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Problem description

The formulation of the problem description from the specialization project is maintained
with some modifications [2].

Motion planning is the process of finding local paths that a specified vehicle can
follow based on what it senses from the environment. Traditional motion planning
methods usually find the shortest routes to avoid obstacles. For terrain vehicles, the
surroundings are more complex, and the world is not always divided into obstacle/no-
obstacle. The optimal path is not always the shortest, but may be the one with the
smallest climb, minimal roughness or the one with least vegetation, or the route that
is considered as the safest path.

The problem which will be elaborated in this report is finding optimal motion
planning for a non-holonomic vehicle in terrain with respect to terrain characteristics.
By using a grid to represent the environment, different terrain characteristics can
be included, and a cost can be made for each cell in the grid. A* is an effective
method to find the optimal path, but a vehicle is unable to follow a path generated in
a grid. However, the trajectory can be made feasible by optimizing the path to yield
the vehicle’s driving behaviour. This report will present relevant literature for path
planning for non-holonomic vehicle and optimization. Further, it will be looked into
how these methods can be combined to perform motion planning in terrain.
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Abstract

To perform non-holonomic motion planning in terrain is a challenging task. The opti-
mal path in terrain may not be shortest in length, but the one with the smallest climb,
least vegetation, or the route considered the safest. The terrain is often represented
as a grid with traversability values. Finding the shortest path in a grid can be done
with algorithms like A*, but the paths are not feasible for a car-like vehicle to follow
due to too abrupt turns. The path planner needs to create a path that is driveable
for a non-holonomic vehicle, by modifying an existing path-search algorithm or/and
post-process the path by optimization.

This paper presents earlier work on terrain traversability, non-holonomic naviga-
tion, and trajectory optimization which are inspirations of this thesis’ path planner.
The path planner finds the path in a costmap provided by FFI, where each cell has a
value that represents the traversability degree of this area. By dilating the costmap
and given a start- and a goal-location, the radial-constrained A* algorithm is used to
find a discrete- and safe-path that respects the turning radius of a non-holonomic
vehicle. Further on, the discrete path is optimized by gradient descent optimization.
The optimization uses the gradient of a cost function that smooths the path while
maintaining the curvature and cost-efficiency of the path. If the stopping criterion
of the gradient descent optimization is met, the initial discrete path will have been
transformed into a smooth, cheap, and driveable path.
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Sammendrag

Å planlegge en optimal rute for et bil-lignende terrengkjøretøy byr på forskjellige
utfordringer. Den optimale bane kan ikke alltid anses som den korteste, men kan
være den ruten med minst stigning, mest klaring eller det tryggeste veivalget. Disse
terrengegenskapene kan lagres i et 2d-kart som representerer farbarheten i et visst
område, og kartet kan videre brukes i et banesøk. Ved å behandle kartet som en graf,
kan populære graf-søk algoritmer som A* brukes til å finne den optimale ruten. Et
terrengkjøretøy vil få problemer ved å direkte følge A* sin rute, da ruten vil være
diskret og bestå av svinger som kjøretøyet ikke kan følge. Baneplanleggeren må da
respektere kjøretøyets begrensninger i planleggingsfasen.

Denne rapporten presenterer relevant litteratur som har påvirket utviklingen
av ruteplanleggeren. Materialer innen navigering i terreng, ruteplanlegging for bil-
lignende kjøretøy og rute-optimalisering vil bli introdusert. Ruteplanleggeren finner
en bane i et kostkart som er mottatt fra FFI, der hver rute i kartet representer far-
barheten i det respektive området. Videre, hvor et strukket (dilated) kostkart og
start- og sluttpunkt er gitt, brukes det en radius-begrenset A* algoritme til å finne
en diskret og trygg rute gjennom terrenget, hvor svingradiusen til kjøretøyet er tatt
hensyn til. Den diskrete ruten blir deretter glattet med gradient descent optimering.
Optimeringsalgoritmen bruker gradienter fra en kostfunksjon som glatter en diskret
bane, samtidig som den tar vare på krumningen og det billige banevalget gjennom
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optimeringen. Avslutningsvis, når stoppkriteriene for gradient descent optimeringen
er tilfredsstilt, vil den diskrete ruten ha blitt forandret til en glatt, billig og kjørbar
bane for et terrengkjøretøy.
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Chapter 1

Introduction

This introductory chapter will briefly provide background and motivation for the
problem to be solved. A literature review summarized existing relevant knowledge
around the approach for the problem and established the foundation of the later path
planner. The scope of the work is then defined through some assumptions. Finally, the
contributions of the thesis are defined and elaborated.

1.1 Background

In this section, the background of the problem to be solved will be presented. Some of the
materials in this section are from the specialization project Motion Planning for Terrain
Vehicles (2019)[2], and is included for the completeness of the thesis.

FFI has for years been doing research on autonomous vehicles and drones. Lately,
the research has also been including unmanned ground vehicles, which have great
potential to perform military tasks better, faster, and more efficiently. By introducing
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2 CHAPTER 1. INTRODUCTION

unmanned vehicles, people can be removed from dangerous tasks which increases the
safety of military operations.

The car industry has made great advancements in developing self-driving cars, and
the armed forces can benefit from these developments. By adapting the self-driving
vehicle to drive in terrain, the vehicle can be sent out by soldiers to inspect e.g., what
triggered an alarm in an unknown area. This will also make it possible for the armed
forces to defend bases more efficiently in the future [7].

FFI is currently developing an autonomous vehicle with the goal of demonstrating
autonomous driving in terrain. For a few years, FFI has been using a Polaris Range
900XP ATV called OLAV as their base vehicle platform (see figure 1.1). This platform
is rigged with sensors to detect and interpret the terrain to perform motion planning.

Figure 1.1: Olav, an unmanned ground vehicle

1.2 Motivation

The base vehicle platform by FFI have been using a method based on Hybrid-A* as their
path planner. This algorithm is using a tree-search with motion primitives directly at
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the sensor-data to search through the terrain. However, the search-tree for Hybrid-A*
is expanding exponentially with the distance searched, affecting the planner’s run-time
and limits the planning-horizon for each planning sequence.

As a result of the limitations to FFI’s current path-planner, they want to explore
other optional planners. This thesis is going to investigate an alternative motion
planner which uses the informed A* search algorithm to find a discrete path in the
terrain, and then post-process the path to get it smooth.

1.3 Literature review

A wide selection of methods has been developed to perform motion planning in terrain.
For each approach, different techniques have been used to evaluate the environment,
finding the shortest path, or optimizing an existing path. This section will present
some of the key inspirators in the development of this thesis. The literature review
will focus on how the A* algorithm, or modifications of A*’s are used in terrain and for
non-holonomic path planning. Material which is optimizing paths to be smooth and
driveable will also be presented.

1.3.1 Terrain navigation

In this subsection, a literature review of navigation in terrain will be presented. The last
three paragraphs are from the specialization project Motion Planning for Terrain Vehicles
(2019)[2], and is included for the completeness of the thesis.

NASA’s Mars Exploration Rovers depends on a high-level of autonomy in search of
evidence of past water activity on Mars [3]. The rovers are navigating autonomously
throughout the terrain with an algorithm called GESTALT ( Grid-based Estimation of
Surface Traversability) [11]. The GESTALT algorithm uses stereo cameras to evaluate
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the terrain, storing the information as a local terrain model in a grid-based goodness
map. Each grid cell is assigned a goodness value, which indicates the cost of traversal.
The Rovers’ navigation system uses Field D* to generate a path between two locations
[6], which aims to minimize the cost of traversing this path based on the goodness map.
The Field D* is a computational effective interpolation-based path- and re-planning
algorithm for generating low-cost paths trough non-uniform grids.

DARPA grand challenge was arranged in 2004 and 2005 to spur innovation to
unmanned ground vehicles capable of navigating in off-road terrain [32]. As the
competitors received the approximate global route that the robot should take, the
path planner’s primary role was local obstacle avoidance. The robot led by Stanford
University created its own base trajectory, which is a smoothed version of the global
route the team received before the competition. The smoothing was done by least-
squares optimization, where the focus was to minimize the curvature and still keep
the distance to the original global path to a minimum. As the optimized path was still
piece-wise linear, it was made differentiable with cubic spline interpolation before it
could safely be used as a trajectory [32].

[15] focuses on a system that can accurately traverse off-road environments in
high-speed autonomously. Their solution is to analyze the off-road terrain using
a 3D lidar, determine potential hazards, and then plan a safe route around it. The
route is planned by an arc-based planner that simulates and evaluates arcs based on
traversability. The arc with the best score is kept, and the UGV has a local path to
follow.

[34] investigates a geometrical approach to identify the roughness in terrain using
the terrain elevations from a point cloud generated using a 3D camera. This terrain
identification is mainly done to perform high-speed navigation decisions for UGV in
rough unknown terrain.

[12] presents a global path planning strategy for UGV from an aerial scan of the
environment. A set of algorithms is processed on the aerial scan to produce a 2D
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costmap, which is based on prior traversability. Further on, the costmap is used as an
input to a D* path planner.

1.3.2 Non-holonomic navigation

DARPA urban challenge was a competition where robotic vehicles had to navigate
in urban environments autonomously [5]. This competition motivated Stanford to
develop a path-planning algorithm that generates smooth paths in an unknown en-
vironment. This approach is based on two steps, where the first use Hybrid State
A*-search to find a minimum-cost path where the non-holonomic driving behavior of
the robot is considered. The second step locally improves the quality of Hybrid A*’s
solution by performing numeric non-linear optimization, which perturbs the path to a
local, or global optimum [5].

[17] focuses on navigating an unmanned surface vehicle formation accurately
and effectively using path planners to generate optimal trajectories. The USVs are
restricted by motion constraints, hence, the resulting trajectory has limitations in the
allowed curvature and need to provide practical collision maneuvers. [17] presents an
algorithm called angle-guidance fast marching square(AFMS) to generate the trajectories
compliant to the USV’s restrictions. The AFMS path planning algorithm uses FMS as
the base algorithm but creates a guidance-range in the planning space to consider the
USV’s motion constraints. The guidance range consist of two different sectors, one
turning range sector and one obstacle range sector. It is desired that the path should
remain within the turning range sector, and the obstacle range sector should act as an
obstacle.

Grids are commonly used as spatial models in robot navigation. To find a safe
path for the robot, a graph can be constructed from the two-dimensional model of the
environment. As the graph is constructed from a grid, algorithms like A* and Dijkstra
can be executed to find the shortest path. However, these kinds of graph-search
algorithms rarely consider the agent’s dynamic constraints, which may result in a path
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with too sharp turns. LIAN (limited-angle) is a heuristic search algorithm that generates
smooth paths in a grid-based environment while addressing the angle-constraint
problem for non-holonomic vehicles[35]. The LIAN algorithm has similarities with
A* but evaluates the potential successors in the path with a midpoint algorithm to
identify valid cells based on a maximum angle of an alternation.

1.3.3 Trajectory optimization

[37] presents CHOMP (covariant Hamiltonian optimization for motion planning),
which is a trajectory optimization technique formotion planning used in high-dimensional
spaces. This article focuses on using a functional gradient technique to iteratively
improve the smoothness and obstacle distance for the initial trajectory. The CHOMP
algorithm can be used to locally optimize feasible trajectories, solving motion planning
queries and converging to low-cost trajectories even when initialized with infeasible
trajectory. The approach for CHOMP’s motion planning is built on two assumptions:
"Gradient information is often available and can be computed inexpensively" and
"Trajectory optimization should be invariant to parametrization".

[25] uses a sequential convex procedure to incorporate collision avoidance into
trajectory optimization to solve motion planning problems. This approach focuses on
planning problems with many degrees of freedom, from 7- and up to 28 DOF. [25] uses
a two-step optimization algorithm to create a feasible motion plan from scratch, where
the first step is numerical optimization with sequential convex optimization. The
second step for [25]’s optimization algorithm is obstacle avoidance, where the signed
distance is computed using convex-convex collision detection, and the continuous-time
safety of a trajectory is ensured. This approach yielded higher quality paths in lower
run-time than other motion planners that use trajectory optimization, including the
CHOMP algorithm.
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1.4 Assumptions

FFI has provided a 65-seconds recording of their autonomous vehicle performing
motion planning in terrain. This recording contains all the information the vehicle
needed to perform the navigation. During the development of the path-planner in
this thesis, only the provided data from the recording is used in the development and
test-phase of the path planner. There is no guarantee that the path planner algorithm
from this project will work on other types of data and a physical vehicle.

The thesis’ scope is the path planning process on one sequence only. The vehicle’s
position is accessible in a costmap at all times, and the path planning starts when a
goal location is received. It is assumed that the goal location is placed in a detected
spot within the costmap, and generating temporary way-points is not needed. The
path planning ends when a driveable- and smoothed-path in the costmap is found.

To measure the performance between the paths, a total cost from the costmap is
calculated. The developer of this thesis has no indications on how well a vehicle will
perform at a certain total cost, as the paths was not tested on a physical vehicle. Even
though, it is assumed that a lower total cost-number is a better choice.

1.5 Contributions

The main contributions of the work presented in this thesis are as follows:

• A comparison between the most popular discrete graph-search algorithms

• The development of a path planner that uses a dilated costmap based on terrain
characteristics. This map is used to find a discrete and safe path that respects a
minimum turning radius for a non-holonomic vehicle.
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– Inspired by [3] that finds a low-cost path with Field D* through a non-
uniform grid.

– The radial-constraint limitation of the search directly in the grid is inspired
by [35] which restrain the search by an angle.

• The design of a cost-function that yields the desired driving behaviour for a
non-holonomic vehicle.

– Inspired by [5] that uses a cost-function to optimize a Hybrid A* path
generated in a binary environment.

• Pre-processing of a costmap by averaging to generate a gradient field which is
further used in a cost-term in an objective function.

• Utilizing gradient descent optimization to smooth a discrete path, while main-
taining the curvature and cost-efficiency of a path.

– Inspired by [5] that uses conjugate gradient to smooth a path to a local- or
global-minimum.

– The gradient descent implementation is also motivated by [14]

• A study evaluating the performance of the discrete radial-constrained path and
trajectory optimization of the discrete solution path.

1.6 Outline

The report is organized as follows. In Chapter 2, relevant theory is presented for non-
holonomic path planning, image processing and optimization. Chapter 3 presents the
implementation of A*, and how this was modified to find safe path for non-holonomic
vehicles. Chapter 3 also presents the development of the optimization technique to
smooth a discrete path, while maintaining the curvature and cheap total cost. Chapter
4 perform tests that examine the different aspects of the algorithm. Finally, chapter 5
concludes the work and share thoughts on future works for this algorithm.



