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ABSTRACT

The safety of offshore operations is highly dependent on the dynamic positioning (DP) capability of
a vessel. Meanwhile, DP capability comes down to the ability of the thrust generated by thrusters
to counteract environmental forces. Therefore, it is significant to investigate which thrusters are im-
portant to the position-keeping ability of vessels. However, complex environmental factors make the
investigation of thrusters’ importance more complicated. Hence, this paper proposes a new method
to identify the influence of each thruster on vessel’s station-keeping capability in different sea states.
The station-keeping capability is quantified by a defined synthesized positioning ability criterion com-
prised by vessel position, heading angle, and consumed power. Through the comparison of different
machine learning approaches, support vector machine (SVM) is used for building a surrogate model
between DP capability and thrusters. In order to determine the most sensitive thruster in the whole
process of vessel operation, an improved sensitivity analysis (SA) called ‘PAWN’ is employed along
with statistical analysis to evaluate the significance of thrusters from different perspectives. Seventeen
cases are investigated with respect to different thruster failures in various sea states. The results show

the proposed method is able to identify the significance of each thruster in different scenarios.

1. Introduction

As the exploration and exploitation of marine resources
such as oil and gas, renewable energy and other minerals,
marine operations are becoming more and more frequent
in recent years. Due to the influence of environmental dis-
turbances, it represents significant safety and integrity chal-
lenges that shall threaten the offshore operations. For the
sake of safe offshore operations, vessels with dynamic po-
sitioning (DP) system are playing a critical role. They can
automatically maintain the desired position. In order to en-
sure that a loss of position shall not occur even after a worst-
case failure in all components, DP 2 and DP 3 are designed
with redundant power systems in which 20% of electrically
generated power shall be reserved [1]. The high position-
keeping ability of DP 2 and DP 3 enables them to work in
various offshore operations. Their wide applications have
drawn great attention from stakeholders. Many researchers
devoted to optimizing control parameters, improving con-
troller performance, and detecting thruster failure [2, 3, 4].
However, few of them investigated the interior relation be-
tween thrusters and the vessel’s DP capability. Hence, it is
of great potential to analyze the interaction among thrusters
and environmental factors for on-board support of the ves-
sel’s DP capabilities improvement.

In order to test the operational safety of DP vessels, a
digital twin is introduced and widely used in the service of
designing and evaluating system performance, safety, and
structural integrity. It is a digital model that integrates data

*Corresponding author
¥4 guoyuan. lientnu.no (G. Li)
ORCID(S): 0000-0001-7511-2910 (C. Wang); 0000-0001-7553-0899 (G.
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from varying sources, and can simulate all operations in the
real asset while saving time and money. The digital twin has
been successfully applied in a simulation of DP operations
as well as the assessment of DP capability [5]. As all DP
vessels carry a risk of loss of position, which has detrimen-
tal effects on personnel, the environment and equipment [6],
they have a high requirement of DP capability. For the as-
sessment of DP capability of a vessel, thruster’s failures are
also seen as the first concern in most of assessing guidelines
[7]. It makes sense to use digital simulation platform for in-
vestigating whether vessels can provide sufficient forces us-
ing the rest of thrusters to counteract against environmental
loads when a certain thruster failure occurs such as a tunnel
thruster failure or a main thruster failure.

To date, there have been many attempts to analyze
thruster failure in marine operations. Xu et al. developed
a novel synthesized criterion to analyze the positioning per-
formance of DP vessels. Various thruster failures were con-
sidered in the research [8]. Benetazzo et al. utilized a par-
ity space approach and a Luenberger observer to gain the
residuals. Next, the cumulative sum algorithm was applied
on these residuals to detect and isolate thruster failures [9].
Sheng et al. developed a program to investigate the DP capa-
bility of semi-submersible vessels under the case of thruster
failure [10]. This research contributed to demonstrating the
safety of the DP system and provided adequate guidance to
the thrust system’s design. Han et al. used a deep Con-
volutional Neural Network method to detect the potential
thruster failure [4]. This data-driven method had a good per-
formance to detect and isolate thruster failure without any
vessel-dependent models. However, the relation between
DP capability and thruster failures is not investigated further
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for papers as mentioned above. Xu et al. proposed a method
using sensitivity analysis (SA) to investigate the influence of
thrusters on positioning capability [11]. However, the paper
adopted local SA which can not reflect the characteristics of
vessel sea-keeping ability in whole input space. Cheng et
al. used global SA method to analyze thrusters’ importance
to ship heading [12]. Nevertheless different thruster failure
cases were not considered in their study. In a word, there
are few researches to carry out a comprehensive analysis of
how much contribution thrusters make to DP capability in
the case of various thruster failures and different sea states.

