
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF ENGINEERING CYBERNETICS

Specialization Project Report

Simulator for Obstacle Aided
Locomotion in Snake Robots

Author: Atussa Koushan

Supervisor: Øyvind Stavdahl

Submission Date: December 17, 2019

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

Prosjektoppgave

Studentens navn: Atussa Koushan

Fag: Teknisk kybernetikk

Tittel (norsk): Simulaor for hindringsbasert fremdrift hos slangeroboter

Tittel (English): Simulator for obstacle aided locomotion in snake robots

Description:

A number of different principles for snake robot locomotion have been proposed and tested, many of
which are based on heuristic rules and stiff position controlled joints. A more physics-based and
compliant method is being developed which is based on the formalism of hybrid position/force
control. In this assignment you will study this emerging technique and simulate an idealized two-
dimensional snake robot propelled by contact forces based on hybrid position/force control in an
idealized environment comprising frictionless movement and extentionless environmental assets
(“obstacles”).

1. Study the theoretical backdrop of the assignment, and provide a brief overview of a) hybrid
position-/force control (HPFC) in general, and b) HPFC applied to snake robots in particular.
Special emphasis should be put on possibilities and limitations associated with HPFC in snake
robot applications.

2. Establish a suitable model for the idealized robot and the robot’s environment. Describe and
justify any assumptions and simplifications made.

3. Develop a simulation platform for OAL based on HPFC concepts. To the extent possible,
demonstrate relevant simulation scenarios.

Veileder(e): Øyvind Stavdahl, Institutt for teknisk kybernetikk

Trondheim, 05.09.2019

Øyvind Stavdahl
Faglærer

Abstract

Snake robots are robust serial link robots able to propel themselves through

uneven and irregular terrain. As opposed to traditional mobile robots, the

snake robot can utilize obstacles found in the environment to push itself

forward along a predefined path. The aforementioned mode of locomotion

is referred to as obstacle aided locomotion (OAL). The challenge of both

controlling the shape and contact forces of the snake robot has motivated

the study of hybrid position/force control (HPFC), with special emphasis on

application within OAL.

The main principle of HPFC together with a simplified 2-dimensional model

of the snake robot and its environment are the backbone of the developed

MATLAB simulator. The objective of this simulator is to visualize the behavior

of the snake robot and OAL in simple path following scenarios.

Relevant experiments conducted during this study has proven the simulator

to be a great resource for presenting concepts and study limitations and

possibilities within OAL. However, a geometrical approximation was made to

the applied part of the HPFC concept during development of the simulator,

which has led to some deviations from the true dynamics of the system and the

v

vi ABSTRACT

laws of conservation of energy and momentum to be violated. This is further

discussed in the report.

The code of the simulation program can be provided upon request.

Sammendrag

Slangeroboter er robuste seriekoblede roboter som evner å traversere ujevne

og uregelmessige terreng. I motsetning til tradisjonelle mobile roboter, kan

slangeroboter utnytte hindringer i miljøet sitt ved å dytte seg selv fram langs en

forhåndsdefinert bane. Denne bevegelsesarten blir omtalt som obstacle aided

locomotion (OAL) eller hindringsbasert fremdrift. Utfordringen som trer

fram ved kontrollering av både formen og kontaktkreftene til slangeroboten

har motivert studiet av hybrid position/force control (HPFC) eller hybrid

posisjons- og kraftstyring, med spesiell vekt på applikasjoner innenfor OAL.

Hovedprinsippet bak HPFC kombinert med en todimensjonal modell

av slangen og dens miljø er selve fundamentet til den utviklede MATLAB-

simulatoren. Formålet med denne simulatoren er å visualisere slangerobotens

oppførsel og OAL i enkle banefølgingsscenarioer.

Simulatoren har fra relevante eksperimenter utført under studiet vist seg å

være et godt verktøy for presentering av konsepter og studere både begren-

sninger og muligheter knyttet til OAL. På en annen side har en geometrisk

approksimasjon av den anvendte delen av HPFC i simulatoren ført til noen

avvik fra den sanne dynamikken i systemet og brudd med lovene om konser-

vii

viii SAMMENDRAG

vasjon av energi og bevegelsesmenge. Dette er ytterligere diskutert i rapporten.

Koden for simuleringsprogrammet er til disposisjon ved ønske.

Preface

This report covers the work of the specialization project for the masters study

Cybernetics and Robotics at the Norwegian University of Science and Tech-

nology (NTNU). The work has been conducted with great counselling from

supervisor Øyvind Stavdahl. A lot of Stavdahl’s previous work and notes

also make out the mathematical foundation of the project. Furthermore, Irja

Gravdahl has contributed to valuable discussions on the topic.

All simulator code is written from scratch by me. The figures presented

throughout the report are also designed by me, unless stated otherwise. When

it comes to data presentation, Åsmund Eek has provided great advice on

generation of plots in MATLAB.

Atussa Koushan

17.12.2019

Trondheim, Norway

ix

x PREFACE

Contents

Abstract v

Sammendrag vii

Preface ix

Nomenclature xv

List of Tables xix

List of Figures xxi

1 Introduction 1

1.1 Previous work . 1

1.2 Scope of the project . 2

1.2.1 Simplifications . 2

1.2.2 Contributions . 3

1.3 Report structure . 4

xi

xii CONTENTS

2 Model specifications 5

2.1 Assumptions . 5

2.2 Further model description . 6

2.2.1 The snake robot . 6

2.2.2 The environment . 7

2.2.3 The obstacles . 7

2.2.4 The optimal path . 8

3 Background theory 9

3.1 Snake robot kinematics . 9

3.1.1 Constrained kinematics 13

3.2 Snake robot dynamics . 15

3.2.1 Constrained dynamics . 18

3.2.2 Momentum . 19

3.3 Computed torque control . 20

3.3.1 PD control . 20

3.3.2 Feedforward control . 21

3.3.3 Feedforward and feedback linearization 21

3.4 Obstacle aided locomotion (OAL) 22

3.5 Hybrid position/force control (HPFC) 23

3.5.1 Constrained motion . 24

3.5.2 Multiple constraints . 26

3.5.3 Passive joints . 27

3.5.4 Dynamic HPFC . 27

3.5.5 HPFC for snake robots . 29

3.6 Projection onto path . 31

CONTENTS xiii

3.7 Contact detection . 33

4 The simulator 35

4.1 Simplifications and limitations 36

4.2 Program flow . 37

4.3 User guide . 37

4.4 Program code summary . 41

4.4.1 Dynamics functions . 41

4.4.2 Kinematics functions . 41

4.4.3 Contact Jacobian function 41

4.4.4 Projection function . 43

4.4.5 Control . 44

4.4.6 Visualization . 45

5 Experiments 47

5.1 Obstacle-free environment . 48

5.1.1 Single reference computed torque control 48

5.1.2 Path alignment . 50

5.2 Collision analysis . 54

5.2.1 Single obstacle interaction 54

5.3 OAL simulation scenarios . 57

5.3.1 Simple propulsion . 57

5.3.2 Obstacle interaction without propulsion 61

5.3.3 Unsuccessful propulsion attempt along path 62

5.3.4 Propulsion along path . 64

xiv CONTENTS

6 Discussion 69

6.1 Effects of the contact behaviour simplification 69

6.2 Review of the path alignment method 72

6.3 Further insights from experiments 73

7 Conclusion 75

7.1 Future work . 76

Bibliography 77

Nomenclature

The following list describes several symbols and abbreviations used in the

report. All units follow the SI unit system.

Abbreviations

HPFC Hybrid Position/Force Control

OAL Obstacle Aided Locomotion

HOAL Hybrid Obstacle Aided Locomotion

Control symbols

Kp Proportional gain

Kd Derivative gain

ζ Damping ratio

ωn Natural frequency

qd Desired joint angles

qe Joint angle errors

Robot dynamics symbols

τ Generalized torques

xv

xvi NOMENCLATURE

τm Joint motor torques

τc Joint torques from external forces

M Mass matrix

C Coriolis matrix

g Gravity matrix

L Lagrangian

K, P Kinetic and potential energy

I Moment of inertia of rod

fb
c,i , fi

c,i External force on link i in base frame and frame of link i

αi Angle of link i relative to base frame

r End effector position in the base frame b

p(r) Constraint hypersurface

EF Matrix of hypersurface unit normal vectors

fb End effector force on hypersurface

p Momentum

Robot kinematics symbols

n Number of links

N Number of generalized coordinates

m Link mass

l Link length

q Generalized coordinates

NOMENCLATURE xvii

φi Joint angle of link i

(x0, y0) Position of tail in base frame

(xi , yi) Position of endpoint of link i in base frame b

(xc,i , yc,i) Position of contact point on link i in base frame b

dc,i Distance from joint i to contact point on link i

Tbi Transformation matrix from base frame to frame of link i

Tbci Transformation matrix from base frame to frame of contact point on link i

vi Velocity of endpoint of link i in base frame b

vc,i Velocity of contact point on link i in base frame b

J Jacobian matrix

Jc Jacobian matrix for contact point

θ Joint angle deviation from path

rsa f ety Radius around obstacle

Spaces

T Task space

F Force space

M Motion space

C Constraint space

P Propulsion space

S Shape space

xviii NOMENCLATURE

List of Tables

4.1 User adjustable simulator parameters 40

5.1 Common simulation configuration for all cases 47

5.2 Simulation configuration for 5.1.1 48

5.3 Simulation configuration for 5.1.2 50

5.4 Simulation configuration for 5.2.1 54

5.5 Simulation configuration for 5.3.1 58

5.6 Simulation configuration for 5.3.2 61

5.7 Simulation configuration for 5.3.3 63

5.8 Simulation configuration for 5.3.4 65

xix

xx LIST OF TABLES

List of Figures

2.1 Model of snake robot with n links 7

2.2 Model of snake robot and obstacles 8

3.1 Model of snake robot with notation 10

3.2 Snake robot in contact with obstacle 14

3.3 Computed torque control block diagram 22

3.4 Configuration of the snake robot and obstacles yielding no

propulsion . 30

3.5 Shortest distance from joint to path [16] 32

3.6 Robot link and obstacle with safety radius 34

4.1 Program flow diagram . 38

4.2 Visual output of simulation . 39

5.1 Simulation demo - computed torque control 49

5.2 Simulation demo - adjusting to path from nearby 51

5.3 Simulation demo - adjusting to path from a distance 52

xxi

xxii LIST OF FIGURES

5.4 Joint angles for path adjustment with different starting configu-

rations . 53

5.5 Energy, momentum and joint motor torques of robot for single

collision scenario . 55

5.6 Simulation demo - interaction with single obstacle 56

5.7 Simulation demo - propulsion with static joint setpoint 59

5.8 Joint angles and velocities for the single setpoint scenario . . . 60

5.9 Simulation demo - no propulsion 62

5.10 Simulation demo - failed propulsion along path 64

5.11 Simulation demo - propulsion along path 67

Chapter 1

Introduction

1.1 Previous work

The department of engineering cybernetics at the Norwegian University of

Science and Technology (NTNU) has made significant contributions to the

field of snake robot control, related to both aquatic snake-like propulsion and

efficient snake robot locomotion on flat surfaces [1].