Chapter 2

Theory

This chapter will provide the necessary theory to understand the concept and ap-
proaches behind the motion planning process for this master thesis. Firstly, traditional
motion planning will be elaborated. Then some graph search algorithms will be dis-
cussed. Furthermore, some image processing techniques will be presented. Lastly,
essential information about optimization will be introduced.

2.1 Traditional motion planning

In this section, some theory of traditional motion planning will be stated. Some of the
materials in this section are from the specialization project Motion Planning for Terrain
Vehicles (2019)[2], and is included for the completeness of the thesis.

Motion planning refers to the robot’s motion in a 2D- or 3D world that contains
obstacles. A path is a sequence of commands for the robot to move safely to the goal
state without colliding with obstacles.

9
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When planning the trajectories for the robot to a goal state, it is important to
represent the robot’s world correctly. This world is usually a geometric model of a
system of bodies in space and can be defined either as boundary representation or a
solid representation. The first step to define the geometric model is to either define
a 2D- or 3D worldW. If it is a 2D world,W = R2, and if it is a 3D world,W =
R3. Representing a more complicated world with more than three dimensions is not
necessary as this simple world generally contains two kinds of entities[16]:

• Obstacles: Parts of the worldW that are permanently occupied, e.g., trees or
walls.

• Robots: Bodies that are modeled geometrically and can move via a planned
path.

These two entities are considered as closed subsets of the worldW. We let the obstacle
region O denote the set of all points inW that exist in one or more obstacles; hence,
O ⊆ W. The 2D world is often represented in a grid where the occupied cells are the
subset O, and the rest of the world is free cells[16]. Figure 2.1 shows an example of a
worldW.
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Figure 2.1: A 2D world with a robot navigating along a planned path among obstacles.
.

Dividing the world into free and occupied cells works well when the robot is
operating in simple environments as indoor or on open roads [16]. These worlds are
considered simple because the degree of traversability is the same wherever the robot
move, except when moving into obstacles. The objective of a motion plan in these
types of worlds usually is to find the path with least cost. In a simple world, the cost for
a path planner would be the path’s total distance, however, in a more complex world



12 CHAPTER 2. THEORY

e.g. terrain, other factors than distance may be relevant for the planner’s decisions.
To simulate different terrain like hills, degree of vegetation, or different frictions
to surfaces, weights can be distributed to the free cells in the world, O ⊊ W/the
search space. These weighted cells will represent the degree of traversability, and
together form a costmap describing the terrain. The advantage by using a costmap for
navigation is that the solution path will be the path with the least cost, and then be the
safest, easiest, and best path, as the degrees of driveability are estimated on the user’s
criterion. The optimal motion plan is to find the optimal solution for a path-planning
problem by finding the cheapest path in a costmap or minimizing a cost-function f for
a path [16].

2.2 Graph search algorithms

The worldW is usually represented as a grid environment, either as a binary grid with
obstacle/no-obstacle or as a weighed map, as mentioned in section 2.1. By constructing
a graph from the two-dimensional map-environment, graph search algorithms can be
applied to search for paths through the map[31]. The best route through the map is
the most cost-efficient route, and a good algorithm to find this path is to use the A*
algorithm. This algorithm utilizes effective properties from both breadth-first Search
and Dijkstra’s Algorithm to reach its goal.

When graph search algorithms are used to find a path, they need a graph as an
input, as well as start- and stop-node locations in the graph, and the algorithm returns a
path if the search is successful. The input graph, the map, is a construction of nodes and
edges. The nodes represent locations, and the edges connect the locations. Depending
on the problems agenda, the edges in the graph can be both with and without weights.
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(a) Graph representing a map (b) Map of Norway [26]

Figure 2.2: From map to graph

(a) Obstacle-map (b) Nodes located mid-cell (c) Nodes located in corner

Figure 2.3: From 2D-grid to graphs

There are many different ways to represent a graph as a map. An example of such a
graph can be a map of a country (figure 2.2 of Norway), where the nodes can represent
large cities, and the highroads can be edges. Weights can be added to the graph to
represent distances or speed-limits. Another map-type is to use a two-dimensional
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grid as a map 2.3. This graph is structured like a grid, where all nodes are structured
to have equal distances to each other, and the edges represent how to get from one
node to another. The nodes placement in the grid can either be located in the center of
the cells (subfigure 2.3b) , or in the corners (subfigure 2.3c).

There are two ways to represent a node’s children/neighbors in a two-dimensional
grid environment, either with four neighbors (horizontal and vertical search) or eight
neighbors (including diagonal search). Depending on the neighbor representation, a
search algorithm will in many cases find two different solution paths. In the case with
four neighbors (subfigure 2.4a), there are several optimal solutions which include the
shortest route to the goal node, which are seven steps. In the case with eight neighbors
(subfigure 2.4b), there is only one optimal solution, including four steps.

(a) Four neighbours to the start node (b) Eight neighbours to the start node

Figure 2.4: Shortest path from start node to the goal node.

2.2.1 Breadth-first search

The BFS algorithm is an uninformed graph traversal algorithm that is used to find the
shortest path in a graph. The algorithm uses a queue data structure that follows the
First-In-First-Out(FIFO) principle [4]. Starting to explore a start node, the algorithm
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puts all of the start node’s adjacent nodes in the queue, and then continue to explore
the next one in the queue, i.e. one of the start node’s neighbors. The algorithm then
puts all adjacent nodes of this neighbor that are not already visited to the queue. This
process is repeated until the whole graph is explored. Since BFS uses a FIFO queue
to explore the graph, the search will grow uniformly and is therefore referred to as a
breadth-first search. Figure 2.5 illustrates the BFS algorithm during search a grid.

(a) BFS search depth = 1 (b) BFS search depth = 2

Figure 2.5: BFS search with four neighbors

The BFS algorithm does not directly construct a path. It can be modified to keep
track of where the visited nodes came from for every location visited. By adding a
table that keeps track of where the visited node was expanded from, the shortest path
can be reconstructed from every location to the start location [8]. If BFS is used to find
a path to a single destination, the algorithm can be modified to allow early exit. The
early exit function terminates the search if the expanded node is the goal node. Figure
2.6 shows the shortest path from a goal node to a start node.
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Figure 2.6: Shows how to reverse back to the start node from every location. Inspired
by [8].

2.2.2 Dijkstra’s algorithm

Graph traversal algorithms have the purpose to always find the shortest path in the
graph. The definition of shortest may vary and can be evaluated by e.g. distance, safety,
time or difficulty. To balance the priority between these elements, the edges between
the nodes can be weighed. These weights will then represent the cost to move between
the nodes in the graph.

Dijkstra is an algorithm to solve a single-source shortest-path problem on a
weighted graph [4]. This algorithm is based on the breadth-first search but uses
a priority queue instead of a FIFO queue. This allows exploring paths with the lowest
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cost first, instead of exploring all directions equally as in BFS. When the algorithm is
visiting nodes, it stores information in two tables: one for where the new node was
visited from, and one that stores the cost to get to this node. If a node’s neighbor
is already visited, the algorithm checks if the new cost will be less than the already
stored cost to this node, if it is, the cost table and came-from table gets updated with
new values [4]. Figure 2.7 shows the lowest cost path found with Dijkstra’s algorithm,
where moving costs are 1 through white cells, and 6 through the green cells.

Figure 2.7: Shows the backtracking of the lowest-cost path and the cost to each cell.
Movement cost to white cell = 1. Movement cost to green cell = 6.

.
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2.2.3 BFS vs. Dijkstra

There is not much difference between the breadth-first search and Dijkstra’s algorithm.
If the cost in the graph is uniform, BFS and Dijkstra will search in the same manner
and find the same optimal solution. Both algorithms are also uninformed, they can
start the search without prior knowledge, e.g. location to the goal, and still find a
solution path if it exists. Since both algorithms cover a large area in their search with
breadth-first, it is beneficial to use them in a multiple-target search. The disadvantage
of searching a large area is that it requires a lot of memory, thus the running time can
be large in big graphs [29].

The queues are the component which distinguishes these algorithms. With BFS’s
FIFO queue, the search finishes one depth layer at a time before moving to the next
layer. BFS defines the shortest path with the number of depth-layers it needs to traverse
from the start- to the goal node. With Dijkstra’s priority queue, the visited nodes with
the lowest cost are placed first in the queue. Thus, when Dijkstra’s search pops the
goal node from the priority queue, the shortest path is found. Dijkstra’s definition of
the shortest path is the route with the lowest total cost from start- to the goal-node.
BFS and Dijkstra’s algorithm will find the same path in a uniform weighted graph, but
different shortest paths in a weighted graph.

2.2.4 The A* algorithm

In this subsection, some theory about the A* algorithmwill be stated. Some of the materials
in this subsection are from the specialization project Motion Planning for Terrain Vehicles
(2019)[2], and is included for the completeness of the thesis.

Dijkstra is an algorithm that finds the shortest path solely based on the cost. The
algorithm searches for the goal in a breadth-first manner, using maybe more memory
than necessary.
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The A* algorithm is a modification of Dijkstra, which uses a heuristic as a guide in
the search. By introducing a heuristic for the evaluation, the algorithm can prioritize
paths that are cheap and appear to lead closer to the goal [8], which will save both
time and space. This is mainly done from a function which evaluates a node n in the
search space:

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) (2.1)

Where

• g(n) represents the cost of getting from the start node to node n.

• h(n) represents the heuristic, an estimate of the distance from node n to the goal.

• f(n) represents the total expected cost of a solution path going from the start
node, through the node n, to a goal.

By using the g, h and f values, A* will be directed towards the goal and will find
the shortest possible route. Starting with a node n, the search is done iteratively by
evaluating n’s children with the cost function f(n). The evaluated nodes are stored
together with the cost information in a priority queue. The search then continues with
the node with the smallest cost in the priority queue. This process continues until the
goal node is retrieved from the priority queue.

2.2.4.1 Heuristic

The A* algorithm will only be guaranteed to find the optimal path if the heuristic
function is admissible, which means that as long as the heuristic function does not
overestimate the distance to the goal, the solution path will be the optimal path [30]. In
a 2d path planning, two types of heuristics are often used. The L1 norm, often known
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as the Manhattan distance:

| |𝑥 | |1 =
∑
𝑖

|𝑥𝑖 | = |𝑥1 | + |𝑥2 | + ... + |𝑥𝑖 | (2.2)

and the L2 norm, often known as the Euclidean distance:

| |𝑥 | |2 =
√∑

𝑖

𝑥2
𝑖
=

√
𝑥21 + 𝑥22 + ... + 𝑥2𝑖 (2.3)

A* can be used to solve many types of planning problems and with different cost-
functions and heuristics, e.g., solve an 8-puzzle game, moving a sofa through tight
spaces [16], or find a traversable path for terrain vehicles.

2.2.5 Dijkstra’s vs A*

What differs between A* and Dijkstra’s algorithm is the heuristic which is used in A*.
A* search is a guided or informed search, it uses an (admissible) heuristic to predict
the cost to the goal, and consider the nodes which seem to lead closer to the goal. This
extension may save the search a lot of memory, thus lower the run-time in the right
circumstances [28].

For instance, in an open landscape where the cost does not differ much Dijkstra’s
approach would have to evaluate approximately the same amount of nodes as BFS,
while A* approach can greedily follow the heuristic, guiding the search towards the
goal, see figure 2.8a. The heuristic used in subfigure 2.8b is the Manhattan distance.
Both subfigures expand the lowest node number first if the cost/distance is equal.
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(a) Uninformed (b) Informed/Heuristic

Figure 2.8: Expanded(Closed-set) and visited(Open-set) nodes for uninformed and
heuristic search in open landscape

In another scenario where the cost differs much, or there is a lot of obstacles, A*’s
heuristic may not be the biggest help. The path which seems to lead close to the
goal might be blocked, or be more expensive than a longer route. At the worst, A*
and Dijkstra will have the same run-time. In other words, A* will never have higher
run-time than Dijkstra but may have significantly lower run-time in some scenarios.
Both algorithms will eventually return the optimal solution path if it exists, (if A*’s
heuristic is admissible).

2.3 Non-holonomic planning

One of the main challenges that appear when representing a map as a grid is that the
real-world is continuous, while the positioning of the nodes in the grid is discrete.
Since the locations of the nodes in the grid are predetermined, the alternative routes
for the path-planners are limited. Discrete path planning algorithms often find paths
with too abrupt turns which is not feasible for a robot to directly follow. Therefore,
either a continuous path planner is needed, e.g. Hybrid A* search [22], or smoothing
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algorithms have to be applied on the discrete path. Either way, the cars kinematics
need to be accounted for in generation of the solution path.

2.3.1 Kinematics for a simple car

A car-like robot with four wheels is restricted in how they move. As the back wheels
can not slide, the robot’s maneuvering depends on the steering angle and the distance
between the axles. This type of vehicle has three degrees of freedom, the position of x
and y, and the angle between the world frame and body frame of the car [16].

The resulting trajectory of a path planning algorithm may be feasible for one
vehicle but infeasible for another. This depends on the vehicle’s kinematic, what the
maximum steering angle or minimum turning radius is for the vehicle. The curves
in the resulting trajectory can not have a smaller radius than the vehicle’s minimum
turning radius, if this is the case, the resulting trajectory would be infeasible for this
vehicle.

Figure 2.9: Illustrates the steering for a car-like robot
.
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Denote 𝜙 for the steering angle at the front axle, and the length 𝐿 between the
front- and back-axle at the vehicle. If 𝜙 is constant while the robot is driving, the
vehicle will drive in a circular motion with a turning radius of 𝜌 . The distance between
the intersection between the two lines from the axles, and the center of the vehicle is
the turning radius at that given time, see figure 2.9 for illustration. From trigonometry
the relation between the turning radius 𝜌 and the steering angle 𝜙 is:

tan(𝜙) = 𝐿

𝜌
(2.4)

where 𝐿 is the distance between the axles [16]. Figure 2.10 illustrates an infeasible
path for a car with turning radius 𝜌 . The path is infeasible because the vehicle can not
track the path due to too abrupt steering angle.

Figure 2.10: Illustrates the steering problem for a car-like robot in a grid
.

2.3.2 Turning radius in grid

To find out if the resulting path is feasible for a vehicle or not, the turning radius can
be calculated directly from the path. Pick three points on the trajectory, and a circle
with radius 𝜌 can be created which passes through all three points [13]. The circle
equation is stated below:
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(𝑥 − 𝑥𝑐 )2 + (𝑦 − 𝑦𝑐 )2 − 𝜌2 = 0 (2.5)

where (𝑥𝑐 , 𝑦𝑐 ) is the center of the circle. By using the circle equation 2.5 for all
three points, there will be three equations with three common unknowns; 𝜌 , 𝑥𝑐 and 𝑦𝑐 .
The idea of extracting the turning radius from the path is illustrated in figure 2.11.