This paper proposes a novel methodology to analyze the
significance of each thruster on DP capability. It could not
only provide onboard support for improving DP capability,
but also give guidance for power system design as well as
thrusters’ maintenance with the help of statistical analysis
and SA. The predominant contributions are as follows: 1)
positioning capability is quantified by a designed synthe-
sized criterion made up of ship position, heading angle, and
consumed power; 2) machine learning (ML) and a modified
PAWN are combined to quantify the significance of each
thruster; 3) this method is applied to analyze the importance
of each thruster during DP operation in different failure con-
ditions and environmental load scenarios.

The rest of this paper is structured as follows: the next
section describes related works on DP capability assessment
and SA. Section 3 details the procedure of obtaining signifi-
cance of thrusters from data generation, data preprocessing,
an optimal ML selection to significance analysis. Section 4
compares the performance of ML based on the benchmark
function, and tests the ability of the proposed method to ana-
lyze the importance of thrusters using professional simulator
in a variety of scenarios. Section 5 is conclusion.

2. Related works

2.1. Dynamic positioning capability assessment

Some offshore operations, like oil production, pipe lay-
ing, and drilling, deeply rely on DP capability to maintain
vessel position or heading within an accepted criterion. Tra-
ditionally, dynamic positioning capability (DPCap) analysis
is performed based on industrial standards, such as ‘IMCA
M140’, ‘DNV GL ERN’, and ‘ABS skp’ [13]. DPCap stud-
ies test whether the vessel has favorable actuator capacity
to counteract environmental loads while keeping a constant
position [14]. However, they have limited ability to provide
other relevant and desired information. A significant short-
coming of the quasi-static DPCap analysis is the inability to
consider the transient conditions during a failure and recov-
ery after the failure [15].

These deficiencies call for the development of next-level
DP capability analysis. Dynamic capability (DynCap) was
proposed to determine the station-keeping capability of a
vessel using systematic time-domain simulations. It em-
ploys a complete six-degree of freedom (DOF) vessel model.
This model includes dynamic environmental loads, a com-
plete propulsion system with thrust losses and so on [15].

One of the advantages of the DynCap analysis, compared to
traditional DPCap, is that the limiting environment can be
computed by applying a set of user-defined acceptance cri-
teria. The position and heading excursion are set to allow a
wide or narrow footprint. The ‘DNVGL-ST-0111" standard
introduced detailed requirements, principles and acceptance
criteria [1]. It also provides complete analysis methods for
the three DP capability levels.

Many researchers have been working on DP capability
analysis for decades. Pivano et al. performed full-scale tri-
als using the DynCap method to validate a vessel’s station-
keeping capability [13]. Different comparisons were made
by statistics of time-domain data with various environmental
loads.

Xu et al. investigated positioning performances for DP
vessels considering thruster failure modes by a synthesized
criterion [8]. The criterion is used to quantify the positioning
ability by integrating positioning accuracy and consumed
power. However, these criteria can not fully represent the
DP capability from the perspective of statistics.

In this study, positioning capability refers to how well
the DP vessel is positioned, instead of the extremity of the
environmental conditions the vessel can counteract, as un-
derlined by [11]. Based on prior studies and our SA method
[16], positioning capability is quantified by time-series ship
parameters such as ship position, heading, and consumed
power. Some aforementioned statistics of time-domain data
to analyze the DP capability of offshore vessels were ac-
cepted and adopted.

2.2. Sensitivity analysis

SA is a powerful tool to identify how much the varia-
tion of model output can be apportioned to inputs [17]. SA,
in general, is made up of variance-based and density-based
methods.

Variance-based methods includes Sobol [18], the
Fourier Amplitude Sensitivity Test (FAST) [19], and the
Extend-FAST (EFAST) [20] and so on. A well-known ad-
vantage of variance-based methods is their ability to quan-
tify the individual parameter contribution and the contribu-
tion resulting from parameter interactions [21]. However,
variance-based methods do not completely represent the out-
put uncertainty when the model output is highly skewed
[22].