However, snakes can also utilize irregularities in a terrain. Consequently,

Transeth et al. [2] suggested the term Obstacle Aided Locomotion (OAL) for snake

robots that actively use walls or external objects for means of propulsion.

A relevant concept for attainment of this type of propulsion is Hybrid

Position/Force Control (HPFC). The concept was first introduced by Raibert and

Craig et al. in 1981 [3]. West and Asada [4] further proposed a method for

the design of HPFC controllers in 1985 for constrained manipulators that are

in contact with the environment at multiple points. This method aims at

1

2 CHAPTER 1. INTRODUCTION

controlling the position and force at the manipulator joints with kinematics-

based projections such that the motion at the end effector, and the force at

the contacts with the environment are those required for performing the task.

Yoshikawa [5] advanced the constraint analysis by taking the dynamics into

consideration.

Stavdahl [1] proposed the combination of OAL and HPFC, leading to

the term Hybrid Obstacle Aided Locomotion (HOAL). It is still a small area of

research, but has a lot of potential in the area of e.g. rescue robots in cluttered

environments. Klafstad [6] later summarized the concept of HPFC in snake

robots with special emphasis on the method of West and Asada [4].

1.2 Scope of the project

The goal of this project is to establish a suitable and simplified 2-dimensional

model of the idealized robot and its environment. A simulator is then to be

developed from scratch based on this model and the concepts of OAL and

HPFC. The purpose of the simulator is from the project task interpreted to be

a platform for showing the aforementioned concepts on snake robots, rather

than data generation for physical purposes. Seeing as HOAL still is a fresh

area of research and has little solid theoretical backdrop, this work goes in the

direction of a proof-of-concept and experiments were performed to verify the

method.

1.2.1 Simplifications

Due to the strict time constraints of the project and somewhat vague outlines,

simplifications have been made to provide for a specific end goal. The simulator

1.2. SCOPE OF THE PROJECT 3

is restricted to handle bounded and well-defined scenarios with slow dynamics.

Furthermore, the calculation of interaction forces in the simulator is neglected

in favor of an easier discrete projection method that only takes joint velocities

into consideration. This geometrical approximation is explained in further

detail in Chapter 4.

The simplifications have led to some deviations from the true dynamical

behavior of the robot when it is in contact with obstacles. As the velocity is

changed without regard to energy conservation, this is most prominent in cases

where the velocity is increased rather than decreased. An example is given

from the experiment in 5.2.1, where the energy is close to tripled after contact

with a single obstacle. This is however not a very dominating factor in the

experiments because the project, as mentioned, is focused on slow dynamics of

the model. The consequences of the approximation are discussed further in

Chapter 6.

All assumptions regarding the employed model can be found in Chapter 2.

1.2.2 Contributions

A lot of the contributions connected to the limited research environment of

HOAL have been clarification of the associated formulations and theoretical

aspects. Additionally, specific contributions are

• Study and analysis of HPFC, both with and without a dynamics consid-

eration.

• Develpoment of a mathematical model of the snake robot and its envi-

ronment related to the given problem formulation.

4 CHAPTER 1. INTRODUCTION

• MATLAB simulator for demonstration of simple and germane HOAL-

scenarios. It should be noted that this simulator is programmed from

scratch and made in the context of an experimental study. On the basis of

the generalized structure of the simulator program, several of the related

modules can be applied to future implementations.

• Testing of the simulator performance and an evaluation of the associated

limitations.

• Evaluation of the OAL concept and discussion of remaining challenges,

as well as proposals for improvement.

1.3 Report structure

It is assumed that the reader is familiar with basic robotics and control theory.

Please see [7], [8], [9], [10] for a more thorough explanation of the topics.

The report first introduces the specifics around the mathematical model

used for the snake robot, its environment and task in Chapter 2. Further, a

review of the required background theory for understanding the employed

dynamical model and control of the snake robot is presented in Chapter 3.

Chapter 4, is focused on the simulator and method used for achieving OAL.

Significant parts of the simulator are explained in detail and a guide for usage is

provided. Chapter 5 presents some experiments performed with the simulator,

which are discussed in Chapter 6 with focus on limitations and possibilities

related to both the simulator and OAL in general. Lastly, Chapter 7 concludes

the work and briefly proposes some ideas for future improvements based on

the challenges encountered in this project.

Chapter 2

Model specifications

This chapter presents the physical aspects of the model used throughout the

report. The model has four main parts, namely the environment, the snake

robot, the obstacles and the desired path. The goal of the snake robot is at all

times to interact with the obstacles close to the path and utilize them to propel

itself forward along the path. The value of all variables needed to express the

model and problem are assumed known at all times.

2.1 Assumptions

Assumptions 1-9 are taken from [1], whilst assumptions 10-11 are specific for

this project.

1. All parts of the model are assumed to be rigid

2. The robot has n joints and all links have length l and mass m.

5

6 CHAPTER 2. MODEL SPECIFICATIONS

3. Only flat, 2-dimensional cases are considered.

4. The robot has no lateral extension.

5. There is no friction.

6. Obstacles have no spatial extent, only a static position in the plane.

7. There exists a predetermined desired continuous path S.

8. The robot is considered to be "on the path" whenever all joint centers

coincide with the path.

9. The robot is initially on or close to the path.

10. Any link is in contact with at most one obstacle at the time.

11. All energy from a link colliding with another link is dissipated.

2.2 Further model description

2.2.1 The snake robot

The snake robot itself is modeled as a simple planar robot manipulator with

links and joints. The main difference between the snake robot and a classic

robot manipulator is the property that the snake robot is not physically attached

to any fixed point in the world. This frees one constraint. However, it is still

relevant to express the position of the last link of the snake, also denoted as

the tail. This is performed by introducing three virtual joints to the model;

two translational and one rotational joint. These joints are not controllable and

merely for describing the kinematics, dynamics and constraints. The model of

2.2. FURTHER MODEL DESCRIPTION 7

Figure 2.1: Model of snake robot with n links

the snake robot is visualized in Figure 2.1, where real robot links are blue and

the virtual ones are green.

2.2.2 The environment

The environment is the (x,y)-plane in Figure 2.1, and consists of nothing but

the robot and the obstacles.

2.2.3 The obstacles

The obstacles are modeled as rigid points in the plane. However, as a conse-

quence of the discrete nature of the simulator, there is a "safety barrier" around

every obstacle defining the area in which contact is present. This contact is

still modeled as a point contact. The barriers can be seen as the red circles in

Figure 2.2. The points the circles are surrounding are the actual obstacles.

8 CHAPTER 2. MODEL SPECIFICATIONS

Figure 2.2: Model of snake robot and obstacles

2.2.4 The optimal path

The path is in this report made out of straight lines and quadrants with radius

equal to two times the link length l. There is no gap between these segments,

following from the assumption of a continuous path.

Chapter 3

Background theory

This chapter introduces relevant kinematics, dynamics and control for the

snake robot specific case used in the development of the simulator. Further, the

concepts of OAL and HPFC are explained to give insight into the motivation

and structure of the simulator. Even though the idea of dynamical HPFC

[5] is not applied in the project, it is presented as it is an essential part of

the discussions in Chapter 6. Lastly, the methods for detecting contact with

obstacles and adjusting to a predefined path are explained.

3.1 Snake robot kinematics

The snake robot is modeled as a serial chain, which is a system of rigid bodies

in which each member is connected to two others, except for the first and last

members that are each connected to only one other member [9]. As opposed to

traditional robot manipulator models, the first joint in the snake robot model

9

10 CHAPTER 3. BACKGROUND THEORY

Figure 3.1: Model of snake robot with notation

is not physically connected to a base.

The vector of generalized coordinates q for a snake robot with n links is

q =

[
φ1 φ2 ... φn x0 y0

]T
. (3.1)

The coordinates (x0, y0) and φ1 represent the position and orientation of the

tail of the snake robot in reference to the base frame (x, y). These coordinates

cannot be directly controlled and will therefore be referred to as virtual coor-

dinates. The generalized coordinates φ2, ..., φn, corresponding to the actuated

joints, refer to the angle of the following link relative to the preceding link. The

number of generalized coordinates including two position coordinates and n

joint angles is N = n + 2.

The model of the snake robot with the named variables are illustrated in

Figure 3.1.

Homogeneous transformation matrices are used to express the pose (posi-

tion and orientation) of the links in relation to the base frame. This means that

3.1. SNAKE ROBOT KINEMATICS 11

as long as the joint angles and size of the snake robot are known, the Cartesian

positions can be calculated. The homogeneous transformation matrix for the

end point of link i from the base frame b is given by (3.2). The base frame will

stay put regardless of motion of the robot. Note also that the link length l is

assumed equal for all the links.

Tbi = Dx(x0)Dy(y0)
i

∑
k=1

Rz(φk)Dx(l) (3.2)

The translation and rotation matrices are given by

Dx(x) =


1 0 x

0 1 0

0 0 1

 , Dy(y) =


1 0 0

0 1 y

0 0 1

 ,

Rz(φ) =


cos φ − sin φ 0

sin φ cos φ 0

0 0 1

 .

(3.3)

The transformation matrix from the reference frame to the center of link i

can be found in the same manner. The only difference is that the very last

translational matrix has to take the argument l/2 instead of l. This is useful

to keep in mind as it be used in Section 3.2 for the derivation of the kinetic

energy of the links.

As mentioned earlier, the transformation matrix Tbi can be used to find the

absolute orientation and position of the tip of link i in the base frame. The

12 CHAPTER 3. BACKGROUND THEORY

resulting matrix can be written on the form

Tbi =

Rbi(φi,abs) tr
ri

0T 1

. (3.4)

The position is directly extracted from tr
ri = [xiyi]

T . The orientation φi,abs is

found by comparing Rbi to Rz and solving for φi,abs.

Alternatively, one can directly compute the position of the center of a link i

from the expressions below

xi = x0 +
i

∑
k=1

l cos (
k

∑
j=1

φj)

yi = y0 +
i

∑
k=1

l sin (
k

∑
j=1

φj),

(3.5)

where l is the link length and 1 ≤ i ≤ n.

