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Abstract

Autonomous racing is a relatively new addition to the field of robotics and autonomous

mobility. Pioneered by the Formula Student (FS) competitions, it is a challenge tackled

by student teams across the globe. As racetracks are limited in size and shape, racecars

are constructed to perform at their best given these constraints. This principle is just

as well applied to the development of software in an autonomous racecar.

Just as in regular racing, the involved systems in an autonomous racecar has to be

able to react and make choices quickly based on external input. For this reason, the

work presented in this thesis incorporates a state-of-the-art Simultaneous Localization

and Mapping (SLAM) algorithm in iSAM2 to estimate the vehicle pose (position and

orientation) as well as the locations of cones that make up the racetrack.

Based on measurements originating from visual sensors, this thesis goes into

detail on the implementations of different means of data association in SLAM: the

problem of associating measurements to cones. A total of four methods are considered,

including the robust joint compatibility branch and bound (JCBB) algorithm, and tested

in different scenarios relevant for FS competitions.

The proposed implementations allow the racecar to accurately build the map

of cones and estimate its position on a winding track at speeds of at least 40 km/h.

The introduction of probabilistic association schemes such as JCBB and maximum

likelihood (ML)-data association allows the vehicle to better correct its uncertain initial

pose within a given map, increasing the robustness of vehicle pose estimation.
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Sammendrag

Autonom racing er et ganske nytt tilskudd til emnene robotikk og autonom mobilitet.

Konseptet ble startet av Formula Student (FS)-konkurransene, og er en utfordring som

studentlag over hele verden bryner seg på. Ettersom racerbaner er begrenset i størrelse

og form, er racerbiler konstruert for å prestere på sitt beste gitt disse begrensningene.

Dette prinsippet er like relevant for utviklingen av programvaren i en autonom racerbil.

Som i vanlig racing, må de involverte systemene i en autonom racerbil kunne

reagere fort og ta hurtige valg basert på eksterne hendelser. Av den grunn innlemmer

det arbeidet som er presentert i denne oppgaven en avansert Samtidig Lokalisering

og Kartlegging (SLAM) algoritme i iSAM2 for å estimere kjøretøyets stilling, samt

plasseringene til kjegler som utgjør racerbanen.

Gjennom bruk av målinger fra visuelle sensorer går denne avhandlingen i detalj

om implementasjonene av forskjellige metoder for datatilknytning i SLAM: problemet

med å knytte målinger til kjeglene. Totalt fire metoder ble vurdert, inkludert den

robuste joint compatibility branch and bound (JCBB) algoritmen, og testet i forskjellige

scenarier som er relevante for FS-konkurranser.

De foreslåtte implementasjonene lar racerbilen nøyaktig bygge kartet med kjegler

og estimere sin posisjon på en svingete bane ved hastigheter på minst 40 km/t. Inn-

føringen av sannsynlighetsbaserte datatilknytningsmetoder som JCBB og maksimal

sannsynlighet (ML) lar kjøretøyet i større grad korrigere den usikre startstillingen sin

på et gitt kart, noe som øker robustheten til estimeringen av bilens stilling.
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Chapter 1

Introduction

This thesis describes the author’s work and contributions to the driverless vehicle (DV)

team at Revolve NTNU.

Revolve NTNU is a voluntary, student-run organization at NTNU in Trondheim.

Every year, students from several different fields of study come together to design

and build an electrical racecar. Additionally, a Revolve-built car from a prior year is

re-purposed to enable driverless operation. In the summer, both cars compete against

other student teams from across the world at FS competitions organized in Europe.

The competition winners are usually the teams with cars able to drive around the

racetracks in the shortest amount of time.

Throughout the year, the DV team designs and implements autonomous software

and hardware with a set of performance and competitive goals in mind. These goals are

high-level and common for all vehicle systems. Consequently, they play a significant

part in the problem formulation of this thesis, along with the decisions in design and

application.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Revolve’s driverless car Atmos driving on a typical Formula Student race-
track

1.1 Problem description

The specific performance goals are set by the organization at the beginning of the

season (start of the academic year) and are based on the levels of ambition and current

system capabilities. The goals are related to the dynamic events at the competitions

and the updated goals from Revolve team 2019 (R19) to R20 are listed below:

• 4.3 s → 3.75 s on Acceleration

• 6.0 s → 5.5 s on Skidpad

• 5 m/s → 10 m/s avg on Autocross

• 10 m/s → 17 m/s avg on Trackdrive

In-depth explanations of the individual events are found in the chapter 2.

These goals, together with the constraints set by the competition rules and the

organization itself, express the general task this thesis aims to solve: Design and
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implement a SLAM system that allows Revolve’s driverless car to drive as fast as

possible. The SLAM module is responsible for iteratively mapping the stationary cones

while concurrently localizing the car in relation to its surroundings. Cones constitute

the racetrack delimiters, and the list of tracked cones will be referred to as a map
throughout this thesis. As the involved systems need to act quickly and perform at

high speeds, the module has to be designed with real-time operation and constraints

are taken into consideration.

As the overarching problem is by design vaguely defined, an essential part of the

project was to narrow the scope of the problem and identify focus areas that benefit

performance in a significant way. This concept phase took place in the fall of 2019

and is documented in the author’s project report [43]. In that time, it was decided

that the SLAM frontend was to be developed further. Specifically, past members that

were a part of the testing crew in the summer of 2019 suggested that the system was

especially prone to errors during loop closure: When associating current spatial input

data to a previously visited location. The suggested solution in [43] to this particular

problem was to introduce a more robust method for data association. The reader is

referred to chapter 5 for more details on this challenge.

Furthermore, as testing time was scarce in the summer, the team had mainly

focused on optimizing the system for being able to build a new map for every time

the system started up. This essentially meant that the possibility for the vehicle to

use prior information was forfeited in exchange for theoretically being able to operate

on any racetrack. As some of the events in the competitions (see section 2.2) have

predetermined track layouts and also allow for multiple attempts, the ability to preload

the track in memory is a valuable one. For one, the computational overhead is greatly

reduced because neither track-finding or mapping is needed. In the case for SLAM,

the problem is then reduced to localization only. Secondly, because the drivable area is

known beforehand, the vehicle will not need to take the same precautions as when it

explores unknown territory, resulting in higher speeds.

The demands of the SLAM system in Revolve’s autonomous pipeline is finally

summarized:

1. The design should allow the car to go as fast as possible. This is the overarching
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goal.

2. The SLAM module should ideally keep track of all the cones in the track without

introducing spurious cones.

3. The location and orientation of the vehicle should correctly be estimated using

input from the odometry and detection modules.

4. The system should perform subject to real-time constraints such as execution
time or computational resource usage.

5. Errors in loop closure should be minimized and preferably eliminated with a

robust data association scheme.

6. The system should be able to localize the vehicle within a given racetrack to

facilitate map preloading.

1.2 Project motivation

The voluntary student culture at NTNU is a proud tradition, and social groups have

been a part of campus life for over a century. Although not a new concept, the student-

run technical organizations such as Revolve, Ascend, Vortex and Propulse, all founded

after 2013, have become a valuable part of what NTNU has to offer their students. In

the case for Revolve, members range from being in the first year of their studies to

being final year masters candidates. From the author’s perspective, being a member

of, and writing a thesis for Revolve carries a two-way benefit: The organization can

apply the knowledge and experience of a fifth-year student to challenging tasks that

demand time and research, and offers a unique and engaging experience in return.

Formula Student is one of the largest student engineering competitions in the

world, with events organized in the USA, UK, Germany, Australia and more. Originally,

competitions only included combustion engine vehicles, but later expanded to include

electric-, and most recently, driverless racecars. Although the scope of SLAM in

autonomous racing is constrained in the uniformity of tracks and environments, there
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are some features of FS competitions that make the challenge unique. First of all, the

SLAM module in a FS racecar is part of an extensive, interconnected system with

components ranging from high-level software to high-powered electric motors. For

this reason, the design has to be compliant with a complete, physical system operating

in strenuous conditions. Moreover, the relative performance of the design, as part of

the complete vehicle, compared to other teams is very tangible because of the shared

ruleset and scoring in competitions.

1.3 Related work

Autonomous racing

Within the Revolve organization, there have been written two project reports [43][51],

one bachelor thesis [16], and one master thesis [26] mainly or partially focusing on the

SLAM module in the driverless pipeline. The subject of autonomous racing is rather

specialized, and there is limited research published on SLAM and data association

specific to the field. A notable entry is the published works of the Formula Student

Driverless (FSD) team AMZ of ETH Zürich, where they present the concepts of their

autonomous pipeline from 2018 [28] and 2019 [2]. In both seasons, they clinched

the number one placement at Formula Student Germany (FSG). Another competition

similar to FSD is Roborace, where in contrast to FS, the tracks are known to the

traversing vehicle beforehand. Here, the focus lies on high speed localization and

control at target speeds exceeding 150 km/h [53].

Simulataneous localization and mapping (SLAM)

Research on SLAM as a general problem is plentiful, and is a highly relevant topic

in the impending age of autonomous mobility. The two-part introductory papers by

Durrant-Whyte and Bailey [15][4] and the subject survey conducted by Cadena et al.

[6] give substantial insight into the past, current and future state of the field. A common

theme, as pointed out in the latter is that further development of recursive estimation

techniques involving variants and improvements of the Kalman filter have mainly
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been abandoned for batch optimization techniques based on maximum a posteriori

(MAP) estimation.

Heavily motivated by the recursive pattern exhibited by the SLAM problem, the

commonly proposed solutions for the problem used to involve bayesian filtering. The

two main types of such filters used in SLAM are the aforementioned Kalman filter

and particle filters. The latter iteratively estimates the posterior distribution by a set

of weighted particles sampled from previous estimates. In contrast to Kalman filters,

particle filters are not tied to assuming Gaussian models, as they can approximate any

probability density function (PDF). Examples of particle filter-based methods include

the works of Montemerlo et al. [39, 40] in FastSLAM 1.0 & 2.0.

Alternatively, implementations of the extended Kalman filter (EKF) and variations

thereof, has long been the standard in SLAM applications in what is called EKF-SLAM

[13, 52, 14]. The EKF linearizes the models describing motion and measurements at

each time step, which are then used to predict and update the probabilistic models of

the involved states. Thus, the EKF acts in an iterative manner, where the current state

estimates are used as the linearization point, and is propagated as new information

arrives. As a consequence, the covariance matrix maintained by the EKF will be dense,

as all past information is marginalized and incorporated into the current estimates.

This leads to a complete update of the system states and covariances at every iteration

where new information is added, for which the computational effort is quadratic in

the number of system states [15].

Batch estimation, long considered as an infeasible solution for on-line SLAM

applications, refers to estimating the complete state trajectory using the full set of

measurements [24]. In other words, batch estimation a form of Bayes smoothing,

and aims to solve what is often referred to as full SLAM problem. Intuitively, batch

estimation or smoothing appears to be the more demanding practice, as there is more

data to process. Yet, in recent years, it is considered to be more capable, including in

real-time applications, compared to recursive filters. State-of-the-art implementations

of SLAM such as ORB-SLAM [41], LSD-SLAM [17] and iSAM2 [32] are examples

of highly regarded batch estimation-based systems. For these methods, the most

important trait of the smoothing covariance matrix is that it no longer has a dense



1.3. RELATED WORK 7

structure because states are not marginalized (removed) from the state vector. This fact

allows for both incremental and batch updates of state and covariance estimates [11].

More importantly, the inverse of the covariance matrix, referred to as the information
matrix in the literature, will be sparse. With the help of conscious state variable

ordering, this sparsity can be used for efficiently finding optimal solutions. Chapter 4

in this thesis goes into more detail on this topic.

A relevant example of batch estimation in the realm of SLAM is the incremental

smoothing and mapping v2 (iSAM2) optimizer introduced by Kaess et al. [31]. As

given in its title, iSAM2 proposes an incremental solution to the SLAM smoothing

problem. Comparing iSAM2 to its immediate predecessor in [33], the introduction

of the Bayes tree, first presented in [30] improves real-time performance with fluid

state linearization and independence of periodic batch updates of linearization points

and variable ordering. Going even further back, the original version of incremental

smoothing and mapping (iSAM) improved on the ideas from square root smoothing and

mapping (
√
𝑆𝐴𝑀) [11] by allowing incremental additions to the state vector without

any considerable performance penalties. In the same article, the authors present a

method for efficient recovery of uncertainty estimates from the square root information
matrix. A collection of this work is compiled in [12].

Data association

The data association problem is nontrivial and essential in the field of SLAM. For any

recursive or batch estimating SLAM system to operate, observations of the environ-

ment are necessarily assumed to be consistent with the autonomous agent’s actual

surroundings. The ability to accurately associate external measurements to elements

of the environment, and thereby establish this consistency, is the essence of the data

association problem in SLAM. Data association was previously a term mostly used

in the target tracking domain, exemplified by Bar-Shalom et al. [5], and is where the

validation gating approach to determining correspondences was introduced. Here,

the Mahalanobis distance is used to quantify the similarity of measurements, with

their associated uncertainties, with the probability distributions of target tracks. Neira
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and Tardós [42] expand on this individual compatibility between measurements and

environmental features by considering the internal correlations of measurements and

the features from which they originate with the Joint compatibility test. Recent work

concerned with data association in SLAM includes methods using variations of the

JCBB algorithm from Neira and Tardós [42] with faster execution [37, 50]. Applying

methods in scan matching, such as the iterative closest point (ICP) algorithm, has also

been explored [48].

1.4 Contributions

This thesis builds upon ideas in the previous work on SLAM in Revolve by Engebretsen

[16], Gustavsen [26] and [51]. The main contributions for this project is:

• The implementation of four methods for data association in SLAM for an au-

tonomous racecar, including JCBB and ML-data association.

• Utilization of the iSAM2 SLAM backend for efficient, real-time uncertainty

estimate recoveries for use in data association.

• A reworked modular frontend implementation which allows for low-effort mod-

ifications and additions to the data association schemes.

• A system capable of robust handling of asynchronous input in a realistic Robot

Operating System (ROS)-based environment.

• Extended the existing capabilities of the Revolve SLAM module to include the

ability to accurately localize the vehicle in a given map.

• In-depth descriptions of the integral parts of the implementation employed in

Revolve, useful as a reference for future members of the organization.
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1.5 Outline

The report is organized as follows. Chapter 2 gives some extra background information

on Revolve and the FS competitions. In chapter 3, some elementary theory relating

to reference frames, dynamic models, probability, and probabilistic graphical models

is given. The two following chapters (4 and 5) go more in-depth on the structure

of the SLAM problem and splits the theory into two parts: The frontend, concerned

with data association, and the backend, which performs the batch estimation on the

system states. Chapter 6 touches briefly on the systems in Revolves driverless software

pipeline that supply the SLAM with data. A detailed description of the implementation

of SLAM is given in chapter 7. Finally, results and conclusion with remarks on further

works is found in chapters 8 and 9.
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Chapter 2

Revolve and Formula Student

2.1 Revolve

After its establishment in 2010, Revolve NTNU first attended an FS competition in 2012

at Silverstone in the UK. While the first two iterations of vehicles produced housed

combustion engines, every vehicle since 2014 has been powered by electrical motors.

For 2018, the organization retrofitted its previous electric vehicle (EV) Eld with

new sensors and actuators, to compete in the FSD class, first introduced at FS Germany

11
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in 2017. In the inaugural season for Revolve Driverless, the team secured 2nd position

at FS East in Hungary solely based on static events performance, as the car was never

cleared for participating in the dynamic events. A few weeks later, the team finished

7th at FSG after completing one of the ten laps in the Trackdrive event.

In 2019, as well as this year, the Revolve designed EV Atmos from 2018 was

retrofitted with a visual sensor system to allow autonomous operation. After a promis-

ing testing season, Atmos experienced issues with a safety component during electrical

scrutineering at the competitions. As a result, the 2019 Driverless team were unable to

compete in any dynamic events. Sadly, no FS competitions will be held in the summer

of 2020 due to the COVID-19 pandemic.

2.2 Dynamic events at FS competitions

The rules and events in FS competitions Revolve planned to attend in 2020 are set

by FSG and listed in [19]. The competitions are split into two main parts: static and

dynamic events. Static events do not focus on the operation and performance of the

vehicle itself but are designed to test the students’ knowledge about their systems

and their ability to justify design choices. Dynamic events on the other hand, are all

about the performance and safety of the vehicle itself. Before any car is placed on

the track, extensive tests of the vehicle’s low- and high-voltage electrics, hydraulic

systems, structure integrity, internal state logic and general rule compliance all have

to be passed. This is to ensure the safety of all participating teams and officials, and

also to make sure that everyone is competing on a level playing field. When the car

is cleared, it may participate in four scored dynamic events: acceleration, skidpad,

autocross and trackdrive.

driverless
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Acceleration

This event is a straight line race of 75m where teams are scored on the elapsed time

from a standing start to the finish line. At the start, the frontmost part of the car

should be 0.3m behind the starting line. In every event, including acceleration, blue

and yellow cones make up the left and right sides of the track respectively, while large

orange cones mark the start and finish lines. As per the rules, the minimum track

width is 3m and no two cones on one side are further than 5m apart.

