MEDINFO 2007

K. Kuhn et al. (Eds)

10S Press, 2007

© 2007 The authors. All rights reserved.

Design and Evaluation of a Temporal, Graph-Based Language for Querying
Collections of Patient Histories

Ole Edsberg®, Stein Jakob Nordbe*, Erik Vinnes, Qystein Nytrg*

* Department of Computer and Information Science (IDI)
Y Faculty of Medicine (DMF)
¢ Norwegian EHR Research Centre (NSEP)
Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract

Giving clinicians and researchers the ability to easily
retrieve and explore relevant fragments of patient histories
would greatly facilitate quality assurance, patient follow-
up and research on patient treatment processes. Estab-
lished database query languages are inconvenient for such
exploration, and may also be too complex for users with
limited backgrounds in informatics. We believe that under-
standability can be increased in return for a sacrifice of
some of the power of expression found in general query
languages. In order to design a specialized query lan-
guage, we have collected and synthesized a tentative list of
requirements. Based on these requirements, we have
designed and implemented Practice Explorer, a prototype
for visual query of collections of patient histories, and
evaluated the understandability of its query language by
testing with medical students. The results indicate that
parts of the language are intuitive enough for users to
understand without demonstrations, examples, feedback or
assistance. They also provide some lessons for future work
in this area.

Keywords:

information retrieval. Data display. Medical record

Introduction

Clinicians and health researchers have a need for querying
their patient records for relevant history fragments. Four
tasks where this need may arise are:

1. Retrospective study of guideline compliance [1].

2. Re-consideration of treatment plans for groups of
patients possibly affected by the discovery of new
medical knowledge, such as the connection between H.
pylori and peptic ulcers.

3. Selection of patients for scientific studies.

4. Development of research hypotheses through explor-
ative search of patient records.

The text-based database query languages available in

today's patient record systems are either too complex for

users without informatics competence or has insufficient
power of expression. As one of the sources in our require-

402

ments collection put it, “(..) I lack basic search
functionality, mostly because of my own aversion against
learning a programming language for searching (...)”.

The research question this article addresses is: How can
we design a system for formulating temporal queries
against patient history databases that is easily understand-
able for users with little competence in informatics, but
still satisfies most of their query needs? The contributions
of this article are 1) a tentative list of requirements for the
expressiveness of patient history query languages, 2) an
outline of our design for a query system satisfying the
requirements and 3) results, observations and lessons
learned from understandability testing of a prototype
implementing our design.

Related work

The system most closely resembling Practice Explorer is
the very recent PatternFinder [2]. The most important dif-
ferences are that Practice Explorer visualizes queries as
hierarchical, directed acyclic graphs, whereas Pattern-
Finder uses linear chains of forms, and that Practice
Explorer's query language, prompted by the requirements
described below and enabled by the more flexible query
model, is also able to express queries with parallel and
alternative branches. It would be interesting to compare a
form-based and a graph-based visual query system to see
which is more intuitive for users without a background in
informatics. Also related is TVQL [3], a visual query lan-
guage where binary interval relations are specified via
sliders, and where multiple such relations can be combined
via neighborhood and disjunction. Another related study
[4] proposes three new notations (elastic bands, springs
and paint strips) for interval relations and experimentally
compares their understandability. It also provides a table
comparing different approaches to visualizing temporal
relations and specifying combinations of such relations
with logical expressions. In our case, the query graph both
specifies local temporal relations and conjunction and dis-
junction of sub-queries through the parallel and alternative
branching constructs.

Our visual representation of branching and joining con-
structs is borrowed from UML activity diagrams [5], a
flowchart notation for defining workflows. In fact, our

O. Edsberg et al. / Design and Evaluation of a Temporal, Graph-Based Language for Querying Collections of Patient Histories

query graphs can be viewed as flowcharts, extended with
some new constructs and given an alternative semantics
suitable for matching against histories.

Materials and methods

Requirements collection

Through discussions with two general practitioners, a
rheumatologist and a health researcher interested in clini-
cal processes, and through a pilot study applying an early
prototype to a general practitioner's database and letting
him verbally specify queries to be executed by the devel-
opers, we collected example queries and synthesized the
following list of requirements for patient history query lan-
guages. Queries should be able to find patterns consisting
of:

1. A primitive history element, such as a patient encoun-
ter, lab test, prescription or correspondence event.

2. Results limited by the date or the age of the patient at a
specific point in a pattern.

3. A time interval in which a medication has been pre-
scribed, including overlapping prescriptions, or the
start or end of such an interval.

