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Abstract

This report explores the possibility of solving cryptographic decryption
problems with optimization algorithms by converting ciphertexts of a
known cipher to solvable optimization problems, and solving them with
a C++ framework.
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Chapter 1

Introduction

Cryptography is the practice of hiding secret messages by performing op-
erations on the messages according to a cryptographic algorithm and an
encryption key. The encrypted/enciphered message can then be sent to a
recipient who then uses the same algorithm and either the same key or an
inverse/decryption key to reveal the hidden message. Cryptanalysis is the
practice of attempting to reveal this hidden message without knowing the
key beforehand. Essentially this leaves the cryptanalysts with the same
problem as the intended recipient of the message, except one variable;
the encryption/decryption key. The goal of this project is to determine
whether this problem can be solved by leaving the unknown variable to
a metaheuristic optimization algorithm.

Using metaheuristic optimization to solve cryptographic problems is
by no means a new concept. A lot of research has already been done
in this exact field since the early 90s, in which the scope was restric-
ted to small number of cryptographic algorithms and optimization al-
gorithms. The motivation for this project is to expand the scope by at-
tacking nine different cryptographic algorithms with six different optim-
ization algorithms, including Walton’s Improved Cuckoo Search[1].

Our contributions to the field includes:

• Summarizing the last thirty years of research in the field of using
metaheuristic optimization in cryptanalysis.

• Developing a modular and extendable framework for solving cryp-
tographic problem instances as optimization problems with meta-

1
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heuristic algorithms.
• An implementation Walton’s Improved Cuckoo Search[1] for the

pagmo library.
• Achieved slightly higher key recovery for DES than earlier research.
• Showing that the Improved Cuckoo Search algorithm can be useful

for ciphertext-only attacks on DES, AES and SPECK.

This report is structured as follows. The Background chapter explains
the ciphers we have chosen to work with, as well as summarizes prior
related research in the field of using metaheuristic optimization to solve
cryptographic problems. The Ciphers and Optimization algorithms/schemes
is reproduced from Høivik’s master project report from 2020[2], with
some changes to formatting. The Method chapter describes the frame-
work that was developed to solve the cryptographic problems using me-
taheuristic optimization, in addition to outlining the experiment para-
meters and process. The Results chapter presents the data obtained from
running the experiments, and how each optimization algorithm performs
compared to each other. Lastly, we will discuss the results, limitations and
future work in the Discussion and Future Work chapter.



Chapter 2

Background

The goal of cryptanalyzing a cryptosystem is to find weaknesses in the
system that might lead to revealing the plaintext, partially or fully, using
its corresponding ciphertext. In this project, we will only use ciphertext-
only attacks, in which the optimization algorithm only has access to the
cipher and a ciphertext, and is tasked with recovering the key and plain-
text. Simply trying all possible keys for a cipher will eventually yield the
correct key and decryption, but for many ciphers the number of possible
keys, is too large to mount a computationally feasible brute-force attack
such as this. Instead, we want to limit the search-space as much as pos-
sible or at least guide the search efficiently.

For the classical cryptosystems or ciphers, such as Caesar, Vigenère
and monoalphabetic substitution ciphers, there exists several well-known
cryptanalysis techniques which can be done by hand. One example of this
is for the Caesar cipher, where one finds the character that occurs most
times in the ciphertext and assumes that this character will decrypt to
’E’, the most frequent character in the English language. Then do the
same for the second-to-most frequent character, and so on. This will not
necessarily lead to the correct solution, but it will give the most likely key
when only considering character frequencies.

Modern ciphers such as DES and AES implement several diffusion
techniques, making the relative character frequency in the resulting cipher-
text as flat as possible. For this reason, there is no simple way to retrieve
the key from modern ciphers through ciphertext-only analytic attacks.
For DES, AES and SPECK there are known-plaintext, chosen-plaintext
and chosen-ciphertext attacks that can retrieve the key, but they require

3
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access to the corresponding plaintexts or an encryption oracle, as well as
large amounts of resources.

In this paper, we will not be using the usual techniques for classic
ciphers or the complicated resource intensive attacks for modern ciphers.
Instead, we will perform ciphertext-only attacks on the ciphers by treat-
ing the decryption of the ciphertext as a black box that takes the potential
key as an input and outputs how well the key decrypted the ciphertext.

2.1 Ciphers

The classical ciphers are simple cipher that were created long before the
modern computers, and as such were meant to be computed and solved
by hand. Due to their simplicity, they are usually very simple to break
with modern technology, and have therefore fallen into disuse in modern
security settings. The ciphers are often divided into transposition ciphers
and substitution ciphers:

Transposition ciphers maintain the characters in the plaintext, and
simply reposition them in the ciphertext according to a well-defined scheme.
Common transposition ciphers include: The Columnar Cipher, and the
Rail Fence Cipher.

Substitution ciphers maintain the position of the characters in the
plaintext, but systematically replace the characters (or groups of charac-
ters) throughout the plaintext to produce the ciphertext. Common substi-
tution ciphers include: The Caesar/Shift Cipher, the general monoalpha-
betic substitution cipher, Vigenère cipher and the general polyalphabetic
substitution cipher. Classical ciphers are no longer used for encryption
in modern security settings, however they are still very useful for under-
standing modern cryptosystems and their development.

Columnar Cipher The Columnar Cipher is a transposition cipher that
uses a grid where the columns are rearranged for encryption/decryption.
As an example, we will encrypt the string "Columnar Cipher" with the
key "KEYS" (table 2.1a). The plaintext is written into the grid row-wise,
then the columns are reordered according to the key. The ciphertext is
read column-wise, resulting in the ciphertext "onCeCm hurp lair". For
decryption, the recipient knows the key and therefore also knows the
number of columns, and writes the ciphertext into the grid column-wise,
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reorders the columns according to the key and reads the plaintext row-
wise.

K E Y S

1 0 3 2

C o l u

m n a r

C i p

h e r

(a) Encryption: Writing the plaintext into a
grid row-wise

E K S Y

0 1 2 3

o C u l

n m r a

C p i

e h r

(b) Encryption: Reordering the columns ac-
cording to the key

E K S Y

0 1 2 3

o C u l

n m r a

C p i

e h r

(c) Decryption: Writing the ciphertext into
the grid column-wise

K E Y S

1 0 3 2

C o l u

m n a r

C i p

h e r

(d) Decryption: Reordering the columns ac-
cording to the key

Caesar/Shift cipher In the Caesar cipher (also known as the shift cipher),
each character in the plaintext is shifted forward by k places, where k is
the key, and wrapping around the alphabet if necessary. Decryption works
in reverse by shifting backwards the same number of places (k).

Plaintext CAESARCIPHERXYZ

Ciphertext FDHVDUFLSKHUABC

Figure 2.2: Caesar cipher with k = 3

General substitution ciphers A monoalphabetic substitution cipher is
a classical cryptosystem where every occurrence of a character is substi-
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tuted by another, dictated by the key. A common way of generating a key
is to choose a keyword, such as "CIPHER", as the start of the key and fill
the remainder with the rest of the alphabet ("CIPHERABDFGJKLMNOQS-
TUVWXYZ"). However, depending on the keyword, this method will cre-
ate a key that often results "non-substitutions", where characters at the
end of the alphabet are substituted with themselves. In this project we
will instead look at a generalized key-generation, where the key is gen-
erated randomly, instead of a keyword. The key has the same size as the
alphabet, and in the example below every "A" will be replaced with an
"N", all "B"s will stay the same, every "C" replaced with "A", etc.

Alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ

Enc. key NBAJYFOWLZMPXIKUVCDEGRQSTH

Figure 2.3: Example encryption key for a monoalphabetic substitution
cipher

Plaintext M O N O A L P H A B E T I C

Ciphertext X K I K N P U W N B Y E L A

Figure 2.4: Encryption with the key in 2.3

Several monoalphabetic substitution ciphers can be combined into
a polyalphabetic substitution cipher, usually by rotating which key is
used for each character. This results in a much longer key length and in-
troduces some diffusion and confusion. For polyalphabetic substitution
ciphers, the strategy becomes slightly more convoluted. First, we need to
determine how many alphabets the cipher uses. A common way of doing
this is to split the ciphertext into n substrings where the first character is
in the first substring, the second character in the second substring, and so
on. Now we calculate the chi-squared (section 2.3) value for each of these
substrings and average them. We perform this analysis for a few values
of n and choose the value of n that gives the lowest average. The number
of alphabets used in the cipher is most likely a multiple of n. Now it is
simply a matter of solving m monoalphabetic substitution ciphers, where
m is a multiple of n.
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Vigenère The Vigenère cipher is a polyalphabetic substitution cipher
that uses a word, usually of short length, as the key. The key simply dic-
tates how much each character is shifted in the text, "A" means no shift,
"B" shifted by one, etc. For example, if the key is "ABC", the first character
would not be shifted, the second character shifted by one character, the
third by two, the fourth not shifted, etc. The key is repeated to match the
length of the plaintext. The encryption/decryption can also be expressed
mathematically by enumerating each character (A=0, B=1,...) and using
the following formulas:
Encryption: ci = pi + ki (mod 26)
Decryption: pi = ci − ki (mod 26)

Plaintext V I G E N E R E

Key K E Y K E Y K E

Ciphertext F M E O R C B I

Figure 2.5: Vigenère encryption

Playfair The Playfair cipher substitutes digrams according to a set of
rules. First, a 5x5 cipher table is created from a chosen keyword, such
as "PLAYFAIREXAMPLE", by inserting each character into the table if that
character does not already exist, starting with the keyword, then the rest
of the alphabet.
Then, the plaintext is split into digrams, or two-character blocks. To avoid

P L A Y F

I R E X M

B C D G H

K N O Q S

T U V W Z

Figure 2.6: Playfair key matrix using the key "PLAYFAIREXAMPLE"

digrams with the same character, an "X" is inserted. The digrams are then
substituted according to a set of rules based on their position in the grid:
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1. If the characters form a rectangle, replace each of the characters
with the character in the same row, but opposite corner of the rect-
angle

2. If the characters are in the same column, replace them with the
character below, wrapping around the same column if necessary

3. If the characters are in the same row, replace them with the char-
acter to the right, wrapping around the same row if necessary

DES The Data Encryption Standard is a modern block cipher which
works on 64-bit blocks of plaintext to produce a 64-bit block of cipher-
text. Its key is a 64-bit string, however one byte is used for parity, hence
the effective key length is 56 bits. The algorithm performs two permuta-
tion functions, one before and one after applying a round function 16
times.

1. Apply the initial permutation function I P on the block
2. Split the block into two 32-bit halves, LE0 and RE0
3. For i to r = 16 rounds:

a. LEi = F(REi−1, Kk−i)
b. REi = LEi−1 ⊕ LEi

4. Apply the final permutation function F P on the block and return it

AES The Advanced Encryption Standard, also known as Rijndael, is
a modern block cipher created by Vincent Rijmen and Joan Daemen
and established by the National Institute of Standards and Technology
(NIST) in 2001. The cipher is based on a design known as a substitution-
permutation network (SPN), as opposed to the Feistel network used by
DES. AES operates on a 4x4 column-major order array of bytes, called
the state (shown in figure 2.7). Most calculations are done in a particular
finite field.

The algorithm

• KeyExpansion - the cipher key is used to derive a round key for
each round of the algorithm

• First round: AddRoundKey - each byte in the state is XORed with a
byte of the round key
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• For nine, eleven or thirteen rounds:

◦ SubBytes - non-linearly substitute each byte with another ac-
cording to a lookup table, called the Rijndael S-box.

◦ ShiftRows - the last three rows of the state are shifted cyclic-
ally a certain number of steps.

◦ MixColumns - multiplies each column of the state with a fixed
polynomial to combine the four bytes in each column

◦ AddRoundKey

• Final round (making 10, 12, or 14 rounds in total):

◦ SubBytes
◦ ShiftRows
◦ AddRoundKey











b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15











Figure 2.7: AES state representation

RSA Key generation:

1. Choose two distinct prime numbers p and q
2. Compute n= pq
3. Compute λ(n) = lcm(p− 1, q− 1)
4. Choose an integer e such that 1< e < λ(n) and gcd(e,λ(n)) = 1
5. Determine d such that d ≡ e−1 (mod λ(n))

The private key is d and the public key is (e, n). Miller’s Theorem proves
that determining d from e is as hard as factorizing n into its two prime
factors.
Encryption: me ≡ c (mod n)
Decryption: cd ≡ (me)d ≡ m (mod n)

Speck The Simon and Speck families of block ciphers were publically
released by the National Security Agency (NSA) in June 2013[3]. Simon
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is tuned for optimal performance in hardware, and Speck for optimal
performance in software.

The algorithm

#include <stdint.h>

#define ROR(x, r) ((x >> r) | (x << (64 - r)))
#define ROL(x, r) ((x << r) | (x >> (64 - r)))
#define R(x, y, k) (x=ROR(x,8), x+=y, x^=k, y=ROL(y,3), y^=x)
#define ROUNDS 32

void encrypt(uint64_t ct[2],
uint64_t const pt[2],
uint64_t const K[2])

{
uint64_t y = pt[0], x = pt[1], b = K[0], a = K[1];

R(x, y, b);
for (int i = 0; i < ROUNDS - 1; i++) {

R(a, b, i);
R(x, y, b);

}

ct[0] = y;
ct[1] = x;

}
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2.2 Optimization algorithms/schemes

Genetic/evolutionary algorithms Genetic/evolutionary algorithms be-
gin with a population of candidate solutions. Each candidate solution has
a set of properties which can be mutated and altered. Each generation, a
portion of the existing population is selected to breed a new generation.
Solutions are typically selected through a fitness-based process, where
the fitter solutions are more likely to be selected.

Simulated annealing Simulated annealing is used to probabilistically
approximate the global optimum of a function. The algorithm uses a ran-
dom search and accepts changes that improve the objective function, but
also keeps some changes that are not ideal, with a probability p, in an
attempt to avoid converging on local optima.

Particle Swarm Optimization Particle Swarm Optimization iteratively
tries to improve a candidate solution by having a population of candid-
ate solutions, called particles, which move around in the search-space
according to a simple formula. Each particle’s movement will be based
on the current best global solution, and the particle’s local best solution.

Ant algorithm Ant Colony optimization is a class of optimization al-
gorithms based on the actions of an ant colony. Artificial "ants" (simu-
lation agents) locate optimal solutions by moving through a parameter
space representing all possible solutions. Real ants lay down pheromones
directing each other to resources while exploring their environment. The
simulated "ants" similarly record their positions and the quality of their
solutions, so that in later simulation iterations, more ants locate better
solutions.[4]

Artificial Bee Colony algorithm In the ABC algorithm[5], a colony of
bees contains three groups of bees: employed bees, onlookers and scouts.
A bee waiting to be assigned a food source is called an onlooker, a bee
going to the food source previously visited by itself is named an employed
bee, a bee carrying out a random search is called a scout. In the algorithm,
the first half of the colony consists of employed artificial bees, and the
second half consists of onlookers. The main steps of the algorithm are as
follows:
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1. Initialize
2. REPEAT UNTIL (requirements are met)

a. Place the employed bees on the food sources in memory
b. Place the onlookers bees on the food sources in memory
c. Send the scouts to the search area for discovering new food

sources

In other words, each cycle of the search consists of three steps: sending
employed bees onto food sources (possible solutions) and then measur-
ing their nectar amounts (quality/fitness); selecting which food sources
to send onlookers to after determining nectar amounts; determining which
bees become scouts and sending them to possible food sources. In the ini-
tialization stage, we randomly select a set of food source positions and
determine their nectar amounts.

Cuckoo search The cuckoo search algorithm is based on the cuckoo
bird’s parasitic behavior, where a cuckoo bird will lay its eggs in a host
bird’s nests. The algorithm uses the following representations: each egg
in a nest represents a solution, and a cuckoo egg represents a new solu-
tion. Each cuckoo lays one egg at a time and dumps its egg in a randomly
chosen nest. The nests with the highest quality of eggs (the best fitness)
will carry over to the next generation. The number of host nests is fixed,
and an egg laid by a cuckoo is discovered and discarded by the host bird
with a probability pa. For this project I have chosen to implement Walton
et al.’s Modified Cuckoo Search[1]:

1. Generate an initial population of n host nests;
2. While(t < MaxGeneration)
3. a. Replace a fraction pa of the worse solutions by performing

Lévy flights
b. For i in all top nests
c. i. Pick another nest ( j) at random

ii. If i == j, replace i by performing Lévy flight
iii. Else, move

p

(|i − j|)/1.618 from worst to best
4. end while
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2.3 Fitness function

In cryptanalysis of classical ciphers, one might use chi-squared statistics
as a measure of how close to the English language a decryption is, by
comparing letter frequency in the decryption with letter frequency in the
English language. The chi-squared value is calculated as follows:

χ2(C , E) =
i=Z
∑

i=A

(Ci − Ei)2

Ei
(2.1)

Where Ci is the number of occurrences of the letter i in the decryption
and Ei is the number of expected occurrences in the decryption.

