
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

David Bjerregaard Madsen

Procedural City Generation in Unity
Engine

Master’s thesis in Industrial Cybernetics

Supervisor: Sverre Hendseth

June 2020

David Bjerregaard Madsen

Procedural City Generation in Unity
Engine

Master’s thesis in Industrial Cybernetics
Supervisor: Sverre Hendseth
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Assignment Description
A back-end for drawing a procedurally generated city environment shall be developed with
applications in game development in mind. The software is to be implemented using Unity
engine as the main development platform.

The software should be modular and have a variable input in the form of manipulating
a user interface or configuratin file, which determines the properties and features of the
generated geometry.

The student shall as a background study examine existing methods on how urban geometry
can be modeled, and make choices/recommendations on the methods to implement. New
methods may also be investigated. Note that even though ”graphics quality” is great, what
will make the world interesting is the level and variation of detail rather than the graphics
quality itself.

A software demo is to be presented, showcasing the capabilities of the system.

Student:

David Bjerregaard Madsen

Supervisor:

Sverre Hendseth

Abstract

Procedural generation is an ever increasing area of research with a wide number of appli-
cations. In this thesis we present and discuss existing methods of procedurally generating
urban environments, most importantly by Parish and Müller (2001) and Chen et al. (2008).

A module based generation model is described and discussed. Using Unity engine as
the development platform, several of the existing methods as well as some new techniques
are implemented. Road networks are generated using hyperstreamline tracing over a Perlin
noise field and connected using a Bézier curve connection algorithm. A new technique for
generating building primitives based on underlying road geometry is devised and imple-
mented. Meshing techniques for both road generation and building primitives is discussed
and implemented. The results are presented and compared with real life examples, along
with the strengths and limitations of the developed system. A study is also done to mea-
sure performance and scalability.

The results suggest that hyperstreamline tracing is a viable method of generating road
paths. A high degree of variation was achieved with adjusting a few input parameters. The
lower detail level was found to be inadequate. The paper concludes that while the overall
macroscopic level of detail was satisfactory, the implemented system is too crude and
requires additional development to be a viable alternative to manual game world creation
at this stage.

i

Sammendrag

Prosedyrisk generering er et stadig økende forskningsområde med en rekke bruksområder.
Denne avhandlingen undersøker eksisterende og nye metoder innen prosedyrisk generering
av urbane områder, med hovedvekt på verkene av Parish and Müller (2001) og Chen et al.
(2008).

En modulbasert modell blir beskrevet og diskutert. Flere eksisterende og nye metoder
implementert med Unity-motoren som utviklingsplattform. Veinett blir generert ved å
tegne strømlinjer i et underliggende Perlin-støyfelt, og koblet sammen ved med Bézier-
kurver. En ny teknikk for å generere bygningsprimitiver basert på underliggende veige-
ometri blir utviklet og implementert. Meshing-teknikker for både vei- og bygningsgenerering
blir diskutert og implementert. Resultatene blir presentert og sammenlignet med virkelige
eksempler, i tillegg til styrkene og begrensningene til det utviklede systemet. En studie
blir gjennomført for å undersøke systemets ytelse og skalerbarhet.

Resultatene foreslår at å tegne strømlinjer er en brukbar metode for å generere veinett.
Høy grad av variasjon ble oppnådd ved å justere få inngangsparametre. Detaljnivået var
ikke tilstrekkende. Det konkluderes med at makroskopisk detaljnivå var tilstrekkelig, men
at det implementerte systemet fortsatt trenger ytterligere utvikling for å være et brukbart
alternativ til å manuelt generere spillverdener ved dette stadium.

ii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 Motivation & Problem Description . 1
1.2 Project Goal . 2

2 Background 3
2.1 Procedural Generation and its Applications 3

2.1.1 Applications in Video Games 3
2.1.2 Applications in Visual Effects 4
2.1.3 Limitations and Challenges . 5
2.1.4 Commonly Used Methods . 5

2.2 Unity Engine . 8
2.2.1 Game Objects, Components & Scripting 8
2.2.2 Mesh Rendering . 9

2.3 Related Work . 11
2.3.1 Street Network Modeling . 11
2.3.2 Procedurally Generated Buildings 13
2.3.3 Spline-Based Procedural Geometry 14

3 Analysis and Design 17
3.1 Specification . 17
3.2 Generation Modules . 18

3.2.1 Structure & Hierarchy . 18
3.2.2 Road Network Generation . 18
3.2.3 Building Generation . 20

3.3 Meshing . 21
3.3.1 Road Meshing . 22
3.3.2 Building Meshing . 22

iii

4 Implementation 23
4.1 System and Software . 23

4.1.1 Platform & Language of Choice 23
4.1.2 System Specifications . 23

4.2 Development Methodology & Structure 24
4.2.1 Data Structures . 24

4.3 Road Network Generator . 26
4.3.1 On Tensor Fields, Scalar Fields and Noise 26
4.3.2 Tracing Tensor Fields . 26
4.3.3 Road Interconnection using Bézier Curves 28
4.3.4 Mesh Generation . 30
4.3.5 Generating the Road Network 34
4.3.6 Optimizations . 36

4.4 Building Generator . 38
4.4.1 Curved Buildings . 38
4.4.2 Mesh Generation . 40
4.4.3 Optimizations & Improvements 44

4.5 City Generator . 46

5 Results 47
5.1 Generation Results . 47

5.1.1 Strengths . 48
5.1.2 Limitations . 52
5.1.3 Performance Evaluation . 54

6 Discussion 57
6.1 Evaluation . 57

6.1.1 Road Network Types . 57
6.1.2 Performance . 58
6.1.3 Data Structures . 59
6.1.4 Building Generation . 59

6.2 Reflections . 60

7 Conclusion 61
7.1 Further Works . 62

7.1.1 Key Improvements . 62
7.1.2 Optimizations . 63

Bibliography 65

Appendix 67

iv

List of Figures

2.1 Screenshot from Minecraft . 4
2.2 L-system modeling the growth of a plant (Bhadury, 2017) 6
2.3 Gaussian noise in comparison to Perlin noise (Thomas, 2011) 6
2.4 Example of a graph illustrating a Markov chain process. The edge costs

represent the probability of moving between nodes in the direction of the
arrow. 7

2.5 Voronoi cells generated from randomly scattered points (Hosier, 2016) . . 7
2.6 Example of components attached to a game object. Other than the default

transform, mesh filter and mesh renderer components are attached to de-
fine the mesh and draw the cube to screen. A box collider is also attached
to allow for physics interactions. Screenshots from Unity engine. 8

2.7 Various shaded objects with their wireframe meshes visible. Note the dif-
ference in polygon count between the curved and flat surfaces. Screenshot
from Unity engine. 9

2.8 Two identical square meshes where the leftmost is flipped 180o along the
x-axis (red). The triangles of the left mesh are thus not visible to the
camera. Screenshot from Unity engine. 10

2.9 Reflection of light off a surface . 10
2.10 Principle of the self sensitive L-system in CityEngine (Parish and Müller,

2001) . 11
2.11 Examples of hyperstreamline grids traced using RK4 by Evans (2015) . . 13
2.12 L-system building generation process (Parish and Müller, 2001) 14
2.13 Procedurally generated facade textures (Parish and Müller, 2001) 14
2.14 Examples of Bézier curves of different degrees 15
2.15 Spline-based procedurally generated race track using cubic Bézier curves,

screenshot from Holmér (2015) . 16

3.1 Generation modules block diagram . 18

v

3.2 Alternate hyperstreamline tracing principle. Each seed point generates
roads in either direction with the opposite (orthogonal) tensor field relative
to its parent road. 19

3.3 Path offset principle forming basis for buildings (top view) 20
3.4 Simplified illustration of ray casting collision detection when generating

buildings . 21
3.5 Principle behind generating flat meshes representing the road face (top view) 22

4.1 Game object structure hierarchy example. Screenshot from Unity engine. 24
4.2 World vs local coordinate systems. The next point P1 is obtained by mov-

ing distance h forward (along the local x-axis) relative to the local coordi-
nate system. 28

4.3 Quadratic Bézier curve and rotation alignment. By aligning the rotation at
Pd along line segment Pa−Pc, the correct tangential rotation is achieved.
In this example, Pb is the control point, and Pa and Pc are the points
obtained from the first layer of interpolation. 30

4.4 Example road profile with a 6 wide road and 1.5 wide ”sidewalks” on
either side. Vertex coordinates are relative to a central symmetric axis, as
this puts the profile centered on the road path. 31

4.5 Section of the road mesh seen from above. In this example, a profile length
ofw = 3 is used, resulting in 4 triangles and subsequently 6 vertices (black
dots) per row in the mesh. Vertex indices are displayed in the parenthesis
and the winding order follows the arrows. 32

4.6 Shaded wireframe view of a section of a generated road using a profile
length of w = 2. A simple road texture is also applied. Screenshot from
Unity engine. 33

4.7 Reduced search space as a result of the implementation of chunks. Here a
smaller search radius of 4 chunks is used to illustrate the principle. 37

4.8 Suspension bridge meshing principle between two point paths. Notice that
the triangles appear opposite in the rightmost mesh, to keep the winding
order clockwise relative to the camera. 40

4.9 An example of the generated buildings using the meshing principles de-
scribed in section 4.4. The offset paths described in algorithm 12 are high-
lighted for clarity. The stapled lines represent the ”paths” from the first
and last elements of the 4 main paths that define the front and back faces.
Shaded wireframe screenshot from Unity engine with overlayed graphics. 43

4.10 Shaded wireframe view of two generated intersections. In (a) the raycast-
ing failed to detect the neighboring building and a building was placed on
top of the neighboring ones. Screenshots from Unity engine. 45

4.11 Example of initial parameters for starting the generation process. 46

5.1 An example city generated by our system where the initial parameters
from figure 4.11 are used. Screenshot from Unity engine. 47

5.2 Square grid features compared to the city grid of Barcelona. 48
5.3 Circular road features generated by our system compared with similar fea-

tures found in Paris. 48

vi

5.4 The resulting generated city when using a linear gradient field f(p) =
x+ z. Screenshot from Unity engine. 49

5.5 Differences in building skip rate with the same road network parameters.
Lower skip rate results in more densely placed buildings, and this param-
eter can thus be adjusted to account for population density. 50

5.6 Low skip rate, low branching interval, simulating a densely populated
large city. Screenshot from Unity engine. 51

5.7 High skip rate, high branching interval and low building height to model
an area of lesser population density. Screenshot from Unity engine. 51

5.8 Top down comparison of noise field scale differences. Screenshot from
Unity. 52

5.9 Mesh artifacting from badly generated spline connections. Screenshot
from Unity engine. 53

5.10 Example showcasing the (lack of) low level detail produced by the system.
Screenshot from Unity engine. 54

5.11 Runtime vs. number of tracing iterations. Data plotted from table 5.1. . . 55

vii

Chapter 1
Introduction

Procedural generation is a technique often used to describe automatically generated data.
This is typically achieved through the application of algorithms based on organized ran-
domness, where a set of boundary rules are set and the contents of said boundaries are
generated using different methods and functions. Procedural generation has applications
in many areas, from entertainment such as visual effects, animation and video games to
industrial applications like architecture or engineering.

With an ever increasing urban population worldwide the modeling and generation of
city environments is a highly relevant application for procedural generation. However, it is
far from a new area of research. Generating a whole city is naturally a complex task, and
therefore a number of subproblems requiring different solutions need to be tackled. In this
regard, there exist a multitude of projects focused around procedurally generating various
elements of an urban environment.

1.1 Motivation & Problem Description
The last decades has seen a large increase in game development, with more and more
games released each year. Many of these games take place in urban environments, and
with more and more processing power available to both developers and end users, the size
and complexity of game maps naturally increase. However, most of these game maps are
typically manually created. This may put an upper limit in both size and content variation,
as designing game worlds can be a time consuming process.

To increase the time efficiency and content variation in game maps, elements of pro-
cedural generation may be introduced. The use of procedural generation in game devel-
opment has long been a popular topic. One of the advantages of procedural generation is
that we can achieve high degrees of variation with little additional time investment. This
naturally makes partly or completely procedurally generated game worlds highly desirable.

1

Although enticing, it is far from a trivial area of research. There exists no general
model for procedurally generating content as a whole. Ad-hoc methods are often used to
take care of special cases, as it can be difficult to completely generalize an increasingly
complex system. Secondly, the limitations of current procedural generation techniques
may not allow for the level of detail needed for a completely auto-generated world, and as
such procedural generation is often used in combination with manual adjustment to pro-
duce the desired result.

When applying procedural generation to generate urban environment, these challenges
become evident. We require different models to generate different elements of a city; from
the road network with its interconnection of roads and intersections, bridges or tunnels
that may be dependent on the surrounding terrain, or the building shapes, placements and
sizes. On top of this, whether or not these principles are useful to game development poses
additional requirements to the model itself. We may require a model that can be rapidly
altered and tested to allow for fast prototyping, and performance restrictions may be taken
account for. Combining all this into a single system comprises a difficult challenge. How,
if at all, can this be done?

