
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Martin Bondkall Gjerde
Ebba Louise Toreld Fingarsen

Assessing Ranking Models’ Behavior
for Semantic Entity Retrieval

Master’s thesis in Informatics
Supervisor: Trond Aalberg

June 2021

M
as

te
r’s

 th
es

is

Martin Bondkall Gjerde
Ebba Louise Toreld Fingarsen

Assessing Ranking Models’ Behavior
for Semantic Entity Retrieval

Master’s thesis in Informatics
Supervisor: Trond Aalberg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Today, an increasing amount of information is stored in a structured or semi-
structured manner. Semantic data is a conceptual model for structuring data that
characteristically contains a small amount of text sparsely distributed over many
properties. These data structures can for instance be used to represent entities.
Traditional Information Retrieval (IR) methods purely rely on unstructured text
documents, hence do not take semantic structures into account. Modern approaches
to search, such as the state-of-the-art ranking model BM25 and its fielded counter-
part, BM25F, have become increasingly common. Previous research regarding the
use of these ranking models when searching in semantic data shows equivocal res-
ults. This makes it difficult to know how each ranking model behaves and which
one should be used in different environments.

In this thesis, the behavior of Lucene Fulltext Search (Vector Space Model), BM25,
and BM25F are compared in an entity retrieval setting. Each model is evaluated
on two semantic datasets gathered from Wikidata, with a total of ten different
queries per dataset. One disease dataset containing entities with several proper-
ties with discriminatory terms, and one movie dataset containing fewer properties
with less discriminatory keywords. This was done by gathering the perceived rel-
evancy of the ranked search results for each model through a platform for user
evaluation specifically developed for this thesis. The user study gathered relevancy
assessments from 26 respondents totaling 8130 evaluated entities. The evaluation
metrics used to evaluate each model were DCG, NDCG, and the Kappa coefficient.

The tested ranking models showed promising results for users searching in se-
mantic data. BM25F performed the best on the disease dataset with a mean aver-
age NDCG score of 0.858, while Lucene Fulltext performed the best on the movie
dataset with a mean average NDCG score of 0.836. The results show that BM25F
is able to capture the underlying structure to its advantage when ranking, but
struggles when properties do not contain unique and discriminatory information.
This is to a large degree due to its modified saturation function favoring several
terms matched in a single property instead of a few matched across multiple prop-
erties.

i

Sammendrag

I dag lagres en økende mengde informasjon på en strukturert eller halvstrukturert
måte. Semantiske data er en konseptuell modell for strukturering av data som
karakteristisk inneholder en liten mengde tekst sparsomt fordelt over mange felt.
Disse datastrukturene kan for eksempel brukes til å representere entiteter. Tradis-
jonelle metoder for informasjonsgjenfinning (IR) tar kun hensyn til ustrukurerte
tekst-dokumenter og tar derfor ikke hensyn til den semantiske strukturen. Mod-
erne tilnærminger til søk som rangeringsmodellen BM25 og dens feltbaserte mot-
part, BM25F, har blitt stadig vanligere. Tidligere forskning angående bruken av
disse rangeringsmodellene ved søk i semantiske data viser tvetydige resultater.
Dette gjør det vanskelig å vite hvordan ulike rangeringsmodeller oppfører seg og
hvilken modell som skal brukes i ulike miljøer.

I denne oppgaven sammenlignes oppførselen til Lucene Fulltext Search (Vekt-
orrom modellen), BM25 og BM25F som modeller for entitetsgjenfinning. Hver
modell blir evaluert på to semantiske datasett hentet fra Wikidata, med totalt ti
forskjellige spørringer per datasett. Ett sykdomsdatasett som inneholder entiteter
med flere felt med diskriminerende nøkkelord, og ett filmdatasett som inneholder
færre felt med mindre diskriminerende nøkkelord. Dette ble gjort ved å samle
den opplevde relevansen av de rangerte søkeresultatene for hver modell gjennom
en plattform for brukerevaluering spesielt utviklet for denne oppgaven. Studien
samlet relevansvurderinger fra 26 respondenter som ga til sammen 8130 evalu-
erte entiteter. Evalueringsmetodene som ble brukt for å evaluere modellene var
DCG, NDCG og Kappa-koeffisienten.

De testede rangeringsmodellene viste lovende resultater for brukere som søker
i semantiske data. BM25F presterte best på sykdomsdatasettet med en gjennoms-
nittlig NDCG-verdi på 0,858, mens Lucene Fulltext presterte best på filmdatasettet
med en gjennomsnittlig NDCG-verdi på 0,836. Resultatene viser at BM25F er i
stand til å utnytte den underliggende strukturen til sin fordel når den rangerer,
men sliter når entitetsfelt ikke inneholder unik og diskriminerende informasjon.
Dette skyldes i stor grad den modifiserte metningsfunksjonen som favoriserer en-
titerer hvor flere nøkkelord matcher i et enkelt felt i stedet for noen få som matcher
over flere felt.

ii

Preface

This thesis was written in autumn 2020 to spring 2021 for the Department of
Computer Science (IDI) at the Norwegian University of Science and Technology
(NTNU). The project aims to compare information retrieval ranking models’ be-
havior in domain-specific entity retrieval environments. We would like to thank
the participants of the research for taking their time to partake in the survey.

Trond Aalberg served as the supervisor for this thesis. We would like to express
our gratitude for his knowledge, feedback, and motivation throughout this pro-
ject. His guidance was imperative for the improvement of this thesis.

Lastly, we would like to thank our close family and friends for their continuous
support and motivation along the way.

Martin Bondkall Gjerde
Ebba Louise Toreld Fingarsen

Trondheim, May 25, 2021

iii

Contents

Abstract . i
Sammendrag . ii
Preface . iii
Contents . iv
Figures . vi
Tables . vii
Acronyms . viii
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Research Objectives . 2
1.3 Method and Approach . 2
1.4 Contribution . 2
1.5 Thesis Structure . 3

2 Theory . 4
2.1 Searching for Information . 4

2.1.1 Queries . 5
2.1.2 Results . 5

2.2 Representing and Storing Semantic Data 6
2.2.1 Knowledge Base and Knowledge Graph 6
2.2.2 Resource Description Framework 6

2.3 Entities . 8
2.3.1 Entity Representation . 8
2.3.2 Entity Retrieval . 9

2.4 Preprocessing and Indexing . 10
2.4.1 Text Operations . 10
2.4.2 Inverted Index . 12
2.4.3 Indexing for RDF Data . 12

2.5 Ranking Models . 13
2.5.1 TF-IDF . 13
2.5.2 Boolean Model . 16
2.5.3 Vector Space Model . 17
2.5.4 BM25 . 18
2.5.5 BM25F . 19
2.5.6 Comparing Saturation Functions 19

iv

Contents v

2.6 Evaluation of Ranking Models . 20
2.6.1 Precision and Recall . 20
2.6.2 F-Measure . 21
2.6.3 Mean Average Precision . 21
2.6.4 Discounted Cumulative Gain . 21
2.6.5 Cohen’s Kappa Coefficient . 22

2.7 Previously Explored Approaches to Keyword Search in Graphs . . . 23
2.7.1 Explored Evaluation Methods 25
2.7.2 Comparing Results . 26

3 Concepts and Methods . 27
3.1 Domain-Specific Semantic Knowledge Base 27
3.2 Indexing and Ranking Models . 28
3.3 Evaluation . 31

4 Implementation and Architecture . 33
4.1 Wikidata . 33

4.1.1 Subsection of Wikidata . 35
4.2 Neo4j Database . 38
4.3 Neo4j Plugin - ImprovedSearch . 43

4.3.1 Model . 43
4.3.2 Neo4j Plugin Custom Procedures 44

4.4 Web Application For Survey . 47
4.4.1 Pages . 48
4.4.2 Implementation of the Web Application 51
4.4.3 Preliminary Testing and changes 53

4.5 Complete Flow of Data . 54
5 Data gathering and Evaluation . 57

5.1 Evaluation Strategy . 57
5.1.1 Data Gathering . 58
5.1.2 Sampling . 59

5.2 Evaluation Metrics . 60
5.2.1 Normalized Discounted Cumulative Gain 60
5.2.2 Kappa Coefficient . 62

6 Analysis . 63
6.1 Findings . 63

6.1.1 NDCG . 63
6.2 Discussion . 72

6.2.1 Other Explored Ranking Models 73
6.2.2 Evaluation of Methods for Analysis 75
6.2.3 Validity of Research . 75

7 Conclusion . 78
7.1 Contributions . 78
7.2 Limitations . 79
7.3 Future work . 80

Bibliography . 81

Figures

2.1 The six stages of ISP . 4
2.2 RDF triple example . 7
2.3 Graph visualization of RDF triple . 7
2.4 Example of a keyword search on DuckDuckGo that is enriched with

an entity card . 8
2.5 Sample RDF data in Turtle format . 13

3.1 Simplified overview of the system architecture 29

4.1 A deployment diagram giving an overview of how the different sys-
tems are connected. 34

4.2 Example graph of a disease from disease the knowledge graph. [HS
= HasSymptom, DT = DrugTreatment] 36

4.3 Example graph of a director from the movie knowledge graph. [DB
= DirectedBy] . 37

4.4 An UML class diagram illustrating the core class architecture of the
plugin . 44

4.5 Guiding example of possible relevancy assessments 48
4.6 Home page buttons . 49
4.7 Survey page with top four results for BM25F 50
4.8 ER-diagram for database storing survey results 53
4.9 A sequence diagram illustrating the data flow of the system 55

6.1 Chart overview of the models’ NDCG scores @10 on the disease
dataset . 65

6.2 Chart overview of the models’ NDCG scores @5 on the disease dataset 66
6.3 Chart overview of the models’ NDCG scores @10 on the movie dataset 68
6.4 Chart overview of the models’ NDCG scores @5 on the movie dataset 69
6.5 DCG development as entities are retrieved for the disease dataset . 71
6.6 DCG development as entities are retrieved for the movie dataset . . 71

vi

Tables

2.1 Different versions of the verb ’wait’. 11
2.2 Horizontal index of the data in Table 2.5. Example taken from [15] 13
2.3 Vertical index of the data in Table 2.5. Example is taken from [15] . 13
2.4 TF variants . 15
2.5 IDF variants . 15
2.6 TF-IDF variants . 16
2.7 Incidence matrix of Lord of the Rings trilogy 16
2.8 Visualization of Kappa Coefficient . 23

4.1 Example of a triple from Wikidata . 35
4.2 indexNode . 39
4.3 Fields in the entity node representing COVID-19 40
4.4 Fields in the indexNode for COVID-19 41
4.5 Fields in the fieldedIndexNode for COVID-19 41
4.6 Fields for DataStats node . 42
4.7 Session cookies stored in the web application 52

5.1 Queries and query intents for the disease dataset 58
5.2 Queries and query intents for the movie dataset 59
5.3 Relevance scoring system . 59
5.4 Top five ideal set for "fear of social interaction" query 61

6.1 NDCG score for topten queries on the disease dataset 64
6.2 NDCG score for top 5 query results on the disease dataset 66
6.3 NDCG score for top 10 queries on the movie dataset 67
6.4 NDCG score for top 5 query results on the movie dataset 69
6.5 Mean Average NDCG values . 70
6.6 The observed strengths and weaknesses for each of the ranking

models . 74
6.7 Kappa coefficient scores for the two datasets 77

vii

Acronyms

BM Boolean model.

BoW bag-of-words.

DCG Discounted cumulative gain.

IDCG Ideal discounted cumulative gain.

IDF Inverse document frequency.

INEX Evaluation of XML retrieval.

IR Information retrieval.

ISP Information search process.

KB Knowledge base.

KG Knowledge graph.

KR Knowledge repository.

MAP Mean average precision.

NDCG Normalized discounted cumulative gain.

RDF Resource description framework.

TF Term frequency.

TF-IDF Term frequency · inverse document frequency.

TREC Text REtrieval Conference.

URI Uniform resource identifiers.

VSM Vector space model.

W3C World Wide Web Consortium.

viii

Chapter 1

Introduction

1.1 Background and Motivation

Traditionally, search is about “[. . .] finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).” [1, p. 1]. These documents are
easily accessible through popular search engines like Google, Bing, and Duck-
DuckGo utilizing well-researched retrieval algorithms and ranking models. How-
ever, as the semantic web continues to grow, the demand for efficient approaches
to search in structured or semi-structured material increases. Search in semantic
data is an increasingly important task as it has been estimated that more than
40% of web search queries target specific objects or things [2–4]. These are com-
monly called entities and are represented as structured documents. This creates
new challenges and requirements. Characteristically, semantic data contain less
text compared to unstructured text documents. Additionally, the semantic data is
commonly represented in a graph-like manner with documents as nodes and re-
lations as edges between them. Traditional information retrieval (IR) models are
solely based on unstructured text documents, hence does not take semantic struc-
tures into account.

To address these challenges, researchers have developed and evaluated new mod-
els [5–14] and indexing techniques [6, 15]. Each approach modifies models or
techniques used for unstructured document retrieval and ranking to take advant-
age of the underlying structure. Most researchers focus on the model developed in
their research compared to some baseline instead of comparing to other competit-
ive models. The research that does compare several modified models to their un-
structured counterparts, however, shows equivocal results [6, 9, 11]. Thus, there
is a need for a standardized evaluation approach and more research to further ex-
plore the ranking models’ behaviors and performances in different environments.

This thesis presents a platform developed to evaluate ranking models in an en-
tity retrieval setting using relevancy assessments collected from end-users. The

1

Chapter 1: Introduction 2

platform is additionally used to conduct a comparative evaluation study on selec-
ted ranking models to compare their behavior and explore potential strengths and
weaknesses when searching in semantic data.

1.2 Research Objectives

This thesis aims to answer the following research questions:

RQ1: How do IR ranking models perform for users searching in semantic data?

RQ1.1: What are the strengths and weaknesses of different IR ranking
models?
RQ1.2: How do the ranking models behave in an entity retrieval setting?
RQ1.3: How do fielded ranking models’ performances compare?

RQ2: What methods are suitable for evaluating entity retrieval?

1.3 Method and Approach

The first step towards answering the research objectives was a literature study to
get an overview of relevant theory and already published research. The literature
review focused on search in semantic data, graph structures, entity retrieval, and
traditional information retrieval algorithms.

The literature study was followed by an applied research phase where a plat-
form for evaluating entity retrieval was proposed. The platform includes indexing
techniques and ranking models for search in semantic data. Due to the lack of
standardized test sets for evaluating retrieval algorithms and ranking models in
semantic data, the proposed platform allows end-users to give relevancy assess-
ments to query results. In this research, the ranking models are evaluated on two
different domain-specific datasets imported from the Wikidata knowledge base.
The results from the user testing were observed and analyzed to discover the
strengths and weaknesses of each ranking model in different environments. Fur-
thermore, the results are compared to similar research to see how the findings
correspond to related experiments.

1.4 Contribution

The main contribution of this thesis is the investigation into how existing IR rank-
ing models behave on a domain-specific semantic knowledge base in an entity
retrieval setting. A well-structured overview of the benefits and challenges with
each model is discussed, and measurements of users’ perceived relevance of the
top-k results ranked by each model is presented.

Chapter 1: Introduction 3

Additionally, a platform to evaluate ranking models on semantic data was de-
veloped. This includes a framework to import data, a new approach to general-
purpose indexing for entity retrieval, a selection of ranking models, accommod-
ation for inclusion of new models, and a web application to gather relevancy as-
sessments from end-users. This is publicly available and can aid in replicating
experiments, executing testing on other datasets, or working as a foundation for
further development and testing of new models.

1.5 Thesis Structure

Chapter 2: Introduces the fundamental theory, including IR ranking models for
both unstructured and structured data, as well as prior research done, and their
limiting factors.

Chapter 3: Concisely describes concepts and methods used to approach the ex-
ploration of the research questions.

Chapter 4: Presents the architecture and implementation of the proposed pro-
totype developed in this research to aid in testing. Here, the implementation of
the indexing and ranking techniques are thoroughly explained.

Chapter 5: Presents the process of data gathering for ranking model evaluation,
in addition to explaining in detail how the testing was conducted.

Chapter 6: Presents and evaluates the findings from the research, as well as dis-
cusses their implications and validity.

Chapter 7: Concludes how each research question has been answered, which re-
search limitations are present in this thesis, and proposes further research.

Chapter 2

Theory

The objective of this chapter is to place the research within a theoretical context.
This is done by presenting the underlying theory as well as prior research within
the field and its challenges.

2.1 Searching for Information

Kuhlthau [16] explains that the information search process (ISP) consists of six
stages depicted in figure 2.1.

Figure 2.1: The six stages of ISP

When searching for information, users tend to begin with a broader topic before
gradually becoming more focused on one topic or point towards the end. This is
because the user develops confidence in their information needs and therefore
narrows their perspective and ultimately searches.

Initiation is when a lack of knowledge is first observed, selection is when the gen-
eral area of interest is recognized, and exploration involves investigating the area
of information to further the understanding about the topic. When the user has
reached this point, a more focused search is constructed during the formulation
stage. Here the focus is narrowed and the user selects ideas and concepts to further
examine. The process continues by gathering more focused information about the
chosen topic in collection, before redundant information is removed in presenta-
tion, leaving a new understanding.

4

Chapter 2: Theory 5

2.1.1 Queries

When searching for information, users can express their needs in several ways.
Balog [17, p.13] categorizes the different search paradigms as the following:

• Keyword queries are considered free-text queries where the user can freely
express their information need. This can however be challenging as the for-
mulations may be vague and differ from one user to another.

• keyword++ queries improve the precision of the query by complementing
the query with some additional information or context. This can be done by
asking the user to select a category or filter along with their query.

• Structured queries are formulated in a specific language such as SQL. These
queries are precise, but require some expertise from the users about both
the language and the structure of the data to be queried to be effectively
used.

• Natural language queries are usually expressed similar to a daily conversa-
tion formulated as a question. This is more common with voice-activated
search engines like Amazon’s Alexa or Apple’s Siri.

• Zero-queries aim to anticipate and access the users’ information needs without
a query. Here user context is utilized to proactively answer information
needs.

2.1.2 Results

Queries need to be handled in different ways and can therefore solicit multiple
types of results. To answer the users’ queries, an understanding of the underlying
goals and intent behind the query is needed. This can be done by analyzing the
query structure, recognizing the need for specific services, referenced items, or
concrete ideas that can indicate the information need.

The process of searching for and presenting answers is also substantially affected
by the structure of the data. When browsing the web, Unstructured data is com-
monly encountered, appearing as free-text in documents. Some examples are
news articles, emails, and tweets. Structured data is organized following strict
rules and is typically stored in tables in a relational database. Finally, there is semi-
structured data which falls somewhere in between. It is characterized by the lack
of a formal and strict schema, making it more flexible than its structured counter-
part. Balog [18, p. 76] describes it as “[...] the schema is contained within the data
and is evolving together with the content, thereby making it ’self-describing’.” Ex-
amples of semi-structured data are JSON, XML, and RDF.

The main search engines predominantly present their results as a title, a link,
and a section of the most relevant text. When the information need is more com-
plex, the user has to further investigate each result in order to find an answer.
Some search engines also provide the results in the form of a list, such as the

Chapter 2: Theory 6

highest mountains in the world, or as a card to summarize simple information
that is commonly searched for.

2.2 Representing and Storing Semantic Data

This thesis mainly focuses on keyword search in semantic data. Semantic data in-
volves retaining the semantic information surrounding the data intact by provid-
ing context through different types of structures such as relations between data.
The role of semantic information is to describe the meaning of a concept. Using
semantics, two concepts can be described as equivalent even though they might be
stored in different knowledge bases, in different forms, and with different names
[19]. Some of the structures used to represent semantic data will be presented in
this section.

2.2.1 Knowledge Base and Knowledge Graph

One way to store data and descriptive information about the data is through a
knowledge repository (KR). This can be done in a semi-structured or structured
way. The data is represented by semantic categories and descriptions or proper-
ties that further define them. A structured version of the KR with a set of assertions
about the data it contains is defined as a knowledge base (KB) [17, p.5].

KBs aims to reflect the real world which includes a lot of ever-changing details.
Because of this dynamic nature, the KB will always be incomplete. Today, this im-
perfect depiction is embraced and instead of relying on fully developed ontologies,
the focus lies on lightweight relations between data. A KB with this focus can be
referred to as a knowledge graph (KG). A KG allows the data to be represented as
nodes and the relationships between them as edges. One way to represent a KG
would be the Resource description framework (RDF) triple structure discussed in
the following section.