A lower value means a letter frequency close to the letter frequency in
English, which in turn should be the most likely decryption of the cipher-
text.
We will perform these calculations for digram and trigram frequencies as
well, and weight them.

χ2(C , E) = 0.1·
i=Z
∑

i=A

(Ci − Ei)2

Ei
+0.1·

i=Z Z
∑

i=AA

(Ci − Ei)2

Ei
+0.8·

i=Z Z Z
∑

i=AAA

(Ci − Ei)2

Ei

(2.2)

2.4 Index of Coincidence

To determine the period of the Vigenère cipher, i.e. the length of the key,
we exploit that the cipher repeats the key throughout the ciphertext. We
calculate the Index of Coincidence (Ic) using the equation below:

Ic =

∑ j
i=1 fi( fi − 1)

n(n− 1)
(2.3)

, where n is the length of the ciphertext and fi is the frequency count
of the ith letter. We can then approximate the key length by using the
following equation[6]:

ke y_leng th=
0.027n

Ic(n− 1)− 0.038n+ 0.065
(2.4)
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2.5 Relevant prior works

2.5.1 Classical Ciphers

Columnar Cipher

In 1993, R.A.J. Matthews used an order-based genetic algorithm to at-
tack the columnar cipher. He used a simple position based crossover, and
then applied one of two mutations; swapping two indexes or shifting the
chromosome forward a random number of places. The fitness function
was based on the frequency of a small list of digrams and trigrams. This
attack was later re-implemented by Bethany Delman in 2004[7], with
more parameter combinations.

Monoalphabetic Substitution Cipher

In 1993, Spillman et al.[8] used a simple genetic algorithm with a two-
point swap mutation to cryptanalyze simple substitution ciphers, achiev-
ing full key recovery after only 1000 function evaluations. In 1998, An-
drew Clark[9] used simulated annealing and was able to consistently
correctly determine all but one key element. His algorithm chose a new
candidate solution by swapping two random indexes in the current solu-
tion, and evaluated the new solution using a fitness function based en-
tirely on trigram frequencies. However, he found that in terms of the
number of keys recovered vs. total keys considered, the genetic algorithm
vastly outperformed simulated annealing. In 2003, Gründlingh and Van
Vuuren[10] introduced a custom fitness function based on ciphertext
length and monogram frequencies, which they used with a genetic al-
gorithm. In 2006, Uddin and Youssef[11] suggested using Particle Swarm
optimization in which particles were more likely to change to a new per-
mutation based on velocity, instead of adding the velocity to the particle
on each dimension. Mekhaznia and Menai[12] used ant colony optim-
ization for several classical ciphers, including monoalphabetic substitu-
tion, however they only achieved an average of 24% key recovery across
ciphertext lengths. In 2016, Grari et al.[13] demonstrated that one can
recover up to 100% of the key elements when using ant colony optimiz-
ation with enough ciphertext and a fitness function based on only mono-
and digram frequencies. Sabonchi and Akay[14] used the artificial bee
colony algorithm, recovering up to 19 out of 26 key characters. In 2015,
Jain et al.[15] showed that cuckoo search performs reasonably well com-
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pared to genetic algorithms and tabu search in terms of how many key
elements were correctly identified. Their algorithms used only digram
frequencies for the fitness function. The genetic algorithm that cuckoo
search was compared with used the same crossover operator as the one
proposed by Clark, and a mutation operator that switched the values at
two indexes. In addition, if no improvement had occurred for a number
of generations, a second mutation operator would be used; interchanging
the values at three random indexes.

Vigenère

As the Vigenère cipher is nothing more than a number of Caesar ciphers
used in succession, one natural way of solving them is to simply solve
these ciphers in parallel. This approach was used for general polyalpha-
betic substitution ciphers, which the Vigenère cipher is a simplification
of. Their algorithm used a number of parallel genetic algorithms, each
working on a slice of the ciphertext to find the best fitting key for their
slice. To be able to calculate fitness for digrams and trigrams, each pro-
cess would communicate their current best key to the other processes
after a number of iterations. The mutation worked as follows: If the child
had a fitness greater than the median, each character was swapped with
the one to its right; if the child’s fitness was less than the median, each
character was swapped with a randomly chosen character in the key. No
messages were successfully decrypted using this method. In 2011, Om-
ran et al.[16] suggested mating two randomly selected parents using a
one-point crossover, and mutating some solutions by swapping two char-
acters in the key string. With a mutation rate of 0.2 and population size
20, they reached upwards of 100% key recovery after 50 generations.

Brezočnik et al.[17] compared several optimization algorithms in terms
of how much of the Vigenère key they were able to retrieve. They found
that the artificial bee colony algorithm performed almost just as well as
particle swarm optimization, but they were both outperformed by ge-
netic algorithms on longer key lengths. Only the differential evolution
algorithm managed to recover the entire key, PSO performing second
best. The worst results came from their cuckoo search algorithm.

Mekhaznia and Menai[12] that ant colony optimization could recover
up to 43% of the Vigenère key.

In 2015, Bhateja et al.[6] used Cuckoo Search to solve Vigenère ciphers
and found that it could outperform both genetic algorithms and Particle
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Swarm Optimization. Their cuckoo search algorithm used Yang and Deb’s
implementation with fixed step size parameter, and a fitness function
based on the 20 most frequent monograms and 25 most frequent di-
grams, where monograms are weighted 0.23 and digrams are weighted
0.77

Playfair

In 2012, Negara showed that Playfair is a good candidate for permutation-
based evolution[18]. Their fitness function uses monograms and digrams.
Their GAPFC algorithm starts with random sets of distinct letters as the
population and evolves with one of two crossover operators and muta-
tion operators at random. The crossover chooses a random index in both
parents and swaps either the initial or final parts of the key. One muta-
tion operator splits the key at a random index and switches the parts. The
other mutation operator swaps two indexes. The algorithm also takes a
key length as a parameter, meaning that it can limit its search. For testing,
the same plaintext is successively enciphered using the keys from three
test sets (3, 4 and 5-letter keys, respectively). With a population size of
1000, the three-letter keys were found after 1-17 generations, the four-
letters keys after 8-38 and the five-letter keys after 16-83. As a second
test, the same ciphertext was enciphered with 20 related keys of length
6, obtained by appending all possible letters to the word "relat" to pro-
duce a key with distinct letters. Tests resulted in five out of twenty keys
being successfully found after 1000 generations by using 2000 popula-
tion. By doubling the number of generations, this number increased to
nine out of twenty. For the fourth test, a different and longer plaintext
was enciphered using the 7-letter key "GABRIEL". The algorithm found
the key after between 64 and 174 generations. The same test was run
with an eight-letter key "PLAYFIRC", which the algorithm found after
between 100 and 279 generations. The conclusion is that the results and
efficiency is influenced by the genetic operators used, the parameters set-
tings, the fitness function and the enciphered text length. Generic evolu-
tionary schemes such as this one are potentially useful tools in analyzing
and solving both cryptanalysis and cryptographic problems.

Cowan shows in [19] that the most efficient way of changing a Play-
fair key is to randomly swap two rows or columns in the matrix. The
Simulated Annealing program should include a mix of letter, column and
row swapping to get the best results. He also refers to Jan Stumpel’s tech-
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nique of flipping the entire key matrix around an axis, but find that this
is of second order advantage compared to swapping rows and columns.
Cowan also explains that when solving Playfair ciphers with SA, using
digrams will not solve short ciphers, and trigrams will only solve the
easiest ones. To efficiently solve them, we should also introduce quad-
grams. There is very high variability in his results, taking between 2.6
and 115.3 million keys to find the key for an 86-letter ciphertext, and as
low as 0.27 million for a 124-letter ciphertext. As for starting temperat-
ure, Cowan suggests using the following equation, however this is likely
to be customized to his data sets.

T = 10+ 0.087 · (leng th− 84)

.

2.5.2 Modern ciphers

DES

Genetic algorithms have been used previously[20] to crack DES without
much success, even when evolving the keys as bit strings instead of char-
acter strings. Mekhaznia et al. [21] managed to get up to 100% bit-
recovery in SDES, 80% for 4-round DES and 40% for full DES on large
ciphertexts. The same paper also attempted to use Particle Swarm Op-
timization by calculating fitness and velocity, and flipping a random bit
in the key only if the velocity exceeds 0.5.

Nalini and Rao used Simulated Annealing against SDES, or simplified
DES[22], and compared the results to those of a genetic algorithm and
tabu search. Their experiments used ciphertexts of length 200, 500 and
1000, and simulated annealing was able to find on average 7.5, 8.4 and
9.2 out of 10 key bits, respectively. The genetic algorithm would find 7.4,
8.1 and 9.1 key bits respectively.

Sharma, Pathak and Sharma’s 2012 paper[23] attempts to break Sim-
plified DES using binary particle swarm optimization. Their fitness func-
tion only uses monograms and digrams. Their genetic algorithm uses a
ring crossover to produce the children from the parents, meaning that the
two parents are connected, forming a ring, and two children are produced
by choosing a random point and splitting the ring clockwise and counter-
clockwise. In the binary PSO, the particle’s personal best and global best
is updated as in continuous PSO. The major difference is that the velocity
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of the particles uses the probability that a bit takes on 0 or 1, meaning
that the velocity must be restricted within the range [0, 1]. With self-
recognition parameter 2, social parameter 2, inertia weight between 0.99
and 1, population 100, 50 iterations and rmute = 0.004, BPSO managed
to find 7/10 bits with 200/400 characters of ciphertext, 8/10 with 600
characters of ciphertext, 9/10 with 800 characters of ciphertext, 10/10
bits with 1000/1200 characters of ciphertext.

Khan, Shahzad and Khan’s 2010 paper[24], and Khan, Ali, and Dur-
rani’s 2013 paper[25] attempts to use Binary Ant Colony Optimization
to crack four-rounded DES. In order to apply their ACO to the problem,
the search space has to be formed in a directed graph-like structure that
essentially represents a bit string of length 64. From a node, when an
ant decides which node to move to next, which in this case is a ’0’ or
a ’1’ node, it uses two parameters to calculate the probability of mov-
ing to a particular node; first, the distance to that node and second, the
amount of ’pheromone’ on the connecting edge. Their attack relies on
known plaintext-ciphertext pairs, and they seed their population with the
ciphertext XOR’d with its corresponding plaintext. For their experiments,
they use 4 ants, pheromone influence factor α = 1.5 and heuristic influ-
ence factor β = 1. Their fitness function is the number of same bits in
identical positions between the original ciphertext generated using the
original secret key, and the candidate ciphertext generated by key from
the ant algorithm. For four-rounded DES, this attack found a maximum
of 19 bits with 1000 generations and four ants and some clever para-
meter choices. For one-, two- and three-round DES, this attack reaches a
success rate of 99-100% after 10000 generations.

AES

In 2019, Grari et al.[26] proposed using ant colony optimization to find
the key of simplified-AES using known ciphertext/plaintext pairs. Assum-
ing we know a part of plaintext P and its corresponding ciphertext C, we
use ant colony optimization to decrypt the known ciphertext with a can-
didate key and evaluate its fitness against the known plaintext:

F(Kc) =

∑z
i=1 #(GPi ⊕ Pi)

z · 16

Where z is the number of known plaintext-ciphertext pairs (Pi , Ci), Kc is
the candidate key, GPi is the plaintext produced by decrypting Ci with Kc .



Chapter 2: Background 19

Their first experiment was to find the optimal number of ants that allows
finding the key in a minimal search space. Results show that the algorithm
could not find the correct key with less than 40 ants. The optimal result
was 120 ants and 43 generations, meaning a total of 5160 keys browsed.
Their approach only needs 2 plaintext-ciphertext pairs to find the correct
key.

RSA

Genetic algorithms show some promise for integer factorization, accord-
ing to Rutkowski and Houghten[27]. They use three genetic algorithms.
Population size was arbitrarily chosen as 2000 for all algorithms. Number
of generations is also 2000. Their simple genetic algorithm represents the
candidate keys as bit strings where the leftmost bit is always set to 1. They
use a fitness of f (p) = N (mod p). This means that the chromosome rep-
resents one of the primes, not both. The initial population is generated
randomly. The algorithm uses a two-point crossover, where two points
are randomly chosen, all values between these points are copied to one
child, and all other values are copied to the other child. Chromosomes
are mutated by flipping a random bit. In their second genetic algorithm,
they exploit the property that all primes p > 3 must satisfy p = 6m± 1
to reduce the search space. Each chromosome is now a bit string start-
ing with 1 representing m in the equation. Fitness is still calculated with
f (p) = N (mod p), but both p = 6m+1 and p = 6m−1 is examined and
the solution with the lowest fitness is returned. The initial population is
generated in the same way as before, and crossover and mutation is the
same. In the third algorithm, they force every chromosome to be a prob-
able prime by regenerating the chromosome until it is a probable prime.
The crossover operator is modified to run the resulting children through
the primality test and potentially generating new children by choosing
new points, up to a maximum number of times equal to two times the
length of the chromosome. The mutation operator flips a random bit, tests
for primality and potentially reverts the flip and chooses another random
bit to flip, up to a maximum number of tries equal to the length of the
chromosome. Each of the three genetic algorithms were run for up to 16
data sets of N, half of which were taken from earlier literature. The first
simple genetic algorithm was able to factorize a 17-digit number after
an average of 1564 generations, which outperformed the Yampolskiy’s
algorithm. The "chromosome is m" algorithm, using 100% crossover and
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mutation rates, took fewer generations on average to find one of the cor-
rect primes than the previous algorithm (12 vs 55 generations). This GA
was also able to factor a larger N. The simple GA was able to factor up
to the 38-bit number 100% of the time, while the "chromosome is m"
GA was able to factor up to the 44-bit number 100% of the time. It was
also the best performing GA in factoring large semi-primes, being able to
factor a 19-digit semi-prime 1/30 of the time. For the last GA, the prim-
ality test GA, the best crossover rate was 50% and 95% mutation rate.
Overall, this GA found a correct prime number earlier in the evolution.
For most data sets, the average number of generations were less than 35.
The trade-off, however, is that the GA has to repeat operations to main-
tain the primality criteria at each step. This also decreased the maximum
length of N the GA was able to factor consistently. The GA was able to
factor up to 36-bits 100% of the time, but was able to factor a 54-bit
number twice.

Mishra and Chaturvedi used a firefly algorithm to attempt to factor-
ize primes[28]. While this not an algorithm we will be using, it is similar
to Particle Swarm Optimization, and does have some good points, such
as suggesting that the search space should be limited to p ∈ (10d−1,

p
N ,

where d is the number of digits in the square root of N floored to an in-
teger value. The experiments use 1000 generations, after which the run
is deemed a success or failure. The fitness function used is f (x) = N
(mod x). The algorithm was tested on 10 datasets based on the num-
ber of digits of factors, two of each kind. They conclude that the Firefly
Algorithm is a very promising metaheuristic in solving the prime factor-
ization problem, with some tuning and modifications.

SPECK/SIMON

There does not seem to be any recorded attempt at using optimization
algorithms to attack SPECK/SIMON, but presumably this will yield about
the same results as DES/AES.
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Method

This project requires a unified way of testing each combination of cipher
and optimization algorithm. For this reason, a C++ framework using
pagmo and Crypto++ was developed1. The framework is given an op-
timization algorithm and encryption algorithm or cipher, as well as a
ciphertext produced by the chosen cipher. This framework is then used
to iteratively test each optimization algorithm’s efficiency on each cipher.
These results can then be used to compare each optimization algorithm to
each other as well as to results from earlier literature and related works.

3.1 Implementation

Pagmo[29] is a C++ library for parallel optimization which provides a
unified interface to optimization algorithms and problems. It contains ef-
ficient implementations of nature-inspired and evolutionary algorithms
as well as state-of-the-art optimization algorithms, which can be used to
solve constrained, unconstrained, single-objective, multi-objective, con-
tinuous and integer optimization problems, as well as stochastic and de-
terministic problems.

For pagmo to be able to solve a problem, it must be formulated in a
certain way. Pagmo problems consist of a problem size or dimension, lin-
ear constraints, a fitness function and lower and upper bounds for each
variable. Each cipher that is used in this project has a corresponding
generic pagmo problem, which will be explained in their own subsec-

1https://github.com/sm0xe/OptimizationCryptanalysis
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tion below. The ciphertext is passed to this generic pagmo problem to
create a specific problem that can be solved by the chosen optimization
algorithm. The optimization algorithm is given this specific problem for-
mulation and is then initialized with a population of the appropriate size.
Then the population is evolved for a chosen number of generations ac-
cording to the optimization algorithm, guided by the problem’s fitness
function, constraints and bounds. Finally, the algorithm will output the
best solution in the population. Each generation is logged for each run
such that we are able to calculate the average number of generations or
fitness evaluations needed to reach the solution.