1.2 Project Goal
The goal of this project is to survey existing procedural generation techniques related to ur-
ban environments and investigate their viability for game development. We aim to develop
a system for procedurally generating cities and urban geometry in Unity engine using the
discovered methods. The possibility of implementing new techniques is also to be con-
sidered where applicable. The hypothesis is that existing methods used to generate urban
geometry can be applied in Unity engine to allow for rapid prototyping of game worlds.
Thus we aim to create a general model that may serve as a foundation for producing pro-
cedural citycapes, mainly with applications in game development in mind.

Research Questions
• Can existing methods of procedurally generating cities be efficiently implemented

in Unity engine?

• Is the designed system viable for applications in video game development?

2

Chapter 2
Background

2.1 Procedural Generation and its Applications

The areas where procedural generation can be applied is almost limitless. Anywhere wher
large amounts of content is needed, procedural generation can usually be applied in some
form.

2.1.1 Applications in Video Games

Video game development and design may be one of the areas where procedural generation
is most commonly used. Developers can utilize powerful techniques for quickly generating
a large variety of content. Within game design, procedural generation is also used for a
variety of different purposes; from generating levels or whole game worlds to generating
quest-lines, objectives or encounters during gameplay.

Procedural Level Design

One of the earliest games with procedurally generated levels is Rogue from 1980. The
text-based dungeon exploration game takes the player through a maze of monster filled
dungeons, with the main objective being finding the Amulet of Yendor at the end. In
addition to the dungeons, monster encounters and collectable items are also procedurally
generated, making each playthrough different from the last. A multitude of similar role-
playing games have been developed since. These games are collectively referred to as
Roguelikes after the original game, and all build on the same principles of procedurally
generated dungeon levels in varying ways.

Another game that implements extensive use of procedural level generation is the
widely popular role-playing game series Diablo from Blizzard Entertainment. The games
all feature a third-person isometric style map where the player navigates the character

3

around. Although the games generally feature fixed storylines, the dungeons and wilder-
ness areas between key cities are procedurally generated.

Open-World Procedural Games

Many modern video games are open-world, meaning the player can move freely around in
the game world with little or no pre-defined objectives to follow. These games emphasize
heavily on the exploration aspect of gameplay, and are therefore ideal candidates for large,
procedurally generated worlds. Many open-world games are often also sandbox games,
where the player is able to create, modify and destroy the game environment, much like a
child in a playground sandbox.

Figure 2.1: Screenshot from Minecraft

One such game is Minecraft (2011). The game features a sandbox world of biomes
(forests, deserts, oceans etc.) and underground cave systems, all built up by discrete blocks
(voxels) of varying materials. The application of procedural world generation in this case
gives the player almost endless opportunity to travel and explore, which would not have
been practically possible in a manually made game world. The terrain is generated using
Perlin noise1.

Similarly, in No Man’s Sky (2016) the game revolves around visiting and exploring
different planets, gathering resources and engaging in combat with alien organisms living
on the planets. Each planet is procedurally generated, and has an unique ecosystem of
flora and fauna.

2.1.2 Applications in Visual Effects
Another area where procedural generation is often used is in visual effects. Many movies
today have elaborate visual effects and require lots of 3d rendered objects. In Peter Jack-

1According to https://minecraft.gamepedia.com/Customized#Advanced settings, accessed 2020-03-29. For
more details about Perlin noise, see section 2.1.4

4

son’s Lord of the Rings triolgy, large armies of soldiers were procedurally generated using
the software Massive. The software was initially developed specifically for the films, and
has since become the leading software for generating large, natural-looking crowds and
autonomous character animation (Massive Software, 2020). Notable big picture titles that
utilize the software include Inception (2010), I, Robot (2004), Avatar (2009). In addition
to its motion picture applications, it can also be used to simulate crowds for engineering
and architectural purposes.

2.1.3 Limitations and Challenges
A problem often faced with procedurally generated content is repetitiveness. Although
the world in Minecraft is practically endless, the lesser features of the terrain is repeated
with little variation. This is a common factor in procedurally generated content. Many
times procedurally generating everything is simply not viable, as the exercise of designing
the generator functions can become as time consuming as it would be to just generate the
content manually, defeating the purpose of using procedural generation.

2.1.4 Commonly Used Methods
As procedural generation has many applications in a wide amount of fields, a number of
different methods are used. In terrain generation, a noise function such as Perlin noise
is often used to create terrain (Parberry, 2015), and L-systems may be used to describe
complex growing patterns in plants (Lindenmayer, 1968).

L-systems

Lindenmayer systems, or L-systems, are a form of rewriting systems that use a set of rules
to succesively modify an object through iteration (Lindenmayer, 1968; Prusinkiewicz and
Lindenmayer, 1990). L-systems were first devised by Lindenmayer to model the growth
processes of plant development, and are useful in drawing fractal patterns and shapes. The
L-system starts with an axiom ω, typically a string, which serves as the root of the gen-
eration. A set of rules are applied at each iteration, succesively modifying the previous
iteration. Deterministic in nature, L-systems are capable of producing complex geometri-
cal patterns from a compact dataset.

Coherent Noise Functions

When generating terrain, a coherent noise2 function is often used. The noise function is
often rescaled and stacked with varying amplitude and frequency to create different levels
of features in the terrain.

One such noise function is Perlin noise, first described by Perlin (1985). The func-
tion was mainly developed in two dimensions for generating textures, but can also be

2Coherent noise is a smooth (continuous), pseudorandom type of noise, whereas typical Gaussian or white
noise is random and discontinuous in nature.

5

Figure 2.2: L-system modeling the growth of a plant (Bhadury, 2017)

implemented in any number of dimensions. The algorith works in short by calculating
pseudorandom gradient vectors at regular intervals, and interpolating between these and
the sample point to get a noise value. In the one-dimensional implementation of the algo-
rithm, the gradient vectors are replaced by scalars in the range [−1, 1] instead.

(a) Gaussian noise (b) Perlin noise

Figure 2.3: Gaussian noise in comparison to Perlin noise (Thomas, 2011)

In addition to generating terrain, coherent noise functions can be used for generating a
variety of elements. Notable application examples include volumetric clouds (Kutz, 2012)
and generating simulated breast tissue (Dustler et al., 2015).

Markov Chains

Markov chains is a stochastic mathematical model that describes a chain of possible events.
Each event in a Markov chain satisfies the Markov property, meaning the event is indepen-
dent of all previous events. The chain may be represented as a directed graph, in which

6

each node has edges with the associated probabilities of a move along the respective edges.
Similar to L-systems, such models can be used to describe and model many natural pro-
cesses, and have applications in physics, chemistry and biology.

Markov chains can also be used to procedurally generate text. By training the model
on existing text, a Markov model may be used to generate text that is visually similar to
the training data. The subreddit Subreddit Simulator consists of exclusively robot users
that use Markov chains in this manner to generate content.3

A

B

D

C0.3

0.7

0.4

0.6

0.2
0.2

0.80.5

0.3

Figure 2.4: Example of a graph illustrating a Markov chain process. The edge costs represent the
probability of moving between nodes in the direction of the arrow.

Voronoi Diagrams

Voronoi diagrams or Voronoi cells is a method of partitioning an area of points into cells
based on the proximity to the nearest point. The borders between the cells represent the
points of equal distance between two points. The technique produces cells of irregular
polygons when applied to randomly scattered points on a plane, but will also form regular
tesselation of hexagons when applied to a 2D lattice.

Figure 2.5: Voronoi cells generated from randomly scattered points (Hosier, 2016)

3According to https://www.reddit.com/r/SubredditSimulator/comments/3g9ioz/
what_is_rsubredditsimulator

7

https://www.reddit.com/r/SubredditSimulator/comments/3g9ioz/what_is_rsubredditsimulator
https://www.reddit.com/r/SubredditSimulator/comments/3g9ioz/what_is_rsubredditsimulator

2.2 Unity Engine

Unity Engine is a game development engine first released in June 2005. The engine, orig-
inally released as a MacOS-exclusive, has since its introduction been extended to support
over 25 platforms. It features a scripting API in C# as well as a drag and drop user interface
which allows users to make both 2D and 3D games. The scripting API features a wide va-
riety of extension methods useful when making games on top of the native libraries in C#.
This flexibility and ease of use has led it to become a popular game development engines,
with a large number of released games using Unity as the main development platform.

However, the latter years Unity has seen an extension into industries outside of game
development.4 From visual effects and animation rendering to engineering and architec-
tural applications, Unity’s 3D rendering engine is a powerful tool that has applications in
a number of industries. In engineering, Unity can be used in product lifecycle and 3D
rendering, with support for CAD model importing and rapid prototyping.

2.2.1 Game Objects, Components & Scripting

Unity is built around game objects, which is the base class for all entities in a scene.
Game objects serve as a container for attached components. The components are exten-
sion classes that add functionality to otherwise inert game objects. By default, an empty
game object has a transform component attached, which is used to manipulate spatial po-
sition, rotation and scale of the object. Unity has an array of built in components that can
be attached, from mesh rendering to physics interactions and collisions, or sound manipu-
lation. Unity’s scripting API also allows for trivial implementation of custom components,
which allows for near limitless customization.

(a) Components overview panel in Unity (b) 3D view of the resulting cube

Figure 2.6: Example of components attached to a game object. Other than the default transform,
mesh filter and mesh renderer components are attached to define the mesh and draw the cube to
screen. A box collider is also attached to allow for physics interactions. Screenshots from Unity
engine.

4For a more detailed list of application areas, see https://unity.com/solutions

8

https://unity.com/solutions

Game objects also support inheritance, with the transform of a child object being de-
pendent on its parents transform. Game objects can also be created and destroyed at run-
time, and components can be attached in code outside of the drag-and-drop interface.

2.2.2 Mesh Rendering
Related to game development and procedural generation are also meshing. In general a
mesh is a subdivision of a continuous geometrical area into discrete cells. When drawing
3D objects to a screen, each object is represented as a mesh of vertex coordinates connected
in sets of three to create triangular faces. The vertex coordinates and triangles are then
mapped onto 2D pixel coordinates on screen during rendering to produce the image of the
3D object. Meshing is used mainly to simplify continous geometry to save computation
time. Combined with texturing and lighting techniques, a relatively low-poly mesh can
appear indistingushable from a continunous surface.5 By varying the complexity of the
mesh, one can trade off detail for faster computation time. This technique, often called
level of detail or simply LOD, is utilized extensively in game development. In practice,
this is implemented by replacing the mesh with a lower poly mesh when the object is
farther from the camera.

Figure 2.7: Various shaded objects with their wireframe meshes visible. Note the difference in
polygon count between the curved and flat surfaces. Screenshot from Unity engine.

Since meshing and rendering 3D objects can be complex tasks, an advantage with
using Unity is that it contains built-in components for this. As mentioned briefly in the
section above, unity has two components responsible for mesh rendering. The mesh filter
acts as a container for the mesh geometry; the triangles and vertices arrays as well as the

5Polygon count refers to the number of triangles in the mesh. A higher poly count is naturally associated with
increased computational load, so keeping the polygon count at a minimum is usually desirable

9

UV coordinates for texturing. The mesh renderer is responsible for drawing the mesh to
the screen. The mesh renderer also contains methods for lighting, texturing and shading.
As each triangle of vertices naturally has two faces, but only one can be drawn to the screen
at any given time, it is common practice for rendering algorithms to only render one face
per triangle in any given mesh. Which face to render is given based on the winding order
of the face. Unity engine uses a clockwise winding order to render mesh faces, meaning
vertices forming each triangle should be listed in a clockwise order.

Figure 2.8: Two identical square meshes where the leftmost is flipped 180o along the x-axis (red).
The triangles of the left mesh are thus not visible to the camera. Screenshot from Unity engine.

The mesh renderer also handles texturing and lighting. To texture the mesh, a second
set of coordinates usually called UV coordinates6, are used. The flat texture is mapped
onto the vertex coordinates of the mesh, by associating each vertex with an UV texture
coordinate. The UV coordinates are typically in the range [0, 1] in both the u and v axes
relative to the texture. To calculate lighting, the renderer uses the normal vectors of each
vertex, as the reflected light intensity is dependent on the angle of attack on a surface
(figure 2.9).

N

L R

V

Observer

Light Source

Figure 2.9: Reflection of light off a surface

6”UV” is used instead of ”XY” to avoid confusion, as ”XYZ” axis labels are typically reserved for vertex
coordinates

10

2.3 Related Work

Procedural generation of cities is an open research area with many interesting approaches
and solutions. The complex city environment gives rise to a lot of interesting and chal-
lenging procedural generation problems. In this section we will give an overview of the
subproblems faced when modeling and generating cities and related content, and present
a selection of existing approaches to these challenges.

2.3.1 Street Network Modeling

Central to the problem of modeling urban areas is modeling street networks. In the sys-
tem CityEngine developed by Parish and Müller (2001), an extended L-system is used for
generating both the road networks and buildings in a virtual city. The system takes into
account population density maps as well as geographical data to to connect densely popu-
lated areas with networks of highways. The highway network is subsequently subdivided
into smaller streets and lastly populated with procedurally generated buildings to form a
complete city. A unique aspect of this L-system is the fact that it is self-sensitive, meaning
the network generated can intersect with itself and form closed loops. This is done by
generating intersections if the street end is close or overlaps another street as seen in figure
2.10.

