
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Håvard Borge

Framework for Rendering of
Procedurally Generated Terrain

Master’s thesis in Cybernetics and Robotics

Supervisor: Sverre Hendseth

June 2020

Håvard Borge

Framework for Rendering of
Procedurally Generated Terrain

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Problem Description

Procedural generation is the process of generating content with algorithms instead of
manually. Procedural generation is being increasingly used by video game developers to
decrease development time. This project will focus on the rendering of a procedurally gen-
erated world. A program that can be used to render a terrain with a set of models will be
developed, and an end-user will be able to modify the properties of the terrain by changing
the input to the program.

The student shall

• Do a background study to examine how different terrain models can be rendered.

• Develop a back end software for rendering procedurally generated terrain.

• Implement the program such that a text file can be used to list properties and features
of the terrain.

Abstract

This paper studied how to implement a program for the rendering of a procedurally
generated world. The essential parts of the project were to implement basic models and to
have an input format to be used by an end-user.
Creating height variety was designed as a mountain implementation, and tests showed
how the mountain model could be used to give the terrain plenty of variety. The project
uses the midpoint displacement algorithm to implemented paths, and in the demo section,
the paths make roads and rivers. The paper also explores how to implement textures and
camera movement in a three-dimensional world.
Experiments conducted tested the limits of the system. The demo section shows how the
implemented models can be used to generate more complex objects. And the possibilities
section showcases how the models can be used to render different terrain representations.
Lastly, the paper discusses how the project can be used as a foundation for future work
and suggests options for developing the program further.

iii

iv

Sammendrag

Denne oppgaven undersøkte hvordan et program for a tegne en prosessuell generert
verden kan implementeres. De viktigste delene av prosjektet var å implementere grunnle-
gende modeller og å ha et inndataformat som kan brukes av en sluttbruker.
Høydevariasjoner ble designed som en fjellimplementasjon, og tester ble gjennomført for å
vise hvordan fjellmodellen kunne brukes for å gi terrenget rikelig med variasjon. Prosjek-
tet bruker midtpunktforskyvningsalgoritmen for å implementere stier, og i demoseksjonen
brukes stiene til å lage veier og elver. Oppgaven undersøker også hvordan teksturer og
kamerabevegelse kan implementeres i en tredimensjonal verden.
Eksperimenter som ble utført testet systemets grenser. Demoseksjonen viser hvordan de
implementerte modellene kan brukes til å konstruere mer komplekse objekter. Og mu-
lighetsseksjonen viser hvordan modellene kan brukes for å skape forskjellige terrengrep-
resentasjoner. Til slutt diskuteres det hvordan prosjektet kan brukes som et grunnlag for
fremtidig arbeid og det blir foreslått alternativer for å utvikle programmet videre.

v

vi

Table of Contents

Problem Description i

Abstract iii

Sammendrag v

Table of Contents ix

Glossary x

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goal . 1
1.3 Research Questions . 2

2 Background 3
2.1 Procedural Content . 3

2.1.1 Classification of Content . 3
2.1.2 Methods of Procedural Generation 4

2.2 Basics of Computer Graphics . 5
2.2.1 Textures . 6

2.3 Terrain Representation . 6
2.3.1 Heightmap . 6
2.3.2 Vector Displacement Map . 7
2.3.3 Voxel Terrain . 7

2.4 Fractals . 8
2.4.1 Explicit Methods . 8
2.4.2 Noise . 9
2.4.3 Implicit Methods . 10

2.5 Path Generation . 10
2.5.1 Search-Based Approach . 10

vii

2.5.2 Merge-Based Approach . 10
2.5.3 Midpoint Displacement . 11

2.6 OpenGL . 11
2.6.1 Vertex Buffering . 12
2.6.2 Shaders . 12

2.7 Mathematics . 13
2.7.1 Transformations . 13

3 Specification 15
3.1 Project Specification . 15
3.2 Summary of Specification . 17

4 Design 19
4.1 Software Design . 19

4.1.1 Textures . 19
4.1.2 Using OpenGL . 20

4.2 Camera . 20
4.3 Mountains . 20
4.4 Roads and Rivers . 21

5 Implementation 23
5.1 Using the Program . 23

5.1.1 Input . 23
5.2 Rendering Mesh Data . 24

5.2.1 Terrain Model . 24
5.2.2 Spheres . 24
5.2.3 Textures . 25

5.3 Mountains . 25
5.4 Roads and Rivers . 26

6 Results 27
6.1 Testing . 27
6.2 Demo . 27
6.3 Possibilities . 29

7 Discussion 33
7.1 Results . 33

7.1.1 Limits . 33
7.1.2 Demo . 34
7.1.3 Possibilities . 34

7.2 Future work . 34
7.2.1 Models . 34
7.2.2 Terrain Models . 34
7.2.3 Textures . 35
7.2.4 Mountains . 35
7.2.5 Roads and Rivers . 35

viii

7.2.6 Merging . 35
7.3 Development Process . 35

7.3.1 Software Quality . 35
7.3.2 Missing Features . 36

8 Conclusion 37

Bibliography 39

ix

Glossary

API = Application Programming Interface
fBm = Fractional Brownian Motion
GLSL = OpenGL Shading Language
GLM = OpenGL Mathematics
GLEW = OpenGL Extension Wrangler Library
CPU = Central Processing Unit
GPU = Graphics Processing Unit
Heightmap = A two dimensional grid of height values
Noise = Refers to procedural gradient noise when not otherwise stated.
OpenGL = Open Graphics Library. A platform independent API for graphics rendering.
VAO = Vertex Array Object
VBO = Vertex Buffer Object
EBO = Element Buffer Object
PCG = Procedural Content Generation.
Tessellation = The process of dividing polygons into renderable primitives.
ASCII = American Standard Code for Information Interchange

x

Chapter 1
Introduction

1.1 Motivation

Procedural content generation is increasingly common in video game development. Pro-
cedural generation methods are usually implemented by using procedural noise to evaluate
large areas of the terrain at once.

The problem with this approach is that objects in the world usually have to be rendered
in a specific order to not interfere with each other. And since large patches of terrain are
evaluated at once, it is hard to specify what should exist at a specific point within the
large patch. Sometimes hierarchical software structures are insufficient to solve a given
procedural generation problem.

The claims motivating this project are:

• Is it possible to design a program for rendering a procedurally generated world that
merges different parts of the terrain?

• Problems where recursive/ hierarchical structures are insufficient.

1.2 Thesis Goal

The goal of the thesis is to create a program for rendering procedurally generated terrains.
The program will not procedurally generate worlds on its own but serves as a back-end
rendering solution for worlds already generated. The program will use an input file that
specifies the positions and dimensions of objects in the terrain.