To overcome this drawback, a new method called
moment-independent global SA method—also known as
density-based method, was proposed, which includes an
Entropy-based sensitivity measure [23] and the 6-sensitivity
method [24]. However, optimal bandwidth selection has a
high computational cost. Hence, the development of these
methods has been limited. Francesca et al. came up with
a novel SA method called ‘PAWN’ that characterizes the
output distribution by its cumulative distribution function
(CDF) instead of probability distribution function (PDF)
[17]. One advantage of PAWN is that it hugely reduces com-
putational cost because there is no need to compute unknown
parameters for the approximation of empirical CDF. Another
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Figure 1: The system structure of significance analysis of thrusters in DP operations.

advantage is that sensitivity indices can be easily obtained,
by considering either entire range of variation of the model
output or a sub-range.

SA is widely applied for maritime applications with dif-
ferent purposes. Li et al. applied a derivative-based SA
method to simplify a neural network (NN) model so as to
predict ship motion [25]. Zhang et al. adopted a sum of
square derivatives to choose inputs for the nonlinear auto
aggressive model in order to create a compact ship motion
model [26]. Mizythras et al. proposed an SA to determine
parameters that have impacts on vessel propulsion and ma-
neuverability [27].

In this study, based on our previous experience [16], the
PAWN method is adopted to conduct an SA of thrusters. In
addition, we make some modifications and improvements
according to features of DP data.

3. System structure

This section outlines the procedure of significance anal-
ysis of thrusters in DP operations. The workflow consists
of three parts as shown in Fig. 1. The first part generates
raw simulated DP data by DP simulator which is considered
as a digital twin of a real vessel. Users are able to change
inputs to the simulator, such as sea states, desired position,
and thruster states, to simulate different scenarios to obtain
several data sets. After the behavior of vessel changes over
time, new raw sensor data are generated and come into the
digital platform for further modeling and simulation. The
second part is data analysis that is made of data preprocess-
ing and significance analysis. Outcomes of analysis are used
to offer on-board support of real vessel’s operations as well
as system optimization.

Figure 2: DP operations of a vessel at sea.

3.1. DP data generation

In the study, the DP data are generated from a profes-
sional simulator in the Offshore Simulator Centre — the
world’s most advanced provider of simulators for demanding
marine operations'. Fig. 2 illustrates the simulator conduct-
ing DP operation under the impact of environmental distur-
bances. Its position is limited within a red circle whose di-
ameter is denoted as R. The limit of heading is restricted by
red sector whose angle is represented as 6. Fig. 3 shows the
environmental effects on the ship. Wind with an attack an-
gle of a can be changed in the simulation. Current and wave
coming from other directions are fixed in the study. In Fig.
3, the Earth-fixed reference frame is denoted as (X, Yy).
The body-fixed reference frame (X,Y) is fixed on the body
of the vessel. Its origin is the vessel’s center of gravity. The
DP vessel is equipped with six thrusters including four tun-
nel thrusters (Thruster 1-4) and two main thrusters (Thruster
5 and 6). In the simulator, sea state, thruster state, and the

Thttps://osc.no/
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Figure 3: The thruster configuration of DP vessel.

desired position are all adjustable.

In this paper, two different sea states are investigated
as shown in Table 1. The desired position is set to (0,0).
Thruster states involve various thruster failure modes. Based
on our experiment design, after the corresponding thrusters
are shut off, the rest of thrusters are used for actuating vessel
to generate several groups of time-domain DP data. For each
sea state, experiments are performed on different thruster
failure modes. Then ship position and heading are obtained
after each experiment, and the other ship state parameters
such as thruster arguments are obtained as shown in Table
3. These time series data are raw DP data. They will be
processed in the following step.

Table 1
Sea states
Wind Wave Wave Current
Beaufort . . .
description velocity height period speed
(m/s) (m) (s) (m/s)
Fresh 7.90 1.30 6.50 0.75
breeze
Strong 1380 310 850  0.75
breeze

3.2. Data preprocessing

Data preprocessing makes it possible to ensure efficiency
and accuracy for computation of the computed PAWN sen-
sitivity indices. It requires three substeps that are splitting
data, denoising, and normalization. This experiment was set
as a ship that was intact at the beginning but in failure mode
by the end. The whole experiment produced a lot of time-
series DP data related to various combinations of thruster
failure modes and sea states. These data are full of anoma-
lies resulting from noise, which would threaten the accuracy
of SA. In this paper, Isolation Forest (iForest) was applied

for data cleaning. The iForest is an algorithm that uses a tree
structure to isolate instances [28]. It can (i) achieve a low lin-
ear time-complexity and a small memory-requirement, and
(i) deal with the effects of swamping and masking effec-
tively. iForest detection is a two-stage process. The first
stage uses the given training data to build an isolation tree.
The second one computes an average path length of each in-
stance through isolation trees.