Figure 2.10: Principle of the self sensitive L-system in CityEngine (Parish and Müller, 2001)

Chen et al. (2008) approaches the problem of modeling street networks by utilizing
user defined tensor fields as a basis for generating street networks. Similar to CityEngine,
this approach takes in geographical data as well as user input to generate a tensor field,
which the road network is generated from. In general, a tensor field T is a continuous
function that associates every point p = (x, y) ∈ R2 with a tensor T (p) (Chen et al.,
2008; Delmarcelle and Hesselink, 1994). An example of a tensor used for road network
generation is a symmetric 2× 2 matrix on the form:

R

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
, R ≥ 0, θ ∈ [0, 2π) (2.1)

11

An important concept when it comes to tensor fields are hyperstreamlines, first pre-
sented by Delmarcelle and Hesselink (1993). Hyperstreamlines are curves tangent to an
eigenvector field, and have a wide range of applications. By definining θ = tan ∂x

∂y , the
tensor in (2.1) has major and minor eigenvectors parallel to and perpendicular to the gra-
dient of the field respectively. Thus, the roads of a road network can be traced along the
hyperstreamlines to get a road network that follows the geographical data of the surround-
ing terrain Chen et al. (2008). They also demonstrate how other tensors than (2.1) can be
used to form different patterns of road networks, for example a “circular” tensor described
by Zhang et al. (2007) to form radial type road patterns, and techniques on how to blend
different tensor fields for interesting results.

To trace the hyperstreamlines along the eigenvector field, Chen et al. (2008) use a
numerical integration technique based on the Runge-Kutta methods described by Cash
and Karp (1990). This family of integration methods is often used to calculate numerical
solutions to otherwise continuous differential equations. One of the simplest and most
well known of these methods methods is the Euler method, which can be expressed on the
form (Egeland and Gravdal, 2003):

yn+1 = yn + hf(yn, tn)

where h is the step size, yn is the current state, and ẏ = f(yn, tn) is some continuous
time-varying function. The Euler method approximates the integral y =

∫
f(yn, tn)dt

with increasing accuracy as h becomes smaller, at the cost of increased computation time.
However this method has its drawbacks, namely that large fluctuations in ẏ may require
very small step sizes h in order to give an accurate approximation. A solution to this is
calculating more approximations of f(yn, tn) recursively, and using a linear combinations
of these approximations to calculate the next step yn+1. More accurate approximations
increases the stability region of the numeric integration method (the range of hwhich gives
accurate solutions), and thus a larger step size can be utilized (Egeland and Gravdal, 2003).
This concept is the core of Runge-Kutta methods, and σ-stage Runge-Kutta methods can
be written on the general form:

k1 = f(yn, tn)
k2 = f(yn + ha21k1, tn + c2h)

k3 = f(yn + h(a31k1 + a32k2), tn + c3h)

...
kσ = f(yn + h(aσk1 + · · ·+ aσ,σ−1kσ−1), tn + cσh)

yn+1 = h(b1k1 + · · ·+ bσkσ)

where k1, . . . ,kσ are the stage computations. The various parameters in the stage com-
putations of explicit Runge-Kutta methods are usually presented in a standard format as a

12

Butcher-array:
0

c2 a21

c3 a31 a32
...

...
...

. . .

cσ aσ1 aσ2 . . . aσ,σ−1

b1 b2 . . . bσ−1 bσ

One of the most common Runge-Kutta methods is the four stage explicit Runge-Kutta
method RK4. It is often referred to as the Runge-Kutta method as it is widely used. A
practical implementation of this method can be seen in the .NET implementation by Evans
(2015). The project uses the road generation methods of Chen et al. (2008), and uses RK4
to trace the hyperstreamlines through a tensor field. Since the tensor field is not a time
varying function, the time varying element of f(yn, tn) can be disregarded along with the
interpolation parameters c1, . . . , cσ . Furthermore, a point on the plane p is used as the state
vector y, thus the eigenvectors of T (p) can be approximated at each stage calculation. This
is done iteratively until the end of the map is reached, resulting in a traced hyperstreamline
along the tensor field. The process is then repeated at regular intervals in the plane for both
the major and minor eigenvectors for a complete road network. Examples of this can be
seen in figure 2.11.

(a) Grid tensor field (b) Radial tensor field

Figure 2.11: Examples of hyperstreamline grids traced using RK4 by Evans (2015)

2.3.2 Procedurally Generated Buildings
Another vital part of the cityscape is naturally the buildings in the city. As described by
Parish and Müller (2001), the buildings generated by CityEngine are modeled using a para-
metric, stochastic L-system. After the street network has been generated, it is subdivided
recursively into lots where buildings are placed. The buildings are then created based on

13

the lot size and a height value determined from the population density, as well as a user
set limit on building height. Using an iterative process including extrusion and transfor-
mations, the buildings are carved from the bounding box (lot area times the height). An
example of this process can be seen in figure 2.12.

Figure 2.12: L-system building generation process (Parish and Müller, 2001)

Rooftop templates are also utilized to give more detailed roofs than the L-system is
capable of generating. The output of the L-system is then fed to a parser that translates the
output string into geometry which can be drawn to the screen. According to the authors,
this method can produce a large variety in the outcome of buildings, but as the shape of the
building is determined by its ground plan, the functionality can not be represented using
this method.

The buildings are also procedurally textured. Different textures are layered in grids to
make up the buildings facades. This principle is illustrated in figure 2.13. By overlaying a
background texture, i.e. bricks, with a grid of window textures, they achieve a high degree
of variety in the textures of the facades of the buildings.

Figure 2.13: Procedurally generated facade textures (Parish and Müller, 2001)

2.3.3 Spline-Based Procedural Geometry
Another technique that is frequently used in procedural generation is spline-based geome-
try. A spline is a piecewise defined line segment that is generally obtained by interpolation

14

techniques. Splines have applications in many areas where parametric curves are use-
ful. One of the earliest published papers was by Birkhoff and de Boor (1964) at General
Motors, where they used splines to model automobile bodies in the early 1960s. A no-
table current-day application can be found in the Adobe software suite, where splines have
become a standardized tool in everything from creating vectorized paths to controlling an-
imations.

One of the most used spline types, named after French engineer Pierre Bézier is the
Bézier curve. Bézier curves utilize linear interpolation between one or more control points
to create a curved path. As seen in figure 2.14a, the curvature of the line between P0 and
P3 is determined by the control points P1 and P2. Note that the curved line at each end is
tangent to the line between the respective end point and its control point.

(a) Cubic Bézier curve (b) Quadratic Bézier curve

Figure 2.14: Examples of Bézier curves of different degrees

The simplest Bézier curve is one with a single control point shared by both end points.
The curve is obtained by first interpolating some distance t ∈ [0, 1] between line segments
P0 − P1 and P1 − P2. A point on the line between these first interpolation points is then
calculated using the same t-value. This third interpolation point “traces” the curve, as t
is varied between 0 and 1, as illustrated in figure 2.14b. The principle is the same for
the cubic Bézier curve, except it involves one more layer of interpolation between line
segments. The degree of the curve is derived from the fact that the successive layers of
linear interpolation that occurs as control points are added can be expressed as Bernstein
polynomials of degree n. In general, a Bézier curve of n degrees has (n−1) control points.

A notable application of Bézier curves in procedural generation is demonstrated in a
presentation by Holmér (2015) at Unity’s Unite conference in Boston 2015. By extending
the concept of 2D splines into three spatial dimensions, the author uses Bézier curves for
path creation in game development. The curves trace paths which are used to guide the
placement of a mesh, resulting in road geometry that can be modified with ease by moving
control points around.

15

Figure 2.15: Spline-based procedurally generated race track using cubic Bézier curves, screenshot
from Holmér (2015)

16

Chapter 3
Analysis and Design

In this chapter we present a high-level overview in the structure of the City Generator,
and discuss key aspects of each module’s functions and overall integration in the software
hierarchy.

3.1 Specification
A city generator system is to be designed. Existing methods as well as new proposed
methods are to be implemented in a hierarchy according to the problem description. We
require the ability to (1) generate a network of streets, and (2) populate the street network
with building geometry. The generated geometry shall be decided by some input variables,
which influence the output geometry.

Additionally we set the following non-quantizable high level requirements for the design
of the city generator system:

• Modularity: A high degree of modularity is desirable when generating a city. This
can be in the form of separating the generation elements into interchangeable mod-
ules or other ways to subdivide the hierarchy.

• Flexibility: We want the system to be flexible in the manner that we can generate
high variety of content.

• Scalability: Methods need to be sufficiently scalable.

With these requirements in mind we propose a module based, iterative generation
pipeline. When designing the generation pipeline, we take inspiration mainly from the
works of Parish and Müller (2001) and Chen et al. (2008).

17

3.2 Generation Modules
Much like the works of Parish and Müller (2001), the proposed city generator is structured
like a large-scale L-system with several successive modules each responsible for a subset
of the generation. However there are some differences to take note of. One of the key
differences is that the road network generation is based on hyperstreamline tracing like the
works of Chen et al. (2008), and not a self-sensitive L-system.

3.2.1 Structure & Hierarchy
The road network serves as the skeleton of the city and is generated first. Roads are gen-
erated iteratively, with several checks for overlap or collision. To connect road segments,
a Bézier curve connection algorithm is to be investigated. Upon completion of the road
network, the paths are passed on to the building generator. Using the road paths as a
framework, buildings are placed on either side of the roads. Checks for building over-
lap and placement relative to intersections are also performed. The generation order and
submodules are illustrated in figure 3.1.

Trace
Hyperstreamline

Initial
Parameters

Proximity
Detection

Repeat untill queue is empty

Spline
Connection

Road Network Module

Path Offset
Algorithm

Intersection
Detection

Extrude
Building

Geometry
Output

Repeat for all road paths

Building Module

Figure 3.1: Generation modules block diagram

3.2.2 Road Network Generation
To generate the road network, the tensor field tracing techniques described by Chen et al.
(2008) were investigated. There are several advantages of hyperstreamlines to trace roads,
however the main advantage is the ability to vary the underlying tensor field to get differ-
ent types of road networks. Another key advantage is that the field can take into account

18

heightmap data, and place roads accordingly, as described by Chen et al. (2008).

To trace the road paths, an algorithm similar to the methods described by Evans (2015)
is proposed. A single seed point is provided as the input, as well as the parameters for the
underlying tensor field and the road length. Using a tracing scheme similar to the methods
described in section 2.3.1, the hyperstreamlines are traced iteratively as polyline paths
through the map one at a time. During this tracing process, new seed points are picked
and added to a priority queue. As the first road is completed, the next seed point is popped
from the queue, and branching roads are generated in the same manner, except with the
opposite (orthogonal) tensor field being used (figure 3.2). This alternating hyperstreamline
tracing is repeated until the queue is empty.

Starting seed

Iteration 1 Iteration 2 Iteration n

Figure 3.2: Alternate hyperstreamline tracing principle. Each seed point generates roads in either
direction with the opposite (orthogonal) tensor field relative to its parent road.

Naturally by just naively generating roads on the basis of a tensor field, several prob-
lems may occur. Since a road of length n with m spacing between branching roads would
generate approximately n mod m additional seed points, this recursive behavior gives a
potentially endless number of branching roads. Several proposed solutions to constrain the
road generation are introduced. Firstly, a bounds check may be used to stop the generation
once the roads reach a certain bounding box in the terrain. As the road generation algo-
rithm iteratively adds new points to the polylines, terminating the generation process can
trivially be implemented upon reaching the bounds of the map. Additionally, by introduc-
ing a manual limit on seed queue length or number of road generation iterations, we can
also decide the number of roads even though there are still potential seed points available
in the queue.

Another problem that may arise is that the nature of certain tensor fields create cyclical
paths inwards towards a singular point. This may create tight loops that closely overlap
each other, which result in less than desirable road patterns. To prevent this, a proximity
check may be implemented to ”look” forward in a cone and detect the presence of nearby

19

roads, in which the generation of that particular road is terminated or connected to the
adjacent road. This technique is also used in implementations by both Evans (2015) and
Parish and Müller (2001).

In order to connect road endpoints seamlessly to adjacent roads where appropriate,
a spline based connection algorithm is proposed. We can therefore also utilize the cone
proximity check to check the angle between the road endpoint and the colliding road in
order to determine if a spline connection is appropriate. Using splines in this manner is
also advantageous because we do not have to take into account the underlying tensor fields
(major or minor) of the two particular roads that are to be connected.

3.2.3 Building Generation

As seen in Parish and Müller (2001), the authors generate buildings by extruding a base
area and modifying the extruded shape, turning it into a building-like object. Since pho-
torealism is not the main focus of this thesis, we will stick to representing buildings as
prism-like primitives of varying sizes. Due to the modular approach, the building genera-
tion can easily be extended in this manner to support more realistic building generation.

To generate our buildings, we need to take into account the road shape. At this stage
in the generation, the road geometry is already defined as seen in figure 3.1. We can
utilize this to generate our buildings, by selecting a subsection of a given road path and
offsetting it on either side of the road as a base for the building. By iteratively offsetting
each point orthogonally out from the road some distance d, we retain the curvature of the
road. This new subpath is further offset once more to form the basis for the bottom face of
the building. This principle can be seen in figure 3.3.