Furthermore, the project will explore how different terrain objects can interact with
each other and be merged seamlessly. Problems like; When a road crosses a river, a bridge
should be generated. Mountains in close proximity should create mountain ranges. Rivers
should always flow downstream and how to merge a river with a mountain.

1

Chapter 1. Introduction

1.3 Research Questions
The thesis aims to explore the following research question:

• What is the right approach for the development of a back-end rendering program for
procedurally generated worlds?

• Is it possible for procedural generation methods to move away from noise and search
algorithms?

• How can different objects in the terrain be merged?

2

Chapter 2
Background

2.1 Procedural Content
Procedural generation has been a feature of games for a long time. Procedural genera-
tion can be found in video games even before graphically oriented video games. Some of
the earliest examples are dungeon-delving games like Rogue(1980) [1] and Beneath Ap-
ple Manor(1978). The dungeons in these games are procedurally generated in ASCII or
regular tiles to define rooms, hallways, monsters, and treasures.

Figure 2.1: A procedurally generated ASCII dungeon in the videogame NetHack [2]

Even though procedural generation has a long history in game development, there has
not been much academic interest in the subject until the past decade. The first textbook on
the topic was published by Springer [3] in 2016.

2.1.1 Classification of Content
Procedural content generation means creating content for games automatically through the
use of algorithms. It is a term closely related to the term procedural generation. Content in

3

Chapter 2. Background

this context refers to different aspects of the game. Hendrikx et al. [4] classify content into
six main classes that can be generated procedurally. The classes are presented as a pyramid
with the most fundamental content at the bottom and more derived classes towards the top.

The first class is Game Bits. This class describes individual units of game content like
textures, sounds, vegetation, and buildings. These can be thought of as the bits that make
up the next level of the pyramid, the Game Space. The game space classifies indoor and
outdoor maps, and bodies of water.

The next level is Game Systems. These are the systems that connect the game space.
Examples of such systems are ecosystems, road networks, and urban environments.

The fourth level is Game Scenarios. The game scenarios are events in the game that
describe how the game unfolds. Examples of game scenarios are puzzles, story elements,
and levels.

The Game Design level describes the rules of the game, what can be done, and what
can’t. Broadly the game design level is divided into System Design and World Design.

The last level is the Derived Content. This level describes the content that is not
created inside the game world but as a side-product. Examples include leaderboards to
rank individual players, and news boards to announce changes to the game world.

2.1.2 Methods of Procedural Generation

Togelius et al. [5] provide a taxonomy for classifying different methods of procedural
content generation. Their distinctions are meant to serve as a continuum rather than a
binary. They specify that procedural generation methods usually lie on a spectrum between
two extremes.

The first distinction described is online versus offline content generation. Offline con-
tent generation means generating content during development time, or before the end-user
starts a game session. Online content generation, on the other hand, creates during run-
time. When using offline generation during development time, the algorithm can suggest
an overall layout of the terrain, but can then be edited by a human designer before releasing
the game.

The Elder Scroll IV: Oblivion developed by Bethesda Game Studios is an example of a
game where an offline procedural terrain generator was used during development time to
reduce the time taken to create the game world [6].

The second distinction is necessary versus optional content. The player of the game
is required to complete all necessary content to progress in the game, whereas optional
content is what the player can ignore. The requirements for quality in necessary content
are far greater than the requirements for optional content. Games like Diablo, Borderlands,
and Destiny have randomly generated weapons and equipment. Several of these weapons
will not be useful to the player, but exploring and comparing them is a central part of the
game. Necessary content always needs to be correct, unbeatable monsters or unsolvable
puzzles would never be accepted.

The third distinction is random seeds versus parameter vectors. At one extreme, the
only input to the procedural generator is a seed for the random number generator. While
the other extreme the algorithm takes in a multidimensional vector that specifies the prop-
erties of the generated content. For a terrain, these properties could be how many moun-

4

2.2 Basics of Computer Graphics

Figure 2.2: The terrain in The Elder Scrolls IV: Oblivion. Image from [7]

tains are created, how clustered the mountains are, the maximum height of the terrain, the
amount of water in the terrain, etc.

The fourth distinction is stochastic versus deterministic generation. This distinction
can also be seen as the level of randomness in the generation. How far towards the stochas-
tic extreme the procedural generation falls is an expression of how different two worlds
with the same input parameters are. A completely deterministic procedural generation
algorithm can be viewed as a form of data compression.

The final distinction is constructive versus generate-and-test. A constructive algo-
rithm generates content once and is done with it. All testing to make sure the content
is correct is done during generation. Limits are put on the generation to guarantee the
algorithm never produces broken content. In a generate-and-test algorithm, parts of the
generated content can be broken when tested according to some criteria, and may then be
discarded or regenerated. This distinction is similar to the distinction between implicit and
explicit generation presented in section 2.4.

2.2 Basics of Computer Graphics

Three-dimensional computer graphics are made of a series of connected vertices that form
polygons. These polygon surfaces are often called primitives. The primitives don’t have
to be triangles. They can be quadrilaterals or higher as well. However, most computers
are optimized to rendering triangles because every polygon can be split into triangles. A
set of polygons can be combined into a polygon mesh, usually just called a mesh.

5

Chapter 2. Background

2.2.1 Textures
In the real world, the word texture refers to the surface characteristics and appearance of an
object. When doing computer graphics, the concept of texture is simplified. In its purest
form, the texture is just a single color applied to an object, but the texture is more often a
two-dimensional image. Much work goes into making the two-dimensional textures look
more realistic.

Figure 2.3: Two-dimensional texture mapped onto a three-dimensional sphere. Texture from [8]

2.3 Terrain Representation
When rendering large worlds with plenty of terrain variety, and an efficient way of rep-
resenting terrain is needed. Terrain representation that allows for higher levels of detail
requires more powerful computer hardware, while more straightforward terrain represen-
tations are limited in scope. The following sections present a few terrain models, and
describe their limits on performance and supported levels of detail.

2.3.1 Heightmap
A heightmap is a two-dimensional grid of height values. The value stored at each grid
point is the offset from the lowest point in the terrain. Heightmaps are a highly efficient
way of storing terrain data since only one float value is required for each position in the
terrain. One of the drawbacks of heightmaps is that overhangs and caves cannot be created
since there is only one height value at every point in the terrain. Another problem is the
even spacing of the heightmap grid makes it hard to implement a varying level of detail
function.

Even though heightmaps have restrictions on the available terrain geometry, they are
still used in modern game engines like the Frostbite engine for Battlefield 3 [9] and Unreal

6

2.3 Terrain Representation

Figure 2.4: Heightmap

Engine [10].

2.3.2 Vector Displacement Map

Figure 2.5: Vector Displacement Map

Vector displacement maps are similar to heightmaps, but with three floating values at
each point rather than one. Thus the same position can have several height values. With
vector displacement maps, it is possible to make overhangs and caves with one entrance.
It is also possible to move vertices from areas where not much detail is needed to areas
where more detail is required, effectively using the terrain model to implement a varying
level of detail function.