Figure 2.11: Turning radius from trajectory
.

(𝑥1 − 𝑥𝑐 )2 + (𝑦1 − 𝑦𝑐 )2 − 𝜌2 = 0 (2.6a)

(𝑥2 − 𝑥𝑐 )2 + (𝑦2 − 𝑦𝑐 )2 − 𝜌2 = 0 (2.6b)

(𝑥3 − 𝑥𝑐 )2 + (𝑦3 − 𝑦𝑐 )2 − 𝜌2 = 0 (2.6c)
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Two linear equations can be created to find the center (𝑥𝑐 , 𝑦𝑐 ) and 𝜌 expressed with
(𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3). These equations can be created by subtracting equation
2.6a from equation 2.6b and equation 2.6a from equation 2.6c.

(𝑥22 + 𝑦22) − (𝑥21 + 𝑦21) + 2𝑥𝑐 (𝑥1 − 𝑥2) + 2𝑦𝑐 (𝑦1 − 𝑦2) = 0

(𝑥23 + 𝑦23) − (𝑥21 + 𝑦21) + 2𝑥𝑐 (𝑥1 − 𝑥3) + 2𝑦𝑐 (𝑦1 − 𝑦3) = 0

By isolating 𝑦𝑐 and solving for 𝑥𝑐 we get:

𝑥𝑐 =
(𝑦3 − 𝑦1) (𝑥22 + 𝑦22 − 𝑥21 − 𝑦21)) + (𝑦1 − 𝑦2) (𝑥23 + 𝑦23 − 𝑥21 − 𝑦21)

2((𝑥1 − 𝑥3) (𝑦2 − 𝑦1) + (𝑥1 − 𝑥2) (𝑦1 − 𝑦3))
(2.7)

𝑦𝑐 =
𝑥22 + 𝑦22 − 𝑥21 − 𝑦21 + 𝑥𝑐 (𝑥1 − 𝑥2)

2(𝑦2 − 𝑦1)
(2.8)

𝜌 =
√
(𝑥1 − 𝑥𝑐 )2 + (𝑦1 − 𝑦𝑐 )2 (2.9)

2.3.3 Hybrid A* search

BFS, Dijkstra and A* are all used to compute paths in discrete state spaces. As most
robots and vehicles navigate in continuous state spaces, a new path planner which
takes account of the non-holonomic constraints and continuous nature for the vehicle
is needed to produce a smooth path. Hybrid A* is an efficient path-planner algorithm
that was used by Stanford’s racing team in the DARPA Urban Challenge in 2007. This
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algorithm produces a continuous path in the discrete grid which is directly driveable
for the robot [5].

Hybrid A* is a modified version of the regular A* star search. While A* is only
allowed to visit a specific location in the adjacent node, e.g. center or corner of
cells, Hybrid A* can treat each cell as continuous, and visit every location within the
adjacent cells during the search [22]. When Hybrid A* considers the neighboring cells,
it considers the non-holonomic nature of the vehicle and adds only the nodes that the
robot is able to reach. The neighboring nodes are evaluated by pre-calculated motion
primitives, to determine reachable states for the non-holonomic vehicle. By using
the motion primitives, arcs, the hybrid approach guarantees that the paths found is
traversable. Further, the paths found are evaluated by a cost function, in the same
manner as discrete A*. The most cost-efficient path is chosen and is guaranteed to be
drivable by the Hybrid A* algorithm. The selected path is, however, not guaranteed
to be cost-optimal, as many possible cells may have been pruned. But the solution
might be in the neighborhood of the global optimum, allowing to arrive at the global
optimum solution by using gradient descent to improve the path [5].

Figure 2.12: Shows the different consideration of adjacent nodes in regular A*(left) and
Hybrid A*(right)

.
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2.4 Image processing

Graph search algorithms have the purpose to find the best path in a given graph. The
optimal path highly depends on how the graph is represented. As mentioned earlier,
a graph can be generated from a map that is stored as a two-dimensional array. By
manipulating the array, the graph can be changed, and there will be a new optimal
solution path for the graph problem.

The manipulation can be done by image processing since the array contains num-
bers as in a regular grayscale or RBG images [18]. How the image is processed depends
on what the definition of optimal for the problem is, or what the desired driving
behavior is for the path-following car.

2.4.1 Grayscale dilation

Grayscale dilation is a morphological operation that uses a structuring element(or a
kernel) to an input array and creating an output array of the same size. The value of
each pixel in the output array is decided by the neighborhood of the corresponding
pixel in the input array. The structuring element strides over the input array, checks
all values inside the array, and assigns either the maximum or minimum pixel value
from the neighborhood to the corresponding pixel in the output array [9].
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Figure 2.13: Illustrates grayscale dilation with a maximum function from input- to
output array with a kernel of size 3x3

.

Dilation is used to enlarge or enhance important elements in a picture. For an
input map to a path planning problem, this can be useful to enhance obstacles and
high-cost areas.

2.4.2 Averaging

The grayscale dilation enhances either the highest or lowest pixel value for a pixel’s
neighborhood in an image. As this is highly effective in enhancing objects, important
information is lost in the process. The dilation assigns only the maximum or the
minimum in a neighborhood, hence all other pixels in this neighborhood are filtered.

Averaging can be used to gather information about a pixel’s neighborhood. The
averaging filter takes the average of all pixels of a neighborhood in the input array
and assigns the average value to the corresponding pixels in the output array[21]. The
size of the neighborhood is defined as the filter’s dimension. The process is illustrated
in figure 2.14.
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Figure 2.14: Illustrates averaging from input to output array with filter of size 3x3
.

Image information is also lost by performing averaging. Information about single
pixels disappears, but are replaced with information about that pixel’s neighborhood.

2.4.3 Gradient field

The gradient can be calculated from an image to mathematically visualize the differ-
ences in an image. The gradient for an image outputs two kinds of arrays, one array
for vertical differences, and one array for horizontal differences [27]. The two arrays
can be fused to create a gradient field of the map. The gradient field has the same
dimension as the input array, but the cells contain vectors instead of pixel values.
These vectors point towards the area which increases the most over that pixel, and the
size of the vector informs about how big the difference is.

The gradient of x and y is calculated by convolution. For the x gradient, a kernel
with size 1x3 is used and convolved over the input array. The horizontal difference
is calculated over a pixel and divided by two, then the new value is assigned to the
corresponding pixel in the output array. The process is illustrated in figure 2.15.
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Figure 2.15: The horizontal gradient are calculated in a image array.
.

The y gradient is calculated in the same manner as the x gradient, except the kernel
has a dimension of 3x1 and the vertical difference is calculated over the pixels. The
process of calculating the vertical gradient is shown in figure 2.16.

Figure 2.16: The vertical gradient are calculated in a image array.
.

The two arrays of gradients can be fused, and visualized with vectors, see figure
2.17.
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Figure 2.17: Shows how a vector field can be created from x- and y-gradients.
.

The gradient field are convenient to visualize differences in the map, and then use
as a guide towards high- or low-cost areas for path planners.
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2.5 Optimization

It was mentioned in section 2.3 that a smoothing algorithm could be applied on a
discrete path to obtain a feasible path. The smoothing can be done by optimization,
where the position of the nodes is being optimized. A definition of optimization is
[33]:

“Optimization is an act, process, or methodology of making something (such
as design, system, or decision) as fully perfect, functional, or effective as
possible.”

Optimization is a widely used tool in the analysis and decision science of physical
systems. To use optimization as a tool, an objective needs to be identified which can
be used as a quantitative measure of the system under the study. This objective can
vary from being e.g. time, profit, cost, length or any function that can be represented
by a single number. The objective is defined as certain characteristics of the system
called parameters, unknowns or variables. The goal of the optimization problem is to
find variables that optimize the objective. In some optimization problems the variables
are constrained, e.g. demand from stores, capacity of production or steering angle for
a vehicle. The whole process of identifying the objective, variables, and constraints
for the problem is called modeling. Depending on the problem and model, different
optimizing algorithms can be utilized to find the solution[20].

An optimizing algorithm can be used in a path planning process. The objective
function will then be a cost-function consisting of terms that define smoothness or
cost in the path. The constraints in the optimization problem can be the vehicle’s
constraints, which the most obvious one is the steering angle.
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2.5.1 Mathematical formulation of an optimization problem

“Mathematically speaking, optimization is the minimization or maximization of a func-
tion subject to constraints on its variables”. [20] uses the following notation for the
optimization model:

• x is the vector of variables, also called unknowns or parameters. E.g., x is the
path, which is describe by a sequence of nodes.

• f is the objective function, a (scalar) function of x that we want to maximize or
minimize. E.g., the cost function which yields the path desired driving behaviour.

• 𝑐𝑖 are constraint functions, which are scalar functions of x that define certain
equations and inequalities that the unknown vector x must satisfy. E.g. the
equation of turning radius or steering angle of the vehicle.

Where the optimization problem can be written as:

min
𝑥 ∈𝑅𝑛

𝑓 (𝑥) subject to 𝑐𝑖 (𝑥) = 0, 𝑖 ∈ E (2.10a)

𝑐𝑖 (𝑥) ≥ 0, 𝑖 ∈ I (2.10b)

Where E and I are sets of indices for equality and inequality constraints.

The objective function is defined from the variables, and are supposed to be max-
imized or minimized to find the solution. The constraints are also functions of the
variables and are a set of equality- and inequality-equations that need to be satisfied
in order to find a feasible solution. If the objective- and constraint-functions are all
linear, the type of problem is known as a linear programming problem. If the objective
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function or some of the constraints are nonlinear, the problem is a nonlinear program
[20].

2.5.2 Global and local optimization

A formal definition from [20] of the global minimizer of f is:

A point 𝑥∗ is a global minimizer if 𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥

where 𝑥 ranges over all over R𝑛 . A formal definition from [20] of the local minimizer
of 𝑓 is:

A point 𝑥∗ is a local minimizer if there is a neighborhood N of 𝑥∗ such
that 𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ N

where 𝑥∗ is the vector which holds the optimal solution for the objective function
[20]. Figure 2.18 illustrates the global minimum for all R𝑛 and three local minimums
of three separate neighborhoods N of 𝑥∗

𝐿𝑀
.
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Figure 2.18: Illustrates the global and local minimums of an objective function 𝑓

.

When utilizing an optimizing algorithm on a model, one often prefers to find
a global solution. The global solution is the lowest/highest function value among
all feasible points. The local solution is the point where the objective function is
smaller/higher than all other feasible points in the neighborhood N . Many nonlinear
optimizing algorithms seek only the local solution, because the global solution may be
hard to recognize and even harder to find. This is not the case for linear programming
problems because the local solutions are also global solution[20].

Finding the solution in optimization problems is done iteratively. The optimization
algorithms start with an initial guess with variables and depending on the algorithm
chosen, new variables are estimated for the next steps until the iterations terminate,
hopefully at the solution. The objective function, constraints, and first- and second-
gradients are all important factors of deciding the next variables. Some algorithms
also use information gathered from previous steps to estimate further [20].

The choice of initial guess is essential, especially for a nonlinear optimization
problem like path planning. If the optimization is used to smooth a path, the initial
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guess will be the discrete path that is found by the graph search algorithm. If the
graph search finds a solution which is not optimal, the optimization algorithm will
most likely iterate to a local solution, and not the global solution.

2.5.3 Gradient-based trajectory optimization

Assume one of the mentioned graph search algorithms returns a feasible path in a
path planning problem. In some cases, it is not advantageous or practical to include
all constraints for the model in the graph search algorithm. Trajectory optimizing
addresses the problem of perturbing the trajectory while satisfying a set of constraints
to improve the quality of the path. The methods of trajectory optimization fall under
the nonlinear programming class [16].

To be able to use numerical computation methods to optimize the trajectory, the
generated trajectories are specified in terms of parameter space. The optimization can
then be compared to an incremental search in the parameter space while satisfying all
constraints. The direction of motion in the perturbations of the trajectories is decided
from the gradient of the objective function in the parameter space while respecting
the constraints. Hence, the optimization of trajectories has similarities to Newton’s
method and gradient descent methods, where both methods are finding the next search
direction based on the gradient- and second-gradient of the objective function. What
differs between Newton’s method and gradient descent is how they are selecting the
step size of the search [16].
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2.5.4 Gradient descent optimization

Gradient descent is an optimizing algorithm which produces a minimizing sequence
𝑥 (𝑘) , 𝑘 = 1. . . , 𝑛 where

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝑡 (𝑘)Δ𝑥 (𝑘) (2.11)

and 𝑡 (𝑘) > 0 (except when 𝑥 (𝑘) is optimal)[1]. Δ𝑥 is called the step- or search direction,
and 𝑘 = 0, 1, ..., 𝑛 denote the iteration number of the optimization. 𝑡 (𝑘) is called the step
size- or length at iteration k. Since the gradient descent method is a descent method, it
can be said that

𝑓 (𝑥 (𝑘+1) ) < 𝑓 (𝑥 (𝑘) ), (2.12)

except when 𝑥 (𝑘) is optimal [1]. Equation 2.12 states in words that the next iteration
in gradient descent method should always have lower value than the existing point.
The gradient descent algorithm is as following:

Algorithm 1 Gradient descent method

Require: a starting point 𝑥 ∈ dom 𝑓

repeat
1. Δ𝑥 := −∇𝑓 (𝑥)
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. 𝑥 := 𝑥 + 𝑡Δ𝑥

until stopping criterion is satisfied

In the gradient descent method, Δ𝑥 is chosen as the negative gradient of the
objective function −∇𝑓 (𝑥). The step size t is either calculated from the exact line
search or backtracking line search[1]. When the gradient and step size are calculated,
the next point can be found from the minimizing sequence described in equation 2.11.
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This process repeats until the stopping criteria are satisfied. A common stopping
criteria is to use | |∇(𝑓 (𝑥)) | |2 ≤ [, where [ is small and positive, but other criterions
can also be used[1]. In other words, the step direction are heading downward the slope
the objective function are creating until it reaches a valley [24]. How the gradient
descent method is reaching the optimum 𝑥∗ in 𝑓 is illustrated in figure 2.19.

Figure 2.19: The gradient descent method finding a global minimum from an initial
pose.

.

