
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Simen Theie Havenstrøm

From Beginner to Expert

Deep Reinforcement Learning Controller for 3D
Path Following and Collision Avoidance by
Autonomous Underwater Vehicles

Master’s thesis in Cybernetics and Robotics

Supervisor: Adil Rasheed

May 2020

Simen Theie Havenstrøm

From Beginner to Expert

Deep Reinforcement Learning Controller for 3D Path
Following and Collision Avoidance by Autonomous
Underwater Vehicles

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Preface

This master thesis is written during the spring semester of 2020 to conclude
a one-year project studying the use of deep reinforcement learning applied in
motion control systems for an autonomous underwater vehicle with six degrees-
of-freedom. Last semester (fall 2019), a preproject was undertaken to research
and explore for feasible approaches when applying current state-of-the-art learn-
ing algorithms to solve the 3D path following problem. The project was also the
entry point for my practical experience with such algorithms and way of pro-
gramming. Specifically, an AUV simulation model was built and standardized
to fit the OpenAI interface using Python as the programming language. The
OpenAI library is a standard toolkit used in reinforcement learning research
world-wide.

During the preproject, two distinct methods were used to solve 3D path fol-
lowing: End-to-end learning and a novel approach called PID-assistance. In
short, the first approach lets the autonomous agent take complete control of
the AUVs actuators as it learns, while the latter lets it learn to operate one
actuator at a time by offering PID-assistance in the others while training. Ob-
taining satisfactory performance by end-to-end learning was a challenge, and
the results can be seen as preliminary at best. However, the PID-assistance ap-
proach yielded controllers that tracked a path in 3D with great precision. This
encouraging result motivated further research by increasing the complexity of
the control objective.

The central goal of this master project is to achieve the dual-objective of
3D path following and collision avoidance by use of deep reinforcement learn-
ing controllers. Though a good foundation was laid in the preproject, the PID-
assistance approach did not work as intended when the agent was introduced
to the added complexity of collision avoidance. The agent did not learn to op-
erate the steering commands in a well-behaved or optimal manner by learning
to operate one at a time. A completely different approach, which is covered
throughout this thesis, was instead needed. Thus, some code from the prepro-
ject could be reused, but most has been revised and fitted to the new objectives,
learning method and setup.

The same principle applies to section 2 of this report, which covers the pre-
liminary theory. Although machine learning does evolve rapidly, the fundamen-
tal principles remains the same. In addition, the models being simulated are
unchanged and are based on the same first principles. Naturally, the overlap-
ping theory is reiterated in this report, although much is revised and improved.

ii

Acknowledgements

I would like to thank my supervisor Adil Rasheed and his PhD. candidate Haakon
Robinson for guidance and support during the preproject and the master thesis.
I credit Camilla Sterud for letting me use her code as inspiration and start-up
help during the preproject. I would also like to thank my peers in Adil’s student
group for fruitful discussions and suggestions. All help was greatly appreciated.

I am also greatly thankful to the two reviewers who reviewed the article
based on my preproject work which formed the basis of the continued work in
the masters and resulted in another article submitted to a reputed journal.

iii

Contents

Preface i

List of Figures v

List of Tables vi

Nomenclature vii

Abstract ix

Sammendrag xi

1 Introduction 1
1.1 Motivation and Background . 1

1.1.1 Path Following . 2
1.1.2 Collision Avoidance . 4

1.2 Research Goals and Methods . 6
1.3 Outline of Report . 8

2 Theory 9
2.1 Deep Reinforcement Learning . 9

2.1.1 Terminology and Notation 10
2.1.2 The RL Goal . 10
2.1.3 Solution Methods . 12
2.1.4 Policy Proximal Optimization 13

2.2 AUV Modeling . 15
2.2.1 Reference Frames . 16
2.2.2 Kinematic Equations . 17
2.2.3 Kinetic Equations . 18
2.2.4 Simulation Model for Ocean Current 21
2.2.5 Control Fin Dynamics . 22

2.3 3D Path Following . 22
2.3.1 Quadratic Polynomial Interpolation 23
2.3.2 Path-centered Coordinate System 25
2.3.3 Guidance Laws for Path Following 26

3 Method and Implementation of the Environment 27
3.1 DRL Framework and the OpenAI Interface 27
3.2 Building and Simulating the Environment 28

3.2.1 Numerical Solver . 29
3.3 Environment Scenarios and Curriculum Learning 30

3.3.1 Training Scenarios . 30

iv

3.3.2 Test Scenarios . 32
3.4 Forward Looking Sonar . 33
3.5 Reward Function . 35
3.6 Feedback/Observations . 37

4 Training 39
4.1 Training History . 39

4.1.1 Episode Reward . 39
4.1.2 Policy Entropy . 41
4.1.3 Value-function Loss . 43

4.2 Evolution of an Agent . 44
4.3 Summary of Training Setup . 46

5 Simulation Results 49
5.1 Quantitative Results . 49
5.2 Qualitative Results . 50

5.2.1 Path Following . 51
5.2.2 Optimality Check - Extreme Obstacle Pose 51
5.2.3 Dead-end . 53

6 Discussion 55
6.1 Model Assumptions and Implementation 55
6.2 On the Method . 56
6.3 On the Results . 57
6.4 Suggestions for Future Work . 58

6.4.1 Moving Obstacles and Velocity Control 58
6.4.2 Sonar Pooling by Convolutional Neural Network 58
6.4.3 Real-world Implementation 59
6.4.4 Control System Architecture 59

7 Conclusion 61

8 Bibliography 63

Appendix A AUV Model Parameters 69

v

List of Figures

1.1 Signal flow in guidance, navigation and control systems for ma-
rine crafts. 2

1.2 Venn-diagram for the scientific perspectives 6
1.3 Suggested solution for the GNC loop using DRL 7
2.1 Actor-critic method schematic . 13
2.2 Simple illustration of BODY and NED coordinate systems 16
2.3 Illustration of QPMI and linear interpolation for path generation . 25
2.4 Serret-Frenet coordinates and tracking errors 26
3.1 Training scenarios used in curriculum learning and quantitative

analysis. 31
3.2 Test scenarios for qualitative analysis. 33
3.3 Illustration of the forward looking sonar. 34
3.4 3D rendering of sonar simulation. 34
3.5 Two-variable function for obstacle reward scaling 36
3.6 Neural network for DRL control 38
4.1 Training history: Episode reward 40
4.2 Examples of high and low entropy normal distributions. 42
4.3 Training history: Policy entropy 43
4.4 Training history: Value-function loss 44
4.5 Evolution of controller (λr = 0.9) performance throughout train-

ing. 45
5.1 Data from simulation results . 50
5.2 Test: Path following . 51
5.3 Test: Optimality check . 52
5.4 Test: Dead-end . 53

vi

List of Tables

1.1 Some of the state-of-the-art research in path following and COLAV. 5
2.1 Notation for marine vessels used by SNAME (1950). 16
2.2 Specifications for simulated AUV adapted from da Silva et al.

(2007). 18
3.1 Dormand-Prince butcher array. 29
3.2 Waypoints for test path. 32
3.3 Observations/inputs for neural networks 37
4.1 Parameter table for training and simulation setup. 46
5.1 Test results from sampling N = 100 random training scenarios. . 49

vii

Nomenclature

3D Three-Dimensional

6-DOF Six Degrees-Of-Freedom

AUV Autonomous Underwater Vehicle

CB Center of Buoyancy

CM Center of Mass

CO Center of Control

COLAV Collision Avoidance

CPU Central Processing Unit

DDPG Deep Deterministic Policy Gradients

DRL Deep Reinforcement Learning

FLS Forward Looking Sonar

FPS Frames Per Second

GAE General Advantage Estimation

GNC Guidance, Navigation and Control

GPU Graphics Processing Unit

LOS Line-Of-Sight

MDP Markov Decision Process

MLP Multilayer Perceptron

NED North-East-Down

ODE Ordinary Differential Equation

PID Proportional Integral Derivative

PPO Policy Proximal Optimization

QPMI Qudratic Polynomial Interpolation

RAM Rapid Access Memory

RL Reinforcement Learning

SNAME Society of Naval Architectures and Marine Engineers

ix

Abstract

Traditional control theory has many to tools to offer the control engineer when
faced with a wide array of dynamical systems. However, as complexity of sys-
tems grow, providing reliable mathematical representations gets more involved
- possibly even infeasible. In these contexts decision-making becomes non-
trivial and many of the traditional methods can not be applied. If there is no
way to explicitly encode desired behaviour, then how can one hope to construct
a useful control law? The framework of reinforcement learning has the poten-
tial to break this deadlock, and through experience based learning the need for
explicit representations of the environment is discarded.

In this thesis, such learning controllers are developed to operate the control
fins of a simulated autonomous underwater vehicle with 6 degrees-of-freedom.
The control objective is for the vehicle to follow a predefined 3D path while be-
ing engaged in a hydrodynamic environment containing environmental distur-
bances and unforeseen obstacles intersecting the path. There is obviously many
ways to operate in this environment, and for this reason the agents developed
are learning by different incentives to observe the differential in behavioural
outcome.

The controllers, or agents, are trained by following a learning paradigm
known as curriculum learning: That is the idea of progressively exposing the
agents to more complex tasks, instead of the sampled environments being com-
pletely random. Thus, there is a natural progression from beginner to expert.
After training, the expert level agents are deployed in test simulations showing
impressive results both in path following and in collision avoidance. Under ideal
conditions (no disturbance), the best controller managed to obtain a collision
rate of 0%, while still balancing the objective of path following impressively.

In a larger context, the idea of applying learning controllers to emulate human-
like decision-making can be seen as a preliminary step towards reaching fully
autonomous vehicles. The work presented in this report builds on a preproject
and earlier earlier work with the same control objectives, albeit in 2D and with
3 degrees-of-freedom.

xi

Sammendrag

Tradisjonelle kybernetiske metoder har mange verktøy og teknikker som kan
anvendes for en rekke klasser dynamiske systemer. En forutsetning for å kunne
anvende mange av de tradisjonelle metodene, er en pålitelig matematisk repre-
sentasjon av systemet/miljøet man ønsker å manipulere. Med økt kompleksitet,
til den grad at valg og vurderinger ikke lenger følger trivielle regler, kan det
bli vanskelig å finne slike representasjoner - kanskje til og med umulig. Å kon-
struere lover for tilbakekoblede kontrollsystemer i slike tilfeller, kan derfor vise
seg å være utfordrende. Forsterkende læring danner kontrollover basert på er-
faring og belønning, og viser seg dermed som et potensielt godt verktøy der det
er vanskelig å representere systemet eller ønsket oppførsel eksplisitt.

I denne oppgaven benyttes kontrollere basert på forsterkende læring til å
styre et simulert autonomt undervannskjøretøy med 6 frihetsgrader. Objektivet
er at kjøretøyet skal følge en forhåndsdefinert sti i 3D, samtidig som den er ut-
satt for hydrodynamiske forstyrrelser og obstruksjoner som kan forårsake kol-
lisjoner hvis stien følges ukritisk. Da kjøretøy med 6 frihetsgrader og et 3D miljø
tilbyr mange måter å operere kjøretøyet på i en slik kontekst, er de autonome
agentene trent med forskjellig belønningsstrategi for å observere utfallet i den
lærte kontrollstrategien.

Kontrollerene, eller agentene, følger et opplæringsregimet som kalles pen-
sumlæring ("Curriculum learning"). Dette bygger på at agentene gradvis utsettes
for vanskeligere oppgaver og følgelig økt kompleksitet, istedenfor at oppgaver
introduseres helt tilfeldig. Det er dermed en naturlig progresjon fra nybegynner
til ekspert når det kommer til å kunne operere kjøretøyet i det nevnte miljøet.
Etter trening viste ekspert-pilotene imponerende resultater i både stifølging og
kollisjonsunngåelse. Under ideelle forhold (ingen forstyrrelser) oppnådde den
beste agenten en kollisjonsrate på 0%. I tillegg viste den gode prestasjoner for
stifølging.

I det store bildet kan ideen om å bruke selvlærende kontrollsystemer, som
etterligner menneskers evne for vurderinger og veivalg, ses som et tidlig skritt
mot fullstendig autonome kjøretøy. Arbeidet som presenteres i denne rapporten
bygger på et eget forprosjekt, såvel som tidligere arbeid med tilsvarende objek-
tiver i 2D for kjøretøy med 3 frihetsgrader.

1 Introduction 1

1 Introduction

"The rise of machine learning and artificial intelligence has transformed many
domains of human endeavour; Business, finance, education, gaming, research
and development are some examples of fields that has been impacted more or
less by this change. The field of cybernetics is no exception and potentially has
a lot to profit from merging with machine learning and vise versa. Particularly
interesting is the close connection between reinforcement learning and continu-
ous control, caused by the similarities with the classical feedback control loop.
This thesis is dedicated to explore and further investigate this connection. It
does this through studying the use of reinforcement learning controllers in prac-
tical applications, specifically in vehicle control systems for an autonomous un-
derwater vehicle. Approaching control system design in this manner has shown
exciting results in various applications so far, but we have yet only skimmed the
surface of its true potential." (Havenstrøm, 2020)

1.1 Motivation and Background

Autonomous underwater vehicles (AUVs) are used in many subsea commercial
applications, such as seafloor mapping, inspection of pipelines and subsea struc-
tures, ocean exploration, environmental monitoring and various research oper-
ations. The wide range of operational contexts implies that truly autonomous
vehicles must be able to follow spatial trajectories (path following), avoid col-
lisions along these trajectories (collision avoidance (COLAV)) and maintain a
desired velocity profile (velocity control). In addition, AUVs are often underac-
tuated by the fact that they operate with three generalized actuators (propeller,
elevation and rudder fins) in six degrees-of-freedom (6-DOF) (Fossen, 2011,
ch. 9). This is the configuration considered in the current work.

The complexity that arises when combining the control objectives, a hydro-
dynamic environment and disturbances, and the physical design with three
generalized actuators, spurs an intriguing control challenge for which many sci-
entific literature exist. However, the objectives of path following and collision
avoidance are in most research dealt with separately. Furthermore, control sys-
tems for marine crafts are traditionally partitioned into guidance, navigation
and control (GNC). In brief, guidance handles setpoints and reference/path
generation; Navigation does filtering and state estimation based on modeling
and sensory data; Lastly, control maps the reference from the guidance system
and the feedback from the navigation system to low-level control actuation.
Figure 1.1 gives an overview of this cascaded structure and its signal flow. (Fos-
sen, 2011, ch. 1)

2 1 Introduction

Setpoints
Path	Generation

Motion	Control
System

Observer
Filtering

Marine	Craft
Reference Control	Action

Guidance	System Control	System

Navigation	System

Disturbances

Estimated	States System	Output

Figure 1.1: Signal flow in guidance, navigation and control systems for marine crafts.

1.1.1 Path Following

The path following problem is heavily researched and documented in classical
control literature. The control objective is to follow a predefined path, defined
relative to some inertial frame, and minimize tracking errors, i.e. the distance
between the vehicle and the path. Three-dimensional (3D) path following in-
volves tracking errors that are composed of horizontal and vertical components,
and forms an accurate representation of real engineering operations for AUVs
(Chu and Zhu, 2015). Typically, a variant of the Proportional Integral Deriva-
tive (PID) controller based on reduced order models is used to control elevator
and rudder to eliminate tracking errors (Fossen, 2011, ch. 12).

More advanced approaches are also available; A classical nonlinear approach
is found in Encarnacao and Pascoal (2000), where a kinematic controller was
designed based on Lyapunov theory and integrator backstepping. To extend
the nonlinear approach reliably to the presence of disturbances and parametric
uncertainties, Chu and Zhu (2015) proposed using an adaptive sliding mode
controller, where an adaptive control law is implemented using a radial basis
function neural network. To alleviate chattering, a well-known "zig-zag" phe-
nomenon occurring when implementing sliding mode controllers due to a finite
sampling time, an adaptation rate was selected based on a so-called minimum
disturbance estimate. Xiang et al. (2017) proposed fuzzy logic for adaptive tun-
ing of a feedback linearization PID controller. The heuristic, adaptive scheme ac-
counts for modelling errors and time-varying disturbances. They also compare
the performance on 3D path following with conventional PID and non-adaptive
backstepping-based controllers, both tuned with inaccurate and accurate model

1 Introduction 3

parameters, to demonstrate the robust performance of the suggested controller.
Liang et al. (2018) suggested using fuzzy backstepping sliding mode control
to tackle the control problem. Here, the fuzzy logic was used to approximate
terms for the nonlinear uncertainties and disturbances, specifically for use in
the update laws for the controller design parameters. Many other methods ex-
ist, but most published work on the 3D path following problem incorporates
either fuzzy logic, variants of PID control, backstepping techniques or any com-
bination thereof.