McAnlis [11] describes how vector displacement maps were used to create terrains in
the game Halo Wars. McAnlis also explains how their artificial intelligence systems had
a harder time navigating a vector displacement map than a heightmap. Hence they devel-
oped a method of converting displacement maps to heightmaps for artificial intelligence
navigation. Since displacement maps and heightmaps are so similar, many of the same
algorithms can be used on them.

2.3.3 Voxel Terrain
Voxel terrain is a three-dimensional grid of terrain data. At every coordinate, there is
terrain data like water, dirt, air, wood, etc. How smooth the terrain looks is determined

7

Chapter 2. Background

Figure 2.6: Cube voxel terrain and smooth voxel terrain. Smooth image from [12]

by how small each voxel coordinate is. In voxel terrains there can be caves and floating
islands, there is no requirement for the terrain to be connected like in displacement maps.

Game developers have ignored voxel terrains because of the massive disk space re-
quired to store the grid. However, procedural generation can generate the grid at run time,
effectively becoming a form of data compression, see section 2.1.2. The game Minecraft
uses a noise function, see section 2.4.2, along with voxel terrain to generate its worlds.

2.4 Fractals
A fractal is a never-ending pattern. Fractal patterns repeat themselves at increasingly
smaller scales as they are zoomed into. In his 1982 book The Fractal Geometry of Na-
ture [13], Mandelbrot claims terrains have a self-symmetry similar to fractals. Mandelbrot
suggested using fractional Brownian motion(fBm) as a good approximation of terrain.

Using fractional Brownian motion to generate terrain can be done either explicitly or
implicitly. Explicit terrain generation means evaluating a large batch of noise values at
once. When using such a technique, individual points in the terrain cannot be evaluated
without generating the rest of the model. Implicit generation, on the other hand, can
generate arbitrary points independent of other points. Musgrave [14] calls the implicit
approach point evaluation, and in Gamito and Musgrave [15] they call it stochastic implicit
surface modelling.

2.4.1 Explicit Methods

The diamond-square algorithm is a method for approximating fractal noise first introduced
by Fournier et al. [16]. The algorithm generates a grid of height values that can be used
as a heightmap. The algorithm is also known as the cloud fractal or the plasma fractal
because the generated heightmap looks ”plasma-like”.

The diamond-square algorithm works like this:

1. Create an array of height and width 2n + 1 with initial values at the four corners.

2. The diamond step: For each square in the array, set the midpoint to be the average
of the four corners plus a random value.

8

2.4 Fractals

3. The square step: For each diamond in the array, set the midpoint to be the average
of the four corners plus a random value.

4. Reduce the magnitude of the random value, and repeat the diamond step and square
step until all values in the array are set.

Figure 2.7: Visualization of the diamond-square algorithm

2.4.2 Noise

Noise on its own does not resemble fractional Brownian motion. For procedural pur-
poses, the term procedural noise has been used to describe a form of interpolated noise.
Interpolation makes transitions between high and low values in the noise smoother. An
approximation of fractional Brownian motion can be constructed when several layers of
procedural noise with different frequencies and amplitudes are combined.

Perlin noise is one of the most commonly used procedural noise methods. It was
described initially by Ken Perlin in [17]. Perlin noise is a form of gradient noise, and
many variations of Perlin’s original implementation have been made since then. Perlin
even published his improved version of the algorithm 17 years after the initial publication
[18].

Figure 2.8: Example of perlin noise

9

Chapter 2. Background

2.4.3 Implicit Methods

Implicit terrain generation techniques can generate individual points without checking the
data of other surrounding points. Methods of implicit generation usually rely on a self-
contained mathematical model. For a heightmap, this means getting the height at a specific
position when inputting the x and y coordinate, output a vector for vector displacement,
and a density value for voxel terrains. Where the density value determines kind of material
is rendered at input position. Saupe [19] presents a method to compute a random fractal
function with 1-3 variables.

2.5 Path Generation

Path generation can be split into search-based approaches and non-search based approaches.
Non-search approaches don’t care what already exists in the terrain. The path is generated
from one point to another, and everything else either has to be removed or merged. Search
based approaches, on the other hand, search through the terrain for the optimal path based
on restrictions.

2.5.1 Search-Based Approach

One example of a search based approach is the A* algorithm. Norvig and Russel [20]
describe it as ”the most widely known form of best-first search.” It is based on a variant of
the very well known Dijkstra’s algorithm. The main difference is that A* does not search
through every node in the set of nodes; it only adds nodes to the list as they are discovered.
That makes the algorithm more efficient since it uses less memory and becomes more
useful when finding a path through more massive graphs. This efficiency is essential when
used in a procedural generation program since procedural worlds can get infinitely large.

2.5.2 Merge-Based Approach

When paths are generated without a search-based approach, it is necessary to merge the
generated path with the terrain unless the terrain is chosen to be ignored. Interpolation is
a method used to create data points within a specific range. When a road goes through a
mountain, interpolation can be used to generate a smooth transition from the road to the
mountain.

Bézier curves are a way of interpolating between several anchor points. Since Bézier
curves can be extended to n-dimensions, it can be used to smooth out the transitions be-
tween several objects in the terrain. From Floater [21]: A Bézier curve of degree n is a
parametric polynomial p given by the formula:

p(t) =
n∑

i=0

ciBn
i (u) (2.1)

Where ci are the anchor points, and Bn
i is the Bernstein polynomial:

10

2.6 OpenGL

Figure 2.9: A cubic Bézier curve

Bn
i (u) =

(
n

i

)
ui(1− u)(n− i) (2.2)

2.5.3 Midpoint Displacement

The midpoint displacement algorithm can be used to generate a path with pseudo-random
offsets. It works by starting with a straight line. The midpoint of the line is found and
displaced proportionally to the length to the midpoint. This procedure is repeated for the
two new line segments until a sufficiently curvy path is generated.

The algorithm is usually used to generate fractal terrains. By expanding it to two
dimensions, it becomes similar to the diamond-square method presented in section 2.4.1.
However, rivers are naturally curvy, and roads are usually not entirely straight either. That
makes the midpoint displacement algorithm suitable for generating paths as well.

2.6 OpenGL
OpenGL is a platform-independent graphics rendering specification developed by the Khronos
Group [23]. By itself, it is a language-agnostic specification, and implementations have
been developed for most common programming languages. Developers of OpenGL imple-
mentations can freely decide how functions are implemented since OpenGL only specifies
what the output must be.

The term shader program used to describe the part of the computer program respon-
sible for shading an object with appropriate levels of light, darkness, and color. Modern
shader programs perform a variety of tasks in graphics rendering. Broadly shaders can be
defined as code that runs on the GPU instead of the CPU.