2.5.5 Conjugate gradient

Conjugate gradient method is a class withing optimization that can handle large-
scale nonlinear problems in an effective way [19]. The conjugate gradient method is
originally developed for the quadratic optimization problem, but are further extended to
handle general optimization problems [10]. Some important features for the nonlinear
conjugate gradient method are that they require no matrix storage and have fast
convergence rate [20].
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Algorithm 2 Conjugate gradient - The Fletcher Reeves method

Given 𝑥0;
Evaluate 𝑓0 = 𝑓 (𝑥0),∇(𝑓0) = ∇𝑓 (𝑥0);
Set 𝑝0 ← −∇𝑓 (𝑥), 𝑘 ← 0;
while ∇𝑓𝑘 ≠ 0 do

Compute 𝛼𝑘 and set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 ;

Evaluate ∇𝑓𝑘+1;

𝛽 ←
∇𝑓 𝑇

𝑘+1∇𝑓𝑘+1
∇𝑓 𝑇

𝑘
∇𝑓𝑘

; (2.13a)

𝑝𝑘+1 ← −∇𝑓𝑘+1 + 𝛽𝑘+1𝑝𝑘 ; (2.13b)
𝑘 ← 𝑘 + 1; (2.13c)

end while

In algorithm 2, each iteration requires an evaluation of the objective function and
gradient. Only a few vectors need to be stored for the next iteration, and no matrix
operation is needed. The line search parameter, 𝛼𝑘 , represents the step size of iteration
k. From equation 2.13b, 𝛼𝑘 needs to satisfy the strong Wolfe condition in order to have
a descent search direction. The strong Wolfe condition is stated below:

𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝑐1𝛼𝑘∇𝑓 𝑇𝑘 𝑝𝑘 , (2.14a)

|∇𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘 )𝑇𝑝𝑘 | ≤ −𝑐2∇𝑓 𝑇𝑘 𝑝𝑘 , (2.14b)

Where 0 < 𝑐1 < 𝑐2 < 1
2 . The inner product between the gradient vector ∇𝑓𝑘 and
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equation 2.13b are:

∇𝑓 𝑇
𝑘
𝑝𝑘 = −||∇𝑓𝑘 | |2 + 𝛽𝑘∇𝑓 𝑇𝑘 𝑝𝑘−1, (2.15)

By applying lemma 5.6 from [20], it can be shown that any line search procedures
that computes an 𝛼𝑘 satisfying the equation set 2.14a, will ensure descent search
direction for the objective function 𝑓 .



Chapter 3

Method

The objective of this project is to perform optimal motion planning in terrain. FFI has
already a complex UGV, which uses sensor-information to plan a path through the
terrain. The motion planner for FFI uses a map that represents the environment as a
grid, where each cell includes a cost based on the traversability degree. To find a path
in the grid, an exploring-tree search is used by FFI to find the goal state. A disadvantage
of using a tree search is that the number of nodes explored increases exponentially
by the distance searched. This directly affects the motion planner’s running-time and
limits the planning horizon for each planning sequence. FFI is therefore interested
to see if there exist promising alternatives, where one promising option may be to
smooth a discrete graph search.

From subsection 2.2.4 and 2.2.5, A* search proved to be the most efficient and best
graph search algorithm to use. This thesis will focus on an alternative motion planner
for FFI that utilizes the A* algorithm to find an optimal path in a grid, where the grid
cells are weighed with respect to terrain characteristics( as in [3] and [12]). Since A*
finds a path in a two-dimensional grid, A*’s path is discrete, and the motion planner

41
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will apply an optimizing algorithm that smooths the path while keeping the path
at low-cost ([5], [37]). The motion planner also needs to account for the vehicle’s
kinematic constraints, either in the path search ([17], [35]) or post-process the discrete
path considering the curvature [5]. A practical challenge for the optimization problem
is to design a cost-function that yields the path’s desired driving behavior. This is a
challenge because we want a cost-efficient path, but at the same time are smooth and
keep a comfortable distance to high-cost areas.

The UGV navigates through the terrain with a GPS-set goal, which may be outside
the sensors’ range. If the goal location is outside the sensors’ range, the UGV navigates
towards waypoints which work as temporary goal location. As the UGV moves
towards the goal, undetected terrain is perceived through the sensors, which means
that the motion planner needs to be as efficient as possible and create optimal paths
continuously. In this chapter, it is assumed that the environment from the vehicle to
the goal is fully observable, thus generating waypoints is not needed.

This chapter will firstly present the available sensor and vehicle information
received from FFI, and how this affects the path planning process. Further on, the
implementation of A* will be elaborated, including the importance of choosing correct
heuristic, calculating cost, dilation, and radial-constrain the A* search. Lastly, local
optimization will be performed with gradient descent ([14], [5]).

3.1 Data and map representation

In this section, information about the data- and map-representation in this thesis will be
presented. The first paragraph from this section are from the specialization project Motion
Planning for Terrain Vehicles (2019)[2], and is included for the completeness of the thesis.

FFI has already a complex setup for the autonomous vehicle OLAV with a lot of
sensors and data. A 65-seconds recording of a drive with OLAV was provided from FFI
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for this project. This recording contains all information the vehicle needs to perform its
navigation, which includes poses relative to frames, camera images- and information,
lidar sweeps, vehicle measurements, odometry information, and much more. The
sensor information from both cameras and lidar are fused to create a cost field (see
figure 3.1). This can be used as an input-map to determine the optimal path through
the terrain for a search-algorithm.

Figure 3.1: How OLAV perceives the vegetation

FFI generated the cost field with estimation from traversability cost, obstacles,
attractive-potential, and distances. All this information was combined and are stored
as a weighed 2D array with dimension 320x320, where -1 is undetected areas, and
the numbers from 0 – 100 define the driveability at the different grid cells. Each cell
represents an area of 0.25 meters, hence the 2D array represents an area of 80x80
meters.

To make the process of developing a search algorithm easier, the cost field can
be visualized as a grayscale image. The level of brightness in the picture defines the
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driveability, where the brightest area is the preferred region to navigate in. The white
areas are the undetected areas.

Figure 3.2: Map of the terrain

3.1.1 Polaris Ranger XP900 - Vehicle specifications

FFI uses a vehicle called Polaris Ranger XP900 for autonomous navigation. As a
consequence of transforming the vehicle from being a regular ATV to a UGV, the car
is restructured. Because of the modifications, the weight of the vehicle is changed, but
this is not considered an important part of the path planning process. The essential
specifications for the vehicle are the dimensions and the steering angle. These are
listed below [23].
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Width 152 cm
Height 193 cm
Length 296 cm
Length between axles 206 cm
Steering angle 𝜙 ± 0.5 rad

Table 3.1: Ranger CP 900 Specifications

The algorithm developed in this thesis is supposed to be generic, and will hopefully
work for different vehicles with different specification. To change the algorithm towork
for different vehicles, both the dimensions and steering angle needs to be redefined.
The dimensions are important because of the spatial occupancy to the vehicle need to
be considered in the path planning process, see figure 3.3 for illustration.

Figure 3.3: Illustrates the spatial occupancy for a vehicle in a grid. The occupancy is
circle-shaped to consider all angles the vehicle can have at this location.

The optimal path depends on the area the vehicle is covering. If the vehicle is big,
a greater distance needs to be considered for clearance against obstacles and high-cost
areas than with a smaller car. The unit used for the dimensions in the algorithm
are cells, where each cell covers an area of 25 cm. The most important element in
the dimension of the vehicle is the diameter because this contributes to illustrate
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which area it covers when the vehicle rotates. The diameter is simply gathered with
Pythagoras sentence:

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =
√
𝐿𝑒𝑛𝑔𝑡ℎ2 +𝑊𝑖𝑑𝑡ℎ2 = 332.74𝑐𝑚 (3.1)

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑐𝑒𝑙𝑙𝑠 =
332.74𝑐𝑚
25 𝑐𝑚

𝑐𝑒𝑙𝑙

= 13.31𝑐𝑒𝑙𝑙𝑠 (3.2)

Since cells are considered whole, the diameter of the vehicle is 14 cell units in the
discrete grid. The vehicle will maximum cover an area with a diameter of 14 cell units.

The steering angle is also varying from one vehicle to another. A vehicle with
a big steering angle can navigate differently than one with a smaller steering angle.
Different paths will then be produced for the different steering angles, where both
paths can be feasible for one vehicle, but not the other.

3.2 A* implementation

In section 2.2, it was explained that a graph search algorithm can be applied to a 2D
coordinate system. The same can be done to the costmap of terrain traversability,
where the nodes are located mid-center of each cell in the grid. The edges which are
connecting the nodes are weighed with the cost of a driveability of the terrain between
the nodes. The transformation from a costmap to a weighed grid-graph is illustrated
in figure 3.4.
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Figure 3.4: From map to graph

As the A* algorithm is a discrete search algorithm, the search for a path and
choice of the next cell is limited, either with 4- or 8 potential descendants. To allow
the algorithm to create paths that yield closest to a non-holonomic vehicle driving
behavior, it is considered for this path planner that a cell has 8 neighbors, thus A* is
searching in horizontal, vertical, and diagonal directions.

The A* algorithm is an informed graph search algorithm that uses a heuristic as a
guide to finding the shortest path to a goal. This algorithm requires a graph, and a
start- and a goal-location located inside this graph to execute. For the UGV navigating
in the terrain, the input graph is the costmap of the terrain, the start location is the
GPS position of the UGV, and the goal location is the GPS-set goal location( or the
temporary waypoints). The algorithm stores its information in two sets, the Open set,
a queue which prioritizes which traversability cell to expand next, and one Closed set
where the expanded cells are added to. In the Closed set, information about where the
cell was expanded from are stored i.e. its predecessor, and how expensive it is to get to
this cell location.

Furthermore, the while loop is looping until Open is empty. This loop is starting
at the first cell in the priority queue (which is the start state in the initialization). For
each iteration, A* checks if the current cell is at the goal state, if it is, the algorithms
have reached its target and the search can terminate. If current ≠ goal state, A* iterates
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through all adjacent cells of the current cell, horizontal, vertical, and diagonal. The
cost (see subsection 3.2.1) for each neighboring cell is calculated and evaluated iff: this
cell has not been visited before or, the cost to this cell is less than the already-stored
cost traveling to this cell. If any of these conditions are met, the adjacent cell is added
to the Open-set together with the new calculated cost. The current cell is also stored
as the predecessor of the adjacent cell to be able to backtrack which route led to this
cost. The implemented algorithm is stated below:

Algorithm 3 The A* Algorithm

1: Given 𝑥𝑠 ∩ 𝑥𝑔 ∈ M
2: Set Open← ∅, Closed← ∅, Predecessor(𝑥𝑠 )← ∅, Open.put(𝑥𝑠 , 0)
3: while not Open ≠ ∅ do
4: current = Open.popMin()
5: Closed.push(current)
6: if current = 𝑥𝑔 then
7: break
8: end if
9: for next in current.adjacent() ∈ M do
10: 𝑔← 𝑔(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑐𝑜𝑠𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑒𝑥𝑡)
11: if next ⊈ Closed or 𝑔 < 𝑔(𝑛𝑒𝑥𝑡) then
12: 𝑔(𝑛𝑒𝑥𝑡) ← 𝑔

13: ℎ(𝑛𝑒𝑥𝑡) ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑛𝑒𝑥𝑡, 𝑔𝑜𝑎𝑙)
14: Open.put(next, 𝑔(𝑛𝑒𝑥𝑡) + ℎ(𝑛𝑒𝑥𝑡))
15: Predecessor(next)← current
16: end if
17: end for
18: end while

Figure 3.5 shows a solution path found with the implemented A* from algorithm 3.
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Figure 3.5: Shows a solution path of A* from a start- to a goal-location

3.2.1 Traversability cost

In algorithm 3 the 𝑐𝑜𝑠𝑡 (𝑥1, 𝑥2)-method are anticipated to simulate the vehicle moving
through the terrain from one cell node to another. Figure 3.6 illustrates a discrete
example of a path through a cost grid. The cost from 𝑥1 to 𝑥2 depends on the driveability
in this cell and the segment length in both cells. In the illustrated discrete example,
there are two types of segments, one horizontal/vertical and one diagonal, where the
length(diagonal) =

√
2 · length(horizontal). Setting the pixel length to 1 gives these

two costs:
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𝑐𝑜𝑠𝑡 (𝑥1, 𝑥2) =
20 + 10

2 · 1 = 15 (3.3)

𝑐𝑜𝑠𝑡 (𝑥2, 𝑥3) =
10 + 20

2 ·
√
2 = 21, 2132 (3.4)

Figure 3.6: Discrete cost illustration

3.2.2 Heuristic

The heuristic function which is used in A* depends on how the algorithm searches.
If the algorithm is only allowed to search horizontal or vertical, the best heuristic to
use is the Manhattan distance. The Manhattan distance (equation 2.2) estimates the
total x- and y-units moved from one location to another, i.e. horizontal and vertical
directions. Manhattan distance is the best choice for horizontal and vertical search
because this heuristic yields the resulting path behavior for this type of search. If
the A* algorithm allows diagonal search, the Euclidian distance is the best heuristic
estimate. This heuristic calculates the straight line distance from one state to another,
thus yields the shortest path in a continuous environment.
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By using a heuristic function between node 𝑥1 to 𝑥3 in figure 3.6 would estimate
a distance of 3 with the Manhattan distance, and 2.24 with the Euclidean distance.
The real distance in figure 3.6 is 1 +

√
2 = 2.41. This means that only the Euclidean

distance is an admissible heuristic for this problem, and the Manhattan are not, as this
overestimate the cost to from 𝑥1 to 𝑥3.

3.2.3 Map dilation

The regular A* algorithm finds the optimal path in the map of the terrain. This
solution path is generated solely based on the cost of the different cell the path are
directly crossing(, and the heuristic). The solution path does not take account of the
surrounding cells, how close the path is high-cost cells, or too-narrow passages. From
subsection 3.1.1, it was stated that the vehicle from FFI has a width of approximately 7
cells, which means that the UGV will cover a larger area that the solution from A* is
first based on, thus have a larger cost than first anticipated. The generated optimal path
may therefore not be optimal for this specific vehicle. When the UGV is tracking the
optimal path, it will pass over more cost-expensive cells than the cost of the solution
path is stating. Figure 3.7 shows zoomed-in sections from 3.5 where the A* algorithm
generated a solution path without accounting the cost of neighboring cells.
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Figure 3.7: Illustrated segments of solution paths from A*. The orange-shaded area
illustrates the width of the vehicle if it was to drive this path.

Figure 3.7 shows that a cheap path may be in the neighborhood of high-cost cells,
which will make the solution path expensive for a vehicle to track. To address the
issue of keeping a clearance of high-cost cells and narrow passages, the traversability
map can be pre-processed by dilation.