In the next sections, we will describe how each optimization algorithm
in pagmo works.

Simple Genetic Algorithm

The Simple Genetic Algorithm provided by PaGMO (pagmo::sga) sup-
ports two different selection schemes, four crossover schemes and three
mutation schemes.

The two selection methods provided are "tournament" and "truncated".
Tournament selection divides the population into random groups of size
param_s and selects each offspring as the one having the minimal fitness
in the group. Truncated selection selects param_s of the best chromo-
somes from the entire population.

The four crossover schemes are "single", "exponential", "binomial" and
"sbx". The single-point crossover scheme chooses a random point in the
parent chromosome and inserts the partner chromosome thereafter. The
exponential crossover scheme selects a random point in the parent chro-
mosome and for each successive gene inserts the partner values with a
probability cr. The binomial crossover inserts each gene from the partner
with probability cr.

The three different mutation schemes are "uniform", "gaussian" and
"polynomial". Uniform mutation randomly samples from the bounds. Gaus-
sian mutation samples around each gene using a normal distribution
with standard deviation proportional to param_m and the width of the
bounds.

All experiments with GA use a crossover rate of 0.75, a single-point
crossover, polynomial mutation with param_m = 1 and tournament se-
lection with param_s = 5. We will also perform experiments with three
different mutation rates; m= 0.02, m= 0.2 and m= 1.0.
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Customized Simple Genetic Algorithm

The implementation of Simple Genetic Algorithm in pagmo does not
provide a mutation operator that simply swaps two indexes, which is
often used in related literature for ciphers such as the monoalphabetic
substitution cipher. For the purpose of adequately comparing results with
earlier literature, I implemented a customized version of SGA that provides
this mutation operator, as well as optionally maintaining unique values
in the chromosome, which will prove useful for monoalphabetic substi-
tution, Playfair and columnar ciphers.

All experiments use the same parameters as the Simple Genetic Al-
gorithm, except for the mutation operator, which is the two-index swap.
In addition, for monoalphabetic substitution and Playfair ciphers, the al-
gorithm will enforce unique values after crossover.

Self-Adaptive Differential Evolution

jDE/iDE are improvements on the original differential evolution algorithm
by introducing parameter self-adaptation. Two variants are implemented
in PaGMO. The first (jDE), as proposed by Brest et al., does not use DE
operators to produce new values for the weight coefficient and the cros-
sover probability, and as such uses parameter control, not parameter self-
adaptation. The second variant (iDE), inspired by Elsayed et al., uses a
variation of the selected DE operator to produce new CR and F paramet-
ers for each individual. By default, PaGMO’s SaDE uses jDE.

All experiments will use jDE self-adaptation and the default mutation
variation. The default mutation variation constructs a donor vector from
three randomly selected individuals in the population and performs an
exponential crossover with the individual to be mutated.

Simulated Annealing

PaGMO implements Corana’s version of Simulated Annealing with adapt-
ive neighborhood[30]. The algorithm is essentially an iterative random
search procedure with adaptive moves along the coordinate directions.
It is not suitable for multi-objective problems, nor for constrained or
stochastic optimization. As opposed to the other optimization algorithms,
Simulated Annealing does not use a fixed number of generations. It is not
a population-based algorithm, and as such only operates on a single indi-
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vidual. If the population size is larger than 1, the algorithm will improve
on the best individual in the initial population.

All experiments will use default parameters: starting temperature
Ts = 10, final temperature T f = 0.1, number of temperature adjust-
ments n_T_ad j = 10, number of adjustments of the search range at
a constant temperature n_range_ad j = 1, number of mutations used
to compute the acceptance rate bin_size = 20, and starting range for
mutating the decision vector star t_range = 1.0.

Particle Swarm Optimization

PSO is a population-based algorithm inspired by the foraging behavior of
swarms. Each particle has memory of the position where it achieved the
best performance xl

i (local memory) and the best decision vector xg in a
certain neighborhood, and uses this to update its positions according to
the equation

vi+1 =ω
�

vi +η1r1 ·
�

xi − xl
i

�

+η2r2 · (xi − xg)
�

xi+1 = xi + vi
(3.1)

The algorithm is suitable for box-bounded single-objective unconstrained
optimization, with both continuous and integer values.

All experiments will use parameters ω = 0.7298, forces in direc-
tion of local and global best eta1 = eta2 = 2.05, maximum velocity
max_vel = 0.5, and swarm topology l best with degree 4.

Extended Ant Colony Optimization (gaco)

Ant colony optimization is modeled on the behavior of an ant colony.
Artificial ants locate optimal solutions by moving through a parameter
space representing all possible solutions. The ants record their positions
and quality of their solutions such that in later iterations more ants locate
better solutions. PaGMO implements a version of this algorithm called
extended ACO, which was originally described by Schlueter et al.[4]. This
version generates future generations by using a multi-kernel gaussian
distribution based on three values which are computed depending on the
quality of each previous solution. The solutions are then ranked through
an oracle penalty method. This algorithm can be applied to box-bounded
single-objective, constrained and unconstrained optimization, with both
continuous and integer values.
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All experiments use parameters: kernel size 20, oracle penalty 100,
convergence rate q = 0.01.

Artificial Bee Colony

Artificial Bee Colony is an optimization algorithm based on the foraging
behavior of honey bee swarms, proposed by Karaboga in 2005[5]. PaGMO’s
implementation of the algorithm is based on the pseudo-code provided
by Mernik et al.[31]. It is suitable for box-constrained single-objective
continuous optimization problems.

All experiments use 200 generations and default parameter l imit =
20, the maximum number of trials for abandoning a source.

Cuckoo Search

Pagmo does not provide an implementation of the Cuckoo Search al-
gorithm. Therefore, I decided to implement the algorithm in a way that
pagmo can use. My implementation follows Walton’s Improved Cuckoo
Search implementation[1].

All experiments will use 200 generations and default parameters pa =
0.25 and A= 1.0

3.1.1 Optimization Problems

Pagmo requires optimization problems to be formulated a certain way.
This includes a problem size or dimension, optional linear constraints,
bounds on each variable and a fitness function. In this section, we will
explain how each cipher is formulated as an optimization problem.

Caesar/Shift Cipher The corresponding optimization problem is a single
variable in the range 0 to 25, representing the shift and no other con-
straints. The solution’s fitness is evaluated by passing the decryption to
the weighted chi-squared function described in section 2.3

Columnar Cipher The corresponding optimization problem is an array
of values between−1 and the length of the array. The decryption function
will read the array until the first −1 is discovered, and decrypt according
to the number of columns read and the relative ordering each index rep-
resents. This is done to make the optimization problem more flexible in
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terms of key length, by finding the number of column and ordering at the
same time. The solution’s fitness is evaluated by passing the decryption
to the weighted chi-squared function described in section 2.3

Monoalphabetic Substitution Cipher We defined two problems, one
where the problem is constrained to having unique values in the ar-
ray using pagmo, and one without these constraints. However, exper-
iments during development showed that not having these constraints
in the problem definition and instead maintaining unique values dur-
ing evolution was more efficient. Every candidate solution is an array of
length 26 with values between 0 and 25. The solution’s fitness is evalu-
ated by passing the decryption to the weighted chi-squared function as
described in section 2.3.

Vigenère The most likely key length is determined by using index of
coincidence[ioc] and passed to the optimization problem. The decision
vector is of the same length as the key and every value in the vector
is between 0 and 25, each representing a shift. The solution’s fitness is
evaluated by passing the decryption to the weighted chi-squared function
described in section 2.3

Playfair The decision vector has a length of 25, and every value is
between 0 and 24. The decryption function creates a valid Playfair key
out of the decision vector by removing ’J’ from the key and making sure
all values are unique. The solution’s fitness is evaluated by passing the de-
cryption to a weighted chi-squared function that disregards the frequency
of ’X’.

DES, AES and SPECK The decision vector contains 8, 12 or 16 values
between 0 and 255, for DES, SPECK and AES respectively. The decision
vector is then passed to Crypto++’s implementation of DES, SPECK or
AES to produce a plaintext which is then evaluated with the weighted
chi-squared function from section 2.3

RSA Factorization Problem I have defined two pagmo problems for
RSA Factorization. In both problems we have to store the large integers
we work with in a clever way as to fit within the constraints of the double
type. I have chosen to represent the integers as their prime factorization
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by storing only the exponents for each prime number in the decision vec-
tor and calculating the integers by taking the product of each prime num-
ber to the power of the corresponding exponent in the decision vector.
This representation also makes it simpler to calculate the squares used in
the fitness function x2 − y2 (mod n).

Three pagmo problems were defined for RSA. In the first one, the
decision vector represents the prime factorization of two integers, x and
y . The first half of the array contains the exponents for prime numbers
in the prime factorization of x , and the second half for y . For example,
if the decision vector is of length 8 and contains the values

0, 1,2,3, 1,3, 2,0

, this would represent the two integers x = 20 · 31 · 52 · 73 = 25725
and y = 21 · 33 · 52 · 70 = 1350. The goal is to find two integers, x and
y that satisfy the equation x2 + y2 ≡ 0 (mod n) for the public key n.
This problem calculates x2 and y2 from the decision vector and uses the
fitness function f (x2, y2, n) = |x2 − y2| (mod n). However, the solution
will be rejected by using a high fitness penalty if either x = 0 or y = 0,
or x = y or x + y = n.

The second problem uses the decision vector to represent a single
integer in the same way as the first problem, but uses the fitness function
f (x) = x (mod n), with a high fitness penalty if x 6∈ [

p
n, 10dlog10

p
n−1e].

The last problem exploits the property that all primes p > 3 must
satisfy p = 6m ± 1 by using the decision vector to represent m as a bit
string of length dlog2

p
n+1
6 e with a leading 1 bit. The fitness function is

f (m) = min6m+ 1%n, 6m− 1%n. This is the only problem that yiel-
ded any results out of the three, and the only one whose results will be
presented in the next chapter.

3.2 Experiments

When constructing the experiments, we had two options: create exper-
iments for each combination with comparable parameters to earlier re-
search, or use the same parameters for each cipher-optimization pair such
that they can be compared to each other. We chose the latter.

Each cipher has at least one sample ciphertext that we run through
the program to gather results. The program will output the best fitness
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Table 3.1: Ciphertexts used

Cipher Ciphertext Key Plaintext fitness Plaintext length

Columnar JulesVerne1.txt [1,2,0,3] 10613.59 18957

Caesar caesar.txt Enc: HIJKLMNOPQRSTUVWXYZABCDEFG 5428003.61 168

Dec: TUVWXYZABCDEFGHIJKLMNOPQRS

Caesar caesar2.txt Enc: HIJKLMNOPQRSTUVWXYZABCDEFG 4550880.57 216

Dec: TUVWXYZABCDEFGHIJKLMNOPQRS

Caesar JulesVerne4.txt Enc: HIJKLMNOPQRSTUVWXYZABCDEFG 32659.92 23058

Dec: TUVWXYZABCDEFGHIJKLMNOPQRS

Vigenère JulesVerne1_Vigenere_key10.txt JULESVERNE 10613.59 18957

Vigenère JulesVerne_Vigenere_key5.txt JULES 10613.59 18957

Vigenère JulesVerne_Vigenere_key3.txt KEY 10613.59 18957

Playfair JulesVerne.txt VERNABCDFGHIKLMOPQSTUWXYZ 10630.32 15557

Playfair JulesVerne1.txt PLAYFIREXMBCDGHKNOQSTUVWZ 10867.69 15421

MSub JulesVerne1.txt Enc: NBAJYFOWLZMPXIKUVCDEGRQSTH 26888.37 18984

Dec: CBRSTFUZNDOIKAGLWVXYPQHMEJ

DES JulesVerne1_des.txt deadbeefbabe1337 10613.59 37921

AES JulesVerne1_aes.txt deadbeefbabe1337feed7abe1037def0 10613.59 37921

SPECK JulesVerne1_simon.txt deadbeefbabe1337feed7abe 10613.59 31121

value in the population for each generation such that we can track im-
provements each generation. For each ciphertext, we will run the pro-
gram five times with each optimization algorithm and each population
size (20,30,50,70), for 200 generations. For RSA, we will run the pro-
gram ten times with each optimization algorithm and each population
size, for a maximum of 20000 generations. We then calculate how much
of the key has been recovered and average number of generations needed
to recover the key, if it was recovered in its entirety, as well as the average
number of evaluations. After key recovery, the best metric for efficiency
is the number of evaluations needed to reach full key recovery.

Below is a table of the datasets used in our experiments. All cipher-
texts named "JulesVerne" are the two first chapters of Jules Verne’s book
"Twenty Thousand Leagues Under the Seas"[32], encrypted with the cor-
responding cipher and key in the table.

The "ciphertexts" or datasets used for RSA are different from the ones
for the other ciphers. This is because the RSA factorization problem op-
erates on the public key of the cipher, not a ciphertext. In the table below
you will find the public n for each dataset, its length in digits and bits,
and its factorization.
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Table 3.2: Data sets used for RSA

Data set n Digits Bits p q

rsa1.txt 10909343 8 24 2693 4051

rsa2.txt 29835457 8 25 4001 7457

rsa3.txt 392913607 9 29 17911 29137

rsa4.txt 5325280633 10 33 57731 92243

rsa5.txt 42336478013 11 36 174169 243077

rsa6.txt 272903119607 12 38 374989 727763

rsa7.txt 11683458677563 14 44 2595899 4500737

rsa8.txt 51790308404911 14 46 5581897 9278263

rsa9.txt 115137038087959 15 47 10037141 11471099

rsa10.txt 8335465900089539 16 53 90745723 91855193

rsa11.txt 10380088039872631 17 54 101858333 101907107

rsa12.txt 253422413591685001 18 58 501900991 504925111

rsa13.txt 1160633764479964633 19 61 1004922797 1154948189

rsa14.txt 31625125947164338313 20 65 3510002059 9010002107

rsa15.txt 454367322351811534933 21 69 13545006127 33545006779

rsa16.txt 4500000514520012390279 22 72 50000003993 90000003103





Chapter 4

Results

In this chapter we will present the results of our experiments. All box plots
and tables can be found in the Appendix, but only the most representative
or interesting tables or figures will be reproduced here.

4.1 Caesar/Shift cipher

The Simple Genetic Algorithm is able to correctly determine the key in all
runs for all population sizes on all ciphertexts, in very few generations.
The custom Genetic Algorithm has between 20 and 100% average key
recovery, however in all runs where the key is found, it is found in the
first generation. For the Custom Genetic Algorithm, m = 1.0 seems to
give the best average key recovery out of the three. Self-Adaptive Differ-
ential Evolution, Particle Swarm Optimization, Ant Colony Optimization,
Artificial Bee Colony Optimization and Cuckoo Search all found the key
in all runs. Simulated Annealing missed the key in one run on one of the
shorter ciphertexts.

4.2 Columnar Transposition Cipher

Our experiments had little success with using the Simple Genetic Al-
gorithm with m = 0.02, only succeeding in one run, and achieving an
average key recovery of 22.5% across all runs. With m = 0.2, the al-
gorithm fared slightly better, succeeding in nine runs and reaching 57.5%
average key recovery across all runs. Finally, m= 1.0 lead the algorithm

31
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Table 4.1: Columnar cipher - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Ant Colony 96.25%

Particle Swarm 86.25%

Self-Adaptive Differential Evolution 73.75%

Artificial Bee Colony 62.5%

Simple Genetic Algorithm with m= 0.2 57.5%

to the key in eleven runs and 55% average key recovery.
The Custom Genetic Algorithm did not manage to find the key in any

runs with m = 0.02 or m = 1.0 (26.25% and 18.75%), however it did
find the key in three runs with m= 0.2 (33.75%).

Self-Adaptive Differential Evolution found the key in fourteen runs
(73.75% key recovery), with a population of 20 and 70 individuals giv-
ing the highest success rates, but also the highest average number of
generations.

Simulated Annealing did not find the key in any runs, but achieved
an average of 35% key recovery, outperforming the Custom Genetic Al-
gorithm overall.

Particle Swarm Optimization and Ant Colony Optimization had the
highest success rates overall. Particle Swarm Optimization found the key
in seventeen runs (86.25% key recovery), with population sizes 50 and
70 finding the key in every run. while the Ant Colony Optimization al-
gorithm found it in nineteen (96.25% key recovery). The Artificial Bee
Colony Optimization found the key in eleven runs (62.5% key recovery),
and Cuckoo Search in eight (48.75% key recovery).