Skidpad

The layout of the skidpad track is displayed in figure 2.1. In this event, the car starts

by entering the figure eight in the center. Then, it laps the right circle twice, in which

the second lap is timed, before continuing around the left circle. Again, the second lap

of the circle is timed. Lastly, the car exits the track on the opposite side of where it

entered and comes to a stop. The average of the two recorded times is the base for

the score on the event. Some unique aspects of the skidpad event are the fact that the

number and location of cones in the inner and outer diameter of the circles are known,

and that the track width is a constant 3m. For SLAM, this means that no mapping

is needed for this event, and localizing the car within the predetermined map is the

principal task.

Autocross

The Autocross embodies the problem SLAM aims to solve. No prior knowledge about

the map is allowed, and the vehicle has to build the map as it localizes itself within it.

A run in this event is successfully completed when the car has completed one full lap

and is aware of this fact. Thus, the car should stop by itself after the lap is completed.

Each team is allotted at least two runs each, but data gathered from a previous run

cannot be carried over to another. Judging from the scores of previous iterations of FSD

competitions, the main focus in this event should be to finish without taking too many

risks. This is also reflected in the dynamic goals listed in section 1.1. Some constraints

on the track from the rules include no longer straights than 80m, a minimum track
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Start/Finish Line

Figure 2.1: Skidpad track layout

width of 3m and an approximate total lap length of 200m to 500m. The car also starts

6m behind the timekeeping line which is indicated by a pair of large orange cones on

each side.

Trackdrive

The trackdrive event takes place on the same track as autocross, only this time, a run

consists of ten laps. In the rules regarding the trackdrive event, there is no statement

saying that prior data cannot be used. This means that if the autocross event is held

before trackdrive, and the saved map from the first event is of high quality, no mapping

is needed. Hence, the car can drive a much faster first lap than it otherwise could have

as the path is already set, and the confidence of cone locations is much higher. Either

way, consequent laps will always be quicker than the mapping lap, which is also why

the target average speed for trackdrive is considerably faster than for autocross (see

sec. 1.1).



Chapter 3

Background theory

3.1 Reference frames

In the standard SLAM situation, an autonomous agent explores an environment where

it is given the task of generating a map that is consistent with stationary surroundings.

This is the case when mapping the interior and exterior of buildings, cities, road

networks, etc. Because we consider all these stationary, we would like their mappings

to be defined in an inertial frame of reference, meaning that the buildings, cities and

roads do not move relative to an earth-fixed location. The location of the origin in

this type of a coordinate system is in many cases arbitrary, and best chosen based on

intuition or for simplicity. Where should the origin of a building be set, for instance?

The same goes for the racetracks in FS competitions, where cones are defined in an

earth-fixed inertial frame in which the origin is usually set as the starting location of

the vehicle.

The case for all exteroceptive sensors such as lidars or cameras is that all output

measurements are relative to the sensors themselves. If the location of a sensor is

unknown relative to a predetermined inertial frame of reference, then the measure-

ments cannot simply be expressed in this frame unambiguously. This is one of the

problemsthat SLAM ultimately aims to solve.

15



16 CHAPTER 3. BACKGROUND THEORY

I

B

𝑥𝑖

𝑦𝑖
𝑥𝑏

𝑦𝑏

(𝑥,𝑦)
\

𝑝

®𝑝𝑖 ®𝑝𝑏

Figure 3.1: The point 𝑝 is expressed in two different reference frames. The axes in
the body frame B are shifted with (𝑥,𝑦) and rotated with \ in relation to the inertial
frame I

.

3.1.1 Coordinate systems

Reference frames, as discussed above, are accompanied with coordinate systems that

allow unique descriptions of objects and their locations within the frames. The Carte-

sian and polar coordinate frames are the most commonly used when expressing

two-dimensional geometry. The vector ®𝑝 ∈ R2 is expressed equivalently in both

systems:

®𝑝𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 =
©«
𝑥

𝑦

ª®¬ , ®𝑝𝑝𝑜𝑙𝑎𝑟 =
©«
𝑟

\

ª®¬ (3.1)

The connection between the variables is made in (3.2).

©«
𝑥

𝑦

ª®¬ = ©«
𝑟 cos\

𝑟 sin\
ª®¬ ⇔ ©«

𝑟

\

ª®¬ = ©«
√
𝑥2 + 𝑦2

atan2(𝑦, 𝑥)
ª®¬ (3.2)

3.1.2 Homogeneous transformations

The two reference frames I and B, as shown in figure 3.1, are related through the

counter-clockwise rotation \ and translation (𝑥,𝑦) of B. The rotation of the 𝑥 and 𝑦
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axes from (𝑥𝑖 , 𝑦𝑖 ) to (𝑥𝑏, 𝑦𝑏) is formulated by the rotation matrix:

R𝑖
𝑏
(\ ) = ©«

cos\ − sin\

sin\ cos\
ª®¬ (3.3)

The translation of the origin of B is denoted as ®𝑡𝑖 = (𝑥,𝑦)T. Consequently, relating the

vector ®𝑝 between I and B is straightforward:

®𝑝𝑖 = R𝑖
𝑏
(\ ) ®𝑝𝑏 + ®𝑡𝑖 (3.4)

In computer vision and robotics there is motivation in augmenting point coordinates

by introducing a third entry 𝑧 ′, generating homogenous coordinates. Tilde (∼) notation

is often used to signify vectors in the homogeneous coordinate space:

®̃𝑝 =
©«
®𝑝 ′

𝑧 ′
ª®¬ ∈ P2, (3.5)

and is defined in the projective plane. Projective points are determined in Euclidean

space as

®𝑝 =
©«
𝑥

𝑦

ª®¬ = ©«
𝑥 ′/𝑧 ′

𝑦 ′/𝑧 ′
ª®¬ ∈ R2 . (3.6)

Motivated by how cameras and vision perceive depth (objects appear smaller as they

are further away), this notation allows the variable 𝑧 ′ to be used for representing points

at infinity using finite coordinates by setting 𝑧 ′ = 0. Furthermore, in camera-modeling,

homogeneous coordinates enable the intrinsic and extrinsic parameters of cameras

and setups to be directly applied to the linear projective transformations that map 3D

world coordinates onto the 2D image plane [54].

In robot applications, it is desired to know or have the ability to estimate the relative

positions of on-board sensors and actuators. As previously discussed, the location and

orientation of the robot in an inertial frame of reference are also of interest. The pose
of a robot in 2D space is defined by the compound vector ®𝑥 = (𝑥,𝑦, \ )T, and thus the
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frame of reference of this robot is equivalent to B. By defining the augmented matrix,

T 𝑖
𝑏
= T ( ®𝑥) = ©«

R𝑖
𝑏
(\ ) ®𝑡𝑖

®0T 1
ª®¬ , (3.7)

the transformation in (3.4) is condensed by setting

®̃𝑝𝑖 = T 𝑖
𝑏
®̃𝑝𝑏, (3.8)

with the homogeneous coordinates ®̃𝑝𝑖 and ®̃𝑝𝑏 in the form of (3.5) with 𝑧 ′ = 1. As long as

the conversion in (3.6) holds, the last coordinate in the homogeneous vector can be set

arbitrarily. That being said, common practice suggests that this coordinate is set equal

to one. The added benefit of this structure is that any number of transformations can

be applied consecutively by simple matrix multiplication. As an example, in figure 3.2,

assuming that the transformation matrices T 𝑖
𝑏

and T 𝑏
𝑙1 are known, the transformation

from L1 to I is found by:

T 𝑖
𝑙1 = T 𝑖

𝑏
T 𝑏
𝑙1 (3.9)

To extend this notation to robot or sensor poses directly, we can define the compose
operation on a pair of poses as

®𝑥𝑖
𝑙1 = ®𝑥𝑖

𝑏
⊕ ®𝑥𝑏

𝑙1. (3.10)

The pose ®𝑥𝑖
𝑙1 is equivalent to

®𝑥𝑖
𝑙1 = ®𝑥 (T 𝑖

𝑙1) =
©«

T 𝑖
𝑙1,13

T 𝑖
𝑙1,23

atan2(T 𝑖
𝑙1,11,T

𝑖
𝑙1,21)

ª®®®®¬
. (3.11)

Transformation matrices on this form describe rigid body displacements and com-
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𝑥𝑖

𝑦𝑖

𝑥𝑏

𝑦𝑏

𝑥𝑙1

𝑦𝑙1

𝑥𝑙2

𝑦𝑙2

T 𝑖
𝑏

T 𝑖
𝑙1

T 𝑏
𝑙1

T 𝑏
𝑙2

Figure 3.2: Transformations relevant for the car. Dotted lines suggest that the transfor-
mations are not constant. Used for illustration: L1 and L2 are the frames of the two
lidar sensors. B is the body frame of the vehicle.

prise the special Euclidean group 𝑆𝐸 (2). Formally, 𝑆𝐸 (2) is defined as

𝑆𝐸 (2) =
T

���� T =
©«
R ®𝑡
®0T 1

ª®¬ ,R ∈ R2×2, ®𝑡 ∈ R2
 (3.12)

The two dimensional rotation matrix R satisfy the criteria of the special orthogonal
group 𝑆𝑂 (2):

𝑆𝑂 (2) =
{
R

���� R ∈ R2×2, RTR = RRT = I2×2, |R| = 1
}

(3.13)

The 𝑆𝐸 (2) group can be show to be algebraic [3], meaning that the inverse exist and

allows the reversing of the order in (3.9) to find

T 𝑏
𝑙2 = (T 𝑖

𝑏
)−1T 𝑖

𝑙1 (3.14)
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The special Euclidean group is a subgroup of the affine group of transformations only

where scaling, shearing and reflections are not applied.

The concepts of homogeneous coordinates and transformations can be extended

to three dimensions. Vectors are simply extended to ®̃𝑝 = (𝑥,𝑦, 𝑧, 1)T, while the rotation

matrices are subject to a larger change. The counter-clockwise rotations of a reference

frame F in relation to an inertial frame I about the 𝑥,𝑦, 𝑧-axes are quantified as 𝜙, \,𝜓

respectively. The 3D rotation matrix applied to the coordinate frame, expressed with

rotations about the individual axes is given as follows:

R𝑖
𝑓
= R𝑧 (𝜓 )R𝑦 (\ )R𝑥 (𝜙) (3.15)

Because the work in this thesis is applied in the two-dimensional plane, no further

discussion of three-dimensional motion will be supplied. Additionally, all coordinates

are assumed to be homogeneous with the scaling variable set to 1. The implicit omission

of this variable is also done to improve readability.

3.2 Probability theory

3.2.1 Random vectors

The random vector ®𝑋 = (𝑋1, . . . , 𝑋𝑛)T is associated with a joint PDF 𝑝 ®𝑋 (𝑥1, . . . , 𝑥𝑛),
where the joint probability of the vector being sampled as any n-dimensional point

®𝑥 = (𝑥1, . . . , 𝑥𝑛)T within the domain A, is specified by

𝑃 (𝑋 ∈ A) =
∫
A
𝑝 ®𝑋 (𝑥1, . . . , 𝑥𝑛)𝑑𝑥1 . . . 𝑑𝑥𝑛 . (3.16)

For the PDF of a subset of the elements in the vector, the marginal distribution is

found by integrating the joint PDF over all other variables in the vector not part of

this subset. The expected value, or mean of ®𝑋 is the 𝑛-dimensional vector

E[ ®𝑋 ] = (E[𝑋1], . . . ,E[𝑋𝑛])T , (3.17)
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with variance of ®𝑋 being the 𝑛 × 𝑛 matrix

𝚺𝑋𝑋 = 𝑉𝑎𝑟 [ ®𝑋 ] = E[( ®𝑋 − E[ ®𝑋 ]) ( ®𝑋 − E[ ®𝑋 ])T] . (3.18)

The (𝑖, 𝑗) element of Σ𝑋𝑋 is the covariance between the pair: (𝑋𝑖 , 𝑋 𝑗 ). When intro-

ducing a second n-dimensional random vector ®𝑌 = (𝑌1, . . . , 𝑌𝑛)T, the cross-covariance

matrix involving ®𝑋 and ®𝑌 is defined:

𝚺𝑋𝑌 = 𝐶𝑜𝑣 ( ®𝑋, ®𝑌 ) = E[( ®𝑋 − E[ ®𝑋 ]) ( ®𝑌 − E[ ®𝑌 ])T] . (3.19)

3.2.2 Normal distribution

Throughout the work outlined in this thesis, the normal distribution is considered

when approximating PDFs for stochastic quantities. Many phenomena in nature

closely follow the normal (or Gaussian) distribution, and it is therefore commonly

employed in the field of probabilistic robotics[55]. In the multidimensional case,

normally distributed random variables are modeled as vectors that constitute the

sample space of the 𝑛-dimensional multivariate normal distribution:

𝑝 ®𝑋 (𝑥1, . . . , 𝑥𝑛) =
exp (− 1

2 ( ®𝑥 − ®̀)T𝚺−1 ( ®𝑥 − ®̀))√
(2𝜋)𝑘 |𝚺|

(3.20)

Noting that normal distributions are parameterized by their means and covariances, a

compact notation for the normal random vector ®𝑋 is written

®𝑋 ∼ N( ®̀, 𝚺). (3.21)

A convenient feature of multivariate normal distributions is that finding the

marginal densities of the elements of a random vector, is just a matter of dropping

the rows and columns containing the other variables from the joint covariance matrix

and the corresponding rows from the mean[56]. As an example, the 𝑛-dimensional
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random vector ®𝑋 contains three subvectors:

®𝑋 =

©«
®𝑋1

®𝑋2

®𝑋3

ª®®®®¬
∼ N( ®̀, 𝚺),

with

®̀ =
©«
®̀1
®̀2
®̀3

ª®®®®¬
, 𝚺 =

©«
𝚺11 𝚺12 𝚺13

𝚺21 𝚺22 𝚺23

𝚺31 𝚺32 𝚺33

ª®®®®¬
.

The marginal distribution 𝑝𝑋1,𝑋3 (𝑥1, 𝑥3) is normally distributed and parameterized as

N( ®̀1,3, 𝚺1,3), with

®̀1,3 =
©«
®̀1
®̀3
ª®¬ , 𝚺1,3 =

©«
𝚺11 𝚺13

𝚺31 𝚺33

ª®¬ . (3.22)

3.2.3 Mahalanobis distance

The Mahalanobis distance is a distance measure weighted by the covariance matrix 𝚺.

The similarity between sample points ®𝑥 and distributions with mean ®̀ and covariance

𝚺 is expressed through the Mahalanobis distance function

𝐷𝑀 ( ®𝑥) =
√
( ®𝑥 − ®̀)T𝚺−1 ( ®𝑥 − ®̀). (3.23)

For a normal distribution with mean ®̀ ∈ R𝑛 and 𝚺 ∈ R𝑛×𝑛 the Mahalanobis distance

metric is Chi-squared distributed with 𝑛 degrees of freedom (𝜒2𝑛). The probability

𝑝 for 𝐷𝑀 ( ®𝑥) to be smaller than some critical value 𝑐 , is defined by the cumulative

distribution function (CDF) and Gamma function Γ(·):

𝑝 = 𝑃𝜒2𝑛 (𝑋 < 𝑐) =
∫ 𝑐

0

𝑡 (𝑛−2)/2𝑒
−𝑡/2

2𝑛/2Γ(𝑛/2)
𝑑𝑡 . (3.24)
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The inverse calculation 𝑐 = {𝑐 : 𝑃𝜒2𝑛 (𝑋 < 𝑐) = 𝑝} has no closed form solution when

𝑛 ≠ 2, and is found using approximation or lookup tables [18].

3.3 Dynamic models

A dynamic model describes a system of states and their behavior over time. Using

state-space representation, dynamic models are described by a state vector ®𝑥 ∈ R𝑛 , a

vector of input variables ®𝑢 ∈ R𝑚 , a vector of output variables ®𝑧 ∈ R𝑑 , and a set of

matrices relating the variables. The system, input and output matrices are A𝑛×𝑛,B𝑛×𝑚

and C𝑑×𝑛 respectively, leading to the discrete time-variant linear state-space model at

time step 𝑘 :

®𝑥𝑘+1 = A𝑘 ®𝑥𝑘 +B𝑘 ®𝑢𝑘 (3.25)

®𝑧𝑘 = C𝑘 ®𝑥𝑘 . (3.26)

This is a special case of the dynamic model, where f : R𝑛+𝑚 → R𝑛 and h : R𝑛 → R𝑑

may be nonlinear:

®𝑥𝑘+1 = f ( ®𝑥𝑘 , ®𝑢𝑘 ) (3.27)

®𝑧𝑘 = h( ®𝑥𝑘 ) (3.28)

As working with linear systems is principally preferred over their nonlinear coun-

terparts, the first order Taylor expansion of (3.27) create a linear approximation around

the points ®𝑥∗
𝑘
, ®𝑢∗
𝑘
:

®𝑥𝑘+1 = 𝑓 ( ®𝑥𝑘 , ®𝑢𝑘 ) ≈ 𝑓 ( ®𝑥∗
𝑘
, ®𝑢∗
𝑘
) + J𝑥 ( ®𝑥𝑘 − ®𝑥∗

𝑘
) + J𝑢 (®𝑢𝑘 − ®𝑢∗

𝑘
) (3.29)
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where J𝑥 and J𝑢 are the Jacobians of f wrt. ®𝑥 and ®𝑢 given by

J𝑥 =
𝜕f

𝜕®𝑥 =

©«
𝜕𝑓1
𝜕𝑥1

. . .
𝜕𝑓1
𝜕𝑥𝑛

...
. . .

...