More recently, there have been numerous attempts to achieve path following
and motion control for AUVs by applying machine learning directly to low-level
control. Specifically, deep reinforcement learning (DRL) seems to be a favored
approach. DRL controllers are based on experience gained from self-play or
exploration, using algorithms that can learn to execute tasks by reinforcing
good actions based on a performance metric. Preliminary theory on DRL is
presented in subsection 2.1.

Yu et al. (2017) used a DRL algorithm known as Deep Deterministic Pol-
icy Gradients (DDPG) (Lillicrap et al., 2015) to obtain a controller that out-
performed PID on trajectory tracking for AUVs. A DRL Controller for under-
actated marine vessels was implemented in Martinsen and Lekkas (2018b) to
achieve path following for straight-line paths, and later in Martinsen and Lekkas
(2018a) for curved paths using transfer learning from the first study. The DRL
controller demonstrated excellent performance, even compared to traditional
line-of-sight (LOS) guidance. Exciting results validating the real-world appli-
cations of DRL controllers for AUVs and unmanned surface vehicles is found
in Carlucho et al. (2018) and Woo et al. (2019). The first paper implemented
the controller on an AUV equipped with six thrusters configured to generate
actuation in pitch moment, yaw moment and surge force. They demonstrated
velocity control in both linear and angular velocities. The latter paper imple-
mented a DRL controller on an unmanned surface vehicle with path following
as the control objective, and presented impressive experimental results from
the full-scale test.

Common for the aforementioned work published on path following using
DRL controllers is

• only horizontal motion, i.e. the 2D path following problem, has been con-
sidered, and

• all used DDPG as the learning algorithm.

The motivation lies thus in the fact that using DRL controllers to solve the
3D path following problem is unexplored territory. In addition, the state-of-
the-art DRL algorithm Policy Proximal Optimization (PPO) is used to tackle

4 1 Introduction

the dual-objective of path following and COLAV. Subsequently, setting up the
simulation environment and training process provides a basis for further work
on the combination of PPO and vehicle motion control in 3D. It can also provide
insights on the 3D path following problem from a new perspective.

1.1.2 Collision Avoidance

Collision Avoidance (COLAV) systems is an important part of the control sys-
tems for all types of autonomous vehicles. AUVs are costly to produce and typ-
ically equipped with expensive instruments as well. Needless to say, maximum
efforts must be made to ensure safe movement at all times. COLAV systems
must be able to do obstacle detection using sensor data and information pro-
cessing, and obstacle avoidance by applying steering commands based on de-
tection and avoidance logic. Two fundamental perspectives on COLAV control
architectures are described in the literature: deliberate and reactive. (Tan, 2006)

Deliberate architectures are plan driven and therefore necessitates á priori
information about the environment and terrain. It could be integrated as part
of the on-board guidance system (McGann et al., 2008), or at an even higher
level in the control architecture, such as a waypoint planner (Ataei and Yousefi-
Koma, 2015). Popular methods to solve the path planning problem includes A*
algorithms (Carroll et al., 1992; Garau et al., 2005), genetic algorithms (Sug-
ihara and Yuh, 1996) and Probabilistic roadmaps(Kavraki et al., 1996; Cash-
more et al., 2014). Deliberate methods are computationally expensive, due to
information processing about the global environment. However, they are more
likely to make the vehicle converge to the objective (Eriksen et al., 2016).

Reactive methods are faster and processes only real-time sensor data to make
decisions. In this sense, the reactive methods are considered local and are used
when rapid action is required. Examples of reactive methods are the dynamic
window approach (Fox et al., 1997; Eriksen et al., 2016), artificial potential
fields (Williams et al., 1990) and constant avoidance angle (Wiig et al., 2018). A
potential pit-fall with reactive methods, is trapping the vehicle in local minimas
(dead-ends) (Eriksen et al., 2016).

To improve on both the deliberate and the reactive approach, a hybrid ap-
proach is used in practice by combining the strengths of both. Such architec-
tures are comprised of a deliberate, reactive and execution layer. The deliberate
layer handles high level planning, while the reactive layer tackles incidents hap-
pening in real-time. The execution layer facilitates the interaction between the
deliberate and reactive architectures and decides the final commanded steering.
(Tan, 2006)

1 Introduction 5

There are still challenges in state-of-the-art COLAV methods for vehicles sub-
jected to nonholonomic constraints, such as AUVs. Examples of recurring chal-
lenges seen in the literature includes

• instability issues,

• neglecting vehicle dynamics and actuator constraints leading to infeasible
reference paths, and

• algorithms causing the vehicle to stop.

Additionally, extensive research discusses methods for COLAV in 2D that cannot
be directly applied to 3D. In many cases where such methods are adapted to
3D, however, they do not optimally take advantage of the extra dimension (Wiig
et al., 2018).

Table 1.1 summarizes state-of-the-art in path following and collision avoid-
ance referenced in the previous sections. It also includes references to the work
by Havenstrøm (2020) and Meyer et al. (2020) performed in the specialization
projects preceding this master thesis.

Table 1.1: Some of the state-of-the-art research in path following and COLAV.

3D Path Following
Method Reference
PID control (Fossen, 2011, ch. 11-12)
Adaptive sliding mode Chu and Zhu (2015)
Fuzzy feedback linearization Xiang et al. (2017)
Fuzzy backstepping sliding mode Liang et al. (2018)
DRL using DDPG algorithm Martinsen and Lekkas (2018b);

Martinsen and Lekkas (2018a);
Yu et al. (2017); Woo et al.
(2019)

PID-assisted DRL using PPO Havenstrøm (2020)
End-to-end DRL using PPO (2D) Meyer et al. (2020)

Collision Avoidance
A* path planning Carroll et al. (1992)
Genetic algorithms Sugihara and Yuh (1996)
Probabilistic roadmaps Kavraki et al. (1996)
Dynamic window Fox et al. (1997); Eriksen et al.

(2016)
Artificial potential fields Williams et al. (1990)
Constant avoidance angle Wiig et al. (2018)
End-to-end DRL using PPO Meyer et al. (2020)

6 1 Introduction

1.2 Research Goals and Methods

Motivated by the previous sections, a trinity of interesting perspectives on the
research is formed. From a computer science perspective, exploring DRL and
the application thereof is a research branch that is expanding fast, and un-
covering the limitations, possibilities and what problems this architecture can
be used for are of high scientific value. One reason is because it is arguably
the most promising form of machine learning not requiring direct supervision.
From the cybernetic viewpoint, DRL used on continuous control problems are
gaining momentum because of its resemblance to the traditional control loop
and its adaptive nature. Lastly, from a marine engineering outlook, the sug-
gested solution to the hybrid control objective of path following and COLAV is
new and differs fundamentally from the traditional methods.

Marine	Engineering

Computer	Science Cybernetics

DRL Controller	design

AUV	design

AUV	modeling

Cont.
control

Path	following

COLAV	

DRL	for
AUV
motion
control

Implementation	of
GNC

Figure 1.2: The research intersects the three engineering disciplines computer science,
cybernetics and marine engineering.

In this research, we attempt to achieve the control objectives by employing
a DRL controller as the motion control system in the GNC paradigm, as seen in
Figure 1.3. The level of complexity of the control problem suggests that using
an intelligent controller, such as a DRL agent that can learn a control law by re-
ceiving feedback through observations and modify its behaviour as to optimize
a reward signal, is a viable approach.

1 Introduction 7

Guidance	System

DRL	Controller

Control	System

Simulation	Environment

Control	Action,	

Marine	Craft
Observation,	 ��

Disturbances

��

Reward, ��

��+1

��+1

Figure 1.3: The suggested setup for AUV control using DRL in the control system.

In addition to setting up a DRL environment where learning happens through
exploration and feedback through observations and a reward signal, the learn-
ing strategy known as curriculum learning is employed: That is the formaliza-
tion of learning by being gradually and systematically exposed to more complex
environments or tasks(Bengio et al., 2009). As the control objectives can be de-
scribed in terms of environmental complexity, such as the density of obstacles
blocking the path or the intensity of an external disturbance, it is a logical ap-
proach in this context. For instance, a scenario for testing pure path following
and no disturbance can be described as a combined path following and COLAV
scenario containing no obstacles and a current with zero intensity. This is just a
semantic difference, but it advocates for a natural way of progressing in terms
of complexity. Note that any arbitrary scenario configuring the path and obsta-
cles can be generated, so another key component in the research is designing
meaningful configurations in a practical sense. If this is achieved, any agent
that has been training in simulation could in theory be uploaded to a physical
unit and finish its learning in a full-scale test environment. The implementation
of this framework is detailed in subsection 3.3.

In the sense of COLAV, the predefined path can be viewed as the deliberate
architecture, where it is assumed that the waypoints are generated by some
path planning scheme, and the random and unforeseen obstacles are placed
on this presumed collision-free path. The DRL agent operate in effect as the
reactive system that must handle the threat of collisions rapidly, but at the same
time must chose effective trajectories to minimize tracking deviations.

8 1 Introduction

To the best of our knowledge there is currently no published work on the
application of DRL control on the 3D path following problem by an AUV with
6-DOF. To this end, the guiding questions governing the research can be stated
as:

• Can the current state-of-the-art in DRL control be applied in end-to-end
learning to achieve 3D path following by an AUV with 6-DOF?

• Can the control system build in automatic collision avoidance and achieve
intelligent decision-making regarding avoidance maneuvering?

• How does the reward function affect the learned control strategy and is
there a clear link to the incentives provided?

1.3 Outline of Report

The thesis comprises of the following sections and content: section 2 covers
the preliminary theory forming the foundation for the methods and techniques
used in the research; section 3 dissect the concrete methods and the applica-
tion thereof in implementing the environment, training the DRL controllers and
evaluating performance; section 4 presents the report from training, while sec-
tion 5 covers the experimental results; Lastly, the results and the approach are
discussed both concretely and in the wider cybernetic picture in section 6, and
the thesis concluded in section 7.

2 Theory 9

2 Theory

The background theory governing the research and its areas of interest are
introduced in this section. As most of the work on DRL and modelling is linked
to the preproject, there is naturally much overlapping content. However, there
has been significant improvements on the approach during the master project,
which merits some additions to the background theory. These upgrades includes
generating a curvature continuous path, as opposed to a linear piece-wise path,
implementing control fin dynamics and presenting the ocean current simulation
model. The fundamental building blocks of the preproject and master thesis is
found in subsection 2.1, which introduces the key ideas and terminology from
DRL; subsection 2.2 introduces the equations of motion for the AUV model;
lastly, theory on path following is presented in subsection 2.3.

2.1 Deep Reinforcement Learning

Training machines to execute tasks via reinforcement learning (RL) is not a new
field of research. In fact, RL techniques used in learning control systems was
seen as early as 1965 (Waltz and Fu, 1965). Sutton and Barto (2018) traces one
facet of the RL origin story back to optimal control and dynamic programming
- demonstrating the deep-rooted ties between RL and cybernetics.

Dynamic programming (and other earlier solution methods to the RL prob-
lem) suffers from what is known as the "curse of dimensionality", meaning that
the computational resources required to solve a problem grows exponentially
with the number of state-variables. It would then seem that the classical RL
methods had a natural ceiling to them. However, recent advancement in deep
neural networks have yielded incredibly powerful function approximators that
learns from large quantities of high-dimensional data, eviscerating the early
limitations of RL. (Sutton and Barto, 2018, ch. 1)

This goes to show that the general learning principles of RL was not fu-
tile, but a key catalyst was missing. Merging together with deep neural net-
works to form what is now known as deep reinforcement learning was that
catalyst. Combined with the computational power of today’s hardware, it is
now tractable to train and implement DRL controllers to solve complex con-
trol problems - such as playing Atari games or controlling robots (Schulman
et al., 2017; Levine and Koltun, 2013). The algorithms used in DRL are also in
constant evolution, and according the MIT Technology Review, RL are gaining
a larger market share of published papers in the category of machine-learning
each year (Zender, 2019).

A feature specific to RL, is the exploration versus exploitation trade-off: The
agent has to exploit what it has learned about the environment and how to
interact with it to increase rewards, but to come about better actions it must

10 2 Theory

first explore its action space. Learning by reinforcing good actions is thus syn-
onymous with how humans (and animals) learn; RL is the the formalization of
trial-and-error learning.

2.1.1 Terminology and Notation

Some important concepts and RL specific definitions to know before examining
the theory includes (Sutton and Barto, 2018, ch. 1):

• Agent: The agent is the decision maker, analogous to the controller in
control theory. The agent in this research is the pilot of the AUV, com-
manding the control fins for elevation and course.

• Environment: The environment is the world in which the agent operates,
which includes a set of possible states S, a well-defined set of possible
actions A and a model ρ(st+1|st, at) governing the transitions from one
state to the next. Specific to this project, the environment incorporates
a hydrodynamic model for an AUV, disturbances, obstacles and control
objectives, which in sum defines this transition model.

• Observation: The agent makes an observation at time-step t, ot, of the
environment’s state variables, st, drawn from S. If the process is fully
observable, which in general is not necessary, we get that ot = st. In this
work it is assumed that the environment is fully observable.

• Action: Based on an observation of the environment, the agent performs
an action at time-step t, at. The actions are the control commands for the
AUV actuators, and is drawn from A.

• Policy: A policy, πθ, maps the agent’s observations to actions, πθ : S −→
A. In DRL, this mapping manifests as a forward pass through a neural
network parameterised by the weights and biases θ. In practice, the policy
represents the control law and our goal is to find the optimal θ = θ∗ for
our objectives.

• Reward: Every state has an intrinsic value associated with it known as
a reward, representing how valuable it is to be in that state. The reward
signal can also be a function of what action was taken, so in general we
write the reward as rt = r(st, at).

2.1.2 The RL Goal

Reinforcement learning is the study of intelligence where an agent learns by
interacting with an environment. The aim of this interaction is for the agent

2 Theory 11

to achieve an objective through taking actions. The actions chosen has conse-
quences on the environment, and the environment gives back and observation
and a reward signal associated with the current state and action taken. Fig-
ure 1.3 shows the classical RL schematic adapted to the current setting of AUV
motion control.

Expressing RL as an environment containing a state space, an action space,
a transition model and rewards, leads to a formalization traditionally known as
Markov decision processes (MDPs) (Puterman, 2014). The study of MDPs are
derived from Markov chains - that is a sequential process for which the next
state only depends on the current state ("the future is independent of the past
given the present") - and forms the theoretical framework for RL. MDPs for-
malize an optimal control problem where the goal is to maximize accumulated
rewards. Special to RL, however, is that the agent does not need to know any-
thing about the underlying transition model to solve this optimization problem.
The challenge of the designer is to pose the optimization problem to capture the
goals and purposes of the system in the form of a reward signal, incentivizing
the agent to learn a policy achieving these goals and purposes. This is called
reward function design and is about finding a function rt(st, at) befitting the
problem at hand.

Some RL tasks are episodic and lasts T <∞ timesteps, and the accumulated
future reward in one episode is known as the return, Rγ

t . The expression for
the return is shown in Equation 2.1. Here, γ is a discount rate weighting the
importance of immediate versus long-term rewards. How to select the discount
rate is not obvious and is typically part of a tuning process included in every RL
project. (Sutton and Barto, 2018, ch. 3)

Rγ
t =

T∑
k=t

γt−kr(sk, ak), 0 < γ < 1 (2.1)

From the definition of the return we obtain the value function which is the
expected return by following the policy π starting from state st, and is written
as V π(st) = E{Rγ

t |st; π}. We also obtain a similar expression known as the Q-
function, which is the expected return by following the policy starting from
state st, but in addition taking initial action at. The Q-function is also known as
the state-action value-function and is written Qπ(st, at) = E{Rγ

t |st, at; π}. Note
that taking the expectation of the Q-function yields the value function (since in
expectation we would follow the most likely action initially, which is identically
the definition of the value function).

A potential difference between the value function and Q-function can oc-
cur based on what action is taken. This measure carries an intuitive meaning,
namely the advantage of choosing that action as opposed to following the pol-
icy, and is for this reason called the advantage function. The advantage func-
tion is expressed in Equation 2.2.

12 2 Theory

Aπ(s, a) = Qπ(s, a)− V π(s) (2.2)

The goal of the agent is to maximize accumulated future rewards by finding
an optimal policy. It has to infer this from experience, and learns by continual
error-correction. Based on the definition of return and policy, the RL goal can
be formally stated as the optimization problem in Equation 2.3:

π∗ = arg max
π

Es∼ρ,a∼π [Rγ
t] (2.3)

where the actions are drawn from the policy π and the states follow ρ. In DRL,
the policy is explicitly represented in terms of a deep neural network param-
eterized by the weights and biases θ. In this case the RL goal is finding the
optimal parameters θ∗ to represent the policy.

