final layer
to constrain the output value given by the network. This is how it is used in Section 2.7.1.

2.5.3 Deep Neural Networks
In this section Deep Neural Networks (DNN) are referring to what is sometimes called
deep feed-forward neural networks or multilayer perceptrons (MLPs). The internal struc-
ture is composed by connected layers of artificial neurons. An illustration is presented
in Figure 2.9. Each neuron in a layer is connected to every neuron in the next layer and
activates based on the signal strength received before it is passed through the activation
function, as discussed in section 2.5.1. The first layer can be written as

h(1) = g(1)
(
w(1)>x

)
(2.18)

which is passed to the next layer:

h(2) = g(2)
(
w(2)>h(1)

)
(2.19)

and so on until the output layer. The biases are included in the weight vector by the
bias trick. At the output of the deep network, a final linear or logistic activation function
is added depending on whether the network should solve a regression or classification
problem. A vector or scalar is used at the output to state the final calculation by the
network.

Input Layer ∈ ℝ² Hidden Layer ∈ ℝ¹⁰ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹

Figure 2.9: A deep neural net with two hidden layers used on a regression problem. The bias term
is depicted as a unit activation in the hidden layers. Figure made using the NN-SVG software [26]

The goal in a regression problem is to approximate some function f , such that y = f(x)
maps an input x to a value y. The feed-forward network approximates this function by
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defining a mapping y = h(x; θ) and finding the parameters θ for the weights through
back-propagation, discussed in section 2.5.4. The feedforward term arise because of the
direction of computation from input x through the network h(x; θ) to the output y without
any internal feedback connections. The connections between the layers forms a directed
acyclic graph.

2.5.4 Loss function and Optimisation
Once the architecture of the deep neural network is defined, tuning of weights and biases
are performed. The objective is now to fit a nonlinear function to the input-output space
covered by the training data. The training data consist of an input x with a corresponding
label y and is used to tune the network. A cost function, sometimes referred to as a loss
function or objective function, measures how the network performs on the training data.
The cost function tries to punish the model by a high cost whenever a prediction with a
large error is made. Conversely, a low cost is given for predictions with low error and
in the ideal case of no error, zero cost is attained. There are multitudes of possible cost
functions, a common is Residual sum of squares (RSS):

L(x, y, θ) = RSStrain = |ŷ(i) − y(i)|2 (2.20)

where the loss increases squared with the Euclidian distance between prediction and the
target becomes larger. This means that large errors are heavily punished by the loss func-
tion. Other used loss functions include Mean Absolute Error Loss (MAE) and Mean
Squared Logarithmic Error Loss (MSLE) which does not punish large error as much as
MSE. This could be beneficial whenever the regression problem consist of outliers far
from the mean.

The loss function now quantifies a measure of the performance of the network. Whenever
the loss is high, the network performs poorly, while a low loss signifies more accurate
predictions. This property is used in the training by changing the weights in the layers of
the network through optimisation by minimising the loss. The nonlinearities in a neural
network causes the loss functions of interest to be non-convex7, thereby ruling out useful
properties obtained in convex optimisation. Therefore, iterative, gradient-based optimisers
are used to minimise the loss function. Unfortunately, because of the nature of nonlinear
programming, the minimum is unlikely to be a global minimum, no convergence is guar-
anteed and the minimum is sensitive to the initial parameters. This means that the weights
and biases in a feedforward neural network impacts the resulting minimum found through
optimisation. The optimisation procedure by a gradient-based optimiser, gradient descent,
uses the gradient of the loss function to change the weights, θ, such that the loss decreases.
The weights are updated according to the gradient descent algorithm

θ ← θ − ηg (2.21)

where η is the learning rate. The loss is calculated over all training samples, but may also
be updated more than once during a training iteration. This is referred to as updating the

7Chapter 6.2 in Deep Learning book[14]
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weights using minibatches. A minibatch contains a smaller set of samples, drawn uni-
formly from the training set, and is useful if the computer struggles to keep all information
in its memory. These are drawn until the complete training set has been used. Whenever
gradient descent is used with minbatches, it takes the name Stochastic gradient descent
(SGD). The gradient g in (2.21) is found by computing

g =
1

m

m∑
i=1

∇θL(x(i), y(i), θ) (2.22)

where L is a chosen loss function. The (Stochastic) gradient descent algorithm is one of
many possible optimisation algorithms and the book [14] gives a detailed introduction to
the most common ones, such as SGD with momentum, SGD with adaptive learning rates
(Adam, AdaGrad, RMSProp) and Newton’s method.

2.6 Reinforcement Learning
The theory presented in this section is primarily based on the book Reinforcement Learn-
ing: An Introduction [57].
Reinforcement Learning (RL) is defined in [20] as the problem faced by an agent that
learns behavior through trial and error interactions with an environment. The behaviour
performed in each state by an agent is called the policy. There are generally two strategies
for solving reinforcement learning problems [20], the first being to search for a behaviour
performing well in the environment. This is the strategy of evolutionary algorithms like
genetic algorithm, genetic programming and evolutionary programming. These algorithms
are inspired by the way biological evolution produces skilled behaviour even though learn-
ing is not performed during its lifetime. Evolutionary algorithms starts by creating multi-
ple agents with random behaviour and observes which operates best according to a fitness
function. New agents are created by crossover breeding and mutation from the top per-
forming agents. The least fit agents are discarded in this step. The new agents are released
in the environment and a new cycle of crossover breeding and mutation is again performed
on the best fit agents until a satisfactory result is obtained. The method is effective when
the policy space is sufficiently small or a lot of time is available for the search [57]. It also
have the advantages in partially observable environments.

The second strategy, which is the focus in this thesis, observes and learns by interacting
with the environment. These methods can be much more efficient than evolutionary algo-
rithms since they utilise statistical techniques and dynamic programming to estimate the
optimal actions. Evolutionary algorithms do not take advantage of the fact that a policy
can be a function based on the current state. It also discards information about earlier
visited state-actions pairs which could improve the search for a policy. In rare instances
could the observed data be misleading if the information is misperceived or incorrect, but
this is often not the case for many problems.

In Reinforcement Learning (RL) an agent is assumed to interact with a learning environ-
ment E at discrete timesteps t. The environment can be stochastic and is usually modelled
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Agent

Environment

Action at

State st

Reward rt

Figure 2.10: The interaction between the agent and the environment in a Markov Decision Process.
Figure inspired by [57].

as a Markov Decision Process (MDP). The agent observes the current state st ∈ S, per-
forms an action at ∈ A and receives a reward rt ∈ R.

2.6.1 Markov Decision Process
A Markov Decision Process (MDP) is a sequential decision problem with a fully observ-
able stochastic environment using a stochastic transition model and additive rewards. The
MDP consist of states, s, actions a and a transition model p(st+1|st, at) describing the
probability of ending up in a state given a state-action pair[51]. In short, an agent observes
the current state st, performs an action at and receives a reward rt as illustrated in Fig-
ure 2.10. Since the final end state may be far away, the agent needs to achieve balance
between immediate and delayed rewards.

Reward

The reward given to the agent is a signal used to guide or punish the agent based on its
performed actions and current state. The agent seeks to maximise the cumulative reward
over the whole episode and therefore needs to trade off immediate and delayed rewards.
The rewards may be given to the agent dependant on the objective. For instance, a bal-
ancing robot could be given a +1 reward for each second it stays alive and it is therefore
encourage to remain in balance. If the goal is to escape from a maze, then a -1 reward
may be given each second to promote a faster response to reach the end of the maze and
finish the episode. No matter the type of environment, the agent in a MDP always aims to
maximise its cumulative reward. It is therefore important to set up the rewards such that
they indicate what the programmer wants to achieve.

Return

To enforce the agent to tradeoff between immediate and future rewards, the concept of
discounted rewards is introduced. The agent now seeks to maximise the cumulative dis-
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counted rewards it receives by

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2.23)

where γ ∈ [0, 1] is the discount rate deciding the importance of later received rewards.
If γ = 0 then the agent seeks to maximise the reward received in the next step, while a
γ = 1 weights the distant rewards as highly as immediate. In order to ensure the expected
discounted return in (2.23) to be bounded, then γ < 1. As γ approaches 1, the future
rewards are weighted more and influences the agent strategy. The policy, denoted π(s),
recommends an action for each state and is the strategy which the agent follows towards
its goal state. It may change over time due to exploring and finding better strategies in the
environment. Each policy is measured by the expected utility of the policy[51] where the
policy with the highest expected utility is called the optimal policy and is expressed π(s)∗.

2.6.2 Policy function and Value function
Value functions describe the value of being in a state or performing an action in a state such
that the agent may estimate the expected return from that state or action. It can therefore
be used to select the actions which maximizes the expected return. The rewards given to an
agent is dependant on the actions taken (and consequent states visited). The value function
is therefore defined in terms of the possible action strategy, namely the policy [57].

The state-value function under policy π is the expected return when starting in state s and
following the policy π thereafter. This is written as

vπ(s) , Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkrt+k+1|St = s

]
, for all s ∈ S (2.24)

The value of performing the action a in state s and follow policy π can be expressed in a
similar way as

qπ(s, a) , Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkrt+k+1|St = s,At = a

]
(2.25)

which is referred to as the action-value function. These two functions can be estimated by
interacting with the environment and record the rewards obtained under the policy π. If
the amount of states and actions are infeasible large (for instance continuous), then vπ and
qπ may be parameterized. This done in DDPG further covered in Section 2.7.1.