Let X = [x{,Xp,...,X,,] € R"™ be a sample set of m
instances with d-variate distribution. Firstly, iForest is con-
structed by the proposed algorithm in [29]. Secondly, path
length A(x) of each instance is computed by counting the
number of edges from the root node to a leaf node in an iTree.
Next, Eq. (1) is used to gain c(y) that is the average of h(x)
given y.

2H(y — 1) =2(y = )/m y > 2,
cly)y=1 1 y =2, (D
0 otherwise.

where y is the subsampling size during the stage of building
an iForest; H(i) is the harmonic number which can be esti-
mated by Euler’s constant (In(i)+0.57721). Finally, Eq. (2)
is used to calculate the score of every instance:

E(h(x))

S y) =2 W @

where E(h(x)) is the expectation of 4(x) from the collection
of iTrees. If s is close to 1, then the instance is seen as an
anomaly and removed from the data set.

After data cleaning, these data need to be normalized in
the range of [0, 1] by Eq. (3) for the purpose of formulating
a synthesized criterion.

; x; — min(X)
= _ — i=1...1 3
max(X) — min(X)
where X = [X},%,,...,%] C R4 Therein, I is smaller

than m because some abnormal instances are removed. Af-
ter the procedure of data pre-processing, the processed data
will be used to create a synthesized criterion to construct a
surrogate model.

3.3. Significance analysis

Significance analysis is the last step to identify the sig-
nificance of thrusters. It is comprised of statistical analysis
and SA. These two methods can analyze the significance of
thrusters from different respects. Meanwhile, the integra-
tion of both methods can provide guidance for power alloca-
tion, DP system optimization. Statistical analysis focuses on
statistical features of DP data by virtue of mean, maximum
value, variance and PDF [13]. As a supplementary instruc-
tion for SA, it is able to show the variation of each of data
attributes intuitively. SA is capable of quantifying the con-
tribution of each thruster to DP capability. It is comprised of
three portions: 1) proposing a synthesized criteria to quan-
tify DP capability; 2) selecting an optimal ML method to
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build a surrogate model; 3) using PAWN to compute sensi-
tivity indices.

3.3.1. Synthesized criterion

To investigate the significance of every thruster on posi-
tioning capability in different sea states and failure modes, a
synthesized criterion that quantifies the positioning perfor-
mance needs to be defined. This criterion is used to eval-
uate how well the ship is positioned. According to the DP
capability level in ‘DNVGL-ST-0111" standard, assessment
of station-keeping capability is mainly based on statistics of
the position deviation and heading deviation. Therefore, po-
sition and heading should be integrated into the synthesized
criterion. In addition, for ensuring the safety and accuracy
of DP operations, the DP vessel has a higher power require-
ment than other conventional vessels [8]. Therefore, power
consumption is also taken into consideration in this crite-
rion. As a result, we create a synthesized criterion by Eq.
(4) to lump the above-mentioned ship parameters together,
with extra modification to make it adapt to the SA method.

V:(l)lXD+C()2XA+CO3XP
(Ul+a)2+a)3:1 (4)
Cri=-In(V) VvV >0.

where o, @,, and w5 are weighting factors within [0,1]; D is
position deviation computed by the distance between current
and original position; A denotes the heading angle variation;
P represents total power consumed by thrusters; Cri is the
synthesized criterion computed by the inverse of the mono-
tone increasing function ‘/n’. The larger V is, the worse the
positioning capability (Cri). Compared to the exponential
function in the interval [0,1], the minus of ‘/n’ function can
amplify the value of V to better reflect the distinction of po-
sitioning capability [30]. Cri will be used as the model out-
put when ML trains a surrogate model between thrusters’
parameters and DP capability.

3.3.2. Sensitivity analysis

A modified PAWN is adopted as an SA method to quan-
tify the influence of thrusters to positioning capability. Com-
pared with traditional method, it is able to overcome the is-
sue of being hard to define three parameters, i.e., the num-
ber of unconditional input samples (N,,), the number of con-
ditional input samples (IN..), and the number of conditional
points (n) [31].