2.2.2 Resource Description Framework

RDF is a standardized data model part of the World Wide Web Consortium (W3C)
specifications developed to represent and interchange interconnected data1. The
RDF data model suitable mechanisms to represent semantic information by facilit-
ating semantic interoperability [20, p. 65]. The model concerns specific instances
of data and their relations and can be seen as an extension to the linking struc-
ture of the web using uniform resource identifiers (URI) syntax [17, p. 38]. URI is
a syntax restricted sequence of characters used as identifiers for resources [21].
Resources can be anything with identity and will in this context correlate to the
specific data instance. Using RDF, URI can, in addition to link two ends, represent

1RDF specifications for N-triples from W3C: https://www.w3.org/TR/2014/
REC-n-triples-20140225/

https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/

Chapter 2: Theory 7

the relationships between resources. These relationships are often referred to as
triples and is expressed as subject-predicate-object [5].

Here, the predicate denotes traits or aspects that expresses a relationship between
the resource, subject, and the object. Objects can be other resources or values such
as numbers and strings of text. Figure 2.2 shows an example of such a triple,
namely a relation between the hero Spider-Man and the villain Green-Goblin.

1 <http://example.org/#spiderman>
2 <http://www.perceive.net/schemas/relationship/enemyOf>
3 <http://example.org/#green-goblin>
4

Figure 2.2: RDF triple example

There are many advantages to the RDF model. The linking structure formed by
RDF triples creates a directed graph commonly used for easy-to-understand visu-
alization of the data. As a result, it has all the advantages of structuring inform-
ation using graphs. These advantages include intuitive, agile, and scalable rep-
resentation of data while having highly optimized and high-performance search
compared to relational databases [22]. Figure 2.3 shows the graph visualization
of the RDF triple in figure 2.2.

Spider −Man Green− Goblin
EnemyOf

Figure 2.3: Graph visualization of RDF triple

Additionally, resources within the RDF model are flexible as modification consists
of adding and removing RDF triples. If Spider-Man and Green-Goblin suddenly
became friends, you would remove the EnemyOf relation between them and add
a new FriendsWith relation. This is possible without affecting the rest of the graph.

SPARQL

SPARQL is the query language used to retrieve and manipulate data stored in the
RDF format [23]. It can retrieve the data both in table format and RDF triples.
SPARQL is a powerful query language, but structured queries require expertise in
both the language and the data to be queried. This makes it unfit for the average
end-user.

Chapter 2: Theory 8

2.3 Entities

A uniquely identified instance of data correlating to a concept or an object is re-
ferred to as an entity. These entities are characterized by their types, attributes,
and relationships to other entities [17]. Types can be seen as categories or in-
stances. An example would be that Usain Bolt is an instance of ’sprinter’ which
is a subtype of ’athlete’. Attributes are referred to as sets of features or charac-
teristics that the entity possesses, and relationships describe how two entities are
associated with one another. A practical example of an entity and its properties
is present when searching for "Matt Damon" in the search engine DuckDuckGo.
As illustrated in 2.4, the query will result in an entity card on the right-hand side
showing information about him and his career.

Figure 2.4: Example of a keyword search on DuckDuckGo that is enriched with
an entity card

2.3.1 Entity Representation

Having a good entity representation is essential for effective retrieval and ranking
of entities. An entity representation is a textual depiction of the entity, used to
aid in the retrieval process [17, p. 19]. These can be developed in several ways

Chapter 2: Theory 9

depending on the available data. Some entities have ready-to-use representations
based on structured data, while others have semi-structured information like an
entity’s Wikipedia page. Sometimes, however, they are made from purely unstruc-
tured documents with no readily made representations. These entities are com-
monly represented using semantic information stored as RDF triples. Here, se-
mantic properties are represented as RDF predicates. In the context of entities,
these are called fields and represent the attributes and relationships of the entity.

Balog [17, p.61-71] presents several approaches to creating entity representa-
tions. One way is having each document annotated by the entities they reference,
then use the documents to connect terms and entities. Candidate entities like
these can be found either by human interaction or through fully automated (en-
tity linking) procedures. On a document level, a representation can be as simple
as concentrating the contents of all the documents that mention the given entity.
Additionally, you could consider the context in which the entity appears by look-
ing at a set number of adjacent entities. This can reveal a more accurate entity
representation because the entities within certain proximity may be more related
than separately placed entities in the same document.

Another way to create entity representations, when dealing with predefined en-
tities with fields and relations, is by utilizing predicate folding [17, p. 70-71]. Pre-
dicate folding is when several predicates are grouped into predefined categories.
This way one entity representation can contain several fields. Depending on the
sparsity in fields and data, the fields used in the predicate folding can be changed.
Some examples are predicates like names, attributes, types, relations, catch-all
fields, or some form of top-predicates(which entails the most used fields). It is
common to remove URIs as they are not suited for text-based search.

2.3.2 Entity Retrieval

Entity retrieval is an important field because entities bridge the gap between struc-
tured and unstructured data [17, p. 15]. Formally, entity retrieval is the task of
retrieving and ranking entities mentioned in a document collection following the
relevancy of a query [24]. This is an increasingly important task as it has been
estimated that more than 40% of web search queries target entities [2–4]. Re-
trieval of entities can give direct and specific answers to the user, as well as enrich
the search result and contextualize the information. Two important points set en-
tity retrieval apart from traditional document retrieval [25]. Firstly, entities are
not always explicitly represented as retrievable units like documents are. Entit-
ies consist of mentions and occurrences in the document collection. This creates
a need for new "profile" documents for each entity that includes additional in-
formation about occurrences in the document collection. Secondly, compared to
unstructured documents, in entity retrieval, the underlying structure of the en-
tities can be utilized. This includes entity types, attributes, and relationships to

Chapter 2: Theory 10

other entities.

Ad-hoc Entity Retrieval

Semantic search is a broad term concerning a wide range of concepts and chal-
lenges. In this thesis, the focus falls on a sub-group of search within semantic
data called ad-hoc entity retrieval. The goal of ad-hoc entity retrieval is to return a
ranked list of entities with respect to each entity’s relevance to a given query [17].
These queries are mainly keyword- and natural language queries to make the in-
formation accessible to users with an ad-hoc information need and no prior know-
ledge of the data.

A popular entity representation for ad-hoc entity retrieval is to represent each en-
tity as a semi-structured document of fields with bag-of-words (BoW) values [24].
These fields include entity attributes and relationships to other entities. This makes
it possible to use and adapt existing approaches from unstructured document re-
trieval in an entity retrieval setting. For example, retrieving entities with explicit
representation was formally proposed by Pound et al. [2]. By mapping an object
ranking problem in an entity-based context to the already established problem of
ad-hoc document retrieval, it is possible to reuse and adapt established theory and
existing works. For instance, the baseline for their ranking approach is to consider
TF-IDF over entity properties in an RDF graph.

2.4 Preprocessing and Indexing

While traditional IR aims to maximize effectiveness, it encounters some challenges
when dealing with a plethora of documents, which can make the search process
time-consuming. To combat this, indexing deals with the efficiency of the search
and aims to process user queries using minimal resources. This is done by cre-
ating a data structure to store and quickly locate data without having to search
through every entry in the database. Generally, this leads to a trade-off between
faster retrieval and processing of data at the cost of additional writes and storage
space. This is done to create and maintain the index when changes or updates are
necessary.

2.4.1 Text Operations

Before indexing and later searching through the documents, the contents should
be preprocessed to reduce overhead. Not every character or word in a natural
language appears as frequently. The distribution of use can be skewed with stop-
words such as ’at, the, this, it’ being used more frequently than jargon words such
as ’holistic, Q.E.D, cache’. The most frequent words supply very little discrimin-
atory power and can therefore be disregarded. By picking the most fitting words
for indexing a lot of the overhead can be reduced and the efficiency of the search

Chapter 2: Theory 11

increased. This can, however, affect the effectiveness as the meaning of phrases
and specific words may no longer be as searchable.

Lexical Analysis

Lexical analysis converts looking at the text as a stream of characters to recogniz-
ing it as a stream of words. This is done not only by separating words by spaces,
but by handling cases with special characters like digits, hyphens, punctuation,
upper and lower case. Numbers by themselves are usually not relevant unless set
in a context such as "513B.C" or "COVID-19", or presented in a special format
such as a date. Hyphens might be inconsistently used. In this case, splitting by
the hyphen might be beneficial so that ’up-to-date’ and ’up to date’ are treated
equally. Other words might benefit from staying hyphenated. The same goes for
punctuation and case lettering as they are usually disregarded by being removed
or converted, but can be beneficial to keep in some circumstances.

Removal of Stopwords

Most of the frequently used words are stopwords that do not help with the ef-
fectiveness of retrieval. If a term occurs in almost every document, it will not
significantly reduce the number of potential documents and is therefore not very
discriminatory. A word that appears in 80% of the collection is practically useless
for retrieval purposes [26, p.226]. Phrases consisting almost solely of stopwords,
such as Shakespeare’s ’to be or not to be’, will however be nearly impossible to
find after stopword removal.

Stemming

A document collection can include the same word in different forms such as plural,
present, and past tense. Typically, each is a slight variation with a common denom-
inator, namely the stem. An example would be the word wait seen in table 2.1
where the stem has many suffix variants.

Word variation Form
wait plain form
waits third-person singular

waited past tense
waited past participle
waiting present participle

Table 2.1: Different versions of the verb ’wait’.

Stemming is the process of removing these suffixes ending up with the word’s
stem [27]. In this case, all variations of the verb ’wait’ will be processed as the
word’s stem, namely, wait. As a result, every time a variation appears, it will be

Chapter 2: Theory 12

counted together with other appearances which will significantly reduce the num-
ber of different words to keep track of. Frakes [28, p. 158-165] performed a lit-
erature review comparing eight distinct studies on the potential benefit on search
performance when using stemming. He concludes that stemming may affect re-
trieval performance, but that the studies have equivocal results. Because of this,
stemming might not be beneficial from a ranking perspective, but can significantly
reduce the size of the index.

In the English language, many words share common suffixes such as ’s, es, ed,
ing’. However, every language is different and comes with a varying set of rules
and exceptions that makes stemming more challenging.

2.4.2 Inverted Index

Inverted index is one of the most commonly used data structures in document re-
trieval systems [29, Chapter 6.5]. It is a word-oriented database index for storing
and mapping content to its exact location in the database. When working with
graph data, it can be useful to map terms to the Nodes where they occur. If doc-
ument 1 and 3 contain the term "hello" in position (3, 5, 6, 200) and (9, 10)
respectively, a typical inverted index structure would be the following:

1 "hello" => [1:<3,5,6,200> , 3:<9,10>]

As a result, documents containing query terms can be efficiently retrieved. This
drastically reduces the number of processed nodes, which will improve the re-
trieval speed. This is because we only need to perform the search on a subset of
the dataset known to be relevant.

2.4.3 Indexing for RDF Data

The two main approaches for indexing RDF data are a horizontal index and a ver-
tical index [6, 15]. For a horizontal index, the RDF resources are represented using
three fields following the triple structure (subject-predicate-object). This means
that all the subjects, predicates, and objects for a resource are stored horizontally
in parallel with a set number of fields. Vertical index, on the other hand, creates
a new field for each predicate occurring for the resource. Corresponding objects
are then matched vertically. Thus, the horizontal position does not play a big role
but can be useful to represent properties with multiple values which is a small ad-
vantage over the horizontal index. Table 2.2 and 2.3 are examples of a horizontal
and vertical index, respectively, for the sample RDF data shown in listing 2.5. This
example is taken from [15].

Chapter 2: Theory 13

1 @prefix foo: <http://example.org/ns#> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 @prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
4 foo:peter foaf:name "peter mika" .
5 foo:peter foaf:age "32" .
6 foo:peter vcard:location "barcelona" .
7

Figure 2.5: Sample RDF data in Turtle format

Field pos1 pos2 pos3 pos4 pos5
object peter mika 32 barcelona

predicate foaf:name foaf:name foaf:age vcard:location
subject http example org ns peter

Table 2.2: Horizontal index of the data in Table 2.5. Example taken from [15]

Field pos1 pos2 pos3 pos4 pos5
foaf:name peter mika
foaf:age 32

vcard:location barcelona

Table 2.3: Vertical index of the data in Table 2.5. Example is taken from [15]

Mika [15] has shown that these indexes can be efficiently applied in a distrib-
uted fashion, supporting big data use-cases. Both the horizontal and the vertical
indexes are similar in size. The vertical index does, however, not include all the
information needed for ranking like subject information which gives access to
term frequencies and document sizes. Therefore a horizontal index can either be
applied alone or in combination with a vertical index for faster matching.

2.5 Ranking Models

Baeza-Yates and Ribeiro-Neto [26] describe IR models as functions that assign
scores to documents with regard to a given query. They explain that it consists of
two main tasks, namely a logical framework for the representation of documents
and queries, and a ranking function that calculates a rank for each of the docu-
ments in consideration to a specific query [26, p. 57]. In this section, the focus
will be on the last-mentioned, specifically the computation of a rank.

2.5.1 TF-IDF

One of the simplest approaches for scoring relevancy of potential results is a
method called TF-IDF which stands for Term Frequency - Inverse Document Fre-

Chapter 2: Theory 14

quency. This is done by statistically evaluating how relevant a term is to a docu-
ment in a collection of documents.

Term Frequency

If a document frequently mentions a query term, it must be strongly related to
that term and should receive a higher score. This is called the term frequency (TF)
and is denoted tft,d, where t refers to a term and d refers to a document. When
calculating the TF, each document is regarded as a bag-of-words. This entails that
the order of the terms are ignored and the only information of interest is the
number of occurrences [1, p.117]. This means that ’The cat is chasing the dog’
is seen as equivalent to ’The dog is chasing the cat’ even if the context is a little
different, the content is fairly similar.

Inverse Document Frequency

When considering TF, one challenge appears; all the matching terms are seen as
equally important when calculating a document’s relevance to a query. For in-
stance, if you look at a domain-specific collection of documents about movies, a
lot of reoccurring words, like ’director’ and ’actor’, will appear in close to every
document. The deciding factor will then solely depend on the frequency of the
term in one document. This means that a movie with a greater cast of actors will
receive a higher relevance score than other movies. To combat this, the relevancy
of terms frequently mentioned in the entire collection of documents has to be
scaled down. If the term appears in every document, it is not very discriminat-
ory. To scale the weights of terms, inverse document frequency (IDF) is used. It is
defined as:

idft = log
N
dft

. (2.1)

where N is the total number of documents in a collection and the TF in a document
is denoted dft. This makes the score of a rare term high, while a common term
lower.

Combining TF and IDF

If the two concepts are merged, a combined weight for each term in each docu-
ment can be produced by using:

tf-idft,d = tft,d × idft . (2.2)

This means that the score will be highest when a term, t, occurs a great number
of times in few documents leading to a high discrimination factor. It will be lower
when t occurs fewer times in a document or is prevalent in several documents,
and the lowest when it is present in practically every document. To sum up all the
TF-IDF weights for each term in document d, this formula can be used:

Chapter 2: Theory 15

Score(q, d) =
∑

t∈q

tf-idft,d . (2.3)

Variants of TF-IDF

There are several variants of TF-IDF and its components. The ones discussed by
Salton and Buckley [30] and mentioned by Written, Moffat, and Bell [31, p. 183-
185], which are presented in Modern Information Retrieval [26, p. 73-74] will be
in focus.

Weighting scheme TF weight
Binary {0,1}

Raw frequency fi, j

Log normalization 1+ log fi, j

Double normalization 0.5 0.5+ 0.5
fi, j

max i fi, j

Double normalization K K + (1− K)
fi, j

max i fi, j

Table 2.4: TF variants

There are mainly five different versions of TF as depicted in table 2.4. The binary
version assigns 0 or 1 score to query terms in documents based on occurrence,
where 1 is present and 0 is not present. Raw frequency is the most common al-
ternative and is used to describe TF in section 2.5.1. Log normalization uses logar-
ithm to decrease the score of frequent terms. Double normalization 0.5 normalizes
weight by maximum frequency (in document or query) and normalizes the weight
to end up between 0.5 and 1. Lastly, double normalization K is a generalization
where changing K can reduce or increase the frequency’s influence on TF.

Weighting scheme IDF weight
Unary 1

Inverse frequency log N
ni

Inverse frequency smooth log(1+ N
ni
)

Inverse frequency max log(1+ max i ni
ni
)

Probabilistic inverse frequency log N−ni
ni

Table 2.5: IDF variants

For IDF, there are five variants presented in table 2.5. Unary assigns 1 to all terms
so that IDF has no impact on the score. Inverse frequency is the standard ver-
sion explained in section 2.5.1. Inverse frequency smooth avoids extreme or odd
weights by summing 1 to the fraction. Inverse frequency max computes the weight
while taking the largest document frequency into consideration. This is done in
place of the number of documents in the collection. Lastly, probabilistic inverse

Chapter 2: Theory 16

frequency is a variant to the classic inverse frequency that instead of only consid-
ering the number of documents in the collection it subtracts the frequency of the
i-th document. Combining versions of TF and IDF will yield different versions of
TF-IDF as shown in table 2.6.

Weighting scheme Document term weight Query term weight

1 fi , j × log N
ni

(0.5+ 0.5 fi ,q
max i fi ,q

)× log N
ni

2 1+ log fi , j log(1+ N
ni
)

3 (1+ log fi , j)× log(N
ni
) (1+ log fi , q)× log N

ni

Table 2.6: TF-IDF variants

2.5.2 Boolean Model

The Boolean model is a simplistic model based on set theory and Boolean algebra.
Similarly to the binary version of TF-IDF, it only considers the occurrences of terms.
If a term is present in a document it is represented by a 1, and when absent it is
represented by a 0. Each document in a collection has a binary-term document
incidence matrix, where terms are indexed units(often words). If there for instance
is a document with information about characters in movies and which movies
these characters appeared in, the matrix would look something like this:

The Fellowship of
the Ring

The Two Towers The Return of the
King

Legolas 1 1 1
Theoden 0 1 1

Lurtz 1 0 0

Table 2.7: Incidence matrix of Lord of the Rings trilogy

In the Boolean retrieval model, all queries are formulated as Boolean expressions
with operators such as AND, OR, and NOT. An example would be if a document
contains Legolas AND Theoden NOT Lurtz. Which in the case of table 2.7 would
result in 111 AND 011 AND 011 = 011. The answer is then that Legolas and
Theoden but not Lurtz appear in ’The Two Towers’ and ’The Return of the King’.

This model is straightforward and easy to understand, and with the right dis-
criminatory terms, it is simple to significantly reduce the number of relevant doc-
uments. The downsides are that the formulation of Boolean queries might be dif-
ficult for end-users, and the retrieved documents are not ranked. This results in
every document containing the term(s) being deemed just as relevant, making it
difficult to distinguish them further.

Chapter 2: Theory 17

2.5.3 Vector Space Model

Another way to look at documents and queries is as vectors in a common vector
space. The vector of a document is denoted by ~V (d) where each term is repres-
ented by one component in the vector. How are then two vectors compared? If
you simply look at the vector difference, documents with similar content may
be significantly different because of the difference in length. Manning says that
"the relative distributions of terms may be identical in the two documents, but
the absolute term frequencies of one may be far larger" [1, p.121]. One way to
compensate for document length is to utilize cosine similarity for two document
vectors ~V (d1) and ~V (d2) as:

sim(d1, d2) =
~V (d1) · ~V (d2)

|~V (d1)||~V (d2)|
, (2.4)

where the ~V (d1) · ~V (d2) denotes a dot product and |~V (d1)||~V (d2)| is the product
of the vectors Euclidean length. The denominator will here be responsible for the
length-normalization mentioned earlier. Here ~V (d1) and ~V (d2) are set to unit vec-

tors ~v(d1) =
~V (d1)
|~V (d1)|

and ~v(d2) =
~V (d2)
|~V (d2)|

. This means equation (2.4) can be reformat-
ted as

sim(d1, d2) = ~v(d1) · ~v(d2). (2.5)

with this similarity in mind, one can use a document di in a collection to find the
documents that are the most similar. But if the aim is to compare the documents to
a query, how is that done? Similarly to a document, the query can be considered
as a unit vector making it possible to assign each document d a score with dot
product:

~v(q) · ~v(d). (2.6)

By considering a query as a BoW it can be treated as a small document. Thus (2.4)
can be changed to compare a query q and a document d instead of two documents:

sim(q, d) =
~V (q) · ~V (d)
|~V (q)||~V (d)|

. (2.7)

Lucenes approach to TF-IDF

Apache Lucene is a free and open-source information retrieval library2. It provides
powerful and high-performance indexing and searching features written in Java.
Apache Lucene’s approach to TF-IDF is to combine the boolean model (BM) and
the vector space model (VSM). First, the documents are ’approved’ by the BM and
then scored by the VSM3. This will, in this thesis, be referred to as Lucene Fulltext

2Apache Lucene’s website: https://lucene.apache.org/
3Apache Lucene’s documentation on Class TFIDFSimilarity: https://lucene.apache.org/

core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

https://lucene.apache.org/
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Chapter 2: Theory 18

Search.