Forward and inverse instantaneous kinematics

The well known Jacobian lets us transform between Cartesian and joint veloci-

ties. It is derived by taking the partial derivative of the x and y position of link

1 ≤ i ≤ n with respect to all generalized coordinates

Ji =

 ∂xi
∂q1

... ∂xi
∂qN−1

∂xi
∂qN

∂yi
∂q1

... ∂yi
∂qN−1

∂yi
∂qN

. (3.6)

3.1. SNAKE ROBOT KINEMATICS 13

The relationship between the Cartesian velocity v of the point (xi, yi) on the

robot and the joint velocities q̇ can thus be written as

vi = Ji(q)q̇ and q̇ = Ji(q)†vi. (3.7)

The first equation is formally referred to as the forward instantaneous kine-

matics, whereas the second one is referred to as the inverse instantaneous

kinematics. J(q)† is the pseudo inverse of the Jacobian, which has to be used

as a result of the Jacobian being non-square.

3.1.1 Constrained kinematics

For the case in which the robot is in contact with the environment, the motion

will be constrained. The obstacles found in the environment are modelled as

single frictionless points. The only constraint imposed by the environment is

that the robot cannot penetrate the obstacles. It can, however, both apply an

arbitrary large force against them or move along them.

The model assumes that any link can be in contact with at most one obstacle

at the time. To represent the mentioned constraint, the vector of generalized

coordinates is expanded with n further elements, where n is the number of

links. The updated vector q is now

q =

[
φ1 φ2 ... φn x0 y0 dc,1 dc,2 ... dc,n

]T
, (3.8)

where N = 2 + 2n is the new number of generalized coordinates.

14 CHAPTER 3. BACKGROUND THEORY

Figure 3.2: Snake robot in contact with obstacle

The newly introduced coordinates dc,1, ..., dc,n ≥ 0 represent the distance

to the possible contact point from the corresponding joint. For instance, the

coordinate dc,2 is the distance between the second joint and the contact point

measured along the second link, as illustrated in Figure 3.2. Every link might

not be in contact with an obstacle, but the maximum number of coordinates is

introduced in the interest of keeping the vector size constant. Seeing as there is

no actuation force directly connected to the obstacle-related coordinates, they

will be referred to as virtual joints or virtual coordinates.

The position of a contact point on link 1 ≤ i ≤ n in the base frame can be

derived through the corresponding transformation matrix (3.9).

Tbci = Dx(x0)Dy(y0)
i−1

∑
k=1

(Rz(φk)Dx(l))Rz(φi)Dx(dc,1) (3.9)

Constrained instantaneous kinematics

The Jacobian matrix related to the velocity of the contact point can be derived

in the same manner as in the unconstrained case. The only difference is that

3.2. SNAKE ROBOT DYNAMICS 15

the partial differentiation of the contact point (xc, yc) is now taken with respect

to the extended vector of generalized coordinates (3.8). The resulting contact

Jacobian for a contact point on link 1 ≤ i ≤ n is thus

Jc,i =

 ∂xc,i
∂φ2

... ∂xc,i
∂qN−1

∂xc,i
∂qN

∂yc,i
∂φ2

... ∂yc,i
∂qN−1

∂yc,i
∂qN

. (3.10)

This Jacobian will end up being quite sparse, seeing as the coordinate of a

contact point is independent of all other contact coordinates. This is a property

that can be exploited using sparse solvers if the snake robot has a large number

of links.

The relationships between the Cartesian velocity of a contact point on link

1 ≤ i ≤ n and the joint velocities can now be expressed as

vc,i = Jc,i(q)q̇ and q̇ = Jc,i(q)†vc,i. (3.11)

3.2 Snake robot dynamics

The snake robot has n− 1 joint actuators that all can apply torques to their

corresponding joints. The dynamics describe how the robot moves in response

to these actuator forces. For simplicity, it is assumed that the actuators do not

have dynamics of their own and, hence, arbitrary torques can be commanded

at the joints of the robot [11].

The dynamics of the snake robot will be expressed using the joint space

equations of motion formulation

16 CHAPTER 3. BACKGROUND THEORY

M(q)q̈ + C(q, q̇) + g(q) = τ. (3.12)

Because the movement is restricted to the 2D plane, the gravitational term g(q)

can be neglected and the equations of motion can be rewritten to

M(q)q̈ + C(q, q̇) = τ, (3.13)

where M(q) and C(q, q̇) is the mass matrix and Coriolis matrix respectively.

τ is the vector of generalized torques corresponding to the generalized coordi-

nates (3.1). Furthermore, the elements corresponding to the virtual coordinates

will be zero at all times.

Solving (3.13) with respect to q̈ yields

q̈ = M−1(q)(τ − C(q, q̇)). (3.14)

Several methods exist for finding the equations of motion for a robot. The

Euler-Lagrange method [7], which is chosen here, is based on the difference in

kinetic energy (K) and potential energy (P) of the system, also known as the

Lagrangian

L = K− P. (3.15)

The equations of motion can now be expressed as a second order partial

differential equation

3.2. SNAKE ROBOT DYNAMICS 17

d
dt

∂L
∂q̇
− ∂L

∂q
= τ. (3.16)

Again, simplifications can be made from the restricted movement in the world

and thus the potential energy P can be neglected. The Lagrangian is therefore

simply equal to the kinetic energy, which is the sum of the kinetic energy for

every link [12]. Furthermore, the kinetic energy for one link i is divided into

two parts, Ktranslational and Krotational . The kinetic energy can now be express as

K =
n

∑
i=1

(Ktranslational,i + Krotational,i), (3.17)

where the translational and rotational kinetic energy is given in (3.18) and

(3.19) respectively.

Ktranslational,i =
1
2

m(ẋ2
i + ẏ2

i) (3.18)

Here m is the link mass, and (ẋi, ẏi) make out the velocity of the center of the

link found by differentiating (3.5) with respect to time.

Krotational,i =
1
2

Iφ̇i
2 (3.19)

φ̇i is the joint velocity of link i. Furthermore, every link has the same moment

of inertia, namely I = (1/12)ml2. This is the moment of inertia of a rod,

corresponding to the moment of inertia of a cylinder with zero radius [7].

18 CHAPTER 3. BACKGROUND THEORY

3.2.1 Constrained dynamics

The generalized torques from the right side of (3.13) can be split into two parts

whenever there is contact between the robot and the environment, namely

a component resulting from the control inputs (motor torques), τm, and a

component resulting from the external forces acting on the robot, τc [12]. The

generalized torques can thus be written

τ = τm + τc. (3.20)

According to Holden et al. [13], the force from an obstacle acting on a link is

two-fold: one normal to the link and one tangent to the link. The force tangent

to the link is due to friction and will therefore be neglected in this project. The

remaining normal force is preventing the link from moving into the obstacle

when the robot itself is applying a force to the obstacle. The external force in

the frame of link i acting on link i is denoted fi
c,i and can be written as

fi
c,i =

 0

f i
c,i,y

 . (3.21)

The following derivations are inspired by [12]. The force fi
c can be expressed in

the base frame by using the rotation matrix from (3.3):

fb
c,i = Rz(αi)fi

c,i, (3.22)

where αi is the angle of link i related to the base frame b. It can be found by

3.2. SNAKE ROBOT DYNAMICS 19

αi =
i

∑
k=1

φk. (3.23)

The contact Jacobian (3.10) can be used to find the generalized external torque

as a result of the external forces:

τc =
n

∑
i=1

JT
c,if

b
c,i. (3.24)

3.2.2 Momentum

The calculation of the momentum of the robot is presented as it is used in the

experiment in 5.2.1 in validation of the mathematical model employed in the

project.

Momentum is the product of the velocity and mass of an object

p = mv. (3.25)

For a snake robot with multiple links, which can be seen as a system of objects,

the total momentum is the sum of the momentum for each link

p =
n

∑
i=1

pi =
n

∑
i=1

mvi. (3.26)

An important property of the momentum of a closed system, is that it is

conserved despite collisions within the system. This means that if the snake

robot collides with an obstacle, the momentum of the snake robot and obstacle

should be unchanged. In this project, the obstacles neither have any mass nor

20 CHAPTER 3. BACKGROUND THEORY

velocity and hence no momentum. Thus, the only momentum in the employed

model is that of the snake robot.

3.3 Computed torque control

The content of this section is taken from Chapter 11 of Modern Robotics [8].

3.3.1 PD control

A common feedback controller is linear proportional-derivative control, or

PD-control:

τ = Kpqe + Kdq̇e. (3.27)

The control gains Kp and Kd are positive diagonal matrices. The propor-

tional gain Kp acts as a virtual spring that tries to reduce the position error

qe = qd − q, where qd is the desired joint angles. The derivative gain Kd acts

as a virtual damper that tries to reduce the velocity error q̇e = q̇d − q̇.

Substituting the PD control law into the dynamics (3.13) yields

Mq̈ + C(q, q̇) = Kp(qd − q) + Kd(q̇d − q̇). (3.28)

The damping ratio ζ and natural frequency ωn of this system is given as:

ζ =
Kd

2
√

KpM(q)
and ωn =

√
Kp

M(q)
. (3.29)

3.3. COMPUTED TORQUE CONTROL 21

ζ = 1 yields a critically damped behaviour, while larger values yield an

overdamped behaviour. Furthermore, Kp should be chosen as high as possible

if fast response is desired.

3.3.2 Feedforward control

Another strategy for trajectory following is to use the model of the robot’s

dynamics (3.13) to proactively generate torques instead of waiting for errors.

The feedforward torque is calculated as

τ = M̃(qd)q̈d + C̃(qd, q̇d), (3.30)

where the model is perfect if M̃(q) = M(q) and C̃(q, q̇) = C(q, q̇).

3.3.3 Feedforward and feedback linearization

As no model of the robot and environment will be perfect, it is not suffi-

cient to use pure feedforward control. Combining the PD controller (3.27),

with a proper choice of PD gains, and a feedforward term (3.30) will ensure

exponential decay of the trajectory error (not just setpoint error).

Since q̈e = q̈d − q̈,

q̈ = q̈d + Kdq̇e + Kpqe. (3.31)

Substituting (3.31) into the robot dynamics (3.13) gives the computed torque

controller, also known as feedforward plus feedback linearizing controller:

22 CHAPTER 3. BACKGROUND THEORY

Robot
�˙

�

��

�˙
�

�¨
�

�

�(�,)�˙

+

+

+
-

+

��

��

+

+ +-

�(�)

X

Figure 3.3: Computed torque control block diagram

τ = M̃(q)(q̈d + Kdq̇e + Kpqe) + C̃(q, q̇). (3.32)

A block diagram of the resulting control (3.32) is shown in Figure 3.3.

3.4 Obstacle aided locomotion (OAL)

Instead of avoiding physical contact between the robot and obstacles, obstacle

aided locomotion aims at profiting from it by using the obstacles as push-points

to propel itself forward. OAL was first introduced by Transeth et al. in 2008

[2]. The motivation behind this method was based in the ability of biological

snakes to utilize irregularities in the terrain for more efficient locomotion.