4.3 Monoalphabetic substitution ciphers

In our experiments, none of the algorithms in the default pagmo library
was able to find the key in its entirety after 200 generations. However,
our Custom Genetic Algorithm, which enforces unique values, found the
key in five runs with m = 0.02 as shown in table B.28, and in ten runs
with m= 0.2 and m= 1.0 as shown in tables B.29 and B.30. The lowest
average number of evaluations were 3480, which was achieved with the
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Table 4.2: (B.21) Columnar Transposition cipher - Particle Swarm Op-
timization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 65.00% 100.00% 3/5 50.33 1006.67

JulesVerne1.txt 30 80.00% 100.00% 4/5 55.50 1665.00

JulesVerne1.txt 50 100.00% 100.00% 5/5 84.80 4240.00

JulesVerne1.txt 70 100.00% 100.00% 5/5 20.20 1414.00

Table 4.3: (B.22) Columnar Transposition cipher - Ant Colony Optim-
ization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 100.00% 100.00% 5/5 48.20 944.00

JulesVerne1.txt 30 85.00% 100.00% 4/5 35.50 1035.00

JulesVerne1.txt 50 100.00% 100.00% 5/5 36.00 1750.00

JulesVerne1.txt 70 100.00% 100.00% 5/5 16.80 1106.00

Custom Genetic Algorithm with m = 0.2 (average 72.5% key recovery)
and a population size of 20. The highest average key recovery overall
(79.04%) was achieved by the Custom Genetic Algorithm with m = 1.0.
Even though we managed to retrieve the key in some runs, we were not
able to achieve better results than the experiments in previous research
papers.

4.4 Vigenère

Our Simple Genetic Algorithm performed fairly well on Vigenère, finding
the entire key in 54/60 runs with m = 0.02, having the most difficulty
with key length 10. With m = 0.2, the algorithm found all keys of all
three length in every run. Using m = 1.0 gave the worst results, only
succeeding in nine runs, with 81.67% average key recovery overall. With
a population of 20 and m = 0.2, the genetic algorithm found the key of
length 3 in 13.4 generations, length 5 in 29.4 and length 10 in 114.8. In
comparison, Omran et al. reached upwards of 100% key recovery after
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Figure 4.1: (A.8) Columnar Cipher - Population size = 70

Table 4.4: Monoalphabetic substitution - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Custom Genetic Algorithm with m= 1 79.04%

Custom Genetic Algorithm with m= 0.2 72.5%

Custom Genetic Algorithm with m= 0.02 71.54%

Self-Adaptive Differential Evolution 6.54%

Artificial Bee Colony 5%

50 generations with the same parameters.
The Custom Genetic Algorithm did not perform as well, succeeding in

seven runs with m= 0.02, and in five runs with m= 0.2 and m= 1.0. It
was only able to recover keys of length 3 and 5, but did so with relatively
few fitness evaluations and generations.

Self-Adaptive Differential Evolution found the key in all 60 runs, with
relatively few fitness evaluations. With the same type of algorithm, Brezočnik
achieved about 95% average key recovery for keys of length 8 and about
93% for keys of length 12 after 50000 fitness evaluations, whereas our
experiments achieved 100% average key recovery with far less fitness
evaluations.
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Figure 4.2: (A.12) Monoalphabetic Substitution cipher - Population size
= 70

Simulated Annealing found the key with length 3 in all runs, but only
reached 80% and 90% max key recovery for length 5 and 10 respectively.

Particle Swarm Optimization found the key with length 3 in all runs
and the key of length 5 in 15/20 runs. It did not find the key of length 10
in any of the runs. Overall, the algorithm achieved 87.17% average key
recovery. In comparison, Brezočnik recovered 3.8 out of 4 key elements
(95% key recovery), 5.4 out of 6 key elements (90% key recovery), 6
out of 8 key elements (75% key recovery), and 7.8 out of 12 (65% key
recovery) with the same algorithm and 50000 fitness evaluations.

The Ant Colony Optimization algorithm found the key of length 3 in
17/20 runs, and the key of length 5 in 12/20 runs. Overall, the algorithm
had an average key recovery of 76.17%.

Artificial Bee Colony found the key of length 3 in 19/20 runs (98.33%
average key recovery), the key of length 5 in 15/20 runs (94% average
key recovery) and the longest key twice (76% average key recovery). To
compare, Brezočnik achieved an average of 87% key recovery with keys
of length 6, 80% with length 8 and 58% with length 12.

Cuckoo Search found the shortest key in only five runs (73.33% av-
erage key recovery), and the key of length 5 twice (57% key recovery).
It was not able to find the key of length 10 in any run (44.5% average
key recovery). In comparison, Brezočnik reached 65% key recovery with
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Table 4.5: Vigenère - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Simple Genetic Algorithm with m= 0.2 100%

Self-Adaptive Differential Evolution 100%

Simple Genetic Algorithm with m= 0.02 98.28%

Artificial Bee Colony 89.44%

Particle Swarm Optimization 87.17%
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Figure 4.3: (A.24) Vigènere with key length 10 - Population size = 70

keys of length 4, 50% with length 6, 47.5% with length 8 and 33% with
length 12. Bhateja found that CS could consistently find keys up to length
6 on short ciphertexts, and up to 18 on longer ciphertexts, however we
were not able to achieve comparable results.

4.5 Playfair

The Simple Genetic algorithm recovered the key in four out of the 40
runs with m= 0.2. SGA with m= 0.02 and m= 1.0 failed to recover the
key in any runs. The Custom Genetic Algorithm recovered the key once,
using m = 0.02 and a population size of 70. Self-Adaptive Differential
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Table 4.6: Playfair - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Particle Swarm 48.2%

Ant Colony 46%

Simple Genetic Algorithm with m= 0.2 44.4%

Self-Adaptive Differential Evolution 43.7%

Simple Genetic Algorithm with m= 1.0 40.40%
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Figure 4.4: (A.28) Playfair cipher - Population size = 70

Evolution also recovered the key in one run, using a population size of
20. Simulated Annealing and Artificial Bee Colony Optimization did not
recover the key at all. Particle Swarm Optimization recovered the entire
key in only two runs with population size 70, but had the highest average
key recovery out of all algorithms. Ant Colony Optimization recovered the
key in two runs, with the second-highest average key recovery of 46&.
Cuckoo Search recovered the key in one run with population size 70.
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Table 4.7: DES - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Simple Genetic Algorithm with m= 0.2 52.66%

Self-Adaptive Differential Evolution 52.42%

Cuckoo Search 51.72%

Custom Genetic Algorithm with m= 0.2 51.41%

Particle Swarm 51.41%

Table 4.8: DES - Maximum key recovery (top 5)

Optimization Algorithm Maximum key recovery

Custom Genetic Algorithm with m= 0.2 67.19%

Simple Genetic Algorithm with m= 1.0 65.62%

Particle Swarm 65.62%

Cuckoo Search 65.62%

Self-Adaptive Differential Evolution 64.06%

4.6 DES

Not a single run was able to recover the key from a full DES ciphertext.
The best result we were able to get was 65.62% key recovery, which was
achieved by the Custom Genetic Algorithm (m = 0.2) with a population
of 20. In comparison, Mekhaznia et al., achieved about 45% key recovery
after 1600 generations of DE, and about 60% key recovery after 1600
generations of PSO.

4.7 AES

As with DES, not a single run was able to recover the entire key from
a full AES ciphertext. The best result was a 60.16% key recovery, which
was achieved by the Simple Genetic Algorithm with m= 1.0, Ant Colony
Optimization with population size 30 and Cuckoo Search with population
size 70.



Chapter 4: Results 39

40 50 60 70

GA(m=0.02)
GA(m=0.2)
GA(m=1.0)

Custom GA(m=0.02)
Custom GA(m=0.2)
Custom GA(m=1.0)

DE
SA

PSO
ACO
ABC

CS

Figure 4.5: (A.32) DES - Population size = 70

Table 4.9: AES - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Particle Swarm 52.35%

Custom Genetic Algorithm with m= 0.2 51.92%

Artificial Bee Colony 50.86%

Cuckoo Search 50.86%

Ant Colony 50.20%

4.8 SPECK

Not a single run was able to recover the entire SPECK key. The best result
was 67.71% key recovery, achieved by Cuckoo Search with population
size 30.

4.9 RSA

Three different problem formulations were experimented with, but only
the formulation proposed by Rutkowski and Houghten[27] yielded res-
ults. Therefore, we will only present the results from this problem formu-
lation.

The Simple Genetic algorithm with found most consistency with m=
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Table 4.10: AES - Maximum key recovery (top 5)

Optimization Algorithm Maximum key recovery

Simple Genetic Algorithm with m= 1.0 60.16%

Ant Colony 60.16%

Cuckoo Search 60.16%

Simple Genetic Algorithm with m= 0.2 59.38%

Custom Genetic Algorithm with m= 0.2 59.38%
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Figure 4.6: (A.36) AES - Population size = 70

1.0, with which it consistently factorized integers up to the 44-bit integer
and up to the 61-bit integer with some luck, as shown in A.43 and B.99.
The Custom Genetic Algorithm had a much lower success rate, but man-
aged to factorize up to the 46-bit integer with some luck.

Self-Adaptive Differential Evolution factorized integers up to 33 bits
with a high rate of success, and managed to factorize up to 54-bit in-
tegers.

Simulated Annealing was the least successful algorithm overall, only
factorizing the 24-bit integer three times and the 25-bit integer once.

Particle Swarm Optimization performed somewhat well up to the 33-
bit integer, factorizing the 47-bit integer once with a population of 50.

The Ant Colony Optimization algorithm factorized up to the 47-bit in-
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Table 4.11: Speck - Average key recovery (top 5)

Optimization Algorithm Average key recovery

Custom Genetic Algorithm with m= 0.2 52%

Simple Genetic Algorithm with m= 1.0 51.72%

Particle Swarm Optimization 51.67%

Cuckoo Search 51.62%

Custom Genetic Algorithm with m= 1 51.46%

Table 4.12: Speck - Maximum key recovery (top 5)

Optimization Algorithm Maximum key recovery

Cuckoo Search 67.71%

Artificial Bee Colony 63.54%

Ant Colony 61.46%

Custom Genetic Algorithm with m= 0.2 61.46%

Simple Genetic Algorithm with m= 0.02 61.46%

teger with high success rate and the 61-bit integer once with a population
of 20, as shown in figure A.50

The Artificial Bee Colony algorithm consistently factorized up to the
38-bit integer, and up to the 47-bit integer with somewhat high success,
as shown in figure A.51

The success rate of Cuckoo Search rapidly declined after the 24-bit
integer.
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Figure 4.7: (A.38) Speck - Population 30
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Figure 4.8: (A.43) RSA key recovery - Simple Genetic Algorithm
(m=1.0)
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Figure 4.9: (A.50) RSA key recovery - Ant Colony Optimization
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Figure 4.10: (A.51) RSA key recovery - Artificial Bee Colony Optimiza-
tion





Chapter 5

Discussion

Our experiments have shown that given enough ciphertext to work with,
out-of-the-box optimization algorithms perform reasonably well on de-
crypting several classical ciphers, and on small integers used in RSA. On
classical ciphers such as the monoalphabetic substitution cipher, the out-
of-the-box optimization algorithms from pagmo is heavily outperformed
by the Genetic Algorithm customized for these exact ciphers. Our imple-
mentation of Walton’s[1] Improved Cuckoo Search algorithm performed
reasonably well on classical ciphers, but never outperformed any of the
other algorithms overall on classic ciphers.

As one would expect, none of the optimization algorithms were able
to correctly determine the entire key for DES/AES/SPECK. The highest
key recovery that was achieved was 65.62% for DES, 60.16& for AES and
67.71 for SPECK. All algorithms averaged between 47% and 53% on all
ciphers. The way key recovery is measured for DES, AES and SPECK is
to count the number of correct bits in the key, meaning each bit has a
50% chance of being correct. Therefore, one could argue that the best
key found by the algorithm is not much better than a randomly chosen
bit string. However, this slightly outperforms previous research done by
Mekhaznia et al., who measured key recovery in exactly the same way
for DES.

There was not one optimization algorithm that performed well on all
ciphers. For the Columnar cipher, Ant Colony Optimization and Particle
Swarm Optimization were the clear winners. For the Monoalphabetic
substitution cipher, only the Custom Genetic Algorithm was able to achieve
any useful results. The Vigenère cipher was consistently broken by the
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Simple Genetic Algorithm and Self-Adaptive Differential Evolution. Cuckoo
Search achieved the highest maximum key recovery for AES and SPECK,
and was outperformed by the Custom Genetic Algorithm on DES. For
the RSA factorization problem, the Ant and Bee Colony Optimization al-
gorithms were the most consistent overall.



Chapter 6

Limitations and Future work

One of the limitations of the experiments is the low number of runs for
each ciphertext, optimization and parameter combination. Another lim-
itation is that we did not have time to implement a simplified version of
DES, or the so-called SDES algorithm, which would have allowed us to
compare our results with more previous research. In our experiments, the
fitness function only takes printable characters between A and Z in the de-
cryption into consideration when calculating the chi-squared statistic. A
DES/AES/SPECK decryption with an incorrect key usually produces un-
printable characters which will only contribute to the total string length
in the chi-squared statistic, which can be a limitation in our implement-
ation.

For future work, one can implement SDES and Simplified AES, as well
as run each experiment more times for a larger sample size. There is also a
possibility that one can achieve even better results with DES/AES/SPECK
by slightly changing the fitness function used. The Improved Cuckoo
Search algorithm seems to show promise for ciphertext-only attacks on
DES, AES and SPECK, and one might be able to achieve even higher key
recovery with other parameters than the ones used in our experiments.

47





Bibliography

[1] S. Walton, O. Hassan, K. Morgan and M. Brown, ‘Modified cuckoo
search: A new gradient free optimisation algorithm,’ Chaos, Solitons
& Fractals, vol. 44, no. 9, pp. 710–718, 2011, ISSN: 0960-0779.
DOI: https://doi.org/10.1016/j.chaos.2011.06.004. [On-
line]. Available: https://www.sciencedirect.com/science/
article/pii/S096007791100107X.

[2] K. A. Høivik, ‘Optimization in cryptanalysis,’ Unpublished paper,
Norwegian University of Science and Technology, Nov. 2020.

[3] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L.
Wingers, The simon and speck families of lightweight block ciphers,
Cryptology ePrint Archive, Report 2013/404, https://eprint.
iacr.org/2013/404, 2013.

[4] M. Schlueter, J. A. Egea and J. Banga, ‘Extended ant colony op-
timization for non-convex mixed integer nonlinear programming,’
Computers & Operations Research, vol. 36, pp. 2217–2229, Jul.
2009. DOI: 10.1016/j.cor.2008.08.015.

[5] D. Karaboga and B. Bahriye, ‘A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (abc)
algorithm,’ Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, 2007. DOI: http://dx.doi.org/10.1007/s10898- 007-
9149-x.

[6] A. K. Bhateja, A. Bhateja, S. Chaudhury and P. Saxena, ‘Cryptana-
lysis of vigenere cipher using cuckoo search,’ Applied Soft Comput-
ing, vol. 26, pp. 315–324, 2015, ISSN: 1568-4946. DOI: https:
//doi.org/10.1016/j.asoc.2014.10.004. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/
S1568494614005031.

49

https://doi.org/https://doi.org/10.1016/j.chaos.2011.06.004
https://www.sciencedirect.com/science/article/pii/S096007791100107X
https://www.sciencedirect.com/science/article/pii/S096007791100107X
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://doi.org/10.1016/j.cor.2008.08.015
https://doi.org/http://dx.doi.org/10.1007/s10898-007-9149-x
https://doi.org/http://dx.doi.org/10.1007/s10898-007-9149-x
https://doi.org/https://doi.org/10.1016/j.asoc.2014.10.004
https://doi.org/https://doi.org/10.1016/j.asoc.2014.10.004
http://www.sciencedirect.com/science/article/pii/S1568494614005031
http://www.sciencedirect.com/science/article/pii/S1568494614005031


50 karlaho@stud.ntnu.no: Optimization in Cryptanalysis

[7] B. Delman, ‘Genetic algorithms in cryptography,’ 2004.

[8] R. Spillman, M. Janssen, B. Nelson and M. Kepner, ‘Use of a ge-
netic algorithm in the cryptanalysis of simple substitution ciphers,’
Cryptologia, vol. 17, no. 1, pp. 31–44, 1993. DOI: 10.1080/0161-
119391867746. eprint: https://doi.org/10.1080/0161-119391867746.
[Online]. Available: https://doi.org/10.1080/0161-119391867746.

[9] A. J. Clark, ‘Optimisation heuristics for cryptology,’ Ph.D. disserta-
tion, Queensland University of Technology, 1998.

[10] W. Grundlingh and J. H. Van Vuuren, ‘Using genetic algorithms
to break a simple cryptographic cipher,’ Retrieved March, vol. 31,
2003.

[11] M. F. Uddin and A. M. Youssef, ‘Cryptanalysis of simple substitu-
tion ciphers using particle swarm optimization,’ in 2006 IEEE In-
ternational Conference on Evolutionary Computation, IEEE, 2006,
pp. 677–680.