Optimal policy

The overall task in a RL task is to find the policy that achieves the highest expected reward.
A policy is better than another policy if the properties of π ≥ π′ if and only if vπ ≥ vπ′

holds.The policy that is better than or equal to all other policies is denoted the optimal
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policy, π∗. The optimal state-value function is consequently defined as

v∗(s) , max
π

vπ(s), for all s ∈ S (2.26)

Similarly, the optimal policy may be written in terms of the optimal action-value function
as

q∗(s, a) , max
π

qπ(s, a) (2.27)

In the end, the optimal policy describes the solution to which strategy an agent should
perform in the environment. As such, the optimal value function v∗ can be expressed as

v∗(s) = max
a∈A

qπ(s, a) (2.28)

= max
a

Eπ∗ [Gt|St = s,At = a] (2.29)

= max
a

Eπ∗ [rt+1 + γGt+1|St = s,At = a] (2.30)

= max
a

Eπ∗ [rt+1 + γv∗(St+1)|St = s,At = a] (2.31)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)]. (2.32)

This is known as the Bellman optimality equation for v∗. For q∗(s, a) this is written as

q∗(s, a) = max
π

qπ(s, a) (2.33)

= E [rt+1 + γv∗(St+1)|St = s,At = a] (2.34)

= E
[
rt+1 + γmax

a′
q∗(St+1, a

′)|St = s,At = a
]

(2.35)

=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s′, a′)

]
(2.36)

With these expressions, it is possible to find the v∗(s) for each of the states in the envi-
ronment by solving the set of equations. This can similarly be performed for q∗. Once
v∗(s) is found for all states, an agent simply chooses the neighbouring state with highest
v∗(s). If q∗ is used instead, then the agent chooses the action that maximizes q∗(s, a) in
the current state, i.e. a∗(s) = argmaxa q

∗(s, a).

2.7 Deep reinforcement learning
Deep Reinforcement Learning (DRL) uses neural networks as function approximations in
a reinforcement learning setting. It enables reinforcement learning to train end-to-end, for
instance to play video games by receiving only the pixels and score[39, 28].

2.7.1 Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient (DDPG), introduced in [28], is a model-free off-policy
algorithm categorised under the AI branch of reinforcement learning, specifically Deep
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Reinforcement Learning. The algorithm consists of two deep neural networks, one to
propose a continuous action (actor network) and another network to evaluate the state-
action pair (critic). Their relationship is illustrated in Figure 2.11. The actor with network
weights θµ receives the state s as input and outputs an action a based on the deterministic
policy µ(s). The critic with parameters θQ takes both the state s and the actor’s action a
and gives out the Q-value for this state-action pair. The use of a neural network to calculate
the Q-value instead of a table makes it possible for the DDPG algorithm to operate on
continuous states and actions. It is a continuation of the previous work on deterministic
policy gradient [54] which establishes the underlying theory.

Figure 2.11: The structure of the actor-critic networks in the DDPG algorithm. The weights of the
actor and critic are updated based on the received reward according to Algorithm 2. Figure from
[27].

DDPG bases itself on using the deterministic version of the Bellman equation which is
stated as

Qµ(st, at) = E[Gt|st, at] (2.37)
= E[r(st, at) + γQµ(st+1, µ(st+1)]. (2.38)

This is used to learn the parameters for the critic, θQ, by minimising the loss

L(θQ) = E
[
(Q(st, at|θQ)− yt)2

]
(2.39)

where

yt = r(st, at) + γQ(st+1, µ(st+1|θQ). (2.40)

The parameters for the critic are then updated using gradient ascent by

θQ ← θQ + αQ∇θQL(θQ) (2.41)

Since the action space no longer is discrete, the equation to find the optimal action,

a∗(s) = argmax
a

q∗(s, a), (2.42)
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becomes infeasible to calculate. This function is also needed to be run every time the agent
wants to perform an action. Since the action space is continuous, DDPG takes advantage
of Q(st, at) being differentiable with respect to the action, a. This allows for a gradient
based learning rule to find the policy, µ(s|θµ). The actor uses the gradient of the expected
return (Q(st, at)) which is stated as

∇θµJ ≈ E
[
∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
(2.43)

= E
[
∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|st

]
(2.44)

and updates the actor using gradient ascent according to

θµ ← θµ + αµ∇θµJ (2.45)

Since the DDPG algorithm aims to mimic the Q-function using neural networks, it is
unstable during training if updated directly [28]. Two additional networks are therefore
used to provide soft updates and stabilise the training. These networks are known as target
networks, Q′ and µ′. The soft update follows the scheme

θQ
′
←τθQ + (1− τ)θQ

′

θµ
′
←τθµ + (1− τ)θµ

′

where τ � 1 is the update rate.

A replay buffer R of finite size is employed during the training phase of the DDPG. Tran-
sitions sampled from the environment, (st, at, rt, st+1), are stored in this buffer where the
oldest sample is removed whenever it becomes full. Uniformly sampled minibatches from
the buffer are used to update the actor and critic network at each timestep during train-
ing. This benefits the learning as uncorrelated transition are used instead of successive
transitions [28].

Since the policy is deterministic an agent may end up with a local solution or arrive at no
solution at all. It is therefore necessary for the agent to explore the environment with new
state-action pairs and evaluate whether they improve the current best policy π∗. The agent
explores by letting the exploration policy µ′ be influenced by a noise sampled from a noise
process N

µ′(st) = µ(st|θµt ) +N . (2.46)

N is selected as a Ornstein-Uhlenbeck process[61] in the original DDPG paper, but other
processes may also be used. A Gaussian process is chosen as noise in this thesis with

zero mean and σ = 0.2 where the probability density function is p(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .
There are works proposing alternative methods to ensure action space exploration, for
instance by perturbing the network parameters instead, see [46]. This approach was shown
to perform well and in some problems improved performance compared to action noise.

The complete DDPG algorithm is finally shown in Algorithm 2.
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Algorithm 2 Deep Deterministic Policy Gradient (DDPG) — Source: [28]

Require: Actor network µ(s|θµ) with weights θµ

Require: Critic network Q(s, a|θQ) with weights θQ

1: Randomly initialise actor and critic network weights.
2: Initialise target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ

3: Initialise replay buffer R
4: for episode ∈ {1, 2, ...,M} do
5: Initialise a random process N for action exploration
6: Receive initial observation state s1
7: for t ∈ {1, 2, ..., T} do
8: Select action at = µ(st|θµ) + Nt according to the current policy and explo-

ration noise
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′)

13: Update critic by minimising the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

14: Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

15: Update the target networks:

θQ
′
←τθQ + (1− τ)θQ

′

θµ
′
←τθµ + (1− τ)θµ

′

16: end for
17: end for=0
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Chapter 3
Explainable Artificial Intelligence

3.1 Terminology
The field of XAI involves different terms which currently are not standardised. [6] sur-
veys and analyses current research literature and aims to move the field towards a unified
terminology. Since XAI is rapidly changing a variety of terms are used interchangeably,
for example transparency, intelligibility, interpretability, and explainability. The term XAI
was coined in 2004 by Van Lent et al. in [62] describing how AI-controlled entities’ be-
haviour in games can be explained [1]:

Explainable AI can present the user with an easily understood chain of rea-
soning from the user’s order, through the AI’s knowledge and inference, to
the resulting behavior.

Even though the field of XAI has been gaining momentum recently, the problem of ex-
plainability is not a new one. The term explainability has been used since mid-1970s
when research was put into explainable expert systems [40].

The key findings from [6] are summarised as

• Transparency or transparent systems are, by their nature, interpretable without
needing to provide explanations. Interpreting a system or providing explanations
on the other hand are fundamentally different from a transparent system and should
therefore not be interchanged with transparency.

• Intelligibility could be achieved through explanations and interpretations, where
the type of user, their background, goal and current mental model are taken into
consideration

• Interpretability is defined as a concept close to explainability. As examples, Shap-
ley values, discussed in Section 3.4, and LIME, Section 3.3, are techniques used to
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give insights into a model through interpretations.

• Explainability, or providing explanations is about improving the user’s mental
model of how a system works. This could be done through intuitive mediums such
as natural language or visual clues.

Figure 3.1 shows an illustration of the relation between the terms.

Figure 3.1: A venn diagram of the relationship between different terminology commonly used in
XAI according to the findings from [6]. Note that interpretability intersects partly with explainability
since some models may be interpretable without needing explanations. Figure from [6].

The findings are used throughout this thesis to provide an accurate and precise nomencla-
ture.

3.2 Requisites for interpretable explanations
Establishing a foundation for what is required from an explanation is essential before div-
ing into some suggested XAI methods. A simple yes or no answer may be sufficient to
reason for a prediction in some simpler applications. However, in application requiring
more sophisticated approaches, such as natural language processing, computer vision and
robotics, binary explanations is of limited value. Instead, a visualization of where impor-
tant features are present, like in a heatmap, could be more relevant. Since an explicit metric
of explainability currently is unknown in the AI literature, most XAI methods are based
on the researchers own intuition of what a good explanation constitutes. This could limit
the advancement of these methods as understandings from explanations varies greatly with
the depth of knowledge in these systems. For this reason, Miller [38] argues that multiple
viable strategies to attain interpretable explanations in AI should be built with considera-
tion from known research in philosophy, psychology, and cognitive sciences. From these
fields it is known that people exert biases, social expectations and explanation selection
whenever reasoning is presented. Miller pinpoints four major findings in his review which
he claims that researchers and practitioners currently are unaware of:

1. Explanations should explain why event A happened instead of B. People seldom ask
why event A occurred, but rather seek reasons for it over another case.
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2. Selective explanations induce biases. Humans select one or two reasons for an event
from a pool of infinite possible causes. It is therefore, subconsciously, rarely ex-
pected a complete explanation for an event. This has the unavoidable effect of in-
ducing cognitive biases whenever a reason is selected and being presented.