Liljebäck et al. [10] describe two major challenges related to OAL:

1. It is unknown in advance when and where the snake robot will make

contact with its environment.

2. The development of a strategy for adjusting the shape of the robot so

that forward propulsion is achieved in any given contact situation.

3.5. HYBRID POSITION/FORCE CONTROL (HPFC) 23

Furthermore, the following hypothesis is stated in [10].

Obstacle-aided snake robot locomotion can be achieved by producing body

shape changes where the links in contact with obstacles are rotated so that

the components of the contact forces in the desired direction of motion are

increased.

Holden et al. [13] address the second challenge by formulating an opti-

mization problem that seeks to minimize energy consumption while achieving

propulsion along a user-defined desired path. The output of this optimization

is the optimal motor torque inputs. In addition to a user-defined path, this

method assumes that the desired link angles at the obstacles are given.

Bayraktaroglu et al. [14] mentions that only the trajectory of the leading link

should be arbitrarily determined. Moreover, Bayraktaroglu et al. [14] states

that in a steady smooth motion, it must be computed as a function of available

push-points for the next contact, and the desired position and orientation of

the following links are those that mimic the motion of the leading link.

3.5 Hybrid position/force control (HPFC)

The goal of the snake robot is to push against obstacles in a fashion that yields

forward propulsion along a path. Consequently, the robot will have to curve

itself along the path whilst applying a force to the obstacles considered advan-

tageous. The behavior of the robot has to comprise with the constraints arising

from the contact, which further motivates the use of hybrid position/force

control (HPFC).

HPFC is not a control method per se, but rather a method for determining

24 CHAPTER 3. BACKGROUND THEORY

when and in which directions force or motion control should be applied. It is

desired to control motion along the unconstrained motion directions and force

along the constrained motion directions. Different approaches to this problem

exist. One is the use of selection matrices, introduced by Raibert and Craig et

al. [3]. The disadvantage of this approach is that the directions in which force

and motion should be controlled has to be recalculated for every step, and is

no simple procedure. In another approach, introduced by West and Asada [4],

two projection matrices are used as filters in joint space to automatically select

between position- and force controlled vectors. The rest of this section covers

this method and is based on the paper of West and Asada [4].

3.5.1 Constrained motion

Like mentioned above, velocity and force can be controlled in the directions

in which they are not constrained. The end effector space is divided into

two orthogonal domains, a position domain and a force domain, which are

complementary to the directions of the corresponding constraints at the end

effector. If there is contact with the environment, motion cannot be controlled

freely. On the other hand, if there is no contact, there is no direction in

which the robot can apply a force and the robot is force constrained. Ergo,

the force and motion control directions do not overlap and the domains are

orthogonal. This means that position and force can be controlled independently

and arbitrarily in these domains.

The following relationships are known from Sections 3.1.1 and 3.2.1.

v = Jq̇, τ= JTf (3.33)

3.5. HYBRID POSITION/FORCE CONTROL (HPFC) 25

An important observation is that constraints due to contact with the environ-

ment are constraints due to a closed kinematic chain. In the snake robot case

there might not always be two points in contact with the environment. It is

however possible to define a virtual closed kinematic chain where the robot is

connected to the base with the virtual joint variables x0, y0 and φ1. A separate

Jacobian is calculated for each closed kinematic chain, as explained in 3.1.1.

Since the motion is constrained at a contact point, the relationships

Relationship (3.34) comes from the motion being constrained at a contact

point.

v̇ci = Jciq̇ = 0 (3.34)

The solution to (3.34) can be proven to be

q̇ = (I− J+ciJci)y, (3.35)

where y can be an arbitrary vector, as it will yield zero end effector motion.

Furthermore, since the matrix Jci might be non square, the pseudo inverse J+ci

is used. For a closed kinematic chain, the work done at the end of the chain

must also be zero. Therefore, the sum of the work done by each of the joints

must be zero:

τT q̇ = τT(I− J+ciJci)y = 0. (3.36)

26 CHAPTER 3. BACKGROUND THEORY

(3.36) has the general solution

τ= (J+ciJci)
Tz, (3.37)

where z can be an arbitrary vector.

The allowable motion is now characterized by [I− J+ciJci] and the allowable

forces by [J+ciJci]
T. These matrices are orthogonal projectors in joint space onto

the allowable position and force variations respectively. A further explanation

of this result is given in Chapter 5 of [4]. The projectors will be abbreviated to

j
apP = [I− J+ciJci] and j

a f P = [J+ciJci]
T = [I− (

j
apP)T]. (3.38)

The superscript j denotes joint space, and ap and a f stand for allowable

positions and allowable forces respectively. It can be observed that these

projection matrices project onto the nullspace of the respective constraint

directions. This can further be related to the concept of task priority, in which

tasks with lower priority are performed in the null-space of higher priority

tasks [15].

3.5.2 Multiple constraints

If there are several contact points, projection matrices are calculated for each

constraint, and the final projection matrices are found by taking the union and

intersect of the different j
a f P and j

apP respectively.

3.5. HYBRID POSITION/FORCE CONTROL (HPFC) 27

3.5.3 Passive joints

The constraints (contact points) are modeled as virtual joints, described in

3.1.1. These joints are always passive, and since the corresponding forces

are uncontrollable, they are always zero. To satisfy the additional constraint

imposed by the passive joints, one can use a diagonal matrix A with ones on

the diagonal indicating active joints. Another approach is to control the contact

force at the contact point to satisfy the requirement that the force in the passive

joints is zero.

3.5.4 Dynamic HPFC

This section briefly explains the dynamic hybrid control method based on the

paper of Yoshikawa [5].

For describing the dynamics of the constraint manipulator, the constraints

at the end effector are described by a set of constraint hypersurfaces before the

equations of motion are derived. A given end effector constraint is expressed

by a set of m hypersurfaces:

pi(r) = 0, i = 1, 2, ..., m, (3.39)

where r is the end effector position in a fixed frame. Furthermore, the relation

between the joint variables q and the end effector position r is given by

r = c(q). (3.40)

Differentiating c(q) with respect to q gives the familiar Jacobian matrix J.

28 CHAPTER 3. BACKGROUND THEORY

Differentiating (3.40) with respect to time gives

EF ṙ = 0, (3.41)

where EF consists of the unit normal vectors to the hypersurfaces (3.39).

The force exerted on the constraint surface by the end effector in the base

frame b is denoted fb ∈ R6. Since the method assumes no friction between the

surface and effector, then from the principle of virtual work fb satisfies

vTfb = 0, (3.42)

where v is the end effector velocity Tṙ. (3.41) can thus be written

EFT−1v = 0. (3.43)

Eventually, the force fb, given (3.42) and (3.43), can be written

fb = EFT−1fF, (3.44)

where fF ∈ Rm is an unknown vector. It can be shown that the vector −fF takes

the same value as the Lagrange multiplier λ of the the Lagrange equations of

motion for the manipulator under the following constraint:

p̃i(c(q)) = 0, i = 1, 2, ..., m, (3.45)

3.5. HYBRID POSITION/FORCE CONTROL (HPFC) 29

where p̃i(r) = pi(r)/||dpi(r)/dr||.

The dynamics can now be expressed as

M(q)q̈ + C(q, q̇) + g(q) = τm + JT(dp̃/dr)Tλ, (3.46)

where τm is the joint driving force. The left hand side of the equation is the

general manipulator dynamics.

3.5.5 HPFC for snake robots

The joint torques of the robot should be calculated in a manner that allows for

the robot to apply forces in certain directions while simultaneously positioning

itself along the path. In order to find these torques, it is necessary to know in

which direction the mentioned actions are allowable.

A snake robot lying alongside an obstacle is able to move along the obstacle.

It is however unable to move through the obstacle. Hence, the direction in

which the obstacle lies, limits the allowable position space. On the contrary, the

allowable force space is restricted to the same direction. This is also sensible,

as it makes no sense to attempt to apply a force in the direction of free space.

Such an attempt would solely result in an uncontrolled acceleration of the

robot joints.

The directions in which the robot can apply forces to obstacles is referred

to as the allowable force space F, and the directions in which it can move

freely is referred to as the allowable position or motion space M. The idea of

Raibert and Craig et al. [3] was that these spaces both make out the subspaces

30 CHAPTER 3. BACKGROUND THEORY

of a bigger task space T, which in the snake robot case is propulsion along a

predefined path. The two subspaces are orthogonal, i.e. T = F∪M, F ⊥M.

Stavdahl [1] introduces a ternary decomposition of the task space based

on the fact that not all force interaction between the robot and the obstacles

will yield propulsion. In some robot configurations, the reaction forces from

the obstacles might even lead to a lock and increasing forces between the rigid

bodies that can eventually lead to the robot breaking. The reaction forces

illustrated in Figure 3.4 have no component that would push the robot in the

forward direction. The robot could however bend its links and thus change its

shape. Consequently it would be able to apply a torque yielding propulsion.

Figure 3.4: Configuration of the snake robot and obstacles yielding no propul-

sion

In other words there is a subspace of the force space which will not con-

tribute to propulsion. Stavdahl [1] denotes this as the constraint space C. The

subspace within which forward motion of the head is achieved is denoted the

propulsion space P. The remaining subspace, the shape space S, is the space

in which the joint torques simply change the shape configuration of the robot.

Finally, knowledge about the specified spaces may be exploited in planning

of a path from one point to another. In particular, it can be used to design an

3.6. PROJECTION ONTO PATH 31

optimal path that maximizes the propulsion space. When the corresponding

optimal forces are known, HPFC can be used to realise these forces while

adjusting the shape of the robot to the path.

3.6 Projection onto path

In order for the robot to adjust its shape to fit the desired path, its controller is

dependent on knowing the joint angles that fulfill this task. The desired joint

angles are found by projecting the joints of the snake onto the predefined path.

It is assumed that the 2D path is known at all times. Since the path has no

width it is possible to simply find the shortest distance from a joint to the path

to determine where the joint should have been. This distance, commonly known

as the cross track error, is called BC and is illustrated in Figure 3.5. The path

can be discretized to consist of points along the lines and curves defining the

path.