𝜕𝑓𝑛
𝜕𝑥1

. . .
𝜕𝑓𝑛
𝜕𝑥𝑛

ª®®®®¬
, J𝑢 =

𝜕f

𝜕®𝑢 =

©«
𝜕𝑓1
𝜕𝑢1

. . .
𝜕𝑓1
𝜕𝑢𝑚

...
. . .

...

𝜕𝑓𝑛
𝜕𝑥1

. . .
𝜕𝑓𝑛
𝜕𝑢𝑚

ª®®®®¬
, (3.30)

evaluated at the linearization points.

3.4 Uncertainty propagation

If the state vector ®𝑥 from the previous section is not directly known, but is associated

with some uncertainty it is treated as a random vector. The uncertainty of ®𝑥 is quan-

tified by the covariance matrix 𝚺𝑥𝑥 . From (3.26), ®𝑧 and ®𝑥 are related through C , and

accordingly, the variance matrix of ®𝑧 is found:

𝑉𝑎𝑟 (®𝑧) = 𝚺𝑦𝑦 = C𝚺𝑥𝑥C
T (3.31)

By linearizing the nonlinear function h(·), again using the first order Taylor expansion

about the mean ®𝑥∗
𝑘
:

®𝑧𝑘 = h( ®𝑥𝑘 ) ≈ h( ®𝑥∗
𝑘
) +H𝑥 ( ®𝑥𝑘 − ®𝑥∗

𝑘
), (3.32)

a similar result can be found for the nonlinear relation in (3.28):

𝑉𝑎𝑟 (𝑧) = 𝚺𝑧𝑧 = H𝑥𝚺𝑥𝑥H𝑥 . (3.33)

Similar to the J𝑥 matrix from (3.29), H𝑥 is the Jacobian of h wrt. ®𝑥 evaluated at ®𝑥∗
𝑘
.
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3.5 Probabilistic graphical models

3.5.1 Bayesian networks

Bayesian networks, or Bayes nets are graphical models that represent the joint prob-

ability of random variables in the form of a directed acyclic graph (DAG). Bayes nets

are useful in that they give an intuitive representation the involved variables and the

marginal and conditional dependencies between them, characterized by nodes and

edges in the graph. Because the nets are acyclic, any variable in the network is only

affected by its predecessors. The notion of independence between variables follows

the concept of d-separation [21]. In the example shown in figure 3.3, the variable pair

(𝑥0, 𝑙1) are marginally independent because there is no directed path connecting the

pair, but conditioned on 𝑧0,1 they become conditionally dependent. To further illustrate

the Bayes net, the variable 𝑥1 and its marginal is only affected by its parent nodes 𝑥0
and 𝑢1, while the PDF of 𝑥1 conditioned on 𝑧1,1 and 𝑧1,2 is influenced by 𝑙1 and 𝑙2, i.e.

𝑝 (𝑥1 |𝑙1, 𝑙2) = 𝑝 (𝑥1) =
∬
𝑥0,𝑢1

𝑝 (𝑥1, 𝑥0, 𝑢1) 𝑑𝑢1 𝑑𝑥0,

but

𝑝 (𝑥1 |𝑙1, 𝑙2, 𝑧1,1, 𝑧1,2) ≠ 𝑝 (𝑥1)

In summary, the complete joint PDF of the entire set of variables in figure 3.3 is

given as

𝑝 (𝑥0:2, 𝑙1:2, 𝑢1:2, 𝑧0,1:2,2).

By applying the chain rule

𝑝 (𝑥,𝑦) = 𝑝 (𝑦 |𝑥)𝑝 (𝑥) = 𝑝 (𝑥 |𝑦)𝑝 (𝑦), (3.34)

and imposing the conditional and marginal independencies indicated by the graph

edges, the joint probability is deconstructed to a product of prior and conditional
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𝑥0 𝑥1 𝑥2

𝑙1 𝑙2

𝑢1 𝑢2

𝑧0,1 𝑧1,1 𝑧1,2 𝑧2,2

Figure 3.3: Bayes net with twelve variables. Variables are only directly affected by
their immediate ancestor(s).

densities:

𝑝 (𝑥0:2, 𝑙1:2, 𝑢1:2, 𝑧0,1:2,2) = 𝑝 (𝑥0) · 𝑝 (𝑙1) · 𝑝 (𝑙2) · 𝑝 (𝑢1) · 𝑝 (𝑢2)

× 𝑝 (𝑥1 |𝑥0, 𝑢1) · 𝑝 (𝑥2 |𝑥1, 𝑢1)

× 𝑝 (𝑧0,1 |𝑥0, 𝑙1) · 𝑝 (𝑧1,1 |𝑥1, 𝑙1)𝑝 (𝑧1,2 |𝑥1, 𝑙2) · 𝑝 (𝑧2,2 |𝑥2, 𝑙2)

(3.35)

In practical applications such as SLAM, some variables in (3.35) are known, while others

are not, and are sought to be estimated. In these instances, the full joint probability in

(3.35) is reformulated as a posterior PDF. The posterior encapsulates the probability

distribution of an event given some prior information. If for instance the 𝑧 and 𝑢

variables above are known, the posterior distribution 𝑝 (𝑥0:2, 𝑙1:2 |𝑢1:2, 𝑧0,1:2,2) is found

using Bayes theorem:

𝑝 (𝑥0:2, 𝑙1:2 |𝑢1:2, 𝑧0,1:2,2) =
𝑝 (𝑢1:2, 𝑧0,1:2,2 |𝑥0:2, 𝑙1:2)𝑝 (𝑥0:2, 𝑙1:2)

𝑝 (𝑢1:2, 𝑧0,1:2,2)
. (3.36)

3.5.2 Factor graphs

An alternative to Bayes nets are factor graphs. A factor graph is formally defined as

a bipartite graph G = (Θ, F , E) with two sets of nodes: variables \𝑖 ∈ Θ, and factors
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𝑓𝑗 ∈ F . Because the graph is bipartite, the edges 𝑒𝑖 𝑗 ∈ E always connect one factor

and one variable. The edges are also undirected. A factor graph graphically expresses

the factorization of a function

𝑓 (Θ) =
∏
𝑗

𝑓𝑗 (Θ𝑗 ), (3.37)

where Θ𝑗 denotes the variable set with edges connecting the variables to the factor 𝑓𝑗 .

One major difference between Bayes nets and factor graphs is that Bayes nets are tied

to probability densities, and cannot inherently factor in other types of functions, such

as likelihoods (unnormalized PDFs). As we are not always interested in the posterior

probabilities directly, but rather seek to find the values of certain variables, the factor

graph formulation is favorable. Based on the example Bayes net in figure 3.3 and the

associated joint PDF (3.35), the variable set Θ = {𝑥0, 𝑥1, 𝑥2, 𝑙1, 𝑙2} is represented using a

factor graph in figure 3.4. The graph provides a formulation of the function

𝑓 (Θ) = 𝑓1 (𝑥0) · 𝑓2 (𝑙1) · 𝑓3 (𝑙3)

× 𝑓4 (𝑥0, 𝑥1) · 𝑓5 (𝑥1, 𝑥2)

× 𝑓6 (𝑥0, 𝑙1) · 𝑓7 (𝑥1, 𝑙1) · 𝑓8 (𝑥1, 𝑙2) · 𝑓9 (𝑥2, 𝑙2).

(3.38)

in which 𝑓 (Θ) ∝ 𝑝 (𝑥0:2, 𝑙1:2, 𝑢1:2, 𝑧0,1:2,2). The single variable functions in (3.38) are

proportional to the first three prior densities from (3.35), while 𝑝 (𝑢1) and 𝑝 (𝑢2) are

integrated into the factors connecting 𝑥0, 𝑥1 and 𝑥2: 𝑓4 (·) and 𝑓5 (·). The conditional

densities 𝑝 (𝑥1 |𝑥0, 𝑢1) and 𝑝 (𝑥2 |𝑥1, 𝑢2) are also included here. As briefly discussed in

the previous section, if the variables 𝑢 and 𝑧 are known, the expression in (3.38) readily

expresses the posterior distribution in (3.36), as the factors implicitly include any

prior information about these variables. Lastly, the equivalence between the densities

and factors relating the 𝑥-variables to the 𝑙-variables is established as 𝑓𝑘 (𝑥𝑖 , 𝑙 𝑗 ) ∝
𝑝 (𝑧𝑖, 𝑗 |𝑥𝑖 , 𝑙 𝑗 ).
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𝑥0 𝑥1 𝑥2

𝑙1 𝑙2

Figure 3.4: Factor graph representation of the Bayesian network in figure 3.3. Variables
are labeled nodes, factors are black nodes that have edges to their affected variables.



Chapter 4

SLAM Backend - Optimization

4.1 SLAM system task

To establish a concrete frame for the SLAM system developed in this project, a more

functional specification of its role in Revolves autonomous software pipeline is supplied

at the beginning of this chapter. This section is placed here to specify the problem

description from chapter 1, and to serve as a backdrop for the more general problem

description and concepts that follow.

In essence, the input and output data related to the SLAM system at Revolve is

quite simple, as there are mainly two types of data being received and passed on.

Input: From the detection systems, a list of points ®𝑝 = (𝑝1, . . . , 𝑝𝑛)T, ®𝑝 ∈ R𝑛×2

is sent at every iteration. These are points in the horizontal plane which are assumed
to be cones resulting from a feature extraction step performed on exteroceptive sensor

input such as a camera or lidar (See section 6.1 for more specifics on this step as it is

performed in Revolve driverless). The data is given relative to an origin fixed at the

center of gravity (CG) of the vehicle, referred to as the body frame B. The body frame

is defined with the x-axis pointing out of the nose of the car. The y-axis points out of

the left lateral side of the car.

Moreover, a stream with samples of the estimated inertial pose (position and

29
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Detection

State estimation
SLAM

Planning

Control

Figure 4.1: Flow and types of data between nodes adjacent to SLAM. Red arrows
indicate point lists ®𝑝 ∈ R𝑛×2. Blue arrows indicate vehicle pose ®𝑥 in 3degrees of
freedom (DOF)

.

orientation) ®𝑥𝑖
𝑏
= (𝑥,𝑦, \ )T of the vehicle’s CG is sent from the state estimation module.

Poses are given in the map frame, denoted I. This module is also responsible for

supplying the control systems with relevant information such as translational and

rotational velocity and acceleration estimates. In the SLAM domain, such a system is

often referred to as odometry to recognize its internal state estimation (acceleration

etc.), as opposed to the external state estimation performed by SLAM. "External state"

is here referring to the state, specifically the pose, of the vehicle in relation to its

surroundings.

Output: Similar to the input, one of the two output data streams of the SLAM

system is a list of points in the inertial map frame I. These are, in the point of view of

the autonomous system, the locations of actual cones in the track. That being said,

there is no guarantee that all cones are found and placed in this list, nor that all points

in the list truly are cones. The other output is the pose estimates originating from

the state estimation module with applied corrective offsets. This is the vehicle pose

estimate calculated in the SLAM module.

In Revolve’s autonomous software pipeline, the SLAM module is subsequent to

the detection and state estimation modules. The output SLAM data is utilized by the

path planning and control systems. The flow of data involving the SLAM module and

the adjacent systems is shown in figure 4.1.
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4.2 Problem formulation

This section and subsequent sections in this chapter build further on the author’s

writing in the specialization project [43], as the relevant theory is largely the same.

That being said, the material has been reconsidered and rewritten, and new theoretical

concepts are added for completeness.

All autonomous agents operating in the physical world are exposed to a number

of unpredictable processes. These include wind, waves, electromagnetic interference

and more, and can impact system operation in multiple ways. Because of the inherent

randomness in these processes, they are usually modeled as random variables. In any

sensor that is designed to measure some external quantity, the output will always

be some combination of external and internal random signals combined with the

true value. This leads to the motivation for formulating the probabilistic structure

of the SLAM problem. In SLAM, the ultimate goal is to maximize the posterior joint

probability of the agent states𝑋 = {®𝑥1, . . . , ®𝑥𝑘 } and map 𝐿 = {®𝑙1, . . . , ®𝑙𝑛} with stationary

landmarks, conditioned on set of measurements 𝑍 = {®𝑧1, . . . , ®𝑧𝑘 } and motion inputs

𝑈 = {®𝑢1, . . . , ®𝑢𝑘 }:
𝑝 (𝑋, 𝐿 |𝑍,𝑈 , ®𝑥0)

This way, the estimated solution is the value of the states 𝑋 and landmarks 𝐿 that

are the most probable given the collected information. The state ®𝑥0 is also included

to denote prior information about the initial state of the problem, e.g. the starting

position of a robot in relation to an earth-fixed location. Expanding and rearranging

terms of the posterior above, and applying Bayes theorem (3.36) yields

𝑝 (𝑋, 𝐿 |𝑍,𝑈 , ®𝑥0) = 𝑝 ( ®𝑥𝑘 |𝑋0:𝑘−1, 𝐿, 𝑍,𝑈 )

× 𝑝 (®𝑧𝑘 |𝑋, 𝐿, 𝑍1:𝑘−1,𝑈 ) · 𝑝 (𝑋0:𝑘−1, 𝐿 | ®𝑥𝑘 , 𝑍1:𝑘−1,𝑈 )
𝑝 (®𝑧𝑘 |𝑍1:𝑘−1,𝑈 , ®𝑥0)

.
(4.1)

Coincidentally, figure 3.3 is a graphical formulation of the SLAM problem, which

means that the same assumptions of independent variables can be made. The resulting

expression in (4.1) can be simplified using the Markov assumption that the agent state
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®𝑥𝑘 is only dependent on its previous state ®𝑥𝑘−1 and the motion input ®𝑢𝑘 applied between

time steps 𝑘 − 1 and 𝑘 . Furthermore, a measurement ®𝑧𝑘 is conditionally independent of

the previous measurements given the landmarks, as well as all previous states ®𝑥0:𝑘−1.
The simplified expression for the posterior probability in (4.1) becomes:

𝑝 (𝑋, 𝐿 |𝑍,𝑈 , ®𝑥0) ∝ 𝑝 (®𝑧𝑘 | ®𝑥𝑘 , 𝐿) · 𝑝 ( ®𝑥𝑘 | ®𝑥𝑘−1, ®𝑢𝑘 ) · 𝑝 ( ®𝑥1:𝑘−1, 𝐿 |®𝑧1:𝑘−1, ®𝑢1:𝑘−1) (4.2)

The first term on the right side of eq. (4.2) is usually termed the measurement
model of the system. The measurement model indicates the probability of making an

observation ®𝑧𝑘 given the current state of the map and robot. In terms of the nonlinear

dynamic models discussed in section 3.3, the measurement model can be made more

explicit by altering the expression in (3.28) with the addition of multivariate additive
white Gaussian noise (AWGN) ®𝑣𝑘 :

®𝑧𝑘 = h( ®𝑥𝑘 , 𝐿) + ®𝑣𝑘 . (4.3)

As the number of landmarks is usually larger than one, (4.3) will be a vector of size

𝑛 × 𝑑 where 𝑑 is the dimension of a single measurement taken of a landmark. As an

example, for measurements taken directly by a camera, 𝑑 = 2 while landmarks are in

R3 because the three-dimensional scene is flattened onto the image plane.

The second term on the right hand side of (4.2) is termed the motion model of the

robot. It models the PDF of the predicted state ®𝑥𝑘 as a function of the previous state

®𝑥𝑘−1 and the applied input ®𝑢𝑘 . Again based on the nonlinear models in section 3.3,

we can introduce a AWGN noise parameter ®𝑤𝑘 to get an expression for the general

nonlinear motion model with the random vector ®𝑥𝑘+1:

®𝑥𝑘+1 = f ( ®𝑥𝑘 , ®𝑢) + ®𝑤𝑘 . (4.4)

Finally, the rightmost expression of (4.2) indicates the recursive Bayesian estimation

pattern as it is similar to expression for the full posterior above, but does not include

variables from the 𝑘𝑡ℎ time step. This pattern lends itself to an incremental filtering

approach, as each iteration can initialize using results from the previous. Repeating
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the operation recursively from 𝑘 − 1 to 0, we get the complete expression for all 𝑘 time

steps:

𝑝 (𝑋, 𝐿 |𝑍,𝑈 , ®𝑥0) ∝
𝑘∏
𝑖=1

𝑝 ( ®𝑥𝑖 | ®𝑥𝑖−1, ®𝑢𝑖 ) · 𝑝 (®𝑧𝑖 | ®𝑥𝑖 , 𝐿) (4.5)

4.3 Maximum a posteriori estimation

The concept of MAP estimation is based on estimating values that best explain the

given data. As an approach, it is therefore similar to ML estimation, but is expanded to

include any prior information that may be available [38]. When considering the SLAM

problem as it is stated in eq. (4.5), we can use MAP estimation to find a solution: Given

the set of measurements, and any prior knowledge about the system states (vehicle

pose or landmark locations), the MAP estimate is the set of state values that maximizes

this posterior distribution. Because MAP estimation is not limited to any amount

of data, full trajectory batch estimation is usually formulated as a MAP estimation

problem. Also, in contrast to EKF-SLAM, MAP estimation is not directly coupled

with the formulation of motion and measurement models, and can include arbitrary

probabilistic relationships in the solution[6]. MAP estimation is, for this reason, a

powerful tool that can incorporate many types of data and constraints relevant to the

specific applications.