[12] T. Mekhaznia and M. E. B. Menai, ‘Cryptanalysis of classical ciphers
with ant algorithms,’ International Journal of Metaheuristics, vol. 3,
no. 3, pp. 175–198, 2014.

[13] H. Grari, A. Azouaoui and K. Zine-Dine, ‘A novel ant colony optim-
ization based cryptanalysis of substitution cipher,’ in International
Afro-European Conference for Industrial Advancement, Springer, 2016,
pp. 180–187.

[14] A. K. S. Sabonchi and B. Akay, ‘Cryptanalysis using artificial bee
colony algorithm guided by frequency based fitness value,’

[15] A. Jain and N. S. Chaudhari, ‘A new heuristic based on the cuckoo
search for cryptanalysis of substitution ciphers,’ in Neural Informa-
tion Processing, S. Arik, T. Huang, W. K. Lai and Q. Liu, Eds., Cham:
Springer International Publishing, 2015, pp. 206–215, ISBN: 978-
3-319-26535-3.

[16] S. Omran, A. Al-Khalid and D. Al-Saady, ‘A cryptanalytic attack on
vigenère cipher using genetic algorithm,’ in 2011 IEEE Conference
on Open Systems, IEEE, 2011, pp. 59–64.

https://doi.org/10.1080/0161-119391867746
https://doi.org/10.1080/0161-119391867746
https://doi.org/10.1080/0161-119391867746
https://doi.org/10.1080/0161-119391867746


Bibliography 51
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ing misconceptions when comparing variants of the artificial bee
colony algorithm by offering a new implementation,’ Information
Sciences, vol. 291, pp. 115–127, 2015, ISSN: 0020-0255. DOI: https:
/ / doi . org / 10. 1016 / j . ins . 2014 . 08 . 040. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S0020025514008378.

[32] J. Verne, Twenty thousand leagues under the sea. Oxford University
Press, 1998.

https://www.proquest.com/docview/2391254121?accountid=12870
https://www.proquest.com/docview/2391254121?accountid=12870
https://doi.org/10.1109/IAdCC.2014.6779518
https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338
https://doi.org/https://doi.org/10.1016/j.ins.2014.08.040
https://doi.org/https://doi.org/10.1016/j.ins.2014.08.040
https://www.sciencedirect.com/science/article/pii/S0020025514008378
https://www.sciencedirect.com/science/article/pii/S0020025514008378


Appendix A

Key Recovery Plots

Below you will find box plots showing the key recovery of each optim-
ization algorithm on each cipher, except RSA. We have chosen to draw
the box plots with the upper and lower whiskers respectively representing
maximum and minimum values in the data, and not plotting outlying val-
ues. As usual, the boxes represent the 25% and 75% quartile of the data,
with the median value between. For some ciphers, we have used more
than one ciphertext in our experiments. For brevity, we have chosen to
only include box plots for some of these ciphertexts:

• Columnar cipher: JulesVerne1.txt
• Caesar cipher: JulesVerne4.txt
• Monoalphabetic substitution cipher: JulesVerne1.txt
• Vigènere cipher: JulesVerne1_key3.txt, JulesVerne1_key5.txt and

JulesVerne1_key10.txt
• Playfair cipher: JulesVerne1.txt
• DES: JulesVerne1_des.txt
• AES: JulesVerne1_aes.txt
• SPECK: JulesVerne1_simon.txt

For RSA, we have instead chosen to plot key recovery as the percentage
of runs that successfully factorized n in a line chart. Results from all 16
datasets are given. The x-axis shows the amount of bits in the n to be
factorized.
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Figure A.1: Caesar cipher - Population size = 20
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Figure A.2: Caesar cipher - Population size = 30
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Figure A.3: Caesar cipher - Population size = 50



56 karlaho@stud.ntnu.no: Optimization in Cryptanalysis

90 100 110 120

GA(m=0.02)
GA(m=0.2)
GA(m=1.0)

Custom GA(m=0.02)
Custom GA(m=0.2)
Custom GA(m=1.0)

DE
SA

PSO
ACO (threshold)

ACO
ABC

CS

Key recovery (%)

Figure A.4: Caesar cipher - Population size = 70
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Figure A.5: Columnar Cipher - Population size = 20
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Figure A.6: Columnar Cipher - Population size = 30
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Figure A.7: Columnar Cipher - Population size = 50
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Figure A.9: Monoalphabetic Substitution cipher - Population size = 20
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Figure A.10: Monoalphabetic Substitution cipher - Population size =
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Figure A.11: Monoalphabetic Substitution cipher - Population size =
50
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Figure A.12: Monoalphabetic Substitution cipher - Population size =
70
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Figure A.13: Vigènere with key length 3 - Population size = 20
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Figure A.15: Vigènere with key length 3 - Population size = 50
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Figure A.17: Vigènere with key length 5 - Population size = 20
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Figure A.18: Vigènere with key length 5 - Population size = 30
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Figure A.19: Vigènere with key length 5 - Population size = 50
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Figure A.20: Vigènere with key length 5 - Population size = 70
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Figure A.21: Vigènere with key length 10 - Population size = 20



Chapter A: Key Recovery Plots 65

20 40 60 80 100

GA(m=0.02)
GA(m=0.2)
GA(m=1.0)

Custom GA(m=0.02)
Custom GA(m=0.2)
Custom GA(m=1.0)

DE
SA

PSO
ACO
ABC

CS

Figure A.22: Vigènere with key length 10 - Population size = 30
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Figure A.23: Vigènere with key length 10 - Population size = 50
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Figure A.24: Vigènere with key length 10 - Population size = 70
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Figure A.25: Playfair cipher - Population size = 20
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Figure A.26: Playfair cipher - Population size = 30
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Figure A.27: Playfair cipher - Population size = 50
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Figure A.28: Playfair cipher - Population size = 70
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Figure A.29: DES - Population size = 20
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Figure A.30: DES - Population size = 30
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Figure A.31: DES - Population size = 50
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Figure A.32: DES - Population size = 70
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Figure A.33: AES - Population size = 20
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Figure A.34: AES - Population size = 30
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Figure A.35: AES - Population size = 50
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Figure A.36: AES - Population size = 70
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Figure A.37: Speck - Population 20
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Figure A.38: Speck - Population 30
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Figure A.39: Speck - Population 50
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Figure A.40: Speck - Population 70
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Figure A.41: RSA key recovery - Simple Genetic Algorithm (m=0.02)
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Figure A.42: RSA key recovery - Simple Genetic Algorithm (m=0.2)
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Figure A.43: RSA key recovery - Simple Genetic Algorithm (m=1.0)
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Figure A.44: RSA key recovery - Custom Genetic Algorithm (m=0.02)
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Figure A.45: RSA key recovery - Custom Genetic Algorithm (m=0.2)
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Figure A.46: RSA key recovery - Custom Genetic Algorithm (m=1.0)
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Figure A.47: RSA key recovery - Self-Adaptive Differential Evolution
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Figure A.48: RSA key recovery - Simulated Annealing
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Figure A.49: RSA key recovery - Particle Swarm Optimization
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Figure A.50: RSA key recovery - Ant Colony Optimization
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Figure A.51: RSA key recovery - Artificial Bee Colony Optimization
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Figure A.52: RSA key recovery - Cuckoo Search



Appendix B

Result Tables

Below you will find tables with an overview of each experiment per-
formed with each cipher and optimization algorithm. Each optimization
algorithm is run five times, or ten times in the case of RSA, for a max-
imum of 200 generations on each ciphertext for each population size in
20, 30, 50 and 70. Key recovery is recorded for each run, and an aver-
age and maximum recovery is given. The number of runs that achieved a
complete key recovery is given in the table, as well as the average num-
ber of generations and fitness evaluations it took for these runs to achieve
complete key recovery. As Simulated Annealing is not a population-based
optimization algorithm, the population size parameter will only increase
the likelihood of a good solution in the initial population, and not affect
the algorithm in any other way. For this reason, only the results from
the five runs using population size 20 is given. For the RSA factorization
problem, there is no partial key recovery, which makes the columns for
average and maximum key recovery unnecessary. Instead, we will only
give the number of successful runs out of ten. For brevity, all experiments
that yielded no successful runs have been excluded from the table.
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Table B.1: Caesar cipher - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.00 20.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 12.80 384.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 50.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 13.00 910.00

caesar.txt 20 100.00% 100.00% 5/5 27.80 556.00

caesar.txt 30 100.00% 100.00% 5/5 10.40 312.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar.txt 70 100.00% 100.00% 5/5 2.20 154.00

caesar2.txt 20 100.00% 100.00% 5/5 33.20 664.00

caesar2.txt 30 100.00% 100.00% 5/5 18.80 564.00

caesar2.txt 50 100.00% 100.00% 5/5 10.80 540.00

caesar2.txt 70 100.00% 100.00% 5/5 18.40 1288.00

Table B.2: Caesar cipher - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.60 32.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 8.20 246.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.60 80.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.40 98.00

caesar.txt 20 100.00% 100.00% 5/5 8.40 168.00

caesar.txt 30 100.00% 100.00% 5/5 3.00 90.00

caesar.txt 50 100.00% 100.00% 5/5 2.60 130.00

caesar.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar2.txt 20 100.00% 100.00% 5/5 4.00 80.00

caesar2.txt 30 100.00% 100.00% 5/5 3.80 114.00

caesar2.txt 50 100.00% 100.00% 5/5 1.20 60.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00
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Table B.3: Caesar cipher - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.00 20.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 2.20 66.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.20 60.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 100.00% 100.00% 5/5 1.60 32.00

caesar.txt 30 100.00% 100.00% 5/5 1.80 54.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar2.txt 20 100.00% 100.00% 5/5 3.40 68.00

caesar2.txt 30 100.00% 100.00% 5/5 1.00 30.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00

Table B.4: Caesar cipher - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 80.00% 100.00% 4/5 1.00 20.00

JulesVerne4.txt 30 80.00% 100.00% 4/5 1.00 30.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 50.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 20.00% 100.00% 1/5 1.00 20.00

caesar.txt 30 80.00% 100.00% 4/5 1.00 30.00

caesar.txt 50 40.00% 100.00% 2/5 1.00 50.00

caesar.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar2.txt 20 40.00% 100.00% 2/5 1.00 20.00

caesar2.txt 30 60.00% 100.00% 3/5 1.00 30.00

caesar2.txt 50 80.00% 100.00% 4/5 1.00 50.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00
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Table B.5: Caesar cipher - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 60.00% 100.00% 3/5 1.00 20.00

JulesVerne4.txt 30 80.00% 100.00% 4/5 1.00 30.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 50.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 40.00% 100.00% 2/5 1.00 20.00

caesar.txt 30 60.00% 100.00% 3/5 1.00 30.00

caesar.txt 50 80.00% 100.00% 4/5 1.00 50.00

caesar.txt 70 80.00% 100.00% 4/5 1.00 70.00

caesar2.txt 20 40.00% 100.00% 2/5 1.00 20.00

caesar2.txt 30 40.00% 100.00% 2/5 1.00 30.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00

Table B.6: Caesar cipher - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 80.00% 100.00% 4/5 1.00 20.00

JulesVerne4.txt 30 80.00% 100.00% 4/5 1.00 30.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 50.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 100.00% 100.00% 5/5 1.00 20.00

caesar.txt 30 60.00% 100.00% 3/5 1.00 30.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar.txt 70 80.00% 100.00% 4/5 1.00 70.00

caesar2.txt 20 100.00% 100.00% 5/5 1.00 20.00

caesar2.txt 30 100.00% 100.00% 5/5 1.00 30.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar2.txt 70 80.00% 100.00% 4/5 1.00 70.00
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Table B.7: Caesar cipher - Self-Adaptive Differential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.60 32.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 1.00 30.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 50.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 100.00% 100.00% 5/5 1.00 20.00

caesar.txt 30 100.00% 100.00% 5/5 1.00 30.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar2.txt 20 100.00% 100.00% 5/5 1.20 24.00

caesar2.txt 30 100.00% 100.00% 5/5 1.60 48.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00

Table B.8: Caesar cipher - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne4.txt 100.00% 100.00% 5/5 1.00

caesar.txt 100.00% 100.00% 5/5 1.00

caesar2.txt 80.00% 100.00% 4/5 1.00
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Table B.9: Caesar cipher - Particle Swarm Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.00 20.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 1.00 30.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.20 60.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 100.00% 100.00% 5/5 2.00 40.00

caesar.txt 30 100.00% 100.00% 5/5 1.00 30.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar2.txt 20 100.00% 100.00% 5/5 1.00 20.00

caesar2.txt 30 100.00% 100.00% 5/5 1.00 30.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00

Table B.10: Caesar cipher - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.20 4.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 1.40 12.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.20 10.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 0.00

caesar.txt 20 100.00% 100.00% 5/5 2.00 20.00

caesar.txt 30 100.00% 100.00% 5/5 1.80 24.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 0.00

caesar.txt 70 100.00% 100.00% 5/5 1.20 14.00

caesar2.txt 20 100.00% 100.00% 5/5 1.40 8.00

caesar2.txt 30 100.00% 100.00% 5/5 1.20 6.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 0.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 0.00
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Table B.11: Caesar cipher - Artificial Bee Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.00 40.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 1.00 60.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 100.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 140.00

caesar.txt 20 100.00% 100.00% 5/5 1.00 40.00

caesar.txt 30 100.00% 100.00% 5/5 1.00 60.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 100.00

caesar.txt 70 100.00% 100.00% 5/5 1.00 140.00

caesar2.txt 20 100.00% 100.00% 5/5 1.00 40.00

caesar2.txt 30 100.00% 100.00% 5/5 1.00 60.00

caesar2.txt 50 100.00% 100.00% 5/5 1.00 100.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 140.00

Table B.12: Caesar cipher - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne4.txt 20 100.00% 100.00% 5/5 1.00 20.00

JulesVerne4.txt 30 100.00% 100.00% 5/5 1.00 30.00

JulesVerne4.txt 50 100.00% 100.00% 5/5 1.00 50.00

JulesVerne4.txt 70 100.00% 100.00% 5/5 1.00 70.00

caesar.txt 20 100.00% 100.00% 5/5 1.40 28.00

caesar.txt 30 100.00% 100.00% 5/5 1.00 30.00

caesar.txt 50 100.00% 100.00% 5/5 1.00 50.00

caesar.txt 70 100.00% 100.00% 5/5 1.80 126.00

caesar2.txt 20 100.00% 100.00% 5/5 1.40 28.00

caesar2.txt 30 100.00% 100.00% 5/5 1.20 36.00

caesar2.txt 50 100.00% 100.00% 5/5 1.20 60.00

caesar2.txt 70 100.00% 100.00% 5/5 1.00 70.00
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Table B.13: Columnar Transposition cipher - Simple Genetic Algorithm
(m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 20.00% 25.00% 0/5
JulesVerne1.txt 30 15.00% 25.00% 0/5
JulesVerne1.txt 50 35.00% 100.00% 1/5 18.00 900.00

JulesVerne1.txt 70 20.00% 25.00% 0/5

Table B.14: Columnar Transposition cipher - Simple Genetic Algorithm
(m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 55.00% 100.00% 2/5 65.00 1300.00

JulesVerne1.txt 30 50.00% 100.00% 1/5 7.00 210.00

JulesVerne1.txt 50 55.00% 100.00% 3/5 47.00 2350.00

JulesVerne1.txt 70 70.00% 100.00% 3/5 93.67 6556.67

Table B.15: Columnar Transposition cipher - Simple Genetic Algorithm
(m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 40.00% 100.00% 0/5
JulesVerne1.txt 30 40.00% 100.00% 3/5 95.33 2860.00

JulesVerne1.txt 50 55.00% 100.00% 4/5 117.00 5850.00

JulesVerne1.txt 70 85.00% 100.00% 4/5 48.00 3360.00
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Table B.16: Columnar Transposition cipher - Custom Genetic Algorithm
(m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 25.00% 25.00% 0/5
JulesVerne1.txt 30 30.00% 50.00% 0/5
JulesVerne1.txt 50 25.00% 25.00% 0/5
JulesVerne1.txt 70 25.00% 25.00% 0/5

Table B.17: Columnar Transposition cipher - Custom Genetic Algorithm
(m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 25.00% 75.00% 0/5
JulesVerne1.txt 30 45.00% 100.00% 2/5 5.50 165.00

JulesVerne1.txt 50 25.00% 25.00% 0/5
JulesVerne1.txt 70 40.00% 100.00% 1/5 17.00 1190.00

Table B.18: Columnar Transposition cipher - Custom Genetic Algorithm
(m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 10.00% 25.00% 0/5
JulesVerne1.txt 30 25.00% 25.00% 0/5
JulesVerne1.txt 50 20.00% 50.00% 0/5
JulesVerne1.txt 70 20.00% 25.00% 0/5
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Table B.19: Columnar Transposition cipher - Self-Adaptive Differential
Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 85.00% 100.00% 4/5 68.50 1370.00