3. Statistical relationships are ineffective at delivering an explanation to humans. While
they do have some value, causal relations provide more meaningful reasoning com-
pared to probabilities. The net takeaway from this point is the accompanied value
of using both at the same time and avoid likelihoods alone.

4. An explanation is a conversational transfer of knowledge presented in belief of the
recipient’s view. This implies that an explanation is a social interaction conveyed
through a communicative medium, that being e.g. an image, natural language, body
language, text etc. or any combination of these.

Applying practices inferred from these findings will likely increase the explanation value
for experts and the layman. This is essential for societal trust to future AI driven systems as
it is taking over evermore tasks in the industry, infrastructure, transportation, medicine and
ultimately peoples daily lives. If - or for that matter when - AI systems are handed these
responsibilities, it is vital that their decisions are deeply understood such that the public
opinion maintains trust even in the off chance of failure. The XAI methods presented next
aims to open the black box models and lay the foundation for future applications.

3.3 LIME
Local Interpretable Model-agnostic Explanations (LIME) is an explanation framework
created to guide experts on the behaviour of a trained black box model[59]. It aims to
answer the question of ”why should I trust the model?” by finding an interpretable model
that is locally reliable to the classifier. It also supports regression models. The framework
is open sourced and available at the lead author’s GitHub [58]. Summarized, LIME ap-
proximates the black box model around an input by assuming that the input space is locally
accurate to the classifier. This means that the explanation are made at the individual level.

A vector x ∈ Rd represents the unaltered input while x′ ∈ {0, 1}d′ symbolizes a binary
vector for the explainable representation. This could for instance be whether a set of pix-
els are present or not. An explanation is defined as a model g ∈ G, where G denotes all
possible interpretable models. The model g could for instance be a linear model, decision
tree or a falling rule list with ”IF-THEN” statements. This implies that it needs to facilitate
simple, interpretable visual or textual explanations. Furthermore, as not all possible expla-
nation models g are simple enough for human interpretability, the authors introduce Ω(g)
to be a measure of complexity of the explanation model. As an example, for a decision
rule, Ω(g) could be the number of statements needed in a “IF-THEN” rule or the number
of non-zero weights for a linear model. The fewer statements or non-zero weights needed,
the simpler the model and less penalty is introduced by the Ω(g) term. The classifier being
explained, f : Rd → R, outputs the probability f(x) that an input x belongs to a specific
class1. z is a sample of x and πx(z) is used as a measure of proximity between z to x. The

1This is slightly different from conventional notation where f is defined with k-outputs, f : Rd → Rk . The
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locality in LIME is obtained through the weighting term πx. Finally, L(f, g, πx) is defined
as a measure of how inaccurate g approximates f . This could for instance be a distance
measure between f and g. LIME tries to minimize the objective function stated as

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.1)

in order to obtain a valid local approximation of f while reducing the complexity of g to
ensure human interpretability. LIME is model-agnostic, meaning that the explanation is
separated from the choice of model. The objective function in (3.1) establishes this foun-
dation by conveniently allowing individual choices for G,L and Ω. The term L(f, g, πx)
is approximated, since it should be independent of f , by drawing non-zero elements of x′

uniformly at random. A such perturbed sample z′ ∈ {0, 1}d′ is passed through the model
to obtain f(z), which is the prediction probability of z′ belonging to the specified class.
Given enough perturbed samples, (3.1) is optimized to get an explanation of x, namely
ξ(x).

Figure 3.2: The intuition behind LIME. The nonlinear decision function is represented in pink.
LIME learns a linear model and explains a prediction (red cross) through the explanation model
represented by the dashed line. Notice that it is only locally faithful, not globally. Figure from [59].

Linear LIME

Linear LIME utilises a linear explanation model g ∈ G, such that g(z′) = wg · z′. The

square loss, also known as quadratic loss, is used for L and πx = exp
{

(−D(x,z)2

σ2 )
}

is the
measure weighting the proximity between z and x where D is a distance function. The D
is defined in the code as the l2 norm, with σ = 0.75 ·

√
number of columns. The term is

finally set to
L(f, g, πx) =

∑
z,z′∈Z

πx(x)(f(z)− g(z′))2. (3.2)

Algorithm 3 finds the weights wg used in the linear model g with a least squares regression
(Lasso).

author rather defines f(x) to be the prediction probability of chosen class instead, simplifying the notation in the
process.
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Algorithm 3 Sparse Linear Explanations using LIME — Source: [59]
Require: Classifier f , Number of samples N
Require: Instance x and its interpretable version x′

Require: Similarity kernel πx and the length of explanation K
1: Z ← {}
2: for i ∈ {1, 2, ..., N} do
3: z′i ← sample around(x′)
4: Z ← Z∪ < z′i, f(zi), πx(zi) >
5: end for
6: w ← K − Lasso(Z,K) . using z′i as features, f(z) as target
7: return w

3.4 SHapley Additive exPlanations (SHAP)
SHapley Additive exPlanations or SHAP for short, is a proposed framework to interpret
predictions provided by a model [33]. It is a game theoretic approach to explain any black
box model, and is therefore model agnostic. The authors have open sourced their work and
published it freely available at GitHub [32]. The authors propose SHAP values, similar
to Shapley values, as a unified measure of feature importance. The method unifies the
ideas from LIME and the game theoretic Shapley values. As such, a brief introduction to
Shapley values follows.

3.4.1 Shapley values
A brief introduction to Shapley values is given as it forms the basis on which the SHAP
method is built upon. The Shapley values were introduced by Lloyd S. Shapley in 1953
[53] as a concept in cooperative game theory. A Shapley value is assigned to each player
in a game stating how important they are in the cooperation to a surplus. It provides one
way of fairly distributing the payout to players based on their contribution in the game.
The coalition game is described using the set N of n players. Let a coalition of players
S be a subset of N , i.e S ⊆ N , and define a payout function v, describing the expected
payout to each possible coalition. In a coalition game (v,N), the amount player i collects
is the Shapley value

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i})− v(S)]. (3.3)

The term [v(S ∪ {i}) − v(S)] can be interpreted as calculating the payout to a coalition
with player i minus the payout without player i. The term is weighted by |S|!(|N |−|S|−1)!|N |!
and together with the sum

∑
S⊆N\{i}, represents, for each player, the average contribu-

tion over different possible permutations in which the particular coalition can be formed.
Summarized, the Shapley value for player i (3.3) states the importance of the player by
comparing the payout with and without them in a coalition of players. Since the order in
which the players contributes may affect the payout, the contribution is calculated with all
possible permutations of the coalition, across all possible coalitions.
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The Shapley value obeys properties important to obtain a fair and unique distribution.
It is also the only attribution method that satisfies these desirable properties [19]. The
original paper [53] states these properties in the definition as symmetry, efficiency and law
of aggregation (linearity). Finally, the property of a dummy or null player is explicitly
stated in the paper’s definition section. These properties are

Symmetry

If two players are equal and contribute the same, then they receive equal payout. Formally,
if v(S ∪ {i}) = v(S ∪ {j}) then φi(v) = φj(v).

Efficiency

The sum of the Shapley values of all players equal the payout for the total coalition∑
i∈N

φi(v) = v(N) (3.4)

Law of aggregation (linearity)

If two independent games are combined, then the payout equal the payout sum for each
individual game

φi(v + w) = φi(v) + φi(w) (3.5)

Null player

A player that does not contribute to the payout receives no payout. If v(S ∪ {i}) = v(S)
for all coalitions S without i, then φi(v) = 0

3.4.2 SHAP Method overview
Even though the concept of Shapley values was proposed in the field of cooperative game
theory, it may be used as a means to explain a prediction. By assuming that each feature is
a player and the prediction is the total payout, then the Shapley value tells how much each
individual feature contributed towards the prediction. Unfortunately, calculating the Shap-
ley value going through all possible combinations of features is computationally heavy.
Computing the marginal contribution of every feature to every coalition is O(2|N |) [19]
which quickly becomes infeasible. SHAP values are based on the Shapley values and
obeys their properties, adding strong mathematical theory behind it. An illustration of
the SHAP values is shown in Figure 3.3 The authors propose a model agnostic method to
obtain the SHAP values, namely Kernel SHAP.

Kernel SHAP

Kernel SHAP is presented in the SHAP paper[33] as model agnostic approximation method
to obtain Shapley values. Kernel SHAP uses (3.1) to obtain the Shapley values, but unlike
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LIME, avoids heuristically choosing the parameters for loss function L, weighting kernel
πx and regularization term Ω. Rather, they are chosen such that the properties of Shapley
values are retained. These are shown to be

Ω(g) = 0, (3.6)

π′x(z′) =
(M − 1)

(M choose |z′|)|z′|(M − |z′|)
, (3.7)

L(f, g, πx) =
∑
z,z′∈Z

(f(hx(z′))− g(z′))2π′x(z′). (3.8)

M is the maximum number of features in a coalition, being the size of set N, |N |, in the
original description of Shapley values. M choose |z′| is the binomial coefficient

(
M
|z′|
)

=
M !

|z′|!(M−|z′|)! . The explanation model g in (3.8) takes a linear form. The kernel π′x in
Kernel SHAP essentially merges the theory of Shapley values with the model agnostic
approach of LIME. Even though Kernel SHAP is model agnostic like LIME, it is unfortu-
nately computationally heavy and therefore slow.