4. Time periods of variable length, with the possibility of
specifying that a specified pattern should, or should
not, occur during the period.

Repetitive occurrence of a specified pattern.
Sequences of specified patterns.

Parallel occurrence of specified patterns.
Alternative occurrence of specified patterns.

O 0N

The first occurrence of a pattern in the whole history.
It should also be possible to:
10. Specify encounter events and medication intervals at

various points of abstraction in relevant coding
hierarchies.

11. Perform union and intersection set operations on query
results.

12. Save and re-use queries or their components.

Table 1 shows a natural-language specification of a query
need that exemplifies many of the requirements.

Table 1 - Natural-language specification of a query need

Find all patients who initiated medication with an
ACE-inhibitor for the first time in their histories
without having any encounters coded as angina,
myocardial infarction or heart failure in the preceding
two-year period, and who had an en-counter coded as
hypertension some time between the history's start and
the initiation of the ACE-inhibitor medication.

Find all patients who initiated medication with an ACE-
inhibitor for the first time in their histories without having
any encounters coded as angina, myocardial infarction or
heart failure in the preceding two-year period, and who
had an encounter coded as hypertension some time

403

between the history's start and the initiation of the ACE-
inhibitor medication.

We have no illusions that our list of requirements is com-
plete. In our experience, potential users are often not fully
able to understand the possibilities offered by a temporal
query system without having such a system available for
use on their own data. Therefore, it will be necessary to
iterate between developing prototypes and collecting more
requirements.

Data source and data model

Our test case is a patient record database from a general
practitioner's office. For the sake of query performance,
Practice Explorer extracts relevant data from the database
at startup and represents the patient histories in main mem-
ory as lists of events. Each event has a time stamp and is
considered to last for 24 hours because the test case data-
base does not contain accurate time information at smaller
granularities than days. The types of events include patient
encounters (with diagnosis codes), lab tests, prescriptions
and correspondence. For prescriptions, cessation dates are,
where possible, heuristically deduced from fields in the
prescription. Events have various attributes, such as codes,
values and text, depending on their type. Practice Explorer
is currently only able to extract data from Profdoc Vision,
a patient record system widely used by Norwegian general
practitioners. In this system, encounter diagnoses are
coded according to the International Classification of Pri-
mary Care (ICPC), and prescriptions are coded according
to the Anatomical Therapeutic Chemical Classification
(ATC).

Query language

The main idea behind Practice Explorer's query language
is to visualize queries as directed acyclic graphs, with each
vertex describing a part of the history and with the edges
always directed to the right, towards the present time. A
query defines what a segment of a history must be like to
constitute a match for that query. The informal interpreta-
tion of a query is that, for a query to match a segment of a
history, it must be possible to simultaneously walk from
left to right through the query and the history segment,
encountering a matching history part for every query ele-
ment passed. An edge between two elements indicates that
the match for the element on the right hand side must begin
at the exact same time that the match for the element on the
left hand side ends. In other words, edges do not represent
passage of time, but connects temporally juxtaposed
events. Figure 1 shows two very simple queries. The bot-
tom query specifies that a contact with diagnosis code K86
must occur, immediately followed by a period of medica-
tion with beta blockers. The top query specifies the same
situation, except that an unlimited amount of time, repre-
sented by the spring-like middle element, is allowed to
pass between the contact and the start of the
medication period.

O. Edsberg et al. / Design and Evaluation of a Temporal, Graph-Based Language for Querying Collections of Patient Histories

kae:
Hypertension

uncomplicated 0 -0

'_[H CO07: Beta blocking a;ems)—

iS00
Hypertension
uncomplicated

C07; Beta blocking a;entﬂ—

Figure 1 - Simple queries.