JulesVerne1.txt 30 70.00% 100.00% 3/5 50.33 1510.00

JulesVerne1.txt 50 40.00% 100.00% 2/5 54.50 2725.00

JulesVerne1.txt 70 100.00% 100.00% 5/5 63.60 4452.00

Table B.20: Columnar Transposition cipher - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne1.txt 35.00% 50.00% 0/5

Table B.21: Columnar Transposition cipher - Particle Swarm Optimiza-
tion

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 65.00% 100.00% 3/5 50.33 1006.67

JulesVerne1.txt 30 80.00% 100.00% 4/5 55.50 1665.00

JulesVerne1.txt 50 100.00% 100.00% 5/5 84.80 4240.00

JulesVerne1.txt 70 100.00% 100.00% 5/5 20.20 1414.00

Table B.22: Columnar Transposition cipher - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 100.00% 100.00% 5/5 48.20 944.00

JulesVerne1.txt 30 85.00% 100.00% 4/5 35.50 1035.00

JulesVerne1.txt 50 100.00% 100.00% 5/5 36.00 1750.00

JulesVerne1.txt 70 100.00% 100.00% 5/5 16.80 1106.00
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Table B.23: Columnar Transposition cipher - Artificial Bee Colony Op-
timization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 35.00% 100.00% 2/5 89.50 3580.00

JulesVerne1.txt 30 50.00% 100.00% 1/5 19.00 1140.00

JulesVerne1.txt 50 75.00% 100.00% 4/5 52.25 5225.00

JulesVerne1.txt 70 90.00% 100.00% 4/5 49.25 6895.00

Table B.24: Columnar Transposition cipher - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 35.00% 100.00% 1/5 14.00 280.00

JulesVerne1.txt 30 25.00% 100.00% 1/5 15.00 450.00

JulesVerne1.txt 50 70.00% 100.00% 3/5 42.33 2116.67

JulesVerne1.txt 70 65.00% 100.00% 3/5 87.67 6136.67

Table B.25: Monoalphabetic Substitution cipher - Simple Genetic Al-
gorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 4.62% 7.69% 0/5
JulesVerne1.txt 30 4.62% 7.69% 0/5
JulesVerne1.txt 50 3.85% 11.54% 0/5
JulesVerne1.txt 70 5.38% 7.69% 0/5

Table B.26: Monoalphabetic Substitution cipher - Simple Genetic Al-
gorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 5.38% 19.23% 0/5
JulesVerne1.txt 30 3.08% 7.69% 0/5
JulesVerne1.txt 50 4.62% 11.54% 0/5
JulesVerne1.txt 70 4.62% 11.54% 0/5
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Table B.27: Monoalphabetic Substitution cipher - Simple Genetic Al-
gorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 3.85% 7.69% 0/5
JulesVerne1.txt 30 3.08% 7.69% 0/5
JulesVerne1.txt 50 3.85% 7.69% 0/5
JulesVerne1.txt 70 4.62% 7.69% 0/5

Table B.28: Monoalphabetic Substitution cipher - Custom Genetic Al-
gorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 50.00% 76.92% 0/5
JulesVerne1.txt 30 66.15% 92.31% 0/5
JulesVerne1.txt 50 92.31% 100.00% 2/5 154.50 7725.00

JulesVerne1.txt 70 77.69% 100.00% 3/5 152.67 10686.67

Table B.29: Monoalphabetic Substitution cipher - Custom Genetic Al-
gorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 74.62% 100.00% 2/5 174.00 3480.00

JulesVerne1.txt 30 59.23% 100.00% 1/5 190.00 5700.00

JulesVerne1.txt 50 86.15% 100.00% 4/5 156.50 7825.00

JulesVerne1.txt 70 70.00% 100.00% 3/5 136.67 9566.67
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Table B.30: Monoalphabetic Substitution cipher - Custom Genetic Al-
gorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 74.62% 92.31% 0/5
JulesVerne1.txt 30 72.31% 100.00% 2/5 140.50 4215.00

JulesVerne1.txt 50 69.23% 100.00% 3/5 149.33 7466.67

JulesVerne1.txt 70 100.00% 100.00% 5/5 139.00 9730.00

Table B.31: Monoalphabetic Substitution cipher - Self-Adaptive Differ-
ential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 6.15% 11.54% 0/5
JulesVerne1.txt 30 6.15% 11.54% 0/5
JulesVerne1.txt 50 6.15% 11.54% 0/5
JulesVerne1.txt 70 7.69% 11.54% 0/5

Table B.32: Monoalphabetic Substitution cipher - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne1.txt 3.85% 7.69% 0/5

Table B.33: Monoalphabetic Substitution cipher - Particle Swarm Op-
timization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 3.85% 7.69% 0/5
JulesVerne1.txt 30 6.15% 11.54% 0/5
JulesVerne1.txt 50 1.54% 3.85% 0/5
JulesVerne1.txt 70 6.92% 15.38% 0/5
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Table B.34: Monoalphabetic Substitution cipher - Ant Colony Optimiz-
ation

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 1.54% 7.69% 0/5
JulesVerne1.txt 30 3.08% 7.69% 0/5
JulesVerne1.txt 50 5.38% 7.69% 0/5
JulesVerne1.txt 70 8.46% 15.38% 0/5

Table B.35: Monoalphabetic Substitution cipher - Artificial Bee Colony
Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 4.62% 7.69% 0/5
JulesVerne1.txt 30 3.85% 11.54% 0/5
JulesVerne1.txt 50 6.15% 11.54% 0/5
JulesVerne1.txt 70 5.38% 11.54% 0/5

Table B.36: Monoalphabetic Substitution cipher - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1.txt 20 3.08% 7.69% 0/5
JulesVerne1.txt 30 3.85% 7.69% 0/5
JulesVerne1.txt 50 4.62% 11.54% 0/5
JulesVerne1.txt 70 3.85% 7.69% 0/5
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Table B.37: Vigenère cipher - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 93.33% 100.00% 4/5 55.75 1115.00

JulesVerne1_key3.txt 30 100.00% 100.00% 5/5 39.20 1176.00

JulesVerne1_key3.txt 50 100.00% 100.00% 5/5 3.60 180.00

JulesVerne1_key3.txt 70 100.00% 100.00% 5/5 5.40 378.00

JulesVerne1_key5.txt 20 100.00% 100.00% 5/5 98.60 1972.00

JulesVerne1_key5.txt 30 100.00% 100.00% 5/5 64.00 1920.00

JulesVerne1_key5.txt 50 100.00% 100.00% 5/5 40.00 2000.00

JulesVerne1_key5.txt 70 100.00% 100.00% 5/5 40.00 2800.00

JulesVerne1_key10.txt 20 90.00% 100.00% 1/5 155.00 3100.00

JulesVerne1_key10.txt 30 96.00% 100.00% 4/5 136.50 4095.00

JulesVerne1_key10.txt 50 100.00% 100.00% 5/5 103.80 5190.00

JulesVerne1_key10.txt 70 100.00% 100.00% 5/5 56.00 3920.00

Table B.38: Vigenère cipher - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 100.00% 100.00% 5/5 13.40 268.00

JulesVerne1_key3.txt 30 100.00% 100.00% 5/5 8.00 240.00

JulesVerne1_key3.txt 50 100.00% 100.00% 5/5 6.00 300.00

JulesVerne1_key3.txt 70 100.00% 100.00% 5/5 4.20 294.00

JulesVerne1_key5.txt 20 100.00% 100.00% 5/5 29.40 588.00

JulesVerne1_key5.txt 30 100.00% 100.00% 5/5 23.60 708.00

JulesVerne1_key5.txt 50 100.00% 100.00% 5/5 13.80 690.00

JulesVerne1_key5.txt 70 100.00% 100.00% 5/5 11.00 770.00

JulesVerne1_key10.txt 20 100.00% 100.00% 5/5 114.80 2296.00

JulesVerne1_key10.txt 30 100.00% 100.00% 5/5 77.40 2322.00

JulesVerne1_key10.txt 50 100.00% 100.00% 5/5 52.40 2620.00

JulesVerne1_key10.txt 70 100.00% 100.00% 5/5 34.80 2436.00
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Table B.39: Vigenère cipher - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 80.00% 100.00% 2/5 85.00 1700.00

JulesVerne1_key3.txt 30 80.00% 100.00% 2/5 63.00 1890.00

JulesVerne1_key3.txt 50 80.00% 100.00% 2/5 44.50 2225.00

JulesVerne1_key3.txt 70 86.67% 100.00% 3/5 95.67 6696.67

JulesVerne1_key5.txt 20 56.00% 60.00% 0/5
JulesVerne1_key5.txt 30 60.00% 60.00% 0/5
JulesVerne1_key5.txt 50 56.00% 60.00% 0/5
JulesVerne1_key5.txt 70 60.00% 60.00% 0/5
JulesVerne1_key10.txt 20 32.00% 40.00% 0/5
JulesVerne1_key10.txt 30 36.00% 50.00% 0/5
JulesVerne1_key10.txt 50 34.00% 50.00% 0/5
JulesVerne1_key10.txt 70 38.00% 40.00% 0/5

Table B.40: Vigenère cipher - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 46.67% 66.67% 0/5
JulesVerne1_key3.txt 30 66.67% 100.00% 1/5 6.00 180.00

JulesVerne1_key3.txt 50 60.00% 100.00% 1/5 7.00 350.00

JulesVerne1_key3.txt 70 86.67% 100.00% 3/5 5.00 350.00

JulesVerne1_key5.txt 20 28.00% 60.00% 0/5
JulesVerne1_key5.txt 30 60.00% 60.00% 0/5
JulesVerne1_key5.txt 50 72.00% 80.00% 0/5
JulesVerne1_key5.txt 70 84.00% 100.00% 2/5 8.50 595.00

JulesVerne1_key10.txt 20 26.00% 40.00% 0/5
JulesVerne1_key10.txt 30 34.00% 40.00% 0/5
JulesVerne1_key10.txt 50 56.00% 70.00% 0/5
JulesVerne1_key10.txt 70 54.00% 70.00% 0/5
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Table B.41: Vigenère cipher - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 53.33% 66.67% 0/5
JulesVerne1_key3.txt 30 53.33% 66.67% 0/5
JulesVerne1_key3.txt 50 80.00% 100.00% 2/5 5.00 250.00

JulesVerne1_key3.txt 70 73.33% 100.00% 1/5 7.00 490.00

JulesVerne1_key5.txt 20 40.00% 60.00% 0/5
JulesVerne1_key5.txt 30 48.00% 60.00% 0/5
JulesVerne1_key5.txt 50 76.00% 100.00% 1/5 8.00 400.00

JulesVerne1_key5.txt 70 80.00% 100.00% 1/5 7.00 490.00

JulesVerne1_key10.txt 20 44.00% 50.00% 0/5
JulesVerne1_key10.txt 30 52.00% 70.00% 0/5
JulesVerne1_key10.txt 50 66.00% 80.00% 0/5
JulesVerne1_key10.txt 70 62.00% 70.00% 0/5

Table B.42: Vigenère cipher - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 53.33% 66.67% 0/5
JulesVerne1_key3.txt 30 66.67% 66.67% 0/5
JulesVerne1_key3.txt 50 80.00% 100.00% 3/5 4.67 233.33

JulesVerne1_key3.txt 70 73.33% 100.00% 1/5 4.00 280.00

JulesVerne1_key5.txt 20 44.00% 80.00% 0/5
JulesVerne1_key5.txt 30 40.00% 40.00% 0/5
JulesVerne1_key5.txt 50 68.00% 100.00% 1/5 6.00 300.00

JulesVerne1_key5.txt 70 68.00% 80.00% 0/5
JulesVerne1_key10.txt 20 42.00% 70.00% 0/5
JulesVerne1_key10.txt 30 64.00% 90.00% 0/5
JulesVerne1_key10.txt 50 48.00% 70.00% 0/5
JulesVerne1_key10.txt 70 62.00% 80.00% 0/5
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Table B.43: Vigenère cipher - Self-Adaptive Differential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 100.00% 100.00% 5/5 27.80 556.00

JulesVerne1_key3.txt 30 100.00% 100.00% 5/5 11.80 354.00

JulesVerne1_key3.txt 50 100.00% 100.00% 5/5 14.40 720.00

JulesVerne1_key3.txt 70 100.00% 100.00% 5/5 16.20 1134.00

JulesVerne1_key5.txt 20 100.00% 100.00% 5/5 52.80 1056.00

JulesVerne1_key5.txt 30 100.00% 100.00% 5/5 42.20 1266.00

JulesVerne1_key5.txt 50 100.00% 100.00% 5/5 44.60 2230.00

JulesVerne1_key5.txt 70 100.00% 100.00% 5/5 41.20 2884.00

JulesVerne1_key10.txt 20 100.00% 100.00% 5/5 153.80 3076.00

JulesVerne1_key10.txt 30 100.00% 100.00% 5/5 116.00 3480.00

JulesVerne1_key10.txt 50 100.00% 100.00% 5/5 129.60 6480.00

JulesVerne1_key10.txt 70 100.00% 100.00% 5/5 118.60 8302.00

Table B.44: Vigenère cipher - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne1_key3.txt 100.00% 100.00% 5/5 30.20

JulesVerne1_key5.txt 64.00% 80.00% 0/5
JulesVerne1_key10.txt 80.00% 90.00% 0/5

Table B.45: Vigenère cipher - Particle Swarm Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 100.00% 100.00% 5/5 42.00 840.00

JulesVerne1_key3.txt 30 100.00% 100.00% 5/5 42.00 1260.00

JulesVerne1_key3.txt 50 100.00% 100.00% 5/5 17.40 870.00

JulesVerne1_key3.txt 70 100.00% 100.00% 5/5 25.20 1764.00

JulesVerne1_key5.txt 20 96.00% 100.00% 4/5 134.75 2695.00

JulesVerne1_key5.txt 30 92.00% 100.00% 3/5 105.33 3160.00

JulesVerne1_key5.txt 50 96.00% 100.00% 4/5 127.75 6387.50

JulesVerne1_key5.txt 70 96.00% 100.00% 4/5 94.75 6632.50

JulesVerne1_key10.txt 20 60.00% 70.00% 0/5
JulesVerne1_key10.txt 30 60.00% 70.00% 0/5
JulesVerne1_key10.txt 50 76.00% 80.00% 0/5
JulesVerne1_key10.txt 70 70.00% 80.00% 0/5
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Table B.46: Vigenère cipher - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 80.00% 100.00% 2/5 77.00 1520.00

JulesVerne1_key3.txt 30 100.00% 100.00% 5/5 58.80 1734.00

JulesVerne1_key3.txt 50 100.00% 100.00% 5/5 31.40 1520.00

JulesVerne1_key3.txt 70 100.00% 100.00% 5/5 12.40 798.00

JulesVerne1_key5.txt 20 80.00% 100.00% 1/5 195.00 3880.00

JulesVerne1_key5.txt 30 84.00% 100.00% 3/5 144.33 4300.00

JulesVerne1_key5.txt 50 92.00% 100.00% 4/5 109.00 5400.00

JulesVerne1_key5.txt 70 96.00% 100.00% 4/5 106.25 7367.50

JulesVerne1_key10.txt 20 40.00% 50.00% 0/5
JulesVerne1_key10.txt 30 58.00% 80.00% 0/5
JulesVerne1_key10.txt 50 44.00% 60.00% 0/5
JulesVerne1_key10.txt 70 40.00% 50.00% 0/5
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Table B.47: Vigenère cipher - Artificial Bee Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 93.33% 100.00% 4/5 35.50 1420.00

JulesVerne1_key3.txt 30 100.00% 100.00% 5/5 27.40 1644.00

JulesVerne1_key3.txt 50 100.00% 100.00% 5/5 16.60 1660.00

JulesVerne1_key3.txt 70 100.00% 100.00% 5/5 9.00 1260.00

JulesVerne1_key5.txt 20 84.00% 100.00% 2/5 65.50 2620.00

JulesVerne1_key5.txt 30 96.00% 100.00% 4/5 91.25 5475.00

JulesVerne1_key5.txt 50 96.00% 100.00% 4/5 54.25 5425.00

JulesVerne1_key5.txt 70 100.00% 100.00% 5/5 55.40 7756.00

JulesVerne1_key10.txt 20 60.00% 70.00% 0/5
JulesVerne1_key10.txt 30 80.00% 100.00% 1/5 155.00 9300.00

JulesVerne1_key10.txt 50 76.00% 90.00% 0/5
JulesVerne1_key10.txt 70 88.00% 100.00% 1/5 114.00 15960.00

Table B.48: Vigenère cipher - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_key3.txt 20 66.67% 100.00% 1/5 24.00 480.00