Figure 3.3: The SHAP values decomposes the output from a function f into a sum of the contribu-
tion φi of the features. Because of the property of efficiency, the contributions sums up to the output,
i.e.

∑N
i φi = f(x). Figure from [31].
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Chapter 4
Path following for kinematic
vehicle model

4.1 Lateral vehicle kinematics
Assumptions

A four-wheeled vehicle can, under certain assumptions, be approximated by a bicycle
model. The lateral vehicle model described in [49] is a simplified vehicle where the two
front wheels are represented as a single point, A. The rear wheels are similarly represented
as one wheel at point B, nearing the vehicle to a bicycle. The model is constrained to
planar motion and has a rigid body. Low velocity is assumed such that slippage of the
tires can be neglected. This means that the velocity vector at the front wheel makes an
angle equal to the steering angle, δf . The rear wheel angle δr is adjustable in the dynamics
presented in [49], however it is set to zero in this thesis to reduce the number of control
actuators to one. Finally, the front wheel saturates at angles δfmin = −1 rad ≈ −57.3◦

to δfmax = 1 rad ≈ 57.3◦. Summarised, the model is a mathematical description of the
motion based on geometric relationships of the system without considering forces.

Equations of motion

The model considered is depicted in Figure 4.1 where the distance between the front wheel
at A and the rear wheel at B is the distance of the wheelbase lf + lr. The center of gravity
is at the point indicated by CG. The planar motion is described in the earth-fixed North-
East-Down (NED) coordinate system where the x axis points towards true North, the y
axis towards East and the z axis down into the plane. The positive rotation is clockwise
as a consequence when following the right-hand screw convention. The (x, y) position
coordinates are located at CG with the heading (yaw) angle ψ describing the orientation of
the vehicle. The velocity at CG U is composed of the body surge u and sway v velocities
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and produces a sideslip (drift) angle β with the longitudinal axis. Finally, the course angle
is defined by χ = ψ + β.

Referring to Figure 4.1, the kinematic equations of motion of the vehicle can be expressed
as

ẋ = U cos (ψ + β) (4.1)
ẏ = U sin (ψ + β) (4.2)

ψ̇ =
U cosβ

lf + lr
(tan δf − tan δr) (4.3)

β = arctan

(
lf tan δr + lr tan δf

lf + lr

)
(4.4)

where δr is set to zero in the figure.

ψ

δf
N

β

U

lr

lf

E

A

B

(x, y)

CG

Figure 4.1: The lateral vehicle model expressed in North-East-Down (NED) reference frame. The
front wheel is attached at point A and can be turned by a controller making an angle δf in relation
to the (yaw) heading angle ψ. The velocity vector U is not always aligned with the heading as the
vehicle experiences sideslip with angle β when the sway velocity v 6= 0. Figure inspired by [8].
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4.2 Cross-track error for straight-line path following
As formulated in [12], a straight-line path defined between two waypoints pnk = [xk, yk]> ∈
R2 and pnk+1 = [xk+1, yk+1]> ∈ R2 is considered. The straight-path following problem is
depicted in Figure 4.2 where the vehicle is moving at speed U = |u|+ |v| =

√
ẋ2 + ẏ2. A

path-fixed reference frame is defined with origin in pnk with a positive rotation αk relative
to NED. The coordinates of the vehicle at time t is pn(t) = (x, y)> and can be expressed
in the path-fixed reference frame as the error vector

ε = Rp(αk)>(pn(t)− pnk ) (4.5)

where

Rp(αk) =

[
cos (αk) − sin (αk)
sin (αk) cos (αk)

]
∈ SO(2). (4.6)

The error vector ε = [xe, ye]
> expresses the along-track distance xe and the cross-track

error ye. Since the problem is to follow a straight-path, only ye is of interest. From (4.5)
ye is found as

ye(t) = −[x(t)− xk] sin (αk) + [y(t)− yk] cos (αk) (4.7)

where the objective is to minimize this error such that

lim
t→∞

ye(t) = 0 (4.8)

meaning the vehicle has converged to the straight-path.
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xn

ye

αk

ψ
β

U

(x, y)

xe

yn

xb

yb

pk

pk+1

Figure 4.2: Illustration of the path following problem. The main geometric relationships are in-
cluded and expressed in the NED coordinate system. The heading angle ψ defines the angle between
NED and the Body coordinates. Figure inspired by [25].

4.3 Curved path following
This section is inspired by [12, 35]. For curved path following, a predefined parametrised
path is assumed available. A possible representation of the parametrised path for a vehicle
operating in 2D space is

pd(ω) = [xd(ω), yd(ω)] (4.9)

where ω is the parametrisation variable. The first and second order derivatives of pd with
respect to ω are denoted p′d and pd

′′ [12].

The angle of the path changes over the curve unless it is a straigh-line. The path angle is
therefore defined as the tangential angle with respect to the derivatives of the parametrised
path

αp(ω) = atan2(y′d(ω), x′d(ω)). (4.10)

This is also visualised in Figure 4.3

As with the straight-line path following, the geometric task is to force vehicle to converge
to the desired path, i.e.

lim
t→∞

ye(t) = 0. (4.11)

The cross-track error can be found by inserting the path angle αp(ω) and pd(ω) in (4.7)
as follows

ye(t) = −[x(t)− xd(ω)] sin (αp) + [y(t)− yd(ω)] cos (αp) (4.12)
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αp

xn

yn

pd

Figure 4.3: Illustration of the path tangential angle at the closest distance to the vehicle in a curved
path following problem. Figure inspired by [35].

The closest point on the curve to the vehicle can be located by finding the path variable ω
expressed as the convex optimisation problem

min
ω
f(ω) = (x− xd(ω))2 + (y − yd(ω))2 (4.13)

given the vehicles current position (x, y) [35]. This can for example be solved at each time
instant using the Newton’s method to find the ω that satisfies df(ω)

dω = 0. The previous ω
can used to speed up the computation when implementing the method.
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4.4 Training an agent using DDPG

The straight-path following problem is the task of following a predefined path indepen-
dent of time. There are a few methods for achieving this objective where a commonly
used approach is by using line-of-sight (LOS) guidance[12]. The LOS guidance scheme
requires a cascading control system hierarchy where lower level controllers are responsible
for motion control. The LOS controller receives estimates of the vehicles states and gives
set-points to the lower level controllers, resulting in the cascading structure. Due to the
high nonlinear nature of the problem and uncertainty in the modelling of the vehicle other
approaches have been applied to solve the straight-path following problem. One such is
a DRL-based framework proposed in [36], which the following section is utilising. The
relationship between the DDPG agent and the environment is shown in Figure 4.4.

Vehicle

Reward
function

Actor

Critic

x

r

u
u

DDPG agentMDP environment

x

Figure 4.4: A schematic of the interactions between the DDPG and the environment modelled as
MDP. The agent receives the state x and the reward r and computes the action u sent to the vehicle.
Notice that the vehicle model is hidden for the agent.

DDPG setup

The implementation of DDPG used in the thesis relies on Udacity’s version[60]. The
pseudocode is given in Algorithm 2 and the theory introduced in Section 2.7.1. In the im-
plementation, the Ornstein-Uhlenbeck process is changed to a Gaussian noise process for
generating noise to the actions during training. The noise is added to ensure exploration is
performed when the agent is in the learning phase. Next, the parameters used for the actor
and critic networks are similar to the implementation in the paper proposing DDPG[28]
with some modifications. The actor network is responsible for the policy π(x) which out-
puts the deterministic action u. The actor is built by connecting the input states using two
hidden layers with both 50 nodes connected to a single action node at the output layer.
The Relu activation function is used between the hidden layers with a hyperbolic tangent
function at the output ensuring a value between −1 and 1.
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4.4 Training an agent using DDPG

f1 = Relu (W0x + b0)

f2 = Relu (W1f1 + b1)

u = π(x) = tanh (W2f2 + b2)

The critic network takes the state x and actor action output u as input. The two hidden
layers consist of 300 and 400 nodes. The output layer consist of a single node, giving out
the Q-value. This results in the following architecture:

f1 = Relu (W0x + b0)

f2 = Relu (W1af1 + W1bu+ b1)

Q(x, u) = W2f2 + b2

The weights Wi and biases bi are updated according to Algorithm 2 based on the received
feedback from the reward. The replay buffer’s maximum size is set to 106 transition sam-
ples where the agent randomly samples minibatches of size 128. The discount factor γ is
set to 0.99 and the soft target update constant τ is set to 103. The actor or policy network
uses a learning rate of 10−4 while the critic or value function network uses a learning rate
of 10−3. Finally, the critic optimiser uses L2 weight decay with value 10−2 to penalise
larger weights in the network.

Designing a state representation

The kinematic equations from Section 4.1 describes the motion of the vehicle and are
hidden for an external observer. Since the path angle αk and path-fixed coordinate system
pnk as defined in Section 4.2 are known and assuming that the heading ψ and position
pn(t) = (x, y)> is measured at each time instant t, a subset of the system’s states can be
used to conveniently represent the problem objective.

Combined with the cross-track error ye another state is exploited, namely the error signal
in the heading angle relative to the path angle, ψ̃ = ψ − αk. The relationship is shown in
Figure 4.5. This measure indicates the deviation of the heading in relation to the direction
of the path. If the cross-track error is zero and ψ̃ is positive, then the vehicle should
intuitively turn counterclockwise (δf < 0) in order to align with the path. Likewise, if
ye = 0 and ψ̃ < 0 then a turn clockwise should be performed. Heavy disturbance and a
large sideslip β will influence the course χ and may render a different strategy necessary
to maintain a trajectory on the straight path. Disturbances are however not included as a
part of the experiment.