Table 2 - The central structure of the query language

== <Point>
| <Interval>
| sequential Composition(<Q>, <Q>)
| parallelComposition(<Q>, <Q>)
| alternativeComposition(<Q>, <Q>)
| firstOccurrence(<Q>)
== encounter(<IcpcCode>)
| prescription(<AtcCode>)
| medicationStart(<AtcCode>)
| medicationEnd(<AtcCode>)
| test(<TestType>, <TestValueRange>)
| correspondence(<CorrType>)
| dateControl(<DateRange>)
| ageControl(<AgeRange>)
<Interval> ::= medicationlnterval(<AtcCode>)
| timeWindow(<Dur>, <Dur>)
| timeWindow With(<Dur>, <Dur>, <Q>)
| timeWindow Without(<Dur>, <Dur>, <Q>)
| repetition(<Q>, <Int>, <Int>, <Dur>, <Dur>)

<Q>

<Point>

The user builds a query by dragging components from a
menu to a panel containing the query graph under con-
struction. Dialog boxes ask for necessary parameters as
components are added. Figure 2 shows a moderately com-
plex query graph.

The query language has a textual syntax, the central struc-
ture of which is defined by the grammar in table 2. A query
is any derivation from <Q>. The visual representation of
many of the elements can be seen in figure 2.

Space does not permit giving a full formal definition of the
query language and its semantics. We will now informally
describe the semantics of the query components given by
the grammar.

Point queries, except for date controls and age controls,
match events of the corresponding types satisfying the crite-
ria in the parentheses. Date controls and age controls match
all points in histories where the date or patient age could be
successfully verified to belong to the specified range.

» Of'the interval queries, medication intervals match any
continuous time period where the patient is deduced,
from prescription events, to be taking medication of the
given code. The three types of time windows match
time periods of duration between a given minimum and
a given maximum, with a possible additional require-
ment that a given query must, or must not, match
within the period. Repetition queries require that a
given query gives repeating matches with upper and
lower limits for the count and the duration allowed
between repeats.

Query Builder

File Edit

Medications | Diagnoses |
Insert | Scapbook | Clipboard

-

Parallel composition

Alternative composition
VU Time window

First occurrence of ...

Time window with ...
Time window without ...

Ischaemic
heart dis with ¥ |
angina

myocardial
infarction

Repeat

Contact w/ diagnosis ...
Test/test result
Prescription

) Medication period

|—{Start Start of medication period
|End — End of medication period

=
-

Run query Clear query |

Undo

EBeginning of X
history

Ka6:

Hypertension

uncomplicated 0-c0
Bl

/ - 4(!! Medication period: CO9A: Ace inhibitors, plain]— _

L]

-

[]Sort results 1]

i I [»]

Figure 2 - Query building window showing a query satisfying the query need from table 1. From left to right, we see the
following: an element matching the beginning of the history, followed by a branching into two parallel threads, along the
upper of which the last two-year-period must not contain a contact with any of three codes and along the lower of which
a contact with a given code must occur somewhere, followed by a re-joining of the parallel threads, followed by an inter-
val of medication with a given type of drug, which must be the first of its kind in the entire history. (The query builder was
constructed using the prefuse toolkit [6].)

404

O. Edsberg et al. / Design and Evaluation of a Temporal, Graph-Based Language for Querying Collections of Patient Histories

* Sequentially composed queries require that the queries
match, in such a way that the end of match of the first
query coincides with the beginning of the match of the
second query. This construction gives rise to the edges
in the query graph.

» Parallelly composed queries require that the queries
match, and in such a way that the start points of the
matches coincide and that the end points of the matches
coincide.

* Alternatively composed queries require that at least
one of the queries matches.

» First-occurrence queries merely require that there is a
match of the given query and that this is the first such
match in the entire history. (This effect can be achieved
with a combination of other elements, but the require-
ment was important enough to warrant support as a
simpler formulation.)

The grammar gives the query graph an underlying tree
structure where the matches of a node depends on how the
matches of its children cohere with the rules and parame-
ters for the node itself. The matches of a query graph are
the matches of its root node. Execution of a query is per-
formed with the leaf nodes scanning the history
sequentially and the internal nodes iterating through the
matches from their children.

The language elements described above straightforwardly
satisfy requirements 1-10. Intersection and union of query
results can easily be achieved by parallel and alternative
composition of the queries, thus satisfying requirement 11.
The recursive definition of the query language means that
parts of queries, down to primitive components, are que-
ries in their own right that can easily be collapsed, given
names, saved and re-used, thus satisfying requirement 12.