The size of the kernel in the dilation process will represent the size of the vehicle
which is going to follow the map. In the dilation process, the kernel is choosing the
largest cell value inside the kernels range and moving this value to the new dilated
picture. The dilation are performed with the opencv module in Python [9].

The dilated picture inflates the most expensive cell inside an area with the spatial
occupancy of the vehicle in focus. By using the dilated map as an input map to A*
instead of the full-scale terrain map, the solution path will keep a clearance against
the most expensive cells and narrow passages. Figure 3.9 illustrates a solution path
from A* in dilated map of figure 3.5. The kernel is chosen based on FFI’s vehicle’s
dimension, where the diameter of the spatial occupancy is approximately 14 cells, as
mentioned in subsection 3.1.1. The kernel has a shape of a circle to take precaution
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that the vehicle may counter high cost cells from all directions, and then maximizing
the possibility for A* to generate the safest route for the vehicle. In figure 3.8, is is
shown a dilated costmap originated from 3.2.

Figure 3.8: Solution path from A* in a dilated map, with a kernel diameter of 14 cells.

Figure 3.8 shows a solution path from A* in a dilated costmap. In the figure below,
the path from the original- and dilated-costmap are compared in the original costmap.
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Figure 3.9: Solution paths from A* in a dilated- and original-costmap. The paths are
shaded with the vehicles width of 7 cell lengths.

It can be seen that two entirely different paths have been generated from the same
start- to the goal-location. The orange path generates a path that is really close to
black/dark cells, while the blue path keeps a good clearance against the darkest cells,
hence generates a more driveable option for the vehicle in focus.

3.2.4 Node selection based on minimum turning radius

The vehicle which is used by FFI is constrained by the steering angle. The front wheels
can not turn further than ± 0.5 rad. From equation 2.4 and with the distance between
the axles at 2.06 meters, we get a turning radius of 3.77 meters which are approximately
15 cell-lengths in the grid. Since the vehicle has a constraint in the steering angle, not
all paths are feasible for this specific UGV. This limitation can be taken advantage of
in the A* search, by pruning nodes which lead to infeasible paths.

An approach to consider the vehicles turning radius in the search is to implement
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an if - statement inside A*’s while-loop where it is evaluating the next-node, i.e. the
neighbour of current in algorithm 3. This if -statement contains a function which
is checking if the location of next-node and its predecessors are creating a feasible
segment based on the allowable turning radius for the resulting path. If the segment is
infeasible, the turning radius is less than the minimum allowed turning radius, and
the next- node will not be added to the Open-set.

The 𝑐ℎ𝑒𝑐𝑘_𝑟𝑎𝑑𝑖𝑢𝑠-function calculates the potential turning radius for all adjacent
cells to the current node. If the calculated turning radius is less than the minimum
allowed turning radius, the node is not added as a descendant to the current node. One
way to calculate the turning radius in the path is to use the circle equation. If three
points are obtained in a grid, there exists a circle that is crossing all three points. The
three points have the same distance to the center of this circle. The radius of this circle
will also be the same as the turning radius if the three obtained points are in order,
hence, forms a path. The equations which is used in the 𝑐ℎ𝑒𝑐𝑘_𝑟𝑎𝑑𝑖𝑢𝑠 () are elaborated
in subsection 2.3.2.

Algorithm 4 The Check Radius function

Given 𝑋1, 𝑋2, 𝑋3,𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑑𝑖𝑢𝑠
Set (𝑥1, 𝑦1) = 𝑋1, (𝑥2, 𝑦2) = 𝑋2, (𝑥3, 𝑦3) = 𝑋3

𝑥𝑐 =
(𝑦3 − 𝑦1) (𝑥22 + 𝑦22 − 𝑥21 − 𝑦21)) + (𝑦1 − 𝑦2) (𝑥23 + 𝑦23 − 𝑥21 − 𝑦21)

2((𝑥1 − 𝑥3) (𝑦2 − 𝑦1) + (𝑥1 − 𝑥2) (𝑦1 − 𝑦3))

𝑦𝑐 =
𝑥22 + 𝑦22 − 𝑥21 − 𝑦21 + 𝑥𝑐 (𝑥1 − 𝑥2)

2(𝑦2 − 𝑦1)
𝜌 =

√
(𝑥1 − 𝑥𝑐 )2 + (𝑦1 − 𝑦𝑐 )2

if 𝜌 ≥𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑑𝑖𝑢𝑠 then
return True

else
return False

end if
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To be able to use the suggested method in a discrete search algorithm, the choice
of the variables 𝑋1, 𝑋2 and 𝑋3 are critical. If the radius is checked for three succeeding
points, the resulting turning radius is either very small or infinity, see figure 3.10a. If
a 𝑐ℎ𝑒𝑐𝑘_𝑟𝑎𝑑𝑖𝑢𝑠 function is implemented for 𝑋1, 𝑋2 and 𝑋3 and the allowable turning
radius is bigger than the greatest circle in 3.10a, the algorithm will never find the goal,
because it will only add next nodes which creates a straight line from the existing path
to the 𝐶𝑙𝑜𝑠𝑒𝑑-set.

The choice of X𝑖 (𝑖 ∈ [1, 2, 3]) needs to be considered carefully. Instead of choosing
three succeeding point, every other, second or third (or more) may be chosen as in
figure 3.10b, 3.10c and 3.10d. By varying the distance between the cells, it allows the
algorithm to be more generic, and adapt to fit a greater selection of vehicles (and
steering angles). If the algorithm is generating a path for a vehicle with a great steering
angle, it is not necessary with a large distance between the cells for the choice of X𝑖 .
But if the steering angle is very limited, it has to be a certain distance between the cells
to choose the X’s for the path to reach the goal. FFI’s vehicle requires (3.77 [meters] ·
4 [𝑐𝑒𝑙𝑙𝑠 ]
[𝑚𝑒𝑡𝑒𝑟𝑠 ] ≈) 15 cells as turning radius, thus counting from 3.10 require 3 cells or more

between the X’s to successfully generate a path to the goal.
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(a) 0 cells between X’s (b) 1 cell between X’s

(c) 2 cells between X’s (d) 3 cells between X’s

Figure 3.10: Four scenarios of simulating the turning radius of three-point circles. Two
of the points are the orange cells, the third represents the next node to be evaluated.

To emphasize, the 𝑐ℎ𝑒𝑐𝑘_𝑟𝑎𝑑𝑖𝑢𝑠 function is added to prune candidates who lead to
an infeasible solution based on the steering angle/turning radius. The heuristic and cost
are still calculated as in the regular A* algorithm, and the path which has the lowest
cost is chosen to be the solution path. The location where the 𝑐ℎ𝑒𝑐𝑘_𝑟𝑎𝑑𝑖𝑢𝑠-function
is implemented is shown in algorithm 5.
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Algorithm 5 The A* Algorithm - Turning Radius Limitation

...
if next ⊈ Closed or 𝑔 < 𝑔(𝑛𝑒𝑥𝑡) then
if check_radius(Closed, current, next,𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑑𝑖𝑢𝑠) then
𝑔(𝑛𝑒𝑥𝑡) ← 𝑔

ℎ(𝑛𝑒𝑥𝑡) ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑛𝑒𝑥𝑡, 𝑔𝑜𝑎𝑙)
Open.put(next, 𝑔(𝑛𝑒𝑥𝑡) + ℎ(𝑛𝑒𝑥𝑡))
Predecessor(next)← current

end if
end if
...

3.3 Trajectory optimization

The implemented A* algorithm generates a discrete path for a continuous environment.
This path is cost-efficient, keeps a good clearance to obstacles and narrow passages,
and respects the maximum steering angle for the vehicle. Since the path is generated
in a two-dimensional grid, the coordinates for the path are discrete and not continuous.
As a result of the discrete coordinates, the path generated from the A* algorithm is
piecewise linear, and not a preferred route for a vehicle. To make the path more
driveable, A*’s solution path can be smoothed by optimization.

The smoothing of the path can be treated as an optimization problem. The initial
guess, 𝑋0, will be the solution path from the A* algorithm. The nodes that forms the
path are the variables that needs to be optimized. If the turning radius in the solution
path is too low, the solution is not feasible, thus, the turning radius can be a constraint
in the optimization problem. The cost function 𝐹 , or object function, sets a quantitative
measure of what to prioritize in the optimization problem. The cost function 𝐹 should
reflect the vehicles desired driving behavior, which is to have a smooth path, however,
by smoothing the path, other characteristics need to be maintained as keeping the
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total cost of the path low, and enforcing the non-holonomic constraints of the vehicle.
The cost function F can be designed by three terms with respect to the path. The cost
function are described below([5],[14]):

𝐹 = 𝐹𝑠𝑚𝑜 + 𝐹𝑐𝑜𝑠𝑡 + 𝐹𝑐𝑢𝑟 (3.5)

Each of the terms in the cost function 3.5 serves its own purpose, which will be
explained in more detail.

The cost function 𝐹 has to be minimized in order to optimize the trajectory and find
a feasible solution. The solution can be minimized iteratively by finding the gradient
of the objective function. The gradient shows which direction each variable needs to
be perturbed in order to maximize or minimize the cost for each step. The method
used in this section is a gradient-based optimization algorithm which is explained in
more detail in subsection 2.5.3.

3.3.1 Smoothing term

The 𝐹𝑠𝑚𝑜 is a measure of smoothness in the path. The term penalizes unequal succeed-
ing displacement vectors. The smoothness term will assign a high cost if the transition
from one vector to the next is abrupt, thus rewarding the node if the transition is
smooth. The term is as following[5]:

𝐹𝑠𝑚𝑜 = 𝑤𝑠

𝑁−1∑
𝑖=1
(Δ𝑥𝑖+1 − Δ𝑥𝑖 )2 (3.6)

where𝑤𝑠 are a weight that influences the impact on the path. The sequence of nodes
is defined as 𝑥𝑖 = (𝑥𝑖 , 𝑦𝑖 ), 𝑖 ∈ [1, 𝑁 ], and the displacement vector as Δ𝑥𝑖 = 𝑥𝑖 - 𝑥𝑖−1. The
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gradient of the smoothness term at node 𝑥𝑖 gives the direction to perturb node 𝑥𝑖 to
smooth the angle between the displacement vectors Δ𝑥𝑖 and Δ𝑥𝑖+1. The gradient of
𝐹𝑠𝑚𝑜 is given below and the impact of the perturbations is decided by the weight𝑤𝑠 .

𝜕

𝜕𝑥𝑖
𝐹𝑠𝑚𝑜 =

𝜕

𝜕𝑥𝑖
(Δ𝑥𝑖+1 − Δ𝑥𝑖 )2 (3.7)

𝜕

𝜕𝑥𝑖
𝐹𝑠𝑚𝑜 =

𝜕

𝜕𝑥𝑖
(𝑥2𝑖+1 + 4𝑥2𝑖 + 𝑥2𝑖−1 − 4𝑥𝑖+1𝑥𝑖 + 2𝑥𝑖+1𝑥𝑖−1 − 4𝑥𝑖𝑥𝑖−1) (3.8)

𝜕

𝜕𝑥𝑖
𝐹𝑠𝑚𝑜 = −4𝑥𝑖+1 + 8𝑥𝑖 − 4𝑥𝑖−1 (3.9)

Figure 3.11 shows smoothing of a path. The initial guess is the discrete black path,
and the blue paths illustrate different levels of smoothing. The smoothing gradient are
perturbing the nodes to form a straight path from the start- to the goal-location. To
prevent the smoothing to form a straight line, a tolerance can be used as a stopping
criterion. This tolerance can e.g. be evaluated from the object function 𝐹𝑠𝑚𝑜 or the
paths curvature.



3.3. TRAJECTORY OPTIMIZATION 61

Figure 3.11: Shows different stages of smoothing

3.3.2 Cost term

The cost term is a quantitative measure of how expensive it is to follow the given path.
This term penalizes expensive paths and reward cheap ones. By using an averaged map
with kernel size reflecting the vehicle’s size to calculate 𝐹𝑐𝑜𝑠𝑡 , the size of the vehicle is
also considered in the calculations.

𝐹𝑐𝑜𝑠𝑡 = 𝑤𝑜

𝑁∑
𝑖=1

𝑐𝑜𝑠𝑡 (𝑥𝑖 , 𝑥𝑖−1) (3.10)

The gradient of 𝐹𝑐𝑜𝑠𝑡 is the directions to perturb the path to reduce the cost. The
gradient for each node can be found by using a gradient field, an array of vectors
that gives the direction towards the point with the highest ascent at that coordinate.
Creating a gradient field of a dilated array will not serve the purpose of the gradient,
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as big areas of the dilated map are monotone. By using an averaging filter, instead of a
maximum filter for the dilation, the contours and differences are more enhanced in
the terrain map. The averaging filter will have the same shape as the vehicle’s spatial
occupancy, simulating what the cost would be if it was located at that location. A
gradient field can then be created from the averaged array which will help to guide the
path more efficiently towards cheap paths. By using a gradient field in the optimization,
it is utilized gradient-information that is already available and is obtained inexpensively
as stated in [37]. The weight𝑤𝑜 controls 𝐹𝑐𝑜𝑠𝑡 impact on the path.

3.3.3 Curvature term

The curvature term upper bounds the curvature of the trajectory at every node and
enforces the non-holonomic nature of the UGV. 𝐹𝑐𝑢𝑟 evaluates the curvature at every
transition from one displacement vector to the next and checks if it is smaller than
a maximum curvature. The term penalizes nodes that have a curvature Δ𝜙𝑖

|Δ𝑥𝑖 | bigger
than ^𝑚𝑎𝑥 [5].

𝐹𝑐𝑢𝑟 = 𝑤^

𝑁−1∑
𝑖=1

(
Δ𝜙𝑖
|Δ𝑥𝑖 |

− ^𝑚𝑎𝑥

)
(3.11)

^𝑚𝑎𝑥 is defined from the vehicle’s maximum turning radius which is 0.5 rad, hence
^𝑚𝑎𝑥 = 0.5𝑟𝑎𝑑

2𝑚 ·4 𝑐𝑒𝑙𝑙𝑠
𝑚

= 0.0625 radians per cell. The curvature weight𝑤𝑐 controls the impact
of this term at the solution path.