JulesVerne1_key3.txt 30 73.33% 100.00% 1/5 11.00 330.00

JulesVerne1_key3.txt 50 73.33% 100.00% 1/5 13.00 650.00

JulesVerne1_key3.txt 70 80.00% 100.00% 2/5 30.50 2135.00

JulesVerne1_key5.txt 20 44.00% 60.00% 0/5
JulesVerne1_key5.txt 30 64.00% 80.00% 0/5
JulesVerne1_key5.txt 50 44.00% 80.00% 0/5
JulesVerne1_key5.txt 70 76.00% 100.00% 2/5 125.50 8785.00

JulesVerne1_key10.txt 20 46.00% 70.00% 0/5
JulesVerne1_key10.txt 30 32.00% 50.00% 0/5
JulesVerne1_key10.txt 50 56.00% 70.00% 0/5
JulesVerne1_key10.txt 70 44.00% 50.00% 0/5
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Table B.49: Playfair cipher - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 41.60% 68.00% 0/5
JulesVerne.txt 30 37.60% 56.00% 0/5
JulesVerne.txt 50 32.00% 48.00% 0/5
JulesVerne.txt 70 64.80% 84.00% 0/5
JulesVerne1.txt 20 7.20% 12.00% 0/5
JulesVerne1.txt 30 12.00% 20.00% 0/5
JulesVerne1.txt 50 14.40% 36.00% 0/5
JulesVerne1.txt 70 13.60% 24.00% 0/5

Table B.50: Playfair cipher - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 66.40% 100.00% 1/5 122.00 2440.00

JulesVerne.txt 30 59.20% 100.00% 1/5 191.00 5730.00

JulesVerne.txt 50 63.20% 92.00% 0/5
JulesVerne.txt 70 77.60% 100.00% 2/5 39.00 2730.00

JulesVerne1.txt 20 21.60% 52.00% 0/5
JulesVerne1.txt 30 13.60% 28.00% 0/5
JulesVerne1.txt 50 28.80% 56.00% 0/5
JulesVerne1.txt 70 24.80% 52.00% 0/5



102 karlaho@stud.ntnu.no: Optimization in Cryptanalysis

Table B.51: Playfair cipher - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 64.00% 72.00% 0/5
JulesVerne.txt 30 62.40% 88.00% 0/5
JulesVerne.txt 50 64.80% 80.00% 0/5
JulesVerne.txt 70 73.60% 84.00% 0/5
JulesVerne1.txt 20 5.60% 12.00% 0/5
JulesVerne1.txt 30 12.80% 24.00% 0/5
JulesVerne1.txt 50 12.00% 24.00% 0/5
JulesVerne1.txt 70 25.60% 52.00% 0/5

Table B.52: Playfair cipher - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 15.20% 24.00% 0/5
JulesVerne.txt 30 12.80% 24.00% 0/5
JulesVerne.txt 50 10.40% 16.00% 0/5
JulesVerne.txt 70 28.00% 100.00% 1/5 33.00 2310.00

JulesVerne1.txt 20 9.60% 24.00% 0/5
JulesVerne1.txt 30 14.40% 28.00% 0/5
JulesVerne1.txt 50 9.60% 12.00% 0/5
JulesVerne1.txt 70 6.40% 8.00% 0/5
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Table B.53: Playfair cipher - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 10.40% 20.00% 0/5
JulesVerne.txt 30 9.60% 16.00% 0/5
JulesVerne.txt 50 8.00% 12.00% 0/5
JulesVerne.txt 70 6.40% 12.00% 0/5
JulesVerne1.txt 20 6.40% 12.00% 0/5
JulesVerne1.txt 30 13.60% 16.00% 0/5
JulesVerne1.txt 50 8.80% 12.00% 0/5
JulesVerne1.txt 70 10.40% 16.00% 0/5

Table B.54: Playfair cipher - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 15.20% 32.00% 0/5
JulesVerne.txt 30 7.20% 12.00% 0/5
JulesVerne.txt 50 11.20% 12.00% 0/5
JulesVerne.txt 70 12.00% 16.00% 0/5
JulesVerne1.txt 20 7.20% 16.00% 0/5
JulesVerne1.txt 30 13.60% 20.00% 0/5
JulesVerne1.txt 50 11.20% 24.00% 0/5
JulesVerne1.txt 70 10.40% 16.00% 0/5
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Table B.55: Playfair cipher - Self-Adaptive Differential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 72.00% 100.00% 1/5 29.00 580.00

JulesVerne.txt 30 60.80% 76.00% 0/5
JulesVerne.txt 50 69.60% 92.00% 0/5
JulesVerne.txt 70 66.40% 84.00% 0/5
JulesVerne1.txt 20 18.40% 28.00% 0/5
JulesVerne1.txt 30 18.40% 40.00% 0/5
JulesVerne1.txt 50 32.00% 56.00% 0/5
JulesVerne1.txt 70 12.00% 24.00% 0/5

Table B.56: Playfair cipher - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne.txt 43.20% 76.00% 0/5
JulesVerne1.txt 14.40% 52.00% 0/5

Table B.57: Playfair cipher - Particle Swarm Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 69.60% 88.00% 0/5
JulesVerne.txt 30 80.80% 84.00% 0/5
JulesVerne.txt 50 76.80% 88.00% 0/5
JulesVerne.txt 70 92.00% 100.00% 2/5 115.00 8050.00

JulesVerne1.txt 20 17.60% 28.00% 0/5
JulesVerne1.txt 30 9.60% 20.00% 0/5
JulesVerne1.txt 50 17.60% 44.00% 0/5
JulesVerne1.txt 70 21.60% 60.00% 0/5
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Table B.58: Playfair cipher - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 74.40% 88.00% 0/5
JulesVerne.txt 30 76.00% 80.00% 0/5
JulesVerne.txt 50 86.40% 100.00% 2/5 154.00 7650.00

JulesVerne.txt 70 69.60% 84.00% 0/5
JulesVerne1.txt 20 13.60% 40.00% 0/5
JulesVerne1.txt 30 18.40% 48.00% 0/5
JulesVerne1.txt 50 9.60% 20.00% 0/5
JulesVerne1.txt 70 20.00% 56.00% 0/5

Table B.59: Playfair cipher - Artificial Bee Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 53.60% 76.00% 0/5
JulesVerne.txt 30 53.60% 84.00% 0/5
JulesVerne.txt 50 56.00% 88.00% 0/5
JulesVerne.txt 70 66.40% 88.00% 0/5
JulesVerne1.txt 20 18.40% 40.00% 0/5
JulesVerne1.txt 30 11.20% 24.00% 0/5
JulesVerne1.txt 50 12.80% 24.00% 0/5
JulesVerne1.txt 70 20.80% 32.00% 0/5
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Table B.60: Playfair cipher - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne.txt 20 31.20% 48.00% 0/5
JulesVerne.txt 30 58.40% 68.00% 0/5
JulesVerne.txt 50 76.80% 84.00% 0/5
JulesVerne.txt 70 85.60% 100.00% 1/5 162.00 11340.00

JulesVerne1.txt 20 7.20% 12.00% 0/5
JulesVerne1.txt 30 15.20% 36.00% 0/5
JulesVerne1.txt 50 8.00% 24.00% 0/5
JulesVerne1.txt 70 20.80% 56.00% 0/5

Table B.61: DES - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 49.38% 56.25% 0/5
JulesVerne1_des.txt 30 47.19% 57.81% 0/5
JulesVerne1_des.txt 50 48.12% 56.25% 0/5
JulesVerne1_des.txt 70 50.94% 56.25% 0/5

Table B.62: DES - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 52.19% 60.94% 0/5
JulesVerne1_des.txt 30 53.12% 56.25% 0/5
JulesVerne1_des.txt 50 53.75% 57.81% 0/5
JulesVerne1_des.txt 70 51.56% 56.25% 0/5
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Table B.63: DES - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 50.94% 54.69% 0/5
JulesVerne1_des.txt 30 52.19% 65.62% 0/5
JulesVerne1_des.txt 50 48.12% 54.69% 0/5
JulesVerne1_des.txt 70 50.62% 57.81% 0/5

Table B.64: DES - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 51.25% 62.50% 0/5
JulesVerne1_des.txt 30 44.06% 54.69% 0/5
JulesVerne1_des.txt 50 51.56% 57.81% 0/5
JulesVerne1_des.txt 70 49.06% 53.12% 0/5

Table B.65: DES - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 50.31% 65.62% 0/5
JulesVerne1_des.txt 30 50.94% 62.50% 0/5
JulesVerne1_des.txt 50 50.00% 54.69% 0/5
JulesVerne1_des.txt 70 54.38% 67.19% 0/5

Table B.66: DES - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 47.50% 51.56% 0/5
JulesVerne1_des.txt 30 48.75% 56.25% 0/5
JulesVerne1_des.txt 50 44.38% 53.12% 0/5
JulesVerne1_des.txt 70 53.75% 62.50% 0/5
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Table B.67: DES - Self-Adaptive Differential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 52.81% 62.50% 0/5
JulesVerne1_des.txt 30 53.75% 59.38% 0/5
JulesVerne1_des.txt 50 52.19% 57.81% 0/5
JulesVerne1_des.txt 70 50.94% 64.06% 0/5

Table B.68: DES - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne1_des.txt 49.69% 54.69% 0/5

Table B.69: DES - Particle Swarm Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 51.88% 57.81% 0/5
JulesVerne1_des.txt 30 52.19% 57.81% 0/5
JulesVerne1_des.txt 50 47.81% 53.12% 0/5
JulesVerne1_des.txt 70 53.75% 65.62% 0/5

Table B.70: DES - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 50.94% 57.81% 0/5
JulesVerne1_des.txt 30 53.75% 57.81% 0/5
JulesVerne1_des.txt 50 49.69% 54.69% 0/5
JulesVerne1_des.txt 70 48.44% 56.25% 0/5
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Table B.71: DES - Artificial Bee Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 49.38% 62.50% 0/5
JulesVerne1_des.txt 30 48.12% 60.94% 0/5
JulesVerne1_des.txt 50 45.94% 54.69% 0/5
JulesVerne1_des.txt 70 50.31% 62.50% 0/5

Table B.72: DES - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_des.txt 20 53.12% 57.81% 0/5
JulesVerne1_des.txt 30 48.44% 56.25% 0/5
JulesVerne1_des.txt 50 48.75% 54.69% 0/5
JulesVerne1_des.txt 70 56.56% 65.62% 0/5

Table B.73: AES - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 49.38% 52.34% 0/5
JulesVerne1_aes.txt 30 49.69% 54.69% 0/5
JulesVerne1_aes.txt 50 49.38% 53.91% 0/5
JulesVerne1_aes.txt 70 51.88% 59.38% 0/5

Table B.74: AES - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 50.62% 59.38% 0/5
JulesVerne1_aes.txt 30 50.16% 55.47% 0/5
JulesVerne1_aes.txt 50 47.19% 58.59% 0/5
JulesVerne1_aes.txt 70 51.25% 57.03% 0/5
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Table B.75: AES - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 49.69% 57.03% 0/5
JulesVerne1_aes.txt 30 49.69% 60.16% 0/5
JulesVerne1_aes.txt 50 50.78% 58.59% 0/5
JulesVerne1_aes.txt 70 50.31% 56.25% 0/5

Table B.76: AES - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 47.34% 55.47% 0/5
JulesVerne1_aes.txt 30 49.69% 54.69% 0/5
JulesVerne1_aes.txt 50 52.66% 57.03% 0/5
JulesVerne1_aes.txt 70 49.69% 53.91% 0/5

Table B.77: AES - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 52.50% 58.59% 0/5
JulesVerne1_aes.txt 30 52.50% 54.69% 0/5
JulesVerne1_aes.txt 50 50.00% 57.03% 0/5
JulesVerne1_aes.txt 70 52.66% 59.38% 0/5

Table B.78: AES - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 50.94% 58.59% 0/5
JulesVerne1_aes.txt 30 48.44% 56.25% 0/5
JulesVerne1_aes.txt 50 47.19% 50.78% 0/5
JulesVerne1_aes.txt 70 52.03% 56.25% 0/5
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Table B.79: AES - Self-Adaptive Differential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 47.97% 53.12% 0/5
JulesVerne1_aes.txt 30 49.84% 53.91% 0/5
JulesVerne1_aes.txt 50 47.97% 51.56% 0/5
JulesVerne1_aes.txt 70 44.69% 46.09% 0/5

Table B.80: AES - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne1_aes.txt 48.75% 52.34% 0/5

Table B.81: AES - Particle Swarm Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 52.97% 55.47% 0/5
JulesVerne1_aes.txt 30 52.97% 56.25% 0/5
JulesVerne1_aes.txt 50 52.50% 55.47% 0/5
JulesVerne1_aes.txt 70 50.94% 57.03% 0/5

Table B.82: AES - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 48.28% 55.47% 0/5
JulesVerne1_aes.txt 30 51.56% 60.16% 0/5
JulesVerne1_aes.txt 50 50.16% 55.47% 0/5
JulesVerne1_aes.txt 70 50.78% 52.34% 0/5
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Table B.83: AES - Artificial Bee Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 49.84% 51.56% 0/5
JulesVerne1_aes.txt 30 47.50% 57.03% 0/5
JulesVerne1_aes.txt 50 52.81% 54.69% 0/5
JulesVerne1_aes.txt 70 53.28% 57.03% 0/5

Table B.84: AES - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_aes.txt 20 50.31% 56.25% 0/5
JulesVerne1_aes.txt 30 49.69% 55.47% 0/5
JulesVerne1_aes.txt 50 50.00% 57.81% 0/5
JulesVerne1_aes.txt 70 53.44% 60.16% 0/5

Table B.85: SPECK - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 50.21% 54.17% 0/5
JulesVerne1_simon.txt 30 49.17% 54.17% 0/5
JulesVerne1_simon.txt 50 51.46% 61.46% 0/5
JulesVerne1_simon.txt 70 49.79% 56.25% 0/5

Table B.86: SPECK - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 50.62% 54.17% 0/5
JulesVerne1_simon.txt 30 51.88% 60.42% 0/5
JulesVerne1_simon.txt 50 47.71% 55.21% 0/5
JulesVerne1_simon.txt 70 50.83% 54.17% 0/5
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Table B.87: SPECK - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 55.00% 59.38% 0/5
JulesVerne1_simon.txt 30 49.38% 52.08% 0/5
JulesVerne1_simon.txt 50 50.83% 60.42% 0/5
JulesVerne1_simon.txt 70 51.67% 56.25% 0/5

Table B.88: SPECK - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 52.08% 58.33% 0/5
JulesVerne1_simon.txt 30 52.29% 57.29% 0/5
JulesVerne1_simon.txt 50 50.42% 54.17% 0/5
JulesVerne1_simon.txt 70 49.79% 60.42% 0/5

Table B.89: SPECK - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 52.71% 55.21% 0/5
JulesVerne1_simon.txt 30 52.29% 61.46% 0/5
JulesVerne1_simon.txt 50 57.08% 60.42% 0/5
JulesVerne1_simon.txt 70 45.83% 51.04% 0/5

Table B.90: SPECK - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 51.25% 58.33% 0/5
JulesVerne1_simon.txt 30 52.08% 60.42% 0/5
JulesVerne1_simon.txt 50 51.25% 61.46% 0/5
JulesVerne1_simon.txt 70 51.25% 58.33% 0/5
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Table B.91: SPECK - Self-Adaptive Differential Evolution

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 51.04% 57.29% 0/5
JulesVerne1_simon.txt 30 48.75% 51.04% 0/5
JulesVerne1_simon.txt 50 47.92% 55.21% 0/5
JulesVerne1_simon.txt 70 48.12% 54.17% 0/5

Table B.92: SPECK - Simulated Annealing

Ciphertext Avg. rec. Max. rec. 100% rec. Avg. eval.

JulesVerne1_simon.txt 50.00% 55.21% 0/5

Table B.93: SPECK - Particle Swarm Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 53.75% 56.25% 0/5
JulesVerne1_simon.txt 30 51.25% 55.21% 0/5
JulesVerne1_simon.txt 50 48.96% 57.29% 0/5
JulesVerne1_simon.txt 70 52.71% 56.25% 0/5

Table B.94: SPECK - Ant Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 47.92% 56.25% 0/5
JulesVerne1_simon.txt 30 54.17% 61.46% 0/5
JulesVerne1_simon.txt 50 48.75% 52.08% 0/5
JulesVerne1_simon.txt 70 49.58% 54.17% 0/5
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Table B.95: SPECK - Artificial Bee Colony Optimization

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 47.08% 55.21% 0/5
JulesVerne1_simon.txt 30 53.33% 63.54% 0/5
JulesVerne1_simon.txt 50 52.92% 61.46% 0/5
JulesVerne1_simon.txt 70 50.62% 59.38% 0/5

Table B.96: SPECK - Cuckoo Search

Ciphertext Pop. Avg. rec. Max. rec. 100% rec. Avg. gen. Avg. eval.