Let (X,Y) be a generic sample where X is the pro-
cessed input samples; Y denotes the value of quantifying
DP capability. It is handled by splitting the range of input
factor X; into n equal subintervals I;. The PAWN indices
approximation is shown as follows:

S = KSU
! kinf.)f,l (i)

5
KSU) = max | F0) - By 015 € 1ol

where ) is sensitivity index; K.S' is Kolmogorov-Smirnov

statistic; F)(y) is unconditional CDF where y C Y and
Fy 1z, (yIx; € 1)) is conditional CDF where X; is fixed. Us-
ing Eq. (5) to compute the sensitivity index ensures there
is no need to specify N,. It coincides with the number of
points in I, as approximately N /n, where N is the size of
the generic sample. As for the unconditional sample N, a
better option is to use subsample of Y as the conditional ones
ie, N,=N,.

The process of SA executed by PAWN combined with
ML is shown in Algorithm 1. In this algorithm, ‘LIBSVM’
is used as an SVM tool to train the surrogate model [32].
The model training parameters like °s’, ‘t’, ‘bestc’, ‘bestg’,
‘p’, ‘v’, and the introduction of functions like ‘SVMcgFor-
Regress’, ‘libsvmtrain’, and ‘libsvmpredict’ can be found in
[32]. This algorithm mainly includes three parts. The first
part is modelling (line 2-6). The thrust of all thrusters is
the model input, and the positioning capability as defined
by Cri above is the model output. ML is employed to con-
struct a surrogate model between the model input and out-
put. The second part is resampling (line 6-7). ‘Uncon-
ditional_sampling’ is used to generate unconditional sam-
ples; ‘PAWN_sampling’ is used to gain conditional sam-
ples. The last part is sensitivity index computation (line 9-
10). The ‘PAWN’ indices of all thrusters are computed by
‘PAWN_index’. Its function is shown in line 11-17. Line
12-13 is to calculate the unconditional output and condi-
tional output. Line 14-16 is to compute the ‘PAWN’ index
using Eq. (5). Detailed computing process could be found in
[31]. The introduction of parameters and functions regard-
ing PAWN method can be found in [22].

Algorithm 1: SA algorithm
Input: T hrust ,Cri s,t,p,v
Output: SA_index
1 fori=1: numdo
X « Thrust
Y « Cri
[bestc, bestg] < SV McgForRegress(X,Y)
cmd < [s,t, bestc, bestg, p, U]
model < libsvmtrain(X,Y,cmd)
U < Unconditional_sampling
C <« PAW N_sampling
index(i) <« PAW N_index(U,C,model)

10 SA_index « index/num

11 Function PAW N _index(Xu, X X, model):
12 Yu <« libsvmpredict(Xu, model)

13 YY < libsvmpredict(X X, model)

14 [YF,Fu,Fcl « PAWN_cdf(Yu,YY)
15 KS <« PAW N _ks(YF, Fu, Fc)

16 index <« max(K.S)

17 return index

o 0 NS B R W N
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Table 2
Parameters of the offshore vessel.

Items Values
Length between perpendicilars [m]  82.7
Breadth [m] 23.0
Draught [m] 7.5
Tunnel thruster propulsion [KN] <173.0
Main thruster propulsion [KN] <1350.0
Table 3
The variables of DP data.
Inputs Unit
east position [m]
Ship status west position [m]
heading [deg]
rpm [RPM]
Thrusterl  thrust [KN]
consumed power [KW]
rpm [RPM]
Thruster2  thrust [KN]
consumed power [KW]
rpm [RPM]
Thruster3  thrust [KN]
consumed power [KW]
rpm [RPM]
Thruster4 thrust [KN]
consumed power [KW]
rpm [RPM]
Thruster5  thrust [KN]
consumed power [KW]
rpm [RPM]
Thruster6  thrust [KN]
consumed power [KW]

4. Case study

4.1. An optimal ML selection based on Ishigami
function

In order to find an optimal modeling method, first of
all, three prevalent ML methods, such as back propagation
(BP), regularized extreme learning machine (RELM), and
SVM, are introduced into training models [16, 33, 34]. Next,
PAWN combined with these three models is used to compute
sensitivity indices of three parameters of Ishigami function.
Finally, SA results are compared with a benchmark to iden-
tify the optimal ML method for analyzing the significance of

Table 4
Environment and thruster failures setting for significance anal-
ysis.