Result visualization

Practice Explorer consists of two main windows. The
query builder was described in the previous section. The
history explorer, is shown in figure 3. It displays a number
of vertically stacked horizontal bars, each providing a
compact, very simple, LifeLines-like [7], explorable visu-
alization of a history above a common time axis. The
history explorer dynamically limits its view to the histories
containing matches for the query given by the current state
of the query builder, marks the hits of the query with red
boxes and synchronizes the histories so that they are
aligned on the first match.

Understandability testing

We performed 12 two-hour understandability tests, each
followed by a brief questionnaire. The goal was not to test
general usability, but to investigate the intuitive under-
standability of the underlying principles. We therefore
simplified the query builder, keeping only the following
query elements: encounter, history start, history end, date
control, age control, time window, time window without
..., sequential, parallel and alternative composition. We
applied the system to 2066 general practice patient histo-
ries of lengths up to 12 years. The test subjects were 4th-
and 5th-year medical students.

[2] History Explorer
Database Tools

132 patients

Pasient: 72! 1
Dato: 08, 2252

I

Diag: K7

151
Meds: NI

Tests: o,

1383

| 27
[Diagnoser| |
Hyperte] | | 7001
W Heart f
WStroke/| I
WAanythmi_| | 3022 L
Medisiner] |
Antihy,
Diureti 138
Beta bl
Calcium
ACE InHl—| | | I | | | | I | | | |

o}

[¥] use filter

Figure 3 - Visualization of a query result

Tests 1-3 were informal, with demonstration and explana-
tion provided during the test. In tests 4-6, the subjects were
given a leaflet containing instructions and examples, as
well as a number of query construction tasks to be per-
formed. During tests 1-6 we made the observation that the
learning process was greatly enhanced by the availability
of examples, demonstration or interactive assistance. In
particular, getting feedback on the correctness of one’s
queries improved ability to accomplish further tasks. We
suspected that these factors could obscure issues related to
our stated goal, which was to investigate the intuitive
understandability of the underlying principles of the query
system. Therefore, we devised a testing framework with
the following rules: 1) The user will receive written
instructions and query construction tasks to solve within
an allotted time, 2) There must be no demonstration or
assistance and 3) The instructions must contain no exam-
ple queries. We carried out tests 7-12 in compliance with
these rules. The subject was left alone for 105 minutes to
read the instructions and attempt to solve the tasks, occa-
sionally prompted via a loudspeaker to explain his or her
thinking. Of the 25 tasks, the first 5 were point queries, the
next 8 also involved intervals, the next 4 added branching
constructs, and the final 8 required complex combinations
of different types of elements, In the final 15 minutes, a
developer interviewed the subject about the tasks that the
test subject had failed to solve, and explained how those
tasks should have been solved. Screen, video and audio
were captured for further investigation.

Results

Figure 4 summarizes the correctness scores of test subjects
7-12 on the 25 query construction tasks. For an query to be
classified as correct, it had to give the exact intended
result.

From studying the users' actions on the screen, listening to
them thinking aloud, and interviewing them afterwards,
we made the following observations:

1. When a time window was specified as having a dura-
tion between an upper and a lower limit, for example 0
and 12 months, test subjects would often think of this
as a fixed-length window from relative time point 0 to

O. Edsberg et al. / Design and Evaluation of a Temporal, Graph-Based Language for Querying Collections of Patient Histories

relative time point 12 months, even though the instruc-
tions explicitly stated otherwise.

2. The test subjects made many errors where they seemed
to assume that the query described the whole history
and not just a fragment of it.

3. Test subjects frequently and successfully used the
match-aligned result visualization to check if their que-
ries were correct.

4. The test subjects made many errors related to not
understanding that matches of parallel queries must
cover the same time period.

5. On tasks requiring nested branching constructs, test
subjects seemed to strain under the mental effort
required. Some ceased serious efforts to find a solution.

Most of these observations either did not occur before tests
7-12, or occurred much more strongly in tests 7-12.