Section of road pathOffset paths

dBuilding width

Figure 3.3: Path offset principle forming basis for buildings (top view)

20

By extruding this face upwards, we can generate a prism-like shape that follows the
curvature of the roads, and whose proximal and distal faces are always perpendicular to
the road. This is ideal for a dense city as it allows for seamless placement of buildings
along paths of varying curvature. In addition by varying the length of the original road
path, the second path offset distance and the extrusion height, we can get high degrees of
variety in the generation outcome of the buildings despite the simple prism-like shape.

As the road network naturally consists of several intersections along the path, this also
has to be taken into account when placing the buildings. One solution is to check each
point for neighboring road points before offsetting. If the given road point has > 2 neigh-
bors, it is naturally an intersection of some kind and should be skipped. To ensure that
buildings do not overlap the intersection, the building length is cut short before intersec-
tion the intersection point, even if the building would otherwise stretch past the intersection
point. The next building is subsequently started immediately after the intersection.

Since the road network may be quite dense we might get overlap between adjacent
houses. To combat this, a collision detection system needs to be in place. A proposed
solution to this is using the built-in physics engine in Unity. As the buildings are populated
as 3D-objects in the scene, we can use ray cast methods to see if other buildings are within
proximity. If true, the particular building is scrapped and generation is advanced.

Existing building
detected

Ray casts

Generation
direction

Figure 3.4: Simplified illustration of ray casting collision detection when generating buildings

3.3 Meshing

In order to draw out city geometry, meshing techniques and algorithms are also needed.
As the general structure of the generation is iterative and successive, meshing algorithms
can be implemented in each step and customized to the different features that need to be
meshed.

21

3.3.1 Road Meshing
When generating the road meshes, a few simplifications can be taken into account. We can
think of the roads as a single face on the macroscopic level. Hence, we can use a single flat
mesh to draw out each road, and need not take into account the three-dimensional structure
of the road profile. However, in order to make the meshing more adaptible and allow for
three-dimensional road profiles later on, we will build the road mesh generator with this
in mind. This meshing principle is inspired by the procedural geometry techniques by
Holmér (2015) and is illustrated in figure 3.5.

Road path Resulting mesh

Vertices

Figure 3.5: Principle behind generating flat meshes representing the road face (top view)

3.3.2 Building Meshing
As mentioned in 3.2.3, the buildings are extruded from the base face. As the buildings
naturally need to be represented as three-dimensional meshes, the meshing algorithm for
each building is slightly more complex. However, we can implement a modified version
of the road mesh algorithm, as each face of the building can be meshed exactly like the
road meshes are generated, and then combined to a final convex1 mesh.

1A convex mesh is needed to utilize Unity’s collision detection methods.

22

Chapter 4
Implementation

This chapter gives a thorough overview over the implementation details in Unity engine
and key aspects of the methodology used during development. The implementation is
given on a high level basis, and assumes an understanding of the C# language and its
native libraries.1

4.1 System and Software

4.1.1 Platform & Language of Choice
This software project was developed in Unity engine, with C# as the main programming
language as specified in section 3.1.

4.1.2 System Specifications

Component Specification
OS Windows 10 Pro

CPU Intel Core i5-4670k @ 3.4GHz
GPU Nvidia GeForce RTX 2060
RAM 16GB DDR3 @ 1867MHz

Table 4.1: System specifications

1For more details on the Unity specific extension libraries, please refer to the Unity API documentation at
https://docs.unity3d.com/ScriptReference/

23

https://docs.unity3d.com/ScriptReference/

4.2 Development Methodology & Structure
As discussed in section 3, the generation hierarchy and associated modules are quite com-
plex and contain many steps. To ensure a robust implementation, the modules are devel-
oped in an iterative manner with a goal of each iteration adding features compatible with
the existing framework. This way we can not only ensure that basis features are working
properly before attempting to add more complexity, but also reduce debugging time on an
unnecessarily complex system.

4.2.1 Data Structures
Several data structures were needed to organize the data which define the generated ge-
ometry. In addition to basic arrays or matrices, a few custom data structures were also
implemented.

Game Objects in Unity

One of the advantages with using Unity engine is the modular game object mechanic
explained in section 2.2.1. In this project, the generation modules pictured in figure 3.1
are implemented as a hierarchy of game objects that generate game objects. Each road and
building are represented as individual game objects with their parent being the respective
generator modules.

Figure 4.1: Game object structure hierarchy example. Screenshot from Unity engine.

Oriented Points in Space

Since all of our generated items are highly dependent on spatial coordinates, a data struc-
ture that stores this information was needed. Building on the works of Holmér (2015),
the Oriented Point struct was implemented and expanded. This data type is used for all
polyline points that define the road paths, as well as the paths that define building geometry.

The advantage of using oriented points over for instance the Vector3 data type is that
we can include a rotation at a given point in addition to a position. This makes us able

24

to store information about direction, such as the tangential direction of the road at a given
point. Additionally the magnitude property was added as a float value. This data field can
be utilized in a number of ways, but the main intention was to store a sampled tensor field
magnitude at the given point, hence the name. The field magnitude can later be used by
the road generator to determine if a local minimum or maximum has been reached. Lo-
cal maximas can be problematic when tracing the roads. This is discussed in detail in 4.3.2.

To keep track of the neighboring points in the road polylines, the neighbors property
was also added to the oriented point struct. This way, we can store the nearby points in a
list, and also use this lists length to determine if the point in question is an intersection or
just a part of a road path.

Lists

The dynamic List data structure native to C# was also utilized extensively, namely to
store the oriented point paths. The main advantage over static arrays is that implementing
flexible algorithms with dynamic lengths is trivial as we need not consider initial array
lengths when calculating for instance road paths. Furthermore, the slower speed of lists
vs. arrays was deemed justified by the fact that the geometry is only generated once at run-
time, and that there are other more significant bottlenecks when it comes to performance.

25

4.3 Road Network Generator

4.3.1 On Tensor Fields, Scalar Fields and Noise
As described in Chen et al. (2008), the tensor in (2.1) produces eigenvector fields that ad-
here to the gradient, with the major eigenvector field following the gradient and the minor
field being orthogonal to the gradient. However, this is only the case if at a given point
p = (x, y) with direction [ux, uy]

>, we define θ = arctan(
uy

ux
) and R =

√
u2x + u2y , as is

described in the original paper.

In other words, the tensor field lines are dependent on an underlying scalar field and its
gradient. This scalar field can for instance represent a height map, and thus the resulting
eigenvector fields will adhere to the topological features of the height map. In creating the
road network, an underlying scalar field was therefore needed to subsequently produce the
orthogonal pair of eigenvector fields. To serve as a comprehensive test bed for the tracing
algorithms, the Perlin noise function was chosen. Perlin noise is suitable for this purpose
as it is continuous, scalable and can allow for interesting ”organic” road patterns.

4.3.2 Tracing Tensor Fields
To trace the road networks, two separate functions were implemented; SAMPLE() to sam-
ple the tensor field, TRACE() to trace the polyline, which takes SAMPLE() as an argument.
This way of using the possibility in C# to pass functions as arguments was done not only
to keep the code tidy and readable, but also to adhere to the modular philosophy. This way
we can design one function for tracing, which accepts a sampling function, which again
can accept one of several functions that describe the actual field.

Quaternions

Before we go into the details of the tracing and sampling functions, we will digress shortly
to take a look at rotations. As mentioned in 2.2.1, the rotation of game objects in Unity
are defined by the transform class. Even though every game object is associated with
a transform, the opposite is not necessarily the case. Every transform has a .rotation
property, that defines its rotation in world space using the Quaternion type. This is
also the case in the Oriented Point struct, where the rotation is stored as a quaternion.
Quaternions in Unity derive from the mathematical concept of quaternion rotations, which
is a symmetric vector operation:

p′ = qpq−1

Here, q is a quaternion rotation vector and p′ is the resulting rotated vector. However, in
Unity they are implemented to function a lot like rotation matrices:

p′ = Rp

The inverse step is effectively abstracted away and handled by the Quaternion class
automatically. This also means that the operation of rotating a vector in Unity is not
commutative, just like rotation matrix operations.

26

Sampling the Tensor Field

Incorporating quaternion rotations in the SAMPLEORTHOGONAL() function makes it much
easier to trace polylines. Consider an arbitrary point on the plane p = (x0, z0). To sample
the tensor field at p, we start by calculating the gradient of the underlying scalar field f(p)
numerically2 using the definition of the derivative:

∇f(p) =
[∂f(p)
∂x

,
∂f(p)
∂z

]
=
[f(x0 + δx)− f(x0)

δx
,
f(z0 + δz)− f(z0)

δz

]
This vector gives us the direction of the eigenvector field at point p. When defining

an Oriented Point for this eigenvector field sample, we can now use the aforementioned
point p = (x0, z0) as the position, and the direction of the gradient as the orientation of
the point. Since we want to store the orientation as a quaternion rotation in Unity, we call
QUATERNION.LOOKROTATION() and pass in∇f(p) as the direction. This method points
the rotation in the direction of the input vector, in this case∇f(p), and maintains the same
up direction as the world coordinate system by default. Additionally, we compute |∇f(p)|
and assign to the magnitude field of the point. This corresponds to R in equation 2.1.

The sample point now contains all the information about the tensor field at the given
point. However we have two orthogonal eigenvector fields per tensor field. Instead of
having separate calculations for the minor eigenvector field, we can simply rotate the major
field by calling QUATERNION.ANGLEAXIS() and rotate 90◦ along the y-axis.

Tracing Hyperstreamlines & Polylines

In the implementation by Evans (2015), a numerical integration scheme based on RK4
was used. However, in implementing the trace function, we take a simplified approach and
implement a method similar to the Euler method. Originally, an RK4 based trace function
was planned, but during testing the single stage fixed step Euler method was deemed suf-
ficient and chosen over the RK4. The advantage of this is that RK4 requires four stages
per step in the integration process, and is therefore more computationally cumbersome.

To start the tracing, the SAMPLE() function is called on the initial starting seed. This
seed is added as a public Vector3 for the class, so that we can dynamically change the first
seed in the Unity editor. Note that we do not need to store the seed as an oriented point as
the rotation at the seed is determined by the underlying tensor field. In fact, during trac-
ing, all the points P0, P1, . . . , Pn are stored as Vector3, while a separate Oriented Point
variable is used to keep track of the sampled point values. Both the current point and the
sampled point is updated every iteration. The reason to keep these separate is that we can
easily advance in forward or backwards using VECTOR3.FORWARD or VECTOR3.BACK
respectively when advancing to the next sample point. These directions however are rela-
tive to the main coordinate system, and not the local coordinate system of the point itself.
To move relative to the local coordinate system, we multiply with the local rotation, i.e.
the rotation obtained from the sampled point.

2In our code implementation, the values δx = δz = 0.01 was found to be sufficiently accurate for numerical
differentiation.

27

P0

P1

h
x

z

z′

x′
θ

Figure 4.2: World vs local coordinate systems. The next point P1 is obtained by moving distance h
forward (along the local x-axis) relative to the local coordinate system.

The pseudocode in algorithm 1 makes up the TRACE() function. The hyperstreamline
H is initialized as a list of oriented points. The current point (xyz-coordinates) are stored
in C. As SAMPLE() returns the sampled oriented point Pc, we advance to the next point
by method illustrated in figure 4.2 in either the forward or reverse direction and update C.
At each iteration, we perform a forward conical search with angle φ and search distance
Rs to search for existing nearby road paths, and if a collision is detected, we use the spline
CONNECT() function to generate the connecting segment (described in detail in section
4.3.3), and add it to H .

4.3.3 Road Interconnection using Bézier Curves

A method of connecting to adjacent roads using cubic Bézier curves was implemented.
This function was implemented as a separate Spline class. We also take advantage of
the list data structure used in the path tracing algorithm here. Whenever the proximity
check during tracing returns positive for generating a Bézier connection, we connect the
points using a spline. This path is then joined to the hyperstreamline list before returning
the completed road path.

In code, the SPLINE class is implemented as several functions. We utilized a cubic
Bézier curve similar to the one illustrated in 2.14a, except it is naturally extended into
three dimensions. Bézier curves are reliant on linear interpolation, or a lerp, as it is often
called in context of computer graphics. A LERPORIENTEDPOINT() function was therefore
implemented. Using Unity’s built in methods, we can lerp both Vector3s and Quaternions
natively. The magnitude of the interpolated point mi is calculated using standard linear
interpolation: mi = ma + (mb − ma)t, where t ∈ [0, 1] is the interpolation parame-
ter. When tracing a road path on the other hand, we are more interested in the tangential

28

Algorithm 1: TRACE

Result: Traces a hyperstreamline from starting point S
Input: SAMPLE(), S, rev, length
Output: P: the polyline list
h← step length
C ← S.pos
P← empty list of oriented points
for i← 0 to (i < length) do

Pc ← SAMPLE(C,m)

if (rev)
C ← advance h units in the reverse direction

else
C ← advance h units in the forward direction

end

if COLLISION(φ,Rs)
Concatenate P with the result of CONNECT(Pc, P)
return P

end
P← ADD(Pc)

end
return H

rotation at the interpolated point, as this adheres to the format of the traced road paths.
This was solved by simply rotating the lerped point towards the line formed by the ”first
layer” of interpolation in the quadratic function, as illustrated in figure 4.3. The rotation is
achieved using Quaternion.LookRotation(), as in TRACE().