As the posterior describing the SLAM problem is already formulated in eq. (4.5),

the MAP framework can be directly applied. For simplicity, we define the augmented

state vector Θ = (𝑋, 𝐿) containing the full trajectory of robot states as well as the

landmarks in the map. The estimate of Θ that maximizes (4.5) is the MAP estimate,

and is defined as
Θ𝑀𝐴𝑃 = argmax

Θ
𝑝 (Θ|𝑍,𝑈 )

= argmin
Θ

(
− 𝑙𝑜𝑔 [𝑝 (Θ|𝑍,𝑈 )]

)
.

(4.6)

The noise parameters in equations (4.4) and (4.3) are assumed to be zero-mean Gaussian:

®𝑣𝑘 ∼ N(®0,𝚲𝑘 ), ®𝑤𝑘 ∼ N(®0, 𝚺𝑘 ), which results in the Gaussian formulations of the
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motion and measurement models:

f ( ®𝑥𝑘 , ®𝑢) + ®𝑤𝑘 ∼ N(f ( ®𝑥𝑘 , ®𝑢𝑘 ), 𝚺𝑘 ) (4.7)

h( ®𝑥𝑘 , 𝐿) + ®𝑣𝑘 ∼ N(h( ®𝑥𝑘 , 𝐿),𝚲𝑘 ). (4.8)

Lastly, the MAP estimate is found by inserting the right hand side of (4.5) into (4.6)

and applying the definitions above:

Θ𝑀𝐴𝑃 = argmin
Θ

{
−𝑙𝑜𝑔

[
𝑘∏
𝑖=1

𝑝 ( ®𝑥𝑖 | ®𝑥𝑖−1, ®𝑢𝑖 )𝑝 (®𝑧𝑖 | ®𝑥𝑖 , 𝐿)
]}

(4.9)

= argmin
Θ

{
𝑘∑
𝑖=1

∥f ( ®𝑥𝑖−1, ®𝑢𝑖 ) − ®𝑥𝑖 ∥2Σ𝑖 + ∥h( ®𝑥𝑖 , 𝐿) − ®𝑧𝑖 ∥2Λ𝑖

}
(4.10)

4.4 Factor graphs in SLAM

In recent years, the shift from recursive filtering to smoothing based SLAM methods

has fueled the need for involving data structures that make use of the sparsity of

the smoothing information matrix. Examples of such structures include the Treemap
introduced in [20], the Gaussian Markov random field (GMRF) as used in [47], and

notably the Bayes tree presented in [30] and its application in iSAM2 [31, 32]. In any

case, sparse linear algebra is employed to allow efficient operation on the information

matrix, which in turn leads to accelerated inference.

The link between linear algebra and graph theory is strong. Problems in one domain

can be transferred and manipulated in the other, resulting in an extensive framework

for solving problems in computer science, mathematics, biology and more [34]. In

SLAM, expressing the problem using Bayes networks or factor graphs is convenient

because, especially in the case for Bayes nets, the connection between the graphical

model and the real world is made clear: States are stochastically related through

measurements, and conditional (in)dependencies are made explicit. On the other hand,

factor graphs are more comfortable to work with from a mathematical point of view. In

contrast to Bayes nets, they can describe any function (including likelihoods), not just
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normalized probabilities. Further, factor graphs benefit from their close relationship to

linear algebra.

4.4.1 MAP inference

Building on the theory supplied in section 3.5.2, the MAP estimation problem presented

in (4.10) can equally be expressed using factor graphs. To start off, (4.5) is proportionally

factorized as

𝑓 (𝑋, 𝐿) = 𝑓0 ( ®𝑥0)
𝑘∏
𝑖=0

𝑓(𝑖−1)𝑖 ( ®𝑥𝑖 , ®𝑥𝑖−1)
∏
{𝑖, 𝑗 }

𝑓𝑖 𝑗 ( ®𝑥𝑖 , ®𝑙 𝑗 ). (4.11)

Or, in terms of the concatenated state variable Θ = {\0, . . . , \𝑘+𝑛} = (𝑋, 𝐿) (𝑘 time

steps and 𝑛 landmarks):

𝑓 (Θ) = 𝑓0 (\0)
𝑘∏
𝑖=0

𝑓(𝑖−1)𝑖 (\𝑖 , \𝑖−1)
∏
{𝑖, 𝑗 }

𝑓𝑖 𝑗 (\𝑖 , \ 𝑗 ). (4.12)

The factors here are based on the motion and measurement models presented in

section 4.2 with some slight modifications: Input vectors ®𝑢𝑖 and measurements ®𝑧𝑖
are encoded by factors connecting subsequent robot states and factors connecting

states and landmarks. Moreover, the set {𝑖, 𝑗} in the second product is defined as

correspondences between landmark 𝑗 and robot state 𝑖 established by measurements

of the landmark ®𝑙 𝑗 at state ®𝑥𝑖 . Building this set is not trivial, but has been assumed

known thus far.

By introducing the general prediction function g(Θ𝑖 ) for the variable subset Θ𝑖 ∈ Θ,

related measurement ®𝑧𝑖 and associated covariance matrix Σ𝑖 (4.12) is reformulated to

𝑓 (Θ) =
𝑁∏
𝑖=0

exp
(
−1
2
∥𝑔(Θ𝑖 ) − ®𝑧𝑖 ∥2Σ𝑖

)
(4.13)

The right-hand side of eq. (4.13) is a product of 𝑁 Gaussian likelihood functions,

and proportional to the posterior distribution in eq. (4.5). Hence, the optimal state

estimates Θ∗ are found by maximizing the expression in (4.13). The maximization can
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be formulated as a non-linear least squares (NLLSQ) problem:

Θ∗ = argmax
Θ

𝑓 (Θ)

= argmin
Θ

{− log 𝑓 (Θ)}

= argmin
Θ

{
𝑁∑
𝑖=0

∥𝑔(Θ𝑖 ) − ®𝑧𝑖 ∥2Σ𝑖

}
, (4.14)

which is a generalized, but equivalent formula for the MAP estimate from eq. (4.10). An

explicit distinction between the motion and measurement errors as they are presented

in eq. (4.10), is not made here to emphasize the factor graph representation using

variables and factors.

4.5 Non-linear least squares

In contrast to linear least squares problems where closed form solutions exist, NLLSQ

problems such as the one presented in eq. (4.14) have to be numerically approxi-

mated. Common iterative methods for performing this task include Dogleg, Levenberg-

Marquardt and Gauss-Newton (GN). All these methods involve approximation by lin-

earization of a nonlinear system of equations, but are differentiated by their update
steps at each iteration. The primary steps of GN are applied to eq. (4.14) as follows:

1. Linearizing at point Θ0 using the Jacobian JΘ of 𝑔(Θ) wrt. Θ:

𝑓 (Θ) ≈
𝑁∑
𝑖=0

JΘ𝑖
(Θ𝑖 − Θ0

𝑖 ) − (®𝑧𝑖 − 𝑔(Θ0
𝑖 ))

2
Σ𝑖
. (4.15)

2. Apply a whitening transform to the linearized expression above to express the

regular linear least squares problem for finding the optimal update step ΔΘ =

Θ − Θ0:
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ΔΘ = argmin
Θ

𝑁∑
𝑖=0

𝚺−1/2
𝑖

JΘ𝑖
ΔΘ𝑖

− 𝚺
−1/2
𝑖

(®𝑧𝑖 − 𝑔(Θ0
𝑖 ))

2
2

(4.16)

The whitened Jacobians and constants can then be aggregated into A and b

respectively, resulting in the linear least squares formulation:

ΔΘ = argmin
Θ

∥AΔΘ − b∥22 (4.17)

3. By matrix decomposition, such as through Cholesky[23], one can solve for ΔΘ

by factorizing the information matrix 𝛀 = ATA in the normal equation:

(ATA)ΔΘ = ATb (4.18)

4. If the user-defined termination-criteria are not met, steps 1-3 are repeated with

Θ0 = Θ0 + ΔΘ. Otherwise, Θ0 + ΔΘ is the found approximate solution.

The iSAM2 algorithm as part of the Georgia Tech Smoothing and Mapping (GTSAM)

C++ library [9], which is at the core of the work presented in this thesis, supports both

Dogleg and GN-based optimization. The GN-based version is the one implemented in

this work, and so only GN is presented here.

In step 3, the Cholesky factorization generates the upper triangular matrix

R : 𝛀 = ATA = RTR, (4.19)

which due to its structure is the key to efficiently calculate ΔΘ using back-substitution.

Back-substitution on R begins with the lower-right element on the matrix diagonal,

which is already found as it is the only element in the row, and iteratively works its way

up the rows until the full update vector is found. In the realm of batch optimization,

its relation to the information matrix has led to R being referred to as the square root
information matrix (SRIM). Although not first introduced by Dellaert and Kaess [11],

it is a crucial element in the efficiency of iSAM2 and its predecessors [29, 31, 32].
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4.5.1 Factors and the square root information matrix

It can be shown that the whitened Jacobian matrix A represents the underlying

factor graph used to model the original NLLSQ problem supplied in eq. (4.14). To

exemplify, we can consider the factor graph in figure 3.4 where we evaluate the factor

connecting the variable pair {𝑥0, 𝑙1}. For continuity, 𝑥0 is defined as the state of the

robot, 𝑙1 is a landmark, and 𝑧0,1 is the measurement imposing dependence between

the two variables. The linearization points are in this case the currently available

estimates of the variables, indicated with hatˆ -notation. The corresponding linear least

square residual 𝑟 for this factor with the variable set Θ𝑖 = (𝑥0, 𝑙1)T and corresponding

measurement Jacobian H𝑥0,𝑙1 , is then found as

𝑟 =
ℎ(𝑥0, 𝑙1) − 𝑧0,1

2
Λ

≈
𝚲−1/2H𝑥0,𝑙1ΔΘ𝑖

− 𝚲
−1/2 (𝑧𝑖 − ℎ(𝑥0, 𝑙1))

2 (4.20)

For the full state vector Θ = (𝑥0, 𝑥1, 𝑥2, 𝑙1, 𝑙2) and whitened Jacobian matrix A, this

residual corresponds to the 𝑖th row of A with nonzero elements at columns 1 and 4

(𝑥0 and 𝑙1 are the 1st and 4th elements of Θ). To further convey the correspondence

between factors in the factor graph and elements of the whitened Jacobian matrix used

to find the MAP estimate in eq. (4.18), the factor connecting the consecutive poses 𝑥0
and 𝑥1 is embedded in entries at column 1 and 2 in A at the row index of the factor.

Factorization of 𝛀 = ATA into the SRIM is shown in [12] to be equivalent to

performing the variable elimination algorithm[22] on the factor graph associated with

A. In fact, sparse linear algebra factorization such as Cholesky or QR are special cases

of the elimination algorithm. The graph structure representing the SRIM R is, as a

result, a Bayes net. This Bayes net encodes the joint distribution of the state variables:

𝑝 (Θ).

Depending on the ordering of variables and factors in the original NLLSQ problem

in eq. (4.14), the A matrix can take several different forms, which then causes R

and the complementary Bayes net to change. The joint distribution 𝑝 (Θ) remains

unchanged, however. The computational complexity of performing back-substitution
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on R is highly dependent on this variable ordering, and so it should be performed with

care. In cases where the variable ordering is poor, the amount of nonzero off-diagonal

elements in R will increase. This is referred to as fill-in, and should be avoided as much

as possible to maintain efficient operations on the SRIM. Applying heuristic variable

ordering schemes is a powerful tool to reduce fill-in, but can be a potentially expensive

operation in itself, and so should be performed consciously also. In SLAM, a useful

assumption is that recently seen landmarks are likely to be present in subsequent

measurements. Heuristic variable ordering schemes such as constrained COLAMD

(CCOLAMD) [10] can take advantage of these kinds of features of the specific problem

and significantly reduce the computational effort at no loss of accuracy [1].

4.6 iSAM2

Regardless of how efficient back-substitution performed on R is, the standard proce-

dure of calculating eq. (4.18) involves updating all linearization points using the update

vector ΔΘ every time either a new measurement of an existing variable enters or when

a state variable is added to the state vector. The main features of the original version

of iSAM were the incremental execution of these two actions. Instead of having to

re-factorize the R matrix at every new incoming measurement, the introduction of

Givens rotations allowed the incremental addition of new measurement rows into the

SRIM [33]. In order to ensure efficient operation, the algorithm performed periodic

batch updates of variable ordering to limit the cost of back-substitution.

The forming of iSAM2 in [31] followed from the introduction of the Bayes tree[30].

The Bayes tree is essentially a Bayes net where chordal parts of the net are contained

in cliques. A key takeaway from the Bayes net is that new information (measurements)

is propagated from the child nodes to the root. This means that descendants of the

clique with the affected variables are not included in computations. In other words,

"old" states at the bottom of the tree are not affected by changes in newer states which

are situated further up in the tree, adhering to the CCOLAMD ordering. Other notable

features of iSAM2 include:

• Fluid relinearization: The state update vector is changed when new data is added
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to the Bayes tree. To avoid having to relinearize all variables, variables with

the state update value smaller than a threshold Δ < 𝛽 are not linearized. To

relinearize variables, all their connected factors have to be extracted from the

Bayes tree and linearized, which leads to more processing.

• Partial state update: Only when the calculated state update value increases

sufficiently from one iteration to the next(Δ𝑘+1 > Δ𝑘 + 𝛼), should the value

actually get updated for the particular variable. Because of the structure of the

Bayes tree, it is guaranteed that variables further down than a variable whose

state update is not updated, will see an even smaller update, and so are not

considered.



Chapter 5

SLAM Frontend - Data
association

In the previous chapter, the errors of the predicted landmark locations are minimized

based on implicitly chosen measurements. For the MAP estimates to be consistent with

the true state of the problem it is trying to solve, these measurements are therefore

assumed to originate from the particular landmark in question. In practice, determining

these correspondences is not trivial and has to be done with care, as making wrong

ones can deteriorate the MAP estimates. This chapter presents some methods for

tackling this challenge, termed the data association problem.

Data association in SLAM is usually presented as considering a moving agent with

an unknown, estimated pose, in an environment with unknown stationary landmarks.

The ultimate objective in data association is that the landmarks are consistently tracked

throughout the operation, allowing for consistent pose estimates. In this sense, SLAM

data association is contrary to the tracking problem where the observing agent is

stationary, and the movement (track) of the features is to be estimated. Conceptually,

the problem can be presented with a set of stationary landmarks 𝐿 = {®𝑙𝑖 }𝑁𝑖=1 and a set

of measurements 𝑍 = {®𝑧 𝑗 }𝑀𝑗=1. The goal is then to establish a hypothesis with a set of

41



42 CHAPTER 5. SLAM FRONTEND - DATA ASSOCIATION

associations H = {𝑎 𝑗 }𝑀𝑗=1 where

𝑎 𝑗 =


( 𝑗, 𝑖) if ®𝑧 𝑗 is paired with ®𝑙𝑖 .

( 𝑗, 0) if ®𝑧 𝑗 has no pairing.
(5.1)

Because the application of SLAM usually involves operation over time, two funda-

mental abilities are needed in data association: short and long term tracking. These two

challenges are equal in their formulation but often require different solutions. Because

of the inherent pose uncertainty that increases over time in SLAM, the problem of

data association becomes increasingly difficult when an area is being revisited after

prolonged operation. Hence, in large-scale SLAM applications, additional methods

such as the appearance-based bag of words (BoW) approaches described in [8] and [36],

are required for closing wide loops. In such a system, a designated worker thread is

responsible for comparing the current scene to a subset of the previously visited ones

and searching for a potential match. In this thesis, no explicit loop closing algorithms

such as these are employed, as all landmark tracking, both short- and long-term, is

handled by the approaches in the following sections.

5.1 Assumptions

When operating in real-world scenarios, data association cannot be guaranteed to be

perfect and unambiguous. The most common source of ambiguity is the fact that at

the estimated pose of the vehicle can diverge from its true state. All data association

choices will therefore be based on possibly inaccurate estimations, leading to even

more errors. This poses a big challenge for loop closure. In short term tracking, data

association is less affected by these types of uncertainties as they are less significant

in a local frame of reference. In these instances, instantaneous uncertainties can be

detrimental to the measurement-landmark associations. Data association uncertainty

in this sense is comprised of three main factors:

1. The grade of accuracy and precision of the sensor supplying the measurements.
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2. The complete lack of a measurement of a landmark within the field of view of

the sensor, or false negative (FN).

3. Spurious measurements of non-existent landmarks, or false positives (FPs).

To reduce the scope of the assignment problem, and also to mitigate the issues above,

domain-specific constraints can be applied. For instance are the cones in FS compe-

titions situated with some space in between, and colored according to which side of

the track they are on. Another commonly applied constraint is mutual exclusion: that

only one measurement can originate from each landmark at every iteration.

5.2 Nearest Neighbor

The simplest form of data association is also the most intuitive one: match the mea-

surements to the landmarks to which they are closest to in Euclidean space. As

measurements ®𝑧 are related to the estimated position of landmarks through the predic-

tive measurement function in eq. (4.3), the nearest neighbor (NN) association for each

measurement is found as

𝑎 𝑗 = ( 𝑗, 𝑖) : 𝑖 = argmin
𝑖

ℎ( ®𝑥, ®𝑙𝑖 ) − ®𝑧 𝑗
2
2
. (5.2)

In the cases where two or more measurements are paired with the same landmark,

which is probable to happen, three solutions are considered here:

1. Choose the measurement-landmark pairings with the shortest distance between

them.