The change of the angle between the segments at node 𝑖 can be expressed as:
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Δ𝜙𝑖 = cos−1
(
Δ𝑥𝑇𝑖 Δ𝑥𝑖+1

|Δ𝑥𝑖 | |Δ𝑥𝑖+1 |

)
(3.12)

To find which direction to perturb node 𝑥𝑖 to enforce the curvature, the derivatives
of the curvature needs to be found with respect to three points: 𝑥𝑖−1, 𝑥𝑖 and 𝑥𝑖+1. The
gradient will then be

𝜕

𝜕^𝑖
𝐹𝑐𝑢𝑟 = 𝜎^ (

𝜕^𝑖

𝜕𝑥𝑖−1
+ 𝜕^𝑖

𝜕𝑥𝑖
+ 𝜕^𝑖

𝜕𝑥𝑖+1
) (3.13)

and the derivatives of the curvature with respect to the tree points are [5]

𝜕^𝑖

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

(
Δ𝜙𝑖
|Δ𝑥𝑖 |

− ^𝑚𝑎𝑥

)
=

1
|Δ𝑥𝑖 |

· Δ𝜙 ′𝑖 + Δ𝜙𝑖 ·
(

1
|Δ𝑥𝑖 |

) ′
(3.14)

𝜕^𝑖

𝜕𝑥𝑖
= − 1
|Δ𝑥𝑖 |

·
(

𝜕Δ𝜙𝑖
𝜕cos(Δ𝜙𝑖 )

𝜕cos(Δ𝜙𝑖 )
𝜕𝑥𝑖

)
− Δ𝜙𝑖 ·

1
|Δ𝑥𝑖 |2

(3.15a)

𝜕^𝑖

𝜕𝑥𝑖−1
= − 1
|Δ𝑥𝑖 |

·
(

𝜕Δ𝜙𝑖
𝜕cos(Δ𝜙𝑖 )

𝜕cos(Δ𝜙𝑖 )
𝜕𝑥𝑖−1

)
+ Δ𝜙𝑖 ·

1
|Δ𝑥𝑖 |2

(3.15b)

𝜕^𝑖

𝜕𝑥𝑖+1
= − 1
|Δ𝑥𝑖 |

·
(

𝜕Δ𝜙𝑖
𝜕cos(Δ𝜙𝑖 )

𝜕cos(Δ𝜙𝑖 )
𝜕𝑥𝑖+1

)
(3.15c)
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3.3.4 Gradient descent optimization

As the gradient of all three terms from the objective function are obtained, an optimiza-
tion algorithm can be applied to the discrete path. This algorithm are iterating over
the initial path, using the gradients in each node and searching for a local minimum
in the neighbourhood based on the objective function 𝐹 . Normally, in a linear or
quadratic problem, an optimization problem will most likely converge in a local/global
minimum. But as this problem is highly non-linear with using three independent
terms in 𝐹 , another stopping criterion need to be applied to terminate the gradient
descent algorithm. A stopping criterion can e.g. be a constant number of iterations, or
when the whole trajectory are within bounds of the non-holonomic constraints. The
algorithm for optimization 𝐹 is stated below and inspired by [14]:

Algorithm 6 Gradient Descent Optimization

Given (𝑥𝑘 , 𝑘 ∈ [0, 𝑁 ]) ∈ 𝑋0

Set 𝛼 ,𝑤𝑜 ,𝑤𝑠 ,𝑤𝑐 ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 0
fakePath← copy(𝑋0),newPath← copy(𝑋0)
while Iterations<maxIterations do
for i in range(1,N-1) do
gradient← (0,0)
gradient← gradient -𝑤𝑠 · SmoGrad(newPath[i-1],newPath[i],newPath[i+1])
gradient← gradient -𝑤𝑐 · CurvGrad(newPath[i-1],newPath[i],newPath[i+1])
gradient← gradient +𝑤𝑜 · CostGrad(newPath[i-1],newPath[i],newPath[i+1])
fakePath[i]← newPath[i] + 𝛼

𝑤𝑜+𝑤𝑠+𝑤𝑐
· gradient

end for

newPath = fakePath
Iterations← Iterations + 1

end while



3.3. TRAJECTORY OPTIMIZATION 65

This algorithm is given a discrete path from a path planner as an input. Further, the
step-size 𝛼 , the curvature-, smoothing- and cost-weight are set, as well as maximum
iterations. Copies of the existing path are taken to be able to find the correction of
node i+1 without considering the correction of the previous node. The algorithm
then iterates the pre-set maximum iterations, node for node calculating the gradient
from smoothing term, curvature term, and cost term. All the gradients are added to
the corresponding node in a fake copy of the path, such that the gradients are not
influenced by each other in the same iteration. The changes are added at the end of
each iteration, such that all node changes in the path are done simultaneously.
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3.4 Overview of the motion planner

Figure 3.12: Shows a flowchart of the path planning process conducted in this thesis.
The blue-dotted box to the left is the path planner, finding a discrete and cheap path
that respects non-holonomic steering limitations. The blue-dotted box to the right is
the trajectory optimizer, which uses a cost function that yields the vehicle’s driving
behavior. The gradient of this cost function is calculated and used in gradient descent
optimization, outputting a smooth and driveable path.



Chapter 4

Results and discussion

During the development of the motion planner, different experiments were conducted
to examine the aspects of the path planner. Some of the experiments show the impor-
tance of restricting the turning radius, and some show the effect of optimizing a path
based on traversability cost.

The algorithms will be tested in the same environment as in chapter 3, in a
traversability map where the brightness of the map defines the driveability. To analyze
if the execution is successful or not, the quality of the path will be evaluated in the
form of the total cost, smallest turning radius, total length, and cost per length. The
radius will be compared to the allowable turning radius for FFI’s vehicle, which is 15
cells. The units which are used are cell-lengths from the costmap, where one unit
is 0.25 meters and the dimension of the maps is 320x320. For clarification, the word
feasible will be used of both discrete and continuous paths if the minimum turning
radius criterion is met.

The total cost will be calculated from a traversability map modified by averaging
(subsection2.4.2) in all test-cases. This map is used to add consistency to the compar-

67
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isons, using a costmap that considers the vehicle’s width, and have not been applied
as an input in any graph-search. The total cost of each path can then be compared
relative to each other to analyze the performance.

Run-time has not been the main focus while implementing the path planner. Yet,
to get a perspective in how fast the paths are generated and optimized relative to each
other, the run-time for the different searches will also be stated, but not thoroughly
discussed.

4.1 Discrete radial-constrained A* algorithm

In Section 3.2, it was proposed two eminent changes to the discrete A* search in the
costmap. One change was to dilate the costmap, keeping a clearance from high-cost
cells and narrow passages. The other change was to modify the A* algorithm, pruning
nodes which led to infeasible paths according to a minimum turning radius. This
section will analyze the consequence of these changes, by generating three different
paths from three types of algorithms. The first path (orange), is generated by the
regular A* algorithm in a traversability map. The second path (blue), is also generated
by the regular A* algorithm, but in a dilated traversability map. The third path (green),
is generated by the radial-constrained A* algorithm in a dilated traversability map.

The three algorithms are tested in four different maps with the same start- and
stop-locations. The paths are visualized in figure 4.1. Figure 4.2 shows the paths in a
regular costmap compared to a dilated costmap.
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(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

Figure 4.1: Orange: Regular A* path. Blue: Path from A* at dilated map. Green: Path
with radial constriction in A* at dilated map.
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(a) Map 2. Three paths in regular costmap. (b) Map 2. Three paths in dilated costmap.

Figure 4.2: Shows the environment where the three paths are created. The orange path
uses the map from 4.2a as input-graph, while the two other paths use the map from
4.2b as input.

Total Cost Smallest Radius Path Length Run-time
Regular A* 4506.3 2.9 251.4 1.35s
Regular A* in dilated map 3258.0 5.0 269.0 1.90s
Radial-Constrained A* 4287.0 15.8 249.6 2.14s

Table 4.1: Table for map1

In figure 4.1a, it can be seen that the orange path is choosing narrow passages,
resulting in the most expensive choice based on cost (from table 4.1). The orange path
has also too sharp turns, with the smallest turning radius at 2.9 units, which will not be
feasible for FFI’s vehicle to follow. The regular A* search in the dilated map, the blue
path, is the cheapest choice, but the turning radius is not legal. The radial-constrained
search finds the path with a turning radius at over 15 units, but an expense, it has to
pass over an expensive area with very low driveability (dark cells).
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Total Cost Smallest Radius Path Length Run-time
Regular A* 3520.4 4.0 251.4 1.32s
Regular A* in dilated map 2543.9 5.0 241.6 1.65s
Radial-Constrained A* 2699.2 15.8 240.3 1.81s

Table 4.2: Table for map2

In figure 4.1b, the orange path is choosing a path close to high-cost areas, while
the green and blue paths are choosing approximately the same route but with good
clearance to the high-cost areas. These choices end in a significant difference between
the paths generated in the dilated map versus the path generated in the map not
considering the car’s dimension. The green path satisfies the minimum turning radius
due to the radial-constriction.

Total Cost Smallest Radius Path Length Run-time
Regular A* 3347.8 2.9 244.7 1.19s
Regular A* in dilated map 2485.7 5.0 232.6 1.64s
Radial-Constrained A* 2486.2 15.8 223.1 1.71s

Table 4.3: Table for map3

Total Cost Smallest Radius Path Length Run-time
Regular A* 3959.8 2.8 306.4 1.49s
Regular A* in dilated map 3253.6 4.3 264.8 1.67s
Radial-Constrained A* 3263.0 15.8 259.1 1.80s

Table 4.4: Table for map4

In the two remaining figures, 4.1c and 4.1d, the behavior of the path are approx-
imately the same as explained to figure 4.1b. The orange paths are taking many
too-sharp turns to reach the cheap areas in the regular A* search, while the blue
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and green paths are choosing nearly the same paths. The green paths deviate from
the blue paths where the blue trajectories are turning too sharp, this is where the
check_radius()-function prunes infeasible paths (from algorithm 4).

From the conducted tests, it clearly exists a pattern in the performance of the three
algorithms. For the orange paths, the A* algorithm is directly choosing its optimal path
(assuming the heuristic is admissible) from the costmap, but this is not the cheapest-
or a feasible path for a non-holonomic vehicle. For the blue paths, A* is choosing the
optimal path from the dilated costmap, but this path does not consider the vehicle’s
non-holonomic constraint. For the green paths, A* is choosing a cheap and feasible
discrete-path for a non-holonomic vehicle.

Whether, or whether not the radial-constraint modification in A* finds the optimal
solution can not be guaranteed. However, based on the facts conducted from figure 4.1
and the associated tables are that the green path finds cheap paths, and all of them
are feasible. As the green paths are located in the neighborhood of the blue paths,
which are optimal in the dilated maps, we can reason that the green paths lie in the
neighborhood of a local minimum, hopefully, the global minimum.

Conclusively, dilating the costmap to keep a clearance to high-cost areas and radial-
constricting the A* algorithm generates a discrete path that is cheap and guaranteed
feasible. The discrete path will lie in the neighborhood of a minimum, and are a solid
fundamental for further optimization.

4.1.1 Run-time

Through the experiment which was done in this section, it can be seen from the
run-time in the associated tables, that the fastest algorithm was the regular A*, then
the A* in the dilated map, and the slowest was the radial-constrained A*. The time-
difference between search in a regular costmap and dilated costmap emerge due to a
more monotone costmap from the dilation. In the dilated map, there are generated



4.1. DISCRETE RADIAL-CONSTRAINED A* ALGORITHM 73

more promising and cheap paths to explore before reaching the goal, hence more
iterations and explored nodes than A* in regular costmap. The radial-constrained A* is
the slowest, because of an added constriction that is calculated in the algorithm. In the
table below, run-time and memory-consumption from the algorithm executed in map
2(4.1b) can be seen.

Run-time Nodes expanded Iterations
Regular A* 1.32s 31958 47417
Regular A* in dilated map 1.65s 45854 54285
Radial-Constrained A* 1.81s 40998 46830

Table 4.5: Table of run-time and memory-consumption in the algorithms. Iterations are
the number of operations in the Closed-set, which are nodes added and re-evaluations
of nodes.

The different searches can be visualized as a search map, where the expanded
nodes stores the associated cost to get to this cell from the start location, where a
simplified version is shown in figure 2.7. The different searches from figure 4.1b are
visualized in figure 4.3.

(a) Regular A* (b) A* in dilated map. (c) Radial-constrained A*

Figure 4.3: Map 2. Shows the search area for the different path found for map 2 (4.1b),
i.e. the expanded nodes with associated cost from the Closed-set.
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Figure 4.4: Illustrates the color-coding for figure 4.3

It can be seen that the regular A* search from subfigure 4.3a searches a smaller area
than A* in dilated map in 4.3b. Subfigure 4.3c covers an equal area to the A* search in
the dilated map, but with pruned nodes which are not expanded.

4.1.2 Bug with radial-constraint

With a good eye, one could notice in figure 4.1d that there are some unnecessary and
sharp turns in the green path from the zoom-in showed in 4.5. These occur sometimes
when the radial-constriction is used to prune nodes that lead to infeasible paths.

Figure 4.5: Shows an enhanced section of the radial-constrained path from 4.1d
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This happens as a consequence when creating larger circles in a discrete grid
with few points as shown in figure 3.10. The radial-constriction is performing its
purpose, by creating circles that are able to generate flexible paths with a greater
turning radius than 15 units. In figure 4.6 it is illustrated three-point-circles which
are created by every four node. All of the circles which are possible to create do not
violate the turning-radius at 15 units, which are the main focus of the radial-constraint
modification of A*.

Figure 4.6: Three-point-circles created with every four nodes to illustrate large-scale
turning radius

As long as the turning radius is legal all over the path at every 4. node, a simple
smoothing algorithm as explained in subsection 3.3.1 will fix the unnecessary turns
stated in figure 4.5. In the optimization, the sharp turns will be penalized and smoothed,
and fade in few iterations.
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4.2 Cost optimization

The purpose of optimization a path is to find the optimal path from an initial guess.
The optimal path has to be cost-efficient, smooth, and can not contain any sharp turns.
Sometimes when the sharp turns are smoothed, the smoothed path may cut corners
resulting in a path that is more expensive than the original path. To prevent the path
to be smoothed over too expensive cells, a cost-term is used in the objective function
for the optimization.

To demonstrate the effect of cost-optimizing, a simple segment of a path was chosen
from figure 4.1c. Figure 4.7 shows A* choosing a cheap path in a regular costmap.

Figure 4.7: Zoom-in of a narrow passage from figure 4.1c

Figure 4.7 shows an example of a seemingly cheap path, but the chosen route is
in a narrow passage between high-cost cells. It is not enough to only smooth the
discrete orange path in figure 4.7 as the vehicle size needs to be accounted for. To
demonstrate the functionality of the cost-term, an optimization was applied on this
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path in an increased number of iterations, where the iterations represent the length of
optimization and how many times the nodes have been perturbed.