100 % HEHW I

H R

80 % 1 il

70% - H

60 %

50% ‘

0% i

0% Rl

20% i

10% I

0%
WSRO~ QO IVEnEARAANRARN
ot Linear ' Branching Difficult

B Correct @Incorrect DOMNotanswered

Figure 4: Scores for test subjects 7-12 on the 25 tasks.

On the questionnaire, which used a 5-point Lickert scale, 3
out of 12 marked “agree” or “fully agree” on the proposi-
tion “I think the visualization and building of the queries
was easy to understand based on the instruction”. 9 out of
12 marked “agree” or “fully agree” on the proposition “I
think the visualization and building of the queries was easy
to understand based on the explanation given afterwards.”

Discussion

Studying figure 4, it appears that test subjects 7-12, even
without examples, demonstration or assistance, arrived at a
reasonably good understanding of the linear parts of the
query language. The branching constructs appear to have
been poorly understood. The survey answers indicate that
explanation did help a lot on understanding. From the
observations, we arrive at some lessons that may be help-
ful when designing this kind of system:

1. It seems much more natural for users to interpret a min-
imum and maximum number of time units as time
points defining a constant-length interval rather than as
bounds on the duration of a flexible interval.

2. Users may find it more natural to build a query describ-
ing the whole history rather than just a fragment.

3. Match-aligned result visualization can help users cor-
rect their own thinking and build correct queries.

4. Attention must be paid to make the visualization of
branching constructs reflect their properties and reduce
the effort required in reasoning about them.

5. Refraining from giving examples, demonstration,
assistance or feedback may make testing more effec-
tive in uncovering problems.

Another question, partly addressed by our requirements
collection, is whether the language is sufficiently expres-
sive. On this topic we also note that, out of Allen's 13
primitive interval relations [8], our query language does
not support overlaps or overlapped-by. The other 11 can be
constructed with parallel composition and time windows.
Supporting overlaps/overlapped-by would probably make
the language more complex. Since we can match the start
or end of a medication interval occurring during the match
of another interval, we have not yet seen any query need
requiring overlaps/overlapped-by.

Conclusion

We have designed, implemented and evaluated a temporal,
graph-based query language based on our collected tenta-
tive list of requirements. Our understandability tests
indicate that domain users relatively easily can construct
point and interval queries, but not branching queries.
Based on observations done during testing, we arrived at a
list of lessons of potential relevance for the design of simi-
lar systems.

Acknowledgments

The authors wish to thank Arild Faxvaag, Anders
Grimsmo, Joe Siri Ekgren, Berit Brattheim, Dag Svans,
Yngve Dahl and Terje Rosand for valuable assistance and
comments. Part of the work was funded by The Norwegian
Research Council.

References

[1] Quaglini S, Ciccarese P, Micieli G, Cavallini A. Non-
compliance with guidelines: motivations and consequences in
a case study. Stud Health Technol Inform. 2004;101:75-87.

[2] Fails JA, Karlson A, Shahamat L, Shneiderman B. A Visual
Interface for Multivariate Temporal Data: Finding Patterns
of Events across Multiple Histories. IEEE Symposium on
Visual Analytics in Science and Technology 2006.

[3] Hibino S, Rundensteiner EA. A visual multimedia query
language for temporal analysis of video data. MultiMedia
Database Systems, pages 123--159. Kluwer Aca, 1996.

[4] Chittaro L, Combi C. Visualizing queries on databases of
temporal histories: new metaphors and their evaluation.
Data & Knowledge Engineering 2003;44:239-264.

[5] Fowler M. UML Distilled, 3" edition. Boston: Pearson,
2004.

[6] HeerJ, Card SK, Landay JA. prefuse: a toolkit for
interactive information visualization. Proceedings of
CHI’05, ACM Press, 2005.

[7] Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B.
Lifelines: Visualizing Personal Histories. Proceedings of
CHI’96. ACM Press, 1996.

[8] Allen J. Maintaining knowledge about temporal intervals.
Communications of the ACM 1983:26(11):832-843.

Address for correspondence
Ole Edsberg, edsberg@idi.ntnu.no

	Design and Evaluation of a Temporal, Graph-Based Language for Querying Collections of Patient Histories
	Ole Edsbergac, Stein Jakob Nordbøc, Erik Vinnesbc, Øystein Nytrøac
	a Department of Computer and Information Science (IDI) b Faculty of Medicine (DMF) c Norwegian EHR Research Centre (NSEP) Norwegian University of Science and Technology (NTNU), Trondheim, Norway
	Abstract
	Giving clinicians and researchers the ability to easily retrieve and explore relevant fragments of patient histories would great...