The shortest distance is chosen by numerically comparing all the line

segments from the joint to a piece of the path seen as relevant based on the

position of the robot. When this point is known, the deviation angle θ can

be determined by trigonometrical properties. The distance AB will equal the

length of a link l, and the points A and B are respectively the positions of the

preceding joint and joint to be projected. The distance AC is now called a and

the distance BC is called b. The relationship in 3.47 is given from the law of

cosine.

cos (θ) =
l2 + a2 − b2

2lb
. (3.47)

32 CHAPTER 3. BACKGROUND THEORY

Figure 3.5: Shortest distance from joint to path [16]

Note that this expression will be invalid if the shortest distance from the joint

to the path is zero, meaning the joint is already on the path. There is however

no need to perform a projection if there is no deviation from the path. In

the case of very precise calculation, the joint and the path will never overlap

completely. One can however introduce a very small width around the path

in which the joint is considered to be on the path. This is equivalent to the

threshold introduced in [16], where an angle deviation θ lower than a given

threshold is ignored.

Because no explicit information about which side (left/right) of the path

the joints are lying on is assumed, the sign of θ is unfamiliar. The easiest way

to solve this in a computer program is simply comparing the result of rotation

around A with both the positive and negative angle options. The link AB is

rotated using the rotation matrix Rz, expressed in (3.3). The resulting projected

3.7. CONTACT DETECTION 33

points are thus

C+ = A + Rz(θ)AB and C− = A + Rz(−θ)AB. (3.48)

The angle with the corresponding point closest to C is finally chosen and added

to the actual angle of the joint to obtain the new desired angle.

3.7 Contact detection

Before the consequence of an interaction is calculated, the point of contact (if

any) has to be determined. This is done by projecting the obstacle point onto

the closest link. The distance from the obstacle to the projected point is then

compared to the safety radius rsa f ety around each obstacle. This safety radius

is to avoid the scenario in which the robot in a discrete time step moves to

the opposite side of the obstacle point. Consequently, the relation in (3.49) is

obtained.

contact =


1 if pc ≤ rsa f ety

0 else
(3.49)

Figure 3.6 shows a case in which contact is established. If link i is considered

in contact with an obstacle, the distance dc,i, which is a generalized coordinate

introduced in 3.1.1, equals |AP|.

34 CHAPTER 3. BACKGROUND THEORY

Figure 3.6: Robot link and obstacle with safety radius

Chapter 4

The simulator

The purpose of the simulator is to visualize the movement of a simple snake

robot model progressing according to a predefined path and obstacles in the

environment. Because the tested concepts are rather experimental and go in

the direction of a proof-of-concept, the whole simulator is developed from

scratch in MATLAB. The process of coding the simulator has also been a great

resource for studying these concepts and the general theory of snake robots.

The limitations coming from the experimental approach are presented below.

This chapter also aims at describing how the simulator is structured and

can be used, as well as explaining particular code snippets in more detail.

Moreover, it provides an overview of how the mathematical background is

applied.

35

36 CHAPTER 4. THE SIMULATOR

4.1 Simplifications and limitations

Expressing the complete dynamics of the system includes explicitly finding

the part of the joint torques that are not directly applied to the robot joints,

but rather a force acting on the external obstacles. In other words, the torque

would have to be separated in a component belonging to the constraint or

propulsion space and a component that belongs to the shape space (see 3.5.5).

The relationship between the constraint or external torque is given in (3.24).

However, both the force fb
c,i and torque τc are unknown. Additionally, solving

the equation with respect to a hypothetically given τc would not necessarily

yield a unique solution of fb
c,i.

This challenge, combined with a strict time schedule, has led to a simplifi-

cation in the development of the simulator. In the program, the movement of

the robot is first calculated under the assumption that no obstacle is present.

To account for this, the interaction forces are implicitly considered through

mapping to the allowable position space. This means that if the robot is in

contact with the environment, the joint velocities are influenced accordingly

and thus also the joint angles. The consequences of the simplification are

discussed in Chapter 6.

Like in any computer simulation, the time is discretized. This leads to

inaccuracies, especially for fast motions. The sampling time may be decreased

to minimize this effect.

Furthermore, the projection onto the desired path assumes that the robot

is sufficiently close to the path to get back to it. The calculated desired

angles for joints very far away from the path might therefore not lead to

advantageous behaviour. The projection also assumes that the links of the

4.2. PROGRAM FLOW 37

robot are chronologically aligned along the path. This means that if the robot

is for instance curled up, the projection will fail to align the robot. One last

point to note is that the desired angle of the tail is not specified by the method.

This property is pointed out in 5.1.2 and discussed further in 6.2.

4.2 Program flow

The program flow is illustrated in the diagram Figure 4.1. The blue rectangles

represent functions, and the data connected to the outgoing arrows are com-

puted output variables. From the diagram, it is noticeable that the program

runs in a loop after initialization, constantly controlling the robot towards the

path while adapting to its environment (the obstacles).

Initialization is performed based on the given snake robot and obstacle

configurations. Furthermore, the joint acceleration q̈ of the robot is found by

solving the dynamics equation (3.14), where the joint torque τ is calculated by

the computed torque control (3.32). The control reference is based on deviation

from the desired trajectory (see Section 3.6). Joint velocities q̇ and angles q are

deduced from q̈ using Euler integration.

Whenever the robot is in contact with one or more obstacles, the joint

velocities are projected onto the allowable position space using the intersect of

all j
apP, explained in 3.5.1.

4.3 User guide

The user can adjust parameters related to the controller, the specifications of

the snake robot, obstacles in the environment and the desired path the robot

38 CHAPTER 4. THE SIMULATOR

Figure 4.1: Program flow diagram

4.3. USER GUIDE 39

should attempt to follow. an overview of the user definable variables and

where they can be adjusted is given in Table 4.1.

Once the variables are adjusted in the respective files, the

initialization.m script can be run. For a specific configuration, this initial-

ization only has to be run once for every MATLAB workspace. The simulation

can then be run for a desired number of times. Variables that do not change

the dynamical properties of the robot can be redefined without running the

whole initialization over.

Figure 4.2 gives a description of the components in the visual part of the

simulation.

Figure 4.2: Visual output of simulation

40 CHAPTER 4. THE SIMULATOR
Pa

ra
m

et
er

de
sc

ri
pt

io
n

Pa
ra

m
et

er
na

m
e

Fi
le

na
m

e
D

at
at

yp
e

U
ni

t

N
um

be
r

of
lin

ks
n

in
it

_s
na

ke
.m

In
te

ge
r

Li
nk

le
ng

th
l

in
it

_s
na

ke
.m

Fl
oa

t
m

Li
nk

m
as

s
m

in
it

_s
na

ke
.m

Fl
oa

t
kg

In
it

ia
lj

oi
nt

an
gl

es
q0

(1
:n

)
in

it
_s

na
ke

.m
A

rr
ay

of
flo

at
s

ra
d

In
it

ia
lp

os
it

io
n

q0
(n

+1
:n

+2
)

in
it

_s
na

ke
.m

A
rr

ay
of

flo
at

s
ra

d

N
um

be
r

of
ob

st
ac

le
s

nu
m_

ob
st

ac
le

s
in

it
_o

bs
ta

cl
es

.m
In

te
ge

r

O
bs

ta
cl

e
co

or
di

na
te

s
ob

st
ac

le
_c

oo
rd

s
in

it
_o

bs
ta

cl
es

.m
2D

ar
ra

y
of

flo
at

s
m

O
bs

ta
cl

e
sa

fe
ty

ra
di

us
ob

st
ac

le
_r

ad
iu

s
in

it
_o

bs
ta

cl
es

.m
Fl

oa
t

m

Pr
op

or
ti

on
al

co
nt

ro
lg

ai
n

kp
in

it
_c

on
tr

ol
.m

Fl
oa

t

D
am

pi
ng

ra
ti

o
ze

ta
in

it
_c

on
tr

ol
.m

Fl
oa

t

To
rq

ue
sa

tu
ra

ti
on

lim
it

ma
x_

ta
u

in
it

_c
on

tr
ol

.m
Fl

oa
t

N
m

N
um

be
r

of
in

di
vi

du
al

fu
nc

ti
on

s
de

fin
in

g
th

e
pa

th
nu

m_
se

ct
io

ns
in

it
_p

at
h.

m
In

te
ge

r

In
te

rs
ec

ti
on

po
in

t
of

pa
th

fu
nc

ti
on

s
al

on
g

x
se

ct
io

n_
pa

rt
it

io
n

in
it

_p
at

h.
m

A
rr

ay
of

flo
at

s
m

Fu
nc

ti
on

s
de

fin
in

g
th

e
pa

th
cu

rv
e

in
it

_p
at

h.
m

Se
t

of
fu

nc
ti

on
s

m

Table 4.1: User adjustable simulator parameters

4.4. PROGRAM CODE SUMMARY 41

4.4 Program code summary

The whole simulator is made, and to be executed, in MATLAB. The symbolic

toolbox [17] has been used to generalize the code and make it adaptable to an

n-link snake robot. The whole code can be provided upon request.

4.4.1 Dynamics functions

The dynamics, more particularly the matrices M and C from (3.13), are gen-

erated symbolically in the script init_dynamics.m. As a result of the use

of symbols, the matrices can be used as functions with the joint angles and

velocities as input parameters.

4.4.2 Kinematics functions

The script init_kinematics.m generates the transformation matrices from

(3.2), defining the relation from base to every link endpoint. These matrices

are – equivalent to the dynamic matrices from last section – expressed with

symbols. Additionally, functions for generating the rotation matrix around

the z-axis, Rz_func(theta), and translation matrix in the x and y direction,

D_func(x_dist, y_dist) are defined.

4.4.3 Contact Jacobian function

The symbolic expression of the contact Jacobians is calculated in

init_contact_jacobians.m. A selection of the code is given and explained

below.

42 CHAPTER 4. THE SIMULATOR

• Lines 2-8: The position of the contact point in the base frame expressed

by the joint variables is extracted from the homogeneous transformation

matrix (see Section 3.1).

• Lines 9-12: Partial differentiation of the position of the contact point with

respect to the generalized coordinates to obtain the contact Jacobian.

• Line 14: All contact Jacobians are stacked in a 3-dimensional matrix.

The variable q represents the vector of generalized coordinates, and

Rz_func(theta) and D_func(x_dist, y_dist) are previously defined func-

tions (see 4.4.2).

1 for link = 1:n % For every link an obstacle can be in contact with

2 T = D_func(q(n+1),q(n+2));

3 for curr_link = 1:link-1

4 T = T*Rz_func(q(curr_link))*D_func(l,0);

5 end

6 T = T*Rz_func(q(link))*D_func(q(n+2+link));

7 x = T(1,4);

8 y = T(2,4);

9 for i = 1:N

10 Jc(1,i) = diff(x, q(i));

11 Jc(2,i) = diff(y, q(i));

12 end

13 Jc = simplify(Jc);

14 all_Jc(:,:,link) = Jc;

15 end

4.4. PROGRAM CODE SUMMARY 43

4.4.4 Projection function

The projections are calculated in the function calc_projections.m based on

the contact Jacobian function Section 4.4.3. In the following code snippet,

contact on link i is already established and the corresponding projection

matrices are to be found.