The state vector available for the learning algorithm is x = [ye, ψ̃]>. The learning algo-
rithm utilised is the DDPG introduced in Section 2.7.1 which trains an agent to maximize
expected reward. The agent observes the state x and actuates the front wheel by the control
action ut → δf which saturates by the constraint of ±1 rad ≈ ±57.3◦.
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xn

αk

ψ

pk

pk+1

(x, y) xb

ψ̃

Figure 4.5: The geometric relationship between ψ̃, ψ and αk. Positive rotation in the direction as
indicated.

Reward function

The vehicle model is treated as a black box where the learning agent only observes the
state input xt, the control action ut and the consequent reward rt. The agent updates
its internal weights based on the reward received according to the DDPG algorithm. It
is therefore crucial that the feedback acquired actively reflects the deviation between the
current state-action pair and the desired goal. By rewarding the agent little when it’s far
from the desired state and more when it’s close, appropriate behaviour is encouraged. This
technique is inspired by animal training and is called reward shaping [65]. As highlighted
in [37], the reward function should be converted into error signals by using implicit domain
knowledge. This has been the primary motivation to use error-signal state vector x =
[ye, ψ̃]> available for the learning algorithm. The domain knowledge of driving the cross-
track error ye towards zero is implemented in the reward function by rewarding the agent
the most at ye = 0 and decrease the reward as the error increases. The Gaussian function
e−x

2

serves this purpose quite well as it is everywhere differentiable (smooth), has it’s
peak limx→0 e

−x2

= 1 at x = 0 and goes towards zero as x → ±∞. Next, the agent
should perform action of lower magnitudes to avoid sharp turns. This is added in the
reward function by including the term e−action

2

. The agent should obey these two goals
simultaneously and this is enforced by multiplying the two reward function resulting in
the following reward function

r(x, action) = exp(−y
2
e

42
− action2

0.252
) (4.14)

which is plotted in Figure 4.6. Note that action and the control input ut refers to the same
variable. The coefficients in (4.14) are found by trial and error when performing training
of the agent.

Training

The agent is trained with episodes where the vehicle is initialised with uniform probability
within±10 m of the straight path, i.e. −10 ≤ ye ≤ 10. The heading is initialised such that
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Figure 4.6: Plots of the reward function r = exp
{
(− y

2
e

42
− action2

0.252
)
}

. The agent receives greater
reward when the cross-track error ye and the control action is simultaneously close to zero. The
peak reward of r = 1 is found at (0, 0). Note that the reward is always positive, thereby encouraging
the agent to be within bounds and discourage interruption.

the heading error ψ̃ is uniformly initialised ±π2 rad, giving the agent a sense of direction.
The velocity U is a constant set to 3 m/s, the mass m = 5 kg and the distance between the
front axle to the center CG is lf = 1 m and center to rear axle lr = 1 m. The straight path
is a line passing through the origin of NED at an angle making αk = 45◦ = π

4 rad.

The agent is trained by simulating epochs of maximum length 1000 timesteps with τ =
0.02 s amounting to 20 seconds of real time. The state xt, action (ut), reward rt and
the next state xt+1 are saved at time t in the replay buffer R. Samples are randomly
drawn from the buffer and used to update the weights (θµ and θQ) following the scheme
of Algorithm 2 - Deep Deterministic Policy Gradient (DDPG). The epoch is terminated
when |ψ̃| > 7π

12 rad = 105◦ or the cross-track error surpasses the threshold ye > 20 m.
The vehicle is allowed an angle slightly larger than perpendicular such that the agent may
explore angles in the near vicinity of normal to the path. The resulting training progression
is shown in Figure 4.7.
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Figure 4.7: The total score over episode number for the DDPG agent during training in Section 4.4.
The agent trained for a total of 650 episodes. Note that the plot is smoothed by a moving average
with a window of 25.

Policy

DDPG finds the controller input from the policy π(xt) = ut. Since the policy is defined
π : R2 → R it can be visualised as seen in Figure 4.8.
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(a) Surface plot of the DDPG policy
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Figure 4.8: Plots of the DDPG policy.

As observed in the figure, the policy appears to symmetrical about the oblique line passing
through the desired state x = [0, 0]>. This suggests that the agent has learned almost
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symmetrical behaviour about the straight-line path.

Performance of DDPG agent

A set of initial conditions are determined in order to compare the performance between
agents. These are close to the boundary of the trained region for the DDPG agent such
that the simulation provides an indication of how the agent performs near the edge of the
policy. ye is set to 10 m and the heading is set so the heading error is ψ̃ = π

4 rad = 45◦.
The agents are allowed 2000 steps in the environment to make steady state performance
comparisons possible. The action noise used to explore the action space during training of
the DDPG is now turned off since the agent is no longer training. Figure 4.9a shows the
DDPG agent’s trajectory starting with the initial conditions described in this section. The
agent starts by turning such that the heading points almost orthogonal towards the straight
path before it straightens up the heading error, ψ̃ ≈ 0, to continue along the objective line.
The cross-track error, seen in Figure 4.9c, fluctuates slightly around zero meaning that a
sub-optimal policy is found since it does not remain at zero. The error should vanish if
the policy converges to the optimal policy, π(x) → π∗(x). This could however require
orders of magnitude more training epochs in order for the agent to reach such a policy
and it is also not guaranteed. Another possible solution is to create a steeper Gaussian
reward function, but this could impact the convergence rate, meaning it in principle needs
more training. A more feasible solution is to supply the agent with integral action to the
cross-track error ye as proposed in [36]. The augmented state vector would then take the
form x = [ye + ki

∫
yedτ, ψ̃]>.
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Figure 4.9: Plots when initialised with ye = 10 and ψ̃ = π
4
rad

4.5 Model tree regression

The DDPG agent in Section 4.4 reaches its goal of zero cross-track error with some margin,
but its policy is nonlinear and acts as a black box. This is because the function expression
is dependant on the many internal weights of the neural network. This DDPG policy is
visualiseable since π : R2 → R, but this is not the case in general since the input vector
and the output could have any number of states in principle. This means that the policy
could be highly dimensional and perceived as a black box for humans. To make the DDPG
policy transparent, the idea is to transform the nonlinear policy into a set of regions where
linear relationships are found using a model tree. This means that the nonlinear policy
have been transformed into a piecewise-linear policy. The resulting tree indicates how
the policy behaves in different regions and is traceable from input to output, in essence
opening up the black box. An introduction to model trees is provided in Section 2.4. The
model tree used in this thesis is built upon the implementation by Anson Wong [66]. The
code is adapted to support polynomial regression at the leaf nodes with rendering of the
function expressions when exporting the model tree as a figure. Support for rendering the
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linear function expressions at the leaf nodes is also added. Finally, the True/False terms
are inserted in the model tree to avoid confusion of how it should be read. The implemen-
tations uses the ∆-criterion in the WORTHSPLITTING function in Algorithm 1. The cost
function is set to mean squared error (MSE), which is used in both WORTHSPLITTING
and SPLIT. Further, two more constraints are available in WORTHSPLITTING: a maximum
depth and a lower bound of samples that must be present in each leaf. This ensures both
that the tree does not grow unbounded in depth and that each split region is larger than the
given minimum value.

Policy sampling

In order to capture the complete policy from the DDPG policy, a uniformly distributed
sampling of the DDPG policy is performed. The policy is sampled across all possible
combinations of the input states x from ye = −10 to ye = 10 with step 0.2 and from
ψ̃ = −π2 to ψ̃ = π

2 with step 0.03. This results in a total of 100 · 104 = 10400 uniformed
samples of the policy. A visualisation is shown in Figure 4.10. The input and consequent
policy action u = π(x) is saved as training data for the model tree1. A final constraint of
a lower bound of minimum 100 samples per leaf node is added. This is to ensure that the
trees generalise to regions of a minimum size.
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Figure 4.10: The uniformed sampling points used to collect a training set for the model tree.

1There are multiple ways to gather training data for the model tree. The first tried approach consisted of
running the DDPG agent with multiple random initial conditions and save the input-output pairs. This worked on
the surface level, but did not capture the outliers of the DDPG policy and was as a result discarded as a strategy
for training the model tree.
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4.5.1 Linear Model Tree depth 2
In this part, a model tree with a linear function at the leaf node is considered. This is
referred to as Linear Model Tree (LMT)2. The tree is trained following the procedure
introduced in Section 2.4 where the input-output pairs of the DDPG policy are uniformly
sampled. The maximum depth is set to 2 giving a total of 4 leaf nodes. The resulting
model tree is displayed in Figure 4.11. Like in i Section 4.4, the LMT depth 2 policy may
be visualised. As seen in Figure 4.12, the LMT output resembles the DDPG agent’s output
seen in Figure 4.8, though with some important differences. For instance, the output is not
strictly bounded between [−1, 1] which is the saturating limit of the vehicle steering angle.
This means that the model tree may need to be deeper to allow a better approximation
of the DDPG agent. The second difference is the noticeable jumps between the linear
regions. This shows that the LMT depth policy is discontinuous piecewise linear which in
some instances could be undesirable.

y_e <= -5.800

p <= 0.499

 True

y_e <= 6.200

 False

u = -0.007y_e-0.017p
+0.928

 True

u = -0.144y_e-0.445p
+0.046

 False

u = -0.13y_e-0.563p
+0.05

 True

u = -0.056y_e-0.125p
-0.458

 False

Figure 4.11: The model tree with depth 2. y e is state ye and p is ψ̃. u is the action from the tree
used to control the vehicle.
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Figure 4.12: Graphical plots of the LMT depth 2

2Not to be confused with Logistic Model Tree, a classification type model tree.
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4.5 Model tree regression

Performance

Next, the DDPG agent is replaced by the model tree. Using the same initial conditions as
the DDPG agent in Section 4.4 the following simulations seen in Figure 4.13 are made.
Comparing with the DDPG agent, the model tree converges to the path though with a larger
steady state error, seen in Figure 4.13c. Observing the controller input u in Figure 4.13b
it is clear that the model tree operates with a similar policy as the DDPG agent. The
difference being that the LMT depth 2 have a larger overshoot in the commanded front
wheel angle δf in Figure 4.13b.
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Figure 4.13: Plots of the simulation when using LMT depth 2 as the agent when the vehicle is
initialised with ye = 10 and ψ̃ = π

4
rad.