When using OpenGL, there is typically a client program that runs on the CPU, and
a shader program that runs on the GPU. Before the release of OpenGL 2.0 in 2004, the

11

Chapter 2. Background

Figure 2.10: Midpoint displacement algorithm visualized. Image from [22]

shader program was fixed [24]. OpenGL 2.0 introduced programmable shaders, and the
level of shader program customization has increased since then.

2.6.1 Vertex Buffering
OpenGL uses objects to classify what data should be rendered and how the data should
be rendered. The three most common OpenGL objects are Vertex Array Objects(VAO),
Vertex Buffer Objects(VBO), and Element Buffer objects(EBO). A VBO stores vertex
data like vertex position, texture coordinates, and color. The VAO stores attribute data that
explains how the data in a VBO is stored and how it should be rendered. A VBO must
be ”bound” to a VAO for the data in the VBO to be rendered. The EBO stores the index
information and is used when the same vertex is used in several triangles in the same VBO.

2.6.2 Shaders
OpenGL provides five different shaders as part of its pipeline. When shaders became
programmable with the release of OpenGL 2.0, it had only two different shaders. The
most recent addition, the Compute Shader, was added in OpenGL 4.3 (2012).

• The Vertex Shader handles the rendering of individual vertices. It takes in vertex
attribute data specified by a vertex array object.

• The Tesselation Shader is an optional shader in the OpenGL pipeline. It deals with
subdividing patches of vertex data into smaller primitives.

• The Geometry Shader is an optional shader that processes primitives.

• The Fragment Shader deals with color and the final depth value of each pixel on
the screen.

12

2.7 Mathematics

• The Compute Shader deals with computing information. This stage of the pipeline
cannot do rendering and is used for tasks not directly tied to triangles and pixels.

2.7 Mathematics

2.7.1 Transformations
The theory in this section is based on the book by Gravdahl and Egeland [25].

It is useful to have an understanding of fundamental transformation matrices to move
objects around in 3D space. Transformation matrices are used to move from one coordi-
nate system to another coordinate system.

The equation for the homogeneous transformation matrix can be seen in eq. (2.3), and
in [25], equation 6.115.

Ta
b =

(
Ra

b raab
0T 1

)
(2.3)

The homogenous transformation matrix is made up of a rotation matrix Ra
b , and a

translation vector raab. The elements of the rotation matrix depends on the axis of rotation,
all of which can be found in eqs. (2.4) to (2.6), and in [25], equations 6.101 to 6.103.

Rx(φ) =

1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 (2.4)

Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (2.5)

Rz(ψ) =

cosψ −sinψ 0
sinψ cosψ 0
0 0 1

 (2.6)

The translation vector is given by the translation along each axis and is presented in
eq. (2.7)

raab

tx
ty
tz

 (2.7)

13

Chapter 2. Background

14

Chapter 3
Specification

3.1 Project Specification
The goal of the project is to develop a program for rendering procedurally generated ter-
rain, and the program should also be playable. An end-user can input properties of the
desired terrain, and even move around in the rendered world. The project will also attempt
to texture the world to appear realistic, but this is not the main focus of the program. The
appearance of the world should be sensible enough not to break immersion, but making the
terrain look entirely realistic is not a primary goal. The software structure should be non-
hierarchical, which means to build around design principles like models creating models,
and non-search based object generators.

The input to the program will be a simple text file that lists properties of the terrain
to be generated. The user will also be able to explore the rendered world by walking or
flying. There is no requirement for the input file to specify all the different areas of the
world, and the program should fill the world with variety where there is nothing specified.
Lastly, some properties of the world should interact with each other. Roads crossing rivers
create bridges, roads connect multiple towns, rivers flow downstream, mountains close to
each other create mountain ranges. The input file will be on the form mountain at position
(10,10), tree at position (25,5), etc.

One major research question is how to make the different properties of the world join
together effectively. If a road and mountain are generated in the same position, does the
road go over the mountain, or is it divided, creating a mountain pass? Rivers need to either
search for a path sloping downhill or change the height of the terrain where it passes.

The project aims to move away from a hierarchical software structure. The order in
which objects in the world are generated should not matter, and no algorithms should have
to search through what has already been created. In general, the idea is to work on a shared
state where objects generated later redefine what was created before or discard it if it no
longer fits. A new object always has priority to avoid searching for a suitable place to
create, and ideally, it will merge seamlessly with the terrain already there.

The project will use OpenGL for graphics rendering. Different ways of representing

15

Chapter 3. Specification

terrain will be explored. OpenGL is a low-level graphics specification, where different
parts of the rendering pipeline are programmable. Different styles of representing terrain
are to be studied and implemented. The programmable sections of the OpenGL rendering
pipeline will also be examined to explore how they can be used to render variation in the
procedural terrain.

16

3.2 Summary of Specification

3.2 Summary of Specification
The following features are to be implemented:

• Create a program for back end rendering of a procedurally generated world

– The end user will be able to change the properties of the generated terrain by
changing the input file

– It will be possible to explore the generated world by walking or flying

– The world should feel realistic enough to not break immersion

• Use a non-hierarchical software structure

– Rivers and roads should not search the terrain

– Use the models generating models principle

– Implicit procedural techniques instead of explicit techniques

• Make properties of the generated world join together

– Roads crossing rivers create bridges

– Close proximity mountains create mountain ranges

– Rivers must flow downhill

• Explore different ways of representing terrain using OpenGL

– Heighmaps, vector fields and voxels

– Meshes for model representation

– Study the programmable shaders of OpenGL

17

Chapter 3. Specification

18

Chapter 4
Design

4.1 Software Design

4.1.1 Textures

How textures are implemented makes a big difference in how the terrain looks. The most
basic and intuitive implementation is to fill each square of the terrain with precisely one
texture. If performance is a concern, the world could be made more vertex efficient by
mirroring the textures along the edges of each polygon in the terrain. Both of these ap-
proaches do not attempt to hide the underlying ”squareness” of the texture. It would be
highly inefficient for each polygon to have a unique texture, but another solution is to
change the same texture slightly for each polygon using it. Lighting techniques can make
each polygon look somewhat different, and if using seamless textures, the texture can be
rotated slightly at each polygon.

A texture atlas was designed to access different textures. A texture atlas means putting
every used texture into the same image file, and then the individual textures are chosen
by specifying the coordinates of the texture in the file. The end atlas design supports 100
textures of size 512x512pixels, but only 11 of these spots were used in the end. A complete
list of all textures and their name, when called by the input file, can be seen in fig. 4.1. All
textures found on [26].

Figure 4.1: Texture names starting top left: grass, bark, branch, snow, road, apartment, water, dirt,
brick, roof and stone

19

Chapter 4. Design

4.1.2 Using OpenGL

As mentioned in section 2.6, OpenGL is language-agnostic, and there exist implementa-
tions for most programming languages. For this project, C++ was chosen as the design
language. One of the advantages of using OpenGL instead of a full game engine like
Unity or Unreal Engine is that one gets to learn graphics programming on a much more
fundamental level. That is one of the reasons C++ was chosen as well. Another advantage
is that the OpenGL shader language resembles C++.