The VSM score (equation 2.7) is redefined as the following:

score(q,d)=coord-factor(q,d) · query-boost(q)·
~V (q) · ~V (d)
|~V (q)|

· doc-len-norm(d) · doc-boost(d)
(2.8)

Doc-len-norm(d) is an adaption to the normalization of document length using
unit vectors and normalizes a vector to equal or larger than the unit vector. Doc-
boost(d) and query-boost(q) are present so specific documents and query terms
can be weighted accordingly. This is done by multiplying each document or query
score with the boost value.

Since documents don’t necessarily contain all query terms, a multi-term query
Coord-factor(q,d) is used to further reward documents that match several query
terms. The larger the coordination factor, the higher amount of query terms are
matched.

2.5.4 BM25

The BM25 weighting scheme is a probabilistic ranking model sensitive to term fre-
quency and document lengths [1, p. 232]. The calculated score estimates the rel-
evance of documents for a given query.

Equation 2.9 defines the score of a document D given a query Q that contains
the terms t1, t2, ..., tn.

score(D,Q) =
n
∑

i=1

id f (t i) ·
t f (t i , D) · (k1 + 1)

t f (t i , D) + k1 · (1− b+ b · |D|avgdl)
(2.9)

Here, id f (t i) is the inverse term frequency of the given term calculated as previ-
ously seen in Equation 2.1, t f (t i , D) is the TF of the given term in document D,
|D| is the document length, avgdl is the average document length in the collection,
and k1 and b are free parameters.

t f (t i , D)
t f (t i , D) + k1

(2.10)

Equation 2.10 shows the saturation function [8]. This function describes the non-
linear increase of the probability that a document is relevant as the TF increases.
It is important because, as previously mentioned, the probability of relevance in-
creases along with the TF. This is, however, not a linear increase and k1 allows
control over the non-linear growing TF function. A large k1 value corresponds to
raw TF, and the smaller the value is, the less each term occurrence counts until
the value is 0 which corresponds to a binary model. b lets us control the scaling

Chapter 2: Theory 19

of term weight by document length. Reasonable parameter values deduced by ex-
periments have shown k1 ∈ [1.2, 2.0] and b = 0.75 [1, p. 233]. It should be noted
that even if these are common default values, they can yield sub-optimal retrieval
performance [17, p.76].

2.5.5 BM25F

BM25F is an extension of the BM25 ranking model that incorporates field weights
and per-field length normalization to better suit the retrieval of structured docu-
ments. To calculate the BM25F score, the steps described by Craswell in [8] can
be followed, starting by calculating a normalized TF for each field c.

t fc(t, D) =
occurrencec(t, Dc)

1+ bc(
|Dc |

avgdlc
− 1)

(2.11)

occurrencec(t, d) is the occurrences of term t in the given document field Dc ,
|Dc| is the field length, avgdlc is the average field length for the given field, and
finally bc is a field-dependent variant to the b parameter in BM25. With the field-
dependent normalized term frequencies, the BM25 saturation function 2.10 can
be used to calculate BM25F. Equation 2.12 defines the BM25F score of a structured
document D containing the fields c1, c2, ..., cn given a query Q.

BM25F(D,Q) =
n
∑

i=1

id f (t i) ·
t f (t i , D)

t f (t i , D) + k1
(2.12)

t f (t i , D) =
n
∑

c=1

ωc · t fc(t i , Dc)

Here, t fc(t i , Dc) is the field term frequency function described in equation 2.11,
and ωc is the boost factor describing the importance of each field.

2.5.6 Comparing Saturation Functions

Most ranking models have a method to deal with the non-linear increase of relev-
ance as term frequencies increase. Some models use either a simple logarithmic or
a square-root function, while other models, like BM25, use a tunable parameter
approach. This is commonly called a saturation function. When combining scores
from different fields in structured data, the saturation function used by the given
model has to be taken into account. Converting models designed for unstructured
documents to be used on structured documents may lead to some undesired char-
acteristics [32]. The Lucene library is a good example of this. As described in
chapter 2.5.3, Lucene utilizes a combination of the vector space model and the
Boolean model. When using Lucene to retrieve structured documents, the score is
computed by linearly combining the scores of each field. Note that these formulas
are not Lucene’s exact implementation, but a simplification to illustrate important
points.

Chapter 2: Theory 20

score(Q, D) =
n
∑

c=1

score(Q, Dc) (2.13)

score(Q, Dc) =
n
∑

i=1

t fc(t i , Dc) · id f (t i) ·ωc

t fc(t, Dc) =
Æ

f req(t)

Here the saturation function
p

f req(t) is applied before the boost factor ωc . As
described by Pérez-Agüera et al. [11], this is problematic since the linear combin-
ation of the field scores, score(Q, Dc), breaks the non-linear saturation effect when
the boost factor is applied after the saturation function. In other words, there is
no non-linear saturation for the terms across document fields when combining
the field scores. As a result, documents matching a single query term over several
fields score much higher than documents scoring several query terms in a single
document field. When a single query term appears across several fields, it is not
necessarily more relevant because of redundancy. For instance, a term in a name
field can be expected to appear several times in an alias field, and maybe even in
a description. Hence, there is more interest in matching more query terms despite
not getting hits across document fields. BM25F applies the boost factor after the
saturation function, and thus, combining the field scores does not cancel the sat-
uration effect. As a result, we can expect BM25F to perform better when dealing
with some structured data.

2.6 Evaluation of Ranking Models

To evaluate an IR system you have to assess how well it fulfills the information
need of users. This can be difficult as identical result sets may be interpreted differ-
ently by users. A common way to approach evaluation is by comparing results pro-
duced by the IR system with results chosen to be relevant by humans. This thesis
will mainly utilize evaluation measure definitions described by Baeza-Yates [26].

2.6.1 Precision and Recall

Precision and recall are some of the most widely used methods to evaluate the
retrieval qualities of an IR system. Consider a query requesting some information
that yields an ideal set of relevant documents R, and an answer-set of documents
given by the retrieval algorithm A. If |R| denotes the number of relevant docu-
ments and |A| the number of retrieved documents, then |R∩A| is the intersection
of these documents. Precision can then be defined as the fraction of the retrieved
documents (A) which are relevant:

Precision=
|R∩ A|
|A|

(2.14)

Chapter 2: Theory 21

Recall can be defined as the fraction of relevant documents (R) that was retrieved:

Recal l =
|R∩ A|
|R|

(2.15)

2.6.2 F-Measure

Both precision and recall are important and can be interesting to look at individu-
ally. However, it is useful to get a single value score that combines both of these
measures. To get a score that balances the concerns of both precision and recall,
F-Measure can be calculated as:

F =
2 · Precision · Recal l
(Precision+ Recal l)

(2.16)

2.6.3 Mean Average Precision

To get a calculation of the user impression of the performance, it is normal to
calculate the precision when a certain amount of documents has been retrieved
(normally p@5, p@10, p@20). To get a single value score of all the precision
values the average precision can be calculated for the set of relevant documents to
the query (R):

AvgP =

∑|R|
k=1 P(R[k])

|R|
(2.17)

Here, R[k] refers to the k-th document in R, and P(R[k]) is the precision when
the document occurs in the ranking. If the document never occurs in the ranking,
the precision for that document is zero.

If the goal is to get a single value score for a set of queries, Q, the mean aver-
age precision (MAP) can be used:

MAP =

∑|Q|
q=1 AvgP(q)

|Q|
(2.18)

2.6.4 Discounted Cumulative Gain

Precision and recall only grant binary relevance assessment. This can lead to high
scores even though highly relevant documents are ranked low. Discounted cumu-
lative gain (DCG) solves this by penalizing highly relevant documents appearing
lower in a search result [33]. The use of DCG in this thesis is based on the works
of Järvelin and Kekäläinen [33, 34]. The DCG accumulated at the n-th position of
the ranking is defined as:

DCGn =
n
∑

i=1

reli
log2(i + 1)

(2.19)

Chapter 2: Theory 22

where reli is the relevance score for the document at the i-th position.

The normalized discounted cumulative gain (NDCG) is the fraction of the DCG
for a search result compared to the ideal discounted cumulative gain (IDCG) for
the same result.

N DCGn =
DCGn

I DCGn
(2.20)

The IDCG is the highest DCG score possible meaning a perfectly ranked search
result set gives an NDCG score of one.

2.6.5 Cohen’s Kappa Coefficient

When performing user evaluation testing, it is important to consider the degree of
agreement between the testers. This is commonly done using a simple percentage
agreement calculation. However, this does not take into account the agreement
happening by chance. The kappa coefficient, first introduced by J. Cohen [35],
solves this by addressing the hypothetical probability of agreement. The agree-
ment of I testers who each evaluated N items can then be calculated as:

κ= 1−
1− po

1− pe
(2.21)

where po is the observed proportionate agreement

po =
Number in Agreement

Total

and pe is the hypothetical probability of agreement

pe =
1

N2

∑

k

I
∏

i=1

nki

Here, k are the categories and nki is the amount of times rater i predicted category
k.

Fleiss Kappa Coefficient

While Cohen’s Kappa Coefficient only concerns two parties at a time, Fleiss [36]
takes into consideration when there is a constant number of raters, larger than
two. This is done by first calculating the proportion of assignments to a given
category, then calculating to which extent rater pairs agree on a certain subject.
Lastly, the mean of the former calculations is computed.

Evaluation of the Kappa Coefficient

How do you assess the scores given by the Kappa Coefficient? Viera and Gar-
rett [37] propose that a scale of evaluation such as shown in table 2.8 is used.
This is supposed to help visualize the Kappa values beyond just numbers.

Chapter 2: Theory 23

Kappa Agreement
<0 Less than chance agreement

0.01-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-0.99 Almost perfect agreement

Table 2.8: Visualization of Kappa Coefficient

2.7 Previously Explored Approaches to Keyword Search
in Graphs

There are several ways of approaching keyword search on graph data. Each pa-
per has a different approach and ultimately focuses on retrieval and results to be
fetched.

The authors of [5], Elbassuoni, and Blanco, conducted research on challenges
closely related to this thesis, where they proposed a retrieval model for keyword
queries over RDF graphs. Their model regards each RDF triple as a separate docu-
ment, and associates each document with a set of keywords. By adopting a back-
tracking algorithm and a statistical language model to their retrieval model, they
retrieve and rank top-k sub-graphs matching the query keywords. A language
model is a probability distribution over terms based on how likely specific terms
are to be observed in a given language [38]. They specifically aim to retrieve sub-
graphs as they claim it "[. . .] can be particularly beneficial for both result retrieval
and result representation” [5, p. 237] as they believe that "[. . .] the graph rep-
resentation provides more concise answers to the users’ information need than a
set of entities” [5, p. 238]. However, in this thesis, the result representation will
not be regarded on the same level of importance as relevance assessments. As a
result, looking at keyword queries over RDF graphs as an entity-oriented search
problem provides a more practical foundation for comparison between the dif-
ferent ranking models. Thus, the work on the backtracking algorithm to retrieve
sub-graphs would not be applicable to the research in this thesis but would be
an optional supplement to any of the ranking models compared in chapter 6 if
retrieving sub-graphs is regarded as more desirable.

Tran et al. [14] took a vastly different approach to keyword search over RDF data.
They propose an algorithm that computes top-k structured queries from a keyword
query, instead of the traditional approach of directly computing answers. This adds
an additional intermediate step where the user has to choose the most appropriate
structured query for their information need. In other words, it is assumed that a
keyword query is an implicit representation of a structured query. This solves the

Chapter 2: Theory 24

challenge of needing prior knowledge of the data and its structure when working
with structured queries. It would also ease the challenge of writing queries and
require less technical expertise from the users as they argue “Structured queries
can serve as descriptions of the answers and can also be refined more precisely
than using keywords” [14, p. 416]. Some expertise is still required, and the two-
step process would not be beneficial for a large-scale, user-friendly application.
Since their approach pivots towards the use of keyword++ queries, and this thesis
focuses on the comparison of ranking models behavior, this would not be a part
of the implementation.

Tonon et al. [9] chose to build upon Ad-hoc entity retrieval by proposing a hy-
brid approach combining structured search techniques and traditional IR used for
ad-hoc document retrieval. Their architecture uses an inverted index to retrieve
intermediate top-k results in addition to graph traversals and neighborhood quer-
ies to finalize the graph-enriched results. Their results show that “[. . .] the use
of structured search on top of standard IR approaches can lead to significantly
better results (up to 25% improvement over the BM25 baseline in terms of Mean
Average Precision).” [9, p. 134]. Additionally, they found that approaches based
on structured inverted index with BM25F significantly outperformed approaches
based on the same index with BM25 in terms of MAP, NDCG, and early precision
(P@10). It would be intriguing to see if these results still hold for smaller, domain-
specific knowledge graphs. Additionally, it would be interesting to compare these
results with other structured ranking models like Lucene.

The authors of [12] explore the use of both structure and content when ranking
results. Here, the ranking models for web objects (in this case RDF representa-
tion of entities) are developed based on a traditional language model. Through-
out the paper, they assume the entire process deals with entities, including the
results given to the user. They also assume a document is connected to each en-
tity, something that is not present in the research of this thesis. They developed
and compared three models for web object retrieval: unstructured object retrieval
model, structured object retrieval model, and a hybrid model including features
from both unstructured and structured. Their research shows that in the context
of searching for academic papers, the hybrid model consistently performed better
than the other models.

Castells, Fernández and Vallet [13] adapted the vector space model for ontology-
based representation. They argued that “documents hold a value of their own and
are not equivalent to the sum of their pieces no matter how well formalized and
interlinked” and therefore wanted to expand on already existing models. They
worked with domain-specific KBs similarly to the research in this thesis but as-
sumed some consistent data structure with the presence of three root ontology
classes. Instead of just relying on keyword search, the group decided to supple-
ment the search with the use of ontologies. The inclusion of keyword-based search

Chapter 2: Theory 25

results provided more robustness where pure ontology-based search results were
lacking. On the other hand, the cases where pure ontology-based search signi-
ficantly outperformed keyword-based search deteriorated. The inclusion of on-
tologies could therefore be seen as a trade-off to make the ranking model more
consistent while missing out on some previously outstanding results.

Due to the Covid-19 pandemic, the TREC-COVID challenge [39] was initialized
in 2020. A vast number of scientific papers regarding the virus were published in
a short amount of time, making it challenging to keep up to date. As a result, the
challenge of finding relevant information and keeping evidence from getting bur-
ied became the focus of this initiative. A. Esteva et al. [10] handled this challenge
by generating a bipartite graph of document paragraphs and citations, making it
a semantic search problem. The presented semantic search engine, CO-Search, is
split into two main parts: A retriever and a ranker. The retriever approximates the
nearest neighbors and returns a set of paragraphs along with each paragraph’s
cosine similarity. The paragraphs are ranked using a combination of TF-IDF and
BM25 to retrieve documents. The ranker then combines this score of the retrieved
documents with a Question Answering Model (QA model) and an Abstractive Sum-
marization which results in a ranked collection of documents given a query. This
approach resulted in the system achieving #1 taking all evaluation metrics into
consideration. The method was, however, very specifically tailored to the chal-
lenge, making it difficult to generalize. This shows that good performance often
requires customization towards the given problem. A general-purpose model is
more conveniently applicable to various use cases. This thesis will focus on the
latter.

In this system, TF-IDF and BM25 operate on the document level meaning these
models do not take advantage of the underlying graph structure when ranking.
However, it uses nearest-neighbor approximation and the QA model. It would be
interesting to see how well this system performs for data collections containing
semantic data, and compare these results when swapping TF-IDF and BM25 with
fielded variants.

2.7.1 Explored Evaluation Methods

Evaluating IR systems is a challenging field, but over the years, two main ap-
proaches have been developed; a user-based evaluation approach, and an auto-
matic evaluation approach. In the case of the study [5], Elbassuoni and Blanco
evaluated their retrieval model by taking a user-based approach. This was done
by creating their own query benchmark and relevance assessments due to the
lack of an appropriate query benchmark for keyword search over RDF data. This
means they asked people to judge the IR system’s performance based on a pre-
defined scale of relevance. This thesis employs a similar evaluation approach for
its research which is explained in further detail in chapter 5.

Chapter 2: Theory 26

Pérez-Agüera et al. [11] takes the automatic evaluation approach, using the Text
REtrieval Conference (TREC) evaluation software4 looking at performance meas-
ures like MAP, GMAP, and R-Precision. In this study, they compared both standard
and fielded variants of Lucene search with BM25 on semantic data. They proposed
a semantic search evaluation framework based on the evaluation of XML retrieval
(INEX5) (INEX have since come to an end). For a collection of RDF documents
collected from DBpedia, their research shows that both BM25 and BM25F per-
form better than Lucene and LuceneF. However, they conclude that BM25F does
not make any significant improvement compared to BM25. This may be due to
the nature of the structure in the dataset, where some fields contained a great
amount of text, while others contained less and had fewer relevant keywords. As
a result, it is interesting to see if these results hold for data sets where all fields
contain a small amount of text and all fields can contain relevant keywords. This
will be explored further in chapter 6.

The TREC-COVID challenge uses several different metrics for evaluation in the
competition. These include NDCG, Precision with N documents(P@N), MAP, and
Binary preference.

2.7.2 Comparing Results

Blanco and Vigna conducted a study [6] on the efficiency of different index tech-
niques on a large RDF data set in addition to the effectiveness of BM25F ranking
vs BM25. Just like Tonon et al. [9], but in contrast to Pérez-Agüera et al. [11], they
found that BM25F significantly outperformed BM25. They performed their testing
on the Billion Triples Challenge6 from 2009. Due to these contradicting results,
more research is needed to conclude when BM25F could be more beneficial than
BM25.

During The Semantic Search Challenge in 2010, which concerned keyword quer-
ies over RDF data, [7]was the best performing approach. They ranked the entities
using BM25F with tailored indexing, manual classifications (important, unimport-
ant, and neutral), and property and site class weights. This could indicate that the
BM25F model thrives on customization in accordance with the data to be queried.

4https://trec.nist.gov/trec_eval/
5https://inex.mmci.uni-saarland.de/
6https://zenodo.org/record/2634588

https://trec.nist.gov/trec_eval/
https://inex.mmci.uni-saarland.de/
https://zenodo.org/record/2634588

Chapter 3

Concepts and Methods

The objective of this chapter is to give an overview of the research questions and
the methods used to answer them. The concepts and ideas that lead to the proto-
type implemented for the purpose of this research will be the main focus.

As mentioned in the introduction, our thesis focuses on 4 research questions;
RQ1: How do IR ranking models perform for users searching in semantic data?

RQ.1: What are the strengths and weaknesses of different IR ranking
models?
RQ1.2: How do the ranking models behave in an entity retrieval setting?
RQ1.3: How do fielded ranking models’ performances compare?

RQ2: What methods are suitable for evaluating entity retrieval?

To answer these questions we need at least three aspects:

• At least one semantic knowledge base containing entities
• A platform to index and query the knowledge base using different IR ranking

models
• An evaluation measure to rate the performance of ranking models and com-

pare them to each other

3.1 Domain-Specific Semantic Knowledge Base

A domain-specific semantic knowledge base is a knowledge base containing se-
mantic data within a specific field or theme. Examples of this are library know-
ledge bases containing books and authors, or knowledge bases with hospital med-
ical records. This is in contrast to a semantic knowledge base with no specific
domain, containing all kinds of data. The biggest difference between the two is
the consistency in the data structure. In a domain-specific knowledge graph, the
nodes will to a large degree share the same properties and relations to each other.
This is desirable during indexing and ranking because it is easier to take advant-

27

Chapter 3: Concepts and Methods 28

age of the underlying structure of the graph to a greater extent.

In regards to RQ1.2, the focus falls on entity retrieval. This is because entities
bridge the gap between structured and unstructured data, making the IR models
traditionally used for unstructured document retrieval more relevant and appro-
priate to use on semantic data. Additionally, as mentioned in section 2.3, more
than 40%, with some measures up to 70%, of web queries target entities. As the
aim is to assess how IR ranking models behave with semantic data, it is interesting
to explore how well they take advantage of the underlying structure and how they
can be modified to increase performance. With this in mind, a domain-specific KB
consisting of entities was a natural choice to evaluate the ranking models’ beha-
vior.