4.5.2 Model Tree depth 3
Further increasing the depth for the model tree increases the number of partitions in the
input space of the policy. This could result in better approximations of the DDPG policy.
A LMT of depth 3 is trained and results in the tree visualised in Figure 4.14. An enlarged
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figure is shown in the appendix Figure A.1. The number of leaf nodes grows exponentially
with the depth (2d) and for a LMT of depth 3, this results in 8 leaf nodes. Next, the policy
is plotted in Figure 4.15. Comparing the plots with the policy of LMT depth 2 it is clear
that the LMT depth 3 approximate the shape of the DDPG policy better. This is a direct
result of increasing the depth and further allowing the tree to split the input into finer
regions. Another apparent improvement is the reduced areas of the policy outside the
bounds of [-1, 1]. Finally, the discontinuous jumps in between the split regions of the
tree are smaller compared to the lower depth LMT. This is desirable and a consequence of
an improved approximation of the DDPG agent. The performance of the deeper LMT is
further analysed in Section 4.6.
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Figure 4.14: The Linear Model Tree with depth 3
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Figure 4.15

4.5.3 Quadratic Model Tree
Because of the nature of Linear Model Trees, some discontinuous jumps are observed
between split regions in the policy. Another model tree with a quadratic function at the
leaf nodes is trained to investigate whether it produces smoother transitions between the
regions and increase similarity to the DDPG agent3. Employing the training strategy in-

3Higher order polynomials are not included since they lack the interpretability observed in linear functions.
Secondly, the number of coefficients needed for each function expression grows exponentially with the degree of
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4.5 Model tree regression

troduced in Section 4.5, a Quadratic Model Tree of depth 2 is trained and the structure is
shown in Figure 4.16. As seen in the leaf nodes, the number of coefficients are increased
significantly when comparing them to the Linear Model Trees.

Observing the policy plots in Figure 4.17 it is seen that the jumps between the split regions
are smaller compared to the previous LMT depth 2 and LMT depth 3. Looking at the
surface plot, the transition appears almost smooth. Next, since the splits are performed
along the vertical and horizontal axis, the LMT struggles to capture curvature along the
diagonal. The quadratic model tree on the other hand manages to conform to the diagonal
curvature because of the nonlinear terms. As a result, the quadratic model tree depth 2
appears to approximate the DDPG better than LMT depth 2 and depth 3. The performance
of deeper trees could be improved and is further investigated in the next section.
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Figure 4.16: Quadratic Model Tree with depth 2
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Figure 4.17: Graphical plots of the Quadratic Model Tree depth 2 policy

the polynomial. Quadratic Model Trees are investigated since they could show interesting results when used as a
means of comparison.
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4.6 Performance comparison
The DDPG agent and LMT depth 2 agent in the previous sections converges and follows
the straight path with some error margin. Deeper model trees are trained and tested along
with the previously introduced trees for comparison of their performance. The limit to how
deep the trees can be grown is dependant on the max depth, improvement criterion and the
lower bound of points used to create a regression expression at the leaf nodes. These
are selected in the WORTHSPLITTING function in Algorithm 1. There are few reasons to
grow the trees unreasonably deep if the performance does not improve. Too deep trees
would considerably reduce their readability and be impractical as a means for explainabil-
ity. Along with deeper LMTs are deeper Quadratic Model Trees created. Model trees of
higher order polynomials are not added as they require significantly more nonlinear terms
in their leaf nodes and as a result reduce the simplicity of the output.

Simulating each agent over the same 100 random vehicle initialisations reveals their per-
formance towards a cross-track error of zero and their similarity to the DDPG agent which
they aim to replicate. The results are shown in Table 4.1 where the best results are high-
lighted in bold. Each of the columns represents important data used to evaluate the agents.
The average absolute steady state error is measured by the average absolute value at the
last timestep of each simulation. The DDPG agent achieves the best result on the task
of lowest possible average absolute steady state error over the simulations seen in the
table. This is not surprising as the model tree based agents are trained to reproduce the
behaviour of the DDPG agent with a traceable and transparent policy. The model trees are
sub-optimal approximations and therefore don’t replicate the DDPG agent perfectly. An
interesting observation is that the Quadratic model trees depth 3, 4 and 5 perform worse on
average absolute steady state error than quadratic model tree depth 2. However, the per-
formance is improved when it is allowed to grow to a depth of 8. A possible explanation
for this is that the quadratic model trees depth 3, 4 and 5 try to capture the overshooting
of the DDPG policy, but are not able to do this accurately enough resulting in poor per-
formance. When the depth finally reaches 8, it captures the parts of the DDPG policy that
accounts for the overshooting and converges with a lower steady state error. This can be
seen in Figure 4.18 with the exception of Figure 4.18a where quadratic model tree depth 5
performs best out of the quadratic model trees.

For the purpose of explicitly evaluating the different model trees’ similarity to the DDPG
agent, two measures are introduced. The first is Average DDPG deviating absolute error,
|ye − yeDDPG |, found by the formula 1

T

∑T
i=0 |yei−yeDDPGi |where T is the total number

of timesteps in 100 runs. The second measure is Average DDPG deviating steady state
error: |ye∞ − yeDDPG∞ | calculated by 1

N

∑N
i=0 |ye∞−yeDDPG∞ | whereN is the number

of simulated runs (100). An ideal replication of the DDPG agent would result in 0 m on
both of these measures. The LMT depth 100* 4 achieves the closest value to zero for these
two measures in the simulations. This model tree outperforms the other trees by a large
margin on both of the measures. To further investigate its performance, three examples of

4This model tree was trained with a lower bound of minimum 10 samples at the leaf nodes instead of the
bound 100 which is used for the other trees. This allows the agent to conform to a lower number of samples at
the leaf nodes with an increased risk of overfitting. This might not be a problem since the task is to approximate
the black box.
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the cross-track error convergence is shown in Figure 4.18. From the figures it is seen that
the LMT depth 100*, in pink, approximates the dashed dot blue line of the DDPG agent
the best. From these results it is safe to conclude that this model tree achieves the closest
approximation of the DDPG agent. Even though it is allowed to grow to a depth of 100, it
only reaches a depth of 23 while LMT depth 100 reaches 13. QuadraticMT depth 8 also
performs well when looking at the DDPG deviating measures in the table. It is however
beaten by LMT depth 10 and there is therefore little incentive to use a nonlinear model
at the leaf nodes when a Linear Model Tree with 2 more in depth performs better and is
simpler to interpret. A visualisation of LMT depth 10 is shown in the appendix Figure A.2.

Table 4.1: Simulating the agents with 100 random initialisations with −10 ≤ ye ≤ 10 and −π
2
≤

ψ̃ ≤ π
2

for 2000 timesteps (40s).

Name

Average
absolute

steady state
error

|ye∞ | [m]

Average DDPG
deviating

absolute error
|ye − yeDDPG | [m]

Average DDPG
deviating steady

state error
|ye∞ − yeDDPG∞ | [m]

DDPG agent 0.0202 0.0000 0.0000
LMT depth 2 0.4469 0.5439 0.4671
LMT depth 3 0.3188 0.4070 0.3390
LMT depth 4 0.3039 0.4064 0.3241
LMT depth 10 0.0397 0.0905 0.0599
LMT depth 100 0.0397 0.0953 0.0599
LMT depth 100* 0.0238 0.0388 0.0036
QuadraticMT depth 2 0.2524 0.3738 0.2727
QuadraticMT depth 3 0.9925 0.9167 1.0127
QuadraticMT depth 4 0.7094 0.6248 0.7296
QuadraticMT depth 5 0.7419 0.6265 0.7427
QuadraticMT depth 8 0.1853 0.1870 0.1666

Out of the simpler LMTs, LMT depth 2, 3 and 4 are considered as they have less depth
and are piecewise linear ensuring simplicity in their interpretation. LMT depth 2 achieves
an average DDPG deviating steady state error of 0.4671 m while LMT depth 3 and LMT
depth 4 average at 0.3390 m and 0.3241 m, respectively. This shows that there’s an aver-
age reduction in DDPG deviating steady state error by 27.4% when increasing the depth
from 2 to 3 for these agents. Increasing the depth from 2 to 4 reduces the deviation by
30.6% but significantly increases the number of leaf nodes in the LMT. As a trade-off
between performance and explainability, a LMT of depth 3 is selected for further analysis
in Section 4.7.2.