2. Make a random pick of all the associations involving the landmark.

3. Keep track of the distance between all pairs, and employ a global assignment

method such as the Hungarian method [35] with the sum of distances as the cost

to be minimized. This type of global assignment is fittingly referred to as global

nearest neighbor (GNN).
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To account for potential FPs, it is common to add an upper bound to the distance

metric in (5.2) so that spurious detections outside a specific region are immediately

discarded. In landmark-based SLAM applications, it is preferred to miss some asso-

ciations over making wrong ones because the number of other tracked landmarks is

in most cases sufficient. Wrong associations will equally be passed on to the MAP

estimation performed in the backend, which can potentially lead to unrecoverable

estimation errors.

5.3 Maximum likelihood

The pure nearest neighbor approach as given in (5.2) has an significant shortcoming:

it does not utilize any information about the underlying distribution on errors of

estimated landmarks. Instead of the squared 2-norm distance metric, ML data associa-

tion determines the measurement-landmark pairing using the squared Mahalanobis

distance (3.23):

𝑎 𝑗 = ( 𝑗, 𝑖) : 𝑖 = argmin
𝑖

ℎ( ®𝑥, ®𝑙𝑖 ) − ®𝑧 𝑗
2
S𝑖 𝑗

. (5.3)

The covariance matrix S is a parameter of the distribution of the error between the

predicted landmark location and the measurement. By (3.22) and the results from

section 3.4, we can propagate the joint covariance of predicted state ®𝑥 and landmark ®𝑙𝑖

𝚺𝑖 =
©«
𝚺𝑥𝑥 𝚺𝑥𝑙𝑖

𝚺𝑙𝑖𝑥 𝚺𝑙𝑖𝑙𝑖

ª®¬ (5.4)

through the nonlinear ℎ(·) function with the Jacobian matrices as in (3.30):

H𝑖 =

(
H𝑥 H𝑙𝑖

)
. (5.5)
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And finally, together with the measurement model, where we have assumed that

measurements are subject to Gaussian noise N(®0,𝚲𝑗 ), we find S𝑖 𝑗 as

S𝑖 𝑗 = H𝑖𝚺𝑖H
T
𝑖 + 𝚲𝑗 . (5.6)

In the case of many associations to the same landmark, the same measures as described

in the previous section can be applied.

5.4 Individual compatibility

As with the NN approach, limiting FPs is something that needs to be considered when

performing the ML assignment in (5.3). Because the squared Mahalanobis distance

is 𝜒2 distributed, certain pairs can be rejected according the desired critical value.

To accept the matching of a measurement and a landmark, and thereby accept the

association 𝑎(𝑖, 𝑗), the residual or innovation vector ®a𝑖 𝑗 = ℎ( ®𝑥, ®𝑙𝑖 ) − ®𝑧 𝑗 is subject to the

individual compatibility (IC) test:

®aT𝑖 𝑗S−1
𝑖 𝑗 ®a𝑖 𝑗 ∼ 𝜒2

𝑘
< 𝛾 . (5.7)

The number of degrees of freedom (𝑘) is equal to 𝑑𝑖𝑚R (a𝑖 𝑗 ). For intuition, a threshold

𝑝 ∈ [0, 1] on the CDF of the 𝜒2 distribution is used as the tuning parameter to signify

the probability of the IC test passing if the detection ®𝑧 𝑗 is truly an observation of ®𝑙𝑖 .
The relationship between 𝑝 and 𝛾 is shown in equation (3.24).

Using ML data association as described above, means that the covariance estimates

have to be retrieved for every landmark in 𝐿 at every incoming new set of measure-

ments. For large environments especially, and depending on the structure of the

information matrix, this can be an expensive operation. Additionally, the right-hand

side of (5.3) is calculated 𝑁 ×𝑀 times, and includes the inversion of the S𝑖 𝑗 matrix.

To reduce this computational load, using NN assignments conditioned on the IC check

is a possible solution.
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.
®𝑙1 .

®𝑙2

×
®𝑧1

×
®𝑧3

×
®𝑧2

×
®𝑧4

−−− NN
−−− ML
−−− JC

Figure 5.1: Four measurements including two spurious ones, and two landmarks with
their respective distributions indicated with ellipses. All three association schemes
correctly determine the association 𝑎1 = (1, 1), indicated with a black line. With
landmark ®𝑙2, the nearest neighbor method wrongly picks 𝑎4 = (4, 2), and the Maha-
lanobis distance-based maximum likelihood association 𝑎2 = (2, 2) is also wrong. joint
compatibility (JC) incorporates the correlation between the pair of landmarks and
applies it to the measurements, leading to the correct assignment 𝑎3 = (3, 2)).

5.5 Joint Compatibility

Although IC accounts for the probability distributions of the individual landmarks,

it does not incorporate information about the internal correlation between a set of

landmarks to a set of measurements. To illustrate this point, figure 5.1 displays two

landmarks and four detections where (®𝑧2, . . . , ®𝑧4) are all IC with ®𝑙1. Visually, one can

deduce that the optimal hypothesis is H ∗ = {𝑎1, 𝑎2, 𝑎3, 𝑎4} = {(1, 1), (2, 0), (3, 2), (4, 0)}
because the topology of the measurements matches the topology of the landmarks.

However, both the NN and IC associations fail because the implication that the error-

causing shift affects all the measurements equally is not taken into consideration. That

being said, if the measurement noise (𝚲 from (5.6)) is similar in scale to the pose error

itself, the result in 5.1 is not as clear as the connection between ®𝑙2 and ®𝑧3 is weakened.

The concept of JC was first introduced by Neira and Tardós [42] and is designed to

consider the correlations discussed above. To achieve this, JC evaluates a hypothesis

of individually compatible pairings for their joint consistency. For the hypothesis

H = {𝑎 𝑗 }𝑀𝑗=1, we have 𝑎 𝑗 = (𝑖, 𝑗) and ®𝑙𝑎 𝑗 = ®𝑙𝑖 , where landmark ®𝑙𝑖 and measurement ®𝑧 𝑗
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are IC. The joint innovation vector of all associations in H is written as

®aH =

©«
®a𝑎1
...

®a𝑎𝑀

ª®®®®¬
=

©«
ℎ( ®𝑥, ®𝑙𝑎1 ) − ®𝑧1

...

ℎ( ®𝑥, ®𝑙𝑎𝑀 ) − ®𝑧𝑀

ª®®®®¬
= ℎH ( ®𝑥, ®𝑙) − ®𝑧H (5.8)

To find the joint covariance of this innovation vector, the Jacobian of the joint mea-

surement function

𝜕ℎH

𝜕( ®𝑥, ®𝑙H)
= HH =

©«
H𝑎1
𝑥 · · · H𝑎1

𝑙𝑎𝑀
...

. . .
...

H𝑎𝑀
𝑥 · · · H𝑎1

𝑙𝑎𝑀

ª®®®®®¬
(5.9)

is needed together with the joint state covariance matrix

𝚺H =

©«

𝚺𝑥𝑥 𝚺𝑥𝑙𝑎1
· · · 𝚺𝑥𝑙𝑎𝑀

𝚺𝑙𝑎1𝑥
𝚺𝑙𝑎1 𝑙𝑎1

· · · 𝚺𝑙𝑎1 𝑙𝑎𝑀
...

...
. . .

...

𝚺𝑙𝑎𝑀 𝑥
𝚺𝑙𝑎𝑀 𝑙𝑎1

· · · 𝚺𝑙𝑎𝑀 𝑙𝑎𝑀

ª®®®®®®®¬
. (5.10)

The off-diagonal entries involving two different landmarks (e.g. 𝚺𝑙𝑎𝑀 𝑙𝑎1 ) encode the

correlation between them, and is what separates JC from IC. Including the definition

of the concatenated measurement noise for the measurements in the hypothesis H :

ΛH , the resulting covariance matrix for the innovation vector (5.8) is then found to be

SH = HH𝚺HHT
H + 𝚲H . (5.11)

In summary, the hypothesis H deemed jointly compatible if it passes the JC test

®aTHS−1
H ®aH ∼ 𝜒2

𝑘
< 𝛾, (5.12)



48 CHAPTER 5. SLAM FRONTEND - DATA ASSOCIATION

where 𝑘 = 𝑑𝑖𝑚(®aH).

5.6 Joint compatibility branch and bound

The added features of JC come with a cost however, in addition to the potential

Π𝑖𝑐 = 𝑁 × 𝑀 evaluations to find IC pairings in O(𝑁𝑀), the number of potential

evaluations for JC for is

Π 𝑗𝑐 =
(𝑁 + 1)!

(𝑁 + 1 −𝑀)! (5.13)

which is of time complexity O(𝑁𝑀 )[29]. To reduce the number of evaluations, Neira

and Tardós [42] applies a branch and bound (BB) search on the hypothesis space, in

what they call the JCBB algorithm. To enable the BB search, the hypothesis space is

structured in an interpretation tree (see figure 5.2). Each level of the tree corresponds to

a measurement, and nodes N𝑗 = {𝑛𝑖 }𝑁𝑖=0 at level 𝑗 signify the association hypothesis of

measurement ®𝑧 𝑗 to landmark ®𝑙𝑖 . For 𝑖 = 0, no landmark is selected, and so denotes the

null-hypothesis from eq. (5.1). The objective of the search performed in JCBB is to end

up with the hypothesis H𝑏𝑒𝑠𝑡 with the highest score: the number of non-null jointly

compatible pairings. At the start of the search, H = ∅ and the node signifying the IC

pairing between the measurement ®𝑧1 and the landmarks with the lowest residual (5.3)

is added to H first. This is also the case every time the search goes down one level

in the tree. To bound the search, at each node the current hypothesis H is evaluated

on two criteria. For one, the number of levels in the tree below the current node

plus the number of non-null hypotheses in H has to be greater than the score of the

current best hypothesis H ∗. Second, H has to be JC in accordance with (5.12). If either

criterion is not met, the node and its children are pruned from the interpretation tree.

If at any point the search discovers a hypothesis with the same score as the current

best, the one with the smallest Mahalanobis distance (left-hand side of eq. (5.12))

is considered the best moving forward. When all nodes have either been visited or

removed from the tree, the best hypothesis is found as H𝑏𝑒𝑠𝑡 = H ∗, and JCBB is done.
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∅

𝑙1

𝑙1 𝑙2 ∅

𝑙2

𝑙1 𝑙2 ∅

∅

𝑙1 𝑙2 ∅𝑧2

𝑧1

Figure 5.2: Interpretation tree of the JCBB solution space. In this example there are two
detections, each corresponding to a level in the tree. Because there are two landmarks,
each association hypothesis (node) is is a pairing between measurement 𝑧 𝑗 (at level 𝑗 )
to either 𝑙1, 𝑙2 or ∅ (null hypothesis).

5.7 Data association in iSAM2

It follows from equations (5.4) and (5.10) that it is integral to the ML, IC and JCBB

data association schemes presented in this chapter to access to the covariances of the

landmarks and poses in the state space. The authors of iSAM2 present an efficient

solution to covariance recovery on the SRIM for their iSAM1 algorithm in [29]. In this

article, GNN and a global ML association scheme is compared to JCBB on execution

time, and the accuracy of JCBB on the Victoria park dataset [58] is validated. The

described method in [29] does not consider the introduction of the Bayes tree on which

iSAM2 is based, but as the SRIM is common in both algorithms, Kaess et al. [31] states

that the means of covariance retrieval is conceptually equivalent. Wang and Englot

[59], propose a solution for further reducing data association ambiguity by maintain-

ing multiple JCBB-based hypotheses over time as the one with the highest score is

chosen. Their implementation is using iSAM2 as the SLAM backend, from which

joint covariance recovery is performed. The authors concede that the computational

effort is substantial when compared to considering a single hypotheis at each iteration,

which ruled out using a similar scheme for the task in Revolve. Still, ideas from their

implementation of JCBB with iSAM2 has been welcome.
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Chapter 6

Detection and odometry

This chapter briefly presents the methods used for supplying the data entering the

SLAM module in the autonomous pipeline. These components acquire and process the

raw data from relevant sensors on the vehicle, before passing condensed information

on to SLAM.

Figure 6.1: ATMOS with the sensor package from 2019

51
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6.1 Lidar detection

The lidar detection module is responsible for extracting cone candidates from a raw

point cloud output from the lidar sensor(s). A lidar operates by emitting light beams

and measuring the time, wavelength and intensity of the reflected signals. This way,

the range to and relative reflectivity of the target can be identified. A common type of

lidar used in the autonomous industry (and in Revolve) is the spinning "cylindrical"

lidar. These types of lidars have multiple channels in the vertical direction that each

corresponds to a recorded signal. Because the sensors spin, these vertical channels

are sampled in a 360° field of view, with a sample rate or resolution dependent on

the particular model. In any case, the sensor output is a dense point cloud which is

generated at every sensor revolution. The lidar used in Revolve in 2019 was the Ouster

OS-1 64-channel [45]. For 2020 the team had acquired the Hesai Pandar40 40-channel

lidar [27] for use in development and competitions.

For finding potential cones in the point cloud, a detection algorithm is employed

using a set of filtering techniques alongside clustering and outlier rejection logic. Fellow

Revolve-member Benjamin Palerud has implemented the lidar detection algorithm,

and the following section is an excerpt from his master’s thesis [46].

The first step is to filter out irrelevant data. Because the point clouds are sparse at

longer distances, the maximum possible detection range is limited. Also, as the topology

of the racetrack is consistently flat, a filter is applied to remove any points outside

user-supplied xyz-constraints. Secondly a voxelgrid downsampling is performed. This

downsampling works by dividing the point cloud into boxes (voxels) with a set size.

All points situated inside a voxel is represented by one point: the centroid. These two

steps reduce the size of the point cloud, which results in faster processing time for the

clustering.

The euclidean clustering is based on specific conditions to evaluate the point cloud.

These include the maximum and minimum amount of points that can be in a cluster,

the threshold 𝑑𝑡ℎ , and a condition that says that points from at least two different lidar

channels have to be present in a cluster. The last condition is to ensure that a certain

height is preserved in the clustering, and that clusters with only horizontal points are
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Procedure Tuning parameter
1. xyz-filter (𝑥,𝑦, 𝑧) - constraints
2. Voxelgrid downsampling Voxel size
3. Clustering Min/max points, threshold 𝑑𝑡ℎ

4. Outlier removal Radius

Table 6.1: Tuning parameters

not evaluated as candidates. When the clustering finds a candidate, the width and the

height between the outermost points in the cluster is checked to ensure it is within

a reasonable range based size of the cones. Finally, the set of points representing a

cluster is represented by the centroid of the cluster.

Lastly, a filter performs outlier rejection to remove candidates that are too close to

each other. The basis for imposing this filtering step is that cones are spaced out with a

certain distance to each other on the racetrack. The filter checks how many candidates

that are within a certain area and neglecting them if there are too many. When a cone

candidate is found, the point representing a cluster is reconstructed by taking the raw

data from the input point cloud within a radius of the candidate. The intensity pattern

of the raw data related to this candidate can then be used to distinguish the color of

the particular cone.

The performance of the detection algorithm is very dependent on the user-defined

parameters that need to be tuned to ensure good candidate localization. The detection

sequence and tuning parameters are summarized in table 6.1. The voxel size and

the clustering parameters are particularly dependent on each other, and are the main

parameters that define whether the cone candidate extraction is successful. For instance,

by increasing the voxel size, which results in a greater distance between the points,

the threshold 𝑑𝑡ℎ might need to be increased in order to find relevant clusters. The

detection algorithm is implemented in C++ as a ROS node which subscribes to the raw

point cloud output from the lidar ROS-driver, and publishes messages to the SLAM

node. All the filtering techniques and the clustering is implemented by using the Point

Cloud Library (PCL)[49].
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6.2 Odometry

In Revolve, an extensive array of sensors are used to measure internal states of the

car. Some sensors are used for their direct output data, such as thermometers and

voltmeters used to monitor the batteries. Readings from potentiometers that measure

the positioning of dampers and the acceleration and braking pedals are also directly

used. The latter two, together with the data from a rotary encoder on the steering

wheel are treated as measurements of the inputs to the system. In many cases, the

states we wish to know about are not directly measurable and have to be estimated.

Additionally, measurements from sensors are without exception prone to errors and

noise that can impact estimates. As an example, a rotary encoder on a wheel outputs

the angular position of the wheel. Differentiating this signal yields the angular velocity

of the wheel, which together with the known wheel radius is used to find the wheel’s

translational velocity (𝑣 = 𝑟𝜔). If the tire connecting the wheel to the ground is exposed

to slip, the tangential velocity at the outer radius of the wheel is no longer equal to the

translational velocity of the wheel hub, and the velocity estimates of whatever the hub

is connected to (racecar!) are wrong. In 2018, the newly founded DV team at Revolve

relied solely on the encoders at the wheels to estimate the velocity and heading of the

vehicle. At low speeds and on dry tarmac, the slip issue is almost nonexistent, and so

it was a viable option for them.