Representation of Entities

A central part of entity-oriented search is the creation of entity representations
with techniques such as entity detection and entity linking [17, 25]. This includes
creating relations with other entities as well as important fields. In this research,
two knowledge bases were built by fetching RDF data from Wikidata’s SPARQL
endpoint. This was done by querying the endpoint constructing the knowledge
base as desired. Correspondingly, a disease domain knowledge graph and a movie
domain knowledge graph containing entities were constructed. The entities are
explicitly represented as separate nodes with fields in a graph database.

As mentioned in section 2.3.1 there are several ways to create entity descriptions.
Since this project works with already structured RDF data fetched from Wikidata,
property folding was used. Even with some sparsity in the datasets, most entit-
ies had values in each used field. On average, each field consisted of few terms,
consequently making each term potentially highly impactful when using tradi-
tional IR ranking models. The disease knowledge graph contains fewer entities
compared to the movie knowledge graph. However, it contains more fields, and
the terms are more unique and discriminatory, thus containing more semantic in-
formation. This difference aids with answering RQ1 by analyzing and comparing
the performances in different environments. Overall, text representation of two
domain-specific knowledge graphs containing entities with different characterist-
ics was a good foundation to answer the research questions.

3.2 Indexing and Ranking Models

A requisite to fully answer the research questions is a platform that indexes know-
ledge graphs to support IR ranking models. Preferably, this platform should be
flexible in the type of data it can index, and which ranking models it supports.
This is because testing was to be performed on different KGs and use a wide
range of ranking models. Additionally, this allows for easy modification of ex-

Chapter 3: Concepts and Methods 29

isting ranking models with alternative weighting schemes or tweaking of the free
parameters such as k1 and b in BM25. It would also be beneficial to have the abil-
ity to add new ranking models to expand upon the research in this thesis. As there
are no preexisting platforms that fulfill all these demands, a plug-in for an exist-
ing graph database platform included in a functional prototype was developed for
the purpose of this research. The proposed prototype also consists of a working
web application with a search engine to search through the datasets and a sur-
vey for collecting relevance assessments. A simplified overview of the prototype
architecture is showcased in figure 3.1. Chapter 4 takes a deeper dive into the
implementation and architecture.

Figure 3.1: Simplified overview of the system architecture

In section 2.5 several ranking models were introduced. These are the models ex-
plored throughout this thesis. To answer RQ1 and its sub-question RQ1.1, a review
of related research papers and written theory was conducted, gathering the preex-
isting information. This way there was grounds to compare the already recognized
strengths and weaknesses of each model, in addition to the findings in this thesis
related to the domain-specific user survey.

These are the following ranking models chosen to be evaluated through web sur-
vey results, and additional ranking models for theoretical investigation:

Chosen ranking models for the survey:

• Lucene Fulltext Search
• BM25
• BM25F

Additional ranking models:

• Vector space model
• BM25FF

Chapter 3: Concepts and Methods 30

The main focus was on the vector space model and BM25 because they are widely
accepted and popular ranking models used for unstructured document retrieval.
Furthermore, other organizations and previous research have explored modifica-
tions of these models for information retrieval in semantic data. An example of
this is the Apache Lucene library’s development and inclusion of its fulltext search
which ranks both unstructured and structured documents. Additionally, research
such as [6, 8–11] uses either BM25 or its fielded variant, BM25F, for information
retrieval in semantic data. This lays a solid foundation to build upon previous re-
search, and compare the strengths and weaknesses of the IR ranking models. It
allows for a substantial evaluation of the difference in the behavior of the fielded
variants compared to the models developed for unstructured data.

Even though the Apache Lucene library includes all the chosen models, they were
all implemented from scratch except Lucene Fulltext Search. This was done be-
cause the chosen knowledge base platform supported Lucene Fulltext Search, but
no other functions in the library. It was therefore a great learning opportunity to
implement the other models from the ground up, getting familiar with each aspect
of the ranking models. It built a thorough understanding of how the models calcu-
late relevancy scores and their behavior, which was important in order to correctly
interpret the research results. This also opened up the opportunity to develop and
test new fielded ranking model variants. With RQ1.3 in mind, a new model was
developed for the purpose of this research based on the already known ranking
model BM25F. This model is named BM25FF where the last F stands for ’fielded’
again. This is to indicate it does not calculate IDF-score globally for all fields but
does a calculation per unique field type. This is further discussed in section 4.3.2.
This model further explores the impact of taking fields into account when ranking.

When working with BM25 and its fielded variants, appropriate k1 and b values
needs to be chosen. Section 2.5.4 mentioned that reasonable parameter values
deduced by experiments are k1 ∈ [1.2,2.0] and b = 0.75 [1, p. 233], but these
values can yield sub-optimal retrieval performance. He and Ounis [40, 41] de-
scribe the importance of these parameters and the steps to tune them for optimal
performance. However, to stay within the scope of the project, and test the gen-
erality of the models, the common parameter values were used for all datasets.
This entailed the use of b = 0.75 for BM25, bc = 0.75 for all fields for BM25F and
BM25FF, and k1 = 1.2.

Fielded ranking models can choose a separate weight for each field. As with the
BM25 parameters, instead of tuning each field weight to achieve the best perform-
ance for each model, generality was chosen. Thus, the weight parameter was set
ωc = 1 for all fields. By setting all free parameters and field weights to general
values all models had a common ground for all datasets. Even though this could
give sub-optimal performances, the research primarily focuses on comparing the
models, and thus giving each model a fair basis for comparison was deemed more

Chapter 3: Concepts and Methods 31

important.

3.3 Evaluation

With a semantic knowledge base containing entities and a platform to index and
query the data established, there was a need for a method to evaluate and compare
the ranking models. The intention was to have some quantitative basis to com-
pare how well each ranking model performed with regards to a user’s information
need. As an exploratory method to evaluate the ranking models, a web application
was developed to gather data about users’ perceived relevancy of ranked entities.
This was done especially with RQ2 in mind as there are no standardized test sets
available for the chosen datasets. With the survey data from the web application,
evaluation metrics were applied in several ways to fully answer the research ques-
tions.

The chosen methods to evaluate the ranking models and the validity of the results
were:

• Average Normalized Discounted Cumulative Gain

◦ Top 10 results
◦ Top 5 results

• Mean Average Normalized Discounted Cumulative Gain

◦ Top 10 results
◦ Top 5 results

• Kappa coefficient

When working with data from the chosen knowledge graph, automated evaluation
measures like MAP and F-measure were not ideal due to the lack of preexisting test
collections. To combat this, relevance assessments were gathered by performing
an experimental user study with two domain-specific datasets. Here, the testers
were asked to score each result from a wide range of queries ranked by different
ranking models.

A score of the users’ perceived performance of the ranking models can be achieved
by calculating the NDCG value at different top-k result sets. This method takes the
placement of each relevant result into account and compares the ranking models’
performance with an ideal result set. Compared to most traditional evaluations,
NDCG allows for a spectrum of relevance instead of the common binary view of
relevant or not relevant. More specifically, NDCG involves a discount function over
the rank while many other measures uniformly weigh all positions [42, p.2].

The advantage of this model, even if it requires an ideal result set, is that it allows
for convenient measurements of how well each ranking model performs compared

Chapter 3: Concepts and Methods 32

to each other. The NDCG was calculated for each ranking model’s result to each
query. Having scores for each query aids with answering RQ1 by looking at how
each ranking model handles different types of queries. Additionally, the average
NDCG was calculated for each ranking model in each dataset as well as both data-
sets combined. This gives an overall performance score for each ranking model.
To assure the results are outcomes of intention and not chance, the Kappa coef-
ficient was used. By calculating this for each dataset a degree of the agreement
between the test subject can be highlighted.

More details on how the user study was conducted are further discussed in sec-
tion 4.4 and more on the ranking models’ evaluation can be found in chapter 5.

Chapter 4

Implementation and Architecture

The objective of this chapter is to describe the implementation and architecture of
the software system developed in this research from both a theoretical perspective
as well as a development perspective. From a development perspective, software
consists of libraries, plugins, or subsystems packed in small chunks. This chapter
will describe how these small chunks are organized, how they are mapped to files,
how they are built and managed, and give reasoning for design and implementa-
tion decisions made during development.

The proposed system consists of three main components as listed below.

• Two Neo4j databases storing different subsections of Wikidata.
• Neo4j plugin responsible for indexing the data as well as retrieve and rank

relevant data based on user queries.
• Web application where end-users can query data sets using different ranking

models from the plugin, in addition, to serve as a survey to gather research
data.

An overview of the overall system architecture is illustrated in figure 4.1. The
Database servers consist of the Neo4j databases and the ImprovedSearch plugin
developed in this research. Finally, the Flask server includes the web application
used for querying the data and gathering test evaluations.

4.1 Wikidata

Wikidata is a free collaborative KB that over the years has become one of the most
active Wikimedia projects [43]. Section 2.2.1 mentioned that KBs are incomplete
due to the constant change of available information. Wikipedia also encounters
this challenge as the number of articles and languages has vastly increased. An
example is the population of Trondheim which might differ in the English and

33

Chapter 4: Implementation and Architecture 34

Figure 4.1: A deployment diagram giving an overview of how the different sys-
tems are connected.

the Norwegian article. One way Wikidata aims to solve this challenge is by act-
ing as a “[...] central storage for the structured data of its Wikimedia sister projects
including Wikipedia, Wikivoyage, Wiktionary, Wikisource, and others.”1. Wikipedia
articles can retrieve facts, such as Trondheim’s population, from Wikidata. That
way, there is only one central knowledge base to keep up to date, and Wikipedia
articles about the same topic stay consistent across languages.

The data in the Wikidata repository consists of items with unique identifiers be-
ginning with a Q followed by a number. Each item also has a label, a description,
and any number of altNames. An item may also have any number of statements
describing its characteristics. A statement is a property-value pair. Together with
the item, the statements form a familiar data structure. The item - property - value
triple, shown in table 4.1, is in accordance with a subject - predicate - object triple

1https://www.wikidata.org/wiki/Wikidata:Main_Page

https://www.wikidata.org/wiki/Wikidata:Main_Page

Chapter 4: Implementation and Architecture 35

in the RDF model described in section 2.2.2.

Item (Subject) Property (Predicate) Value (Object)

Q90 P1376 Q142
Paris capital of France

Table 4.1: Example of a triple from Wikidata

Section 2.3 mentioned that entities are not always represented as retrievable
units. As a result, it can be necessary to generate entity documents as a repres-
entation, using entity detection and entity linking. Wikidata provides an explicit
representation for each entity, making it simple to work with. Given the vast range
of data and deep ontology, it is a suitable choice to control the data domain that is
collected. This includes entity types and relations, in addition to statements used
for entity fields. Because of this preexisting data structure, there is no need to
utilize further methods to create additional entity representations.

4.1.1 Subsection of Wikidata

Wikidata was a natural choice to use as a data source based on its extensive range
of data and relations being easily accessible through the SPARQL endpoint. This
can be publicly queried through their web-GUI2. Neosemantics is a plugin for
Neo4j that enables the use of RDF and associated vocabularies like OWL, RDFS,
and more3. This made it easy to import the Wikidata datasets as n-triples from
RDF data. Each Wikidata entity contains a field with alternative names. This field
can be empty or contain several values at once. To handle the varying number of
names, the variable "multival" in the configuration file of Neosemantics was set
to "ARRAY". This enabled the storage of multiple values because properties were
stored in an array.

Other data sources such as DBpedia4 and YAGO5were also considered. However,
these options had some shortcomings considering the needs of the research. Firstly
there was a need for domain-specific subsets of data. These types of datasets are
easier to get familiar with which is necessary in order to create ideal ranking res-
ults as there is a lack of available test sets. Furthermore, being familiar with the
datasets can give a better understanding of the ranking models’ behavior. Due to
its SPARQL endpoint, Wikidata has a clear advantage over the other options. This
made it easy to specify the exact scope of subsections through SPARQL queries.
Secondly, a domain-specific dataset, such as the ones fetched from Wikidata, often
ensures some repeated structure. All entities contain fields like Name, Description

2https://query.wikidata.org/
3https://neo4j.com/labs/neosemantics/
4https://wiki.dbpedia.org/
5https://yago-knowledge.org/

https://query.wikidata.org/
https://neo4j.com/labs/neosemantics/
https://wiki.dbpedia.org/
https://yago-knowledge.org/

Chapter 4: Implementation and Architecture 36

and AltNames which lays a good foundation for consistency. On the other hand,
Wikidata entities have a wide range of different properties and relations. This
provides a good balance between a predictable structure, while still supplying dif-
ferently structured subsections.

One of the chosen subsections of Wikidata was the disease category. All diseases
stored in Wikidata, the symptoms of these diseases, and the drugs used for the
treatment of these diseases were retrieved. A big strength of Wikidata is the sup-
port for a wide range of languages. However, in the proposed prototype, only
the English instances of entities were retrieved. Combining multiple languages
complicates text operations depending on language structure such as removing
stopwords and stemming which will, in turn, hurt performance. On the bright
side, the prototype would work just as well with other languages by using text
operations adapted for the given language. Listing 4.1 shows the query used to
fetch the data and graph 4.2 displays some of the nodes one edge away from the
influenza entity in the KG. The disease dataset includes a total of 45 287 RDF
triples.

influenza

Disease

cough

S ymptom

fever

S ymptom

headache

S ymptom rhinitis

Disease

nasal
congestion

S ymptom

peramivir

Drug

HS
HS

HS

HSHS
DT

HS

HS

Figure 4.2: Example graph of a disease from disease the knowledge graph. [HS
= HasSymptom, DT = DrugTreatment]

To reduce the source of error from result biases in the specific domain of diseases,
an additional subsection of Wikidata was used for the testing. Using a similar
SPARQL query with updated labels and IDs, a considerable movie dataset was re-
trieved. This dataset mainly focuses on films and their directors containing a total
of 458 488 RDF triples. The plan was originally to include actors with an ActedIn
relation to a Film. However, Wikidata times out the query if it takes longer than
60 seconds to process. This sets a limitation to the number of triples that can be
retrieved. Including ActedIn drastically reduces the number of films that are re-

Chapter 4: Implementation and Architecture 37

trieved. As a result, actors were excluded from the query in order to optimize the
number of films in the dataset. Figure 4.3 is a graph visualization of the nodes
one edge away from the American director Lilly Wachowski.

Lilly
Wachowski

Director

The
Matrix

F ilm

The
Matrix

Reloaded

F ilm

The
Matrix

Revolutions

F ilm

Bound

F ilm

Space
Racer

F ilm

DB

DB

DB

DB
DB

Figure 4.3: Example graph of a director from the movie knowledge graph. [DB
= DirectedBy]

1 PREFIX neo: <neo4j://voc#>
2 CONSTRUCT {
3 ?disease a neo:Disease ;
4 neo:name ?diseaseLabel ;
5 neo:altNames ?diseaseAltLabel ;
6 neo:description ?diseaseDescription ;
7 neo:usesDrug ?drug ;
8 neo:hasSymptom ?symptom .
9 ?drug a neo:Drug ;

10 neo:name ?drugLabel ;
11 neo:altNames ?drugAltLabel .
12 ?symptom a neo:Symptom ;
13 neo:name ?symptomLabel ;
14 neo:description ?symptomDescription ;
15 neo:altNames ?symptomAltLabel .
16 }
17 WHERE {
18

19 SELECT ?disease ?diseaseLabel ?diseaseDescription ?drug
20 ?drugLabel ?symptom ?symptomLabel ?symptomDescription
21 (GROUP_CONCAT(DISTINCT(?altLabelDisease);
22 separator = ",␣") AS ?diseaseAltLabel)
23 (GROUP_CONCAT(DISTINCT(?altLabelSymptom);
24 separator = ",␣") AS ?symptomAltLabel)
25

26 WHERE {
27

28 ?disease wdt:P31/wdt:P279* wd:Q12136 ;
29 rdfs:label ?diseaseLabel .

Chapter 4: Implementation and Architecture 38

30 FILTER(lang(?diseaseLabel) = "en") .
31

32 ?disease schema:description ?diseaseDescription .
33 FILTER(lang(?diseaseDescription) = "en") .
34

35 OPTIONAL {
36 ?disease skos:altLabel ?altLabelDisease .
37 FILTER(lang(?altLabelDisease) = "en")
38 }
39 OPTIONAL {
40 ?disease wdt:P2176 ?drug . ?drug rdfs:label ?drugLabel .
41 FILTER(lang(?drugLabel)= "en")
42 }
43 OPTIONAL {
44 ?disease wdt:P780 ?symptom .
45 ?symptom rdfs:label ?symptomLabel .
46 FILTER(lang(?symptomLabel)= "en") .
47 ?symptom schema:description ?symptomDescription .
48 FILTER(lang(?symptomDescription) = "en") .
49 ?symptom skos:altLabel ?altLabelSymptom .
50 FILTER (lang(?altLabelSymptom) = "en")
51 }
52 }
53 GROUP BY ?disease ?diseaseLabel ?diseaseDescription ?drug
54 ?drugLabel ?symptom ?symptomLabel ?symptomDescription
55 }

Code listing 4.1: SPARQL query to fetch disease data from wikidata

4.2 Neo4j Database

Neo4j is a high-performance graph database platform used to store nodes and re-
lations between them instead of storing static tables, while still having benefits
like ACID transactions and an easy-to-use query language (Cypher)6. Addition-
ally, it is compatible with a wide range of data models, including RDF. This makes
it convenient to fetch and import Wikidata subsections to the database using the
SPARQL query in code listing 4.1. Furthermore, by using Neo4j it is simple to take
advantage of user-defined procedures7 which extend upon Neo4j by adding custom
code using the Neo4j Java driver. As a result, customized indexing and search func-
tions can be made, and used directly in the database with Cypher queries. This is
important because no single library, plugin, or platform supports all ranking mod-
els and required indices used in this research. Consequently, there was a need for
a flexible database platform that could easily be expanded upon with custom plu-
gins, which Neo4j delivers. A more detailed view of the user-defined procedures
used in this prototype is discussed in section 4.3.2.

Other database options were also considered. A prevailing RDF triple store con-

6https://neo4j.com/
7https://neo4j.com/docs/java-reference/current/extending-neo4j/

procedures-and-functions/procedures/

https://neo4j.com/
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/

Chapter 4: Implementation and Architecture 39

sidered in this research was GraphDB8. It is a scalable RDF database that special-
izes in making search in semantic data easier and more efficient. At first glance,
this seems very promising. However, this is based on already existing functional-
ities and libraries. Although GraphDB includes a Java API, it is not as seamless
to create custom plugins compared to Neo4j. Consequently, Neo4j was a natural
choice to develop the indices and ranking models from scratch.

Indexing

To save information about the nodes and their contents, unique nodes were cre-
ated to store additional information. This way, relevant information was easily
available and could be utilized when calculating the relevance scores for the dif-
ferent ranking models. A more traditional approach would be to store a horizontal
or vertical index in a separate file. Instead of taking a traditional approach, a new
index structure was created directly in the database alongside the data to serve as
a self-contained and independent plugin for Neo4j. As a result, everyone running
Neo4j 4.0 or above can include the plugin jar file in the plugin/ directory to utilize
it in their projects.

In the prototype, two similar indexes were used. One index for ranking models
operating on the document level such as the VSM and BM25, and one index for
ranking models operating on the field level like BM25F. These will be referred to
as Document level index and Field level index respectively.

Index Node

The indexNode consist of 5 different fields:

Field Name Description
ref the id of the node the indexNode is based on
dl the length of the document

terms the unique terms that is present in the node
IDF the IDF-score for the terms present in the node
TF the TF for the terms present in the node

Table 4.2: indexNode

Table 4.2 represents how the indexNode is structured at the document level. The
prototype also stores indices on the field level where all fields except ref are dy-
namically changed to include the field name of the fields in the node. This means
that if a node has two fields, namely field1 and field2, the field length would be
called field1Length and field2Length. This is done for length, terms, IDF, and TF,
and ensures each field can have separate values. These nodes are called fieldedIn-
dexNode.

8https://www.ontotext.com/products/graphdb/

https://www.ontotext.com/products/graphdb/

Chapter 4: Implementation and Architecture 40

Two fielded versions of IDF can be calculated based on the characteristics of the
data, one called fieldNameGlobalIDF and one called fieldNameLocalIDF. The global
IDF is the commonly used IDF calculated across all fields in all entities, while the
local IDF bases its calculation per unique field. This means that the IDF score cal-
culated for all instances of field1 may have a separate value compared to local IDF
for all instances of field2. It is important to note that local IDF calculations will
not be appropriate if the knowledge graph consists of a wide range of different
entities and fields. This is because it may lead to many rare fields with a low num-
ber of unique terms, thus resulting in volatile and unreliable results. The use of
local IDF will be described in more detail in 4.3.2.