The cubic spline is lastly calculated using calls to the quadratic spline function, adding
the last ”layer” of lerps. The control points for the splines were simply calculated by
initializing two new oriented points, and then using calls to VECTOR3.FORWARD and
VECTOR3.BACK from the start and end points respectively for the position. After some
testing, a distance of 20 units from the start and end points was picked as an appropriate
length. This corresponds to the distance P1−Pb in figure 4.3. Note that both the quadratic
and the cubic spline functions only return a single point for any value of t. Therefore,
when connecting roads we need to iterate through a series of t values. This is done in the
CONNECT() function (algorithm 2).

A fixed length of l = 13 steps was utilized after some testing. One drawback with
using splines is that while the road paths traced by TRACE() contain uniformly spaced
points, the points generated by the spline functions are not uniformly spaced even if the
t-intervals are. There are several methods of discretizing Bézier curves to achieve uniform
point spacing, however this is not crucial for the macroscopic detail level and was subse-
quently not implemented in this project.

29

Pa

Rotation oriented
using lerp (incorrect)

Pb
Pc

P1

P2

Pa

Pb
Pc

P1

P2

Pd Pd

Correctly oriented
tangential rotation

Figure 4.3: Quadratic Bézier curve and rotation alignment. By aligning the rotation at Pd along line
segment Pa−Pc, the correct tangential rotation is achieved. In this example, Pb is the control point,
and Pa and Pc are the points obtained from the first layer of interpolation.

Algorithm 2: CONNECT

Result: Connect two oriented points using a cubic Bézier curve
Input: P1, P2

Output: P, list of oriented points
path← empty list of oriented points
l← number of interpolation points
for i← 0 to (i < l) do

t← i/(l − 1)
path← ADD(BEZIERCUBIC(P0, P1, t))

end
return P

4.3.4 Mesh Generation

A meshing algorithm based on the generated road paths was implemented according to
the techniques described in section 3.5. A simple way to represent the road face is to just
offset each point in the road left and right relative to that point’s rotation, and then use
these points as basis for the vertices in the road mesh. However roads in real life are not
simply flat ribbons, even though they may appear as such from a top down perspective.
Therefore, a generalized way of describing the road profile was devised. Implementation
wise, this is done through the Profile struct, which was implemented as a separate file
for tidyness sake. The profile of the road is represented as an array of Vector2s, where
each vector’s x-coordinate represents the vertex distance from the road path, and the y-
coordinate represents the elevation in the y−direction in world space. This way, we can
alter the list of Vector2s and subsequently the road profile without having to modify the

30

actual meshing logic.

(4.5, 0)

(4.5, 0.2)(3, 0.2)

(3, 0)

(−3, 0.2)(−4.5, 0.2)

(−4.5, 0) (−3, 0)
Symmetry line

Figure 4.4: Example road profile with a 6 wide road and 1.5 wide ”sidewalks” on either side. Vertex
coordinates are relative to a central symmetric axis, as this puts the profile centered on the road path.

Calculating Vertex Coordinates

To extrude the mesh, the vertices are first calculated. For every point in the road path,
we generate as many vertices as are in the Profile array. To calculate these positions, we
simply multiply each vector in the Profile array (pp) with the road points rotation (qr)
and add the road point position (pr):

vi = pr + qrpp (4.1)

Thus we get the vertex at position i. If the profile array is of lengthw, we getw vertices per
point in the road polyline, e.g. figure 3.5 would indicate a profile array of length w = 2
(the road path itself is not part of the vertices forming the mesh). Note that the profile
array contains Vector2s, but the vertices of any given mesh is defined by Vector3s. This
is solved by simply setting the z-coordinate of pp equal to zero, as the array of Vector2s
defines a profile in the xy-plane of the world coordinate system. Algorithm 3 describes
vertex calculation in detail.

Algorithm 3: CALCULATEVERTEXCOORDS

Result: Calculates vertex positions based on the profile array
Input: P, profile, vertices
Output: vertices, array of Vector3s that define the mesh geometry
for (i← 0, v ← 0 to (i < l) do

for j ← 0 to (j < w) do
vertices[v]← P[i].pos+ P[i].rot · (profile[j].x, profile[j].y, 0)
v ← v + 1

end
end
return vertices

The algorithm keeps track of three iteration variables in total: i, the index of the current
point in the road polyline P, v, which keeps track of the current index in the vertices array,
and j which keeps track of which Vector2 is to be used from the profile array. Every
iteration, the vertices array is populated with a Vector3, calculated according to (4.1),
and v is incremented. The result is the populated vertices array.

31

Vertex Winding Order and Triangle Indices

To calculate the correct vertex indices the winding order must be taken into account. Since
the profile of the road can contain an arbitrary number of vertices, a generalized method
was needed. In general the mesh consists of triangles which can be grouped into squares
of two triangles each. For a profile of length w we therefore get (w − 1) squares of two
triangles, making for 2(w − 1) triangles per point in the road path. With a path length l
we get 2(w − 1)(l − 1) squares along the path. This gives us a total of 6(w − 1)(l − 1)
vertices per road path. Note that these vertices need not be unique, as multiple triangles
can share a vertex with neighboring triangles.

(i) (i+ 1) (i+ 2)

(i+ w) (i+ w + 1) (i+ w + 2)

Figure 4.5: Section of the road mesh seen from above. In this example, a profile length of w = 3
is used, resulting in 4 triangles and subsequently 6 vertices (black dots) per row in the mesh. Vertex
indices are displayed in the parenthesis and the winding order follows the arrows.

This forms the basis for the CALCULATETRIANGLEINDICES() algorithm, detailed in
Algorithm 4. The triangle indices are calculated according to the principle illustrated in
figure 4.5. Moving in clockwise triangles, indices are added to the triangles array. The
vertex iterator iv keeps track of the specific vertices according to figure 4.5, while triangle
iterator it keeps track of index position in the triangles array. As the inner loop generates
6 indices, this effectively makes up one square. The triangle iterator it is therefore incre-
mented by 6 in the inner loop, and the vertex iterator iv is incremented by one to form the
next square. Lastly, the vertex iterator is also incremented in the outer loop, as we advance
to the next row in the mesh. The result is the completed triangles array.

Now that we have algorithms for calculating both the vertex coordinates (3) and the
triangle indices (4), we can combine these into the EXTRUDEROADMESH() function (Al-
gorithm 5). Its function is rather simple, we start by creating variables for road width w
and path length l, as well as initializing arrays for triangles, vertices and uvs3 with their
respective data types. Calls to CALCULATEVERTEXCOORDS() and CALCULATETRIAN-
GLEINDICES() are made, and finally these arrays are assigned to the Unity mesh object.

During testing a simple profile array of length w = 2 was used, generating flat and
ribbon like roads. This was done to minimize the number of vertices generated, which
also speeds up testing. An example of this can be seen in figure 4.6.

3Only a basic road texture was implemented, as not much attention was paid to texturing. The uvs array is
strictly not necessary to render the mesh.

32

Algorithm 4: CALCULATETRIANGLEINDICES

Result: Calculates triangles according to the width and length of a road path
Input: w, l, triangles
Output: triangles array with correctly calculated triangle indices
it ← 0, iv ← 0
for j ← 0 to (j < (l − 1)) do

for i← 0 to (i < (w − 1)) do
triangles[it]← iv
triangles[it + 1]← iv + w
triangles[it + 2]← iv + w + 1
triangles[it + 3]← iv
triangles[it + 4]← iv + w + 1
triangles[it + 5]← iv + 1
it ← it + 6
iv ← iv + 1

end
iv ← iv + 1

end
return triangles

Figure 4.6: Shaded wireframe view of a section of a generated road using a profile length of w = 2.
A simple road texture is also applied. Screenshot from Unity engine.

33

Algorithm 5: EXTRUDEROADMESH

Result: The finished road mesh
Input: Path P
Output: mesh
w = profile.length
l = P.length
profile← the desired road profile, Vector2 array
mesh← empty Unity mesh object
vertices← Vector3 array of size (w · l)
triangles← integer array of size 6(w − 1)(l − 1)
uvs← Vector2 array of size vertices.length
CALCULATEVERTEXCOORDS(P, profile, vertices)
CALCULATETRIANGLEINDICES(w, l, triangles)
mesh.triangles← triangles
mesh.vertices← vertices
mesh.uv ← uvs
return mesh

4.3.5 Generating the Road Network

Once all the underlying functions for tracing paths and generating meshes were imple-
mented, the main road network can be constructed. This is done in the RoadNetwork
class, which occupies a game object in the scene with the same name. Two functions were
implemented: GENERATEROADNETWORK() to serve as the main iterator for initializing
each road, and GENERATEROADS() which is responsible for initializing the tracing pro-
cess and generating the branching road meshes.

Roads are branched from seed points in an existing road path. With GENERATEROADS()
we generate two roads from the seed, one to the left and one to the right relative to the seed
points rotation. Opposite roads are achieved by the reverse flag in TRACE(). To ensure
these roads branch out perpendicular to the origin road, a flag was utilized to indicate if
the major or minor tensor field is to be traced. This flag can be negated every time we
generate new roads, and thus generate orthogonally branching roads.

Adding Candidate Seeds

Since the generation relies on a series of seed points, a a FIFO queue was utilized to store
the seed points. This queue is kept as a global variable in the RoadNetwork class and
is modified as roads are being generated. Subsequently a simple function for finding these
seed points was implemented. This is achieved simply using iterative modular4 arithmetic,
as seen in algorithm 6.

4In our implementation the % operator was used. Technically the %-operator in C# is a remainder operator,
but since we are only dealing with positive lengths, the function is the same.

34

Algorithm 6: ADDCANDIDATESTOQUEUE

Result: Seeds added to the master seed queue
Input: P, interval
for i← 0 to (i < P.length) do

if (i mod interval)
seeds← ENQUEUE(path[i])

end
end

This way we can space out branching roads using the public variable interval, which
can be defined in the Unity editor before generating the road network. By using a FIFO
queue in this manner, we also ensure that road points are generated strictly in the same
order that the roads are generated.

Generating Branching Roads

To generate the branching roads, first we generate two new game objects to serve as the
containers for the branching roads. This is done using calls to GENERATECHILDROAD(),
which initializes a new game object, assigns it as child to the RoadNetwork and attaches
the Road component. These new game objects are then passed to GENERATEROADS(),
which generates the meshes for the branching roads with EXTRUDEROADMESH(). A
decrementing iteration variable iter acts as an upper limit for the number of generated
roads. This prevents an infinite while loop due to an ever-increasing number of seed
points being generated, as discussed in section 3.2.2. This variable was made public to
the RoadNetwork class in order to make it avaiable in the Unity editor.

Algorithm 7: GENERATEROADNETWORK

Result: Completed road network
Input: S, iter, length, interval

CREATECHUNKMATRIX(500)
Rm ← GENERATEROAD(S, iter, length)
ADDCANDIDATESTOQUEUE(Rm)
while (seeds.length 6= 0 & iter > 0) do

seed← DEQUEUE(SEEDS)
left← GENERATECHILDROAD(seed)
right← GENERATECHILDROAD(seed)
major = ¬seed.major
GENERATEROADS(left, right, seed, interval,major)
iter = iter − 1

end

35

4.3.6 Optimizations
Chunk Subdivision

When generating the road paths, we have described and implemented a proximity check
for each iteration in each polyline. Naturally, searching the complete list of existing points
at every step is an extremely costly way of searching for colliding paths. Suppose a cir-
cumstance where the existing road paths consist of N points. The next iteration would
then have to calculate N − 1 distances and compare them all to the threshold before ad-
vancing. This quickly becomes extremely inefficient to calculate when N is very large,
especially because we can assume that the majority of the points are not within proximity
anyway.

To solve this, a chunk subdivision system was implemented to reduce the search space.
The basic concept is that we divide the map into chunks and only search for points in the
nearby chunks instead of the entire map. To implement this a matrix where each index
position is a list was used. Each sublist contains only points whose x and z coordinates
round to the nearest 10. This principle might be a bit unclear, so an example is in order to
illustrate the principle. With a map size of 5000× 5000 and chunk size of 10× 10, we get
a L ∈ R500×500 matrix of lists:

L =

L1,1 . . . L1,n

...
. . .

...
Ln,1 . . . Ln,n

 , n = 500

Here each sublist L1,1, . . . , Ln,n represent one chunk. Suppose now we want to order the
point p = (1367, 2581) to a chunk in L. To find the matrix indices, we utilize integer
casting to floor5 each coordinate to the nearest 10. In our example, this would result in
matrix entry [136, 258] meaning chunk L136,258. Assuming a map size of 5000 × 5000,
and search radius of 10 chunks, this means we only search 100 units in any direction. As-
suming an approximately uniform spread of road points in the map, this results in reducing
search space to (200−1)2

50002 , an over 99% reduction.