	Keywords:
	Introduction
	1. Retrospective study of guideline compliance [1].
	2. Re-consideration of treatment plans for groups of patients possibly affected by the discovery of new medical knowledge, such as the connection between H. pylori and peptic ulcers.
	3. Selection of patients for scientific studies.
	4. Development of research hypotheses through explorative search of patient records.
	Related work

	Materials and methods
	Requirements collection
	1. A primitive history element, such as a patient encounter, lab test, prescription or correspondence event.
	2. Results limited by the date or the age of the patient at a specific point in a pattern.
	3. A time interval in which a medication has been prescribed, including overlapping prescriptions, or the start or end of such an interval.
	4. Time periods of variable length, with the possibility of specifying that a specified pattern should, or should not, occur during the period.
	5. Repetitive occurrence of a specified pattern.
	6. Sequences of specified patterns.
	7. Parallel occurrence of specified patterns.
	8. Alternative occurrence of specified patterns.
	9. The first occurrence of a pattern in the whole history.
	10. Specify encounter events and medication intervals at various points of abstraction in relevant coding hierarchies.
	11. Perform union and intersection set operations on query results.
	12. Save and re-use queries or their components.

	Table 1 - Natural-language specification of a query need
	Data source and data model
	Query language

	Figure 1 - Simple queries.
	Table 2 - The central structure of the query language
	Result visualization
	Understandability testing

	Figure 3 - Visualization of a query result
	Results
	1. When a time window was specified as having a duration between an upper and a lower limit, for example 0 and 12 months, test s...
	2. The test subjects made many errors where they seemed to assume that the query described the whole history and not just a fragment of it.
	3. Test subjects frequently and successfully used the match-aligned result visualization to check if their queries were correct.
	4. The test subjects made many errors related to not understanding that matches of parallel queries must cover the same time period.
	5. On tasks requiring nested branching constructs, test subjects seemed to strain under the mental effort required. Some ceased serious efforts to find a solution.

	Figure 4: Scores for test subjects 7-12 on the 25 tasks.
	Discussion
	1. It seems much more natural for users to interpret a minimum and maximum number of time units as time points defining a constant-length interval rather than as bounds on the duration of a flexible interval.
	2. Users may find it more natural to build a query describing the whole history rather than just a fragment.
	3. Match-aligned result visualization can help users correct their own thinking and build correct queries.
	4. Attention must be paid to make the visualization of branching constructs reflect their properties and reduce the effort required in reasoning about them.
	5. Refraining from giving examples, demonstration, assistance or feedback may make testing more effective in uncovering problems.

	Conclusion
	Acknowledgments

	References
	[1] Quaglini S, Ciccarese P, Micieli G, Cavallini A. Non- compliance with guidelines: motivations and consequences in a case study. Stud Health Technol Inform. 2004;101:75-87.
	[2] Fails JA, Karlson A, Shahamat L, Shneiderman B. A Visual Interface for Multivariate Temporal Data: Finding Patterns of Events across Multiple Histories. IEEE Symposium on Visual Analytics in Science and Technology 2006.
	[3] Hibino S, Rundensteiner EA. A visual multimedia query language for temporal analysis of video data. MultiMedia Database Systems, pages 123--159. Kluwer Aca, 1996.
	[4] Chittaro L, Combi C. Visualizing queries on databases of temporal histories: new metaphors and their evaluation. Data & Knowledge Engineering 2003;44:239-264.
	[5] Fowler M. UML Distilled, 3rd edition. Boston: Pearson, 2004.
	[6] Heer J, Card SK, Landay JA. prefuse: a toolkit for interactive information visualization. Proceedings of CHI’05, ACM Press, 2005.
	[7] Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B. Lifelines: Visualizing Personal Histories. Proceedings of CHI’96. ACM Press, 1996.
	[8] Allen J. Maintaining knowledge about temporal intervals. Communications of the ACM 1983:26(11):832-843.
	Address for correspondence