Field Name Value
id 2407

name COVID-19
description respiratory syndrome and infectious disease in humans, caused

by SARS coronavirus 2
altNames Covid-19, 2019 NCP, nCOVD19, Wuhan respiratory syndrome,

WuRS, 2019 novel coronavirus pneumonia, COVID 19,
COVID-2019, COVID19, nCOVD 19, nCOVD-19, SARS-CoV-2

infection, seafood market pneumonia, severe acute respiratory
syndrome type 2, CD-19, Wuhan pneumonia, 2019 novel

coronavirus respiratory syndrome, 2019-nCoV acute respiratory
disease, coronavirus disease 2019, Coronavirus disease 2019

uri http://www.wikidata.org/entity/Q84263196

Table 4.3: Fields in the entity node representing COVID-19

Table 4.2 and table 4.5 showcases the indexNode and the fieldedIndexNode re-
spectively for the entity COVID-19 showed in table 4.3. The fieldedIndexNode in
table 4.5 only includes the name and description fields to highlight the key dif-
ferences to a standard indexNode. The full fieldedIndexNode would also include
terms, dl (length), TF, and IDF fields for the altNames field. In this example, the
fieldedIndexNode uses the global IDF variant. The positions of a term in the term
fields match the positions in its corresponding TF and IDF fields. For instance, in
table 4.2, the stemmed term terms[2] = coronaviru′s TF value is t f [2] = 5 and
the IDF value is id f [2] = 11.52.

A weakness of this design is scalability. To support all ranking models included in
the plugin, two new nodes will be created for every node to index; one indexNode
and one fieldedIndexNode. For very large datasets and KGs, tripling the number
of nodes is not practical. This is a compromise between weak scalability and the
strengths of the usability and flexibility of the plugin. This compromise was evalu-
ated as advantageous as, in this prototype, domain-specific datasets are of interest
which are smaller by nature. These datasets will never exceed the number of RDF-

http://www.wikidata.org/entity/Q84263196

Chapter 4: Implementation and Architecture 41

Field Name Value
ref 2407
dl 66

terms
(stemmed)

["2019", "respiratori", "coronaviru", "covid", "019", "syndrom",
"diseas", "pneumonia", "wuhan", "novel", "19", "ncovd", "sar",

"acut", "2", "ncp", "ncovd19", "wur", "02019", "covid19", "0cov",
"02", "infect", "seafood", "market", "sever", "type", "cd", "0ncov",

"infecti", "human", "caus"]
TF [6, 5, 5, 4, 4, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1]
IDF [12.26, 7.026, 11.52, 11.03, 11.26, 2.388, 0.746, 8.489, 13.84,

13.84, 8.420, 13.84, 12.84, 6.072, 4.599, 13.84, 13.84, 13.84,
13.84, 12.84, 12.84, 8.637, 4.866, 13.84, 12.84, 5.692, 2.274,

11.52 13.84, 6.160, 1.086, 4.824]

Table 4.4: Fields in the indexNode for COVID-19

Field Name Value
ref 2407

nameLength 2
descriptionLength 9

nameTerms ["covid", "019"]
descriptionTerms ["respiratori", "syndrom", "infecti", "diseas", "human",

"caus", "sar", "coronaviru", "2"]
nameTF [1, 1]

descriptionTF [1, 1, 1, 1, 1, 1, 1, 1, 1]
nameGlobalIDF [11.04, 11.26]

descriptionGlobalIDF [7.02, 2.38, 6.16, 0.74, 1.08, 4.82, 12.84, 11.52, 4.599]

Table 4.5: Fields in the fieldedIndexNode for COVID-19

Chapter 4: Implementation and Architecture 42

triples where size will be a problem. However, it is important to be aware of this
weakness when considering using the plugin for other environments.

Corpus

Some ranking models, like the VSM described in chapter 2.5.3, require an over-
view of all the unique terms occurring in the whole document collection. In the
presented prototype, this information is stored in a singleton node called Corpus.
The corpus node contains a field with a bag-of-words representation of the docu-
ment collection stored as an array. An example would be if there are two nodes:

Node1: [field1: <dog, cat, red, red>]
Node2: [field1:<dog, cat, red, red> field2:<dog, dog, rat blue>]

The corpus would look like this:
Corpus: [dog, cat, red, rat, blue]

IDF

Similarly to the corpus node, the IDF scores for all unique terms are stored in a
singleton node as an array. Here, the IDF score for a term Corpus[i] will corres-
pond to I DF[i]. These two nodes are mainly used to create query vectors for the
vector space model procedure which is further described in section 4.3.2.

Data Stats

As seen in section 2.5.4 and 2.5.5, BM25 and BM25F are dependent on average
document length and field lengths respectively. These statistics are stored during
the indexing in a singleton node called DataStats. Table 4.6 shows the DataStats
node for the disease dataset containing the fields name, description, and altNames.

Field Name Mean Length
meanDocumentLength 23.40

name 3.207
description 6.321
altNames 13.87

Table 4.6: Fields for DataStats node

Parameters

Lastly, the database includes a singleton node called Parameters to tune and keep
track of the free parameters for BM25, BM25F, and BM25FF. These parameters
include b and k1 for BM25, and the fielded variations for BM25F and BM25FF. On

Chapter 4: Implementation and Architecture 43

the field level, a boost factor parameter that represents the weight of a field is also
included. This node is included to easily read and tune the free parameters of the
ranking models during testing and evaluation.

4.3 Neo4j Plugin - ImprovedSearch

In order to conduct the research in this thesis, a custom Neo4j plugin was de-
veloped as part of the prototype. ImprovedSearch is a general-purpose fulltext
search plugin that works on any Neo4j database. As discussed in section 2.5.6
and 2.7, there are some theoretical reasons and some empirical evidence that
indicates ranking models designed for unstructured data may be inferior to their
fielded counterparts when dealing with certain data structures. Since vanilla Neo4j
only supports fulltext search using Lucene queries9, ImprovedSearch expands the
search options to better fit the specifics of the data structure and research require-
ments.

This plugin is the heart of the research. It includes custom index procedures as
well as custom procedures for ranking models such as the VSM, BM25, BM25F,
and a new BM25 variant named BM25FF as it goes one step further on the fielded
level.

4.3.1 Model

The architecture of the ImprovedSearch plugin is influenced by being configured
using Apache Maven10 and following the recommended procedure project tem-
plate provided by Neo4j11. Figure 4.4 is a simplified UML class diagram of the
plugin. It’s simplified in the sense that not all classes, fields, and methods are in-
cluded; only the most important ones to illustrate the architecture of the plugin
that supports the indexing and ranking procedures. The emphasized methods are
the custom indexing and ranking procedures provided by the plugin.

The two main classes for the custom procedures are the Ranker and the Indexer.
These are the abstract classes the ranking and indexing procedure classes inherit.
Each Indexer constructs a corresponding Corpus. These classes contain, among
other fields, a BoW and the IDF values, and are mainly used to create the inverted
and ImprovedSearch index. To create the indexNodes, the Indexers constructs a
Document object for each node to index. The Document class, with the help of
the CardKeyword class, handles all of the text operation steps described in sec-
tion 2.4.1. The Ranker classes on the other hand are fairly independent. They
convert the query string to a Document object to perform the same text opera-

9https://neo4j.com/developer/kb/fulltext-search-in-neo4j/
10https://maven.apache.org/
11https://github.com/neo4j-examples/neo4j-procedure-template

https://neo4j.com/developer/kb/fulltext-search-in-neo4j/
https://maven.apache.org/
https://github.com/neo4j-examples/neo4j-procedure-template

Chapter 4: Implementation and Architecture 44

tions on the query as is done on the indexed nodes. Aside from that, these classes
retrieve indexNodes and rank results as described in the next section.

Figure 4.4: An UML class diagram illustrating the core class architecture of the
plugin

4.3.2 Neo4j Plugin Custom Procedures

To execute the ranking procedures, both the indexing, preparation for retrieval,
and the ranking models themselves were needed. Here the components of each
procedure implemented in the plugin will be described in more detail.

Chapter 4: Implementation and Architecture 45

Index procedures

The plugin includes four indexing procedures; indexRDF(), indexRDFFielded(), in-
dexRDFFieldedNew(), and finally deleteIndexes(). The indexRDF procedure creates
the indexNodes previously showed in table 4.4 along with the Corpus, IDF and
Data stats nodes. Thus, this procedure creates an index on the document level and
is required for VSM and BM25 ranking. The indexRDFFielded() and indexRDF-
FieldedNew() procedures, on the other hand, indexes on the fielded level, and
are required for BM25F and BM25FF ranking respectively. These procedures cre-
ate fieldedIndexNodes previously showed in table 4.5, where indexRDFFielded-
New() will include localIDF fields as well. Finally, the deleteIndexes() procedure
simply deletes all indexes from the ImprovedSearch plugin.

All these index procedures, with the exception of deleteIndexes(), receive a Cypher
query that returns the nodes to index as a string argument. These indexes coex-
ist without overlap or conflicts. Listing 4.2 shows the query to index Disease and
Symptom nodes on the document level.

1 CALL improvedSearch.indexRDF("
2 MATCH (d:Disease) RETURN (d)
3 UNION
4 MATCH (d:Symptom) RETURN (d)
5 ")

Code listing 4.2: Example use of indexRDF() procedure

As mentioned in section 2.5.1, there are many different variations of TF and IDF.
By default, the plugin uses raw frequency and the standard inverse frequency IDF,
but these might not be ideal for every situation. As a result, the other variations
were implemented and experimented with. There were, however, no obvious ad-
vantages found compared to the standard variations. Consequently, other variants
were included in the plugin, but not used in the research for this thesis.

Vector Space Model

Vector space model search can be used by running the following custom procedure
as a Cypher query:

1 CALL improvedSearch.vectorModelSearch("<query>")

This procedure takes advantage of the indexRDF() index which is a prerequisite.
The query vector is constructed by finding the terms’ position indices in the Cor-
pus node which will correspond to the terms’ IDF value position in the IDF node.
The document vector for the relevant documents containing query terms is con-
structed using the TF- and IDF-field for the corresponding indexNode. The cosine
similarity is then calculated between the query and the documents as described
in 2.5.3.

When matching query terms to documents, Java’s startsWith() from the String

Chapter 4: Implementation and Architecture 46

class is used. This means that if a query includes a term like "corona", a docu-
ment containing the term "coronavirus" will be matched. Compared to the equals()
method, startswith() will include many documents equals() will exclude, all while
having the same computational complexity. The contains() method was also con-
sidered as this will include even more relevant documents and improve the re-
call. For a query term "virus", the document containing the term "coronavirus"
will not be matched when using the startsWith() method, but will when using
contains(). However, contains() has much higher computational complexity, thus
not scaling as well. Despite the recall improvement when using startsWith() and
contains(), there is no guarantee for precision improvements. Irrelevant entities
partially containing similar terms by chance may be retrieved hurting the precision
score. Overall, efficient retrieval and ranking were regarded as more important,
than the extra recall improvements contains() might gain over startsWith(). This
applies to all search procedures in the plugin.

As a reminder, Lucene Fulltext Search is a combination of the Boolean model
and the vector space model calculated on the field level. The vector model search
procedure, however, is originally on the document level. This procedure was cre-
ated to get an overview of Lucene’s performance on fielded documents compared
to the standard vector space model.

BM25

BM25 ranking can be used by running the following custom procedure as a Cypher
query:

1 CALL improvedSearch.bm25Search("<query>")

Similar to the vector model procedure, bm25Search() takes advantage of the in-
dexRDF() index. When running the procedure, indexNodes corresponding to rel-
evant documents containing query terms as well as the meanDocumentLength
field from the DataStats node will be fetched. This includes all the variables needed
to calculate the BM25 score, as described in section 2.5.4, for all the relevant doc-
uments. The default values for k1 and b are 1.2 and 0.75 respectively but can be
tuned by using a setParameter procedure.

1 CALL improvedSearch.setParameter(<k1-value>, <b-value>)

BM25F

BM25F ranking can be used by running the following custom procedure as a
Cypher query:

1 CALL improvedSearch.bm25fSearch("<query>")

As bm25fSearch() is on the field level, it takes advantage of the indexRDFFielded()
index. Similarly to bm25Search, it starts by fetching the relevant fieldedIndexNodes

Chapter 4: Implementation and Architecture 47

and fielded mean lengths from the DataStats node. It will then calculate the
BM25F score for the relevant documents as described in section 2.5.5. The de-
fault value for k1 is 1.2 and the default values for all fielded bc parameters are
0.75. Lastly, the default boost factor,ωc , for all fields are 1. These parameters can
be tuned by using the setFieldedParameter procedure.

1 improvedSearch.setFieldParameter(<k1-value>, <fieldName>, <b-value>, <boost-value>)

BM25FF

BM25FF ranking can be used by running the following custom procedure as a
Cypher query:

1 CALL improvedSearch.bm25ffSearch("<query>")

BM25FF is a new BM25F variant developed in this research. The main difference
between the two is that the IDF values used in BM25FF are calculated on the field
level. While all terms have a global IDF value for BM25F, BM25FF regards terms in
different fields as completely independent. This means a term might have differ-
ent IDF values for each field. As a result, the ranking formula used is the same for
both BM25FF and BM25F, but they take advantage of different index strategies.
The fundamental idea is that a term might have a different discriminatory factor
when appearing in different fields. An example of this is the difference between
the ’name’ field and the ’altNames’ field in the disease dataset. When searching
for a specific disease, terms could be more relevant when appearing in the ’name’
field, which is generally shorter, than in the ’altNames’ field which includes slightly
different variances of the same terms. By looking at each field’s IDF separately, an
entity’s relevancy score would be higher if the field that contains the query term
has a high IDF score. This means that, in this example, repeated mentions of query
terms in the ’altNames’ field will have less impact on the TF-IDF score compared
to using the global IDF.

The bm25ffSearch procedure uses the fields with the -LocalIDF suffix in the fielded-
IndexNodes. Hence, indexRDFFieldedNew() is a prerequisite. The free parameters
are tuned the same way as for bm25fSearch.

4.4 Web Application For Survey

To assess the different ranking models, it was a priority to have an easy, accessible
way to gather as many survey responses as possible. With restrictions on face-to-
face meetings during the COVID-19 pandemic, a web application to effectively
gather feedback from testers was developed.

Chapter 4: Implementation and Architecture 48

4.4.1 Pages

Here is an overview of the different pages in the survey that will be presented in
the order the testers encounter them, as well as their overall purpose.

Landing page

The landing page is the first page the testers encounter. The page contains inform-
ation about the scope of the survey, estimated time for completion, the privacy
concerns of the tester, and how to navigate the page. This information is available
at any time through the navigation buttons on the top-left-hand side of the page.

Figure 4.5: Guiding example of possible relevancy assessments

The page also includes information on how to use the ranking system and an
example to further the testers’ understanding. This can be seen in figure 3.1. The
example is present to ensure the tester fully understands the task ahead and is
simply in place to further exemplify how each relevancy score should be con-
sidered. In order to minimize the influence of evaluations, the given example to
the testers concerns books, which is a separate domain to the two datasets in the
survey. In addition to the example shown, there is some supplementary text given
to explain the reasoning behind each of the ratings.

Chapter 4: Implementation and Architecture 49

Home

The home page is where most of the navigation happens. Here the tester is presen-
ted with two buttons, one for each dataset. Each button is accompanied by a short
description of the contents of each dataset and redirects the tester to the survey
page of the chosen dataset as seen in figure 4.6.

Figure 4.6: Home page buttons

Survey

The survey page consists of three parts. The header, query information, and the
form that presents the results. The header displays what type of method is used
for the search, namely BM25, BM25F, or Lucene Fulltext Search, and which of the
two datasets are queried. The query information indicates which query results are
currently being presented, as well as a clarification of the information need and
intent behind the query. The form is the main part of the survey and is presented in
figure 4.7. Here the tester is presented with the top ten results to the query. Each
result consists of the name of the entity, a description of the entity, and, if present,
the alternative names. Since all the content is derived directly from Wikidata, the
quality of descriptions and alternative names may vary. On the right-hand side of
each result, there is a set of radio buttons that allow the tester to give feedback on
their perceived relevancy of the result to the query. There are four options, each
accompanied by a description of which degree of relevance they represent.

When the tester has rated all results for each query regarding one of the datasets,
they are redirected back to the landing page. Here the previously chosen dataset
will be unavailable, leaving only the button directing the tester to the queries of
the other dataset. This way the options are limited, the tester is guided and the
room for user error is minimized.

With an aim of collecting the most survey answers for every query, the order in
which the queries were presented to the testers was randomized. If every tester
was presented with the same queries in the same order, and only finish half the
survey, the queries last to be shown would receive significantly fewer answers. By
mixing up the order in which queries were presented, there was an assurance that
there would be no major imbalances in the number of answers for each query.

Chapter 4: Implementation and Architecture 50

Figure 4.7: Survey page with top four results for BM25F

When working with a survey, how the information is displayed may skew the res-
ults. There can be unintentional guiding by the use of words or visual cues that
gives one choice unwanted precedence over another. One of these possible cases
was the order in which the results were presented to the tester. Traditionally, they
are accustomed to the top result being the most relevant, and the last result is
the least relevant. This is based on the frequent use of search engines that aim to
present you with the most probable result first in order to meet your information
needs. This could, after a number of queries, result in noticing a pattern where
the earlier results are generally more relevant. This can affect the testers to feel
inclined to give the earlier results a better relevance score than the latter results,
and as a result not be as thorough with the ranking. One solution could be to mix
up the order in which the results are presented. This could help make sure the
testers do not have an inherent bias toward the former results. Ultimately it was
decided not to change up the order as the placement of the results in each method
compared to each other would be taken into consideration. This was because the
methods usually result in a lot of the same entities with different relevance scores
and therefore other placements in the top-k results.

Another way the results may be unintentionally skewed is by presenting the three
ranking models in the same order. As with the individual results, the testers may
be inclined to use more time and effort the first time the results to a query are
presented, compared to the second and third. This may impact how thoroughly
each result is rated, consistently making the latter ranking model less accurate
evaluations. To combat this, the order in which the ranking models appeared for
each tester was randomized. This would counteract the natural bias created by
the order of the ranking models.

Chapter 4: Implementation and Architecture 51

Completed survey

When the tester has gone through both datasets, they are redirected to a ’Com-
pleted Survey’ page. This is a simple page present to express appreciation for the
participation and inform them that they have completed the survey.

Additional page

The single search box became popular through search engines like Google, Bing,
and DuckDuckGo. It allows users to freely search for information using keywords
or even full sentences. To ease the preliminary testing of the different search meth-
ods, a ’single search box’ page was created to freely query the different methods.
The page consists of one single search input and three buttons, one for each of
the methods. The page was used to get familiar with the datasets and how each
method behaved, noticing potential biases and weak spots through different quer-
ies. This testing helped explore different queries and decide upon which types of
queries could be interesting to focus on during the user testing. It also helped to
get a feeling of which free parameters values for BM25 and BM25F worked best
for the datasets.

4.4.2 Implementation of the Web Application

When choosing technologies to develop the web application, a compromise between
simplicity and flexibility was regarded as important. Since the web app was a
means of collecting results and data, the functionality of the website was priorit-
ized over the design. As a result, front-end frameworks like React and Vue were
regarded as excessive. The focus was, therefore, on technologies and frameworks
to power the application’s backend.

Flask

Flask12 is a lightweight micro web application framework written in Python. Its
strengths are that it’s easy to set up and work with while being able to scale to big
and complex web applications. Flask applications are split into three parts; static,
templates, and views also sometimes called routes. The static is where images,
javascript, and CSS are located. Templates are where the application’s Jinja13 tem-
plates are located. Finally, the views are where the application logic is handled.
This includes URL routing and handling HTTP requests. Neo4j includes a well-
documented, easy-to-use Python driver that makes the communication between
the Neo4j database and the application seamless.

Some deliberate choices were made while developing the application. Firstly the
number of survey answers to every query needed to be as high as possible. To

12https://flask.palletsprojects.com/en/1.1.x/
13https://jinja.palletsprojects.com/en/2.11.x/

https://flask.palletsprojects.com/en/1.1.x/
https://jinja.palletsprojects.com/en/2.11.x/

Chapter 4: Implementation and Architecture 52

achieve this, the application had to be easy to use and not require a huge effort
from the test subjects. For example, user registration and login were considered
too high an effort for the testers. As a result, the application remembers each tester
and their uncompleted survey answers in Flask’s session cookies. This makes it
possible to complete parts of the survey at a time, keeping track of where the test-
ers last left off without the need for registrations and logins. Table 4.7 shows the
cookies stored in the application.