JulesVerne1_simon.txt 20 56.04% 63.54% 0/5
JulesVerne1_simon.txt 30 54.38% 67.71% 0/5
JulesVerne1_simon.txt 50 46.88% 55.21% 0/5
JulesVerne1_simon.txt 70 49.17% 54.17% 0/5
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Table B.97: RSA Factorization - Simple Genetic Algorithm (m=0.02)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 6/10 1175.50 23510.00

rsa1.txt 30 5/10 186.60 5598.00

rsa1.txt 50 7/10 81.43 4071.43

rsa1.txt 70 9/10 33.11 2317.78

rsa2.txt 20 2/10 5495.50 109910.00

rsa2.txt 30 5/10 5925.40 177762.00

rsa2.txt 50 2/10 1572.50 78625.00

rsa2.txt 70 8/10 3188.50 223195.00

rsa3.txt 20 2/10 142.50 2850.00

rsa3.txt 30 3/10 6389.67 191690.00

rsa3.txt 70 1/10 2.00 140.00

rsa4.txt 50 1/10 218.00 10900.00

rsa5.txt 50 1/10 2.00 100.00

rsa5.txt 70 1/10 626.00 43820.00
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Table B.98: RSA Factorization - Simple Genetic Algorithm (m=0.2)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 9/10 25.33 506.67

rsa1.txt 30 8/10 20.38 611.25

rsa1.txt 50 8/10 6.25 312.50

rsa1.txt 70 8/10 4.00 280.00

rsa2.txt 20 10/10 3905.50 78110.00

rsa2.txt 30 10/10 1676.20 50286.00

rsa2.txt 50 10/10 866.70 43335.00

rsa2.txt 70 10/10 1648.00 115360.00

rsa3.txt 20 5/10 5257.40 105148.00

rsa3.txt 30 8/10 3319.38 99581.25

rsa3.txt 50 9/10 2812.89 140644.44

rsa3.txt 70 10/10 3281.70 229719.00

rsa4.txt 20 3/10 1003.00 20060.00

rsa4.txt 30 3/10 1568.00 47040.00

rsa4.txt 50 6/10 167.33 8366.67

rsa4.txt 70 6/10 499.17 34941.67

rsa5.txt 20 2/10 2007.00 40140.00

rsa5.txt 30 5/10 6027.80 180834.00

rsa5.txt 50 4/10 6881.75 344087.50

rsa6.txt 30 1/10 16926.00 507780.00

rsa6.txt 50 1/10 488.00 24400.00

rsa6.txt 70 2/10 7400.00 518000.00

rsa7.txt 70 2/10 6112.00 427840.00

rsa8.txt 50 1/10 78.00 3900.00

rsa9.txt 20 2/10 295.00 5900.00

rsa9.txt 50 1/10 13390.00 669500.00

rsa9.txt 70 3/10 1414.33 99003.33

rsa10.txt 50 1/10 1192.00 59600.00
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Table B.99: RSA Factorization - Simple Genetic Algorithm (m=1.0)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 10/10 16.90 338.00

rsa1.txt 30 10/10 14.40 432.00

rsa1.txt 50 10/10 9.60 480.00

rsa1.txt 70 10/10 7.10 497.00

rsa2.txt 20 10/10 18.00 360.00

rsa2.txt 30 10/10 21.50 645.00

rsa2.txt 50 10/10 17.30 865.00

rsa2.txt 70 10/10 5.90 413.00

rsa3.txt 20 10/10 47.50 950.00

rsa3.txt 30 10/10 60.80 1824.00

rsa3.txt 50 10/10 13.40 670.00

rsa3.txt 70 10/10 16.60 1162.00

rsa4.txt 20 10/10 240.30 4806.00

rsa4.txt 30 10/10 124.30 3729.00

rsa4.txt 50 10/10 68.70 3435.00

rsa4.txt 70 10/10 26.10 1827.00

rsa5.txt 20 10/10 2158.20 43164.00

rsa5.txt 30 10/10 933.70 28011.00

rsa5.txt 50 10/10 421.80 21090.00

rsa5.txt 70 10/10 272.10 19047.00

rsa6.txt 20 10/10 2445.70 48914.00

rsa6.txt 30 10/10 2639.20 79176.00

rsa6.txt 50 10/10 1886.60 94330.00

rsa6.txt 70 10/10 573.90 40173.00

rsa7.txt 20 6/10 9566.50 191330.00

rsa7.txt 30 5/10 7221.00 216630.00

rsa7.txt 50 7/10 3910.14 195507.14

rsa7.txt 70 10/10 6349.50 444465.00
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Table B.100: RSA Factorization - Simple Genetic Algorithm (m=1.0)
(cont.)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa8.txt 20 2/10 4784.00 95680.00

rsa8.txt 30 3/10 14622.67 438680.00

rsa8.txt 50 8/10 6073.00 303650.00

rsa8.txt 70 7/10 9975.57 698290.00

rsa9.txt 20 5/10 7993.20 159864.00

rsa9.txt 30 8/10 4962.50 148875.00

rsa9.txt 50 8/10 5769.88 288493.75

rsa9.txt 70 9/10 6676.11 467327.78

rsa10.txt 30 1/10 18808.00 564240.00

rsa10.txt 50 2/10 10351.00 517550.00

rsa10.txt 70 2/10 8624.50 603715.00

rsa11.txt 20 1/10 8196.00 163920.00

rsa11.txt 30 1/10 12448.00 373440.00

rsa11.txt 50 2/10 8974.00 448700.00

rsa13.txt 70 1/10 726.00 50820.00
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Table B.101: RSA Factorization - Custom Genetic Algorithm (m=0.02)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 3/10 4.33 86.67

rsa1.txt 50 1/10 1.00 50.00

rsa1.txt 70 7/10 4.86 340.00

rsa2.txt 20 3/10 4.00 80.00

rsa2.txt 30 3/10 5.00 150.00

rsa2.txt 50 4/10 2.50 125.00

rsa2.txt 70 5/10 29.40 2058.00

rsa3.txt 30 1/10 1.00 30.00

rsa3.txt 50 2/10 1.50 75.00

rsa3.txt 70 1/10 2.00 140.00

rsa4.txt 50 1/10 1.00 50.00

rsa5.txt 50 1/10 1.00 50.00

Table B.102: RSA Factorization - Custom Genetic Algorithm (m=0.2)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 30 4/10 4.25 127.50

rsa1.txt 50 4/10 2.00 100.00

rsa1.txt 70 7/10 2.29 160.00

rsa2.txt 20 2/10 3.50 70.00

rsa2.txt 30 4/10 92.25 2767.50

rsa2.txt 50 4/10 4.25 212.50

rsa2.txt 70 5/10 4.40 308.00

rsa3.txt 50 1/10 4.00 200.00

rsa3.txt 70 3/10 1.67 116.67

rsa5.txt 30 1/10 3.00 90.00
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Table B.103: RSA Factorization - Custom Genetic Algorithm (m=1.0)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 2/10 3.00 60.00

rsa1.txt 30 5/10 5.00 150.00

rsa1.txt 50 4/10 4.75 237.50

rsa1.txt 70 7/10 4.43 310.00

rsa2.txt 20 3/10 1.67 33.33

rsa2.txt 30 3/10 3.00 90.00

rsa2.txt 50 4/10 38.00 1900.00

rsa2.txt 70 5/10 14.60 1022.00

rsa3.txt 30 1/10 4.00 120.00

rsa3.txt 50 2/10 3.00 150.00

rsa3.txt 70 4/10 1.75 122.50

rsa8.txt 30 1/10 5.00 150.00
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Table B.104: RSA Factorization - Self-Adaptive Differential Evolution

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 10/10 29.70 594.00

rsa1.txt 30 10/10 27.90 837.00

rsa1.txt 50 10/10 15.30 765.00

rsa1.txt 70 10/10 9.40 658.00

rsa2.txt 20 10/10 57.80 1156.00

rsa2.txt 30 7/10 47.86 1435.71

rsa2.txt 50 10/10 34.40 1720.00

rsa2.txt 70 10/10 47.60 3332.00

rsa3.txt 20 9/10 87.56 1751.11

rsa3.txt 30 8/10 56.12 1683.75

rsa3.txt 50 10/10 48.90 2445.00

rsa3.txt 70 10/10 48.80 3416.00

rsa4.txt 20 5/10 241.60 4832.00

rsa4.txt 30 7/10 382.57 11477.14

rsa4.txt 50 9/10 152.89 7644.44

rsa4.txt 70 9/10 352.00 24640.00

rsa5.txt 20 1/10 197.00 3940.00

rsa5.txt 50 1/10 2417.00 120850.00

rsa5.txt 70 3/10 404.67 28326.67

rsa6.txt 30 2/10 493.50 14805.00

rsa6.txt 50 4/10 1075.00 53750.00

rsa7.txt 50 1/10 76.00 3800.00

rsa9.txt 30 1/10 148.00 4440.00

rsa9.txt 50 4/10 2207.25 110362.50

rsa9.txt 70 2/10 2717.00 190190.00

rsa11.txt 30 1/10 7531.00 225930.00
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Table B.105: RSA Factorization - Simulated Annealing

Ciphertext Successful runs Avg. eval.

rsa1.txt 3/10 10.33

rsa2.txt 1/10 1.00

rsa3.txt 0/10

rsa4.txt 0/10

rsa5.txt 0/10

rsa6.txt 0/10

rsa7.txt 0/10

rsa8.txt 0/10

rsa9.txt 0/10

rsa10.txt 0/10

rsa11.txt 0/10

rsa12.txt 0/10

rsa13.txt 0/10

rsa14.txt 0/10

rsa15.txt 0/10

rsa16.txt 0/10
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Table B.106: RSA Factorization - Particle Swarm Optimization

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 7/10 29.29 585.71

rsa1.txt 30 8/10 7.88 236.25

rsa1.txt 50 9/10 10.11 505.56

rsa1.txt 70 9/10 6.67 466.67

rsa2.txt 20 6/10 201.83 4036.67

rsa2.txt 30 5/10 1081.40 32442.00

rsa2.txt 50 8/10 108.00 5400.00

rsa2.txt 70 8/10 89.88 6291.25

rsa3.txt 20 2/10 166.50 3330.00

rsa3.txt 30 4/10 90.00 2700.00

rsa3.txt 50 5/10 129.40 6470.00

rsa3.txt 70 6/10 25.00 1750.00

rsa4.txt 20 1/10 1250.00 25000.00

rsa4.txt 30 3/10 495.00 14850.00

rsa4.txt 50 8/10 1080.25 54012.50

rsa4.txt 70 7/10 541.57 37910.00

rsa5.txt 20 1/10 34.00 680.00

rsa5.txt 50 1/10 28.00 1400.00

rsa5.txt 70 1/10 86.00 6020.00

rsa9.txt 50 1/10 1379.00 68950.00
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Table B.107: RSA Factorization - Ant Colony Optimization

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 10/10 50.50 990.00

rsa1.txt 30 10/10 25.70 741.00

rsa1.txt 50 10/10 11.50 525.00

rsa1.txt 70 10/10 16.60 1092.00

rsa2.txt 20 10/10 26.70 514.00

rsa2.txt 30 10/10 14.30 399.00

rsa2.txt 50 10/10 10.10 455.00

rsa2.txt 70 10/10 7.20 434.00

rsa3.txt 20 10/10 50.20 984.00

rsa3.txt 30 10/10 31.80 924.00

rsa3.txt 50 10/10 25.70 1235.00

rsa3.txt 70 10/10 14.90 973.00

rsa4.txt 20 10/10 201.80 4016.00

rsa4.txt 30 10/10 331.70 9921.00

rsa4.txt 50 10/10 100.30 4965.00

rsa4.txt 70 10/10 98.60 6832.00

rsa5.txt 20 10/10 1618.50 32350.00

rsa5.txt 30 10/10 946.60 28368.00

rsa5.txt 50 10/10 491.60 24530.00

rsa5.txt 70 10/10 765.60 53522.00

rsa6.txt 20 7/10 2948.14 58942.86

rsa6.txt 30 8/10 3625.38 108731.25

rsa6.txt 50 10/10 2904.50 145175.00

rsa6.txt 70 10/10 4618.30 323211.00

rsa7.txt 20 7/10 8268.57 165351.43

rsa7.txt 30 7/10 12164.71 364911.43

rsa7.txt 50 10/10 6274.30 313665.00

rsa7.txt 70 10/10 5108.00 357490.00
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Table B.108: RSA Factorization - Ant Colony Optimization (cont.)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa8.txt 20 4/10 10345.75 206895.00

rsa8.txt 30 5/10 7086.40 212562.00

rsa8.txt 50 6/10 8196.00 409750.00

rsa8.txt 70 8/10 7374.62 516153.75

rsa9.txt 20 7/10 6528.14 130542.86

rsa9.txt 30 8/10 7420.50 222585.00

rsa9.txt 50 8/10 5984.00 299150.00

rsa9.txt 70 9/10 3740.11 261737.78

rsa10.txt 20 1/10 2313.00 46240.00

rsa10.txt 30 2/10 9977.00 299280.00

rsa10.txt 50 4/10 10147.50 507325.00

rsa10.txt 70 4/10 5629.75 394012.50

rsa11.txt 20 2/10 3911.50 78210.00

rsa11.txt 50 2/10 10059.50 502925.00

rsa11.txt 70 2/10 7398.50 517825.00

rsa12.txt 70 2/10 6157.00 430920.00

rsa13.txt 20 1/10 8261.00 165200.00
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Table B.109: RSA Factorization - Artificial Bee Colony Optimization

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 10/10 54.50 2180.00

rsa1.txt 30 10/10 52.00 3120.00

rsa1.txt 50 10/10 51.20 5120.00

rsa1.txt 70 10/10 23.60 3304.00

rsa2.txt 20 10/10 163.20 6528.00

rsa2.txt 30 10/10 98.40 5904.00

rsa2.txt 50 10/10 33.40 3340.00

rsa2.txt 70 10/10 67.10 9394.00

rsa3.txt 20 10/10 199.20 7968.00

rsa3.txt 30 10/10 219.70 13182.00

rsa3.txt 50 10/10 78.20 7820.00

rsa3.txt 70 10/10 58.50 8190.00

rsa4.txt 20 10/10 512.20 20488.00

rsa4.txt 30 10/10 245.90 14754.00

rsa4.txt 50 10/10 565.50 56550.00

rsa4.txt 70 10/10 260.00 36400.00

rsa5.txt 20 10/10 4926.00 197040.00

rsa5.txt 30 10/10 1998.40 119904.00

rsa5.txt 50 10/10 5607.00 560700.00

rsa5.txt 70 10/10 2068.20 289548.00

rsa6.txt 20 10/10 5906.40 236256.00

rsa6.txt 30 8/10 5155.12 309307.50

rsa6.txt 50 10/10 2652.70 265270.00

rsa6.txt 70 10/10 4312.10 603694.00

rsa7.txt 20 6/10 8903.00 356120.00

rsa7.txt 50 4/10 12813.50 1281350.00

rsa7.txt 70 3/10 9742.33 1363926.67

rsa8.txt 20 4/10 11256.75 450270.00

rsa8.txt 50 1/10 17644.00 1764400.00

rsa8.txt 70 3/10 7309.00 1023260.00
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Table B.110: RSA Factorization - Artificial Bee Colony Optimization
(cont.)

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa9.txt 20 1/10 16737.00 669480.00

rsa9.txt 30 3/10 7145.67 428740.00

rsa9.txt 50 5/10 13029.20 1302920.00

rsa9.txt 70 6/10 7256.00 1015840.00

rsa10.txt 50 1/10 6717.00 671700.00

rsa10.txt 70 1/10 10333.00 1446620.00

rsa11.txt 50 1/10 12720.00 1272000.00

Table B.111: RSA Factorization - Cuckoo Search

Ciphertext Pop. Successful runs Avg. gen. Avg. eval.

rsa1.txt 20 8/10 22.62 452.50

rsa1.txt 30 7/10 23.71 711.43

rsa1.txt 50 10/10 34.20 1710.00

rsa1.txt 70 10/10 16.70 1169.00

rsa2.txt 20 6/10 72.50 1450.00

rsa2.txt 30 3/10 441.00 13230.00

rsa2.txt 50 7/10 6.29 314.29

rsa2.txt 70 8/10 9.12 638.75

rsa3.txt 20 1/10 40.00 800.00

rsa3.txt 30 3/10 141.67 4250.00

rsa3.txt 50 6/10 110.17 5508.33

rsa3.txt 70 2/10 17.50 1225.00

rsa4.txt 30 1/10 194.00 5820.00

rsa4.txt 50 3/10 104.67 5233.33

rsa4.txt 70 1/10 1.00 70.00

rsa6.txt 20 1/10 1.00 20.00