Bounds Checking

To cap the generation algorithm, as well as make it easier to implement chunk subdivi-
sion the map was capped at 5000 × 5000 units. Subsequently, any hyperstreamlines that
trace outside of coordinates value should be stopped and returned. In this manner a quick
bounds check was implemented. The function is simple; we check the coordinates in ev-
ery iteration, and if either the x- or z-coordinates are outside of the map, we return true,
otherwise false.

Additionally when using a fixed step integration method, local maximas can be an
issue. When the tracing function is close to a peak, it may therefore ”overshoot” the peak.

5This is only the case with positive numbers. We cast the position to integers before rounding, as the spatial
coordinates are decimal values (floats) and not just discrete integers. We opted to use int casting for consistency
instead of the FLOOR() function, as this would round down when dealing with negative numbers.

36

5000× 5000

4h

Reduced Search Space Entire Map
70× 70

Figure 4.7: Reduced search space as a result of the implementation of chunks. Here a smaller search
radius of 4 chunks is used to illustrate the principle.

The new point on the opposite side of the peak will therefore have a rotation in the opposite
direction (towards the peak), and will attempt to step back over the peak. But, due to the
fixed step, this will only result in another overshoot, and the process repeats. This was
solved by including a magnitude check in the bounds check. Recall that the magnitude
is calculated as R =

√
u2x + u2z , and will therefore approach zero as we get close to a

maximum point. By then including a minimum value check of this value, we can detect
whether or not we are near a maximum, and avoid the repeated overshooting behavior.

37

4.4 Building Generator

4.4.1 Curved Buildings
The curved building algorithm was implemented as described in section 3.2.3. The build-
ings are generated on the basis of the already existing road network. The same list of
oriented points data structure was used to define the building geometry during generation.
Firstly, since the building shape is based on the road, it makes sense to use the same data
structure to have access to the local orientations (rotations) of each point. Secondly, we
can extract vertex coordinates from the position element of each point when defining the
building mesh, similar to the meshing process of the roads.

Subpaths

Since the road meshes consist of one long list of points defining the path, an algorithm
was implemented to extract a subpath. The principle of extracting a subpath is a rather
trivial exercise in selecting subelements from a master list. However, there were some
considerations that had to be taken into account. A method of detecting intersections
along the path was needed in order to prevent buildings from being generated on top of
branching roads. A method of detecting colliding buildings was also needed, in order to
prevent building overlap. The function is described in algorithm 8.

Algorithm 8: GETSUBPATH

Result: Calculates a subpath with intersection detection and building collisions
Input: P, is, l, o
Output: Subpath list Ps and the index for the next subpath
Ps ← empty list of oriented points
i← is
while (i < (is + l) & (i < P.length)) do

if P[i] has more than 2 neighbors
return (i+ 1),Ps

end
if RAYCAST(d)

i← i+ 1
continue

else
Ps ← ADD(P[i])
i← i+ 1

end
end
return i,Ps

We iterate through the master list path P, starting at position is. From here a series of
checks are done. Firstly, we check if the current point path[i] has > 2 neighbors. As this
means the point is an intersection, the subpath is discontinued at position i, and the next

38

index is returned. As we have not yet added point P[i] to the subpath, the subpath consists
of points [Pis , · · · , Pi−1], as Pi is an intersection in this case. For points that are not inter-
sections, ray casting to the left and right is utilized. In our code implementation, the Unity
method Physics.RayCast() was used for this. This function returns true if the ray
cast collides with a mesh collider within distance d, at which we skip the particular point
at i and advance to the next index. This is repeated for the desired length l, or until the
end of the path P is reached. The result is a subpath Ps which can be utlizied to form the
buildings by successive path offsets.

Path Offsets

The next step in the building generation is offsetting paths to form the building geometry.
A total of four paths are needed; two to form the base and two to form the top face of the
building. Using combinations of these four paths, we can define each of the six surfaces
of the building.

The PATHOFFSET() function (algorithm 9) handles this. Each point in the subpath Ps
is copied to a new list Po and offset a distance d left or right relative to the local rotation
(along local z-axis), using the same principle as the tracing algorithm in figure 4.2.

Algorithm 9: PATHOFFSET

Result: Subsection of the input path offset by d starting at index io
Input: Ps, d, l
Output: Po of length l
Po ← empty list of oriented points
for i← 0 to (i < l) do

if offset to the left
Po ← ADD(P[i+ io] offset d to the left)

else
Po ← ADD(P[i+ io] offset d to the right)

end
end
return Po

Another function, OFFSETPATHUP(), based on the same principle as 9 was imple-
mented to offset paths in the world y-direction. The reason to keep these as separate
functions was to maintain a positive winding order during meshing. An orientation vari-
able is kept throughout the subpath extraction and offset process, as a means to indicate
what orientation the face is going to have. This variable is also used to determine if we
offset the subpath to the left or right side of the road in algorithm 9. Naturally, if we would
offset paths on either side of the road and try to create a mesh between these paths without
taking this into account, we would end up with one face visible from the wrong direction
like in fig 4.5, as the winding order would be flipped relative to the camera.

39

4.4.2 Mesh Generation

To create the building meshes, the algorithms for calculating vertex coordinates and trian-
gle indices are largely based on the same principles described in section 4.3.4. However,
there is one key difference: Instead of using a single path and extruding a vertex profile
along the path, the mesh vertices are defined between two paralell paths instead. This can
be thought of as the construction of a suspension bridge, where the paths are analogous to
the two ropes and the triangles comprises the planks making up the walking surface of the
bridge. This approach has the advantage that we can use offset paths generated by OFF-
SETPATH() and OFFSETPATHUP() to generate all six sides of the building independently
and then combining them to form the completed building mesh.

Path 1 Path 2 orientation = falseorientation = true

Meshing

Subpaths Resulting meshes

Figure 4.8: Suspension bridge meshing principle between two point paths. Notice that the triangles
appear opposite in the rightmost mesh, to keep the winding order clockwise relative to the camera.

Generating Building Faces

To modify the vertex calculating code from section 4.3.4, we first start by altering the
algorithm to accepting two paths instead of just a single path. Additionally, we need to
pass in the orientation variable. This can be seen in algorithm 10. Note that we do
not need to take any rotations into account. Recall that the vertex coordinates are only
positions in space (Vector3), and thus we can simply assign the position property of the
oriented point to the vertex. Furthermore, the mesh length l is determined from the length
of the first path. In fact, we could use either of the two paths, as these lists are always the
same size. A vertex index v is used in the same manner as in algorithm 3. Since we have
two paths, the final vertices array naturally should contain 2l vertices.

Calculating Triangle Indices

Calculating the triangle indices for the building meshes is a slightly more complex opera-
tion than for the roads, due to the fact that the buildings are 3D meshes consisting of six
faces, while the roads consist of only one continuos face. Since our approach involves
adding multiple faces together, we also need to keep track of the index position for every

40

Algorithm 10: CALCULATEFACEVERTICES

Result: Get vertex coordinates from two paths
Input: P1,P2, orientation
Output: vertices array
l← P1.length
vertices← empty Vector3 array of size 2l
if orientation

for i← 0, v ← 0 to (i < l) do
vertices[v]← P1[i].pos
v ← v + 1
vertices[v]← P2[i].pos
v ← v + 1

end
else

for i← 0 to (i < l) do
vertices[v]← P2[i].pos
v ← v + 1
vertices[v]← P1[i].pos
v ← v + 1

end
end
return vertices

face added, and shift all the triangle indices along the way for each face generated.

To store triangle indices in between each face, a dynamic list was used. We can then
later use List.ToArray() to convert to an appropriately sized array, as Unitys mesh
class does not accept list objects to store triangle indices.

In calculating the road mesh vertices, we ended up with 6(w − 1)(l − 1) indices per
mesh. If we take into account that our face meshes always have width w = 2, the number
of triangle indices needed is reduced to 6(l − 1). In between the generation of each face,
we pass in an index offset. Since the triangle indices give which vertices in vertices to use
for a given triangle, we need to offset this by the number of already calculated vertices.
When calculating the triangle indices of face n ∈ [1, 2, · · · , 6] we must therefore offset
the triangle index of face (n+ 1) by the length of the current vertices array.

41

Algorithm 11: CALCTRIANGLEINDICES

Result: Calculates triangles according to the width and length of a road path
Input: l, triangles, offset
Output: triangles array with correctly calculated triangle indices
it ← 0, iv ← offset
for j ← 0 to (j < (l − 1)) do

triangles[it]← iv
triangles[it + 1]← iv + 2
triangles[it + 2]← iv + 1
triangles[it + 3]← iv + 1
triangles[it + 4]← iv + 2
triangles[it + 5]← iv + 3
it ← it + 6
iv ← iv + 2

end
return triangles

Combing Building Faces

The last step in the building meshing process is to combine all six faces that comprise
the curved building (algorithm 12). Each building is assembled in two stages; A series of
lists are initialized to store the offset paths that make up the building geometry, and the
paths are offset using PATHOFFSET() and PATHOFFSETUP(). Then the faces are com-
bined by generating and adding vertex coordinates and triangle indices to the vertices
and triangles array iteratively per face. Finally, the vertices and triangles of the mesh is
updated in the same manner as in EXTRUDEROAD() (algorithm 5).Since offsetting paths
relative to other offset paths can become a bit abstract, an illustration of this principle is
given in figure 4.9.

When calculating each face, we take in two paths to make up each respective face. I.e.
to generate the face facing the road, we utilize the path closest to the road P1 and its up-
wards offset T1. To calculate the top face, we utilize the two top paths T1 and T2, and so
on. Note that there are only four offset paths, but we have six faces. Naturally we use the
same path multiple times when generating faces, like T1 is shared by both the top face and
the roadside face. However, this requires a total of 8 paths to generate the whole building.
This is solved by taking into account that the front and back faces can be made up of either
end points of the four main paths. This way we can generate these faces by passing in the
appropriate end points as paths of length l = 2.

It should be mentioned that the use of the orientation variable in CALCULATE-
FACEVERTICES() could be left out, as it is really up to a correct implementation of the
triangle indices calculation to get a correct winding order regardless of vertices order.
However, this was done as a conscious design choice. In flipping the vertex coordinates
in this manner, we can use the exact same way to calculate the triangle indices for either

42

Figure 4.9: An example of the generated buildings using the meshing principles described in section
4.4. The offset paths described in algorithm 12 are highlighted for clarity. The stapled lines represent
the ”paths” from the first and last elements of the 4 main paths that define the front and back faces.
Shaded wireframe screenshot from Unity engine with overlayed graphics.

face orientation and still end up with the correct winding order. When we in addition need
to keep track of a triangle index offset, this helped reducing the complexity of the already
complex task of calculating triangle indices for multiple successive faces.

Placing Buildings

To generate buildings along the entire road network, the PLACEHOUSE() function was
implemented as a means to iterate over the road network and place houses along the paths.
The function takes in all the game objects of the road network, iterating over every path.
The paths are subsequently subdivided and offset according to the tecniques described
in algorithms 8, 9. Meshes are generated according to the CURVEDHOUSE() function
(algorithm 12). Since this function is largely based on Unity specific methods for adding
components, a detailed pseudocode is not given and we refer to the source code for details.

43

Algorithm 12: CURVEDHOUSE

Result: Generate building faces and combine into the final mesh
Input: Ps, d, w, h, orientation
Output: mesh object
mesh← empty Unity mesh object
P1,P2,T1,T2 ← initialize as empty lists
P1 ← PATHOFFSET(Ps, d)
P2 ← PATHOFFSET(P1, w)
T1 ← PATHOFFSETUP(P1)
T2 ← PATHOFFSETUP(P2)
for each of the six faces do

vertices← ADD(GENERATEVERTEXCOORDS(length, comb. of path lists)
triangles← ADD(CALCTRIANGLEINDICES(length, triangles, offset))
offset← vertices.length

end
mesh.vertices← vertices
mesh.triangles← triangles
return mesh

4.4.3 Optimizations & Improvements
Overlap and Collision Detection

As we are generating the buildings solely based on the road paths generated, the ray casting
method described in section 3.2.3 was implemented as a means to avoid building collision.
A mesh collider component was added to each building on generation. By setting the mesh
of the generated buildings to a shared mesh instead of a regular mesh object, we can use
the same mesh in both the mesh renderer and the mesh collider. The function of a shared
mesh is otherwise similar to a normal non-shared mesh object.

Since we generate buildings as we go along a road path, we can check for building
collisions along the way during the path offsetting process. The ray casting is done some
height h above each road point, but was set lower than the lowest allowable building height
as to not accidentally ignore short buildings. The rays are subsequently cast orthogonally
out a distance d to either the left or right direction, based on the orientation variable.
This way, computation time is saved as it is not necessary to check the right side of the
road for collisions when generating the left side buildings, and so on.

Building Sizing

By varying the lengths of the subpaths generated from the road paths as well as the vari-
ous offset distances, we can greatly vary the building sizes. This was implemented using
an array of height values, which we pick from at random. This way we can distribute
the heights of buildings to get more smaller buildings and a few tall skyscrapers like in
a medium city, or more taller buildings and a few smaller ones like for instance the city

44

(a) Bad overlap detection. Overlapping meshes high-
lighted.