For OpenGL to work with C++, a couple of additional dependencies and useful li-
braries were used. The first is GLFW [27]. GLFW is a library that provides simple API
for creating windows, contexts, and surfaces. It was used to create the window. The sec-
ond is glad.c [28]. Glad provides OpenGL functions based on official specifications. It
provides functions for creating OpenGL objects, binding, rendering, and much more. The
third is OpenGL Mathematics (GLM) [29]. GLM has datatypes and mathematical func-
tions useful for many OpenGL projects. In this project, the library was used for the camera
movement and transformation matrices. The last extension used was GLEW [30]. Glew is
an extension loading library and makes three first libraries work together.

4.2 Camera

After vertex coordinates have been processed in the vertex shader, they will be in normal-
ized device coordinates. Normalized device coordinates are a small space where the x,y,
and z values vary from -1.0 to 1.0, and any vertex coordinates that fall outside this range
are discarded.

OpenGL has no concept of a ”camera,” but by using transformation matrices on the
vertex coordinates of a rendered model, a camera can be simulated. For instance, if a
model of a tree is loaded, but only the bottom half of the tree falls within the normalized
device coordinates. A function that rotates every vertex of the tree downwards about a
coordinate system oriented to ”look” straight at the normalized device coordinates can be
used to simulate camera movement. If the function is implemented to rotate when the
computer mouse is moved upwards, it will seem like a camera is being pointed upwards
with the mouse’s movement.

4.3 Mountains

Changes in height are an essential part of rendering natural-looking terrain. Different kinds
of mountains can vary a lot in their visual complexity. In this project, the method used to
render mountains needs to be called multiple times to fill the terrain with height variety.
The amount of information required to render a mountain should, therefore, be kept to a
minimum.

To create a mountain range, a function that recognizes the proximity of two mountains
can be used to issue the generation of several smaller mountains between the two original
mountains.

20

4.4 Roads and Rivers

4.4 Roads and Rivers
As described in section 2.5, path generation algorithms can be either search-based on
non-search based. To keep to the principles of non-hierarchical software structures, the
search-based algorithms are not suitable for this project. The advantage of search-based
approaches is that a path that fulfills specific requirements can be found without modifying
the underlying terrain. When using a non-search based approach, the specifications can
still be fulfilled, but the terrain where the path is generated might have to be modified.

Rivers have stricter requirements than roads in that they have to flow downstream. The
underlying terrain will have to be modified after the river is generated. A Bézier curve
could be used to interpolate the terrain from the edge of the river outwards, making sure
the anchor points go up first before flattening.

21

Chapter 4. Design

22

Chapter 5
Implementation

5.1 Using the Program

The project was implemented as a Microsoft Visual Studio solution. The complete solution
can be found on GitHub [31]. The additional dependencies for the preprocessor and linker
are already taken care of if the source code is compiled with Visual Studio. Otherwise,
the preprocessor needs to include GLEW STATIC, and the linker requires glew32s.lib,
glfw3.lib and opengl32.lib.

5.1.1 Input

The source code folder also includes the input file Models.txt. This file can be changed
to add models to the terrain. It allows for the creation of basic models and geometrical
shapes by specifying their position, dimensions, and texture.

Figure 5.1: Example of a Models.txt input, and the rendered geometrical shapes

Since each model has different dimensions, a complete table of every model and their
expected input parameters can be found in table 5.1. The table also shows whether a model
accepts a texture input or not.

23

Chapter 5. Implementation

Model Position Parameters Texture
Sphere x y z Radius Yes
Torus x y z Inner radius Outer radius Yes
Cylinder x y z Radius Height Yes
Cube x y z Length Yes
Conical x y z Top radius Bottom radius Height Yes
Cuboid x y z Length Width Height Yes
Pyramid x y z Length Yes
Road Start x Start y End x End y Yes
Mountain x y Height Radius No
Tree x y No

Table 5.1: Complete list of models and their input parameters

5.2 Rendering Mesh Data

In this project, a mesh is implemented as a structure with vertex positions, texture data,
and index data. To be rendered, the mesh data needs to be transformed into objects that
OpenGL can understand. The mesh structure is transformed into a model object. In the
model, the vertex positions and texture coordinates become vertex buffer objects(VBO),
and the indices become an element buffer object(EBO). Every model also has a vertex ar-
ray object(VAO). Lastly, all created models send their data to the renderer object. When the
renderer calls the OpenGL function glDrawElements, all the data of the currently bound
VAO gets rendered. The renderer object binds every VAO once every application loop to
draw every model created.

5.2.1 Terrain Model

In section 2.3 different terrain models were introduced. For this project, the terrain type
implemented was heightmaps. The implementation could easily be changed to a vector
displacement implementation since the heightmap already stores length and width coordi-
nates. Still, there are no functions that change the offset of the length or width. Voxel grid
representation is not supported as an input datatype, but with the input file’s creative use,
a voxel terrain can still be rendered, see section 6.3 and section 7.1.3.

5.2.2 Spheres

Song Ho Ahn [32] was used as inspiration to create the code for creating spheres made up
of triangles. Their method starts with an icosahedron, a convex polyhedron with 20 faces.
Then the midpoint of each edge line is extruded such that the distance from the center to
the polyhedron equals the radius, subdividing the original triangle into four new triangles.
This procedure can be repeated until the polyhedron reaches the desired ”roundness.”

Unless otherwise stated, the spheres in this project are created with a subdivision of
4, creating spheres made up of 20 ∗ 44 = 5120 triangles. Subdivisions of up to 10 were

24

5.3 Mountains

Figure 5.2: Spheres with subdivision 0 and subdivision 1

tested. At subdivision 10, the program failed to allocate the space required by the sphere
array. This limitation will be further explored during testing in section 6.1.

5.2.3 Textures
Two different texture implementations were explored. One implementation with four tex-
ture coordinates per square in the terrain. The other with an average of two texture co-
ordinates per square. The second implementation works by mirroring the texture in the
adjacent square. The first implementation allows for smoother transitions between tex-
tures but has higher computer requirements for equal performance.

Figure 5.3: 10x10 grid implemented with 4 texture coordinates per square(left) and with two texture
coordinates per square(right)

5.3 Mountains
The rendering of mountains was implemented using the two-dimensional Gaussian func-
tion. This function works well for our purpose because of its simplicity. Input to the

25

Chapter 5. Implementation

function is amplitude and standard deviation, matching the minimum requirements for a
mountain, peak height, and radius.