As ambition levels rose in the following year, the move towards integrating a state-

of-the-art inertial navigation system (INS) was a priority. Accordingly, the Vectornav

VN-300 [57] was fitted to Atmos, and is a GPS-aided INS that can output estimates of

position, velocity, acceleration and orientation using an internal inertial measurement
unit (IMU). Last year’s team experienced some issues with acquiring correct output

from the device, while also wanting a system that could perform well in the absence of

consistent GPS-signals. Thus, previous Revolve member Adrian Skibelid implemented

a nonlinear state observer that generates longitudinal, lateral and yaw (𝑥,𝑦, \ ) veloc-

ity estimates by combining measurements of translational acceleration and angular

velocity from the INS with the data from the wheel encoders. A detailed description

of this system is found in [51]. The velocity estimates generated by this observer are
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integrated over time to output vehicle pose estimates. In [51], the observer is shown to

be accurate over short periods, but as no GPS corrections are applied to the positional

estimates, drift accumulates over time. The SLAM module combines the data from the

detection and odometry modules to combat this drift, as well as to further improve the

short term pose estimation of the vehicle.
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Chapter 7

Implementation

7.1 Software

The autonomous pipeline in its entirety is deployed in ROS Kinetic Kame[44] on

Ubuntu 16.04. Most of the code, including all SLAM specific code, is written in C++.

The open-source Eigen library [25] is used for vectors, matrices and their related linear

algebra. The ISAM2 backend, along with the probabilistic data associations schemes

from chapter 5, is implemented using the factor graph framework supplied by GTSAM

in [9].

7.2 System overview

The implementation of the SLAM module in Revolve follows the same two-component

structure as presented in chapters 4 and 5. A graphical illustration of the structure of

the SLAM implementation is displayed in figure 7.1 The frontend handles the incoming

data from the detection and odometry modules, which then is processed and passed to

the backend for calculating MAP estimates of the compound state vector Θ = (𝑋, 𝐿).
The odometry module outputs pose estimates at around 200Hz, but only a fraction of

these are incorporated into 𝑋 . The reason for excluding some poses is that finding the

57
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Det. Cb

Odom. Cb
Frontend Backend

Main

Figure 7.1: SLAM system overview. The blue boxes are the callbacks triggered by ROS
messages. The "Main" component is responsible for initializing the ROS node, and
giving the shared resources between the frontend and backend

MAP estimates for 200 states per second put an unnecessary strain on the backend.

Keeping execution time low is a vital criteria in autonomous high-speed racing, and as

detections enter at a much slower rate of 20Hz, keeping the extra intermediate poses

yield little if any, accuracy benefits. The states that become a part of 𝑋 is commonly

referred to as keyframes. The resulting MAP output is the set of estimated inertial

poses in 3DOF

𝑋 =
{
®̂𝑥𝑘
}𝐾
𝑘=0 ∈ I, (7.1)

for time steps 𝑘 , and estimated 2D locations of the cones in the map:

�̂� =
{®̂𝑙𝑖}𝑁𝑖=1 ∈ I . (7.2)

To make the distinction clear between the output pose estimates from SLAM and the

input pose estimates from the odometry, tilde notation is used for the latter:

�̃� =
{
®̃𝑥𝑡
}𝑇
𝑡=0 ∈ I . (7.3)

Both the frontend and backend operation run in parallel to ensure that both tasks are

given the necessary computational resources. These processes are encapsulated by the

SLAM ROS node which is also responsible for handling message passing to and from

the SLAM system. In ROS, users define specific topics that each carry a certain type
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of data. Nodes can then be configured to subscribe to relevant topics for input data

and publish their output data to other topics. Figure 4.1 displays the topics involving

the SLAM node as arrows, with the publisher-subscriber relationship indicated by the

arrows’ direction. For data being passed between the two parallel threads in the SLAM

module, race conditions are avoided through the use of a shared set of data protected

by mutual exclusion objects (mutexes).

The SLAM system operates in two modes: mapping and localization, and local-
ization only. If the map is unknown before the run starts, such as in the autocross

event (see section 2.2), mapping is naturally needed. When the vehicle completes a lap,

i.e. closes the loop, the state changes to localization only. This is also the case when

the map is known beforehand, as in the skidpad and (possibly) trackdrive events. In

localization mode, the assumption that all cones have been found is made, but that

their positions are still affiliated with some uncertainty. Because of this, measurements

are continuously added to the optimization in the backend to update and decrease

ambiguity in the cones’ positions.

7.3 Frontend structure

7.3.1 Input - Messages

Odometry

The main structure in the frontend is comprised of two message-triggered callback

functions (odometry and detection) and a continuously looping thread. The callback

triggered by odometry estimates is the most straightforward of the two. In summary:

1. Message type: ROS Odometry1. Important contents: [timestamp, pose estimate]

2. Messages enter at a constant rate of 200Hz.

3. The last second of messages (≈ 200) is stored in memory (used for matching

detections to closest pose).

1link: http://docs.ros.org/kinetic/api/nav_msgs/html/msg/Odometry.html

http://docs.ros.org/kinetic/api/nav_msgs/html/msg/Odometry.html
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4. If the car pose has changed more than certain amounts in translation or heading

angle since the previous keyframe, a new keyframe is generated.

5. A number of the most recent keyframes are stored in a buffer in the frontend

(again for matching to detections).

6. Keyframes are passed to the backend, where they are added to the factor graph

and optimized. See section 7.8 for details on this.

Detections

The detection callback is triggered by either the lidar or camera detection modules

sending messages to the shared "detections" ROS topic.

1. Message type: Revolve custom "Obstacle" message. Contents: [timestamp, list of

2D points, sensor]

2. Messages enter asynchronously from either detection sensor node. The fre-

quency is a tuning parameter, but the max is about 20Hz for each.

3. By using the timestamps, detections are matched to the closest pose estimate

in time and are then defined as originating from the vehicle at the given pose.

The assumption made here is that pose estimates at 200Hz are frequent enough

that the difference between exteroceptive sensor timestamps and their closest

pose estimates are sufficiently low and random to assume zero mean distributed

errors. These uncertainties will also be implicitly accounted for in user-defined

noise parameters discussed later.

4. When the closest pose estimate is found, the next step is to transform points

in space to the frame of the closest pose keyframe. The closest pose and pose

keyframe estimates of detection ®𝑧𝑘 are denoted ®̃𝑥𝑘 and ®̃𝑥𝑘𝑓
𝑘

, respectively. The

transformation between the poses is found as

T 𝑥𝑘𝑓

𝑥 = T

(
®̃𝑥𝑘 𝑓
𝑘

)−1
T

(
®̃𝑥𝑘
)
. (7.4)
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The detection is finally transformed to the closest keyframe:

®𝑧𝑘 𝑓
𝑘

= T 𝑥𝑘𝑓

𝑥 ®𝑧𝑘 . (7.5)

From this point forward, all detections are assumed given in the pose keyframes,

and so the superscript 𝑘 𝑓 is not explicitly written to reduce clutter.

5. The transformed points, together with the keyframe (id and pose) are then stored

in a fixed-size last in, first out (LIFO) queue for processing by the frontend loop

thread. The reason for using a LIFO queue is so that the most recent detection is

prioritized, while still allowing for past data to be processed if there is available

computational headroom.

7.3.2 Main thread

The looping thread is responsible for the majority of the tasks performed in the frontend.

This includes data association to the preexisting map, the generation, maintenance

and deletion of possible cone candidates, data association to candidates and tracking

of cone types (colors). "Cone candidates" described in this section differ slightly from

the definition in chapter 6 which are in this chapter here referred to as detections or

measurements. Here, a cone candidate is an object that is kept in memory and has a

confidence level associated with it. Once the confidence in the candidate reaches a

specified threshold, it is considered to be a cone.

Below, the sequence of actions performed by the looping frontend thread will be

presented, while the specifics of key elements such as the data association schemes

come later.

1. Save the latest MAP estimates found in the backend.

2. Keep track of which lap the car is in, and update the vehicle state if necessary

(mapping/localization only).

3. Perform data association on the most recent set of detections, as stored in

the detection callback function, to the current map of cones already added as
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variables in the backend optimization.

4. If the vehicle is in mapping mode: continue to step 5, otherwise: return to step 1.

5. For the detections that were not associated to any landmarks in step 3, attempt

to associate them with the current set of stored cone candidates.

6. If a detection is associated to a candidate, the candidate’s position is updated,

and its confidence is increased.

7. All candidates not being associated to any detections in this iteration of the loop

has their confidence decreased.

8. The remaining set of detections that are not yet associated to either the map or

the cone candidates are initialized as new cone candidates.

7.4 Data association

In this section, the specific implementations of the data association schemes introduced

in chapter 5 will be presented.

7.4.1 Sequential nearest neighbor (SNN)

To differentiate global association schemes using assignment algorithms such as the

Hungarian method [35] or Jonker, Volgenant and Castanon (JVC) [7] assignment, with

the sequential approach taken here, this method is termed sequential nearest neighbor

(SNN). The procedure is summarized in Listing 7.1. The reason for randomizing the

order of the input is to eliminate any potential bias in the ordering of incoming detec-

tions. When finding the closest landmark, the detection is momentarily transformed

from the body to the inertial frame (superscript notation) using the MAP estimated

pose of the keyframe from which it was captured:

®𝑧𝑖
𝑘
= T ( ®̂𝑥𝑘 )®𝑧𝑏𝑘 . (7.6)
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On line 11 in Listing 7.1, the compatibility of a detection and a landmark is determined

by the closeness of the two. Based on competition regulations and the layout of the

track to be driven, this threshold can be tuned accordingly. Primarily, this threshold

prevents associations between cones in the map and detections of cones that have

not yet been added to the map, but also filters out FPs not belonging to any cone

(random clutter) outside this radius. The problem with this approach is that when

the magnitude of the accumulated drift after the first "mapping" lap is larger than the

threshold value, making wrong associations can happen very easily. Also, as evident

from the results presented in section 8.4, loading the map prior to a run can cause

difficulties for SNN.

1 // Input : Detections
2 // Output: Associations between detections and landmarks
3
4 a s s o c i a t i o n s = [ ]
5 randomize ( d e t e c t i o n s ) ;
6 for ( auto z : d e t e c t i o n s ) {
7 Landmark lm = f i n d C l o s e s t L a n d m a r k ( z , map ) ;
8 if ( lm . i s A s s o c i a t e d = true ) {
9 continue ;

10 }
11 else {
12 if ( d i s t a n c e ( z , lm ) < a c c e p t a n c e R a d i u s ) {
13 lm . i s A s s o c i a t e d = true ;
14 a s s o c i a t i o n s . push_back ( z , lm ) ;
15 }
16 }
17 }

Listing 7.1: C++ pseudocode for SNN procedure

7.4.2 Individual compatibility (IC)

As detailed in sections 5.3 and 5.4, the compatibility of measurements to landmarks

can be determined using the marginal distributions on the landmarks and pose. To

recover these quantities, listed in eq. (5.4), the GTSAM library supplies the user
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with a set of tools. The diagonal elements of eq. (5.4): marginal covariances of

the pose and landmark (𝚺𝑥𝑥 , 𝚺𝑙𝑖𝑙𝑖 ), can be fetched directly using the iSAM2 specific

function ISAM2.marginalCovariance(variable), where the variable parameter is

either the pose keyframe or the landmark. Retrieving the off-diagonal elements requires

more processing, summarized in Listing 7.2. In the case for determining individual

compatibility between pose ®𝑥𝑘 and landmark ®𝑙𝑖 , the list of variables in Listing 7.2 would

only include these two.

1 // Input : List of variable keys (x_1 , l_1 etc.)
2 // Output: Full joint covariance matrix of variables
3
4 Mat r ix j o i n t C o v a r i a n c e ( keys ) {
5 f a c t o r G r a p h = ISAM2 . g e t F a c t o r s ( ) ;
6 e s t i m a t e s = ISAM2 . g e t L i n e a r i z a t i o n P o i n t ( ) ;
7 // GTSAM Marginals class (intermediate step)
8 m a r g i n a l s = M a r g i n a l s ( f a c t o r G r a p h , e s t i m a t e s ) ;
9

10 return m a r g i n a l s . j o i n t C o v a r i a n c e ( keys ) ;
11 }

Listing 7.2: C++ pseudocode for recovering joint covariance matrices from ISAM2,
including cross-covariances between different random variables

The joint covariance matrix returned from the procedure in Listing 7.2 includes the

same diagonal elements as found using the ISAM2.marginalCovariance() function,

meaning that performing both procedures is not necessary. In sections 8.2 and 8.3 it is

shown that foregoing the off-diagonal elements is an acceptable measure for reducing

computation times while maintaining performance.

In addition to the covariance matrix, the innovation vector (residual) and mea-

surement Jacobian is needed to evaluate IC, as per equations (5.6) and (5.7). The

implementation of SLAM in Revolve is confined to the two-dimensional plane, and so

the measurement model for the single predicted bearing-range measurement ®̂𝑧 𝑗 , given
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estimated pose ®̂𝑥𝑘 = (𝑥,𝑦, \ )T and landmark ®̂𝑙𝑖 = (𝑙𝑥 , 𝑙𝑦)T is given as:

®̂𝑧 𝑗 = ℎ( ®̂𝑥𝑘 , ®𝑙𝑖 ) =
©«
𝛽

𝑟

ª®¬ = ©«
atan2

(
𝑙𝑦−𝑦
𝑙𝑥−𝑥

)
− \√

(𝑙𝑥 − 𝑥)2 + (𝑙𝑦 − 𝑦)2
ª®¬ . (7.7)

The next step would then be to calculate the innovation vector ®a = ®̂𝑧 𝑗 − ®𝑧 𝑗 and evaluate

the Jacobian of eq. (7.7) at the estimated pose and landmark location as given above.

However, when using GTSAM no explicit expression for either the measurement model,

nor its Jacobian, is needed. By supplying the framework with a factor containing the

type and linearization points of two variables (2D pose and point in this case), and

a measurement connecting them, it can evaluate the residual and Jacobian for us.

To summarize, Listing 7.3 proposes how determining IC between a landmark and

a measurement using GTSAM and iSAM2 could be done. The measurement noise

parameter in Listing 7.3 is discussed in detail in section 7.8.4.

7.4.3 Sequential compatibility nearest neighbor (SCNN)

The only separating factor between the implementations of SNN and sequential com-

patibility nearest neighbor (SCNN) is the replacement of line 11 in Listing 7.1 with the

function presented in Listing 7.3. This method was implemented to bridge the gap

between the basic SNN approach and the more comprehensive probabilistic methods

described next. The desire to keep execution time low means that this method does

not use the off-diagonal elements of the covariance matrix when performing the IC

test.

7.4.4 Maximum likelihood (ML)

Instead of associating measurements to the landmarks to which they are closest to in

2D space, the ML approach is based on the Mahalanobis distance metric. In theory,

this involves checking IC between every measurement and every landmark, a total of

𝑁 ×𝑀 times. To reduce the number of evaluations, the implementation of ML-data

association only considers landmarks within a certain radius of measurements. If
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1 // Input : Landmark lm, Pose x,
2 // Detection z, Probability p
3 // Output: Boolean: Individually compatible?
4
5 bool IC ( lm , x , z , p ) {
6 m a r g i n a l P o s e = ISAM2 . m a r g i n a l C o v a r i a n c e ( x ) ;
7 marginalLandmark = ISAM2 . m a r g i n a l C o v a r i a n c e ( lm ) ;
8 // Covariance matrix
9 Sigma = d i a g ( marg ina lPose , marginalLandmark ) ;

10
11 f a c t o r = B e a r i n g R a n g e F a c t o r ( x , lm , z ) ;
12 // Innovation vector
13 nu = f a c t o r . e v a l u a t e E r r o r ( ) ;
14 H = f a c t o r . J a c o b i a n ( ) ;
15 Lambda = z . n o i s e ;
16 S = H∗ Sigma ∗H. t r a n s p o s e ( ) + Lambda ;
17
18 maha lanob i s = nu . t r a n s p o s e ( ) ∗ S . inv ( ) ∗ nu ;
19 if ( maha lanob i s < c h i 2 i n v ( p , dim ( lm ) ) {
20 return true ;
21 }
22 else return false ;
23 }

Listing 7.3: C++ pseudocode for IC test between landmark lm and measurement z
made at pose x using GTSAM. The 𝑐ℎ𝑖2𝑖𝑛𝑣 (·) function returns the critical value 𝑐 in
eq. (3.24) for a given probability 𝑝 and degrees of freedom 𝑑𝑖𝑚(𝑙𝑚)

this radius is set larger than the upper bound of any potential drift the odometry

estimates will experience in the first lap, accuracy will not be affected in any way. If

the radius is sufficiently large, it is also likely that landmarks will fall within this region

of multiple measurements simultaneously (see the bottom left landmark in Figure 7.2

for an example of this). Instead of then having to recover the marginal covariances

(as in Listing 7.3) for a landmark and pose directly from iSAM2 multiple times, the

matrices are stored temporarily in memory for subsequent look-ups. When all checks

are done, the measurement-landmark pairings with the smallest Mahalanobis distance

that satisfy IC are chosen and sent to the backend.
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Figure 7.2: Orange triangles indicate landmarks, blue crosses are measurements, and
the shaded blue circles are the evaluated region for measurements in ML and JCBB
data association.

7.4.5 Joint compatibility branch and bound (JCBB)

A condition for the associations evaluated in JCBB is that they all satisfy IC. As with

the ML-data association, landmark-measurement pairings that are too distant from

each other are not evaluated. When the IC check is being performed, the residuals

and evaluated Jacobians are stored, so that they can efficiently be combined into the

joint innovation vector and Jacobian matrix used for JC checks (see equations (5.8)

- (5.12)) during the branch and bound search. For the joint covariance matrix, the

procedure in Listing 7.2 is performed with additional variables in the list of keys. The

JC-check is done in a similar fashion to the IC-check in Listing 7.3, only with using joint
covariances instead of marginal ones, and that the innovation and Jacobian matrices

are not calculated but instead retrieved from memory.