(b) Good overlap detection with no colliding meshes.

Figure 4.10: Shaded wireframe view of two generated intersections. In (a) the raycasting failed to
detect the neighboring building and a building was placed on top of the neighboring ones. Screen-
shots from Unity engine.

center of a large city like New York where skyscrapers are abundant.

Some building were also skipped completely to simulate empty lots which are fre-
quently found in urban environments. This was implemented simply as a check that skips
the generation and advances to the next subpath if a certain threshold is reached, using a
random number as the skip rate r. This has the added benefit of effectively acting as a
population density parameter, as we can spread out existing buildings with empty areas
should we want to generate a less dense city environment.

With these two techniques in addition to the seed point spacing when generating the
road networks, we can generate a large variety of urban environments from densely popu-
lated large cities of skyscrapers to more scarcely populated ”rural” environments.

45

4.5 City Generator
A parent class to the generator functions was devised to start the generation. As the genera-
tor functions essentially function on a stand-alone basis, the function of this CityGenerator
class is simple.

Game objects are initialized and set as children to CityGenerator. The RoadNetwork
and BuildingGenerator scripts are attached as components to these game objects,
and GENERATEROADNETWORK() is called. Next, the buildings are generated using
GENERATEBUILDINGS(). The result is the generated city with road network and build-
ings placed along the roads.

A custom GUI editor was also implemented for the CityGenerator game object.
This allows us to access the public variables in the class, which again influences the out-
come of the city generator. Parameters include:

• Starting Point: The world coordinate seed for starting the generation.

• Iter: The number of roads to be generated. This decides the overall size of the city
by placing an upper limit on the number of roads that can be generated.

• Length: The length of each road that is traced.

• Offset: Parameter that defines the offset of the underlying noise field. Since Perlin
noise is pseudorandom, we can offset each coordinate using this parameter to get
visually different noise fields.

• Scale: Scales the noise field. Higher values give less curvature in the road network.

• Interval: The number of points between seed points, effectively the distance be-
tween individual branching roads.

• Skip Rate: Percentage chance of skipping a building during generation, spacing out
buildings along the road network.

Figure 4.11: Example of initial parameters for starting the generation process.

46

Chapter 5
Results

In this chapter we present the results by giving various examples of the capabilities of the
city generation techniques implemented in Unity engine.

Figure 5.1: An example city generated by our system where the initial parameters from figure 4.11
are used. Screenshot from Unity engine.

5.1 Generation Results

The implemented city generation system is capable of generating complex city environ-
ments. High variety in both the road network and the buildings generated was achieved,
but the system requires refinement in order to incorporate additional functionality.

47

5.1.1 Strengths

Road Network Generation

On a macro scale, the road network generation is overall quite satisfactory. The nature of
the underlying Perlin noise field gives rise to a number of interesting road patterns, which
was handled well by the tracing algorithms. Examples of generated road patterns can be
seen in figure 5.2 and figure 5.3. We have areas in the road network that greatly resemble
road patterns found in real life cities.

(a) Area of square city-like grid.
Screenshot from Unity engine.

(b) Square street grid in Barcelona.
Screenshot from Google Maps.

Figure 5.2: Square grid features compared to the city grid of Barcelona.

(a) Area of a circular road pattern.
Screenshot from Unity engine.

(b) Place d’Italie, Paris. Screenshot
from Google Maps.

Figure 5.3: Circular road features generated by our system compared with similar features found in
Paris.

Another advantage inherent to using hyperstreamline tracing is that we can vary the
underlying field while keeping the overall tracing principle the same, as noted by Chen

48

et al. (2008). This is also the case with our system, and results in high degrees of freedom
when generating road networks.

The modularity of the system is also demonstrated by the simplicity of changing the
underlying input field. As the Perlin noise field can theoretically be replaced with any
scalar field, a simple linear gradient on the form

f(p) = x+ z (5.1)

was also tested. By replacing the Perlin noise function with the field in (5.1), the result
was a completely orthogonal street grid. An example of this can be seen in figure 5.4.

Figure 5.4: The resulting generated city when using a linear gradient field f(p) = x+z. Screenshot
from Unity engine.

49

(a) High skip rate (r = 0.8) (b) Low skip rate (r = 0.1)

Figure 5.5: Differences in building skip rate with the same road network parameters. Lower skip
rate results in more densely placed buildings, and this parameter can thus be adjusted to account for
population density.

Building Generation

We also achieved high variety in the buildings generated by the system. By varying the
sizes and placement frequency of the buildings, we can achieve different types of cities.
This is mainly controlled through the branching interval and overall size of the road net-
work, but the parameters for skip rate and building height is independent of the road net-
work. Different combinations of these parameters allow for a wide variety of outcomes.

For instance, if we are modeling a densely populated city, we might want to have taller
buildings packed more closely together. On the other hand, we can have the opposite effect
by allowing a high skip rate and high branching interval for a suburban area. The results
show that we can simulate a number of different types of city areas using the building skip
rate and height distribution. This in turn can be used to simulate many kinds of urban
environments, from densely packed downtown-like areas, suburb neighborhoods and even
more rural areas where buildings are scarce. Example of skip rate differences can be seen
in figure 5.5.

Since the system, being developed in Unity engine, is mainly targeted towards game
development, the size of the generated game world is also an area of interest. The system,
as shown in figure 5.7, is capable of generating extremely large cityscapes.

50

Figure 5.6: Low skip rate, low branching interval, simulating a densely populated large city. Screen-
shot from Unity engine.

Figure 5.7: High skip rate, high branching interval and low building height to model an area of
lesser population density. Screenshot from Unity engine.

51

5.1.2 Limitations

Currently our system only generates a single road network uniformly across the whole
map. As real world cities contain different types of roads, the generator is not able to gen-
erate an accurate road network model. For a more detailed road map the implementation
of different road classes such as highways, city streets and smaller private roads should be
included.

(a) Scale of 200

(b) Scale of 1200

Figure 5.8: Top down comparison of noise field scale differences. Screenshot from Unity.

With smaller intervals between the road intersections (and thus denser road networks),
the fixed length spline method started misbehaving. This also translated to bad building

52

meshes of the attached buildings generated from this part of the path. Examples of this
can be seen in figure 5.9. Furthermore, at higher scale values in the noise field the splines
misbehaved more frequently. This is evident in figure 5.8(a). This is a direct result of the
splines control points being dependent on the traced road segments, which means at lower
scale values (and thus higher curvatures), bad spline connections is observed. A solution
to this can be to implement a variable length spline calculation, or investigate other meth-
ods of connecting the roads.

Figure 5.9: Mesh artifacting from badly generated spline connections. Screenshot from Unity en-
gine.

As is evident in many of the figures displaying the generation of the road network, the
intersections are not very realistic. The overall goal of this project was mainly to investi-
gate methods of generation and therefore a proper method of merging intersecting meshes
was not implemented. This combined with the occasional misbehavior of the spline con-
nection algorithm means the low level detail of the generated geometry is not adequate.

Another issue that was found is that the ray casting collision algorithm tends to give
false positives in some cases. This can be seen in some areas where the buildings are
separated by one step length, where with proper behavior we should have buildings stacked
closely together at very low skip rates. We get narrow alleys between buildings even
in densely populated areas, however it was not an intended feature of the system. This
does however correspond to some features found in real life cities, and the feature was
subsequently kept.

53

Figure 5.10: Example showcasing the (lack of) low level detail produced by the system. Screenshot
from Unity engine.

5.1.3 Performance Evaluation
A series of tests were run to evaluate the generation time. Both road network generation,
building generation and building generation with collision detection was tested. The re-
sults can be seen in table 5.1. The tests suggests that the most time consuming part of the
generation is tracing the road network. Another observation is that the generation time
scales approximately linearly with the number of roads generated. This is a favorable
result, as it suggests the system is highly scalable.

Generated Objects Generation Times (ms)
Iter Road Points Buildings Roads Buildings Total
100 4363 448 98 92 190
500 12831 972 308 206 514

2000 38824 2752 1048 612 1660
5000 88884 6097 2365 1416 3781

10000 145980 8476 4540 2061 6601

Table 5.1: Generation benchmark of increasing city sizes. Cap on the number of branching roads
(iter) is shown in the leftmost column. A skip rate of r = 0.2 and road length of 200 was used
during these tests. Tests performed on the system in table 4.1.

54

Iterations

Ti
m

e
[m

s]

0

1000

2000

3000

4000

5000

6000

7000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Roads Buildings Total

Figure 5.11: Runtime vs. number of tracing iterations. Data plotted from table 5.1.

55

56

Chapter 6
Discussion

In this project we have investigated and implemented methods of procedurally generating
an urban environment in Unity engine. Along the way several choices had to be taken
which led to challenges. In this chapter we discuss and evaluate our findings, and point
out the significance of our findings.

6.1 Evaluation

6.1.1 Road Network Types
An extensive part of this project has been the design and implementation of the road net-
work generator. Early on in the design phase when deciding on a technique to trace the
road networks, hyperstreamline tracing was picked due to the intriguing results showed
by Chen et al. (2008) and their interesting solution to tracing non-linear road paths. The
tracing techniques were subsequently already cut out through previous works. We did
however find some differences from existingly described tracing methods.

One thing to point out is that despite using a simpler integration technique and a fixed
step method, our results were visually similar to the hyperstreamlines in Chen et al. (2008).
This suggests that a fixed step method can be as viable as more accurate and more com-
putationally cumbersome methods like RK4. This finding is significant in a game devel-
opment application, as real time generation of the road networks may be of interest and
naturally performance is a key factor.

Comparing our results to (Chen et al., 2008), another difference is that we used a single
underlying scalar field to generate our tensor field lines instead of blending various fields.
This was mainly done as the specific shape of the generated geometry was second in prior-
ity to the flexibility of the tracing methods. However, this naturally placed restrictions on
the appearance of the generated city, as a single field makes the road network somewhat
uniform throughout on a large scale generation. On the other hand, the extra time spent

57

ensuring the modular design of the network generator and trace functions makes the addi-
tion of these techniques entirely possible.

On the use of Perlin Noise

In this project we used a Perlin noise field to serve as a testbed for the road generation.
To our best knowledge, this has not been done before. Using Perlin noise in this man-
ner shows promise for interesting looking road networks. The results from using only a
single noise field mimics the blended fields of (Chen et al., 2008) surprisingly well, with
the drawback that the placement of the various featured road types (square neighborhoods,
circular road places, etc.) is not customizable and is inherent to the noise function. An-
other finding that was found notable is that we were able to generate highly varied city
environments with only a few parameter changes.

The overall findings suggest that using Perlin noise is viable for generating the road
networks both for a densely populated city, as well as areas of lesser population density.
Despite the limitations of using a single noise field, the use of Perlin noise be an interesting
area of further research.

Bézier Curves in Road Generation

Another difference to (Chen et al., 2008) is the addition of road connection using Bézier
curves. While the overall road connections generated was satisfactory according to spec-
ification, the results were suboptimal. In many cases, the connecting road paths did not
form proper four-way intersections, which we would expect to see in a real city. This is
also due to a flaw in the the overall data structure of the road network, discussed in detail
in section 6.1.3.

6.1.2 Performance
A few interesting results were discovered when testing the performance of the system (ta-
ble 5.1). The generation of the geometry was found to have a linear time complexity.
This was rather surprising, since when increasing the number of iterations, we effectively
populate a larger area in the two dimensional plane. Intuition would indicate that such
an algorithm would have a polynomial time complexity, as filling twice the area would
require four times the amount of filler and thus take four times as long to complete. But
let us step back and take a look at what is happening during tracing. We do not in fact fill
an area but rather trace one dimensional lines across a plane. Because of the superposi-
tion principle, multiplying linear operations results in a linear operation, hence the tracing
algorithm can be assumed to have a linear time complexity as well. This suggests that
the performance of the tracing algorithm is indeed linear to the number of iterations, and
performance is more sensitive to other variables such as the branching interval or length
cap.

58

Surprisingly, the building generated took less time to generate than the road network,
despite having a more complex algorithm. This consideration alone suggests that the ray
casting is a viable option for game development. However it was found to be unreliable in
other areas, namely that we did get a number of false positives when detecting collisions
along the way. This may be a result of the rays cast from point i intersecting with the
previously finished building at point (i − 1), giving a false detection and subsequently
giving the ”alley” features described in the previous section. In order for this method to be
more viable, further optimizations need to be done to make the method more accurate.

6.1.3 Data Structures

In one area, our implementation differs from Chen et al. (2008). While the overall way
of representing paths as lists of oriented points worked well, the lack of organization of
these paths proved to be an issue. In the original paper they represented the road network
as a graph while in our project we generated each road path independently, with no proper
graph structure outside of the neighbors property. This caused two issues. Firstly, it did
not allow us to traverse the graph properly. Traversing a graph with cycles would be ben-
eficial, as we could use cycle detection algorithms to define city blocks, and subsequently
use a lot subdivision algorithm similar to the ones described by Evans (2015).