Figure 4.8: Shows the evolution of a cost-optimized path

Figure 4.8 shows different paths that are optimized in an increased amount of times.
It can be seen that the blue path is smoothed, but it does not only cut the corners, but
it also smooths slightly towards a cheaper area. The same happens for the following
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Total Cost Length Cost per length
Discrete 1329.6 71.8 18.5
10 iterations 1238.6 66.5 18.6
100 iterations 1086.7 65.4 16.6
300 iterations 933.4 65.7 14.2
500 iterations 896.6 67.0 13.4
750 iterations 932.4 67.6 13.8
1000 iterations 945.6 69.5 13.6

Table 4.6: Table of the total cost, length and cost per length.

paths with 100 and 300 iterations, they search towards an area that is cheaper for
the vehicle to traverse. The search continues until the path converges into a local
minimum, but, searching only in the neighborhood of the initial path. The paths with
500, 750 and 1000 iterations are almost identical, which means that the path has most
likely converged.

From table 4.6, it can be interpreted that the path with 500, 750, and 1000 iterations
have converged, as the cost per length has stabilized. As the path gets further optimized,
it finds a cheaper path around the obstacle, causing the path to be stretched and results
in a longer path.

The total path-cost can be monitored during the optimization. The total cost of
each of the paths from figure 4.8 is presented in figure 4.9.
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Figure 4.9: Shows monitoring of total cost in the optimization of the section presented
in figure 4.8. The color-coding represent the corresponding path from figure 4.8

From figure 4.9 it can be seen that the total cost of the discrete path is most
expensive (at 0 iterations), but the cost is decreasing as the iterations increases. The
total cost decreases steadily for the first 300 iterations, and are fluctuating around
a cost of 900 for the next 700 iterations while the path stretches. Concluding from
this observation is that the cost-term are forcing the individual nodes to create a path
around the obstacle, causing a longer path and traversal of more cells. The optimized
nodes are located in cheaper coordinates, but since the path stretches to get around
the obstacle, the total cost does not decrease.

The technique used by the cost-term to find the direction to a cheaper area is firstly
to average the map. The kernel’s dimension will represent the spatial occupancy of
the vehicle in the grid. By using this type of map, the driveability-cost in each cell
will simulate how cheap one cell’s neighborhood is relative to the adjacent cells’ areas.
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To find the direction towards the cheapest area from a given cell, a gradient field was
produced from the averaged map. This field consists of vectors pointing towards the
area with the largest accent, as explained in 2.4.3. The gradient field in figure 4.10 was
used to find the convergence path.

Figure 4.10: Shows an averaged section of an expensive area to the left, and the
corresponding gradient field to the right. The section is withdrawn from figure 4.8.

It can be seen from the averaged array to the left in figure 4.10 that the path has
converged in a bright area. This area proved to be the cheapest passage for the size of
FFI’s vehicle.

The first thought of cost-optimizing something is to greedily update towards the
cheapest location, however, this can not be directly done when optimizing paths.
A path needs do maintain certain characteristics, as keeping the path together and
smooth, and as well feasible for a non-holonomic vehicle. From figure 4.9 it could be
seen that the path approximately reached the cost-minimum at 300 iterations, but from
4.8 the path has still not converged to its minimum at 300 iterations. The path kept
moving because the cost-term is based on the cost of the specified node and not the
total cost. The path-nodes are constantly perturbed towards a cheaper area, causing
the path to stretch around high-cost areas. The stretching causing the nodes towards
cheaper cost-cells to form longer paths, which again results in a higher total cost.
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4.3 Optimizing the radial-constrained A*

The initial guess for the optimization, the solution path from the radial-constrained A*,
is a solid fundamental for the optimization. The discrete path will have clearance to
high-cost cells while satisfying the vehicle’s turning radius limitation. If the search of
the radial-constrained search is good, a feasible continuous solution will be close to
the discrete solution.

The simplest type of optimization would just to smooth the path to be continuous.
In most cases, a simple smoothing would be sufficient, but to get our algorithm to work
in all cases, the cost- and curvature-term need to be included. Fortunately, the impact
of cost, curvature, and smoothing-gradients can be adjusted with weights𝑤 between
the optimizations. By adjusting the weights, one can decide to prefer a cheap path
over a smooth path or the other way around. The weights are used in the gradient
descent algorithm 6 explained in chapter 3, where each weight𝑤𝑠 (smoothing),𝑤𝑜 (cost)
and 𝑤𝑐 (curvature) decide the corresponding gradients influence on the path. That
is, the smoothing weight 𝑤𝑠 decide the smoothing gradient’s influence on the path.
The weights are adjusted relative to each other, prioritizing its corresponding term
separately.

The step-size 𝛼 is also used in the gradient-descent optimization 6, deciding the
proportion of each perturbation. From 2.5.4, 𝛼 is chosen either by backtracking or
exact line search. Since this optimization problem is non-linear with different types of
gradients, the step-size will have a fixed step size [1] for this path planner. A large
𝛼 will need fewer iterations to reach the minimum, but may never converge because
of too-large steps. A small 𝛼 will may never reach the minimum or require too many
iterations to reach the minimum. To be able to converge to a satisfying solution, it is
eminent to find a good tradeoff between the different weights and 𝛼 .

To see the effect of the different terms in the optimization, the radial-constrained
paths from figure 4.1 were optimized. The paths were optimized with 500 iterations
each with the gradient-descent algorithm proposed in chapter 3. Three different types
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of optimization were performed with the parameters stated in table 4.7.

𝑤𝑠 𝑤𝑜 𝑤𝑐 𝛼 Iterations
wSmo 0.9 0 0 0.1 500
wSmo+wObs 0.9 0.5 0 0.1 500
wSmo+wObs+wCurv 0.9 0.5 0.8 0.1 500

Table 4.7: Parameters for optimization on four different maps.

The parameters are selected in this manner to show the effect in the different
terms. By setting a weight to 0, means that the corresponding terms do not contribute
to this optimization. The exact choices of why the different parameters are 0.5 for
𝑤𝑜 , 0.9 for 𝑤𝑠 , 0.8 for 𝑤𝑐 and 0.1 for 𝛼 is a guided trial-and-error technique, where
you start at some parameters and see the optimizations response. According to the
optimizations output-path, the weights can be adjusted depending on the priorities, to
have a more/less cheap or smoother path. The optimization of the radial-constrained
discrete paths are shown in figure 4.11 to 4.14, where three different optimizations are
shown in four maps.
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Total Cost Smallest Radius Path Length Cost/Len
Discrete 4287.0 15.8 249.6 17.2
wSmo 4191.1 47.7 227.5 18.4
wSmo+wObs 3039.6 9.9 245.6 12.4
wSmo+wObs+wCurv 3240.7 16.8 243.1 13.3

Figure 4.11: Map 1. The blue path is only smoothed and deviates from the discrete
path by cutting corners. The orange path is also smoothed but deviates from the blue
path where the cost gets expensive. The green path is smoothed and cost-optimized,
but consider the curvature to not exceed the minimum turning radius of the vehicle.
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Total Cost Smallest Radius Path Length Cost/Len
Discrete 2699.2 15.8 240.3 11.2
wSmo 2548.5 80.3 219.7 11.6
wSmo+wObs 2372.6 11.6 225.5 10.5
wSmo+wObs+wCurv 2407.8 14.8 224.7 10.7

Figure 4.12: Map 2. Three types of optimization of a discrete path. The three continuous
paths are in in the neighborhood of the discrete path
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Total Cost Smallest Radius Path Length Cost/Len
Discrete 2486.2 15.8 223.1 11.1
wSmo 2478.8 129.9 204.1 12.1
wSmo+wObs 2392.1 9.7 208.9 11.4
wSmo+wObs+wCurv 2428.2 20.0 208.6 11.6

Figure 4.13: Map 3. It can be seen that the initial guess is good, avoiding high-cost
areas like the orange and green path does. The blue path is nearly converging to a
straight line, not worrying about the higher-cost areas.
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Total Cost Smallest Radius Path Length Cost/Len
Discrete 3263.0 15.8 259.1 12.6
wSmo 3345.3 84.8 239.5 14.0
wSmo+wObs 3148.9 10.6 252.0 12.5
wSmo+wObs+wCurv 3145.2 19.3 249.8 12.6

Figure 4.14: Map 4. The green and orange following the discrete path tightly. One
exception is in one of the most distinct curve, where the orange and green are taking
a longer turn to a cheaper area than the discrete path. The orange path is violating
the minimum turning radius doing this, but the green path has a curvature term that
penalizes too-small turning radius.
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The four figures 4.11-4.14 shows what role the different terms in the objective
function 𝐹 has. For simplicity, we restate the objective function from eq. 3.5 and the
gradient used in algorithm 6:

𝐹 = 𝐹𝑠𝑚𝑜 + 𝐹𝑐𝑜𝑠𝑡 + 𝐹𝑐𝑢𝑟 (4.1)
𝜕
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(4.2)

The blue paths are solely optimized by the 𝐹𝑠𝑚𝑜 -term. This is the fastest option,
optimizing 500 iterations in around 2.5 seconds. These paths focus only to straighten
up the sharp corners, while slowly converging to one-straight-line. From the four
optimization examples, it can be seen that when the optimization is "blindly" smoothing
the path, the cost per length is slightly increased than the discrete path. However,
since the initial guesses were good and already located in a safe neighborhood, the
smoothing did not increase the cost significantly.

The orange paths are optimized by the 𝐹𝑠𝑚𝑜 - and 𝐹𝑐𝑜𝑠𝑡 -term, taking about 3 seconds
for 500 iterations. The cost-term is leading the paths towards cheaper areas, while
the smoothing-term keeps the path smooth. The balance between the weights𝑤𝑠 and
𝑤𝑜 decide rather prioritizing having a very smooth path, finding the cheapest route,
or something in between. From the tables in figure 4.11-4.14, it can be seen that the
orange paths are the cheapest and lowest cost per length, but at the expense of having
a too-small turning radius. This is caused by the gradient of the cost-term, that it
greedily guiding the nodes towards a cheaper area without considering the curvature.
A greater turning-radius can be achieved by a larger𝑤𝑠 or smaller𝑤𝑜 , but this would
again cause a higher total cost for the path.

The green paths are optimized by the terms 𝐹𝑠𝑚𝑜 , 𝐹𝑐𝑜𝑠𝑡 and 𝐹𝑐𝑢𝑟𝑣 , taking approxi-
mately 10 seconds for 500 iterations. The behavior of this optimization is equal to the
optimization of the green paths. The exception is that the 𝐹𝑐𝑢𝑟𝑣-term is lower bounding
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the curvature by a minimum turning radius, which is 15 units. The green path is not
always cheaper than the orange path, but the path will hopefully have a greater turning
radius than the minimum-allowed turning radius. By using smoothing, combined with
cost- and curvature-optimization will also, with almost guarantee create a safer path
than just a simple smoothing on a discrete path.

4.3.1 Mass simulation

To test the robustness and consistency of the path planner, it was simulated 819
executions of the radial-constrained A* with the three types of optimizations as in
figure 4.14. The simulations were conducted in map number four because this covered
the biggest area of traversable cells and would hopefully serve as the best test-arena.

819 start- and goal-locations was randomly generated within the detected area in
the costmap. To prevent too short paths and bad data, the minimum distance between
the start-and goal-location was set to a Euclidean distance of 150 cell lengths. The
radial-constrained A* was executed 819 times, and should be optimized respectively
with three sets of parameters, which are the same as stated in table 4.7.

The radial-constrained A* found 751 paths out of 819 start- and goal-locations.
This means that the path planner failed to find the goal 68 out of 819 executions. The
751 paths were optimized with the parameters stated from table 4.7 and the results are
stated below:
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avg. Cost avg. Length avg. C/L avg. Rad Rad>15
Disc 3458.4 218.2 15.8 15.8 751/751
S 3665.9 199.5 18.4 112.5 751/751
S+O 3589.6 211.0 17.0 8.7 36/751
S+O+C 3543.5 208.7 17.0 13.2 266/751

Table 4.8: Table that shows the results from the mass simulation of three types of
optimization on one path. The average is from all successful simulation and the number
of feasible paths is stated.

Table 4.8 shows the results from the 751 optimizations. The cost from the discrete
cost are the lowest, then the parameters from𝑤𝑆𝑚𝑜 +𝑤𝑂𝑏𝑠 and𝑤𝑆𝑚𝑜 +𝑤𝑂𝑏𝑠 +𝑤𝐶𝑢𝑟
are about the same value, and the optimization with𝑤𝑆𝑚𝑜 have the highest average.
The paths for𝑤𝑆𝑚𝑜 +𝑤𝑂𝑏𝑠 and𝑤𝑆𝑚𝑜 +𝑤𝑂𝑏𝑠 +𝑤𝐶𝑢𝑟 are only smooth and feasible
in 36/751 and 266/751 times, but the smallest radius for𝑤𝑆𝑚𝑜 +𝑤𝑂𝑏𝑠 +𝑤𝐶𝑢𝑟 have an
average of 13.2.

To get some clarity in how the different execution of the optimization was, the
cost per length for the optimized paths was compared to the cost per length of the same
discrete path. The plot can be seen in figure 4.15.



90 CHAPTER 4. RESULTS AND DISCUSSION

0 100 200 300 400 500 600 700
Iterations

2

4

6

8

Co
st

 p
er

 le
ng

th
 / 

di
sc

re
te

_c
os

t_
pe

r_
le

ng
th

Cost/len
Discrete
wSmo
wSmo+wObs
wSmo+wObs+wCur

Figure 4.15: The cost per length of the optimized paths relative to the cost per length
of the discrete path.

From the graph in figure 4.15 it can be seen that some optimizations have made the
cost far worse than the cost of a discrete path. These paths are most likely located at
the edge of the detected terrain. As this type of terrain has not any clear gradients to
cost-optimize the path, the gradient-term feeds directions on wrong data. This reason
may be the cause of the clear spikes in 4.15.

Comparing table 4.6 with the tables from figure 4.11 to 4.14, it can be seen that the
four tables represent the typical performance of the optimizer. The radius and path
lengths are approximately the same relative to the discrete instances. The relation
between the cost are different, where the four figures had the lowest cost in𝑤𝑆𝑚𝑜 +
𝑤𝑂𝑏𝑠 and𝑤𝑆𝑚𝑜 +𝑤𝑂𝑏𝑠 +𝑤𝐶𝑢𝑟 . The average cost-per-length is significantly higher
than the cost-per-length in all four figures 4.11-4.14. The start- and stop-locations
in the four figures are carefully considered in a fully detected area, resulting in four
sufficient paths with relatively low cost. This is not the case of the mass simulation,
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where random points were selected as the start- and goal-locations.