Session Cookie Name Description
user_id Unique ID genereated by a uuid4() function

disease_queries Queries for the disease dataset not yet evaluated
by user

movie_queries Queries for the movie dataset not yet evaluated
by user

methods List of Ranking models compared
disease_index Index in the method list for the current ranking

model to evaluate a disease query
movie_index Index in the method list for the current ranking

model to evaluate a movie query

Table 4.7: Session cookies stored in the web application

A disadvantage of this design is that nothing is stopping the testers from either
changing browsers or deleting their session cookie to answer the surveys several
times. This was not regarded as a huge risk, however, due to the fact that the
test subjects were handpicked and therefore regarded as trustworthy to use the
application as intended.

SQLite

SQLite14 is a relational database management system implemented as a C-language
library. Instead of a traditional client-server database, SQLite can be used as an
on-disk file format to store data. As a result, it is very lightweight and requires no
installation while still having the benefits of traditional relational database man-
agement systems. With these benefits in mind, SQLite was a natural choice for
storing the survey results.

The web application’s approach to storing the survey results was to regard each
relevancy ranking to a query result independently. Consequently, two tables were
created, one for each of the datasets. Here each row represents a tester’s relevancy
ranking for a single query result. This allows for the necessary analysis described
in chapter 6. Figure 4.8 shows an ER-diagram for the data model used to store
the results. DataDisease and DataMovie entities are where the survey results are

14https://www.sqlite.org/index.html

https://www.sqlite.org/index.html

Chapter 4: Implementation and Architecture 53

stored. Here the method attribute is the ranking model used for the given result,
and result_rank is the index for the query result. This means a result rank of 0 is
the result with the highest score for the given ranking model and query. Finally,
relevancy is the relevancy score given by the test subject.

For the Tester entity, the answered_disease and answered_movie attributes are boolean
values representing if the tester has gone through all the queries from the respect-
ive datasets in the survey.

Figure 4.8: ER-diagram for database storing survey results

4.4.3 Preliminary Testing and changes

To mitigate errors, preliminary testing on a few test subjects was conducted. By
testing the mainly finished product on actual users with no prior knowledge of the
system, the most prominent misunderstandings could be found before presenting
it to a larger number of users. The test subjects in the preliminary testing reflected
main the group of the population of the full survey. This focused on young adults
with previous experience with searching for information through different search
engines Since the number of the preliminary testers was limited, the feedback
was taken into account, carefully evaluated and changes were made where it was
deemed beneficial.

Chapter 4: Implementation and Architecture 54

Survey progress

One note gathered from the testing was the lack of visual representation of the
current status of the survey. How much of the survey was finished and how much
was left? With no indication of progress, the testers can feel lost and therefore
less motivated to finish the entirety of the survey. To clarify this, an indication of
the current progress was added by displaying which query and model the survey
was currently presenting.

Clarifications

During the preliminary testing, quite a few queries were present in the database,
and the formulation of the query intents was in their first iteration. This meant
that some formulations were a bit unclear and needed to be specified further.
The vague formulations left the test subjects with a feeling of uncertainty when
ranking the results. This prompted a realization of how much the described intent
could impact the rankings.

Another aspect that caused some confusion was related to the results. Instead
of looking at each result as an entity, some expected each result to be a subsection
of an article, such as the results presented by a Google search. They, therefore,
found the experience a little frustrating because they assumed some information
was potentially withheld, making it more difficult to fairly rank the results. To
combat this, what kind of results were expected, and what they represented was
to a larger degree explicitly explained in the introductory text on the ’about’ page.

4.5 Complete Flow of Data

The object interactions and data flow of the prototype are illustrated in figure 4.9.
As indicated by the red line, it is split in two; periodical and real-time. The peri-
odical part regards importing and indexing data from a SPARQL endpoint. This
needs to be initiated by a system administrator and thus happening periodically.
The real-time part regards retrieving and ranking nodes from queries, as well as
storing survey results. These are events triggered by web application activity, thus
happening in real-time.

Periodical

The periodical part of the diagram happens when the database is initially filled
with data, or when there is data to be updated. This is not done automatically,
rather manually when there is a desire to update the data. First, Neosemantics
is used to fetch data from the chosen data endpoint, namely Wikidata. This data
is then stored in an RDF-triple format in the Neo4j graph database. Before the
data can be queried using the different ranking models, it has to be indexed. The
knowledge graph then utilizes the developed plugin, ImprovedSearch, to index the

Chapter 4: Implementation and Architecture 55

recently fetched data. First of all, ImprovedSearch preprocesses the data given to
it. As explained in 2.4, there are several ways to preprocess data. Here the chosen
ones are tokenization, removal of stopwords, and stemming. To further prepare
for ranking, IDF values are calculated for each of the preprocessed keywords. Now,
the data is ready to be indexed as described in 4.3.2, and indexNodes to be queried
are created and stored in the graph database.

Figure 4.9: A sequence diagram illustrating the data flow of the system

Real Time

When testers visit the web application for the first time, a request to fetch the
queries is sent from the Flask application to the SQLite database. The database
then returns the queries, and the shuffling of query order mentioned in 4.4.1
occurs in the web application. As this is done, the survey can begin. When a tester
begins their first rating by choosing a dataset, a ranking model is randomly chosen
from the three available, and a request for search results are sent with a query to
the ImprovedSearch plugin. This query is then further forwarded to the graph
database to fetch the possible results to be ranked. These results are then sent as
a response from the graph database to the plugin where the results are ranked

Chapter 4: Implementation and Architecture 56

using the chosen ranking model. When this is done, the ranked results are sent to
the web application to be displayed and rated. These ratings are then sent to and
stored in the SQLite result database. This cycle is then repeated consecutively for
every query the tester rates the results of.

Chapter 5

Data gathering and Evaluation

The objective of this chapter is to present the methodological approach to the
research. This includes the method for the collection of data and the evaluation
metrics for data analysis. It will give an overview of how and why the chosen
methods are suited to answer the research questions.

5.1 Evaluation Strategy

The research is conducted using the survey strategy. To answer the research ques-
tions, quantitative research is needed to pragmatically evaluate and compare the
ranking models’ performances. Quantitative data will give a better and more con-
crete representation of how the ranking models perform and behave compared to
a qualitative approach. The use of quantitative data lays the foundations for stat-
istical analysis to clarify whether possible links between data results are actual,
or in fact, present just by chance [44, p. 254]. Additionally, this research method
generally accommodates a bigger sample size deemed advantageous for the stat-
istical analysis.

As there is a lack of automated benchmark tests for search in RDF data, the re-
search takes advantage of the proposed prototype platform to gather users’ rel-
evancy assessments. This was done by conducting a user study instead of solely
basing evaluations on a predefined result set with ’right’ and ’wrong’ answers. As
a result, traditional evaluation approaches such as precision, recall, MAP, and F-
measure were not used throughout the evaluation process.

When choosing how many query results to present to the user, the size of each
dataset was taken into consideration. A simple estimation was conducted on how
many retrieved entities had a significantly higher score than others, indicating
they were clearly deemed a better fit for the query and its intent. It was then
noted generally how many results appeared before the score approached 0, or
stagnated with little to no difference between entities. The research conducted
in [5] searched for triples including the relations between entities which could

57

Chapter 5: Data gathering and Evaluation 58

lead to a lot more potentially relevant matches than an entity-oriented approach.
This was especially prevalent regarding the disease dataset where each disease of-
ten has unique domain-specific names. As a result, searching for a specific disease
would lead to a handful of relevant entities rendering the rest irrelevant. Due to
this, only the top ten query results were presented to testers.

5.1.1 Data Gathering

The chosen method for data gathering was the questionnaire method. In the web
application described in detail in section 4.4, the test subjects were presented with
a set of queries and the queries’ top ten results for different ranking models. They
went through each of these results rating its relevancy in accordance with the in-
formation need of the query. Other data gathering approaches, such as interviews,
were also considered. The advantage of conducting interviews is that there is less
room for misunderstandings when it comes to the information needs for the quer-
ies resulting in inaccurate relevancy assessments. During an interview, if there are
any doubts, these can be answered consecutively. However, a questionnaire was
ultimately deemed the most fitting for this research when examining the trade-off
between the two. This is largely because the questionnaire is a more economical
method to generate large amounts of data [44, p. 229] in addition to being more
practical and feasible considering the research took place in the middle of the
COVID-19 pandemic.

Queries

To gather data, each test subject had to assess the relevancy of every result to a
query using all the ranking models. With this in mind, the survey consisted of ten
queries, five for each dataset. Each query has its own characteristics and focuses
on different aspects. The queries differ in the number of terms, common and un-
common terms in the dataset, as well as what type of answer is expected such
as only one entity match or a number of entities. This way, how the models per-
form with a diverse set of queries could be explored. The queries are presented in
table 5.1 and 5.2.

ID Query Query intent
D_Q1 Yellow fever Find the disease named Yellow Fever
D_Q2 Covid-19 Find the disease named covid-19
D_Q3 Headache symptom Find diseases/disorders of which

headache is a symptom for
D_Q4 Influenza pandemic Find pandemics caused by influenza
D_Q5 Fear of social interaction Find phobias related to social interac-

tion

Table 5.1: Queries and query intents for the disease dataset

Chapter 5: Data gathering and Evaluation 59

ID Query Query intent
M_Q1 Matrix movies Find movies in the “The Matrix” fran-

chise
M_Q2 Lord of the rings Find movies in the “The lord of the

rings” franchise
M_Q3 Movies by Christopher

Nolan
Find movies directed by Christopher
Nolan

M_Q4 The circus Chaplin Find the 1928 Charlie Chaplin movie
“The Circus”

M_Q5 Wachowski directors Find the Wachowski sisters (directors
of The Matrix franchise)

Table 5.2: Queries and query intents for the movie dataset

Here, D_Q1 and M_Q4 are queries with the intent of only finding one specific en-
tity. D_Q3 and M_Q3, on the other hand, have the intent to find multiple relevant
entities. M_Q1 and M_Q2 are a middle ground searching for a few entities. This
also includes D_Q5 if there are only a few such phobias present in the dataset.

Assessment of relevance

To assess how relevant a tester perceives each query result, they were asked to
score each entity in the result set between 0 and 3. The definition of the four
scores was given as seen in table 5.3:

Score Description
0 The result is seen as nonsense or not related to the query

keywords or intent in any way.
1 The result matches query keywords but does not correl-

ate with the intent.
2 The result is relevant or related to the intent. It is not a

perfect match but adds valuable information to the user.
3 The result is a perfect match for the query intent.

Table 5.3: Relevance scoring system

5.1.2 Sampling

Since the research questions aim to get a users’ perspective on the performance of
different models ranking structured data, the population consists of people who
are familiar with executing information search. Information search in this context
was defined loosely as searching for information through search engines and look-
ing for information in articles and books. The test subjects were found by reaching
out to fellow students, peers, family members, and so on. These were people who

Chapter 5: Data gathering and Evaluation 60

had experience with information search, both recreationally and academically,
and would dedicate their time to answer the survey. This way of choosing test
subjects is within the non-probability sampling methods, more specifically called
convenience sampling [44, p. 98].

This method is very affordable to execute, ensures the group is easily accessible
and lays the foundation for a higher response rate. The method is, however, prone
to be biased as the chosen individuals might not be representative of the entire
population. To counteract this, individuals from different age groups, genders,
and educational backgrounds were included. This choice, however, means that
the results can, while still shedding light on some possible answers, not be fully
generalized and applied to the entire population.

5.2 Evaluation Metrics

There are several ways of evaluating ranking models. As mentioned in 2.7.1, there
are two main approaches, namely automatic and user-based. The approach taken
in this thesis is user-based, and the evaluation metrics chosen for this purpose are
DCG, NDCG (@5 and @10), and the Kappa coefficient.

5.2.1 Normalized Discounted Cumulative Gain

When NDCG was introduced in section 2.6.4, it was mentioned that the normal-
ized version of DCG utilizes both the DCG score and an ideal DCG referred to as
IDCG. In this project, however, there are no readily available ideal result sets. Con-
sequently, the ideal result sets had to be created for each query in order to utilize
this evaluation measure. With the rating specifications in mind, ideal result sets
were created based on the experience gained from working with the data, and the
knowledge about the queries and intents. Because the IDCG is constructed for the
purpose of this research, there is no way to be fully impartial. This could skew the
results in some way, but should still give an indication of how the ranking models
compare to each other as all ranking models would be equally affected.

The Ideal Result Set

To decide which entities fulfilled the requirements for each rating (0-3) in the
ideal result set, detailed specifications for each rank had to be defined. This was
particularly necessary as ’startsWith’ was used to compare the query terms to en-
tities, which resulted in partial query matches. How strict should the difference
between a rating of 1 and a rating of 0 be? It is important that the testers make
these decisions individually, as it is their perceived relevance that should be meas-
ured. To avoid DCG scores for test results being higher than the DCG scores from
the ideal results set, the ideal set was created with the benefit of the doubt. This

Chapter 5: Data gathering and Evaluation 61

meant when there was some uncertainty about the rating of an entity, it was roun-
ded up to the higher score.

Table 5.4 visualizes the top five ideally ranked results for D_Q5. In this instance,
two results were considered an "exact intent match", two results considered as
"relevant or related to intent" and one as a "pure keyword match". Both "geloto-
phobia", and "specific social interaction" contain a type of fear or phobia in relation
to social interaction. The two results given a score of two, on the other hand, do
not perfectly match the intent but are still related to difficulties with social inter-
action or a fear involving other people. Lastly, "fear of frogs" is only a query match
due to it being a phobia, while not having anything to do with social interaction.

Name Description Alternative
names

Score

gelotophobia type of social phobia consisting in
the fear of being laughed at

- 3

specific
social
phobia

experiencing anxiety only in specific
social situations

- 3

social
emotional
agnosia

agnosia that is a loss of the ability to
perceive facial expression, body

language and intonation, rendering
them unable to non-verbally perceive
people’s emotions and limiting that

aspect of social interaction

expressive
agnosia

2

fear of
medical

procedures

any experience that involves medical
personnel or procedures involved in

the process of evaluating or
modifying health status in traditional

health care settings

medical fear 2

fear of frogs phobia known as frog phobia or
ranidaphobia

ranidaphobia,
fear of frogs
and toads,

frog phobia,
batracho-

phobia

1

Table 5.4: Top five ideal set for "fear of social interaction" query

Evaluating Top N Results

Since the top ten results to each query were rated, it was natural to focus on top
ten results when calculating the NDCG scores. In addition to this, calculations for
the top five results were made. This was based on the notion that when searching

Chapter 5: Data gathering and Evaluation 62

for information, a user will be less likely to look at results the further down in the
result set it is. This is supported by Järvelin and Kekäläinen [33, p.424] that state
“the greater the ranked position of a relevant document, the less valuable it is for
the user because the less likely it is that the user will ever examine the document”.
By shifting the focus onto the first five results, it could highlight how the models
vary when it comes to result positioning.

5.2.2 Kappa Coefficient

The Fleiss Kappa coefficient was calculated to consider the degree of agreement
between all the testers. It can be used to figure out the agreement among tester
taking into account how likely testers are to agree on results being relevant or not
happening by chance. This can give an idea of how probable each outcome is, and
shed light on how divided testers’ opinions may be regarding some results.

The agreement was computed in two ways for each of the datasets. First, the ori-
ginal four categories for rating were used, namely a score between 0 and 3. This
will be referred to as Quaternary relevancy in the following chapters. In addition
to this, a simplified version of the results was employed. Similar to the Boolean
model in section 2.5.2, the results were considered as relevant, 1, or not relevant,
0. To convert the previously used scale into the binary version, the levels of 3 and
2 were considered relevant to the query and its intent, and results of 1 and 0 were
considered not relevant. This will be referred to as Binary relevancy.

Based on the visualization in section 2.6.5 a goal agreement among testers was set.
The authors of [37, p. 362] said "with a large enough sample size, any kappa above
0 will become statistically significant". Because of the relatively small sample size,
an average above 0.4, was seen as a reasonable goal. Anything above 0.4 was de-
scribed as "Moderate agreement" which in the context of the smaller sample size
meant the results would still have a statistical significance.

Chapter 6

Analysis

This chapter will give a detailed overview of the results from the survey detailed
in the previous chapter. The findings will be evaluated using the chosen metrics,
and any possible patterns will be examined. The impact of the evaluation metrics
and the validity of the research and results will also be discussed.

6.1 Findings

The survey results consist of answers from 26 individuals rating a total of 8130
entities. Since convenience sampling was used, the population mainly consisted
of computer science students between the age of 20 and 30 years old. In addition
to this, about a third of the population consisted of participants with a wide range
of backgrounds with ages ranging from 28 to 66 years.

6.1.1 NDCG

The NDCG score presented for each query is calculated as a mean of all survey an-
swers. Each table showcasing the NDCG scores for the top ten and top five results
is accompanied by a bar chart illustrating the three ranking models’ performance
in regards to each other.

Disease Dataset

As mentioned in section 4.1.1, the disease dataset is the smaller one with signi-
ficantly fewer RDF-triples compared to the movie dataset. On the other hand, it
contains the highest number of fields. Table 6.1 shows the average NDCG score
for the top ten results for each query. It is notable that BM25F performs the best
on query Q1, Q2, Q4, and Q5, while BM25 performs the best on Q3. However, the
margins between these performances are relatively small.

63

Chapter 6: Analysis 64

Query Lucene
Full-

text@10

BM25@10 BM25F@10

Covid-19 (D_Q1) 0.868 0.868 0.914
Yellow fever (D_Q2) 0.835 0.816 0.853

Headache symptom (D_Q3) 0.717 0.831 0.792
Influenza pandemic (D_Q4) 0.903 0.938 0.952

Fear of social interaction
(D_Q5)

0.622 0.703 0.779

Table 6.1: NDCG score for topten queries on the disease dataset

All NDCG scores are well within 80% of a perfect score of 1 on Q1, Q2, and
Q4. This indicates that all models predominantly rank the most relevant entities
in the top ten result set, and the biggest differentiator is how high these entit-
ies are ranked. The differences in how saturation functions behave on multiple
fields, which was discussed in section 2.5.6 (Comparing Saturation Functions),
may give a theoretical explanation for these results. This is because the AltNames
field is quite influential for the ranking results as it can contain valuable inform-
ation in this dataset.

Lucene Fulltext Search might score entities highly because terms are matched
across multiple fields like Name, Description, and AltNames. As a result, terms
with lower IDF values might end up affecting the ranking more than terms with
high IDF values, consequently, ranking the most relevant entities lower. Using Q2
as an example, "fever" is a common term in the dataset and will naturally appear
in multiple fields. Thus, entities with "fever" (or "yellow") in multiple fields will
be prioritized before entities with both "yellow" and "fever" in the same field.

As previously discussed, BM25F implements non-linear saturation for terms across
fields. Consequently, the opposite of Lucene Fulltext will be true for BM25F; en-
tities with fields containing both "yellow" and "fever" will score higher. BM25’s
saturation will behave similarly to Lucene Fulltext, but it appears that either the
default parameter values of BM25 handle the saturation better for multiple fields,
or the ranking algorithm is just a better fit for the dataset.

The NDCG scores for Q3 and Q5 are slightly lower, especially for Lucene Fulltext,
indicating that either some relevant entities are not retrieved or ranked quite low.
Looking at Q5, it could have the same saturation explanation. Q3, however, has
no clear explanation why BM25 performed as well as it did.

Figure 6.1 shows a bar chart representation of the NDCG scores @10. Instead
of scoring consistent NDCG values across all the queries, there is a wide range in
the models’ performance. All models seem to follow a similar trend, but there are

Chapter 6: Analysis 65

significant differences in the deviations between the best and worst performing.
The smallest deviation being 4.53% for Q2 between BM25F and BM25, and the
largest being 25% for Q5 between BM25F and Lucene Fulltext.

Figure 6.1: Chart overview of the models’ NDCG scores @10 on the disease data-
set

Under the assumption that the queries are representative for both the dataset and
real-world use-cases, the fact that all the models are following the same trend is
an indication they all share similar strengths and weaknesses. Looking at the de-
viations, however, we can see that the degree they are affected by these strengths
and weaknesses differs.

Both Q1 and Q2 aim to retrieve only one single entity with an exact match taking
the intent into account. We see that all models behave similarly relative to each
other with small deviations. In contrast to Q1 and Q2, Q3 has several entities ful-
filling the requirements for an ’exact match’. In fact, the ideal ranked set has a
total of 8 entities with a relevancy score of 3. Interestingly, the deviation between
Lucene Fulltext and the other models increases for a query like this. Finally, the
biggest deviation is encountered with the drop in scores for Q5. This is a query
with only a few entities matching the intent completely, but quite a few potentials
to partially match the intent or keyword match the query. These factors will evid-
ently make it much harder to retrieve and rank the most relevant entities first.
Looking at the results, Lucene Fulltext is affected by this to a larger degree than
the other models, particularly BM25F.