• Line 2: The variable q(n+2+i,k) corresponds to the generalized coordi-

nate dc,i (see (3.8)).

• Lines 3-4: The contact Jacobian with current q-values from simulation.

• Lines 5-6: Projection matrices from (3.38).

• Lines 7-8: Projection matrices are stacked.

1 l_to_obs = ap; % Distance from joint to obstacle point projection:

2 q(n+2+link,k) = l_to_obs;

3 all_Jc = Jc_func(q(:,k)’);

4 Jc(:,:,i) = all_Jc(:,:,i); % Extract the relevant contact Jacobian

5 P_af = (pinv(Jc(:,:,i))*Jc(:,:,i))’;

6 P_ap = eye(N) - pinv(Jc(:,:,i))*Jc(:,:,i);

7 S_P_af = [S_P_af P_af];

8 S_P_ap = [S_P_ap P_ap];

Seeing as there might be more than one contact point, several projection

matrices are calculated. These matrices are combined by taking the union and

intersect of the allowable force projectors and allowable position projectors

respectively (described in 3.5.1). The logic of the union and intersect functions

are borrowed from Øyvind Stavdahl and presented below.

44 CHAPTER 4. THE SIMULATOR

1 % Union of all P_af

2 P_af = S_P_af*pinv(S_P_af);

3 % Intersect of all P_ap

4 P_ap = S_P_ap(:,1:N)*pinv(S_P_ap(:,1:N));

5 for i = 2:num_contacts

6 P_temp = S_P_ap(:,N*(i-1)+1:N*i);

7 P_temp = P_temp*pinv(P_temp);

8 P_ap = 2*(P_ap - P_ap*pinv(P_ap + P_temp)*P_ap);

9 end

4.4.5 Control

The following function calculates the joint torques from the computed torque

control scheme in 3.3.3.

• Line 3: See (3.32).

• Line 5: Saturation based on the user-adjustable parameter max_tau.

1 function tau_control = computed_torque_control(M, C, q_e, qd_e)

2 qdd_ref = zeros(N,1);

3 tau_control = M*(qdd_ref + kd*qd_e + kp*q_e) + C;

4 % Restrict torque to actuated joints and limit the magnitude.

5 tau_control = saturate(tau_control);

6 end

4.4. PROGRAM CODE SUMMARY 45

4.4.6 Visualization

The robot simulation is performed by displaying a figure in which the robot

links are redrawn for every time step based on the given robot data. The

function in visualize.m takes care of this operation.

46 CHAPTER 4. THE SIMULATOR

Chapter 5

Experiments

This chapter presents simulation scenarios chosen to demonstrate the perfor-

mance and limitations of the simulator, as well show the concept of OAL.

A common configuration for all experiments is given in Table 5.1. The

individual configurations are presented in the respective sections.

Description Variable name Value

Link length [m] l 1

Link mass [kg] m 1

Obstacle safety radius [m] obstacle_radius 0.1

Table 5.1: Common simulation configuration for all cases

47

48 CHAPTER 5. EXPERIMENTS

5.1 Obstacle-free environment

This section demonstrates how the robot behaves without the influence of

obstacles in the environment. Special emphasis is placed on the the path

alignment performance.

5.1.1 Single reference computed torque control

This experiment is to demonstrate the two different damping modes of the

computed torque controller applied in the rest of the experiments. For sim-

plicity, a static setpoint scenario is chosen. The variable configuration for the

experiment is summarized in Table 5.2.

Description Variable name Value

Simulation time [s] simTime 30

Simulation sample time [s] h 0.01

Number of links n 4

Joint angle setpoints [rad] q_ref [0, π/2,−π/3,−π/2]

Initial joint angles [rad] q_0(1:n) [0, 0, 0, 0]

Initial position [m] q_0(n+1:n+2) [0, 0]

Table 5.2: Simulation configuration for 5.1.1

Figure 5.1 shows the different damping-cases using the computed torque

controller following joint angle references plotted with dashed lines. It should

be noted that the joint angle q1 = φ1 is not included as it is a virtual coordinate

and not directly actuated.

5.1. OBSTACLE-FREE ENVIRONMENT 49

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Critically damped

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Overdamped

Figure 5.1: Simulation demo - computed torque control

Because slow motions are desired to avoid abrupt movement, the over-

damped configuration with ζ = 2 is mainly used throughout the experiments.

The underdamped case is not relevant for this project and thus left out.

The proportional gain is chosen to be Kp = 0.4I in all cases. The relation in

(3.29) with ζ = 1 and ζ = 2 yields Kd = 1.3I and Kd = 2.5I respectively.

50 CHAPTER 5. EXPERIMENTS

5.1.2 Path alignment

In this case, the robot is initialized with two different start positions before

attempting to adjust to the same path (5.1), which consists of line segments and

quadrants. The start positions together with remaining variable configurations

are summarized in Table 5.3.

y(x) =



0, if x < 2.2√
4− (x− 2.2)2 + 2, if x ∈ [2.2, 4.2]

−
√

4− (x− 6.2)2 + 2, if x ∈ [4.2, 6.2]

−4, if x > 6.2

(5.1)

Description Variable name Value

Simulation time [s] simTime 10

Simulation sample time [s] h 0.001

Damping ratio zeta 2

Number of links n 4

Joint angle setpoints [rad] q_ref
Given by the path

projection method

Initial joint angles [rad] q_0(1:n) [0, 0, 0, 0]

Initial position [m] q_0(n+1:n+2) [0, 0]

Initial position part 1 [m]

Initial position part 2 [m]
q_0(n+1:n+2)

[0, 0]

[0, 1]

Table 5.3: Simulation configuration for 5.1.2

5.1. OBSTACLE-FREE ENVIRONMENT 51

The Figures 5.2 and 5.3 show the start and end position of the adjustment

in a 15 second interval. The dashed lines are connections between the joints

and their respective projected points on the path. The lines for the first two

joints are displayed in gray because they are disregarded in the computation of

the reference angles. The path projection method simply regards endpoints of

controllable links. Furthermore, the method is not considering that the snake

robot should be stretched out along the path at all times. A repercussion of

this will become clear in the experiment in 5.3.3.

(a) t = 0s (b) t = 5s

(c) t = 10s

Figure 5.2: Simulation demo - adjusting to path from nearby

52 CHAPTER 5. EXPERIMENTS

(a) t = 0s (b) t = 5s

(c) t = 10s

Figure 5.3: Simulation demo - adjusting to path from a distance

It is evident that path adjustment relies on a start configuration close to

the path to be successful as well. However, none of the simulations are able

to perfectly adjust to the path. An important reason for this is that the robot

cannot change the position of its center of mass without friction or push-points

(obstacles) in the environment.

The plots in Figure 5.4 show the joint angles of the controllable joints during

the simulations. The reference angles are plotted with a dashed line. From the

plots it can be observed that the end effector is very close to the path and the

5.1. OBSTACLE-FREE ENVIRONMENT 53

corresponding reference angles qd,4 are almost met in both cases. Additionally,

the reference angles of link 2 and 3 wish to bend the links downward to the

path. This is logical, just not completely feasible. A consequence of this is that

the robot too far from the path is curling up.

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) Start at (x0, y0) = (0, 0)

0 2 4 6 8 10
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(b) Start at (x0, y0) = (0,−1)

Figure 5.4: Joint angles for path adjustment with different starting configura-

tions

54 CHAPTER 5. EXPERIMENTS

5.2 Collision analysis

This section demonstrates the energy and momentum difference in the robot

before and after being influenced by an obstacle. The experiment is performed

for validity analysis of the interaction approximations, and the outcome is

discussed further in Chapter 6.

5.2.1 Single obstacle interaction

For simplicity, only one obstacle is included in this experiment. Furthermore,

the robot is not set to follow any joint angle references. Instead, a step input

torque with magnitude −0.5Nm is applied to the foremost joint for 0.2 seconds.

The simulation configuration is given in Table 5.4.

Description Variable name Value

Simulation time [s] simTime 3

Simulation sample time [s] h 0.001

Damping ratio zeta 2

Number of links n 4

Initial joint angles [rad] q_0 [0, 0, 0, 0]

Initial position [m] q_0(n+1:n+2) [0, 0]

Number of obstacles num_obstacles 1

Obstacle position [m] obstacle_coords (3.5,−0.3)

Table 5.4: Simulation configuration for 5.2.1

The torque is chosen to make the foremost robot link collide with the

obstacle so that the resulting change in energy and momentum can be observed.

5.2. COLLISION ANALYSIS 55

The different positions of the robot to different times are illustrated in Figure

5.6. Furthermore, the energy (3.17), momentum (3.26) and applied torque is

plotted in Figure 5.5.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3
0

5

10

10-4

0 0.5 1 1.5 2 2.5 3
-0.6

-0.4

-0.2

0

Figure 5.5: Energy, momentum and joint motor torques of robot for single

collision scenario

56 CHAPTER 5. EXPERIMENTS

(a) t = 0s (b) t = 1s

(c) t = 2s (d) t = 3s

Figure 5.6: Simulation demo - interaction with single obstacle

The motor torque will naturally increase the energy of the robot for the

time period in which it is applied. According to laws of physics, the energy

level should then stay constant as long as no work is done on the robot and it

is moving in a frictionless environment. The energy plot in Figure 5.5 confirms

this, seeing as the energy stays constant between 0.2 to 1.1 seconds. When

the robot then hits the obstacle, a clear change in energy is observed. The

approximate time of this collision is further confirmed by the configuration

of the robot at 1 seconds seen in part (b) of Figure 5.6. In reality, the robot

would at this point loose energy to the obstacle. From the plot it can however

be observed that the energy is increased until the robot link no longer is in

contact with the obstacle. The total energy of the robot before the contact is

0.0933J and 0.2751J after the contact, meaning the energy is increased by 295%.

Furthermore, the momentum of the snake robot should be conserved

despite the collision (see 3.2.2). However, it turns out that the momentum

in x-direction increases by 1.1271kg ·m/s and the momentum in y-direction

5.3. OAL SIMULATION SCENARIOS 57

increases by 0.4519kg · m/s, violating the well known law of conservation of

momentum.

It should be noted that the robot cannot change the position of its center

of mass without an external force. Therefore, even though the links obtain

velocities after the torque is applied, they cancel each other out in the respective

directions. The moments in the two directions are determined by the velocities

and accordingly unchanged by the torque, as seen in the momentum plot in

Figure 5.5.

5.3 OAL simulation scenarios

5.3.1 Simple propulsion

This scenario aims at demonstrating the concept of OAL. The snake robot is

simply set to bend its front joint to −π/2 while the other joints are to remain

in a stretched out configuration. The simulator variable configuration can be

seen in Table 5.5.