From the analysis of the performance of the model trees and the DDPG it is clear that
the model tree does not replicate the the DDPG agent in a global optimal way, but sub-
optimal. A possible solution to improve the approximation is to increase the amounts data
used in the training set for the model trees, allow infinite depths and remove any constraint
of minimum samples for each leaf node. The immediate drawback is longer training time
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and it could quickly become infeasible to train because of the curse of dimensionality.
This solution could ironically lead to uninterpretable trees as they become unreasonably
large and result in a black box system. With LMTs it is therefore necessary to give up
some accuracy in the approximation to allow for transparent and interpretable trees with a
reasonable depth.
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Figure 4.18: The cross-track error from three simulations.
The model trees aim to replicate the DDPG agent plotted in blue dashed-dot.
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4.7 Explaining the DDPG agent
The DDPG agent trained in Section 4.4 operates in a black box manner when comput-
ing the input-output relationship between the state x = [ye, ψ̃] and the control action
u = π(x). This is simply because the function expression for the DDPG is dependant on
the many internal weights and activation functions in the neural network. In an effort to
explain the DDPG agent, two techniques are tested, starting with SHAP followed by LMT
depth 3. The section finishes with a discussion on how these two methods compare when
explaining the DDPG agent.

4.7.1 SHAP explanation
SHAP calculates the contribution of a feature value to the prediction, as introduced in
Section 3.4. The SHAP method creates a special weighted linear regression model of the
true model. It is based on the game theoretic approach of Shapley values made to ensure
a fair, unique distribution of the surplus amongst participating players. The players in
the context of this thesis is the states (the input) and the surplus is the consequent action
(output).

The SHAP background model is created by using 1681 uniformly distributed samples of
the DDPG policy. The background samples are taken in a 41·41 grid within the input space
−10 ≤ ye ≤ 10 and −π2 ≤ ψ̃ ≤ π

2 . The simulation of the DDPG agent with initialisation
x0 = [10, π4 ] is used in this section. This is the simulation used in Section 4.4 and plotted in
Figure 4.9. The 2000 timesteps results in 2000 input-output observations which is utilised
for the SHAP explanation. The data is passed to the SHAP Kernel explainer introduced
in Section 3.4.2 to calculate the SHAP values for the input features. The resulting SHAP
values over time are shown in Figure 4.19a where the sum of the SHAP values adds up to
the SHAP model of the DDPG action u during each timestep. This way of using SHAP
values to explain an agent is inspired by the work in [50]. The SHAP predicted values
are shown in dotted green. Looking at the plot it is observed that ψ̃ has a low, negative
SHAP value during the first second while the cross-track error ye has a larger negative
SHAP value. This could be interpreted as the DDPG agent sees the cross-track error as
more important than the heading error during this interval. The agent therefore enforces
the control action of maximum turning towards the left (u = −1) until the agent reaches
a heading error ψ̃ ≈ −1rad. During the next half second, as ψ̃ → −π2 rad, meaning the
vehicle heading reaches perpendicular to the objective path, the SHAP value of ψ̃ increases
towards 1. This means that the state now contributes to turning the wheel towards the right,
in the opposite direction. The SHAP value of the cross-track error is still negative, but its
magnitude decreases. This results in the DDPG agent reducing its negative angle, finally
turning slightly positive between about 2s < t < 10s so the vehicle heading aligns with
the path over time, i.e. ψ̃ → 0rad. Once the control action to the vehicle has converged
around 14s, the SHAP values remain approximately constant, cancelling each other out.

Using the SHAP values to explain the simulated run hints to a strategy of turning the wheel
such that the vehicle is perpendicular to the path when the cross-track error is high and the
heading error is low in magnitude, relative to each other. As the vehicle reaches a per-
pendicular heading to the path, ψ̃ → ±π2 rad, and the cross-track error is decreasing in
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(a) The SHAP values plotted over time. The SHAP values sums up, at each time instance, to the SHAP model
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Figure 4.19: The SHAP values, heading error ψ̃, cross-track error and trajectory ye plotted over
time for the DDPG agent controlling the vehicle with initialisation x0 = [10, π

4
].

magnitude, the DDPG agent straighten up the vehicle by turning the wheel in the opposite
direction. Finally, the vehicle keeps the wheel at zero angle until the run is over. This
hypothesis can be tested by performing further simulated runs. As such, another scenario
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is examined with the SHAP method. Starting the vehicle in x0 = [−8, 0], the trajectory,
cross-track error and SHAP values are visualised in Figure 4.20. As seen in Figure 4.20c,
the SHAP value of the cross-track error starts close to 1, contributing to the DDPG action
to turn towards the right, while the SHAP value of ψ̃ is close to zero. The cross-track error
is large compared to the heading error which starts around zero. As the vehicle reaches
a perpendicular heading, the SHAP value of ψ̃ becomes large negative while the SHAP
value of ye decreases in magnitude towards zero. These contributions result in the DDPG
agent steering the front wheel towards the opposite direction, to the left with u ≈ −0.4.
This steadily straightens up the vehicle until the cross-track error converges in an under-
damped manner towards the goal of ye = 0. This strengthens the hypothesis of the strategy
suspected from the previous simulation. The SHAP values shows valuable insights into
the black box DDPG agent, but are suggestions and not complete explanations. The agent
still acts in an opaque manner and a different method is needed to completely decipher the
internal workings of the DDPG agent.
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Figure 4.20: The SHAP values, heading error ψ̃ and cross-track error ye plotted over time for the
DDPG agent controlling the vehicle with initialisation x0 = [−8, 0].

4.7.2 Using Linear Model Tree as explanation

Since the Linear Model Tree uses linear leaf nodes to compute its output, the coefficients
can be interpreted as weights scaling the states’ impact to the control action. This is
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expressed as
uLMT = w0 + w1x1 + w2x2 + · · ·+ wnxn (4.15)

where wi is the weight to state xi. Since the bias term w0 does not change as the states
vary, its contribution is averaged amongst the weight-state pairs such that state number i
contributes

φi = wixi +
w0

n
,∀i > 0, n > 0. (4.16)

Summing these contributions results in

uLMT (x) = φ1 + · · ·+ φi + · · ·+ φn ≈ uDDPG(x). (4.17)

From Section 4.6 LMT depth 3 is found to approximate the DDPG fairly well while avoid-
ing being very deep compared to the other deeper trees. The vehicle is simulated using
the DDPG agent and the initialisation x0 = [10, π4 ] as performed in the previous section,
Section 4.7.1. Simultaneously, the LMT depth 3 computes its control action uLMT using
the same states. The weighted contributions of the LMT depth 3 are then plotted with the
DDPG agent in Figure 4.21 to show how well the LMT approximates the DDPG during
this simulation. The contributions in blue and red sums up, at each time instance, to the
LMT predicted control input uLMT (in dotted green) which approximately predicts the
DDPG agent’s action (in dashed black). Both contributions have values around −0.5 at
the interval t = 0s to t ≈ 0.5s which sum to ≈ −1. As the heading error ψ̃ goes towards
−1.5rad around t = 1s, the model tree changes its leaf function and consequently, each
states’ contribution. The DDPG action (and LMT predicted action) goes from u = −1 to
u = 0.25 during the next 0.5s since the contributions of the ψ̃ spikes and influences the
agent to turn towards the right to reduce the heading error ψ̃. The vehicle converges over
time with a similar reasoning behind the state contributions as in SHAP. Notice however
that the green dotted line, the LMT predicted action u, is slightly offset from the actual
DDPG action u (in dashed black). This is simply because the LMT approximates the
DDPG agent sub-optimally.

In order to understand which leaf nodes the model tree uses during a simulation, a tool is
created and visualised in Figure 4.22. The tool is helpful to estimate the importance of each
leaf in the model tree control policy. The leaf with policy u = −0.127ye− 0.615ψ̃+ 0.04
is the most used during the convergence of the vehicle. The policy in this region could
be of more significance since it guides the vehicle towards the desired state of ye = 0.
Looking back at the tree structure in Figure 4.14, this leaf is responsible for the policy
when −3.000 ≤ ye ≤ 6.200. It could therefore be of interest to weight the policy to be
more accurate in this region compared to the edge regions as the goal finally is to reach
the same ye as the DDPG agent.

4.7.3 Comparing explanations by SHAP and LMT
One of the major advantages of the SHAP explanation is their underlying theory of Shapley
values obeying the four desirable properties: symmetry, efficiency, law of aggregation and
null player. The input features are a fairly and uniquely distributed among the features. It
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Figure 4.21: The weighted contributions of each state over time when using LMT depth 3 on the
initialisation x0 = [10, π
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Figure 4.22: A visualisation of leaf nodes visited during the simulation of the model tree controlling
the vehicle.

is also a model-agnostic explanation method which means that it is applicable to any black
box system, whether the inputs are categorical or numerical and the output is regression or
classification. This is not the case for LMTs which in this thesis is applied on a continuous
input-output regression.
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Based on the gathered information by decomposing the states into SHAP values a few
takeaways can be made. First, the importance of the states changes over time depending
on their magnitude. This can be used as a model to explain how the features influences the
black box agents actions. However, using SHAP values to explain the agent is not enough
to reveal the inner structure of the agent. SHAP creates a special weighted linear approx-
imation of the DDPG. This means that the approximation model is still not a guaranteed
accurate approximation of the underlying DDPG policy. For example, in Section 4.7.1 it
is suggested, based on the observed SHAP values, that the DDPG agent chooses a strategy
of reaching the objective path in a shortest amount of time. This is done by instantly turn
its heading perpendicular to the path. As the cross-track error goes towards zero, the agent
turns the vehicle to align with the path. This strategy makes intuitive sense, but there is no
way of proving it using SHAP and it remains a hypothesis. This means that using SHAP
can be a helpful as a tool to analyse behaviour, but it does not, to the best of the author’s
knowledge, provide a transparent policy.