Figure 5.4: Basic bell curve mountain

Figure 5.4 shows an example mountain with height 20 and radius 10. How the moun-
tain gets textured is based on the height of each square. Bottom squares get textured with
grass, middle squares with stone and the top squares with snow.

5.4 Roads and Rivers
Roads were implemented using a midpoint displacement algorithm. The input file de-
scribes the two ends of the road, and by displacing a series of points between the two ends,
a more curvy road is generated. Functionality specifically for rivers was not implemented,
but if the texture for a road is changed to water, the path created will resemble a river.
Figure 5.5 shows a primary river with midpoint displacement active, and a road with mid-
point displacement inactive. Unless otherwise stated, every road will be generated with
midpoint displacement activated.

Figure 5.5: Basic river and road

26

Chapter 6
Results

6.1 Testing
During the implementation of the sphere model, it was noted that the program failed to
allocate space for a sphere with subdivision 10 or more. A sphere with a subdivision of
9 has 20∗49=5 242 880 triangles. While a sphere with subdivision 10 has four times as
many.

Each triangle is made up of three vertexes. Every vertex has three floating numbers
for vertex position, two floating numbers for texture coordinates, and one unsigned int for
index value. In c++ floating, numbers and unsigned ints have a size of 4 bytes. This means
each vertex requires 24 bytes, and the total capacity needed for a sphere of subdivision 9
is 377 487 360 bytes.

After checking the limit for the number of triangles in one sphere, the maximum
amount of spheres of subdivision four was tested. Microsoft Visual Studio provides di-
agnostic tools that show the time elapsed since the diagnostic session started, the amount
of process memory used, and CPU usage as a percentage amount of all processors. The
resultant allocation time, peak process memory at the end of allocation time, and the sta-
ble process memory usage after allocating time for an increasingly considerable number
of spheres is shown in table 6.1. NA means the allocation did not finish.

The computer specifications used for the experiments are listed in table 6.2.

6.2 Demo
The input file will be filled with cubes, cuboids, mountains, and other models to showcase
what kinds of worlds can be rendered. The project is designed to render a procedurally
generated world. Since no procedural generation software was developed, this section will
showcase what it looks like when the input file is filled with random models.

By using the apartment texture on cubes or cuboids, something resembling a building
can be rendered. These buildings can be clustered to make something resembling a small

27

Chapter 6. Results

Figure 6.1: Example of the diagnostic tools provided by Visual Studio

Spheres Triangles Allocation time Peak Stable
1 000 5 000 000 0:56 311.5MB 214.3MB
2 000 10 000 000 1:54 384.2MB 290.5MB
4 000 20 000 000 3:49 531.5MB 336.5MB
8 000 40 000 000 7:41 821.2MB 628.3MB

16 000 80 000 000 15:26 1.4GB 1.2GB
18 000 90 000 000 18:10 1.7GB 1.7GB
20 000 100 000 000 NA 1.8GB NA
32 000 160 000 000 NA 1.8GB NA

Table 6.1: Testing allocation time and process memory usage for higher amount of spheres

GPU Gigabyte GeForce RTX 2060 CC
CPU Intel Core i5-9600K
Memory 16GB DDR4 3200MHz
Storage 960GB M.2 SSD
Buid Year 2019

Table 6.2: Computer Specifications

town. The small towns are spread out to pseudo-random locations to give the terrain some
variety, and then the towns are connected with roads from their center. An example town
can be seen in fig. 6.2, and a small world with multiple towns and mountains can be seen
in fig. 6.3.

The mountain model by itself can be used to give the terrain lots of height variety.
Figure 6.4 shows many mountains near each other with varying height and radius.

28

6.3 Possibilities

Figure 6.2: Using cubes and cuboids to render buildings

Figure 6.3: Rendering multiple small towns and mountains

6.3 Possibilities
Even though voxel terrain isn’t supported as a data type, it is still possible to render a voxel
terrain using a pre-generated voxel grid as input. Figure 6.5 shows how cubes or spheres
can be used to generate a voxel grid.

There are no restrictions on how the geometrical models may be used, plenty of things
that have nothing to do with terrain can be rendered. The program can be used to render
many different models for demonstration or visualization. Figure 6.6 shows how conical
and cylinder models can be used to render a rocket.

29

Chapter 6. Results

Figure 6.4: Many smaller mountains

Figure 6.5: Using cubes and spheres to render a voxel grid

30

6.3 Possibilities

Figure 6.6: Rocket model

31

Chapter 6. Results

32

Chapter 7
Discussion

7.1 Results

7.1.1 Limits

The purpose of the limit tests was to find out when the program fails, and what makes it
fail. After the initial realization that a sphere with subdivision 10 made the application
fail, the proposed test was aiming to figure out if there was a limit was in the number of
triangles able to go rendered or if it was a storage allocation issue.

A sphere with subdivision 10 has 20 971 520 triangles, and when the allocation failed,
the amount of process memory used was 1.8GB. Spheres with subdivision four consists
of 5120 triangles, which means 4096 spheres with subdivision 4 have the same amount of
triangles as one sphere with subdivision 10. Looking at the results in table 6.1, we see that
rendering many triangles is not the problem. The problem is when process memory usage
reaches 1.8GB. The program always fails when reaching 1.8GB.

When rendering a sphere with subdivision 10, it takes the program less than 2 minutes
to reach the peak process memory usage. When generating 18 000 spheres with subdivi-
sion 4 takes more than 18 minutes to reach the same process memory usage. The extra
time is taken to read the input file. An input file with 18 000 lines had to be read, to render
the 18 000 spheres. To change subdivision to 10, it is merely a change of a constant in
the code. A more suitable test would have been to generate the 18 000 spheres without an
input file by simply requesting 18 000 spheres directly in the system, but no such analysis
was performed.

It is not clear what the process memory usage represents. The highest amount of
triangles tested for multiple spheres that did not crash was 90 000 000. This equals more
than 6GB of memory to store the vertices. A completed sphere of subdivision 10, will use
1.5GB of storage. Since the subdivision method is recursive, the spheres of the smaller
subdivision are still using memory while the last sphere is being subdivided. However,
the triangle total for all spheres subdivision 1-10 is still less than 90 000 000. Why the
program crashes at specifically 1.8GB of process memory is still a mystery.

33

Chapter 7. Discussion

7.1.2 Demo

For demonstrating a proof of concept, the demo section fulfills its purpose. The variety
of the rendered terrain is limited by the few models that have been implemented. Still,
when using the input format correctly, the program does render both procedurally and
non-procedurally generated worlds. Another limiting factor is how the geometrical mod-
els were used. The cubes, cuboids, and pyramids can be used to create basic building
structures, and the conical can be used to make straight trees. The project has plenty of
options in models and textures, and how creatively these options are used will make a
better-rendered world.