The setpoints are manually determined based on the knowledge that the

bending link will collide with an obstacle in trying to obtain the desired angle.

Hence, the link will apply a force to the obstacle underneath and consequently

drag the whole robot body in the positive x (rightward) direction. A sequence

of the movement is presented in Figure 5.7.

58 CHAPTER 5. EXPERIMENTS

Description Variable name Value

Simulation time [s] simTime 20

Simulation sample time [s] h 0.001

Damping ratio zeta 2

Number of links n 4

Joint angle setpoints [rad] q_ref [0, 0, 0,−π/2]

Initial joint angles [rad] q_0 [0, 0, 0, 0]

Initial position [m] q_0(n+1:n+2) [0, 0]

Number of obstacles num_obstacles 3

Obstacle positions [m] obstacle_coords

(0.8,−0.08)

(1.6, 0.08)

(3.3,−0.3)

Table 5.5: Simulation configuration for 5.3.1

The obstacles laying close to the rear links are positioned to allow the rest

of the robot to stay flat. From Figure 5.7 it can be seen that the robot moves

away from the obstacles towards the end without pushing against anything.

This is a consequence of the modeled frictionless environment.

From the plots in Figure 5.8 it is clear that the collision with the lower

obstacle takes place at approximately 3 seconds. At this point, the joint

velocities are projected such that the front link does not cross the obstacle.

Additionally, the preceding joints experience an offset as the front joint applies

a torque that influences the whole robot.

A repercussion of the geometrical approximation of the contact forces

becomes obvious in this experiment. The joint velocities in the emphasised

5.3. OAL SIMULATION SCENARIOS 59

time span in part (b) of Figure 5.8 admit a twitching behaviour as a result of

the velocity projections. This circumstance is discussed in Chapter 6.

(a) t = 0s (b) t = 4s

(c) t = 8s (d) t = 12s

(e) t = 16s (f) t = 20s

Figure 5.7: Simulation demo - propulsion with static joint setpoint

60 CHAPTER 5. EXPERIMENTS

0 5 10 15 20
-1.5

-1

-0.5

0

0 5 10 15 20

-0.2

-0.1

0

(a)

(b) Zoom of joint velocities in

seconds 5-10

Figure 5.8: Joint angles and velocities for the single setpoint scenario

5.3. OAL SIMULATION SCENARIOS 61

5.3.2 Obstacle interaction without propulsion

Seeing as propulsion requires a force in the respective direction, there are

scenarios where a set of joint torques are insufficient for attaining this force.

This scenario aims at illustrating the case where the forces applied work against

each other in the direction of propulsion and the robot is simply deformed.

The variable configuration for the simulation is presented in Table 5.6 and

Figure 5.9 shows a sequence of the motion.

Description Variable name Value

Simulation time [s] simTime 9

Simulation sample time [s] h 0.001

Damping ratio zeta 1

Number of links n 3

Joint angle setpoints [rad] q_ref [0,−π/3, π/3]

Initial joint angles [rad] q_0 [0, 0, 0]

Initial position [m] q_0(n+1:n+2) [0, 0]

Number of obstacles num_obstacles 3

Obstacle positions [m] obstacle_coords

(0.5, 0.1)

(1.5,−0.1)

(2.5, 0.1)

Table 5.6: Simulation configuration for 5.3.2

62 CHAPTER 5. EXPERIMENTS

(a) t = 0s (b) t = 3s

(c) t = 6s (d) t = 9s

Figure 5.9: Simulation demo - no propulsion

5.3.3 Unsuccessful propulsion attempt along path

This experiment demonstrates a case in which the simplifications made are

preventing the robot from moving in the desired direction. The robot is at all

times merely set to adjust itself to the path without any objective of propulsion.

Just like in 5.3.1, the obstacles blocking the robot are the factor leading to

propulsion. The configuration is summarized in Table 5.7, and the desired path

(5.1) is the same one as in 5.1.2.

5.3. OAL SIMULATION SCENARIOS 63

Description Variable name Value

Simulation time [s] simTime 60

Simulation sample time [s] h 0.005

Damping ratio zeta 2

Number of links n 5

Joint angle setpoints [rad] q_ref
Given by the path

projection method

Initial joint angles [rad] q_0 [0, 0, 0, 0, 0]

Initial position [m] q_0(n+1:n+2) [−1, 0]

Number of obstacles num_obstacles 3

Obstacle positions [m] obstacle_coords

(0.6,−0.1)

(1.6, 0.1)

(3.2,−0.33)

Table 5.7: Simulation configuration for 5.3.3

The resulting problem is caused by the path projection method that dis-

regards the positioning of the tail. When the tail bends over an obstacle, the

resulting contact force pushes the robot in the wrong direction while the front

link is pushing it in the right direction. The result is that the robot gets stuck.

A sequence of the movement is presented in Figure 5.10.

64 CHAPTER 5. EXPERIMENTS

(a) t = 0s (b) t = 20s

(c) t = 40s (d) t = 60s

Figure 5.10: Simulation demo - failed propulsion along path

5.3.4 Propulsion along path

This case is to illustrate how the robot can aid obstacles to propel along a

predefined path. Since the robot is only position controlled based on deviation

from the path, the obstacles are placed in a manner that supports both the

desired shape and motion. The two obstacles in the middle are to keep the rear

links on the path, while the obstacle in front is placed so that the robot can

push against it and pull itself forward. In order for this to happen, the obstacle

has been placed slightly on the path like in previous experiments, leading to a

constant deviation from the path. The robot’s desire to always stay as close to

the path as possible makes it push against the obstacle.

The leftmost obstacle is added based on the observations made in 5.3.3,

where the tail deviated from the path and caused the robot to get stuck. The tail

5.3. OAL SIMULATION SCENARIOS 65

link will now be pushed back to the path when in contact with this obstacle. An

important point to note is that the spacing between the two leftmost obstacles

violates assumption 10 in 2.1, saying that every link is in contact with at

most one obstacle. The simulator is however able to handle this scenario and

compute contact Jacobians and projection matrices (see 3.5.1-3.5.2) for both

contact points.

The variable configurations are presented in Table 5.8 and the desired path

(5.1) is the same one as in 5.1.2.

Description Variable name Value

Simulation time [s] simTime 120

Simulation sample time [s] h 0.005

Damping ratio zeta 1

Number of links n 5

Joint angle setpoints [rad] q_ref
Given by the path

projection method

Initial joint angles [rad] q_0 [0, 0, 0, 0, 0]

Initial position [m] q_0(n+1:n+2) [−1, 0]

Number of obstacles num_obstacles 4

Obstacle positions [m] obstacle_coords

(−0.1,−0.1)

(0.6,−0.1)

(1.6, 0.1)

(3.2,−0.33)

Table 5.8: Simulation configuration for 5.3.4

The movement is shown in Figure 5.11, where it can be seen that the robot

66 CHAPTER 5. EXPERIMENTS

follows the path as long as it has sufficiently many obstacles to push against.

At 40 seconds the robot starts moving slightly through the radius of the third

obstacle. This is an effect of the projection of the joint velocities.

5.3. OAL SIMULATION SCENARIOS 67

(a) t = 0s (b) t = 20s

(c) t = 40s (d) t = 60s

(e) t = 80s (f) t = 100s

(g) t = 120s

Figure 5.11: Simulation demo - propulsion along path

68 CHAPTER 5. EXPERIMENTS

Chapter 6

Discussion

This chapter looks at the effects of simplifications and approximations made

during the development of the simulator, both in regard to the dynamical

model and in regard to the path following method. These effects, as well as the

general results from the experiments are discussed and some improvements

are proposed.

6.1 Effects of the contact behaviour simplification

The geometrical approximation made regarding the contact forces between

the robot and the obstacles have been characteristic for the outcome of the

simulations. From a physical perspective, it is obvious that projecting the

velocities to an "allowable space" just based on the positioning of the obstacles

differs from actual velocities after a collision. Simply projecting the velocities

means that the velocity of the robot body will in some cases increase, and

69

70 CHAPTER 6. DISCUSSION

sometimes decrease, after contact with an obstacle. This does in turn mean

altering the total energy of the system, which contradicts basic laws of physics

under the assumption of frictionless contact. In the experiment in 5.2.1, the

energy of the robot was almost tripled after contact with a single obstacle.

Additionally, it was observed that the momentum was not conserved

through the collision, neither in the x nor y-direction. Although these ob-

servations do not make out a general quantification of the error, it is enough

for recognizing that the modelling of interactions in the simulator are con-

siderably off. A further consequence is also that the robot can inherit abrupt

and unrealistic movements, but because the dynamics of the employed model

have been very slow in all experiments, it has not been a dominating factor

and the controller has been able to damp all fast motions. Lastly, it has to

be mentioned that the velocity projections can in some cases contribute to

additional propulsion of the robot as they introduce new energy to the system.

There are of course several methods that could avoid this simplification.

One option is to implicitly define the forces as a part of the dynamical model,

just like the forces between the joints in the robot are implicitly defined. The

method of Yoshikawa [5], explained in 3.5.4, follows this approach. It does

however only consider constraints on the end effector of the robot, and not on

arbitrary links. The adjustment that has to be made in the snake robot case,

is that the constraint hypersurfaces and forces onto these surfaces have to be

defined for every contact point.

Another consequence of the geometrical approximation, is that the pro-

jection matrices only allow movement along obstacles. This is necessary for

preventing the robot from moving through obstacles, but also prevents the

robot from perpendicularly moving away from them. In other words, whenever

6.1. EFFECTS OF THE CONTACT BEHAVIOUR SIMPLIFICATION 71

a link comes in contact with an obstacle, it will stick to it until it has slid all

the way along it. This strict positioning of the links can come in conflict with

the controller and path projection. The only case in which a link "detaches"

from the obstacle before sliding along it, is when it in a discrete time step is

projected to a position where it no longer is considered in contact and fazed by

the obstacle.

Yet another important remark, is that the program treats the cases in which

a link is on the edge of the obstacle radius and within the obstacle radius

equally. In particular, it considers both cases a point contact and disregards

how close it is to the actual obstacle point. In 5.3.4 it is pointed out that the

robot slides slightly through this radius, but it should be kept in mind that

for the robot it is the same situation as sliding on the edge of the obstacle.

However, it is still a fault that the robot ended up within the radius in the first

place, but is most probably a result of the discrete nature of the simulator.

This discrete behavior is also the sole purpose of the obstacle radius, pre-

venting links from jumping over obstacles in discrete time steps, and has in

this regard proven to be a successful mechanism. Furthermore, it is the velocity

rather than position of the robot that is changed with the projection. The robot

might thus still be inside the obstacle radius at the next time step and the

velocity is projected over again. This can in turn lead to inconsistent velocity

projections and a twitching behaviour as seen in 5.1.1. Decreasing the radius

would naturally also decrease this effect, but it is still crucial to keep the radius

in discrete-time simulations. The effect can also be decreased with a smaller

sample time, but likewise this is no permanent solution to the problem.