Conclusively, to get a mass simulation with good paths and data, the start- and
goal-locations have to be selected more cleverly or hand-picked. Also, the parameters
from table 4.7 gave satisfying solutions through open terrain, but maybe another
selection of parameters would give better results.

4.3.2 Selection of weights

Balancing the weights between the three types of gradients can be a difficult task. If
the objective of the optimization is to get the cheapest path as possible, the cost-weight
𝑤𝑜 can not be pumped up without consequences. By setting 𝑤𝑜 much higher than
𝑤𝑠 and 𝑤𝑐 , gives too much freedom to the cost-gradient term, causing the nodes to
gather in the low-cost areas. The nodes will then cluster in the cheap areas, having
difficulties to maintain a feasible curvature. This problem is illustrated in figure 4.16.

Figure 4.16: Illustrates nodes clustering in bright/low-cost area. 𝑤𝑠 and𝑤𝑐 is set to 0.2
while𝑤𝑜=0.9. 𝛼 = 0.1 and the duration is 500 iterations.
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The smoothing term contradicts the effect illustrated in figure 4.16. In addition to
keeping the path smooth at all times, the smoothing term tries to maintain an equal
distance between the nodes. Since the𝑤𝑜 had a significantly higher number than𝑤𝑠 ,
the smoothing-term was under-prioritized in the optimization in figure 4.16, causing
the nodes to cluster in a cheap area.

Setting the curvature-weight higher than the two other terms will not cause abrupt
changes other than a normal smoothing. The curvature- and smoothing term have
similar roles, both can be used to smooth a discrete path, but the curvature-term stops
the smoothing when the path has become feasible. The curvature term is needed to
maintain the cost term’s changes, but have difficulties to contradict the effect when
the nodes gather in the cheap areas (as in figure 4.16), and have also problems keeping
the curvature feasible when the nodes are clustering.

When selecting weights, it is important to always have a high weight priority
on the smoothing-term to keep the path feasible. If the path is supposed to smooth
towards cheaper areas, the weight for the cost-term has to increase, as well as the
weight for the curvature-term to maintain the path feasible.

4.3.3 Stopping criterion

Recognizing the minimum where the path is converging is not an easy task, especially
when there are multiply terms in the objective function with each their purpose. By
visualization, it is easy to see when the path has converged because the paths are not
moving any more during the optimization, e.g. the paths with most iterations from
figure 4.8.

Ideally, the optimization should stop when the path has been perturbed into a local
minimum. Since the optimization problem in this thesis is highly non-linear, it is not
easy to numerically find a local minimum. Instead, another stopping criterion can
be used to stop the optimization. One example of criteria can be a definite number
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of iterations, which is used in subsection 4.3. This stopping criterion may be more
memory-consuming than necessary, that is if the path converges before the maximum
number of iterations is reached. When the path got optimized with a definite number of
iterations in figure 4.11 to 4.14, each path optimization took about 10 seconds with 500
iterations, which is time-consuming if the motion planner is supposed to be constantly
updated on the best route.

One should decide what to prioritize when optimizing the path. If the main goal
for the optimization is only to make the path driveable, a stopping criterion can be
the path’s smallest turning radius. By using the turning radius as a stopping criterion,
one can guarantee that the smoothed path is driveable (as in [5]), but one can not
guarantee if there exists a cheaper path in the neighborhood.

If the path’s traversability cost was to be used as a stopping criterion, the cost
can be monitored during the optimization. Figure 4.17 shows an example of cost
monitoring of the path per iteration in the gradient-descent optimization.

Figure 4.17: Shows a path’s cost for each iteration during optimization. Starting at
2700 and converging in about 2400. Max iterations was 1000
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From the graph in figure 4.17, it can be seen that the cost is decreasing in an
approximately constant manner for the first 500 iterations, and from this point, the
cost is pulsating around a 2400-cost for the next 500 iterations. Recognizing the point
where the cost-decreasing eases could be used as a cost based stopping criteria.

If the path’s feasibility was to be used as a stopping criterion in the optimization
from figure 4.17, the optimization would terminate after 18 iterations resulting in a
cost of 2554. The two optimized paths are visualized in figure 4.18.

Figure 4.18: Shows three optimized paths.Two paths which are optimized until drive-
able, and one path which are optimized with a duration of 1000 iterations.



4.3. OPTIMIZING THE RADIAL-CONSTRAINED A* 95

Total Cost Stopping criterion Run-time Iter. Length
wSmo 2581.7 Turning-radius 0.046 s 8 227.6
wSmo + wObs + wCurv 2549.0 Turning-radius 0.539 s 21 227.7
wSmo + wObs + wCurv 2392.0 Iterations 21.05 s 1000 224.7

Table 4.9: Table for figure 4.18. Shows run-time for optimization.

It can be seen that all three paths are fairly equal, with the exception that the
orange path diverges from some darker areas. All paths are driveable, with a turning
radius of over 15 units. The orange path is a cheaper and safer route with a 150 lower
cost but at the expense of using 20 seconds more on optimization.

Two of the paths are almost overlapping, the green and blue paths with turning-
radius as a stopping criterion. The cost per length for the blue is 11.34 (cost/length) and
the green is 11.19 (cost/length), but the blue path uses only 10% of the running-time
than the green path. Both paths are feasible, but the green path is only optimized with
the smoothing gradient, and the blue path is optimized with the smoothing-, cost- and
curvature-gradient.

Conclusively, choosing a stopping criterion for the optimization lies in the user’s
priorities. If the algorithm is supposed to be fast and safe, one could use feasibility as
a stopping criterion. If the user wants run-time consistency, a maximum iteration can
be used as a stopping criterion. Lastly, one could use the cost as a stopping criterion
to recognize the local minimum. It is also possible to combine multiple criteria in A*’s
while loop, that is, both radius-check and cost-requirement. There is not implemented
a technique to stop the optimization based on the cost in this thesis, but using an Early
stopping- technique might work [36].

This section have investigated what role the different terms and corresponding
constants have in the optimization. If only a smoothing term is used in the optimization,
the optimization should include a stopping criterion to avoid deviating too much from
the initial cost-efficient discrete path. A stopping criterion should also be used when an
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objective function consist of a smoothing- and cost-term, to make sure that the solution
path will stay feasible. The reason for this is that none of the terms, smoothing or cost,
are penalized if the path exceed a turning-radius demand. However, if a curvature-term
is included, the gradient of this term will perturb the nodes who violates the minimum
turning-radius. A downside of using the curvature term is that the calculations is
heavy, resulting in a more slow optimization than with pure smoothing.

4.4 Three DOF start state with radial-constrained A*

Usually, in a path planning problem, the intention is to find the best path from a start-
to a stop-location, where the start- and stop-locations have two degrees of freedom
(DOF), x- and y-coordinates. However, when a path is generated to fit a route for a
non-holonomic vehicle, there are certain limitations for the movements of the vehicle,
as the wheels can not slide. To mimic non-holonomic movements through a path, the
start state has to include a third DOF, which is an angle describing the vehicles pose
relative to the world-frame.

The beginning of the path will be different when using three DOF start state rather
than two DOF. Instead of executing the shortest path toward the goal, the search needs
to account for the pose of the vehicle at the start position, forcing the path to take a
detour from the start to enforce the non-holonomic constraints.

To demonstrate the importance of accounting the pose of the vehicle in the planning
process, some paths were generated with the same start- and stop-location. The start
position was located in a narrow passage, triggering the algorithm to take a detour if
the goal location was located behind the starting pose. Figure 4.19 shows four paths
from the same locations, where one path finds the shortest path to the goal, while the
three others need to account for a starting pose.
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(a) No starting pose (b) Start pose at 135°

(c) Start pose at 90° (d) Start pose at 45°

Figure 4.19: Shows the different paths generated at approximately the same start
location with different start angles relative to the world frame.

It can be seen that four different paths have been generated from the same start
location with different start poses. Subfigure 4.19a chooses the shortest path without re-
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garding any non-holonomic constraints, while the three other paths have distinctively
different and longer routes due to the starting pose.

The start angles in subfigure 4.19b-4.19d have been hard-coded, manually shaped
the first few nodes to form a start angle. This was to simulate how the radial-
constrained A* would perform with a starting pose at the start node. Evaluating
from figures, the performance is in general pretty good, but it can be seen that there
are also some issues with the radial-constrained A*. From subfigure 4.19c it can be
seen that the algorithm chooses a path through a high-cost area rather than perform a
u-turn in the low-cost area in front of the start position.

Figure 4.20 visualizes the search for the path in subfigure 4.19c. This is done by
creating a map of the Closed-set from the search, showing how expensive it is to reach
each location.

Figure 4.20: Shows a heuristic map of the radial constrained search from subfigure
4.19c. The path reaches the brightest spots cheapest, and require the highest total cost
to reach the black areas.
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Figure 4.20 shows the path chosen through the search area for the path in subfigure
4.19c. It can be seen that the search never considers performing a u-turn, due to the
abrupt transition from light to dark beside the start position. Ideally, the path should go
forward, creating a circle and turn back driving right past the starting position. Since
the radial-constrained A* search has already searched the area in front of the start
position, the search never considers this opportunity, because there exist "a cheaper
path" from the start node to this area. This flaw forces the A* to continue its search,
resulting in an undesirable path. The same flaw forced the discrete path to choose a
high-cost path in figure 4.11.

To overcome the issue that the radial-constrained A* having problems creating
u-turns, the A* search can include an accessed-from angle when evaluating a node. By
implementing this modification, nodes can be reevaluated from different angles and
creating different paths to the same node. In other words, including a third degree of
freedom which represent the angle between the world frame and the body frame of
the UGV.

4.5 Further discussion

The radial-constraint A* in the dilated map is an algorithm that considers the width of
the vehicle in the terrain, as well as respecting the non-holonomic constraints. From
section 4.1, all three types of algorithms choose their cheapest alternative from the A*
algorithm. Based on the fact that the radial-constraint A* algorithm has to generate a
different path than the two other discrete-planners, shows it was necessary to constrict
the turning-radius. The deviation between the paths in figure 4.1 emphasizes that the
customization made in the radial-constrained A* in the dilated map was a reasonable
modification to create a feasible solution for non-holonomic vehicles.

On the grounds of the problem elaborated for figure 4.20, there is room for improve-
ments of the discrete radial-constraint modification. By not including the third DOF,
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the accessed-from angle, limits the opportunity to create the best- and cheapest route
when the goal is not directly reachable from the start state. This would most likely
contribute to get more successful executions of the radial-constrained A* simulation
conducted in the mass simulation 4.3.1.

The discrete path from radial-constrained path planner is still a good initial guess
for the optimizer. Depending on the priority of the optimization, the path can be
made continuous and feasible from about 50 ms to 10-20 seconds (from table 4.18 and
section 4.3). Since the radial-constrained A* finds a cost-efficient path with clearance
to high-cost areas, optimizing the path for 10-20 iterations is sufficient to make the
path continuous and driveable.

The objective function designed for this path planner was to yield the desired
driving behavior, to keep the drive smooth, cheap, and feasible. From the conducted
tests made in chapter 4 where all terms of 𝐹 (from 3.5) were included, the optimized
paths proved to be the most cost-efficient and feasible option. From these tests, we
can conclude that the design of the cost-function for gradient descent optimization
was successful.

Choosing a cost-efficient path or the problem of cost-optimization are all dependent
on a costmap. The costmap is supposed to represent the traversability in the terrain,
where the low-valued cells have the highest driveability. It is assumed that a smooth,
cheap, and feasible path found in FFI’s costmap is driveable, but there is no guarantee
before it is tested on a physical autonomous vehicle. What is certain, is that the
algorithm developed in this thesis only need a map represented of numbers, the
dimension of the non-holonomic vehicle as well as maximum steering angle to produce
a cheap, smooth and feasible path.

Run-time has not been the main focus while developing this path planner. But to
give the reader a feeling of how memory-consuming the different implementation was,
the run-time was demonstrated together with the execution of the different algorithms.
The radial-constrained A*’s run-time can be compared relative to the run-time of
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the regular A* implementation, which is known to be a time-efficient graph-search
algorithm. This gives an impression on how much work remains to get the path
planner to operate in real-time.

To get a lower run-time of the optimization, would be to change optimization
algorithms from gradient descent method to conjugate gradient method. The conjugate
gradient method is better suited to handle large-scale nonlinear problems, and will
most likely give a positive response on the path planners run-time.
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Chapter 5

Conclusions and future work

Non-holonomic motion planning in terrain is a challenging task, as the world can not
simply be divided into traversable and non-traversable areas. Different techniques
in the literature have been developed to address the problem of navigating a non-
holonomic vehicle in terrain, by discrete- and continuous-graph search algorithms,
non-holonomic navigation, and trajectory optimization.

FFI provided a costmap which is used by the unmanned ground vehicle OLAV to
navigate in terrain. This map is based on terrain characteristics and is used as an input
for the developed path planner. The costmap is dilated to enhance the most critical
parts in the terrain and maximize the chance to create a safe path. Further on, the A*
algorithm is modified to create discrete paths through the dilated costmap that respects
a non-holonomic vehicle’s maximum steering angle. When the radial-constrained
discrete path is obtained, a gradient descent optimization is performed to smooth the
path, while maintaining the curvature and cost-efficiency of the path.

Assuming the start- and stop-coordinates are not randomly generated, it can be
concluded that the developed path planner in this thesis is generating sufficient paths

103
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for a non-holonomic vehicle in terrain. The radial-constrained A* generates cheap-
and discrete-paths that respect the minimum turning radius of a vehicle which gives a
great fundamental for the gradient descent optimization. The optimization smooths
the path efficiently and can keep it cost-efficient and maintaining the curvature during
the optimization.

5.0.1 Further work

There are two elements from the results that appear to need further advancement,
the node representation of radial-constrained A* and the implementation of the path
planner. The node representation of the A* search are most likely responsible that the
search sometimes fails(4.3.1), or create too expensive roads to the goal (4.1a,4.19c). It
would be interesting to investigate the consequence of including the angle between
the body frame and world frame when a node is expanded to widen the search and
allow entering the cell from multiple angles.

Some work still remains on the implementation to get the motion planner to work
in real-time. The radial-constrained A* had some higher run-time relative to the regular
A*. The run-time of radial-constrained A* will most likely improve by carrying out a
better implementation of A*. Lastly, a stopping criteria based on the paths cost- and
feasibility should be developed to ensure a cost-efficient and safe path.
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