2.1.3 Solution Methods

In the case of DRL, solving Equation 2.3 yields the optimal parameters θ = θ∗

that maximize the expected return at all times t. RL algorithms used for solving
Equation 2.3 are typically divided into four categories:

• Value-based methods: Estimate the value function and/or the Q-function
and from that derive a control policy with high probability of taking ac-
tions that maximize these functions (Tai et al., 2016). In these methods,
an explicit representation of the value-function is needed, but the policy
is usually implicitly represented.

• Policy gradients method: Policy gradient methods do not make estimates
of the value functions, but instead increases the objective function di-
rectly by performing gradient ascent (Sutton et al., 1999). The policies
are therefore parameterized, for instance as the weights and biases of a
deep neural network, and these parameters are iteratively adjusted in the
ascent direction to increase performance (Tai et al., 2016). Hence, there
is always an explicit representation of a policy in this class of methods.

• Actor-Critic methods: A hybrid of policy gradient and value-based meth-
ods trying to capture the strengths of both. The method works in two
steps: First, the value function is approximated by a critic neural network,
then the parameters of the policy/actor is updated by taking a small step
in the direction suggested by the critic (Yoon, 2019). The methods there-
fore uses explicit representations for both the value-function and a policy.
A concept drawing of Actor-Critic methods is seen in Figure 2.1.

2 Theory 13

• Model-based RL: The aforementioned methods are model-free; They need
not to know anything about the underlying world model in order to opti-
mize the objective function. However, one can argue that the underlying
transition model is captured implicitly through representing the optimal
policy and/or the value-function. Model-based RL instead keep an explic-
itly representation of the transition model. This estimate can be used for
planning or even simulating further time-steps, as well as in optimal con-
trol or substitute in value-based methods. Most importantly, the benefits
of model-based methods are data efficiency and high adaptability. (Doll
et al., 2012; Weber et al., 2017)

Environment

Estimate
V(s)

Agent

State

R
ew

ar
d

U
pd

at
e

Po
lic

y
Action State

Critic

Actor

Figure 2.1: A schematic of the actor-critic method. The method is a hybrid of pol-
icy gradient and value-based methods. The policy neural network (actor)
makes decisions that affect how the environment transitions from one state
to the next, and the critic neural network observes the environment and
the rewards received to estimate a value function. Based on this estimate,
the policy is updated by some policy gradient method in the direction sug-
gested by the critic.

2.1.4 Policy Proximal Optimization

PPO was invented by Schulman et al. (2017) and is a state-of-the-art actor-
critic method. It utilizes general advantage estimation (GAE), as proposed in
(Schulman, Moritz, Levine, Jordan and Abbeel, 2015), and a novel clipped sur-
rogate objective function. Empirical results show that it outperformed other al-
gorithms on a collection of benchmark tasks - significantly in the ones involving
continuous control.

14 2 Theory

The value function and Q-function is in general unknown. Given by Equa-
tion 2.2, the advantage function is calculated from both these functions, and
hence is also in general unknown. Therefore, an estimate of the advantage
function, Âπt , is derived based on the value function estimated by the critic neu-
ral network, V̂ π(s). GAE is one method of estimating At, which is shown in
Equation 2.4. (Schulman, Moritz, Levine, Jordan and Abbeel, 2015)

Âπt = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1

where δt = rt + γV̂ π(st+1)− V̂ π(st)
(2.4)

The discount factor remains symbolized by γ, and λ ∈ [0, 1] represents a
trade-off parameter between estimator variance and bias, referred to as the
GAE parameter. The term δt is in RL known as the temporal-difference error
(Sutton and Barto, 2018), and when V π = V̂ π we have that δt is an unbiased
estimate of Aπt . If this were the case, we could set λ = 0 and obtain a perfect
estimate. However, we can not trust this to be the case. The solution is to sum
over more estimates over a horizon T to obtain a less biased estimator. Though,
increasing the amount of uncertain terms (by setting λ closer to 1) increases in
turn the variance of the estimate. Because the bias when using few δt terms are
significant, the GAE parameter is usually set close to 1.

The second key component of PPO is the novel objective function. This objec-
tive is a surrogate for the true objective, meaning that increasing the surrogate
in a local neighborhood - a so-called trust region - will ultimately increase the
true objective function. More formally, we can define the DRL objective function
as a function of the neural network weights and biases θ:

J(θ) := Es∼ρθ ,a∼πθ [Rγ
t] (2.5)

The objective function can be increased directly through gradient ascent, i.e. by
a policy gradient method, yielding the update scheme θt+1 ←− θt + α∇̂θJ(θ).
One method of calculating ∇̂θJ(θ), which is a stochastic estimate of the policy
gradient, is basing it on the advantage function estimate Âπt .

PPO improves the policy through so-called conservative policy iteration. Let
gt(θ) = πθ(at|st)

πθold (at|st) express the probability ratio between an old policy and an
updated one. Trust region based methods are motivated by updating the policy
such that gt stays small and the approximation is valid in a local neighborhood.
Trust region policy optimization (Schulman, Levine, Moritz, Jordan and Abbeel,
2015) used a constraint on the KL divergence (a measure for how one proba-
bility distribution differs from another) to limit the update, where its successor
PPO uses a clipped objective function seen in Equation 2.6.

LCLIP (θ) = Êt
[
min

(
gt(θ)Ât, clip (gt(θ), 1− ε, 1 + ε) Ât

)]
(2.6)

2 Theory 15

Here, ε is a tuning parameter restricting gt in each update. During a training
iteration, N actors (parallelized agents) are enabled to execute the policy and
in that way sample trajectories for T timesteps. The GAE is computed based
on the sampled trajectories, then used to optimize the surrogate objective for K
epochs using mini-batches of size M per update. The PPO method is given in its
most general form in algorithm 1 (Schulman et al., 2017).

Algorithm 1: Proximal Policy Optimization, Actor-Critic style
for iteration: 1,2... do

for actor: 1,2...N do
Run policy πθold

for T time-steps
Compute advantage estimate Â1...ÂT

end
Optimize surrogate L w.r.t. θ, with K epochs and mini-batch size M < NT
θold ← θ

end

Choosing PPO to solve the current control problems is based on its reputable
performance on a wide range of continuous control problems, indicating its
potential benefit to this research as well. According to its creators, it also strikes
a balance between simplicity, data efficiency and robustness.

2.2 AUV Modeling

This section introduces a dynamic model that can be used to accurately sim-
ulate an AUV in a hydrodynamic environment. This is done by using a 6-DOF
maneuvering model which is represented by 12 highly coupled and nonlinear
first-order ordinary differential equations (ODEs). Dynamic models for AUVs
comprises a kinematic (subsubsection 2.2.2) and a kinetic (subsubsection 2.2.3)
part. Kinematics represents the geometrical evolution of the vehicle and in-
volves a coordinate transformation between two important reference frames.
Kinetics considers the forces and moments causing vehicle motion. The kinetic
analysis is typically important when designing motion control systems because
actuation can only be achieved by applying control forces and moments. Be-
fore delving into the details of the kinematic and kinetic equations, the nota-
tion used to detail the model’s states and parameters is presented in Table 2.1.
This notation is used by the Society of Naval Architecths and Marine Engineers
(SNAME (1950)). (Fossen, 2011, p. 16)

16 2 Theory

Table 2.1: Notation for marine vessels used by SNAME (1950).

Degree of freedom Force/Moment Velocities Positions
1 motion in the x direction (surge) X u x
2 motion in the y direction (sway) Y v y
3 motion in the z direction (heave) Z w z
4 rotation about x axis (roll) K q φ
5 rotation about y axis (pitch) M p θ
6 rotation about z axis (yaw) N r ψ

2.2.1 Reference Frames

Two reference frames are especially important in modeling of vehicle dynamics:
The North-East-Down (NED) frame denoted {n} and the body frame denoted
{b}. The NED coordinate system is considered to be inertial, with principal axis
pointing towards true north, east and downwards - normal to Earth’s surface -
for the xn, yn, zn axes, respectively. Since the NED frame is considered inertial,
Newton’s laws of motion applies. However, it is based on a tangent plane of the
Earth, so it is only valid for local navigation (Fossen, 2011, p. 17).

The body frame has its origin located at the vehicle’s center of control (CO),
which in general is a design choice. The CO is not automatically placed at the
vehicle’s center of mass (CM) since this point might be time-varying. A typical
point for the CO for AUVs is therefore the center of buoyancy (CB). The body
frame’s xb axis points along the longitudinal axis of the vehicle, the yb axis
points transversal and the zb axis points normal to the vehicle surface. The two
coordinate systems are pictured in Figure 2.2.

��

��

��

��

��

�� � �
�

Figure 2.2: Simple illustration of BODY and NED coordinate systems. The BODY frame
is obtained by rotating the NED frame about its principal axes.

To relate vectors in different coordinates, we utilize the Euler angle rotation

2 Theory 17

matrix seen in Equation 2.7.

Rn
b (Θnb) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 1 (2.7)

The Euler-angles describing the vehicle’s attitude is contained in Θnb = [φ, θ, ψ]T .
To obtain a vector expressed in the body frame in NED coordinates, a matrix
multiplication with the rotation matrix is applied. To rotate the inverse way, i.e.
from {n} to {b}, we use the transposed rotation matrix (Rn

b)T = Rb
n.

2.2.2 Kinematic Equations

The kinematic state vector is the concatenation of the position of the vehicle
in NED coordinates and the vehicle’s attitude with respect to the NED frame.
This vector is symbolized by η = [pn,Θnb]

T = [x, y, z, φ, θ, ψ]T . The velocity
vector expressed in {b}, vb, is utilized to find a differential equation for pn.
Rotating this vector by applying Equation 2.7, yield the differential equation
for the position in {n}:

ṗn = vn = Rn
b (Θnb)v

b (2.8)

where the body-fixed velocity vector is defined as vb = [u, v, w]T and the com-
ponents are defined according to Table 2.1.

To write a differential equation for the whole kinematic state vector, an equa-
tion describing the time-evolution of the Euler-angles is obtained by transform-
ing the linear velocities expressed in {b}, according to Equation 2.9. Note that
this transformation is not well-defined for θ = π

2
. An alternative representation

avoiding the singularity is quaternion parameterization (Fossen, 2011, p. 25).

Θ̇nb = TΘ(Θnb)ω
b
b/n =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

qp
r

 2, (2.9)

Now the complete kinematic differential equation in Equation 2.10 can be
written by combining Equation 2.8 and Equation 2.9.

η̇ =

[
ṗn

Θ̇nb

]
=

[
Rn
b (Θnb) 0

0 TΘ(Θnb)

] [
vb

ωbb/n

]
= JΘ(η)ν (2.10)

1sφ = sinφ, cφ = cosφ
2tθ = tan θ

18 2 Theory

2.2.3 Kinetic Equations

The Kinetic equations of motion for a marine craft can be expressed as a mass-
spring-damper system. The mass terms naturally stems from vessel body, while
the spring forces acting on the body arise from buoyancy. The damping is a
result of the hydrodynamic forces caused by motion. The model implemented
is adapted from da Silva et al. (2007) and all model parameters can be seen in
Appendix A. The AUV specifications on which the model parameters is based is
given by Table 2.2:

Table 2.2: Specifications for simulated AUV adapted from da Silva et al. (2007).

Symbol Description Value Unit
m Mass 18 kg
L Length 108 cm
W Weight 176 N
B Buoyancy 177 N
zG Position of CM w.r.t. CB in z-axis 1 cm
d Diameter 15 cm

δmax Maximum control fin deflection 30◦ deg
ηmax Maximum propeller thrust 14 N

Furthermore, it is based on the following assumptions:

1. Assumption 1: The AUV operates at a depths below disturbances from
wind and waves.

2. Assumption 2: The maximum speed is 2m/s.

3. Assumption 3: The moment of inertia can be approximated by that of a
spheroid.

4. Assumption 4: The AUV is passively stabilized in roll and pitch by placing
the CM a distance zG under the CO.

5. Assumption 5: The AUV shape is top-bottom and port-starboard symmet-
ric.

6. Assumption 6: As a fail-safe mechanism, the AUV is slightly buoyant.

The vessel’s motion is governed by the nonlinear kinetic equations expressed
in {b} according to Equation 2.11:

Mν̇r︸ ︷︷ ︸
Massforces

+ C(νr)νr︸ ︷︷ ︸
Coriolisforces

+ D(νr)νr︸ ︷︷ ︸
Dampingforces

+ g(η)︸︷︷︸
Restoringforces

= τ control (2.11)

2 Theory 19

where νr = ν − νc is the velocity relative to the velocity of an ocean current,
represented by νc in {b} . When no currents are present, we see that ν = νr.
Furthermore, only irrotational currents are considered.

Mass Forces The systems inertia matrix, M, is the sum of the inertia matrix
for the rigid body (RB) and the added mass (A). Added mass is the inertia
added from the weight of fluid the vessel displaces when moving through it.
Because of the symmetry assumptions, both matrices are diagonal. However,
the rigid body matrix is defined in the center of gravity, such that it must be
shifted to the center of control, yielding some coupling terms:

M = MRB + MA =


m−Xu̇ 0 0 0 mzG 0

0 m− Yv̇ 0 −mzG 0 0
0 0 m− Zẇ 0 0 0
0 −mzG 0 Ix −Kṗ 0 0

mzG 0 0 0 Iy −Mq̇ 0
0 0 0 0 0 Iz −Nṙ


(2.12)

Coriolis Forces Naturally, the added mass will also effect the Coriolis-centripetal
matrix, C(νr), which defines the forces occurring due to {b} rotating about {n}.
Moreover, the linear-velocity independent parameterization of the rigid-body
Coriolis-centripetal matrix is utilized, easing the implementation of irrotational
ocean currents (Fossen, 2011, p. 222). (Note that there are still linear velocity
terms caused by the added mass). It is this trick that makes it possible to col-
lect the rigid-body and added mass terms to represent the 6-DOF model by the
elegant Equation 2.11. When using the linear-velocity independent parameter-
ization, the Coriolis-centripetal matrix is written:

C(νr) = C(νr)RB + C(νr)A =
0 −mr mq mzGr −Zẇwr Yv̇vr
mr 0 −mp Zẇwr mzGr −Xu̇ur
−mq mp 0 −(mzGp+ Yv̇vr) −mzGq +Xu̇ur 0
−mzGr −Zẇwr mzGp+ Yv̇vr 0 (Iz −mz2

G −Nṙ)r (−Iy +Mq̇)q
Zẇwr −mzGr mzGq −Xu̇ur (−Iz +mz2

G +Nṙ)r 0 (Ix −Kṗp
−Yv̇vr Xu̇ur 0 (Iy −Mq̇)q (−Ix +Kṗ)p 0



(2.13)

20 2 Theory

Damping Forces The components of hydrodynamic damping modelled is lin-
ear viscous damping, nonlinear (quadratic) damping due to vortex shedding
and lift forces from the body and control fins. Thus, the damping matrix, D(νr),
can be expressed as:

D(νr) = D + Dn(νr) + L(νr) (2.14)

The linear damping is given by:

D = −


Xu 0 0 0 0 0
0 Yv 0 0 0 Yr
0 0 Zw 0 Zq 0
0 0 0 Kp 0 0
0 0 Mw 0 Mq 0
0 Nv 0 0 0 Nr


The nonlinear damping is given by:

Dn(ν) = −


Xu|u||u| 0 0 0 0 0

0 Xv|v||v| 0 0 0 Yr|r||r|
0 0 Zw|w||w| 0 Zq|q||q| 0
0 0 0 Kp|p||p| 0 0
0 0 Mw|w||w| 0 Mq|q||q| 0
0 Nv|v||v| 0 0 0 Nr|r||r|


Finally, the lift is given by:

L(ν) = −


0 0 0 0 0 0
0 Yuvf + Yuvb 0 0 0 Yurf
0 0 Zuwf

+ Zuwb
0 Zuqf 0

0 0 0 0 0 0
0 0 Muwf

+Muwb
0 Muqf 0

0 Nuvf +Nuvb 0 0 0 Nurf

u

Restoring Forces The restoring forces working on the AUV body are functions
of the orientation, weight and buoyancy of the vehicle. Because the vehicle is
assumed to be slightly buoyant and the passive stabilization of roll and pitch,
the restoring force vector can be written as:

G(η) =


(W −B) sin θ

−(W −B) cos θ sinφ
−(W −B) cos θ cosφ

zGW cos θ sinφ
zGW sin θ

0

 (2.15)

2 Theory 21

Control Inputs There are 3 control inputs: propeller thrust, rudder and ele-
vator fins denoted n, δr and δs, respectively. All actuators are constrained ac-
cording to Table 2.2. The constraint on the thrust force guarantees that the
low-speed assumption holds. The control inputs are related to the control force
vector according to Equation 2.16:

τ control =


1 0 0
0 Yuuδru

2
r 0

0 0 Zuuδsu
2
r

0 0 0
0 0 Muuδsu

2
r

0 Nuuδru
2
r 0


nδr
δs

 (2.16)

This completes the details of the model implemented. The numerical values
used in the simulation can be found in Appendix A. For a complete derivation
of the model and how the numerical values are obtained from the specifications
and assumptions, da Silva et al. (2007) and Fossen (2011) are referred to for
extensive explanations.