The high-level version of the JCBB implementation is displayed in Listing 7.4.

During testing, it was found that because the number of landmarks is somewhat

limited, recovering the full covariance matrix for all landmarks once, instead of doing

more frequent but smaller recoveries, was the optimal solution. The basis for making

this choice is presented in the results in section 8.3. For details on how the branch and

bound search is performed, see section 5.6.
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1 // Input : Pose x, map with landmarks , set of measurements
2 // Output: Best hypothesis
3
4 Hy pot he s i s JCBB ( x , map , measurements ) {
5 f u l l S i g m a = j o i n t C o v a r i a n c e ( x , map ) // From Listing 7.2
6 a s s o c i a t i o n s = [ ] ;
7 for ( auto z : measurements ) {
8 for ( auto landmark : map ) {
9 if ( d i s t a n c e ( landmark , z ) < e v a l u a t i o n R a d i u s ) {

10 if ( IC ( landmark , z , x , f u l l S i g m a ) ) {
11 a s s o c i a t i o n s . push_back ( landmark , z ) ;
12 }
13 }
14 }
15 }
16 i t = b u i l d I n t e r p r e t a t i o n T r e e ( a s s o c i a t i o n s ) ;
17 return BranchAndBound ( i t , f u l l S i g m a ) ;
18 }

Listing 7.4: C++ pseudocode for the implementation of JCBB. The IC check here does
not calculate the covariances as in listing 7.3, but performs look-ups in the full joint
covariance matrix fullSigma.

7.5 Candidate management

The measurements that do not get associated to a landmark in the map are not im-

mediately added to the map as new landmarks. The reason for this is the potential

presence of spurious measurements, known as false positives. To account for this,

detections that are not associated to either the map or the existing set of candidates,

are initialized as cone candidates. The main components of a cone candidate are its

estimated position, its confidence level and the set of measurements that has been

associated to the candidate.

Whenever a cone candidate is re-observed, its confidence level is increased and

the measurement together with the pose keyframe from which the measurement was

made, is stored in the candidate. The candidate’s position is also updated using a
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moving average. The moving average positional updating implemented as

𝑝𝑘 = 𝑎𝑣𝑔(𝑝𝑘−1, 𝑧𝑘 ), (7.8)

was chosen because it is simple, and it naturally weights recent measurements more.

If a candidate is not observed in a set of detections, its confidence is lowered. For

pairing measurements to candidates, the SNN approach is employed regardless of

the data association scheme used for landmark associations. Because candidates

do not stay in memory for very long, the impacts of positional estimation errors

and drift are assumed insignificant. As a consequence, the acceptance radius is set

lower than for measurement-landmark associations. The procedure for candidate

management is presented in Listing 7.5. Here, the existing set of candidates is updated

with new measurements, and the unassociated measurements are initialized as new

cone candidates. The reason for accumulating measurements is so that when the

candidate is passed to the backend, all measurements can be added to the factor graph

for optimization.

The amount of false positives and false negatives arriving as input to the SLAM

node is directly influenced by the type and tuning of the feature extraction. Because

of this, the values for incrementing, decrementing, acceptance-/rejection thresholds as

well as the starting confidence are tuned accordingly. The tuning of these parameters

will also be based on the preferences of the path planning module. Adding candidates

quicker to the backend allows for longer ranges, but the risk of adding false positives

is larger. Typically, this is something that would be done more thoroughly in the

summer testing, when the newly developed concepts for the different systems are

tested together.

7.6 Color tracking

Although the driverless team has managed to have well-performing cars for two years

without recognizing cone colors, keeping track of colors is in the best interest of the

path planning module. Having access to this information allows the path planner to be
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more confident that the planned path is within the track delimiters, as blue and yellow

cones signal the left and right sides of the track respectively. For the lidar especially,

the range at which color detection of cones is reliable is considerably lower than for

detecting cone positions (see Palerud [46] for more in-depth material). Because of this,

cones are added to the map before colors are determined accurately, and the color

output by the lidar is set to "unknown" outside a given range. As the path planning

prefers having no color instead of the wrong color, the SLAM module keeps track

of all color estimations on each cone, and sets the color based on which is the most

frequently occurring. Color detections originating from the camera is given more

weight because cameras are better suited for telling which color a cone is, and is very

unlikely to output a wrong color.

7.7 Frontend parameters

• Keyframe generation distance: The maximum distance between keyframe

poses. Set to 0.5m to balance granularity with limiting the number of states in

the backend.

• Keyframe generation rotation: Same as above, but is a separate condition. In

sharp turns, the heading angle will change fast, and pose keyframes are needed.

Set to 2.5°.

• ML/JCBB evaluation radius: Landmarks that fall within a set radius of a

measurement is considered for the IC-check. Imposed heuristic to reduce the

amount of expensive covariance recoveries. Set to 3.0m based on testing, but

will need to be tuned according to the breadth of the track and the magnitude of

drift on odometry estimates.

• Chi-square probability threshold: For which probability the critical value

for the chi-squared distribution should be set. Relevant for the IC and JC checks.

Set to 0.9 for both based on testing results.
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7.8 Backend

The SLAM backend consists of a single thread iterating indefinitely. On each iteration,

if new data is added to the factor graph, iSAM2 incorporates the new factors into the

Bayes tree and calculates the MAP estimates of the state variables by performing the

GN updating from section 4.5 a set amount of iterations. Data passed from the frontend

is divided into three categories: Pose keyframes, new landmarks and measurements of

existing landmarks.

7.8.1 Pose keyframes

When the most recent pose keyframe ®̃𝑥𝑘 is passed from the frontend, the relative pose

between it and the previous keyframe ®̃𝑥𝑘−1 as defined in

®̃𝑥𝑘 = ®̃𝑥𝑘−1 ⊕ 𝛿 ®𝑥, (7.9)

is stored in a GTSAM BetweenFactor(). The initial estimate for the variable used as

the starting linearization point in the optimization is set equal to the MAP estimate of

the preceding vehicle pose composed with the same difference:

®̂𝑥𝑘 = ®̂𝑥𝑘−1 ⊕ 𝛿 ®𝑥 . (7.10)

The use of hat-notation here signals that these estimates are processed by the MAP

estimation in the SLAM backend, for which reason they can be expected to more closely

follow the true vehicle pose ®𝑥𝑘 . As with all factors, a noise model has to be imposed

on the residual (𝚺𝑖 from eq. (4.14)). As the number of keyframes added to the backend

is fewer than the odometry estimates input to the SLAM node, the propagation 𝛿 ®𝑥 is

a sum of differences from 𝑛 subsequent odometry outputs. Noise parameters on the

normally distributed data coming from the odometry can be assumed to be constant

and diagonal (Σ = 𝑑𝑖𝑎𝑔(𝜎2
𝑥 , 𝜎

2
𝑦, 𝜎

2
\
)), which results in the naive model of the Gaussian

distribution of 𝛿 ®𝑥 :

𝛿 ®𝑥 ∼ N(𝛿 ®𝑥, 𝑛 · Σ). (7.11)
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In practice, an even simpler approach is implemented. Because keyframes are generated

based on the traversed distance and change in orientation, and not based on the number

of odometry estimates, the noise is assumed constant for all 𝛿 ®𝑥 regardless of which

number 𝑛 is. Although mainly done for simplicity, this approach reduces the risk of

overparameterizing the approach. And while this is something that can be made more

advanced, extensive tuning needs to be done depending on the specific implementation

of odometry.

7.8.2 New landmarks

The tracked cone candidates in the frontend have to have a certain amount of ac-

cumulated measurements for them to be sent to the backend. For each of the new

landmarks to be added, a new variable is added to the variable set 𝐿 with its esti-

mated position set as the initial linearization point. Furthermore, all accumulated

measurements for the particular landmark are added to the factor graph as GTSAM

BearingRangeFactors(). As a result of eq. 7.5, the measurement points are given in

the reference frame of their associated pose keyframe. The only processing needed is

then to convert the points from Cartesian to polar coordinates using eq. (3.2), where 𝑟

is range, and \ is bearing. For the new landmark and associated pose keyframe index

𝑘 , the resulting measurement factor connects the variable pair ( ®̂𝑥𝑘 , ®̂𝑙𝑖 ).
The uncertainties of measurements are encoded with a constant diagonal covari-

ance matrix on the range and bearing values. An overview of important tuning

parameters, including measurement and motion noise values, are listed in section 7.8.4.

7.8.3 Measurements

Similarly to adding new landmarks, including new measurements of existing landmarks

entails the generation of BearingRangeFactors() between the landmark and the pose

keyframe from which the measurement was made. The correspondence between the

measurement and landmark is performed in the frontend by the data association

schemes presented in section 7.4.



7.8. BACKEND 73

7.8.4 Parameters

Below is a list explaining notable tuning parameters related to the SLAM backend.

• Motion noise: Correlated with keyframe generation in the frontend, as fewer

keyframes should result in larger uncertainties between them. By tuning this

parameter in conjunction with the measurement noise, a weighting is performed

on the system’s trust in cone measurements vs motion inputs. In the current

system, tuning was performed by visually validating the output from SLAM

running together with the lidar detection and odometry modules processing

actual sensor data. When generating pose keyframes with a 0.5m distance

and/or 2.5° heading between then, reasonable motion noise was found to be

Σ = 𝑑𝑖𝑎𝑔((0.1m)2, (0.1m)2, (0.01 rad)2).

• Measurement noise: Should encapsulate all unmodeled noise relating to mea-

surements. For a stationary vehicle, this mostly reduces to the intrinsic noise

parameters of the exteroceptive sensors. The experiment presented in section

8.5 was performed to estimate these parameters. However, the results from this

experiment suggested parameters that were not transferable to the case of a

moving vehicle. When the vehicle is no longer stationary, there are potentially

many sources of noise that gets magnified. One example of this is the mismatch

of pose timestamps to detection timestamps. From section 7.3, it was stated that

because odometry estimates are much more frequent than detections, any time

mismatches are disregarded. To illustrate the potential impact this may have on

a measured cone position, consider a racecar driving 20m/s on a straight. With

pose estimates and detections entering at 200Hz and 20Hz respectively, the

maximum time mismatch is 2.5ms. This leads to a 5 cm error in the x-direction

for all cone measurements. If angular velocity in yaw (heading) is included,

even larger errors are introduced. To summarize, the noise parameters should

encompass the potential errors happening under non-ideal conditions. Together

with the motion noise parameters set above, a good approximation was found
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to be

Λ = 𝑑𝑖𝑎𝑔((0.05m)2, (0.15 rad)2).

• Prior pose noise: When preloading maps, the only task of SLAM is to localize

the car within the map. Competition rules limit the potential discrepancies in

starting positions, but precisely setting the initial vehicle heading (yaw) is up to

the team members. To account for a possible disparity between the map frame

(in which the map is defined), and the initial body frame of the vehicle a prior

noise is set on the GTSAM PriorFactor() defining the starting pose of the

vehicle. If prior knowledge is included and the SLAM system is responsible for

building the map, the prior noise is set to zero because the starting pose of the

vehicle defines the map frame. No real-life testing was performed to set the

prior noise, and it was deemed justifiable to set

Σ0 = 𝑑𝑖𝑎𝑔((0.5m)2, (0.5m)2, (0.26 rad)2) .

• ISAM2 parameters:

– Number of updates: The number of iterations of GN optimization to

perform each backend loop iteration. Set to 20.

– Relinearizing threshold: Variables that during GN updates have their Δ

found to be of magnitude larger than this threshold, have their linearization

points updated. Because relinearizing variables come at an extra compu-

tational cost, increasing this parameter will cause fewer variables in the

Bayes tree to be updated. Set to the default 0.1.

– Relinearize skip: Defines the number of iterations of GN updates per-

formed before relinearizing the variables (subject to relinearizing threshold).

Set to the default 10.

– Wildfire threshold: If the update step Δ of a variable changes with mag-

nitude less than this threshold from one iteration of optimization to the

next, its descendants in the Bayes tree are not considered for updating.
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Referred to as partial state updates in the iSAM2 article [31]. Set to the

default value of 0.001.
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1 // Input : Pose x, detections , candidates
2 // Output: Updated candidate set
3
4 T = t r a n s f o r m a t i o n M a t r i x ( x ) ;
5 for ( auto z : d e t e c t i o n s ) {
6 // Transform z to map frame
7 z_map = T ∗ z ;
8 C and id a t e& cand = f i n d C l o s e s t C a n d i d a t e ( z_map , c a n d i d a t e s ) ;
9 if ( cand . i s A s s o c i a t e d = true ) {

10 C and id a t e newCand ;
11 newCand . pos = z_map
12 newCand . measurements . push_back ( [ z , x ] ) ;
13 c a n d i d a t e s . push_back ( newCand ) ;
14 }
15 else {
16 if ( d i s t a n c e ( z , cand ) < a c c e p t a n c e R a d i u s ) {
17 cand . i s A s s o c i a t e d = true ;
18 cand . pos = avg ( z_map , cand . pos ) ;
19 cand . measurements . push_back ( [ z , x ] ) ;
20 cand . c o n f i d e n c e += inc rement ;
21 if ( cand . c o n f i d e n c > a c c e p t a n c e T h r e s h o l d ) {
22 sendCandidateToBackend ( cand ) ;
23 }
24 }
25 else {
26 C and id a t e newCand ;
27 newCand . pos = z_map
28 newCand . measurements . push_back ( [ z , x ] ) ;
29 c a n d i d a t e s . push_back ( newCand ) ;
30 }
31 }
32 }
33
34 for ( auto cand : c a n d i d a t e s ) {
35 if ( cand . i s A s s o c i a t e d == false ) {
36 cand . c o n f i d e n c e −= decrement ;
37 if ( cand . c o n f i d e n c e < r e j e c t i o n T h r e s h o l d ) {
38 removeCandidate ( cand ) ;
39 }
40 }
41 }

Listing 7.5: Pseudocode procedure for maintaining cone candidates



Chapter 8

Testing and results

8.1 Test setup

The testing with ATMOS was planned to start in the middle of April. Seeing as the

car was turned into a DV last year, testing time was according to the plan, going to be

plentiful before the competitions in the summer. Due to the ongoing pandemic, all

in-office and workshop Revolve operations halted, and so did hopes of performing any

on-board testing of any part of the autonomous pipeline. Luckily, some testing was

performed with the vehicle in its 2019 iteration during the fall of last year. The data

from a full, ten-lap autonomous run is used throughout the results evaluations in this

chapter. This dataset is originally a rosbag of raw sensor data, but after running the

detection and odometry systems, the output is recorded in a new rosbag to use for

direct input to SLAM. This dataset will be referred to as the Moholt data, because the

testing was done on a parking lot at Moholt in Trondheim.

In addition to this, cone locations from the FSG 2018 trackdrive event is stored

for use in a simulator. The simulator generates odometry with user-defined noise

parameters in all 3DOFs of the vehicle: 𝑥,𝑦 and \ . Normally distributed noise can also

be set on the bearing and range of all measurements.

77
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Figure 8.1: Picture of ATMOS taken during the Moholt testing.

8.2 Performance

This section examines the accuracy of the SLAM system as a whole and compares it

between the data association methods. As no ground truth is available for the Moholt

data, the only absolute performance metric is the number of laps the system managed

to do before it diverged. This data is presented for the Moholt run, as well as on the

FSG simulation, in table 8.1. To simulate a vehicle driving faster, the Moholt bag was

played back at 1.5× speed. The recorded top speed was with this modification around

40 km/h. The only method that managed to complete all ten laps is the SNN data

association. The simple explanation for this is that it is the only method that keeps

execution time low enough for the complete run. If the rosbag is played back at 0.5

speed, all methods complete ten laps. Execution time results are discussed in further

detail in the next section.

When ground truth data is unavailable, comparing relative performance give an

indication of the differences between the methods. Figure 8.2 shows the absolute value
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Dataset
Number of laps completed
SNN SCNN ML JCBB

Moholt 10 9 9 6
FSG 10 4 2 9

Table 8.1: These are the approximate averages over five runs for each method. The
uncertainty of this number is about ±0.5 laps, but is difficult to pinpoint due to needing
visual confirmation of divergence.

of the translational correction SLAM applies throughout the Moholt run. The point

where SLAM diverged is also given for each method. Based on this data, it is hard to

decide which method performes best in the middle of the run, but because divergence

is something that gives zero points in the competitions, it is a deciding metric. In

figure 8.3, the correction applied in the methods over the first three laps is displayed.

Here, it is clear that all methods perform on a similar level.
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Figure 8.2: The total positional correction applied on the odometry input, as calculated
by the SLAM backend. The point of divergence is indicated for the methods, exept for
SNN which completed the full ten laps.
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Figure 8.3: Truncated version of the full trajectory. Included to se the small spread
between the methods.

As discussed in section 7.4.2, there are multiple ways to recover the marginal

covariances from the iSAM2 backend. The choice of whether to include the off-diagonal

elements of the covariance matrix in eq. (5.4) also has to be made. In figure 8.4, the

ML data association is tested with three different means of covariance recovery. Only

in "ML joint" are the off-diagonal cross-covariances between the pose and landmark

recovered (again, see eq. (5.4)). The regular "ML" in the figure, uses the method

described in 7.4.4, and "ML marginal" generates the same Marginals object as done on

line 8 in Listing 7.2, but instead calls the marginalCovariance(variable) function

on this object. As evident here, using the extra information from the joint covariance

matrix does not yield better results, likely accredited to the increase in computation

time (see figure 8.14. In summary, the best method for retrieving marginal covariances

was found to be the one manipulating the iSAM2 object directly.