The implementation of the tree model could have been done better. Trees were one
of the first models with implementation, but because of the inability to rotate the basic
geometrical shapes, and difficulty in getting texture orientation to work better. Trees were
put on hold and never finished. Ideally, the trunk and the thicker branches would be im-
plemented using the conical model, and thinner branches would use the branch texture to
fill the tree with leaves, but this implementation was not finished.

7.1.3 Possibilities

Lastly, the extra possibilities section shows that the input can be used in creative ways to
render terrain models like voxel terrains, even when voxel terrain is not an implemented
datatype. The geometric models can also be used to render models that have nothing to do
with terrain representation. The creativity from the user of the program the only limiting
factor in that respect.

7.2 Future work

7.2.1 Models

In the future, more models could be implemented. Right now, cubes, cuboids, and pyra-
mids are used to make buildings and houses. The next step would be to implement a
”building” model or a ”city” that automatically makes buildings and cities using the basic
geometrical models. Other natural terrain models could be added as well. Some sugges-
tions are a ”waterfall” model, a ”bush” model, and more complex models like animals and
insects.

The models also suffer from the inability to rotate. The rendered models always have
the same orientation, which hinders an end-users ability to combine the basic geometrical
models into more exciting objects.

7.2.2 Terrain Models

The base of the terrain is a heightmap terrain, and it is possible to render a voxel terrain
using a voxel grid in the input. It would be interesting to implement the ability to choose
between heightmap or voxel when rendering a world filled with models like mountains,
trees, and cities.

34

7.3 Development Process

7.2.3 Textures
The current texture implementation looks a bit bland. It is effortless to see the edges of the
textures in each square of the terrain. A texture implementation that tiles the same texture
in a way that makes it look less similar would make the grass look a lot better. A texture
implementation that interpolates between two different textures would make the texture
transition between grass, stone, and snow on the mountain look smoother.

7.2.4 Mountains
Mountains are implemented to be as simple as possible, but no real mountains look like
this. The mountain slope should look more like fBm, to look more like real mountains.
The input to the mountain function doesn’t even have to change to make this happen. The
mountain can still gradually slope down using the two-dimensional Gaussian function, but
multiply the height by some approximation of fBm.

7.2.5 Roads and Rivers
The roads can be improved in two significant areas. The first is the corners. It is unde-
niable that the roads are currently made up of triangles; it is visible when the road turns.
These edges can be made more round to make it look more like a real road. The second
improvement would be in how the road is generated. The midpoint displacement algo-
rithm makes the roads more erratic than initially planned during design. Several attempts
were made to change the displacement variable to make the roads look better, but in most
cases, the roads either look too straight or not straight enough.

The major problem with the river implementation is the lack of merge implementation.
When there are height changes in the terrain, the river implementation does not always
attempt to flow downwards. If there were code implemented to make the different models
of the world merge, the shape of a river generated with midpoint displacement would still
look close enough to a real river.

7.2.6 Merging
The lack of merging implementation impacts every model. When several models are ren-
dered in the same position, there is no attempt to combine them. They are rendered on top
of each other. Implementing merging functionality turned out to be a lot more complicated
than initially hoped when the project was started. A proper implementation would make
every object in the rendered world look a lot better, and is the most exciting area for future
research.

7.3 Development Process

7.3.1 Software Quality
Many software design decisions were made based on experience from a past OpenGL
project. The decision to split the rendering process into a mesh, model and renderer objects

35

Chapter 7. Discussion

came as a result of changing the code in several places when rendering new objects in past
projects. Most implementations based on prior experience lead to good results, while a
few did not pan out.

7.3.2 Missing Features
Initially, the use of different shaders to change the look of the was desired. When imple-
menting the renderer class, the idea was to have multiple renderers with different shaders
loaded so that each model could be rendered by a different renderer to showcase the impact
of shader code. Creating multiple renderers were tested but did not work as intended. In
the test, the two renderers each had a set of models, but the last renderer ended up super-
seding the first renderer. Nothing from the first renderer ended up on the screen. Without
a smart way to solve this problem and no desire to create a new renderer class, multiple
renderers were abandoned.

In its place, the renderer class was modified to contain two shader programs within
the same renderer object. This implementation was used to render the black outlines of
triangles while also rendering the full texture on the triangle; one example of this feature
being used can be seen in fig. 5.2. The function was mostly used during the development
of models to make sure the triangles were correct. It can be hard to judge without a black
outline around the textures.

36

Chapter 8
Conclusion

In this thesis, a program for rendering procedurally generated worlds has been specified
and implemented. The project focused on the rendering of individual models, and on the
end-user being able to customize what kind of world is rendered. Geometrical shapes
were implemented to be used together in more complex objects. Basic mountains and
paths were implemented to give the terrain height variety, rivers, and roads.

The project showed how basic geometrical shapes could be used to build more complex
models like buildings and trees. And by structuring the models in a grid, a different terrain
representation can be made as well. The texturing of the models is easy to change and can
be used to give the rendered world a great variety.

The generation of roads and rivers with the midpoint displacement algorithm gave
decent results. When small towns were used as start and endpoints, the world became
more connected.

The project shows great promise to be used as a foundation for future work. More
studies can be done on the design level, in how textures are implemented and how the
shaders of OpenGL are used. On the implementation level, more models can be imple-
mented, and further functionality to manipulate the models’ orientation and dimensions
can be explored.

Merging the different parts of the terrain is the most exciting area for future research.
It would give the rendered world a lot more variety and make the result look a lot more
realistic.

37

Chapter 8. Conclusion

38

Bibliography

[1] E. P. C. F. Brenner P.de Castro, Rosilane R. da Mota, “Level design on rogue-like
games: An analysis of crypt of the necrodancer and shattered planet,” SBC – Pro-
ceedings of SBGames.

[2] M. S. Stichting Mathematisch Centrum. Nethack. [Online]. Available: https:
//www.nethack.org/

[3] M. J. N. Noor Shaker, Julian Togelius, Procedural Content Generation in Games.
Springer, 2016.

[4] J. V. D. V. A. I. Mark Hendrikx, Sebastiaan Meijer, “Procedural content generation
for games: A survey,” ACM Transactions on Multimedia Computing Communica-
tions and Applications.

[5] K. O. S. C. B. Julian Togelius, Georgios N. Yannakakis, “Search-based procedural
content generation: A taxonomy and survey,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 3, no. 3, pp. 172–186, April 2011.