The LMT explanation with the weighted contributions and visualisation of leaf nodes vis-
ited are helpful to analyse the behaviour of the LMT and DDPG agent. Combining the
results from Figure 4.19a and Figure 4.21 results in Figure 4.23. As seen in the figure,
the contributions decomposed by the LMT shows a similarity to the SHAP values. Based
on the few examples provided, this suggests that the LMT captures similar relationships
between the input features like SHAP. The difference being that the weights are known on
a global level in the model tree visualisation, which SHAP does not provide. The LMT
weighted contribution have a large benefit of being computationally inexpensive when
creating an explanation compared to SHAP. However, it does require a trained model tree
which may be computationally expensive in the first place.
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Figure 4.23: The SHAP and LMT explanations combined in one figure for the simulation with
initialisation x0 = [10, π

4
].

If an expert is satisfied with the performance of a certain LMT over many test cases, then
it may replace the opaque AI driven control algorithm. By employing the fully transparent
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LMT policy the expert essentially replaces the black box with a transparent box. The
control policy can be traced from the input root, through the split conditions and down
to the output leaf node. However, the new box is still an approximation, meaning that
the performance is slightly different than the original algorithm. Depending on the extent
of declined performance, the upside of having a transparent algorithm could outweigh a
black box model because of safety and explainability concerns.

Trees as an explanation technique conforms to the findings by Miller et al. [38], presented
pointwise in Section 3.2. It explains why a leaf policy happens over another leaf policy,
which is point number 1: Explanations should explain why event A happened instead
of B. Point number 4 reads: An explanation is a conversational transfer of knowledge
presented in belief of the recipient’s view. It is worth noting that this point suggest that a
tree with less leaf nodes are preferable to a tree with more leaf nodes. Since the model
tree is a visualisation, it is a conversational transfer of knowledge. As the amount of nodes
increase with the depth, the recipient needs to take more leaf policies into account when
interpreting the model on a global level. The depth should therefore be as low as possible,
while maintaining sufficient accuracy.

The interesting takeaway from this experiment is the power of model trees to capture
the underlying policy, performing almost as well as the original policy while allowing a
transparent policy. Increasing depth seems to improve the approximation but reduces the
simplicity of the tree. A balance between depth and simplicity is needed.

4.8 Applying agents on curved path following
The DDPG agent and LMT depth 3 is tested on a curved path without additional training
to investigate their performance on a more challenging task. Since the agents still use
limited information of only the cross-track error and heading error, x = [ye, ψ̃], a slowly
varying curve is created. This ensures that the path angle, αp(ω), does not change value
too rapidly. The path is created by interpolating a third order spline using the waypoints
in Table 4.2. This way of creating a curved path is inspired by [12] and [34].

Table 4.2: Table over parameters used to generate a curved path

Waypoint 1 2 3 4 5 6 7
Path parameter ω 0 1 2 3 4 5 6
x -5 10 17 10 0 -10 45
y 0 0 15 45 50 65 80

The agents are simulated for 2500 timesteps resulting in a total time of t = 50s where
the initialisation is x0 = [10, π4 ]. The DDPG agent is plotted in Figure 4.24 where it is
observed that the vehicle converges. The agent does not converge during the curves but
manages to reduce the cross-track error when the path straightens out. Even though the
agent has limited information about the environment it is still able to reach the targeted
goal of zero cross-track error with a slight margin.

Looking at Figure 4.25, it is seen that the LMT depth 3 manages to converge to the path
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Figure 4.24: The simulation for the DDPG agent controlling the vehicle with initialisation x0 =
[10, π

4
] on a curved path.

with some steady state error. Even though the LMT is trained on samples from the DDPG
agent which was trained on a straight-line path following task, it is able to reach the ob-
jective with some margin. The task of curved path following is a significantly more chal-
lenging problem than straight path because of the varying curvature. This further suggest
that the use of Linear Model Trees is a viable strategy to transform DRL-based black box
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policies into transparent and explainable policies.
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Figure 4.25: The simulation for the LMT depth 3 agent controlling the vehicle with initialisation
x0 = [10, π

4
] on a curved path.
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4.9 Recommendations for training Model Trees to approx-
imate black box DRL agents

Other works using model trees have mentioned the benefit of using this method since it
results in transparent rules [10]. Though, no works have been found to use them to create
a transparent, rule based policy in a DRL setting. The closest found being Soft Decision
Trees (SDT) discussed in Chapter 1 which is used on a discrete action space. The resulting
SDT is not able to produce rule based explanations, which LMTs are able to. As such, a
series of recommendations based on researched literature and experiences are made to
clarify how to transform a DRL-policy into a LMT.

• As noted in Section 4.5, sampling of the black box agent needs to be performed
uniformly within the targeted input state space. A lower and upper bound for each
state have to be selected on which the sampling points will be distributed uniformly.
In this thesis, the upper and lower bounds were selected as the same as the maximum
and minimum states in the initialisation of the vehicle during training. This ensures
that the LMT learns from all regions of the DRL policy in which it is designed to
operate. The sampling is also performed in a grid with 100 · 104 points, aiming to
keep a balanced sampling across the input space.

• From the uniformly distributed sampling points, use the input, xi, and consequent
output policy action ui = π(xi) as training data for the model tree.

• Select a depth which provides a trade off between accuracy and transparency. Deeper
could result in better approximations, but results in a larger number of leaf nodes
which reduces interpretability.

• Select a constraint of samples as the minimum a leaf node may have to ensure gen-
eralisation. In this thesis this was set mainly to 100.

• Linear leaf nodes are preferred over quadratic or other nonlinear functions because
of simplicity and interpretability. As such, a linear function at the leaf node is sug-
gested.

• Once LMT has finished training, replace the black box agent with the LMT and
investigate the performance. If the behaviour is poor it may be a sign of a policy
which needs a deeper LMT to accurately approximate it.

4.10 Remark
For the vehicle model, the assumption of the velocity vector pointing in the direction of
the wheel is no longer accurate at higher velocities. Under such circumstances, a dynamic
model for the lateral vehicle motion needs to be considered instead of a kinematic model.
A suitable model for this purpose is described in [21] where the authors develop a linear
and non-linear observer for the side-slip angles.
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Chapter 5
Conclusion

5.1 Conclusion
Explainable AI is an emerging field gaining attention in a world increasingly driven by AI
applications. The field comes as a response to the concerns of employing opaque models in
systems without understanding their internal workings. Linear Model Trees are suggested
as an approach to transform a black box policy into a piecewise linear policy, making
it traceable and transparent from input to output. The results showed they were able to
capture the underlying policy and may replace a Deep Reinforcement Learning-agent.
This comes with a minor deterioration of performance in the experimented environment.
Trees allowed to grow deeper showed improved approximation to the black box policy.
The transparency of the tree is reduced proportionally to the depth and a trade off between
accuracy and transparency must be made. The depth should therefore be as low as possible,
while maintaining sufficient accuracy. Using a quadratic model tree performed well when
the depth was 2 compared to a LMT of depth 2, but the simplicity of linear functions is
lost and quadratic model tree was consequently discarded as a transparent approach.

SHAP was used as a means to explain the black box DDPG policy. The method provided
a suggestion to how the features contributed to the output, and a hypothesis of the internal
workings was made. It was helpful as a tool to analyse the behaviour, but it did not provide
a transparent global policy of the agent. Model trees, on the other hand, approximates
the agent with a global policy. The coefficients in the linear models in LMTs can be
interpreted as weights scaling the states’ impact to the control action. Like SHAP, these
contributions can be used to explain the states’ importance to the DDPG. It was noted
that the sum of contributions explained by the LMT depth 3 were slightly offset from
the DDPG since the LMT has slightly degraded performance when predicting the DDPG
policy. The LMT feature contributions did at the same time show the actual importance
to the LMT agent’s output. As such, if an expert is satisfied with the performance of the
LMT of a certain depth, then it may replace an opaque DRL control algorithm. A tool

67



Chapter 5. Conclusion

for visualising the leaf nodes of the model tree was created which could help an expert
to gain understanding of how the agent behaves during a simulation. Finally, a series
of recommendations have been proposed to guide training of model trees to approximate
black box DRL agents. To the author’s best knowledge, no work has used Linear Model
Trees as a method to transform a black box policy into a transparent policy. Consequently,
Linear Model Trees deserve further attention in the XAI research community and could be
a step in the direction towards new tools for creating transparent DRL agents.

5.2 Further work
The approach of using model trees to transform a black box policy into a transparent
policy opens up many possible strategies for additional findings. The first being to apply
model trees on more complicated systems to further investigate their performance and
applicable domains. This could be systems with a higher degree of nonlinearities where the
consequent DRL policy is more difficult to approximate. This could also be combined with
experiments on a physical system to test the application in a non-simulated environment,
for instance robotic systems or a quadcopter.

Further investigation into the selections of parameters for training a model tree could guide
towards new recommendations. For instance, adding a constant in front of ∆-function
could result in model trees allowed to grow deeper only when the improvement is signifi-
cant. This could work as a tradeoff parameter deciding between accuracy and interpretabil-
ity through the depth. Moreover, investigating trees which adapts to desired accuracy and
interpretability could be another interesting take on the tradeoff problem.

As an improvement, a promising next step could be to experiment with a different type
of split condition. The model trees used in this thesis have axis parallel splits and could
achieve improvement by allowing oblique splits, see for instance [64]. These splits could
allow for a greater fit of the regression models at the leaf nodes.
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Figure A.1: The Linear Model Tree depth 3
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Figure A.2: The Linear Model Tree depth 10
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