2.2.4 Simulation Model for Ocean Current

To simulate the environmental disturbance in the form of ocean currents, a
3D irrotational ocean current model is implemented. The model is based on
generating the intensity of the current, Vc = ‖νc‖2, by utilizing a first-order
Gauss-Markov Process (Fossen, 2011, Ch. 8):

V̇c = −µVc + w (2.17)

where w is white noise and µ ≥ 0 a constant. An integration limit is set so that
the current speed is limited between 0.5 to 1 m/s. The current direction is static
and initialized randomly for each episode. The current direction is described by
the sideslip angle and angle of attack are symbolized by αc and βc, respectively.
These angles represent from what direction the current hits the body frame. In
NED coordinates, the linear ocean current velocities can be obtained by Equa-
tion 2.18 (Fossen, 2011, Ch. 8).

vnc = Vc

cosαc cos βc
sin βc

sinαc cos βc

 (2.18)

There are no dynamics associated with the sideslip angle and the angle of at-
tack in the simulations; The current direction stays fixed throughout an episode.
To obtain the linear velocities in the body frame, we apply the inverse Euler-
angle rotation matrix, as seen in Equation 2.19:

22 2 Theory

ucvc
wc

 = Rn
b (Θnb)

Tvn
c (2.19)

Since the ocean current is defined to be irrotational, the full current velocity
vector is written νc = [uc, vc, wc, 0, 0, 0].

2.2.5 Control Fin Dynamics

To simulate operation of the control fins more realistically, the output of the
controller passes through a first-order low-pass filter with time-constant Tf .
The intention behind this implementation is to remove noisy outputs from the
DRL agent, without having to add a cost to the control action derivatives δ̇r and
δ̇s. Ideally, the agent learns that abrupt control action is pointless since high
frequency commands are filtered out.

The implementation of the discrete low-pass filter for the control fins is given
by Equation 2.20:

δi,t = (1− a)δi,t−1 + aut , i = r or s (2.20)

where the filter-parameter a is related to the time-constant by a = ∆t
Tf+∆t

, ut is
the raw control action and ∆t is the simulation step-size. (Haugen, 2008)

2.3 3D Path Following

In this section, the path following problem is formally introduced. A 3D path
is defined relative to the NED frame and the control problem is independent
of time. This means that the vehicle should only progress along the path while
minimizing tracking errors, but is not required to be at a specific point at a
specific time, as opposed to trajectory tracking (Fossen, 2011, ch. 9).

A set of nw waypoints is used to generate the path, starting at the origin of
the NED coordinates for simplicity. In the preproject, the path was generated
by linear interpolation between the waypoints, resulting in a linear piece-wise
path. The parametric equations for the linear interpolation scheme is seen in
Equation 2.21 (Breivik and Fossen, 2009).

xp,m(s) = xp,m−1 + s cosχp,m−1 cos υp,m−1

yp,m(s) = yp,m−1 + s sinχp,m−1 cos υp,m−1

zp,m(s) = zp,m−1 − s sin υp,m−1

(2.21)

Subscript p is used to indicate that the coordinate is representing the path and
m denotes the waypoint index. χp,m−1 and υp,m−1 are the azimuth and elevation
angle from waypoint m − 1 to m. The parametric equations are continuously

2 Theory 23

differentiable in s, which is the along-track distance travelled on the path from
waypoint m− 1 to m.

However, an obvious flaw with the linear interpolation scheme are the abrupt
steps in the reference when switching between waypoints; There is a continu-
ity problem because the vehicle cannot move in a discontinuous manner. A
proposed solution to this has been smoothing out the vertices, creating paths
comprised of circle arcs interpolating between the linear segments connecting
waypoints. This approach is known as the Dubin’s path(Fossen, 2011), but con-
tains another flaw: When switching from linear segments to cirlce arcs, the de-
sired yaw rate/heading rate (r/q) steps. In other words, it is velocity continuous
but not curvature continuous. The classes of geometric continuity is referred to
as G0, G1, G2...Gn in the literature (Chang and Huh, 2015). To elaborate, G2

continuity means that the path is second-order differentiable and therefore cur-
vature continuous, where as G0 refers to piece-wise linear paths.

2.3.1 Quadratic Polynomial Interpolation

Any well-defined path for a vehicle that cannot accelerate infinitely fast must
be G2 continuous. Methods such as cubic and spline interpolation establish G2

continuity and are straightforward to implement in 2D, but cannot be applied
directly in 3D interpolation. In fact, some spline-methods has been shown to
produce paths that do not visit all waypoints in 3D (Chang and Huh, 2015). This
is undesirable and the path should visit all waypoints in the correct sequence.

Chang and Huh (2015) proposed a 3D extension of qudratic polynomial in-
terpolation (QPMI) to create a G2 continuous path by using second-order poly-
nomials and a membership function to smoothly switch between polynomials.
They choose quadratic polynomials because this is the lowest order possible
for obtaining G2 continuity, and higher order polynomials are prone to be cor-
rupted by Runge’s phenomenon.

To generate a QPMI path in 3D, we start by writing the path Pp as a function
of the along-track distance, s, such that Pp(s) : (x(s), y(s), z(s)). Each waypoint
m has a euclidian distance sm associated with it. For the first waypoint this
distance is zero, i.e. s1 = 0, and the others are obtained by the generalized
equation sm =

∑m
i=2

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2. The quadratic

polynomials linking three waypoints togheter can be written:

xm(s) = axms
2 + bxms+ cxm

ym(s) = ayms
2 + byms+ cym

zm(s) = azms
2 + bzms+ czm

m = 2, 3, ..., nw − 1

(2.22)

And the coefficients can be found by solving the following matrix equations:

24 2 Theory

axmbxm
cxm

 =

u2
m−1 um−1 1
u2
m um 1

u2
m+1 um+1 1

−1 x(sm−1)
x(sm)
x(sm+1)

 (2.23)

aymbym
cym

 =

u2
m−1 um−1 1
u2
m um 1

u2
m+1 um+1 1

−1 y(sm−1)
y(sm)
y(sm+1)

 (2.24)

azmbzm
czm

 =

u2
m−1 um−1 1
u2
m um 1

u2
m+1 um+1 1

−1 z(sm−1)
z(sm)
z(sm+1)


m = 2, 3, ..., nw − 1

(2.25)

A path represented by nw waypoints require nw − 2 polynomials to generate
the QPMI path, as seen in the previous equations. A group of polynomials link-
ing three and three waypoints is therefore obtained. The group of polynomials
representing the path is written Pp(s) : (X(s), Y (s), Z(s)), where the groups
X, Y, Z is expressed in general form as

X(s) =


x2(s) s1 ≤ s < s2

µr,m(s)xm+1(s) + µf,m(s)xm(s), (2 ≤ m < nw − 1) s2 ≤ s < snw−1

xnw−1(s) snw−1 ≤ s ≤ snw

(2.26)

Y (s) =


y2(s) s1 ≤ s < s2

µr,m(s)ym+1(s) + µf,m(s)ym(s), (2 ≤ m < nw − 1) s2 ≤ s < snw−1

ynw−1(s) snw−1 ≤ s ≤ snw

(2.27)

Z(s) =


z2(s) s1 ≤ s < s2

µr,m(s)zm+1(s) + µf,m(s)zm(s), (2 ≤ m < nw − 1) s2 ≤ s < snw−1

znw−1(s) snw−1 ≤ s ≤ snw

(2.28)
and µr,m(s), µf,m(s) are membership functions given by:

µr,m(s) =
s− sm

sm+1 − sm
µf,m(s) =

sm+1 − s
sm+1 − sm

m = 2, 3, ..., nw − 1

(2.29)

2 Theory 25

Note that the first and the last polynomial is not overlapping any of the
other, hence the membership functions can be thought of as equal to one and
zero in these regions. In the intermediate waypoints, we "blend" the polyno-
mials smoothly by linearly increasing and decreasing the membership of two
polynomials. In the paper by Chang and Huh (2015), they go on to prove G2

continuity and details the derivation of the method even more. A visual exam-
ple of the QPMI method is seen in Figure 2.3.

North [m]
0 20406080 East [m]

020406080

Do
wn

 [m
]

0
10
20
30
40
50
60

QPMI path
Linear piece-wise path
Waypoints

Figure 2.3: A set of ten waypoints connecting a path using linear and QPMI method.

2.3.2 Path-centered Coordinate System

To define the tracking errors, the Serret-Frenet ({SF}) reference frame asso-
ciated with each point of the path is introduced. The xSF axis points tangent
to the path, the ySF axis normal to the path and the zSF axis points orthogo-
nal to both such that zSF = xSF × ySF (Encarnacao and Pascoal, 2000). The
tracking-error vector, ε = [s̄, e, h]T is defined by the along-track, cross-track and
vertical-track error pictured in Figure 2.4. The tracking-error vector points to-
wards the closest point on the path from the vessel. Because the origin of the
{SF} frame can be arbitrarily placed, the point on the path closest to vessel
is chosen as the origin in the simulation. This yields s̄ = 0, which intuitively
makes sense in a path following scenario since the path is not dependent on
time. There is therefore no error in the along-track distance component.

26 2 Theory

��

��

��

�̄

�

ℎ
�

���

���

���

� (�)

Figure 2.4: The Serret-Frenet reference frame defines the components for the tracking
error vector. For illustration, we have shown that the origin of the SF frame
can be placed arbitrarily along P (s), but in the simulation it coincides with
the closest point on the path from the vessel. This because the control
objective in path following is to drive e and h to zero.

2.3.3 Guidance Laws for Path Following

The goal of path following is aligning the vehicle’s velocity vector in n, Vn, with
the tangent direction of the path. In case of a tracking error, as demonstrated in
Figure 2.4, a user-specified look-ahead distance ∆ is set to guide the vessel back
to the path. Hence, the goal is not to guide the vehicle perpendicularly towards
the path, but instead smoothly converge back to the path further downstream.
The guidance laws used for generating desired pitch and heading is therefore a
look-ahead based steering-law generating a LOS-vector. These signals are cal-
culated from ε and ∆. First, we obtain the tracking errors by Equation 2.30
(Breivik and Fossen, 2009):

ε = RSF
n (υp, χp)

T (Pn −Pn
p) (2.30)

where Pn is the position of the vessel and Pn
p is the closest point on the path.

Now the desired azimuth and elevation angle can be calculated according to:

χd(e) = χp + χr(e) , υd(h) = υp + υr(h) (2.31)

where

χr(e) = arctan(− e

∆
) , υr(h) = arctan(

h√
e2 + ∆2

) (2.32)

It is seen that driving e and h to zero will in turn drive the correction angles
χr(e) and υr(h) to zero, achieving the goal of path following by aligning the
velocity vector with the path-tangent when χd(e) = χp and υd(h) = υp.

3 Method and Implementation of the Environment 27

3 Method and Implementation of the Environment

This section aims to give an overview of the tools and methods used in imple-
menting the simulation model and setting up the RL environment which the
DRL controllers are developed in. As previously stated, the two practical chal-
lenges by applying RL methods are 1) how to build meaningful and challenging
tasks for the agents, and 2) how should the training process be setup in detail;
E.g. what information should be available for the agents, what range of obsta-
cle detection, how to incentivize behaviour through a reward system etc. What
follows is a suggested solution, but by no means the only solution.

First, a standard interface used in RL research is presented in subsection 3.1
before subsection 3.2 details the engineering of the specific simulation envi-
ronment tailored to the current work. The application of the learning method
known as curriculum learning is presented in subsection 3.3 with the related
training scenarios developed to fit into this framework. The environment serves
as the foundation for all scenarios, and a scenario refers to how the environ-
ment’s building blocks are configured. Next, a proposed solution to simulate
a forward looking sonar in 3D is offered in subsection 3.4. This provides per-
ception of obstacles relative to the AUV’s position. The reward function design
is presented in subsection 3.5, before detailing the observation vector (i.e. the
available information for the agent to base its decisions on) concludes the sec-
tion in subsection 3.6.

3.1 DRL Framework and the OpenAI Interface

In order to build the environments, the OpenAI Gym interface and framework
for RL is used to ease implementation and, to some extent, standardize the
code. OpenAI Gym (Brockman et al., 2016) was created with this exact purpose
in mind: To expose a common interface, shown in Listing 1, and provide a
standard toolkit for reinforcement learning research. In addition to the common
interface, the framework contains a set of test environments where anyone can
implement and benchmark their RL algorithm against the current state-of-the-
art. This lies beside the point in this research, however, as we here instead want
to use the current state-of-the-art on a custom environment created to simulate
AUV motion control. In other words, no improvements on current RL algorithms
are proposed.

Another RL framework built on top of Open AI is Stable Baselines developed
by Hill et al. (2018), which implements improved parallelizable versions of
the RL algorithms found in OpenAI Baselines (Dhariwal et al., 2017). These
libraries are written in Python, and this warranted the further use of Python for
the current project as well. The complete code can be found on Github3.

3Link: https://github.com/simentha/gym-auv

https://github.com/simentha/gym-auv

28 3 Method and Implementation of the Environment

1 import gym

2 from gym import spaces

3

4 class CustomEnv(gym.Env):

5 """ Custom Environment that follows gym interface """

6 metadata = {’render.modes’: [’human’]}

7

8 def __init__(self , arg1 , arg2 , ...):

9 super(CustomEnv , self).__init__ ()

10 # Define action and observation space as gym.spaces objects

11 ...

12

13 def step(self , action):

14 # Execute one time step within the environment

15 ...

16 def reset(self):

17 # Reset the state of the environment to an initial state

18 ...

19 def render(self , mode=’human’, close=False):

20 # Render the environment to the screen

21 ...

Listing 1: The OpenAI Gym interface

3.2 Building and Simulating the Environment

The simulation environment contains an implementation of the AUV dynam-
ics, a path generated from a set of waypoints Wp, nobs obstacles hindering the
AUV from advancing along (or outside of) the path and an ocean current C per-
turbing the AUV’s motion. How these components are configured depends on
which scenario S is chosen. Further requirements to generate an environment
is specifying the integration time-step ∆t. The environment parameters and the
various scenarios are easily modified through a configuration file.

From the common interface, we have that the environment object must im-
plement a step function. Following the schematic drawn in Figure 1.3, the step
comprises of the following sequence: 1) The agent receives an observation
vector containing information about the environment. This vector is passed
through the policy neural network to obtain a control action. 2) The control
action has a consequence on the environment and the resulting AUV motion
is calculated by simulating the equations of motion one step forward using a
numerical solver. Here, the environmental disturbances are also a driving force
impacting motion, such that the ocean current model is also simulated one step
forward. 3) In turn, this affects the AUVs position and orientation relative to
the path. Consequently, the guidance system calculates a new desired direc-
tion. This new information and a reward is so passed back to the agent and we
start over at 1). Note that a reward signal is only necessary during training.

3 Method and Implementation of the Environment 29

Algorithm 2 is used to generate an instance of the PathColav3D object,
which inherits the OpenAI Gym base environment class and with that the stan-
dard interface seen in Listing 1.

Algorithm 2: Algorithm for creating simulation environment
Require:

Number of observations no and actions na
Scenario S
Simulation step-size ∆t

Procedure: GenerateEnviroment(no, na, S, ∆t)
Define action and observation spaces with dimensions given by no, na
Obtain initial AUV kinematic state η0,Wp, no and C from S
Construct a G2 continuous path P by applying QPMI(Wp)
Distribute no obstacles along P
Initialize AUV at η0

Set ∆t as the integration step-size
Reset simulation history and episode reward

3.2.1 Numerical Solver

An ODE solver using the Dormand-Prince method of order five is implemented
to simulate the AUV equations of motion. This method can be used with auto-
matic adjustment of the step-size, but for simplicity this application uses a fixed
step-size of ∆t = 0.10s. This is the standard ODE solver used in MATLAB (the
well-known "ode45" method) which is optimized for accuracy (Egeland and
Gravdahl, 2002). According to MathWorks 4, this should generally be the first
choice for numerical solvers. The butcher array for the Dormand-Prince method
can be seen in Table 3.1. This implementation is a massive improvement from
the preproject, where a single-step Euler integration was used with step-size
∆t = 0.01s. In other words, the RL agent can now explore and sample 10 times
faster.

Table 3.1: Dormand-Prince butcher array.