A workaround for the rigid definition of contact in which the robot is either

completely in contact with the obstacle or not at all, could be introducing an

72 CHAPTER 6. DISCUSSION

elastic radius or force field around the obstacles, and thus damp the nonlinear

effects of the interactions.

6.2 Review of the path alignment method

The method of finding the desired angles based on projection onto the path

is not robust in cases where the links are far from the path (see experiment

in 5.1.2). The simplest solution to this would be avoiding the projection of

links that are very misplaced. A future, more advanced, solution would be

redesigning the optimal path to overlap with the current position of the robot.

In 5.1.2 it is pointed out that the method of finding the desired joint angles

disregards the positions of the two first joints, or rather the position of the start-

and end point of the tail link. Correcting this poor quality would improve the

performance of the path following capability significantly. Situations like in

5.3.3, where the tail of the robot gets stuck, would then be avoided.

The desired joint angles from the path projection method are calculated

separately for each link in the current program. A more robust and intelligent

solution would be defining an objective function that considers the deviation

from the path for all joints, and then find the set of desired joint angles

minimizing the complete set of deviations. By this method it would also be

possible to weight the error of the snake robot head the most. Holden [13] has

formulated an optimization problem that finds input torques by minimizing

energy consumption while achieving propulsion along the desired path. The

method is a great inspiration, but not quite yet a solution to the problem as it

still requires the desired joint angles at the obstacles to be known.

6.3. FURTHER INSIGHTS FROM EXPERIMENTS 73

6.3 Further insights from experiments

On the more constructive side, it is clear that the simulator has proven to be

a great resource for presenting concepts and study the possibilities within

obstacle aided locomotion. Furthermore, the modular architecture of the

program, where controller, dynamics, path following etc. is decoupled, allows

for it to be effortlessly modified.

The experiments have shown that the positioning of the obstacles and

path in relation to each other is vital for the propulsion of the robot. This is

especially the case in an environment where the possibility to aid friction for

propulsion is absent. Furthermore, it has been shown that it is necessary to

have a sufficient number of obstacles. Not only for the propulsion, but also for

continuously aiding the robot with alignment along the path. Consequently, a

limitation of the implemented system is that the configuration of obstacles and

desired path need to be determined manually.

A further observation from the experiments, in particular 5.3.4, is that

the obstacles used for aligning the rear part of the robot are comparable to

a manipulator base. More specifically, the robot is in this position able to

keep its rear links fixed in the perpendicular direction by pushing against

these obstacles. Thus, the control of the proceeding links is increased in the

perpendicular direction. This does in turn lead to the robot being able to get

further with a greater number of links, as the robot slides through and stays in

touch with the aligning obstacles for a longer period of time.

When it comes to the computational performance of the simulator, it is

observed that the program requires significantly more time for computing the

initialization of robots with 6 links or more than that of robots with fewer links.

74 CHAPTER 6. DISCUSSION

An improvement would be defining the equations of motion directly rather

than performing symbolic math differentiation to derive them. However, the

initialization only has to run once for every configuration, and the real time

visual performance of the actual simulation is still satisfactory for sample times

greater than 0.1 ms.

Chapter 7

Conclusion

The project report has presented a MATLAB simulator developed to visualize

the concepts of HPFC, OAL and the combination of the two, also known as

HOAL. It has been a valuable resource for gaining more insight into the theory

and existing ideas, as well as shed light on what challenges remain to be solved.

From the experiments, OAL is concluded to be a simple and intuitive con-

cept with a lot of potential. This conclusion is drawn based on the experiments

of the snake robot propelling forward. Despite the approximations made,

the fraction of the HPFC idea applied to the simulator has proven that the

inclusion of HPFC in realising the concept of HOAL is a step in the right

direction. This is however not based on any direct use of HPFC, but rather the

lack of it. More particularly, the fraction applied cannot be considered hybrid

position/force control, as it is more of a shape control adapted to the constraints

through the projections from the HPFC theory of West and Asada [4]. Trying

to foresee the consecutive forces resulting from the movement and shape of the

75

76 CHAPTER 7. CONCLUSION

robot and thereby finding an optimal configuration of path and obstacles is a

cumbersome operation. It is also a poor and very simplified way of controlling

the propulsion, and thus it is obvious that explicit control of the forces should

be included into this operation and that HPFC is a significant idea.

Consequently, it has been proven that the constraints, which are the founda-

tion of the spaces in which shape and force can be controlled, are a significant

part of the problem. In this project, the model of the robot dynamics excluded

these constraint and instead introduced them in an approximation of the veloc-

ities, which again led to the laws of conservation of energy and momentum

being violated. It is assumed that a more integrated and implicit definition of

these constraints would enable the OAL method to benefit further from HPFC.

Finally, it can be stated that the concept of HOAL has been verified by

means of analyzing visual experiments, but needs to be researched further for

a more mathematical and solid basis. Future work regarding the challenges

around this is presented below.

7.1 Future work

The most significant challenge per now is concluded to be defining and analyz-

ing the constraints and resulting constraint forces between the snake robot and

the environment. As the method of West and Asada [4] is not considering the

dynamics of the system, it is proposed to adapt the method of Yoshikawa [5]

to the snake robot in future work. This would yield a dynamical model with

the obstacle constraints integrated, rather than introducing them explicitly and

adding the resulting forces subsequently.

When it comes to the path following performance, a clear deficiency in

7.1. FUTURE WORK 77

the applied method is the calculation of the desired angles. As mentioned in

Chapter 6, solving this challenge by means of an optimization problem would

most probably return more satisfying results.

All experiments and calculations are based on the knowledge of the de-

sired path. The path and obstacles are thus manually designed to achieve

the presented results. However, a person will not necessarily see the most

optimal path in a cluttered environment, nor is it a realistic action to define it

manually in real life scenarios. Methods like model predictive control (MPC)

or reinforcement learning (RL) are proposed for future work in finding the

optimal path as the robot moves through the environment.

78 CHAPTER 7. CONCLUSION

Bibliography

[1] Ø. Stavdahl. “Working note: Hybrid Position/Force Control for Per-

ception Driven Obstacle Aided Locomotion (HOAL) in Snake Robots”.

unpublished. 2019.

[2] A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Liljebäck.

“Snake robot obstacle-aided locomotion: Modeling, simulations, and

experiments”. In: IEEE Transactions on Robotics 24.1 (2008), pp. 88–104.

[3] M. H. Raibert, J. J. Craig, et al. “Hybrid position/force control of manip-

ulators”. In: Journal of Dynamic Systems, Measurement, and Control 103.2

(1981), pp. 126–133.

[4] H. West and H. Asada. “A method for the design of hybrid position/force

controllers for manipulators constrained by contact with the environ-

ment”. In: Proceedings. 1985 IEEE International Conference on Robotics and

Automation. Vol. 2. IEEE. 1985, pp. 251–259.

[5] T. Yoshikawa. “Dynamic hybrid position/force control of robot manipu-

lators – description of hand constraints and calculation of joint driving

force”. In: IEEE Journal on Robotics and Automation 3.5 (1987), pp. 386–392.

79

80 BIBLIOGRAPHY

[6] T. Klafstad. “Hybrid Position/Force Control for Obstacle Aided Locomo-

tion in Snake Robots”. unpublished. 2019.

[7] K. M. Lynch and F. C. Park. Modern Robotics. Cambridge University Press,

2017, pp. 272–286.

[8] K. M. Lynch and F. C. Park. Modern Robotics. Cambridge University Press,

2017, pp. 421–429.

[9] K. J. Waldron and J. Schmiedeler. “Kinematics”. In: Springer Handbook of

Robotics. Springer, 2016, pp. 11–36.

[10] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl. Snake robots:

modelling, mechatronics, and control. Springer Science & Business Media,

2012.

[11] R. M. Murray. A mathematical introduction to robotic manipulation. CRC

press, 2017, pp. 155–189.

[12] E. Rezapour, K. Y. Pettersen, P. Liljebäck, J. T. Gravdahl, and E. Kelasidi.

“Path following control of planar snake robots using virtual holonomic

constraints: theory and experiments”. In: Robotics and biomimetics 1.1

(2014), p. 3.

[13] C. Holden, Ø. Stavdahl, and J. T. Gravdahl. “Optimal dynamic force

mapping for obstacle-aided locomotion in 2d snake robots”. In: 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.

2014, pp. 321–328.

[14] Z. Y. Bayraktaroglu and P. Blazevic. “Understanding snakelike locomo-

tion through a novel push-point approach”. In: (2004).

BIBLIOGRAPHY 81

[15] S. Chiaverini, G. Oriolo, and I. D. Walker. “Kinematically redundant

manipulators”. In: Springer handbook of robotics (2008), pp. 245–268.

[16] E. S. Conkur and R. Gurbuz. “Path planning algorithm for snake-like

robots”. In: Information Technology And Control 37.2 (2008).

[17] I. The MathWorks. Symbolic Math Toolbox. Natick, Massachusetts, United

State, 2019. url: https://www.mathworks.com/help/symbolic/.

https://www.mathworks.com/help/symbolic/

	Abstract
	Sammendrag
	Preface
	Nomenclature
	List of Tables
	List of Figures
	Introduction
	Previous work
	Scope of the project
	Simplifications
	Contributions

	Report structure

	Model specifications
	Assumptions
	Further model description
	The snake robot
	The environment
	The obstacles
	The optimal path

	Background theory
	Snake robot kinematics
	Constrained kinematics

	Snake robot dynamics
	Constrained dynamics
	Momentum

	Computed torque control
	PD control
	Feedforward control
	Feedforward and feedback linearization

	Obstacle aided locomotion (OAL)
	Hybrid position/force control (HPFC)
	Constrained motion
	Multiple constraints
	Passive joints
	Dynamic HPFC
	HPFC for snake robots

	Projection onto path
	Contact detection

	The simulator
	Simplifications and limitations
	Program flow
	User guide
	Program code summary
	Dynamics functions
	Kinematics functions
	Contact Jacobian function
	Projection function
	Control
	Visualization

	Experiments
	Obstacle-free environment
	Single reference computed torque control
	Path alignment

	Collision analysis
	Single obstacle interaction

	OAL simulation scenarios
	Simple propulsion
	Obstacle interaction without propulsion
	Unsuccessful propulsion attempt along path
	Propulsion along path

	Discussion
	Effects of the contact behaviour simplification
	Review of the path alignment method
	Further insights from experiments

	Conclusion
	Future work

	Bibliography