The last comparison was made in the FSG18 simulation. Here, the ground truth

of cone locations and poses is known. The noise added to the pose is AWGN with

simulated bias. Specifically, samples from the Gaussian distribution were modified and
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Figure 8.4: Positional correction applied when employing three different ML data
association schemes. Point of divergence is indicated.

added separately to the 𝑥,𝑦 and \ odometry estimates entering slam as follows
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,𝑤 ∼ N(0, 2.4 ∗ 10−4).

(8.1)

The odometry estimates enter at 200Hz, which is why the standard deviation for the

noise applied to each estimate is set seemingly low. Zero-mean Gaussian noise on the

individual bearing-range measurements was also added as

®̃𝑧 𝑗 = ®𝑧 𝑗 + ®𝑣 𝑗 , ®𝑣 𝑗 ∼ N(0, 𝑑𝑖𝑎𝑔(0.052, 0.12), (8.2)

to simulate the uncertainties of the detection systems. Measurement clutter was

simulated with five uniformly distributed false positives within the 30m, 180° field of
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view of the car.

To evaluate performance, the root mean square error (RMSE) of the cone placements

after 50 runs of autocross (unknown map, one lap) was recorded for each method.

Additionally, the mean and standard deviation in the number of cones in the map after

a completed lap was estimated. Lastly, the failure rate for each method is estimated.

"Failures" were classified as instances where the car did not end up within 3 meters

of its starting position. Table 8.2 highlights the performance of each method. Clearly,

the SNN is the best performer, with a zero failure rate. A possible explanation for

this is that SNN is more detached from the probabilistic quantities than the other

methods. Noise parameters are tuned based on the real data from Moholt, and so the

probabilistic data association methods are penalized because they are not optimized

for the simulation scenario.

The RMSE of poses is not included here because there were uneven numbers of

ground truth poses and slam output poses. Looking back, timestamp matching could

have been performed to establish two sets of even size, but was not considered further

at the time because simulation data results were less prioritized than the Moholt data.

SNN SCNN ML JCBB

Cone pos. RMSE [m] 0.07 0.17 0.44 0.30
Mean num. cones 178 180 186 179
Std dev num. cones 2 7 16 9
Failure rate 0% 2% 10% 8%

Table 8.2: General performance parameters for the different DA-methods estimated on
the FSG18 dataset over 50 one-lap runs. Bold type indicates the best performer for
the particular parameter.

As a final visualization of the SLAM performance, figures 8.5 - 8.7 illustrate the

effect SLAM has in the pipeline. The first figure plots all the incoming data from

ten laps at Moholt, where the "smearing" of measurements is quite significant due to

vehicle drift. Furthermore, in figure 8.6, all data is again plotted, but now detections

are expressed in the frame of the SLAM-corrected vehicle trajectory. There is still a
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certain smearing effect, but cones can, in general, be easily distinguished in the point

cloud. Also, the vehicle trajectory is estimated within the track boundaries throughout

the run. The final figure indicates all the data the SLAM module outputs during the

ten laps. Even if some false positives are plotted outside the track, they are a lot

less frequent when comparing to the input data. In this plot, the smearing is almost

eliminated as the output positions of landmarks is almost constant during the run.

Figure 8.5: All detection data entering SLAM for ten laps at Moholt as seen from the
uncorrected pose trajectory
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Figure 8.6: All detection data entering SLAM for ten laps at Moholt as seen from the
corrected pose trajectory

8.3 Execution time

In any real-time system where reactive actions are taken based on the system input,

keeping execution time down is always important. This allows incoming data to be

processed as soon as they become available, and effectively reduce the reaction time

of the system.

Substantial time was spent on optimizing each of the implemented data association

schemes to operate as fast as possible. Most of the effort went into the JCBB algorithm.

The first version of this implementation suffered large spikes in the iteration times.

From figure 8.9, we can see that the main culprit is the repeated calls for the marginal
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Figure 8.7: All data output from SLAM during ten laps. Cones are output at a rate of
≈ 20Hz.

covariances in the IC-check. In this first version, these marginal covariances were

recovered using the Marginals class in GTSAM, and performing key-by-key individual

lookups. Contrary to the ML and SCNN schemes, which were found to perform

better when off-diagonal elements of the covariance matrix involved in the IC-check

were disregarded, these quantities and the correlation between landmarks is essential

in JCBB. Because the joint covariance matrix is generated for a subset of variables

anyways, the new version was altered to generate the joint covariance matrix for all
the landmarks and the pose keyframe from which the current set of measurements

were made, at each iteration. As shown in figure 8.11, iteration times became much

more stable, but still increase with the number of pose keyframes in the variable set.



86 CHAPTER 8. TESTING AND RESULTS

Figure 8.8: Visualization of the testing environment using ROS built-in visualization
tool Rviz. This is the generated map of the Moholt test track with cone colors added
on later.

Figure 8.10 shows the time taken for the components in the second version. As

the marginal covariances on all variables are embedded on the diagonal in the joint

covariance matrix, the marginal covariance recovery in the IC-checks are reduced to

accessing a block in a stored matrix. The main reason for the feasibility of this solution

is the limited number of landmarks. Because no new landmarks are added to the map

after one lap is completed, the state vector only grows in the number of poses.

A similar comparison was done for the ML-data association scheme, already dis-

cussed in section 8.2. The difference in iteration times for the three methods for

covariance retrieval is illustrated in figure 8.14.

Comparisons between the optimal versions of each data association scheme are

found in figures 8.12 and 8.13. As expected, the SNN approach is extremely lightweight,

and operates in a different timescale than the methods requiring uncertainty estimates.

All these methods suffer from iteration times that grow in the number of poses until

they diverge. A possible solution to this is to marginalize out older poses, similarly
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Figure 8.9: Detailed presentation of the time taken for each of the components of the
first version of implemented JCBB. The object generation is the same as in Listing 7.2

to a fixed-lag smoother. This way, the state vector is kept of constant size. Due to

constraints on time, this concept was not explored further.

8.4 Map preloading

Both the Moholt and FSG datasets were used in this test. To test how well each of

the data association schemes performs in the start of a run where the map is stored

beforehand, a positional offset is applied to all the cones to simulate the initial pose

uncertainty. From the vehicle’s perspective, the initial pose is always ®𝑥0 = (0, 0, 0)T,

but cannot be guaranteed to equal to the earth fixed initial pose of the vehicle from

when the map was created. Also, for the skidpad and acceleration events (not tested

here), the map is defined from the rules with the origin at the expected vehicle starting

point with the x-axis parallel to the longitudinal axis of the vehicle and not the actual

starting point. In summary:

1. Cones saved from a previous run are given in the inertial map frame I.
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Figure 8.10: Detailed presentation of the time taken for each of the components of the
second version of JCBB. The object generation is the same as in Listing 7.2

2. In practice, the vehicle cannot be guaranteed to start at the exact same spot with

the exact same heading each time, meaning that the origin of subsequent runs will

be defined as the map frame with an offset: I ′ = I + ®𝛿 where ®𝛿 = (𝛿𝑥, 𝛿𝑦, 𝛿\ )T.

3. All cones in the map 𝐿 = {®𝑙𝑖 }𝑁𝑖=1 are then subject to the transformation T (𝛿):

𝐿′ = {T ( ®𝛿)®𝑙𝑖 }𝑁𝑖=1 (8.3)

4. Detections will still enter in the body frame B, which at time step 0 is equal

to I ′, but because of the introduced offset they will not align perfectly as they

would if I ′ = I.

If the data association schemes correctly pair detections to cones in the map, the

added measurement factors are expected to be sufficient for the backend to estimate

the error ®𝛿 imposed on the initial vehicle pose as defined in the "true" map frame I.

The result of this allows the vehicle to continue the lap as usual in the localization
state. An important practical distinction to make here is that when performing full
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Figure 8.11: Comparison of iteration time between the two versions of implemented
JCBB

SLAM (mapping and localization), the initial pose uncertainty is an irrelevant metric

because we define the origin as equal to the initial pose. For localization only, the

origin is already set from when the map was built, and so the initial pose uncertainty

is a parameter that is nonzero and should be set based on a realistic setting. For

this test, the initial uncertainty is modeled using a GTSAM PriorFactor with mean

®̀ = ®𝑥0 = (0, 0, 0)T and diagonal covariance matrix with noise parameters (std devs)

𝜎𝑥 = 𝜎𝑦 = 0.5m, 𝜎\ = 15° ≈ 0.26 rad. The cones are also modeled with PriorFactors,

where the mean of each cone is as given in (8.3) and with uncorrelated noise in the x-

and y-directions with 𝜎𝑥 = 𝜎𝑦 = 0.3𝑚. It can be argued that the ideal implementation

of the noise estimates would involve the relevant indices from the covariance matrix

recorded together with the map. But because the correctness of the saved map cannot

be guaranteed and also to not overconstrain the problem, modeling with a moderately

peaked Gaussian was assumed to be acceptable. This implementation is also applicable

to the skidpad and acceleration events, where no noise estimates are available on the

first run.

In this test, the evaluation is based on a binary success metric. If the SLAM system
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Figure 8.12: Iteration time tracked for all data association schemes on the Moholt
dataset.

recovers after the initial pose offset (cone offset in practice) and continues the lap as

usual, the test is deemed a success. Figure 8.15 shows the success rates of all four data

association schemes when the initial pose is subject to the normally distributed offset
®𝛿 ∼ N(®0, 𝑑𝑖𝑎𝑔(𝜎2

𝑥 , 𝜎
2
𝑦, 𝜎

2
\
) with the noise parameters equal to the ones modeled in the

PriorFactor. Here, JCBB is the best performer, while the non-probabilistic SNN scheme

is the worst.

In addition to the more realistic test of applying a zero-mean distributed offset,

additional simulations were performed to establish the upper bound of offsets each of

the data association methods were still able to succeed with. In this case, the applied

offset is known and only applied to the initial yaw angle (not translated). This is mainly

because large deviations in the starting position are unrealistic within the competition

rules. Tables 8.3 and 8.4 display the results, which are in line with the results from

figure 8.15 as JCBB again is the better performer, and SNN is the weakest. To illustrate

the differences between the two algorithms, figure 8.16 shows an instance where JCBB

makes the correct associations, where SNN would not have been able to. Adjusting the

IC and JC probability thresholds (see equations (5.7) and (5.12)) from the standard 0.90
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Figure 8.13: Iteration time tracked for all data association schemes on the FSG dataset

to 0.95 and 0.75 gave minimal changes in results, which suggests that these parameters

can benefit from further tuning.

𝑐ℎ𝑖2𝑖𝑛𝑣 (·) (excl. SNN)
Angle range [°]

SNN SCNN ML JCBB
0.9 (default) [-12.0, 13.8] [-18.3, 20.6] [-24.6, 25.4] [-29.8, 36.1]

0.75 - [-18.3, 16.0] [-24.6, 25.2] [-28.6, 29.2]
0.95 - [-18.3, 20.6] [-24.6, 25.4] [-29.8, 36.1]

Table 8.3: The ranges of initial unknown yaw offset that the DA methods managed
with success. Bold type indicates best performer. These results are found for the
Moholt dataset.

8.5 Lidar noise experiment

The point of this experiment was not to estimate the intrinsic noise parameters on the

Hesai Pandar40 lidar, but rather the noise model of the feature extraction performed on
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Figure 8.14: Comparison of iteration time of ML-data association using different means
of covariance retrieval

the lidar pointclouds. This was done to give a general idea of how large the measure-

ment noise is on a stationary vehicle, and if increased ranges correspond to more uncer-

tainty when stationary. This could then possibly get integrated into the implementation

of SLAM, specifically as the noise values supplied with the BearingRangeFactors()

in the backend.

The test was performed with a stationary trolley with the lidar and a processing

unit mounted. Cones were set up in multiple maps, but only two tests are included

here. The first test is the straight test where cones are somewhat evenly spaced on two

straight lines ahead. The results from this test are displayed in figures 8.17 and 8.18.

The first figure is included to show the setup of the lidar and cones, and also to give an

exaggerated indication of the distributions of detections. The covariance ellipses are

plotted with 10 standard deviations. From figure 8.20, we can say that range has little

effect on the uncertainty of measurements output from the lidar feature extraction.

Also, because the numbers are very low, the performance is good. It is important to

note that these tests were performed in ideal conditions: Stationary, nice weather and

with little potential clutter in the track. Because of this, setting the measurement noise
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Figure 8.15: The number of successful runs of each system after being exposed to
an initial unknown offset in pose. The test was performed 50 times for each data
association method on both the Moholt and FSG18 datasets, and the success rates are
also included.

to these estimated values is not considered to be a feasible solution unless the vehicle

is stationary, if even then.

Much of the same can be said for the hairpin turn situation in figures 8.19 and 8.20.

The correlation between uncertainty and range is not there, and the lidar detection is

again very accurate.
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Figure 8.16: An instance where JCBB correctly associates the measurements (yellow,
blue and purplue markers) with the cones after preloading the map. Visually, we can
verify that SNN would possibly only have associated the closest (and maybe second)
pair of cones correctly.

𝑐ℎ𝑖2𝑖𝑛𝑣 (·) (excl. SNN)
Angle range [°]

SNN SCNN ML JCBB
0.9 (default) [-8.6, 5.7] [-38.4, 22.9] [-38.4, 24.1] [-40.1, 26.9]

0.75 - [-38.4, 22.9] [-37.8, 24.6] [-37.2, 25.2]
0.95 - [-39.5, 24.6] [-38.4, 25.8] [-40.7, 26.9]

Table 8.4: The ranges of initial unknown yaw offset that the DA methods managed
with success. Bold type indicates best performer. These results are found for the
FSG18 dataset.
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Figure 8.17: Covariance ellipses around detections on straight with 𝜎 = 10 for visual
effect.

Figure 8.18: Standard deviation of bearing and range at different distances. Based on
128 sets of measurements where 13/18 cones were detected in every set.
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Figure 8.19: Covariance ellipses around detections in hairpin turn with 𝜎 = 10 for
visual effect.
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Figure 8.20: Standard deviation of bearing and range at different distances. Based on
160 sets of measurements where 14/16 cones were detected in every set.
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Chapter 9

Conclusion and future work

In this thesis, the iSAM2 SLAM backend was paired with four methods for data

association. The methods were compared on a dataset obtained in a realistic setting,

and in simulations. As real-time performance is paramount in autonomous racing,

evaluating the execution times of the methods was central. Results from both the

real and artificial setting showed that an increase in execution time beyond a certain

threshold is critical to performance because important data is not being processed.

The slower methods have potential, however. In map preloading, the slowest method:

JCBB outperforms the others, in what is an important discipline in FS competitions.

Although a loop closure "stress test" was not performed, prior research [42] [29] would

indicate that JCBB is the more robust method, once drift is significant enough. Probably

due to the small area covered by the Moholt test track, the long term drift is not allowed

to accumulate, as cones close to the starting position were within the detecting range

of the lidar at multiple locations in the track. This resulted in many smaller loop

closures, as opposed to a larger, more difficult one. Ideally the testing data should have

originated from a larger track, so that loop closure could have been tested more.

In testing, it became clear that if only given the choice of using one of the methods,

the standard SNN approach is the only possible option. This is because it is the only

approach that completes the full ten laps of a trackdrive run. That being said, due to

99
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the way the frontend is set up, there is no hindrance in changing the data association

method mid-run. This way, more comprehensive schemes such as JCBB or ML-DA can

be used in the initial phase of a run to allow more robust operation when preloading

maps. Subject to the user’s settings, the lightweight SNN scheme can take over in

time before the computational load of the other methods become too large. A similar

setup could be applied to the loop closing scenario. So that if the vehicle can predict a

imminent loop closure (using heading, position and planned path for instance), more

advanced techniques can take over in this critical phase.

Future work

• Because the computations of SCNN, ML and JCBB become slower in parallel

with the number of pose keyframes in the variable set of iSAM2, exploring

the possiblity of implementing the SLAM backend as an incremental fixed-lag
smoother1

• As the implemented SLAM system is already multithreaded, adding a third

thread responsible for covariance retrieval only should not be a very difficult

addition. This will free up CPU time on the frontend tread, which would allow

it to process data faster, and close the gap between the probabilistic approaches

and SNN.

• A completely new approach could be taken as well. Instead of performing

feature-based landmark SLAM, as is the case now, rethinking the interface

between the detection modules and SLAM could allow for better solutions. The

ultimate goal of the car is to find a driveable route, and so focusing too heavily on

distinguishing cones might not be the optimal solution for tackling the problem.

The author suggests future Revolve members to explore the usage of lidar-based

occupancy grid SLAM.

• As the number of cones (landmarks) is bounded in FSD competitions, going

for the standard EKF approach could also be considered. The shortcomings of

1iSAM2 fixed lag smoother https://gtsam.org/doxygen/a04411.html.

https://gtsam.org/doxygen/a04411.html
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EKF-SLAM are most apparent in large-scale applications, where the number

of landmarks can grow indefinitely. This is not the case for FSD. As the move

towards lower powered computational units is bound to happen due to the EV

and DV merge in 2022, applying a simple EKF-SLAM system could be sufficient.
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