[6] RPGamer. The elder scrolls iv: Oblivion interview with gavin carter. [Online].
Available: https://www.webcitation.org/6872MtzO8?url=http://www.rpgamer.com/
games/elderscrolls/elder4/elder4interview.html

[7] L. Stornaiuolo. Games and semantics. [Online]. Available: https://www.
researchgate.net/figure/A-3D-landscape-from-The-Elder-Scrolls-IV-Oblivion fig3
266287203

[8] 123RF. Old wood tree background texture pattern. [Online]. Available: https:
//fr.123rf.com/photo 17432852 old-wood-tree-background-texture-pattern.html

[9] M. Widmark. Terrain in battlefield 3: A modern , complete and scalable system.
[Online]. Available: https://gdcvault.com/play/1015415/Terrain-in-Battlefield-3-A

[10] E. Games. Landscape outdoor terrain. [Online]. Available: https://docs.unrealengine.
com/en-US/Engine/Landscape/index.html

39

https://www.nethack.org/
https://www.nethack.org/
https://www.webcitation.org/6872MtzO8?url=http://www.rpgamer.com/games/elderscrolls/elder4/elder4interview.html
https://www.webcitation.org/6872MtzO8?url=http://www.rpgamer.com/games/elderscrolls/elder4/elder4interview.html
https://www.researchgate.net/figure/A-3D-landscape-from-The-Elder-Scrolls-IV-Oblivion_fig3_266287203
https://www.researchgate.net/figure/A-3D-landscape-from-The-Elder-Scrolls-IV-Oblivion_fig3_266287203
https://www.researchgate.net/figure/A-3D-landscape-from-The-Elder-Scrolls-IV-Oblivion_fig3_266287203
https://fr.123rf.com/photo_17432852_old-wood-tree-background-texture-pattern.html
https://fr.123rf.com/photo_17432852_old-wood-tree-background-texture-pattern.html
https://gdcvault.com/play/1015415/Terrain-in-Battlefield-3-A
https://docs.unrealengine.com/en-US/Engine/Landscape/index.html
https://docs.unrealengine.com/en-US/Engine/Landscape/index.html

BIBLIOGRAPHY

[11] C. McAnlis. Halo wars: The terrain of next-gen. [Online]. Available: https:
//www.gdcvault.com/play/1277/HALO-WARS-The-Terrain-of

[12] U. Terrains. Ultimate terrains. [Online]. Available: https://uterrains.com/gallery/

[13] B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman and Company,
1982.

[14] F. K. Musgrave, Texturing and Modeling: A Procedural Approach. Morgan Kauf-
mann, 1994.

[15] F. K. M. Manuel N. Gamito, “Procedural landscapes with overhangs,” 10th Por-
tuguese Computer Graphics Meeting.

[16] L. C. Alain Fournier, Don Fussell, “Computer rendering of stochastic models,” Com-
munications of the ACM.

[17] K. Perlin, “An image synthesizer,” ACM SIGGRAPH Computer Graphics.

[18] ——, “Improving noise,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp.
681–682, July 2002.

[19] D. Saupe, Point Evaluation of Multi-Variable Random Fractals. Springer, 1998.

[20] S. R. Peter Norvig, Artificial Intelligence: A Modern Approach. Pearson, 2020.

[21] M. S. Floater. Bézier curves and surfaces. [Online]. Available: https://www.mn.uio.
no/math/english/people/aca/michaelf/papers/bezier.pdf

[22] T. Mazurkevic. Noise and fractals. [Online]. Available: https://github.com/
Falmouth-Games-Academy/comp250-wiki/wiki/Noise-and-fractals

[23] K. Group. Opengl overview. [Online]. Available: https://www.khronos.org/opengl/

[24] ——. History of opengl. [Online]. Available: https://www.khronos.org/opengl/wiki/
History of OpenGL

[25] J. T. G. Olav Egeland, Modeling and Simulation Form Automatic Control. MARINE
CYBERNETICS, 2002.

[26] 123rf. Textures. [Online]. Available: https://jp.123rf.com/

[27] M. G. Camilla Löwy. Glfw. [Online]. Available: https://www.glfw.org/

[28] Dav1dde. Glad. [Online]. Available: https://glad.dav1d.de/

[29] g truc. Opengl mathematics. [Online]. Available: https://glm.g-truc.net/0.9.9/index.
html

[30] M. M. Nigel Stewart, Milan Ikits. Glew. [Online]. Available: http://glew.sourceforge.
net/

40

https://www.gdcvault.com/play/1277/HALO-WARS-The-Terrain-of
https://www.gdcvault.com/play/1277/HALO-WARS-The-Terrain-of
https://uterrains.com/gallery/
https://www.mn.uio.no/math/english/people/aca/michaelf/papers/bezier.pdf
https://www.mn.uio.no/math/english/people/aca/michaelf/papers/bezier.pdf
https://github.com/Falmouth-Games-Academy/comp250-wiki/wiki/Noise-and-fractals
https://github.com/Falmouth-Games-Academy/comp250-wiki/wiki/Noise-and-fractals
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/wiki/History_of_OpenGL
https://www.khronos.org/opengl/wiki/History_of_OpenGL
https://jp.123rf.com/
https://www.glfw.org/
https://glad.dav1d.de/
https://glm.g-truc.net/0.9.9/index.html
https://glm.g-truc.net/0.9.9/index.html
http://glew.sourceforge.net/
http://glew.sourceforge.net/

BIBLIOGRAPHY

[31] H. Borge. Proceduralcities. [Online]. Available: https://github.com/Howiezi/
ProceduralCities

[32] S. H. Ahn. Opengl sphere. [Online]. Available: http://www.songho.ca/opengl/
gl sphere.html

41

https://github.com/Howiezi/ProceduralCities
https://github.com/Howiezi/ProceduralCities
http://www.songho.ca/opengl/gl_sphere.html
http://www.songho.ca/opengl/gl_sphere.html

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Håvard Borge

Framework for Rendering of
Procedurally Generated Terrain

Master’s thesis in Cybernetics and Robotics

Supervisor: Sverre Hendseth

June 2020

	Problem Description
	Abstract
	Sammendrag
	Table of Contents
	Glossary
	Introduction
	Motivation
	Thesis Goal
	Research Questions

	Background
	Procedural Content
	Classification of Content
	Methods of Procedural Generation

	Basics of Computer Graphics
	Textures

	Terrain Representation
	Heightmap
	Vector Displacement Map
	Voxel Terrain

	Fractals
	Explicit Methods
	Noise
	Implicit Methods

	Path Generation
	Search-Based Approach
	Merge-Based Approach
	Midpoint Displacement

	OpenGL
	Vertex Buffering
	Shaders

	Mathematics
	Transformations

	Specification
	Project Specification
	Summary of Specification

	Design
	Software Design
	Textures
	Using OpenGL

	Camera
	Mountains
	Roads and Rivers

	Implementation
	Using the Program
	Input

	Rendering Mesh Data
	Terrain Model
	Spheres
	Textures

	Mountains
	Roads and Rivers

	Results
	Testing
	Demo
	Possibilities

	Discussion
	Results
	Limits
	Demo
	Possibilities

	Future work
	Models
	Terrain Models
	Textures
	Mountains
	Roads and Rivers
	Merging

	Development Process
	Software Quality
	Missing Features

	Conclusion
	Bibliography