Chapter 6: Analysis 66

Looking at only the first five results, we get the scores presented in table 6.2 and
figure 6.2. The results are quite similar to the top ten results with the biggest dif-
ference being lower scores across all models for Q1. However, this is not regarded
as significant since the differences are relatively small and the rest of the queries
follow the previous trend. Overall, the points discussed for the top ten results still
hold ground here.

Query Lucene
fulltext@5

BM25@5 BM25F@5

Covid-19 (D_Q1) 0.817 0.830 0.860
Yellow fever (D_Q2) 0.846 0.853 0.882

Headache symptom (D_Q3) 0.818 0.908 0.833
Influenza pandemic (D_Q4) 0.910 0.990 0.997

Fear of social interaction (D_Q5) 0.609 0.696 0.760

Table 6.2: NDCG score for top 5 query results on the disease dataset

Figure 6.2: Chart overview of the models’ NDCG scores @5 on the disease dataset

Chapter 6: Analysis 67

Movie Dataset

Looking at the results for the movie dataset there are considerably larger devi-
ations between the best performing and the worst performing model. The results
in table 6.3 reveal that Lucene Fulltext performs the best for all queries except
Q3 where BM25 scored the highest. The smallest deviation between the best per-
forming and the worst performing model is present with Q3 being 15.6% between
BM25 and BM25F. On the other hand, the biggest deviations is found with Q2 and
Q5 between Lucene Fulltext and BM25F, being 73.5% and 61.9% respectively.

Query Lucene
fulltext@10

BM25@10 BM25F@10

Matrix movies (M_Q1) 0.778 0.697 0.600
Lord of the rings (M_Q2) 0.857 0.790 0.494

Movies by Christopher Nolan
(M_Q3)

0.877 0.941 0.814

The circus Chaplin (M_Q4) 0.841 0.674 0.651
Wachowski directors (M_Q5) 0.829 0.535 0.512

Table 6.3: NDCG score for top 10 queries on the movie dataset

An outside factor that can have affected these ranking results is the use of startsWith
for retrieval of entities in the ImprovedSearch implementation. This was substan-
tial for BM25 and BM25F by retrieving entities fulfilling the startsWith promise,
while still being irrelevant in regards to the intent. As an example, for Q1 ("Mat-
rix movies") and Q3 ("Movies by Christopher Nolan"), BM25 and BM25F retrieve
movies with the titles "Movin’ In" and "In movimento". Additionally, for Q2 ("the
circus Chaplin"), they retrieve several movies with the terms "circumstance" or
"circulation". The startsWith strategy works well for words composed of two, such
as "coronavirus". It was deemed beneficial for the disease dataset but ended up
being detrimental for the movie dataset. This begs the question of how compar-
able these ranking results are between Lucene Fulltext Search and BM25/BM25F
as they do not necessarily have a comparable basis of retrieved entities to rank.
Differences between BM25 and BM25F, however, are valid regardless.

A key finding in the movie dataset is that Lucene Fulltext performs very consist-
ently for all queries. The difference between its best and worst score only being
12.7%. This is in contrast to the other models’ performances in the movie dataset
as illustrated in figure 6.3. This is also in contrast to all the models’ performances
in the disease dataset where all models had much higher deviations in their best
and worst scores. Figure 6.3 also shows that BM25 and BM25F to a large degree
follow the same trend, with the exception of Q2 where BM25 and Lucene Fulltext
behaves similarly.

Chapter 6: Analysis 68

Figure 6.3: Chart overview of the models’ NDCG scores @10 on the movie dataset

In contrast to Lucene Fulltext Search, BM25 and BM25F take entity text length
into account, prioritizing shorter text lengths compared to the average. This is
especially prevalent in this dataset for BM25F looking at text lengths per field
with only two fields. This means that an entity with a term match and very short
fields (1-3 terms) will score excessively high. This could give an explanation for
BM25F’s low NDCG score for Q2. There are several movies named "The Ringer",
"Ringtone", "Ringmaster", etc. with almost no description getting matched with
the query "Lord of the rings". The results show that BM25F might be affected by
this. Fine-tuning the parameters using the steps in [40, 41] to perfectly fit the
dataset, however, might improve the results.

Interestingly, BM25 is not as affected by this even if it takes entity text length
into consideration. Q1 and Q2 are the same types of queries where the intent is
to retrieve three specific entities. For BM25, instead of a decreased score from Q1
to Q2 like BM25F, the NDCG score increases similarly to Lucene Fulltext. Since
the deviation between Lucene Fulltext and BM25 are marginally different for Q1
and Q2, it is implied that BM25 is not affected with these two queries like BM25F
because Lucene Fulltext does not use entity text length in its calculation.

Table 6.4 and figure 6.4 show the results looking at NDCG @5. The most notable
difference between the top ten results and top five results is BM25F’s perform-
ance. We see a significant drop in the NDCG score for Q3 and Q5. Lucene Fulltext
performs slightly better and BM25 performs fairly similar with slightly different

Chapter 6: Analysis 69

scores for certain queries. As a result, there is no clear resemblance in the trends
between the models.

Query Lucene
fulltext@5

BM25@5 BM25F@5

Matrix movies (M_Q1) 0.842 0.676 0.672
Lord of the rings (M_Q2) 0.908 0.853 0.450

Movies by Christopher Nolan
(M_Q3)

0.774 0.922 0.670

The circus Chaplin (M_Q4) 0.820 0.628 0.641
Wachowski directors (M_Q5) 0.933 0.559 0.436

Table 6.4: NDCG score for top 5 query results on the movie dataset

These results further illustrate BM25F’s struggles with this dataset. Lower scores
@5 compared to @10 in the aforementioned queries imply highly relevant entities
were ranked below the first five results. The opposite will be true for Lucene Full-
text. A higher score @5 compared to @10 implies the highly relevant entities are
ranked in the top five results, and the rankings below are mainly the ones slightly
reducing the score. These differences are in contrast to the disease dataset where
the difference between the @5 and @10 scores was not considered significant.

Figure 6.4: Chart overview of the models’ NDCG scores @5 on the movie dataset

The chart representation in figure 6.4 no longer shows any similarity in the trend
between BM25 and BM25F. BM25 still follows the same trend as it did @10 to a
certain degree while BM25F deviates.

Chapter 6: Analysis 70

Mean Average NDCG and DCG

Table 6.5 shows the mean of the average NDCG scores across all the queries.
BM25F performs the best on the disease dataset with an 8.75% better score than
Lucene Fulltext search for top ten results. For the movie dataset, Lucene Fulltext
performs the best with a 36.2% deviation to the lowest scoring model, B25F. This
makes BM25F’s overall average performance the worst, while Lucene Fulltext gets
the highest mean average NDCG score. However, as the two datasets are vastly
different with varying results, it does not seem advantageous to combine these
results, but rather look at them individually as a basis for model comparisons.

Ranking model NDCG@10 NDCG@5
Disease dataset

Lucene fulltext 0.789 0.800
BM25 0.831 0.855
BM25F 0.858 0.867

Movie dataset
Lucene fulltext 0.836 0.856

BM25 0.727 0.728
BM25F 0.614 0.574

Both datasets
Lucene fulltext 0.813 0.828

BM25 0.779 0.792
BM25F 0.736 0.721

Table 6.5: Mean Average NDCG values

Figure 6.5 and 6.6 present the development of DCG scores as each entity is re-
trieved. When looking at the disease dataset, each ranking model follows a similar
trend, not deviating significantly from each other’s path. BM25F is slightly above
the others with Lucene Fulltext performing the worst. This is on par with the Mean
Average NDCG scores. In contrast, the models on the movie dataset appear more
diverse in performance, with Lucene Fulltext being the closest to the ideal, and
BM25F scoring lower overall. The models however still follow a similar trend to
each other, not deviating further from each other as more results are retrieved.

Chapter 6: Analysis 71

Figure 6.5: DCG development as entities are retrieved for the disease dataset

Figure 6.6: DCG development as entities are retrieved for the movie dataset

Chapter 6: Analysis 72

6.2 Discussion

The heterogeneous results between the two datasets make it challenging to in-
terpret the overall results. Focusing on the disease dataset, the dataset with the
most fields and overall content in the fields, BM25F performs the best. There is,
however, no indication of the significant improvement over unfielded variants like
Tonon et al. [9] and Blanco and Vigna [6] reports. Considering the results from
the movie dataset, the results deviate even further. Here, BM25 and Lucene Full-
text significantly outperformed BM25F. As previously discussed, several outside
factors may affect these results, specifically regarding any comparisons with Lu-
cene Fulltext. However, it is still notable that BM25 outperformed BM25F to this
extent.

The results are more in consensus with Pérez-Agüera et al. [11]. Analogously with
their results, BM25 and BM25F performed better than Lucene Fulltext in an RDF
retrieval setting taking the disease dataset into account. However, the margins
were small. The poor performance of BM25F on the movie dataset, on the other
hand, may in part be explained by the lack of different fields, and the quality
of information within those fields. This is in compliance with Pérez-Agüera et al.
conclusion that states “[...] BM25F is not able to take profit from the semantic
information contained in fields with less text” [11, p. 7].

With the differences between the two datasets in mind, it is not surprising the dif-
ference is reflected in the results. A challenge with ranking entities in the movie
dataset was that several entity descriptions were generic and similar to each other
making them less discriminatory. For instance, a typical entity description for a
director was "<nationality> film director, screenwriter, and producer". The same
applies to movie entities. This is in contrast to the disease dataset where entity
descriptions were more unique and discriminatory for each symptom and disease.
There is a profusion of semantic information in the fields and relationships in the
disease dataset compared to the movie dataset. BM25F is able to take advant-
age of this. When the information is present to a lesser degree, however, BM25F
struggles. Lucene Fulltext and BM25 on the other hand perform much more con-
sistently independently of the semantic information present in the dataset. Thus,
BM25F is a better fit for datasets with several fields containing unique and dis-
criminatory terms, while Lucene Fulltext and BM25 are more generic and safe
options when there is less insight into the semantic information in the dataset.

A weakness both BM25 and BM25F encountered was an exaggerated prioritiz-
ation of entities with a smaller amount of text than the average, making entities
with more text receive a lower ranking than expected. This is due to the big dif-
ference in field lengths in the datasets. In the disease dataset, some entities have

Chapter 6: Analysis 73

numerous altNames, while others have none. In the movie dataset, very short
descriptions resulted in some entities only containing 2-4 terms across all fields.
Lucene Fulltext Search does not take text length into account, while BM25 and
BM25F will scale term weights based on average length. This is generally a good
thing but happened to be somewhat problematic when working with partially in-
complete data. Since Wikidata is based on community contributions, some entit-
ies are incomplete missing descriptions and altNames resulting in an excessively
small amount of text. This can to a certain degree be accounted for by tuning
BM25’s and BM25F’s b and bc parameters, respectively, for less length normaliz-
ation. However, this can lead to other challenges. Another way to handle the lack
of text is to supplement the query with synonyms. This may expand the number
of relevant entities retrieved by additionally matching entities that do not contain
exact query terms but share similar meanings. Overall, the incomplete data did
not greatly affect the research results, but slightly altered BM25’s and BM25F’s
ranking leading to lower scores.

All the ranking models achieved high NDCG scores and consistent curves. This
indicated that they all managed to rank the most relevant results highly. There is
no single model that stands out as the best performing from this research. This
is because the ranking models’ performances are evidently highly dependant on,
among other things, the type of dataset, amount and quality of fields, and type of
query. The ranking models’ strengths and weaknesses are summarized in table6.6.

6.2.1 Other Explored Ranking Models

Before deciding upon ranking models for the survey, preliminary testing for all
potential models was conducted. The intention was to get an early indication of
their behavior on the datasets in order to choose which models were favorable
for further testing in the survey. This was done by querying the data using the
models and looking at the ranking results, ranking scores, etc. to compare their
behaviors with different types of queries. Each ranking model was implemented
in the ImprovedSearch plugin and could easily be included at a later point.

Vector Space Model

Through the preliminary testing, the VSM did not particularly stand out, perform-
ing similarly to other models on several queries. As mentioned in section 2.5.3,
Lucene Fulltext uses a combination of the Boolean model and the VSM to perform
ranking. This, in addition to the overall similar performance, meant the original
Vector Space Model was not included in the survey but was still included as part
of the plugin.

Chapter 6: Analysis 74

Strengths Weaknesses
Lucene fulltext

Overall consistent performance and
behavior

No saturation function across fields

Suitable for a wide range of queries
and environments

Not able to tune term relevance
saturation and length normalization

to fit dataset needs
BM25

Overall consistent performance No saturation function across fields
Consistently ranks most relevant

results early (@5)
Performs slightly worse when the

query consists of very common terms
for the dateset such as ’movies,

directors, symptom’
Tuneable term relevance saturation

and length normalization parameters
to fit dataset

Exaggerated prioritization of short
entities when there is a large

difference between text lengths and
length normalization is included

BM25F
Can perform exceptionally well with

a larger number of fields
Not as beneficial with a low number

of fields
Saturation function across fields
takes advantage of underlying
structure when there is quality

information in the fields

Struggles when fields are not very
unique and discriminatory

Tuneable term relevance saturation
and length normalization parameters

to fit dataset

Exaggerated prioritization of short
entities when there is a large

difference between text lengths and
the length normalization is not 0

Table 6.6: The observed strengths and weaknesses for each of the ranking models

BM25FF

BM25FF is the new ranking model developed for the purpose of this research and
is included as a procedure in the ImprovedSearch plugin. As described in sec-
tion 4.3.2, the difference between BM25FF and BM25F is the use of local IDF and
global IDF calculations respectively.

When performing preliminary testing with BM25FF on the two datasets, a new
challenge was revealed. Since the model is based on IDF per field, the model
seemed prone to be influenced by the large IDF difference between fields. Origin-
ally, it was deemed a good idea since the data was domain-specific. A characteristic
of such data is consistency in the structure meaning they share the same fields.
However, both the datasets in this thesis consist of a low number of fields, each

Chapter 6: Analysis 75

with a small amount of text. This meant that in some instances, a term would ap-
pear only a few times in certain fields throughout the entire dataset. This would
make these terms get excessively high IDF scores. With this in mind, the experi-
mental model would not be able to consistently perform on the same level as Lu-
cene Fulltext, BM25, and BM25F, making the comparison between them skewed.

The hypothesis developed from the preliminary testing with BM25FF was that
it could potentially perform more consistently in a different environment. A pre-
requisite is that the documents/entities in the data collection share the same struc-
ture to a large degree. Ideally, the data collection should be larger with more
triples consisting of multiple common fields. It would also be beneficial if each
field consisted of more text than some of the current fields, which commonly con-
tain between three and five terms. With these ideal conditions, there would be
fewer outliers that would drastically affect the IDF-score. This is because there
would be more data to take into consideration when calculating IDF per field. To
expand upon this hypothesis, further in-depth testing in different environments
would be required.

6.2.2 Evaluation of Methods for Analysis

Several papers encountered in the research phase of the thesis, such as [5, 6,
9, 10], utilized NDCG to evaluate ranking models. The Method was also one of
the official evaluation metrics for ’SemSearch initiative’ and ’TREC-COVID’ [39]
meaning its widely accepted and used in the research community. The evaluation
method gives an indication of how close the ranked results of a model are to an
ideal result set. This is done by providing a percentage, such as an NDCG score of
0.8 accounting for an 80% match to the ideal set. In addition to taking the top-k
result placements into account, the method can highlight the difference in a single
model’s top-k scores. An example of this is the notable difference between the top
ten and top five NDCG scores for BM25F on the movie dataset. When only con-
sidering a single result set from BM25F when querying the movie dataset, some
results could indicate that relevant entities are ranked low. With the use of NDCG
score, this can be confirmed statistically.

The NDCG scores also help visualize the difference in performance and behavior
between the ranking models on the two datasets separately. This is done by rep-
resenting the data through tables, with indications of the highest scores, and bar
charts which help visualize differences in performance. In addition to this, the dif-
ference between the highest and lowest performing models is further emphasized
through a calculated percentage.

6.2.3 Validity of Research

The use of ’startsWith’ for comparisons had a clear impact on the pool of poten-
tial entities for the ranking models. This heavily affected BM25 and BM25F for

Chapter 6: Analysis 76

the movie dataset. As a result, comparing Lucene Fulltext with BM25 and BM25F
became more intricate. ’StartsWith’ was originally chosen because it was deemed
beneficial for the disease dataset as it contains a lot of unique terms and com-
pound words. An unfortunate consequence was its impact on the movie dataset.

One other possible method of comparison is the stricter ’equals’. This was not
chosen due to the fear of the exact query formulation being too impactful, missing
out on potentially relevant entities. An example of this is compound words such
as ’coronavirus’, where entities containing only ’corona’ would not be deemed a
match.

One possible way to modify ’startsWith’ for better potential comparisons, would
be to reward a higher score to longer matches. This way a term such as ’movies’
which would result in matches such as ’moving’ and ’movie’ would reward ’movie’
higher, as it is a longer character match. With this technique, more potential en-
tities would be found than with ’equals’, while the less relevant partial matches
of ’startsWith’ would be less prevalent in the top retrieved results. This was, how-
ever, not experimented with in this thesis, as the challenge was not recognized
until later in the project.

Another choice that affected the results was the size of the datasets in addition
to their number of fields. As Wikidatas endpoint times out if the query takes too
long, there was a limit to how many triples and fields were collected for a single
query. Originally the number of triples and fields was thought to have little impact
as the datasets were domain-specific. This seems to have had a bigger impact than
anticipated. If this was apparent from the beginning, another approach could have
been chosen, with the use of a different data source or even more domain-specific
datasets with a higher number of fields.

Kappa coefficient

Table 6.7 shows the Kappa coefficients for each of the datasets. If the scores are
compared to the visualization proposed in section 2.6.5, each result can be cat-
egorized in a more understanding way.

• The Quaternary relevancy of the Disease dataset, fall within the fair agree-
ment.

• The disease dataset Binary relevancy and the Movie dataset Quaternary rel-
evancy falls within the moderate agreement.

• The Movie dataset Binary relevancy falls within the almost perfect agreement.

The overall Kappa scores are within an acceptable range, with the binary relevancy
on the movie dataset being the highest with a score above 0.8. The goal set for the
Kappa scores was an average above 0.4, which was achieved with an average of
0.53. The agreement of the Quaternary relevancy of the Disease dataset was the
only one not meeting this standard on its own. This means that the possibility of

Chapter 6: Analysis 77

some agreement by chance being higher within these survey answers. As the over-
all scores are within the "moderate agreement" category, the results are deemed
reliable, leading to some insight and discovering possible trends. The number of
individual answers, at 26, and the number of datasets used in testing, at two, is
not large enough to definitively generalize conclusions to all environments.

Relevancy Kappa
Disease dataset

Quaternary 0.331
Binary 0.537
Movie dataset

Quaternary 0.434
Binary 0.824

Table 6.7: Kappa coefficient scores for the two datasets

There is a noticeable distinction between the Kappa agreements, as both the Bin-
ary scores are significantly higher than their Quaternary counterpart. This most
likely stems from uncertainty. The testers were uncertain about how to distinguish
between a 0 and 1 score, and a 2 and 3 score.

A possible reason for the differing agreement scores could be due to the startsWith
comparison between the query terms and possible results. Some testers would rate
a result higher when an entire query term was present in the result, while oth-
ers valued partial matches. This distinction could be what leads to the difference
between a rating of ’non-relevant’ 0 and a ’pure query match’ 1.

When looking at the choice between a 2 or a 3, it could be because the testers
interpreted the intent differently. Each individual test subject had to consider how
closely the intent should match the result before it is considered an exact match,
and what qualifies as being only related to the intent.

Section 4.4.1 presented the example of rating shown to testers before the survey
begun. This was to help testers understand how each rating could be interpreted
with regard to both the query and the intent of the query. Had this example been
more extensive, or several examples were present, the results of the agreement
would probably have noticeably increased. The reason this was not done was due
to the concern of directing the testers too much affecting the ratings.

Chapter 7

Conclusion

The main goal of this thesis was to research the difference in behavior, and the
strengths and weaknesses of IR ranking models when searching in semantic data.
More specifically, both fielded ranking models and ranking models traditionally
used for unstructured document retrieval were explored for entity retrieval in
domain-specific environments.