Secondly, by having independent, unorganized paths like this, making proper intersec-
tions proved difficult, and no method for generating intersections was implemented. Since
we have individual game objects for each road mesh, mesh merging algorithms may be of
interest to improve intersection generation.

6.1.4 Building Generation

On a general note the path offset and extrusion method proved to be an efficient way of
generating buildings. The advantage of this method is that the buildings follow the road
geometry. With a road network involving curves, this results in interesting building gener-
ation. We were also able to model a variety of different building shapes using only a few
simple parameters determining the path offsets.

However in some areas, the building generator did produce some results of lesser qual-
ity. While an efficient method along straight or slightly curved roads, the path offset
method did not cope well with sharp turns. Combined with the occasional bad behavior of
the spline connection algorithm, some less than desirable results were seen. This suggests
that basing the buildings solely on the tangential direction of each point in the road does
not accurately reflect buildings in real life. As a result the building generation algorithm
should be revised with specifically this in mind.

59

6.2 Reflections
This project has been a learning experience on many different levels. Although overall
satisfactory results were achieved there are some reflections to be made, there were many
challenges to tackle along the way. The problem of procedurally generating city environ-
ments is not a trivial task. Many figurative balls were kept in the air at once. Translating
existing methods and implementing and adapting these to Unity engine proved challeng-
ing exercises in both programming skill, planning and logical thinking.

In retrospect, the distribution of time duing the implementation phase proved diffi-
cult, with many areas being potential time sinks along the way. A lot of time was spent
implementing and testing the road network generator, much of which was due to an un-
derestimation of the amount of time it would take to develop a working prototype. This
resulted in an uneven time distribution in other areas, such as the building generator and
overall polish of the software. However, the extent of the time spent on developing the
road tracing algorithms did not prove only negative. Great care was taken to make the
software design of the tracing methods highly modular and robust, which would not have
been possible with ad-hoc solutions. This allows for relatively easy integration of exten-
sion methods and additional features, which could allow for more interesting road pattern
generations.

Another moment of underestimation, as discussed in section 6.1.3, was the lack of
organization when it comes to the data structures. We arguably should have spent more
time researching and creating a robust data structure as a base for the for the road network.
Although not obvious at the time, this would likely have made it easier to implement the
building generation algorithms, and might have allowed for several algorithms to be ex-
plored. On a positive note, a takeaway from this is that we exposed a key insight into
developing procedural software: namely that a bad foundation may create limitations or
unnecessary complications down the road.

60

Chapter 7
Conclusion

In this thesis we have investigated, developed and implemented a city generator in Unity
engine. The development was focused around two main areas; tracing the road network
and populating the road network with buildings. A hyperstreamline tracing algorithm from
existing papers was introduced, and new methods for extruding buildings along the road
paths was devised.

Results indicate that the implemented system shows promising capabilities. Great vari-
ety was achieved with only a few input parameters, which is highly desirable in procedural
generation. We were able to simulate a number of different urban and suburban environ-
ments by varying the density of the road network and frequency of placed buildings. The
use of Perlin noise produced interesting results, comparable to both existing work and real
life city environments. Connecting nearby road segments with spline connections worked
to some extent, but was limited by the fixed length spline implementation in some areas.
A key insight that was discovered is the importance in the road network structure. We can
therefore conclude that in order for the tracing methods to be a viable option for generating
city geometry, a more organized data structure forming the foundation of the road network
should be considered.

When it comes to assessing the systems overall viablity in game development, the
system does not constitute a finished product and more development needs to be done.
Lower level complexity as it stands now not adequate for generating whole game worlds.
We note that procedural generation is often used to quickly generate a rough outline for a
game world that is later manually adjusted, and in this manner the system performs well.
The overall macroscopic detail level was found to be acceptable, and the system serves as
a foundation for further work and development. Notable areas of improvement includes
lower levels of detail, texturing and the addition of more features and code optimizations.

61

7.1 Further Works

A number of improvements for the city generation system should be considered moving
forward. Many routes of further research exist, and we may consider different paths de-
pending on what is deemed important for the future of this system. One path may be
improving the lower level detail, adding intersections, more detailed buildings and textur-
ing. Another path may be to increase the variety of the generated system even more, and
introduce more parameters to give more freedom in the generation process.

7.1.1 Key Improvements

Most importantly the data structures should be revised. The road network functions as the
skeleton of the generated geometry, and might be the most important part of the system.
By introducing a graph based road network, we may improve both the road network gen-
eration techniques and meshing techniques. In this regard, graph traversing algorithms to
discover cycles may be utilized to outline city blocks.

Another improvement we find imperative for the future of this system is generating
road intersections. This problem is related to generating the mesh geometry and the over-
all structure of the road network. A possible area of investigation can be aimed towards
generating the street graph as a whole first and then meshing the entire graph in one sweep
instead of iteratively meshing each independent road segment. Another option may be
extending the independent road path meshing techniques and utilize merging algorithms
to merge the meshes at intersection points.

When it comes to placement of buildings, this is also a feature that may see improve-
ment from better utilization of the generation plane. If the areas bounded by road paths
can successfully be described and mapped out alternative building generation algorithms
such as the lot subdivision method used in CityEngine could be of interest. This could
possibly also open up the option of populating city blocks with other urban elements like
parks or recreational areas. The curved building generation algorithm can also be explored
further, adding more rules and restrictions to place more realistic buildings.

In the same manner that we utilize tensor fields to map out the road networks, we
may use similar fields to describe other features in the terrain or city environment. Height
maps could be utilized in combination with the noise field to create elevation in the ter-
rain that corresponds to the road network, and vice versa. The use of population density
maps could be utilized in the same manner to implement a dynamic branching interval to
simulate varying population densities over a distance. Similar techniques could be applied
to other parameters such as the building heights, sizes or even whole road networks. By
classifying road network types, we may be able to for instance model both a large down
town area and the surrounding suburbs with a natural transition in between.

62

7.1.2 Optimizations
A key aspect when it comes to game development, and especially for real time applica-
tions, is the performance of the system. During the implementation stage of this project,
code optimization was not an immediate concern. Although certain optimizations were
done such as the chunk subdivision and building collision detection methods, these were
absolutely necessary in order to make the implementation feasible. Several areas in the
generation hierarchy could be subject to performance optimization. For instance, the gen-
eration of individual game objects may not be necessary when it comes to the road net-
work. Collecting the entire road network under a single game object may prove more
efficient at runtime, and reduce generation time. Parallel processing methods may be in-
vestigated to utilize threading when calculating the geometry.

63

64

Bibliography

Bhadury, K., 2017. LSystem — GitHub. https://github.com/kbhadury/
LSystem, Online; accessed 2020-04-1.

Birkhoff, G., de Boor, C.R., 1964. Piecewise polynomial interpolation and approximation.
Approximation of Functions, Elsevier Publishing Company , 164–190.

Cash, J.R., Karp, A.H., 1990. A variable order runge-kutta method for initial value prob-
lems with rapidly varying right-hand sides. ACM Transactions on Mathematical Soft-
ware 16, 201–222.

Chen, G., Esch, G., Wonka, P., Müller, P., Zhang, E., 2008. Interactive procedural street
modeling. ACM Transactions on Graphics 27, No. 3, 301–308.

Delmarcelle, T., Hesselink, L., 1993. Visualizing second-order tensor fields with hyper-
streamlines. IEEE Computer Grapichs & Applications , 25–33.

Delmarcelle, T., Hesselink, L., 1994. The topology of symmetric, second-order tensor
fields. Proceedings Visualization , 140–147.

Dustler, M., Bakic, P., Petersson, H., Timberg, P., Tingberg, A., Zackrisson, S., 2015.
Application of the fractal perlin noise algorithm for the generation of simulated breast
tissue. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 9412. doi:10.
1117/12.2081856.

Egeland, O., Gravdal, T., 2003. Modeling and Simulation for Automatic Control. Marine
Cybernetics.

Evans, M., 2015. Procedural generation for dummies: Road generation.
https://martindevans.me/game-development/2015/12/11/
Procedural-Generation-For-Dummies-Roads/, Online; accessed
2020-02-12.

Holmér, J., 2015. A coders guide to spline-based procedural geometry, in: Unite
Conference, Boston, USA. https://docs.google.com/presentation/d/

65

https://github.com/kbhadury/LSystem
https://github.com/kbhadury/LSystem
http://dx.doi.org/10.1117/12.2081856
http://dx.doi.org/10.1117/12.2081856
https://martindevans.me/game-development/2015/12/11/Procedural-Generation-For-Dummies-Roads/
https://martindevans.me/game-development/2015/12/11/Procedural-Generation-For-Dummies-Roads/
https://docs.google.com/presentation/d/10XjxscVrm5LprOmG-VB2DltVyQ_QygD26N6XC2iap2A/edit
https://docs.google.com/presentation/d/10XjxscVrm5LprOmG-VB2DltVyQ_QygD26N6XC2iap2A/edit

10XjxscVrm5LprOmG-VB2DltVyQ_QygD26N6XC2iap2A/edit, Online; ac-
cessed 2020-02-26.

Hosier, A., 2016. Voronoi tessellation in dart. https://github.com/
adamhosier/voronoi, Online; accessed 2020-04-27.

Kutz, P., 2012. Computer graphics by peter kutz. http://peterkutz.com/, Online;
accessed 2020-04-01.

Lindenmayer, A., 1968. Mathematical models for cellular interactions in development.
Journal of Theoretical Biology 18, 280–299.

Massive Software, 2020. Massive Software - Simulating Life. http://www.
massivesoftware.com/index.html, Online; accessed 2020-03-29.

Parberry, I., 2015. Modeling real-world terrain with exponentially distributed noise. Jour-
nal of Computer Graphics Techniques 4.

Parish, Y.I.H., Müller, P., 2001. Procedural modeling of cities. ACM SIGGRAPH , 301–
308.

Perlin, K., 1985. An image synthesizer. SIGGRAPH Computer Graphics 19, 287–296.

Prusinkiewicz, P., Lindenmayer, A., 1990. The Algorithmic Beauty of Plants. Springer.

Thomas, K., 2011. Perlin noise in javascript. https://asserttrue.blogspot.
com/2011/12/perlin-noise-in-javascript_31.html, Online; ac-
cessed 2020-04-02.

Zhang, E., Hays, J., Turk, G., 2007. Interactive tensor field design and visualization on
surfaces. IEEE Transactions on Visualization and Computer Graphics 13, No. 1, 94–
107.

66

https://docs.google.com/presentation/d/10XjxscVrm5LprOmG-VB2DltVyQ_QygD26N6XC2iap2A/edit
https://docs.google.com/presentation/d/10XjxscVrm5LprOmG-VB2DltVyQ_QygD26N6XC2iap2A/edit
https://github.com/adamhosier/voronoi
https://github.com/adamhosier/voronoi
http://peterkutz.com/
http://www.massivesoftware.com/index.html
http://www.massivesoftware.com/index.html
https://asserttrue.blogspot.com/2011/12/perlin-noise-in-javascript_31.html
https://asserttrue.blogspot.com/2011/12/perlin-noise-in-javascript_31.html

Appendix

The code for this project can be found at https://github.com/davidbmadsen/
CityGen

Installation Instructions
• Download and install Unity engine from https://unity3d.com/get-unity/
download

• Clone the GitHub repository to a folder

• Open the cloned project as a Unity project

To start the generation, highlight the CityGenerator gameobject in the Hierarchy tab to the
left in the Editor. The parameters for the city generator described in section 4.5 is found
in the Inspector pane on the right with the CityGenerator game object highlighted.

Press the Generate button in the inspector to generate the city. Note that for high iter
values, the generation may take a few seconds.

67

https://github.com/davidbmadsen/CityGen
https://github.com/davidbmadsen/CityGen
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

David Bjerregaard Madsen

Procedural City Generation in Unity
Engine

Master’s thesis in Industrial Cybernetics

Supervisor: Sverre Hendseth

June 2020

	List of Figures
	Introduction
	Motivation & Problem Description
	Project Goal

	Background
	Procedural Generation and its Applications
	Applications in Video Games
	Applications in Visual Effects
	Limitations and Challenges
	Commonly Used Methods

	Unity Engine
	Game Objects, Components & Scripting
	Mesh Rendering

	Related Work
	Street Network Modeling
	Procedurally Generated Buildings
	Spline-Based Procedural Geometry

	Analysis and Design
	Specification
	Generation Modules
	Structure & Hierarchy
	Road Network Generation
	Building Generation

	Meshing
	Road Meshing
	Building Meshing

	Implementation
	System and Software
	Platform & Language of Choice
	System Specifications

	Development Methodology & Structure
	Data Structures

	Road Network Generator
	On Tensor Fields, Scalar Fields and Noise
	Tracing Tensor Fields
	Road Interconnection using Bézier Curves
	Mesh Generation
	Generating the Road Network
	Optimizations

	Building Generator
	Curved Buildings
	Mesh Generation
	Optimizations & Improvements

	City Generator

	Results
	Generation Results
	Strengths
	Limitations
	Performance Evaluation

	Discussion
	Evaluation
	Road Network Types
	Performance
	Data Structures
	Building Generation

	Reflections

	Conclusion
	Further Works
	Key Improvements
	Optimizations

	Bibliography
	Appendix