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

49
176

−5103
18656

y 35
384

0 500
1113

125
192

−2187
6784

11
84

4The makers of MATLAB and Simulink. Link: mathworks.com

https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html

30 3 Method and Implementation of the Environment

3.3 Environment Scenarios and Curriculum Learning

Curriculum learning is the idea of learning progressively harder tasks, to incre-
mentally obtain better and more complex skills. Additionally, as the agent is
introduced to more complexity it can exploit what it has already learned. The
agent can "start small", learning easier aspects of a task and the level of diffi-
culty is increased as the current level is mastered. Hence, in this context, five
scenarios labeled "beginner", "intermediate", "proficient", "advanced" and "ex-
pert" level training scenarios are developed, where an expert level pilot should
be able to solve all previous tasks impressively. The hybrid control problem of
path following and collision avoidance can be effectively described as a multi-
task RL problem: The desired outcome is for the agent to solve both tasks of
following the 3D trajectory in space and deviating if an obstacle happens to
hinder further on-path progress. However, it seems natural to define it as a
progressive problem, as environmental complexity can be defined in terms of
obstacle density and even the level of perturbation from external disturbances,
such as the intensity of an ocean current. (Arguably, the level of path curvature
is also a variable influencing environmental complexity. However, path curva-
ture does not differ between scenarios.)

Curriculum learning was formalized by Bengio et al. (2009), where they
showed that indeed machine learning algorithms do benefit from the concept of
"starting small". What is truly interesting about this approach, is that it mirrors
training techniques shown to be effective in human and animal learning. It also
echoes the concept of self-play, seen when two game-playing agents play against
each other over and over while complexity evolves as skill level increases.

3.3.1 Training Scenarios

Training scenarios are constructed by generating a path from a random set of
waypoints, drawn such that the elevation and azimuth angle between two ad-
jacent waypoints are limited, distributing obstacles along this path and instan-
tiate an ocean current with either zero or time-varying intensity. The scenarios
defining the training levels used in curriculum learning are:

• Beginner level: Only a path and no obstacles or ocean current are present.

• Intermediate level: A single obstacle is placed on the half-way mark.

• Proficient level: Two more obstacles are placed equally distanced from
the half-way mark.

• Advanced level: Additional obstacles are placed randomly outside the
path such that an avoidance maneuver could induce a new collision course.

3 Method and Implementation of the Environment 31

• Expert level: Similar to the advanced level, but here an ocean current is
present.

Figure 3.1 visualizes all training scenarios.

North [m]
0

100
200East [m]

100
0

100

Down [m
]

100

0

100

(1a) Beginner level

North [m]0 100 200
East [m]

100
0

100

Down [m
]

100

0

100

(1b) Intermediate level

North [m]50
100East [m]

50
0

50

Down [m
]

50

0

50

(1c) Proficient level

North [m] 0100200
East [m

]
100

0 100

Do
wn

 [m
]

100

0

100

(1d) Advanced/Expert level

Figure 3.1: Training scenarios used in curriculum learning and quantitative analysis.

As can be seen, in all scenarios the first and the last third of the path is
collision-free, in order to keep part of curriculum from the beginner scenario
(pure path following) present throughout the various training stages. This is
intended to fight catastrophic forgetting, a phenomena seen occurring in neural

32 3 Method and Implementation of the Environment

networks when learned knowledge are abruptly forgotten upon acquiring new
knowledge (Goodfellow et al., 2013). In practice it has been seen that neural
networks seemingly forgets how to do task 1 after having learned task 2, and
by having the presence of pure path following throughout all scenarios, this
knowledge should be kept intact from beginner to expert.

To ensure that the argument of increased complexity holds, all scenarios are
generated such that they generate the previous difficulty level plus something
more. For instance, intermediate level is generated by first instantiating the be-
ginner level, then adding an obstacle. Similarly, the proficient level is generated
by instantiating the intermediate level, then adding two more obstacles, etc.
This way complexity always increase on average as we progress in the learning
process.

In addition to train the agent progressively in these scenarios, quantitative
evaluation is performed by sampling a number of episodes such that the agents’
average performance across the various difficulty levels can be established. We
then extract key metrics, specifically the average tracking errors, the collision
rate and the success rate. This will be elaborated on in subsequent sections.

3.3.2 Test Scenarios

As neural networks are generally seen as "black boxes", it is desirable to evaluate
performance in special-purposed test scenarios designed to test specific aspects
of the agents’ behaviour. Thus, four specialized scenarios targeting to expose
certain behavioural features are created.

The first scenario tests the agent in pure path following. In order for results
to be reproducible, a non-random path is generated from the waypoints given
by Table 3.2. Furthermore, the test is performed both with and without the
presence of an ocean current. Evaluation is based on the average tracking error
obtained by calculating the integral absolute error and divide by the number of
time-steps simulated.

Next, special (extreme) cases where it would be preferable to use only one
actuator for COLAV, i.e. horizontally and vertically stacked obstacles, are gener-
ated. The agents are also tested in a typical pitfall scenario for reactive COLAV
algorithms: A dead-end. See Figure 3.2 for illustrations of the test scenarios.

Table 3.2: Waypoints for test path.

WP1 WP2 WP3 WP4 WP5

x 0 50 80 120 150
y 0 5 5 10 0
z 0 15 −5 0 0

3 Method and Implementation of the Environment 33

North [m]0
100

200
East [m] 100

0
100

Down [m
]

100

0

100

(2a) Path Following

North [m]
0

50
100East [m]

50

0

50
Down [m

]

50

0

50

(2b) Dead-end

North [m]50East [m]
0

Down [m
]

0

(2c) Horizontal obstacles

North [m]50East [m]
0

Down [m
]

0

(2d) Vertical obstacles

Figure 3.2: Test scenarios for qualitative analysis.

3.4 Forward Looking Sonar

Being able to react to the unforeseen obstacles require the AUV to perceive the
environment through sensory inputs. This perception, or obstacle detection,
is simulated by providing the agent a 2D sonar image, representing distance
measurements to a potential intersecting object in front of the AUV. This setup
emulates a forward looking sonar (FLS) mounted on the front of the AUV, as
illustrated in Figure 3.3. A 3D rendering of the FLS simulation is seen in Fig-
ure 3.4. The specific sensor suite, the sonar range and the sonar apex angle is
configurable, and can therefore be thought of as hyperparameters.

34 3 Method and Implementation of the Environment

Figure 3.3: The FLS mounted on the front of the AUV scans both vertically and hori-
zontally.

Depending on the chosen sensor suite, the number of sensor rays can get
quite large. It is also notable that this issue is exponentially larger in 3D com-
pared to 2D, slowing the simulation speed significantly as searching through
the sonar rays (line search) is computationally expensive. For this reason, the
sensor suite used in this research is 15 by 15, providing a grid with 10◦ spacing
between each sonar ray when scanning with a 140◦ apex angle. This amounts
to a total of 225 line searches per sensor update and in order to limit this stress
on computational resources, the update frequency is set to 1Hz (every 10∆t).
Moreover, the sonar range sr is limited to 25m.

North [m]
20 40 60 80 East [

m]
20

40
60

80

Do
wn

 [m
]

20

40

60

80

Target Goal
AUV

(4a) The green sonars rays are not detecting any obstacles.
The red beams are not seen here due to overlay from the
collision-free zones.

North [m]

2030 40 50 60 70 80 East [
m]

20304050607080

Do
wn

 [m
]

20
30
40
50
60
70
80

Target Goal
AUV

(4b) Here, in the exact same time-stamp, the collision-free sec-
tors are removed and only the rays detecting an obstacle
is showed.

Figure 3.4: 3D rendering of sonar simulation.

3 Method and Implementation of the Environment 35

3.5 Reward Function

Reward function design is a crucial part of any RL process. The goal is to es-
tablish an incentive so the agent learn certain behavioural aspects. This is done
by trying to capture human-like intuition in the form of a reward function. For
instance, following the path is objectively desirable, but this goal must be sus-
pended in the case off a potential collision. When to react and by what safety
margin is inherently a subjective choice. Regulating this trade-off is a balancing
act, where following the path notoriously would result in many collisions and
being too cautious would be ineffective in reaching the end-goal. Additionally, a
configuration involving excessive roll, i.e. the angular displacement of the AUV
arounds its own longitudinal axis, is undesirable because that implies inverting
or even swapping the two actuators’ effect (the rudder would operate as the
elevator and vise versa) in terms of combating course and elevation errors. Not
using the actuators to aggressively is therefore key in achieving smooth and
safe operation. Thus, a reward function incorporating these important aspects
of AUV motion control are developed.

The first part focuses on path following and simply penalizes errors between
desired and actual course and elevation angle, as given by Equation 3.1:

rpft (χ̃, υ̃) = cχχ̃
2 + cυυ̃

2 (3.1)

Where cχ and cυ are negative weights deciding the severity of being off the
course and elevation angles calculated by the guidance laws. The next incentive
is avoiding obstacles blocking the path seen through the 2D sonar image. First,
the range measurements are converted to a proportionally reverse quantity
called obstacle closeness. This quantity is written c(di,j) = clip

(
1− di,j

dmax
, 0, 1

)
,

where di,j is the i’th and j’th pixel distance measurement and dmax is the sonar
range. This transformation sets all sensor inputs zero as long as there are no
obstacles nearby, effectively deactivating learning in this part of the neural net
during the beginner scenario. The term incentivizing obstacle avoidance is writ-
ten in Equation 3.2.

roat (d) = −

∑
i∈I
∑

j∈J

(
βoa(θj, ψi) (max (γc(1− c(di,j))2, εc))

−1
)

∑
i∈I
∑

j∈J βoa(θj, ψi)
(3.2)

A small constant εc is used to remove singularities occurring when obstacle
closeness in a sector is exactly 1 and γc is a scaling parameter. Since the vessel-
relative orientation of an obstacle determines whether a collision is likely, the
penalty related to a specific closeness measurement is scaled by an orientation
factor dependent on the relative orientation. The vessel-relative scaling factor
is written βoa(θj, ψi) = (1 − 2|θi|

γa
)(1 − 2|ψj |

γa
) + εoa. Here, εoa is a small design

36 3 Method and Implementation of the Environment

constant used to penalize obstacles at the edge of the configuration, and θj
and ψj defines the vessel-relative sonar direction. The reward term is averaged
by the scaling factor in order to remove the dependency on a specific sensor
suite configuration. Figure 3.5 illustrates how the 2D sonar image is weighted
in terms of the sector importance given by βoa. As is clear, obstacles that appear
centermost in the sonar image will yield the largest penalty.

60 40 20 0 20 40 60
Horizontal vessel-relative sensor angle [deg]

60

40

20

0

20

40

60

Ve
rti

ca
l v

es
se

l-r
el

at
iv

e
se

ns
or

 a
ng

le
 [d

eg
]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3.5: How the reward is scaled according to the sonar-data’s vessel-relative di-
rection. Note that the grid illustrated is much finer than the 15 by 15 sensor
suite used during simulation.

To find the right balance between penalizing being off-track and avoiding
obstacles - which are competing objectives - the weight parameter λr ∈ [0, 1] is
used to regulate the trade-off. This structure is adapted from the work by Meyer
et al. (2020), which performed the analogous experiments in 2D. In addition,
penalties are added to roll, roll rate and the use of control actuation to form
the complete reward function:

rt(χ̃, υ̃,d, φ, r, δr, δs) = λrr
pf
t (χ̃, υ̃) + (1− λr)roat (d) + cφφ

2 + crr
2 + cδrδ

2
r + cδsδ

2
s

(3.3)
In the subsequent sections, three agents with different values for the trade-

off parameter λr are trained and simulation results are presented.

3 Method and Implementation of the Environment 37

3.6 Feedback/Observations

The list of state observations, referring to the states of the dynamical model,
the agents inputs during training and in operation is seen in Table 3.3. The
inputs are normalized by the true or the empirical maximum, so that values
passed into the neural network is in the range [−1, 1]. Input normalization is
used to improve the speed of convergence and the symbols are denoted by sub-
script o to indicate that these are the actual values passed as observations. The
nonlinear activation functions of neural networks tend to saturate if the inputs
gets too large, hence normalization is a means used to counteract this effect.
Furthermore, large input values might lead to huge error gradients, which in
turn causes unstable training. Normalization is therefore a simple form of pre-
processing contributing to faster and more stable training. (Yann LeCun and
Müller, 1998)

Table 3.3: Observation table for end-to-end training of δr and δs. All states and errors
are normalized by the empirical or true maximum value.

Observation Symbol Max

Relative surge speed ur,o = ur
umax

∈ [−1, 1] 2

Relative sway speed vr,o = vr
vmax
∈ [−1, 1] 0.3

Relative heave speed wr,o = wr

wmax
∈ [−1, 1] 0.3

Roll φo = φ
φmax

∈ [−1, 1] π

Pitch θo = θ
θmax
∈ [−1, 1] π

Yaw ψo = ψ
ψmax

∈ [−1, 1] π

Roll rate po = p
pmax

∈ [−1, 1] 1.2

Pitch rate qo = q
qmax
∈ [−1, 1] 0.4

Yaw rate ro = r
rmax
∈ [−1, 1] 0.4

Course error χ̃o = χd−χ
χmax

∈ [−1, 1] π

Elevation error υ̃o = υd−υ
υmax

∈ [−1, 1] π

Ocean current velocity, surge uc,o = uc
Vc,max

∈ [−1, 1] 1

Ocean current velocity, sway vc,o = vc
Vc,max

∈ [−1, 1] 1

Ocean current velocity, heave wc,o = wc

Vc,max
∈ [−1, 1] 1

In addition to the state observations, the neural network inputs a flattened
2D sonar image measuring closeness. It is possible to pass the sonar image di-

38 3 Method and Implementation of the Environment

rectly through the neural network, essentially learning to map raw sensor data
to control action. By the fact that neural networks are capable of representing
any continuous nonlinear function, this should be feasible in theory (Nielsen,
2015). However, as this requires a high-dimensional observation space, a larger
neural network is needed to learn a control law. In turn, a larger neural net
requires more data and more updates to converge, prolonging an already time-
consuming process. To address this issue, dimensionality reduction is performed
by max pooling the raw closeness image from (15, 15) to (8, 8). While max pool-
ing tends to be more restrictive (a high closeness measurement indicates a small
distance between the vehicle and an object in a vessel-relative channel), the ex-
tra dimension that 3D offers provides a viable path to pass the obstacles in most
cases. Moreover, being restrictive favors safety and obstacle avoidance.

For the neural networks we utilize the MLP-Policy (multilayer perceptron)
provided by Stable Baselines which incorporates a fully-connected, 2 hidden-
layer neural network with 64 neurons in each layer using hyperbolic tangents
(tanh) as the activation functions. The input size and the output size is decided
by the observation space and the action space, respectively. As we pass 14 state
observations plus the 64 pixel output from max pooling the raw sonar image,
the total input vector is of size 78× 1. The action space is naturally the rudder
and elevator fin commands, meaning a 2×1 output vector. Figure 3.6 illustrates
the controller neural network.

...
...

...
...

...
...

Figure 3.6: The neural network controller structure with inputs given by Table 3.3 and
a max pooled closeness image from (15,15) to (8,8), yielding a total of 78
inputs. The hidden layers contains 64 neurons each that uses tanh as the
activation functions.

4 Training 39

4 Training

This section documents the learning process of the controllers. Reports on key
metrics is presented and analyzed in subsection 4.1 and a visual representation
of the evolution of an agent is seen in subsection 4.2. The parameters and
tuning used in the development of the agents are summarized in subsection 4.3.

4.1 Training History

Three important measures from training is used to document the learning pro-
cess: episode reward, policy entropy and value-function loss. This information
is logged every time the policy is updated, i.e. every TN timesteps where T is
the number of time-steps per training iteration and N is the number of actors
running in parallel, in accordance with algorithm 1. The agents trained for a
total of 3000K timesteps, corresponding to 300K seconds worth of data when
choosing ∆t = 0.1s. The 3000K training timesteps is distributed over the vari-
ous scenarios. How long (in terms of simulated timesteps) the agents spend at
a certain stage increases with difficulty.

The training was performed on a Dell Optiplex 7060 stationary computer,
with an Intel i7-8700 CPU, 32GB RAM and, unfortunately, no way to activate
GPU acceleration. With that level of hardware, the early stages of training in-
volving pure path following and low-density obstacle scenarios can run at up to
150 frames per second (FPS). Because the FLS is only updated if there are any
nearby obstacles - a liberty that can be afforded in a simulated environment
since all objects’ positions are known - the computational stress is much lower.
However, as the number of obstacles increases, the likelihood of an obstacle
being within the sonar window is higher and the sonar readings is updated at
the nominal frequency of 1Hz. (If the update frequency is increased more than
this the simulations just simply takes too long). In high-density situations, sim-
ulation speed can fall as low as 10 fps. The timestep limit at 3000K is therefore
set for all practical purposes, as tuning the training parameters (finding work-
able parameters in Table 4.1) requires some trial-and-error before performing
as intended.

4.1.1 Episode Reward

The first metric reported from the training process is the episode reward: Episode
rewards are the mean return for the episodes simulated between two updates.
The episode rewards should consistently increase throughout the learning pro-
cess, but some volatility is to be expected because of the random nature of
environment instantiations.