A platform to import and index semantic data, retrieve and rank entities using dif-
ferent models, and gather relevancy assessments for evaluation was developed.
This platform was used to conduct a user study evaluating BM25, BM25F, and
Lucene Fulltext Search in two different domain-specific environments. With pre-
vious research in mind, the findings highlight how fielded ranking models take
advantage of the underlying structure of the data, but struggles when the con-
tents within the structure are not unique and discriminatory. On the other hand,
traditional ranking models perform more consistently regardless of the quality of
the information in entity fields and relations.

7.1 Contributions

During this thesis, the focus has been to answer the research questions specified
in Chapter 1 and 3. Here, each question will be shortly answered by explaining
how they were approached and what results were found.

RQ1: How do IR ranking models perform for users searching in semantic
data?
The research conducted in this thesis shows that all the tested ranking models
show promising results for users searching in semantic data. BM25F performs the
best on the disease dataset with a mean average NDCG score of 0.858 and Lucene
Fulltext performs the best on the movie dataset with a mean average NDCG score
of 0.836.

RQ1.1: What are the strengths and weaknesses of different IR ranking models?

78

Chapter 7: Conclusion 79

To begin with, approaches from related research and their results were taken into
account. This provided preliminary insight into which ranking models could be be-
neficial in different circumstances. More detailed advantages and disadvantages
were discovered through preliminary testing and a more extensive user study. This
made it possible to examine the ranking models’ behavior more closely in two dif-
ferent environments with several types of queries. An overview of the strengths
and weaknesses was presented in table 6.6.

RQ1.2: How do the ranking models behave in an entity retrieval setting?
With the proposed approach to indexing, even if each entity contains a lot less text
compared to unstructured documents, most or all of the relevant entities appear
in the top ten results. The only model that encountered some notable challenges
was BM25F on the movie dataset. The results can indicate that the lack of text
might not be as damning as previously thought as long as all the text is utilized
to its full potential. A way to further take advantage of the full potential could be
to expand upon the existing content by supplementing the query with synonyms.

RQ1.3: How do fielded ranking models’ performances compare?
Given the research results, fielded ranking models’, like BM25F, are highly de-
pendant on the quality and discriminatory factor of the information in the fields.
Fielded ranking models have the potential of outperforming their unstructured
counterparts. This happens if the dataset has several fields with descriptive and
unique text. The margins of improvement are, however, small. When the quality
of the information in the fields is low, BM25F gets significantly outperformed. This
is because there is no underlying structure to take advantage of. These results are
consistent with previous research.

RQ2: What methods are suitable for evaluating entity retrieval? Since entity
retrieval and search in semantic data is a currently growing field, there is a lack
of standardized test sets for different environments. A user study gathering users’
relevancy assessments in a questionnaire is a good alternative to automatic testing
based on test sets. The methods chosen for evaluation must reflect the spectrum
of perceived relevancy of retrieved entities and that it is not simply binary. Thus,
DCG and NDCG are suitable measures to evaluate models’ performances, beha-
vior, as well as strengths and weaknesses. However, this requires the researchers
to be familiar with the dataset in order to calculate the ideal DCG.

7.2 Limitations

Throughout the thesis, a number of potential limitations to the research have come
to light.

• Implementation of retrieval based on the StartsWith function in the pro-
posed Neo4j plugin impacted the pool of potential entities to rank. BM25

Chapter 7: Conclusion 80

and BM25F were negatively affected by this in the movie dataset by retriev-
ing entities that fulfilled the StartsWith promise while still being regarded
as irrelevant to the query and intent.

• The number of RDF-triples was limited due to the Wikidata SPARQL end-
point timing out after 60 seconds. This impacted both the number of entities
and the number of entity fields included in the datasets.

• As each test subject in the user-evaluation had to rate every single result,
the time to complete the survey rapidly increased with the inclusion of new
models and datasets. With this in mind, the number of models was kept to
three, and the number of datasets two.

• Since convenience sampling was used as the method for data gathering,
the survey participants might not necessarily be representative of the entire
population.

These limitations can have affected the results in some way, making the detailed
evaluation metrics less definitive. However, the results of the thesis still provide
another needed perspective to the ambiguous results regarding which ranking
model performs the best with keyword search in semantic data.

7.3 Future work

Based on the limitations in addition to the results described in the previous chapter,
some research to further examine the ranking models’ behavior in different envir-
onments would be beneficial.

One interesting aspect is how the dataset affects the performance of each ranking
model. Based on the findings in this thesis, BM25F seems to be the model that is
the most affected by the low number of fields and lack of unique terms. To further
expand upon this theory, research regarding the ranking models’ performance in
other environments should be performed. Some aspects of the dataset that could
be changed are the number of fields, amount of text, number of unique terms in
each field, etc.

Larger datasets with a consistent structure are needed to fully explore the poten-
tial of BM25FF. A similar study comparing BM25FF with BM25F and other models
using such datasets can be an interesting extension to this research. This can be
beneficial as the further exploration of models can lead to a better understanding
of when to use each model.

In this thesis, the standard parameter values for each ranking model were used. To
expand the comprehension of ranking models’ behavior, the tweaking of paramet-
ers should be examined more in-depth. This would give a better understanding of
which values are beneficial in each environment, and how each change impacts
the ranking.

Bibliography

[1] C. Manning, P. Raghavan and H. Schütze, Introduction to Information Re-
trieval. Cambridge University Press, 2008.

[2] J. Pound, P. Mika and H. Zaragoza, ‘Ad-hoc object retrieval in the web of
data,’ Jan. 2010, pp. 771–780. DOI: 10.1145/1772690.1772769.

[3] J. Guo, G. Xu, X. Cheng and H. Li, ‘Named entity recognition in query,’ in
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’09, Boston, MA, USA: As-
sociation for Computing Machinery, 2009, pp. 267–274, ISBN: 9781605584836.
DOI: 10.1145/1571941.1571989. [Online]. Available: https://doi.org/
10.1145/1571941.1571989.

[4] T. Lin, P. Pantel, M. Gamon, A. Kannan and A. Fuxman, ‘Active objects:
Actions for entity-centric search,’ in Proceedings of the 21st International
Conference on World Wide Web, ser. WWW ’12, Lyon, France: Association
for Computing Machinery, 2012, pp. 589–598, ISBN: 9781450312295. DOI:
10.1145/2187836.2187916. [Online]. Available: https://doi.org/10.
1145/2187836.2187916.

[5] S. Elbassuoni and R. Blanco, ‘Keyword search over rdf graphs,’ in Proceed-
ings of the 20th ACM International Conference on Information and Know-
ledge Management, ser. CIKM ’11, Glasgow, Scotland, UK: Association for
Computing Machinery, 2011, pp. 237–242, ISBN: 9781450307178. DOI:
10.1145/2063576.2063615. [Online]. Available: https://doi.org/10.
1145/2063576.2063615.

[6] R. Blanco, P. Mika and S. Vigna, ‘Effective and efficient entity search in
rdf data,’ in The Semantic Web – ISWC 2011, L. Aroyo, C. Welty, H. Alani,
J. Taylor, A. Bernstein, L. Kagal, N. Noy and E. Blomqvist, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 83–97.

[7] R. Blanco, P. Mika and H. Zaragoza, ‘Entity search track submission by ya-
hoo! research barcelona,’ SemSearch, 2010.

[8] N. Craswell, H. Zaragoza and S. Robertson, ‘Microsoft cambridge at trec
14: Enterprise track,’ in TREC, 2005.

81

https://doi.org/10.1145/1772690.1772769
https://doi.org/10.1145/1571941.1571989
https://doi.org/10.1145/1571941.1571989
https://doi.org/10.1145/1571941.1571989
https://doi.org/10.1145/2187836.2187916
https://doi.org/10.1145/2187836.2187916
https://doi.org/10.1145/2187836.2187916
https://doi.org/10.1145/2063576.2063615
https://doi.org/10.1145/2063576.2063615
https://doi.org/10.1145/2063576.2063615

Bibliography 82

[9] A. Tonon, G. Demartini and P. Cudre-Mauroux, ‘Combining inverted indices
and structured search for ad-hoc object retrieval,’ SIGIR’12 - Proceedings of
the International ACM SIGIR Conference on Research and Development in
Information Retrieval, Aug. 2012. DOI: 10.1145/2348283.2348304.

[10] A. Esteva, A. Kale, R. Paulus, K. Hashimoto, W. Yin, D. Radev and R. Socher,
Co-search: Covid-19 information retrieval with semantic search, question an-
swering, and abstractive summarization, 2020. arXiv: 2006.09595 [cs.IR].

[11] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias and V. Fresno,
‘Using bm25f for semantic search,’ in Proceedings of the 3rd International
Semantic Search Workshop, ser. SEMSEARCH ’10, Raleigh, North Carolina,
USA: Association for Computing Machinery, 2010, ISBN: 9781450301305.
DOI: 10.1145/1863879.1863881. [Online]. Available: https://doi.org/
10.1145/1863879.1863881.

[12] Z. Nie, Y. Ma, S. Shi, J. Wen and W. Ma., ‘Web object retrieval,’ WWW,
2007.

[13] P. Castells, M. Fernández and D. Vallet, ‘An adaptation of the vector-space
model for ontology-based information retrieval,’ IEE TRANSACTIONS ON
KNOWLEDGE DATA ENGINEERING, vol. 19, no. 2, 2007.

[14] T. Tran, H. Wang, S. Rudolph and P. Cimiano, ‘Top-k exploration of query
candidates for efficient keyword search on graph-shaped (rdf) data,’ in
2009 IEEE 25th International Conference on Data Engineering, 2009, pp. 405–
416. DOI: 10.1109/ICDE.2009.119.

[15] P. Mika, ‘Distributed indexing for semantic search,’ in Proceedings of the
3rd International Semantic Search Workshop, ser. SEMSEARCH ’10, Raleigh,
North Carolina, USA: Association for Computing Machinery, 2010, ISBN:
9781450301305. DOI: 10.1145/1863879.1863882. [Online]. Available:
https://doi.org/10.1145/1863879.1863882.

[16] C. C. Kuhlthau, ‘Information search process,’ Hong Kong, China, vol. 7,
p. 226, 2005.

[17] K. Balog, Entity-Oriented Search. Springer International Publishing, 2018.

[18] K. Balog, ‘Semistructured data search,’ in. Jan. 2014, pp. 74–96, ISBN:
9783642547973. DOI: 10.1007/978-3-642-54798-0_4.

[19] S. P. Gardner, ‘Ontologies and semantic data integration,’ Drug Discovery
Today, vol. 10, no. 14, pp. 1001–1007, 2005, ISSN: 1359-6446. DOI: https:
/ / doi . org / 10 . 1016 / S1359 - 6446(05) 03504 - X. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S135964460503504X.

[20] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M.
Erdmann and I. Horrocks, ‘The semantic web: The roles of xml and rdf,’
IEEE Internet Computing, vol. 4, no. 5, pp. 63–73, 2000. DOI: 10.1109/
4236.877487.

https://doi.org/10.1145/2348283.2348304
https://arxiv.org/abs/2006.09595
https://doi.org/10.1145/1863879.1863881
https://doi.org/10.1145/1863879.1863881
https://doi.org/10.1145/1863879.1863881
https://doi.org/10.1109/ICDE.2009.119
https://doi.org/10.1145/1863879.1863882
https://doi.org/10.1145/1863879.1863882
https://doi.org/10.1007/978-3-642-54798-0_4
https://doi.org/https://doi.org/10.1016/S1359-6446(05)03504-X
https://doi.org/https://doi.org/10.1016/S1359-6446(05)03504-X
https://www.sciencedirect.com/science/article/pii/S135964460503504X
https://doi.org/10.1109/4236.877487
https://doi.org/10.1109/4236.877487

Bibliography 83

[21] T. Berners-Lee, F. R.T. and L. Masinter, ‘Uniform resource identifier (uri):
Generic syntax,’ Apr. 2002.

[22] J. Guia, V. G. Soares and J. Bernardino, ‘Graph databases: Neo4j analysis,’
in ICEIS, 2017.

[23] B. DuCharme, Learning SPARQL. O’Reilly Media, Inc., 2011, ISBN: 1449306594.

[24] R. Reinanda, E. Meij and M. de Rijke, ‘Knowledge graphs: An information
retrieval perspective,’ Foundations and Trends® in Information Retrieval,
vol. 14, no. 4, pp. 289–444, 2020, ISSN: 1554-0669. DOI: 10.1561/1500000063.
[Online]. Available: http://dx.doi.org/10.1561/1500000063.

[25] K. Balog, ‘Entity retrieval,’ in Encyclopedia of Database Systems, L. Liu and
M. T. Özsu, Eds. New York, NY: Springer New York, 2017, pp. 1–6, ISBN:
978-1-4899-7993-3. DOI: 10.1007/978-1-4899-7993-3_80724-1. [On-
line]. Available: https://doi.org/10.1007/978-1-4899-7993-3_80724-
1.

[26] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, 2nd ed.
Pearson Education Limited, 2011.

[27] C. Galvez, F. Moya-Anegon and V. Herrero-Solana, ‘Term conflation meth-
ods in information retrieval: Non-linguistic and linguistic approaches,’ Journal
of Documentation, vol. 61, Aug. 2005. DOI: 10.1108/00220410510607507.

[28] W. Frakes and Baeza-Yates, Information Retrieval: Data Structures & Al-
gorithms. Prentice Hall, 1992.

[29] D. Knuth, The Art Of Computer Programming, vol. 3: Sorting And Searching.
Addison-Wesley, 1973, pp. 391–392.

[30] G. Salton and C. Buckley, ‘Term-weighting approaches in automatic text
retrieval,’ Information Processing & Management, vol. 24, no. 5, pp. 513–
523, 1988, ISSN: 0306-4573. DOI: https://doi.org/10.1016/0306-
4573(88)90021- 0. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0306457388900210.

[31] I. H. Witten, A. Moffat and T. C. Bell, Managing Gigabytes: Compressing and
Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999,
ISBN: 1-55860-570-3. [Online]. Available: http://www.cs.mu.oz.au/mg/.

[32] S. Robertson, H. Zaragoza and M. Taylor, Simple bm25 extension to multiple
weighted fields, 2004.

[33] K. Järvelin and J. Kekäläinen, ‘Cumulated gain-based evaluation of ir tech-
niques,’ ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, Oct. 2002, ISSN:
1046-8188. DOI: 10.1145/582415.582418. [Online]. Available: https:
//doi.org/10.1145/582415.582418.

https://doi.org/10.1561/1500000063
http://dx.doi.org/10.1561/1500000063
https://doi.org/10.1007/978-1-4899-7993-3_80724-1
https://doi.org/10.1007/978-1-4899-7993-3_80724-1
https://doi.org/10.1007/978-1-4899-7993-3_80724-1
https://doi.org/10.1108/00220410510607507
https://doi.org/https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/https://doi.org/10.1016/0306-4573(88)90021-0
https://www.sciencedirect.com/science/article/pii/0306457388900210
https://www.sciencedirect.com/science/article/pii/0306457388900210
http://www.cs.mu.oz.au/mg/
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418

Bibliography 84

[34] K. Järvelin and J. Kekäläinen, ‘Ir evaluation methods for retrieving highly
relevant documents,’ in Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
ser. SIGIR ’00, Athens, Greece: Association for Computing Machinery, 2000,
pp. 41–48, ISBN: 1581132263. DOI: 10.1145/345508.345545. [Online].
Available: https://doi.org/10.1145/345508.345545.

[35] J. Cohen, ‘A coefficient of agreement for nominal scales,’ Educational and
psychological measurement, vol. 20, no. 1, pp. 37–46, Apr. 1960, ISSN: 0013-
1644. DOI: 10.1177/001316446002000104. [Online]. Available: https://
doi.org/10.1177/001316446002000104.

[36] J. L. Fleiss, ‘Measuring nominal scale agreement among many raters,’ vol. 76,
no. 5, pp. 378–382, 1971. [Online]. Available: https://doi.org/10.1037/
h0031619.

[37] A. Viera and J. Garrett, ‘Understanding interobserver agreement: The kappa
statistic,’ vol. 37, no. 5, pp. 360–363, 2005.

[38] F. Song and W. B. Croft, ‘A general language model for information re-
trieval,’ in Proceedings of the Eighth International Conference on Information
and Knowledge Management, ser. CIKM ’99, Kansas City, Missouri, USA: As-
sociation for Computing Machinery, 1999, pp. 316–321, ISBN: 1581131461.
DOI: 10.1145/319950.320022. [Online]. Available: https://doi.org/10.
1145/319950.320022.

[39] K. Roberts, T. Alam, S. Bedrick, D. Demner-Fushman, K. Lo, I. Soboroff, E.
Voorhees, L. L. Wang and W. R. Hersh, Searching for scientific evidence in a
pandemic: An overview of trec-covid, 2021. arXiv: 2104.09632 [cs.IR].

[40] B. HE and I. Ounis, ‘A study of parameter tuning for term frequency normal-
ization,’ in Proceedings of the Twelfth International Conference on Informa-
tion and Knowledge Management, ser. CIKM ’03, New Orleans, LA, USA: As-
sociation for Computing Machinery, 2003, pp. 10–16, ISBN: 1581137230.
DOI: 10.1145/956863.956867. [Online]. Available: https://doi.org/10.
1145/956863.956867.

[41] B. He and I. Ounis, ‘Term frequency normalisation tuning for bm25 and
dfr models,’ in Proceedings of the 27th European Conference on Advances
in Information Retrieval Research, ser. ECIR’05, Santiago de Compostela,
Spain: Springer-Verlag, 2005, pp. 200–214, ISBN: 3540252959. DOI: 10.
1007/978-3-540-31865-1_15. [Online]. Available: https://doi.org/10.
1007/978-3-540-31865-1_15.

[42] Y. Wang, L. Wang, Y. Li, D. He, T.-Y. Liu and W. Chen, ‘A theoretical analysis
of ndcg ranking measures,’ 2013.

[43] D. Vrandečić and M. Krötzsch, ‘Wikidata: A free collaborative knowledge-
base,’ Commun. ACM, vol. 57, no. 10, pp. 78–85, Sep. 2014, ISSN: 0001-
0782. DOI: 10.1145/2629489. [Online]. Available: https://doi.org/10.
1145/2629489.

https://doi.org/10.1145/345508.345545
https://doi.org/10.1145/345508.345545
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.1145/319950.320022
https://doi.org/10.1145/319950.320022
https://doi.org/10.1145/319950.320022
https://arxiv.org/abs/2104.09632
https://doi.org/10.1145/956863.956867
https://doi.org/10.1145/956863.956867
https://doi.org/10.1145/956863.956867
https://doi.org/10.1007/978-3-540-31865-1_15
https://doi.org/10.1007/978-3-540-31865-1_15
https://doi.org/10.1007/978-3-540-31865-1_15
https://doi.org/10.1007/978-3-540-31865-1_15
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489

Bibliography 85

[44] B. J. Oates, Researching Information Systems and Computing. Sage Publica-
tions Ltd., 2006, ISBN: 1412902231.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Martin Bondkall Gjerde
Ebba Louise Toreld Fingarsen

Assessing Ranking Models’ Behavior
for Semantic Entity Retrieval

Master’s thesis in Informatics
Supervisor: Trond Aalberg

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background and Motivation
	Research Objectives
	Method and Approach
	Contribution
	Thesis Structure

	Theory
	Searching for Information
	Queries
	Results

	Representing and Storing Semantic Data
	Knowledge Base and Knowledge Graph
	Resource Description Framework

	Entities
	Entity Representation
	Entity Retrieval

	Preprocessing and Indexing
	Text Operations
	Inverted Index
	Indexing for RDF Data

	Ranking Models
	TF-IDF
	Boolean Model
	Vector Space Model
	BM25
	BM25F
	Comparing Saturation Functions

	Evaluation of Ranking Models
	Precision and Recall
	F-Measure
	Mean Average Precision
	Discounted Cumulative Gain
	Cohen's Kappa Coefficient

	Previously Explored Approaches to Keyword Search in Graphs
	Explored Evaluation Methods
	Comparing Results

	Concepts and Methods
	Domain-Specific Semantic Knowledge Base
	Indexing and Ranking Models
	Evaluation

	Implementation and Architecture
	Wikidata
	Subsection of Wikidata

	Neo4j Database
	Neo4j Plugin - ImprovedSearch
	Model
	Neo4j Plugin Custom Procedures

	Web Application For Survey
	Pages
	Implementation of the Web Application
	Preliminary Testing and changes

	Complete Flow of Data

	Data gathering and Evaluation
	Evaluation Strategy
	Data Gathering
	Sampling

	Evaluation Metrics
	Normalized Discounted Cumulative Gain
	Kappa Coefficient

	Analysis
	Findings
	NDCG

	Discussion
	Other Explored Ranking Models
	Evaluation of Methods for Analysis
	Validity of Research

	Conclusion
	Contributions
	Limitations
	Future work

	Bibliography