The reward function is shaped to be exclusively negative such that the agent
hastens to reach a terminal state. There are four triggers to episode termination:

40 4 Training

1. The AUV reaches the last waypoint/end-goal within an acceptance radius
da such that ||pnt − pntarget||2 ≤ da.

2. The total along-track distance travelled is within da/2 distance to reach
full path-length. Mathematically this is written |s∗−sf | ≤ da/2, where sf is
the full length of the path and s∗ = mins ||P (s)− pnt ||2 is the closest along-
track distance on the path from the AUV’s current position. An example
of this trigger is seen in Figure 5a.

3. The return is less than −1000.

4. More than 4000 timesteps has been simulated.

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
Timesteps

1000

800

600

400

200

0

Ep
iso

de
 R

ew
ar

d

Beginner Intermediate Proficient Advanced Expert

r = 0.9
r = 0.5
r = 0.1

Figure 4.1: Reward plot for different reward functions sorted by the trade-off parame-
ter λr.

Figure 4.1 pictures the episode reward history throughout training. The be-
ginner scenario is text-book, with smooth and steep increase in performance as
the agents learns to master path following. Then a decline in performance is

4 Training 41

seen when an obstacle is placed on-path in the intermediate level. As the agent
now follows the path naively, this is to be expected. Since all closeness readings
are zero during beginner level, the weights associated with these input neurons
in the MLP networks are essentially dropped out through this stage of learning.
Thus, the agent following the path naively at this point is by design. After the
initial decline seen when increasing difficulty level, more progress is made and
this pattern repeats through to the final stage.

Another discovery from the episode reward history is made: As complexity
increases, the data gets more noisy. Intuitively, this should be the case, since
the obstacle density increase and even an ocean current is added to the en-
vironment in the expert scenario. This in turn increase the possibilities of the
environments configuration space, exposing the agents to many new situations
and data. Novel situations can uncover potential weaknesses in the agents’ poli-
cies, leading to bad decisions and less return.

4.1.2 Policy Entropy

The policy entropy is a measure of how flat the distribution over the action
probabilities are - a metric on to what degree the action taken is random. Since
a policy is nothing but a probability distribution whose support is the action
space A, it can be written πθ(a|s) = Pr(at = a|st = s). The mathematical
definition of policy entropy, written H(πθ(a|s)), stems from information theory
and is expressed in Equation 4.1. (Juliani, 2018)

H(πθ(a|s)) = −
∫
A
πθ(a|s) log πθ(a|s)da (4.1)

A way to think about this the agent becoming more committed, or more cer-
tain, to which action it should take given a set of observations as the entropy
decreases. It is therefore a great illustration of how the agent trades off explo-
ration for exploitation as its experience grows, just as humans and animals do.
Examples of action-probability distributions with high and low entropy is seen
Figure 4.2. The more entropy, the more randomness and ultimately exploration.

It is therefore quite typical for learning algorithms to include an entropy
bonus to the overall objective function, to encourage more exploration. The PPO
algorithm implemented in the Stable Baselines library is no exception, and the
entropy bonus is scaled by setting the hyperparameter ent_coeff, symbolized by
τ . In effect, this is a regularization term added to the RL goal discussed in sub-
subsection 2.1.2. The total objective funtion is then combined to form the ex-
tended RL goal written π∗θ = argmaxπEπ

[∑T
k=0 γ

t(rt + τHt(πθ))
]
. Experimental

results have shown that encouraging exploration yields faster convergence and
in some cases better final policies. However, the latter improvement was highly
environment specific (Ahmed et al., 2018). In this research, different values for

42 4 Training

τ is not considered.

3 2 1 0 1 2 3
Action

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

High entropy
Low entropy

Figure 4.2: Examples of high and low entropy normal distributions.

An increasing policy entropy plot implies that the agent is exploring and is
typically seen in the start of the learning process. Increasing entropy can also
be observed when the return has converged and the only way increase the total
objective function even more is to increase entropy bonus.

Figure 4.3 plots the progression of policy entropy as the learning process
advance. Again, repeating patterns is seen as the agent is introduced to new
difficulty levels. There is a striking difference in patterns between the high λr
parameter, compared to the lower ones: From proficient level and on, this agent
is mainly exploring until it suddenly finds a viable strategy in the last stage. This
is in accordance with what is observed in the episode reward plots, where the
agent biased toward path following is seen to collect less reward than the other
controllers. But more importantly, it collects more rewards towards the end
of the expert scenario, which is the most complex environment configuration,
compared to the proficient and advanced level. This is what is mirrored in the
entropy plot, the steep and steady increase in performance is related to the
entropy decreasing after exploring.

The two other agents are behaving in a similar pattern and since they have
a larger incentive to go off-track, their policies appear to be more adaptive
and better prepared for increased complexity. Each scenario figures an early

4 Training 43

exploration stage, with rapid trade-off towards exploitation. This indicates that
these policies has learned something general about the path following/COLAV
trade-off that the high λr setup has not before the last stage of training.

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
Timesteps

4

2

0

2

4

6

8

10

Po
lic

y
En

tro
py

Beginner Intermediate Proficient Advanced Expert

r = 0.9
r = 0.5
r = 0.1

Figure 4.3: Policy entropy plot for training the different reward functions sorted by the
trade-off tuning λr.

4.1.3 Value-function Loss

The last metric considered in the learning process is the value-function loss.
As shown in subsection 2.1, the policy in PPO is updated as suggested by an
approximation of the advantage function Âπt . Provided by Equation 2.4, the
advantage-function is estimated by using the return and the value-function V̂ π

t

which is approximated by the critic neural network. The value-function loss is
measuring how far off the critic neural network are from the actual sampled
trajectories. This metric should increase as the agent increasingly explores and
decrease as the reward stably improves. As the value-function loss decrease, the
critic neural network gets increasingly better at estimating the value-function.
Ergo, the probability of an update improving the policy is increased.

44 4 Training

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
Timesteps

0

250

500

750

1000

1250

1500

1750

2000

Va
lu

e
Fu

nc
tio

n
Lo

ss

Beginner Intermediate Proficient Advanced Expert
r = 0.9
r = 0.5
r = 0.1

Figure 4.4: Value-function loss for training the different reward functions sorted by the
trade-off tuning λr.

Except for the proficient level, most of the volatility in value-function loss,
seen in Figure 4.4, is shown in the exploration stage and is consistently de-
creasing as the exploitation happens, as expected. It appears that the lower val-
ues of λr again are most correlated, which conforms with the evolution of the
policy entropy. All of the metrics seen has reflected the same training history,
although from different perspectives. In that sense they are inherently linked,
and the heuristic guidelines has all been confirmed by the plots - which is a
good sign in an RL training process. The plots has also highlighted the differ-
ence the trade-off parameter λr has on exploration vs exploitation and learning
in general.

4.2 Evolution of an Agent

Reported key metrics from subsection 4.1 explains much of the evolution of the
agents. But it is also helpful to see the performance translated into a practical
setting. Figure 4.5 plots in 3D how the agent evolves from beginner to expert.

4 Training 45

Nort
h [

m]

20
40

60
80

100
120

East [m] 40200204060

Down [m
]

40

20

0

20

40

Path
AUV Path
Waypoints

(5a) Beginner: 10K timesteps

North [m
]

20
40

60
80

100
120

East [m] 40200204060
Down [m

]
60
40
20
0

20
40

60

Path
AUV Path
Waypoints

(5b) Beginner: 20K timesteps

Nort
h [

m]

40
60

80
100

120

East [m] 40200204060

Down [m
]

40

20

0

20

40

Path
AUV Path
Waypoints

(5c) Beginner: 300K timesteps

North
 [m

]

40
60

80
100

120

East [m] 40
20

0
20

40
60

Down [m
]

40
20
0

20

40

Path
AUV Path
Waypoints

(5d) Intermediate: 310K timesteps

North [m]40 60 80 100 120East [m] 40
20

0
20

40

Down [m
]

40

20

0

20

40

Path
AUV Path
Waypoints

(5e) Intermediate: 750K timesteps

North [m]
60 80 100 120 140 160 180

East [m] 80
60

40
20

0
20

40

Down [m
]

40
20
0

20
40
60
80

Path
AUV Path
Waypoints

(5f) Expert: 3000K Timesteps

Figure 4.5: Evolution of controller (λr = 0.9) performance throughout training.

46 4 Training

The obtained plots is taken from the controller history with λr = 0.9, i.e.
the controller that adheres mostly to staying on-path. Initially, the agent learns
to minimize only one of the tracking errors such that it follows a projection of
the path in another plane. Then, it closes this distance but behaves oscillatory.
At the final stages of beginner level training, it follows the path with great
precision. However, since it has not yet seen any obstacles it collides when
switching to the intermediate level. After training for 450k timesteps in the
intermediate level, it steers clear of the obstacle and follows the path with great
precision in obstacle-free regions. Lastly, the agent must follow the path through
a cluster of obstacles, and due to its on-path bias it navigates with precision
through the obstacles instead of going around. In this scenario an ocean current
is perturbing the motion as well, which is seen in the slight tracking error in the
obstacle-free regions.

4.3 Summary of Training Setup

Many parameters and specifications related to the environment and training has
been introduced from section 2 through section 4. Table 4.1 summarizes param-
eters and values used, except model parameters in the AUV dynamic equations
and those that are not fixed through all scenarios. PPO parameters are associ-
ated with the learning algorithm seen in algorithm 1.

Environment parameters are parameters that define all components con-
tained in the simulation environment, seen in Figure 1.3. This includes the
AUV model, the Guidance system, disturbances and specifications that affect
the system output and the observations. Note that the ocean current min/max
values are only applied if the current is switched on. As there are many AUV
model parameters, it was befitting to instead add this list as an attachment to
the report.

The reward parameters corresponds to the penalty coefficients in the reward
function expressed in Equation 3.3.

Table 4.1: Parameter table for training and simulation setup.

PPO Description Value

α Learning rate 2.5e-4

γ Discount rate 0.99

λ GAE parameter 0.95

τ Entropy bonus coefficient 0.001

T # Steps per policy updates 1024

K # Epochs 4

4 Training 47

M Batch size 64

N # of parallel actors 4

Environment

∆ Look-ahead distance 3

nw # Training path waypoints 7

γa Sonar span apex angle 140

sr Sonar range 25

− Sensor suite (15, 15)

− Sensor min. pool output (8, 8)

− Sensor update frequency 1

[Vmin, Vmax] Ocean current intensity limits [0.5, 1]

da End-goal acceptance radius 1

Tf Control fins time-constant 0.2

Reward Function

cχ Course error penalty coefficient −1

cυ Elevation error penalty coefficient −1

γc Obst. closen. penalty scaling −12.5

εc Minimum obstacle penalty closeness −5e-3

εoa Minimum vessel-relative scaling −0.05

cφ Roll penalty coefficient −1

cr Roll rate penalty coefficient −1

cδr Rudder action penalty coefficient −0.1

cδs Elevator action penalty coefficient −0.1

λr path following/COLAV trade-off [0.9, 0.5, 0.1]

48 4 Training

5 Simulation Results 49

5 Simulation Results

This section covers the results obtained from applying the finalized DRL con-
trollers in the various scenarios introduced in subsection 3.3. Firstly, test re-
ports from quantitative tests, which are obtained by running the simulation
for a large sample of episodes and calculating statistical averages, are given in
subsection 5.1. In light of these results, the behavioural aspects can be extrap-
olated to visualize and pinpoint the clearer trends. Secondly, the reports from
testing the controllers in special-purposed scenarios are shown and analyzed to
qualify if the agents have indeed learned to operate the AUV intelligently. As
was given in Table 4.1, three values for the trade-off parameter λr was used
during training to obtain three expert level controllers. This gives rise to a ra-
tional hypothesis on test outcome: The agent trained with λr = 0.9 should on
average yield a lower tracking error, whilst maintaining a higher collision rate.
The reversed results should be seen in the case where λr = 0.1.

5.1 Quantitative Results

The quantitative results are obtained by running each training scenario, con-
figured randomly in each episode, for N = 100 episodes. As metrics we use
success rate, collision rate and average tracking error over all episodes. Suc-
cess is defined as the agent reaching the last waypoint within the acceptance
radius without colliding. Equivalently, a collision has happened if the distance
between the AUV and any obstacle, at any time during an episode, is less than
a specified safety radius dsafety = 1m. Table 5.1 lists the full report from the
quantitative tests.

Table 5.1: Test results from sampling N = 100 random training scenarios.

Trade-off Metric Interm. Prof. Adv. Expert Avg.
Success rate [%] 68 66 62 52 62

λr = 0.9 Collision rate [%] 16 28 34 38 29
Avg. tracking error [m] 1.67 2.91 3.14 3.09 2.70
Success rate [%] 100 100 86 59 86

λr = 0.5 Collision rate [%] 0 0 8 36 11
Avg. tracking error [m] 1.97 3.76 4.44 4.33 3.63
Success rate [%] 65 68 45 54 54

λr = 0.1 Collision rate [%] 0 0 0 3 0.75
Avg. tracking error [m] 3.98 6.15 7.91 7.33 6.34

The results show a clear connection to the hypothesis that higher λr should
result in lower tracking errors but higher collision rate on an average. Con-

50 5 Simulation Results

versely, low λr should result in fewer collisions but higher average tracking
error. The results seen matches exactly with this expectation.

The quantitative results can be extrapolated to find general expressions for
the success rate, collision rate and average tracking error as functions of λr. The
collision rate and the average tracking error are well-described by exponential
functions y = aebx + c. It is also seen that a quadratic function y = ax2 +
bx + c describes the success rate as a function of the trade-off parameter quite
well. This matches the expectations as higher λr induce more collisions and
therefore lowers the success rate. On the other hand, during the episodes where
it manages to avoid collisions it always succeeds because the tracking error is
very low. Lower λr configurations naturally has the opposite problem: The low
collision rate is due to it being more willing to go off-track, but makes it less
likely to reach the end-goal within the acceptance radius. Figure 5.1 plots the
data points from Table 5.1 together with the curve-fitted functions of λr.

0.0 0.2 0.4 0.6 0.8 1.0
r

0

20

40

60

80

Ra
te

 [%
]

y = 175x2 + 185x + 37.25

y = 11.78e2.67x 12.81

Succes rate
Collision rate

3

4

5

6

7

Di
st

an
ce

 [m
]

y = 5.39e 1.41x + 2.21

Avg. tracking error

Figure 5.1: Data from Table 5.1 and their general functions obtained by curve-fitting.

5.2 Qualitative Results

In the qualitative tests, we run the three controllers in the test scenarios intro-
duced in subsection 3.3 to observe behavioural outcome of the controllers. Con-
trollers are run in deterministic mode to ensure that all results are reproducible
(the action drawn from πθ is always the center of the probability distribution).
Equivalently, if a current is present, then the intensity and direction is fixed.

5 Simulation Results 51

5.2.1 Path Following

The first test see the controllers tackle a pure path following test, both with
and without the presence of an ocean current. Figure 5.2 plots the results from
simulation. All cases are successful, except λr = 0.1 with current disturbance,
which is visibly off-track as it passes the last waypoint.

No
rth

 [m
]

40
50
60
70
80
90
100
110

East [m] 302010010203040

Down [m
]

40
30
20
10
0

10
20
30
40

Path
= 0.9
= 0.5
= 0.1

(2a) Path following test, no disturbance.

No
rth

 [m
]

40
50
60
70
80
90
100
110

East [m] 2010010203040

Down [m
]

30
20
10
0

10
20
30

Path
= 0.9
= 0.5
= 0.1

(2b) Path following test, with disturbance.

Figure 5.2: The pure path following test. (It might be hard to see λr = 0.9 due to
overlay from the others)

For λr = 0.9 an average tracking error of 0.45m and 0.52m in the ideal
and disturbed environment is obtained, respectively; For λr = 0.5 we obtained
0.54m and 0.98m; Finally, λr = 0.1 achieved 1.64m and 3.95m. This amounts to
a 15%, 81% and 141% increase in tracking error due to the disturbance, respec-
tively.

5.2.2 Optimality Check - Extreme Obstacle Pose

In the next test we dissect if the agents has learned to operate the actuators
effectively according to how obstacles are posed. In the extreme cases, obstacles
would be stacked horizontally and vertically, and optimally no control energy
should be spent on the taking the AUV towards "the long way around". Instead
it should use the actuator to avoid on the lateral side of the stacking direction;
Surely, an intelligent pilot would pass the obstacles in this manner.

52 5 Simulation Results

North [m]
30

40
50

60
70

East [m] 201001020

Down [m
]

20

10

0

10

20

Path
r = 0.9
r = 0.5
r = 0.1

(3a) Horizontal obstacles, 3D plot

Nort
h [m

]

30
40

50
60

70

East [m] 201001020

Down [m
]

20

10

0

10

20

Path
r = 0.9
r = 0.5
r = 0.1

(3b) Vertical obstacles, 3D plot

0 20 40 60
Time [s]

0

2

4

6

8

10

12

14

Tr
ac

ki
ng

 E
rro

r [
m

]

r = 0.9
r = 0.5
r = 0.1

(3c) Horizontal obstacles, Tracking error

0 20 40 60
Time [s]

0

2

4

6

8

10

12

14

Tr
ac

ki
ng

 E
rro

r [
m

]

r = 0.9
r = 0.5
r = 0.1

(3d) Vertical obstacles, Tracking error

0 20 40 60
Time [s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
In

pu
t

r = 0.9
r = 0.5
r = 0.1

(3e) Horizontal obstacles, Rudder input

0 20 40 60
Time [s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
In

pu
t

r = 0.9
r = 0.5
r = 0.1

(3f) Vertical obstacles, Elevator input

Figure 5.3: The horizontal and vertical obstacle test. Here, we are interested in seeing
if the agent has learned which actuator to use to avoid the obstacles.

5 Simulation Results 53

From the plots, it is observed that all agents waste little control energy using
the "opposite" control fin. The agent with λr = 0.9 uses more than the others
due to it being slower to react. It therefore has to spend more energy as it
approaches the obstacle and might have to pull all levers to avoid collisions. The
agent with λr = 0.1 is seen to plan further ahead, as it takes action earlier than
the other two, but it also travels far off the path. The controller with λr = 0.5
can be seen to operate with human-like decision making. It steers clear off the
obstacles in a nice and smooth curve, and it does not deviate in the plane that
is not obstructed by obstacles.

5.2.3 Dead-end

A recurring problem seen when applying purely reactive algorithms is getting
trapped in local minimas, which in a practical sense materialize as dead-ends.
Therefore, the last test investigates if the agents have acquired the intelligence
to solve a local minima trap - in the form of a dead-end challenge. In addition,
this can affirm the robustness and generality learned by the agents, as this is a
completly novel situation.

The obstacles are configured as a half-sphere with radius 20m. This means
that the agent will sense the dead-end 5m prior to the center (due to 25m sonar
range), and must take the appropriate actions to escape it.

North [m]

20
30

40
50

60
70

80 East [m]

30
20

10
0

10
20

30

Do
wn

 [m
]

30
20
10
0

10
20
30

Path
r = 0.9
r = 0.5
r = 0.1

Figure 5.4: A dead-end test, where the the obstacles are configured as a half-sphere
with a radius of 20m.

54 5 Simulation Results

The simulation, figured in Figure 5.4, shows that λr = 0.9 fails this test
and can not escape the dead-end on account of it being too biased to staying
on path. On the other hand, λr = 0.5, 0.1 behaves somewhat similarly and
manages to escape and reach the goal position. This is impressive performance
as this scenario is novel for the agents, and due to it being a classical pitfall
scenario for reactive algorithms.

6 Discussion 55

6 Discussion

6.1 Model Assumptions and Implementation

The 6-DOF simulation model implemented to emulate AUV motion is based on
standard, justifiable assumptions seen in the relevant literature (Fossen, 2011;
da Silva et al., 2007). However, the classical GNC structure figured in Figure 1.1
involves a form of state estimation and filtering in the navigation module. This
module was omitted in the setup used in this research, and it was assumed
that all states, including information about the ocean current, were available
for feedback. In a full-scale test, state estimation would naturally be part of the
feedback-loop, necessitating the need for a navigation module.

By posing the complete control system as a cascaded structure, tools from
nonlinear theory can be exploited in analyzing stability and robustness. For
instance, a nonlinear separation principle can be applied to prove stability by
showing that each cascaded subsystem is passive. If this requirement is sat-
isfied, and the states are bounded globally by the state feedback controller,
then the feedback connection will be stable after replacing the states (x) with
estimated states (x̂) (Khalil, 2002). This fact is taken advantage of in Fossen
(2000), where an output feedback controller was used in conjecture with a
nonlinear passive observer to render closed-loop control for dynamic position-
ing uniformly, globally, asymptotically stable. However, this strong stability re-
sult hinges on the fact that the controller is also passive, and this property can
not be shown for the DRL controllers developed in the current research.

Another source of discrepancy to a real-world application was the exclu-
sion of sensor noise. As neural networks are capable of learning function maps
(the policy in DRL terminology) whose output changes substantially with small
changes in input (Zhang et al., 2019), training the neural networks in the pres-
ence of sensor noise and possibly noisy model parameters could prove impor-
tant if the agents were to be used in a full-scale test. A DRL specific approach
intended to encourage exploration, is adding parameter noise to the weights of
the neural network, θ (Fortunato et al., 2017). However, adding sample noise
instead, which in the current context translates to AUV model parameter noise
and sensor noise, has been shown empircally to increase performance and act
as a regularizer (Xu et al., 2009). There is thus reason to believe that training
the model with such noise in the environment could automatically build ro-
bustness wrt. uncertain model parameters and protection against sensor noise.
More importantly, this setup could also integrate a Kalman filter, which then
would serve as the navigation module and close a GNC loop well-suited for
real-world application.

56 6 Discussion

6.2 On the Method

The promise of DRL is that truly autonomous agents can be developed using
general learning principles and succeed in achieving any goal, no matter which
domain it is applied in. Nonetheless, there are challenges related to the applica-
tion in safety-critical systems, such as autonomous vehicles. An important one
is the lack of strong guarantees on behaviour and stability. Some approaches
have tried to use the passivity framework to analyze stability of artificial neural
networks, though in smaller MLP networks (Wen Yu and Xiaoou Li, 2000; Men-
haj and Rouhani, 2002). However, the networks were used in an architecture
mirroring direct-adaptive control and had special update rules for the weight
parameters to obtain said stability properties. It is not certain that such con-
straints on the update rules can be used in the context of deep reinforcement
learning.

The use of DRL controllers are motivated by complex environments where
making decisions are based on intuition rather than concrete behavioural laws.
In such environments, the only way an agent can learn is by making errors and
correct for them. Any simulation model emulating a physical process contains
modelling errors, implying that agents deployed in full-scale test must adapt
through a new learning process. In the context of AUVs, tracking errors could
be accepted in this adjustment process; A collision, however, would be fatal.
Safe exploration while training agents directly in the real world is an on-going
issue in the scientific community, and an attempt to address it has been made
by Joshua Achiam (2019) by making a safety AI benchmark and introducing
the concept of constrained RL. Constrained meaning that the RL objective, seen
in Equation 2.3, should additionally satisfy constraints limiting unsafe interac-
tions. In their work, PPO was adapted to fit the constrained RL formalizm, and
this would be an approach worth considering if the DRL controllers for AUVs
ever should be implemented in full-scale.

A third challenge with the method is setting up the environment and the
learning. As there are some guidelines and heuristic principles one can use to
tune the hyperparameters and the rewards, there are no guaranteed success
formulas. Some machine learning libraries, such as Tune or SMACV3 (Mikko,
2018), can offer assistance in this search, but considerable computational re-
sources are required to use these. The hyperparameter tuning done in this
project was therefore a manual effort.

In spite of the challenges related to DRL control, however, it is a powerful
tool with great versatility:

• Firstly, it requires no simplified representations of the system: By learning
through continual interaction and feedback from the full-state simulation
model (or the real world in a full-scale test), the representations learned

6 Discussion 57

by the neural nets might capture truths about the underlying environment
that are out of reach for control engineers.

• Secondly, this unlocks the potential for learning in environments even too
complex to model.

• Thirdly, as science progresses on understanding the representations learned
by neural nets, it might help in building our understanding of physical
phenomena as well. A concrete example could be using model-based RL
in AUVs - that is algorithms that build an explicit representation of the
transition model - for building a hydrodynamic model from experience.
If this representation could be dissected and understood, knowledge on
e.g. vessel models, higher-order hydrodynamic damping and turbulence
might come out of it. There are many exciting discoveries yet to be made.

A key factor in achieving the research goals, was applying the curriculum
learning paradigm. Pivotal to obtaining controllers with automatic collision
avoidance in 3D, was learning to operate both control fins together. By deploy-
ing the agent in the most complex scenario from start to finish (no curriculum),
it was not possible to obtain any working controllers on the described level of
hardware. However, using the curriculum learning method made it possible to
achieve the dual objective of 3D path following and collision avoidance by ac-
celerating convergence significantly, providing further evidence for the utility of
sorting the training data by complexity - as was found by Bengio et al. (2009).

6.3 On the Results

The reward function was set up to produce a clear hypothesis: Agents tuned
with higher values for the path following/COLAV bias λr should tend to follow
the path, while agents tuned with smaller values for λr should be more willing
to go off-track and prefer to pass obstacles at a larger distance. The simula-
tion results showed a clear connection between the incentive provided and the
resulting control strategy.

The agent biased towards path following showed great tracking precision,
even in the presence of a perturbing ocean current. The COLAV biased agents
showed promising path following performance, but were more susceptible to
perturbation from the ocean current. The converse relationship was seen in the
collision rate, as expected. The best agent in this sense managed to run without
collision for 100% of the first 300 samples. However, a 3% collision rate was
seen in the expert scenario where an ocean current is present.

In light of this, it then seems that being biased towards path-adherence re-
sulted in the agent learning more about the environmental disturbance and its
impact on tracking errors. This is also confirmed by the drastic reduction in

58 6 Discussion

performance for λr = 0.1, moving from ideal to perturbed conditions. This sug-
gests that agents with higher bias towards COLAV would need more training
in perturbed conditions, in order to build the robustness that was seen in the
λr = 0.9 case. This could potentially eliminate the collisions happening in the
expert scenario for λr = 0.1, increasing performance even more.

It was also observed that the trade-off regulation had a direct impact on how
far ahead the agent took action. High valued λr resulted in aggressive action
close to obstacles, where as the low valued λr took an earlier and measured
approach in commanding the steering fins. Combined with the observation from
the policy entropy history, the data suggests that high λr should train longer in
environments that contains obstacles, due to its tendency to explore in these
scenarios and its high collision rate.

Overall the findings were encouraging, and there is a reason to believe that
the method is viable in a full-scale test. It does seem, however, that the training
should be modified to address specific weaknesses shown when selecting the
trade-off, as outlined.

6.4 Suggestions for Future Work

The achievements of this thesis can be used as a pointer for further work. Some
ways to take it further has already been mentioned in terms of assuring sta-
bility, implementing noise and safe exploration. There are also many other di-
rections to make progression. Some of the ideas that was not implemented are
suggested:

6.4.1 Moving Obstacles and Velocity Control

The velocity control used for training and simulation was done by a PI-controller
maintaining a desired (constant) cruise speed. The DRL controllers were used
to find optimal spatial trajectories as obstacles were stationary. A logical next
step, which could mirror a real-world application better, is to implement mov-
ing obstacles. This could emulate movement induced by the ocean current, or
other autonomous agents trying to follow intersecting spatial trajectories. In
this setup it could be interesting to let the agent take control of the thrust con-
trol as well as the control fins, making it able to control the AUV surge speed.
Hence, it would have a the ability to control its temporal trajectory, and could
exploit this new dimension to progress on-path.

6.4.2 Sonar Pooling by Convolutional Neural Network

In the architecture used in this research, the sonar image was max pooled to
extract a smaller image to reduce the observation space of the agents. There are
many ways this pooling can be done, but essentially there is only one piece of

6 Discussion 59

important information to extract from the sonar image: A feasible direction. In
3D this corresponds to an azimuth and elevation angle which is collision free.

A suggestion for further work is therefore to implement a convolutional neu-
ral network, which can learn this feature extraction from the sonar image by
being trained simultaneously with the agent end-to-end. In this way, it does not
matter what source the perception comes from, be it a RGB camera, a sonar or
a LIDAR. Thus, seperating the perception from the decision-making could yield
a more general-purpose controller.

6.4.3 Real-world Implementation

To verify the method, a practical application in a full-scale environment would
be a natural next-step. However, AUVs are very costly. A lower threshold starting
point is a flying drone. As the methods and algorithms used are general, the
only changes needed should in theory be implementing a suiting simulation
model with the appropriate observation and action space and reward function.

6.4.4 Control System Architecture

This implementation of DRL control was aimed at the control level in the clas-
sical GNC-loop. In other words, the agents were directly responsible for con-
trolling the physical actuators of the AUV. Though, if the aspiration is to mirror
human-like intelligence, it is not clear that the decision-making is best served at
low-level in the control-hierarchy. For instance, consider a human pilot operat-
ing a commercial aircraft: The pilot does not directly interact with the physical
actuators of the aircraft, but rather controls the reference signals generating
desired pitch and course signals forwarded to low-level control. An interest-
ing architecture could therefore place the DRL control in the guidance system.
Here, it could generate desired pitch and course angles based on perception
and a nominal path received from a path-planner.

60 6 Discussion

7 Conclusion 61

7 Conclusion

In this research, DRL agents was trained and deployed to tackle the hybrid
objective of 3D path following and COLAV by an AUV. Specifically, the state-
of-the-art learning algorithm PPO was used to train the neural networks. In
addition, the learning framework curriculum learning was used: The agents
started small by learning path following, and then was introduced to progres-
sively more complex maneuvering tasks as obstacle density was increased. The
final stage of training also implemented an ocean current perturbing the AUV’s
motion, which the agents ideally would compensate for.

The AUV was operated by commanding three actuator signals in the form
of propeller thrust and rudder and elevator fin angles. A PI-controller main-
tained a desired cruise speed, while the DRL agent operated the control fins.
The agent made decisions from observing the state variables of the dynamical
model, control errors, the disturbances and through sensory inputs from an FLS.

To reiterate, the guiding questions governing the research were stated in sec-
tion 1 as:

• Can the current state-of-the-art in DRL control be applied in end-to-end
learning to achieve 3D path following by an AUV with 6-DOF?

The current state-of-the-art in DRL control has previously been seen applied
to achieve 2D path following for AUVs. This research has extended use of the
DRL framework to incorporate 3D curvature continuous path following by AUVs
with the ability to affect elevation and course. It was observed that agents bi-
ased towards path following achieved the objective with an average error of
0.5m even in the presence of a perturbing ocean current, clearly indicating its
utility in the 3D case for vehicles with 6-DOF and multiple control fins.

• Can the control system build in automatic collision avoidance and achieve
intelligent decision-making regarding avoidance maneuvering?

Quantitative evaluation was performed using statistical averages by sampling
N = 100 episodes per difficulty level and measuring the success rate (reaching
the last waypoint within an acceptance radius without collision), collision rate
and average tracking error. By giving the agents the ability to perceive the en-
vironment through an FLS and providing the right incentives, it was observed
that the agents biased towards COLAV demonstrated great obstacle avoidance
under ideal conditions. The best agent accomplished zero collisions out of 300
samples without an ocean current and 3 out of 100 with.

The DRL controllers were also tested in special-purposed scenarios to inves-
tigate the quality of path following in the special cases where no objects are

62 7 Conclusion

restricting the path, optimal use of actuators in extreme obstacle configurations
and in a dead-end test. Testing showed that the agents indeed had learned to
maneuver the AUV effectively applying most control action in the unobstructed
direction when encountering extreme obstacle configurations. Moreover, the
agents with less incentive to stay on-path, managed to escape the local min-
ima trap involved in the dead-end challenge. Hence, the results indicates that
the agents had acquired enough general knowledge about the system, to make
intelligent decisions when faced with novel situations.

• How does the reward function affect the learned control strategy and is
there a clear link to the incentives provided?

A reward system based on quadratic penalizations was designed to incentivize
the agent to follow the path, but also be willing to deviate if further on-path
progress was unsafe. In addition, avoiding excessive roll and use of control
actuation was avoided by penalizing such behaviour. As path following and
avoiding collisions are competing objectives, the agent must trade-off one for
the other in order to achieve a successful outcome in an episode. Since this
trade-off is non-trivial, a regulating parameter λr was introduced and tuned
with three different values to observe behavioural outcome.

Both the quantitative and qualitative evaluation confirmed the intended rela-
tionship between behavioural outcome and the trade-off regulation parameter.
In addition, the training history revealed differences in adaptability and explo-
ration/exploitation as the learning process advanced. The implications of this
finding is that specific incentives makes the agents more prone to certain weak-
nesses, which then should be addressed when setting up the learning process.

Finally, the thesis has discussed the strengths and weaknesses of the ap-
proach, and improvements and further paths to explore were suggested. The
results obtained realized the research goals set and indicates that RL could play
a part in achieving truly autonomous vehicles capable of human-level decision-
making.

63

8 Bibliography

Ahmed, Z., Roux, N. L., Norouzi, M. and Schuurmans, D. (2018), ‘Understand-
ing the impact of entropy on policy optimization’.

Ataei, M. and Yousefi-Koma, A. (2015), ‘Three-dimensional optimal path plan-
ning for waypoint guidance of an autonomous underwater vehicle’, Robotics
and Autonomous Systems 67, 23 – 32. Advances in Autonomous Underwater
Robotics.
URL: http://www.sciencedirect.com/science/article/pii/S0921889014002279

Bengio, Y., Louradour, J., Collobert, R. and Weston, J. (2009), Curriculum learn-
ing, in ‘Proceedings of the 26th Annual International Conference on Machine
Learning’, ICML ’09, Association for Computing Machinery, New York, NY,
USA, p. 41–48.
URL: https://doi.org/10.1145/1553374.1553380

Breivik, M. and Fossen, T. I. (2009), Guidance laws for autonomous underwater
vehicles, in A. V. Inzartsev, ed., ‘Underwater Vehicles’, IntechOpen, Rijeka,
chapter 4.
URL: https://doi.org/10.5772/6696

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.
and Zaremba, W. (2016), ‘Openai gym’.

Carlucho, I., Paula, M. D., Wang, S., Petillot, Y. and Acosta, G. G. (2018), ‘Adap-
tive low-level control of autonomous underwater vehicles using deep rein-
forcement learning’, Robotics and Autonomous Systems 107, 71 – 86.
URL: http://www.sciencedirect.com/science/article/pii/S0921889018301519

Carroll, K. P., McClaran, S. R., Nelson, E. L., Barnett, D. M., Friesen, D. K. and
William, G. N. (1992), Auv path planning: an a* approach to path planning
with consideration of variable vehicle speeds and multiple, overlapping, time-
dependent exclusion zones, in ‘Proceedings of the 1992 Symposium on Au-
tonomous Underwater Vehicle Technology’, pp. 79–84.

Cashmore, M., Fox, M., Larkworthy, T., Long, D. and Magazzeni, D. (2014),
Auv mission control via temporal planning, in ‘2014 IEEE International Con-
ference on Robotics and Automation (ICRA)’, pp. 6535–6541.

Chang, S.-R. and Huh, U.-Y. (2015), ‘Curvature-continuous 3d path-planning
using qpmi method’, International Journal of Advanced Robotic Systems

64

12(6), 76.
URL: https://doi.org/10.5772/60718

Chu, Z. and Zhu, D. (2015), 3d path-following control for autonomous under-
water vehicle based on adaptive backstepping sliding mode, in ‘2015 IEEE
International Conference on Information and Automation’, pp. 1143–1147.

da Silva et al., J. E. (2007), ‘Modeling and simulation of the lauv autonomous
underwater vehicle’, Conference Paper: 13th IEEE IFAC International Confer-
ence on Methods and Models in Automation and Robotics .

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A.,
Schulman, J., Sidor, S., Wu, Y. and Zhokhov, P. (2017), ‘Openai baselines’,
https://github.com/openai/baselines.

Doll, B. B., Simon, D. A. and Daw, N. D. (2012), ‘The ubiquity of model-based
reinforcement learning’, Current Opinion in Neurobiology 22(6), 1075 – 1081.
Decision making.
URL: http://www.sciencedirect.com/science/article/pii/S0959438812001316

Egeland, O. and Gravdahl, J. T. (2002), Modeling and Simulation for Automatic
Control, Marine Cybernetics.

Encarnacao, P. and Pascoal, A. (2000), 3d path following for autonomous un-
derwater vehicle, in ‘Proceedings of the 39th IEEE Conference on Decision
and Control (Cat. No.00CH37187)’, Vol. 3, pp. 2977–2982 vol.3.

Eriksen, B. H., Breivik, M., Pettersen, K. Y. and Wiig, M. S. (2016), A modified
dynamic window algorithm for horizontal collision avoidance for auvs, in
‘2016 IEEE Conference on Control Applications (CCA)’, pp. 499–506.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V.,
Munos, R., Hassabis, D., Pietquin, O., Blundell, C. and Legg, S. (2017), ‘Noisy
networks for exploration’.

Fossen, T. (2011), Handbook of Marine Craft Hydrodynamics and Motion Con-
trol, John Wiley & Sons.

Fossen, T. I. (2000), ‘Nonlinear Passive Control and Observer Design for Ships’,
Modeling, Identification and Control 21(3), 129–184.

Fox, D., Burgard, W. and Thrun, S. (1997), ‘The dynamic window approach to
collision avoidance’, IEEE Robotics Automation Magazine 4(1), 23–33.

Garau, B., Alvarez, A. and Oliver, G. (2005), Path planning of autonomous
underwater vehicles in current fields with complex spatial variability: an
a* approach, in ‘Proceedings of the 2005 IEEE International Conference on
Robotics and Automation’, pp. 194–198.

https://github.com/openai/baselines

65

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. and Bengio, Y. (2013), ‘An
empirical investigation of catastrophic forgetting in gradient-based neural
networks’.

Haugen, F. (2008), ‘Derivation of a discrete-time lowpass filter’, http://

techteach.no/simview/lowpass_filter/doc/filter_algorithm.pdf.

Havenstrøm, S. T. (2020), 3d path following and motion control for au-
tonomous underwater vehicles using deep reinforcement learning, Project
report in TTK4551, Faculty of Information Technology and Electrical Engi-
neering, NTNU – Norwegian University of Science and Technology.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal,
P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J.,
Sidor, S. and Wu, Y. (2018), ‘Stable baselines’, https://github.com/hill-a/
stable-baselines.

Joshua Achiam, Alex Ray, D. A. (2019), Benchmarking safe exploration in deep
reinforcement learning.

Juliani, A. (2018), ‘Maximum entropy policies in reinforcement learning &
everyday life’.
URL: https://medium.com/@awjuliani/maximum-entropy-policies-in-
reinforcement-learning-everyday-life-f5a1cc18d32d

Kavraki, L. E., Svestka, P., Latombe, J. . and Overmars, M. H. (1996),
‘Probabilistic roadmaps for path planning in high-dimensional configuration
spaces’, IEEE Transactions on Robotics and Automation 12(4), 566–580.

Khalil, H. K. (2002), Nonlinear Systems, Pearson.

Levine, S. and Koltun, V. (2013), Guided policy search, in ‘30th International
Conference on Machine Learning, ICML 2013’.

Liang, X., Qu, X., Wan, L. and Ma, Q. (2018), ‘Three-dimensional path following
of an underactuated auv based on fuzzy backstepping sliding mode control’,
International Journal of Fuzzy Systems 20(2), 640–649.
URL: https://doi.org/10.1007/s40815-017-0386-y

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., Sil-
ver, D. and Wierstra, D. (2015), ‘Continuous control with deep reinforcement
learning’, CoRR abs/1509.02971.

Martinsen, A. B. and Lekkas, A. M. (2018a), Curved path following with deep
reinforcement learning: Results from three vessel models, in ‘OCEANS 2018
MTS/IEEE Charleston’, pp. 1–8.

http://techteach.no/simview/lowpass_filter/doc/filter_algorithm.pdf
http://techteach.no/simview/lowpass_filter/doc/filter_algorithm.pdf
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

66

Martinsen, A. B. and Lekkas, A. M. (2018b), ‘Straight-path following for
underactuated marine vessels using deep reinforcement learning’, IFAC-
PapersOnLine 51(29), 329 – 334. 11th IFAC Conference on Control Appli-
cations in Marine Systems, Robotics, and Vehicles CAMS 2018.
URL: http://www.sciencedirect.com/science/article/pii/S2405896318321918

McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R. and McEwen, R.
(2008), A deliberative architecture for auv control, in ‘2008 IEEE Interna-
tional Conference on Robotics and Automation’, pp. 1049–1054.

Menhaj, M. and Rouhani, M. (2002), A neuro-controller with guaranteed stabil-
ity, in ‘The 2002 45th Midwest Symposium on Circuits and Systems’, Vol. 3,
pp. III–33.

Meyer, E., Robinson, H., Rasheed, A. and San, O. (2020), ‘Taming an au-
tonomous surface vehicle for path following and collision avoidance using
deep reinforcement learning’, IEEE Access 8, 41466–41481.

Mikko (2018), ‘A comprehensive list of hyperparameter optimization & tuning
solutions’.
URL: https://medium.com/@mikkokotila/a-comprehensive-list-of-
hyperparameter-optimization-tuning-solutions-88e067f19d9

Nielsen, M. A. (2015), Neural Networks and Deep Learning, Determination Press.

Puterman, M. L. (2014), Markov decision processes: discrete stochastic dynamic
programming, John Wiley & Sons.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I. and Abbeel, P. (2015), ‘Trust
region policy optimization’.

Schulman, J., Moritz, P., Levine, S., Jordan, M. and Abbeel, P. (2015), ‘High-
dimensional continuous control using generalized advantage estimation’.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017), ‘Prox-
imal policy optimization algorithms’, CoRR abs/1707.06347.
URL: http://arxiv.org/abs/1707.06347

Sugihara, K. and Yuh, J. (1996), Ga-based motion planning for underwater
robotic vehicles, in ‘Proc. 10th International Symp. on Unmanned Untethered
Submersible Technology. Autonomous Undersea Systems Institute’, pp. 406–
415.

Sutton, R. and Barto, A. (2018), Reinforcement Learning, MIT Press.

67

Sutton, R. S., McAllester, D., Singh, S. and Mansour, Y. (1999), Policy gradient
methods for reinforcement learning with function approximation, in ‘Pro-
ceedings of the 12th International Conference on Neural Information Pro-
cessing Systems’, NIPS’99, MIT Press, Cambridge, MA, USA, pp. 1057–1063.
URL: http://dl.acm.org/citation.cfm?id=3009657.3009806

Tai, L., Zhang, J., Liu, M., Boedecker, J. and Burgard, W. (2016), ‘A survey of
deep network solutions for learning control in robotics: From reinforcement
to imitation’.

Tan, C. S. (2006), A Collision Avoidance System for Autonomous Underwater
Vehicles, PhD dissertation, University of Plymouth.

Waltz, M. and Fu, K. (1965), ‘A heuristic approach to reinforcement learning
control systems’, IEEE Transactions on Automatic Control 10, 390–398.

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J.,
Badia, A. P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Hassabis,
D., Silver, D. and Wierstra, D. (2017), ‘Imagination-augmented agents for
deep reinforcement learning’.

Wen Yu and Xiaoou Li (2000), Passive properties of dynamic neural networks,
in ‘Proceedings of the 2000 American Control Conference. ACC (IEEE Cat.
No.00CH36334)’, Vol. 2, pp. 1445–1449 vol.2.

Wiig, M. S., Pettersen, K. Y. and Krogstad, T. R. (2018), A 3d reactive collision
avoidance algorithm for nonholonomic vehicles, in ‘2018 IEEE Conference on
Control Technology and Applications (CCTA)’, pp. 67–74.

Williams, G. N., Lagace, G. E. and Woodfin, A. (1990), A collision avoid-
ance controller for autonomous underwater vehicles, in ‘Symposium on Au-
tonomous Underwater Vehicle Technology’, pp. 206–212.

Woo, J., Yu, C. and Kim, N. (2019), ‘Deep reinforcement learning-based con-
troller for path following of an unmanned surface vehicle’, Ocean Engineering
183, 155 – 166.
URL: http://www.sciencedirect.com/science/article/pii/S0029801819302203

Xiang, X., Yu, C. and Zhang, Q. (2017), ‘Robust fuzzy 3d path following for
autonomous underwater vehicle subject to uncertainties’, Computers & Oper-
ations Research 84, 165 – 177.
URL: http://www.sciencedirect.com/science/article/pii/S0305054816302374

Xu, H., Caramanis, C. and Mannor, S. (2009), ‘Robustness and regulariza-
tion of support vector machines’, Journal of Machine Learning Research
10(51), 1485–1510.
URL: http://jmlr.org/papers/v10/xu09b.html

68

Yann LeCun, Leon Bottou, G. B. O. and Müller, K.-R. (1998), Efficient BackProp,
Springer, Berlin, Heidelberg.

Yoon, C. (2019), ‘Understanding actor critic methods and a2c’.
URL: https://towardsdatascience.com/understanding-actor-critic-methods-
931b97b6df3f

Yu, R., Shi, Z., Huang, C., Li, T. and Ma, Q. (2017), Deep reinforcement learning
based optimal trajectory tracking control of autonomous underwater vehicle,
in ‘2017 36th Chinese Control Conference (CCC)’, pp. 4958–4965.

Zender, D. (2019), ‘We analyzed 16,625 papers to figure out where ai is headed
next’. [Online; posted 25-January-2019].
URL: https://www.technologyreview.com/2019/01/25/1436/we-analyzed-
16625-papers-to-figure-out-where-ai-is-headed-next/

Zhang, L., Sun, X., Li, Y. and Zhang, Z. (2019), ‘A noise-sensitivity-analysis-
based test prioritization technique for deep neural networks’.

Appendix A AUV Model Parameters 69

Appendix A AUV Model Parameters

Parameter Description Value

Mass & Coriolis Matrix

m Mass 18

Zg COG relative to CO 0.01

Ix Moment of inertia - roll 0.0405

Iy Moment of inertia - pitch 1.070

Iz Moment of inertia - yaw 1.070

Xu̇ Added mass - surge -1.029

Yv̇ Added mass - sway -16.153

Zẇ Added mass - heave -16.153

Kṗ Added mass - roll 0

Mq̇ Added mass - pitch -0.758

Nṙ Added mass - yaw -0.758

Damping Matrix

Xu Linear damping - surge -2.4

Yv Linear damping - sway -23

Zw Linear damping - heave -23

Kp Linear damping - roll -0.3

Mq Linear damping - pitch -9.7

Nr Linear damping - yaw -9.7

Yr Linear damping - yaw on sway 11.5

Zq Linear damping - pitch on heave -11.5

Mw Linear damping - heave on pitch 3.1

Nv Linear damping - sway on yaw -3.1

Xu|u| Nonlinear damping - surge -2.4

Yv|v| Nonlinear damping - sway -80

Zw|w| Nonlinear damping - heave -80

Kp|p| Nonlinear damping - roll -6.4e-4

70 Appendix A AUV Model Parameters

Mq|q| Nonlinear damping - pitch -9.1

Nr|r| Nonlinear damping - yaw -9.1

Yr|r| Nonlinear damping - yaw on sway 0.3

Zq|q| Nonlinear damping - pitch on heave -0.3

Mw|w| Nonlinear damping - heave on pitch 1.5

Nv|v| Nonlinear damping - sway on yaw -1.5

Yuvf Fin lift - sway -19.2

Zuwf
Fin lift - heave -19.2

Muqf Fin lift - pitch -3.072

Nuqf Fin lift - yaw -3.072

Yurf Fin lift - yaw on sway 7.68

Zuqf Fin lift - pitch on heave -7.68

Muwf
Fin lift - heave on pitch -7.68

Nuvf Fin lift - sway on yaw 7.68

Yuvb Body lift - sway -10.956

Zuwb
Body lift - heave -10.956

Muwb
Body lift - heave on pitch -3.309

Nuvb Body lift - sway on yaw 3.309

Restoring Force Matrix

W Weight 176.58

B Buoyancy 177.58

Control Force Matrix

Yuuδr Rudder fin on sway 19.2

Nuuδr Rudder fin on yaw 7.68

Zuuδs Elevator fin on heave -19.2

Muuδs Elevator fin on pitch -7.68

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Simen Theie Havenstrøm

From Beginner to Expert

Deep Reinforcement Learning Controller for 3D
Path Following and Collision Avoidance by
Autonomous Underwater Vehicles

Master’s thesis in Cybernetics and Robotics

Supervisor: Adil Rasheed

May 2020

	Preface
	List of Figures
	List of Tables
	Nomenclature
	Abstract
	Sammendrag
	Introduction
	Motivation and Background
	Path Following
	Collision Avoidance

	Research Goals and Methods
	Outline of Report

	Theory
	Deep Reinforcement Learning
	Terminology and Notation
	The RL Goal
	Solution Methods
	Policy Proximal Optimization

	AUV Modeling
	Reference Frames
	Kinematic Equations
	Kinetic Equations
	Simulation Model for Ocean Current
	Control Fin Dynamics

	3D Path Following
	Quadratic Polynomial Interpolation
	Path-centered Coordinate System
	Guidance Laws for Path Following

	Method and Implementation of the Environment
	DRL Framework and the OpenAI Interface
	Building and Simulating the Environment
	Numerical Solver

	Environment Scenarios and Curriculum Learning
	Training Scenarios
	Test Scenarios

	Forward Looking Sonar
	Reward Function
	Feedback/Observations

	Training
	Training History
	Episode Reward
	Policy Entropy
	Value-function Loss

	Evolution of an Agent
	Summary of Training Setup

	Simulation Results
	Quantitative Results
	Qualitative Results
	Path Following
	Optimality Check - Extreme Obstacle Pose
	Dead-end

	Discussion
	Model Assumptions and Implementation
	On the Method
	On the Results
	Suggestions for Future Work
	Moving Obstacles and Velocity Control
	Sonar Pooling by Convolutional Neural Network
	Real-world Implementation
	Control System Architecture

	Conclusion
	Bibliography
	 AUV Model Parameters