Thruster failure
011111
101111
110111
111011
111101
111110
110110
101111
110110
101111
110110

Sea states Attack angle [deg]

Strong breeze 45

Strong breeze 90

Strong breeze 135

101111
110110

Fresh breeze 45

thrusters.

In the course of determining an optimal ML method,
Ishigami function is selected as a mathematical model, be-
cause Ishigami is a widely-used benchmark model that is ap-
plied to test the validity of sensitivity analysis method [17].
It is shown in Eq. (6).

y = sin(x)) + asin(yy)* + by sin(yy) (6)

where a and b are random constants that can influence the
sensitivity index of y;, i € {1,2,3}. y; follows a uniform
distribution over [z, 7]. Here, we seta = 2 and b = 1. Fig.
4 displays SA results as well as benchmark value. The dotted
line is the benchmark value of sensitivity indices of the three
parameters y; in Eq. (6). The corresponding sensitivity in-
dices are .§,=0.53, 5,=0.19, and .55=0.35, respectively. Itis
evident that both BP and RELM cannot figure sensitivity in-
dex out correctly; whereas PAWN combined with SVM has
a better approximation to the benchmark. Therefore, SVM
is selected as modelling method in the follow-up sensitivity
analysis of thrusters in different scenarios.

4.2. Experimental design

This significance analysis of thrusters is conducted to de-
termine the variation of positioning capability apportioned
to each thruster. The specifications of the vessel are listed
in Table 2. This vessel is actuated by six thrusters shown
in Fig. 3. The actuator forces relate to the control forces
and moments by ¢ = T()f, where & = [£),....{,] € R?
is a vector of azimuth angles and T'(£) is the thrust con-
figuration matrix [35]. In this paper, £ is fixed. In or-
der to obtain the demanded thrust for each thruster, an un-
constrained least-squares (L.S) optimization problem is con-
structed. Through using Lagrange Multipliers to solve LS
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Figure 4: SA results computed by PAWN based on different
ML methods.

optimization problem, we can obtain f = Tz, where
TT = W-ITT(MW-1TT)~1 is recognized as the gener-
alised inverse (GI) matrix. Here, W is a positive definite
matrix weighting the control forces. The detailed reasoning
process has been interpreted in [35].

The attack angles «a is set as [45°,90°, 135°] for differ-
ent scenarios. The direction of current and wave is fixed for
simplifying the experiment. The limits of ship position and
heading are set as R = 3m and 6 = 6°, respectively. Table
4 lists four different combinations of sea states and attack
angle. They are ‘strong breeze 45°°, ‘strong breeze 90°’,
‘strong breeze 135°°, and ‘fresh breeze 45°°. For ‘strong
breeze 45°’, there are seven different thruster failure modes
represented by binary string: ‘011111°, ‘101111°, “110111°,
‘111011, “111101°, “111110°,°110110°. Here, ‘0’ denotes
the thruster is malfunctioning; ‘1’ denotes the thruster is
working normally. For example, ‘101111’ indicates the sec-
ond thruster is malfunctioning while the others are working
normally. The required parameters of ship states are listed
in the Table 3. The sampling frequency is set as 20HZ.

The synthesized criterion involves specifying three
weighting factors: ®;, @, and w;. In this study, we set
w; = 0.5, w, = 0.4, and w; = 0.1 based on the follow-
ing reasons. On the one hand, since DP vessels are designed
with the redundant power system, in general, 20% of power
will be reserved to avoid loss-of-position occurrence. That
indicates the power is sufficient to keep a vessel’s position
and heading during DP operations. Therefore, power uti-
lization was considered the least important factor in the crite-
rion. On the other hand, ship position is seen as the most sig-
nificant factor because the loss of position brings a more con-
siderable detrimental impact on DP operations than heading.
For PAWN, nis set to 10 based on the samples of data as well
as experience as described in other papers [16, 31].

In this paper, the experiment investigates the significance
of thrusters under circumstances of different thruster failures
in two sea states. Using the proposed method for timely com-

putation of thrusters’ sensitivity is studied as well.

4.3. Significance analysis in different thruster
failure modes at two sea states

This section mainly analyzes and compares SA results in
different environmental factors and thruster conditions. Ta-
ble 5 lists the SA results of thruster failures at the strong
breeze and fresh breeze sea states. It is found that thruster
5 is more significant than the rest of thrusters in most cases.
Its contribution accounts for around 30% ~ 40%. Especially,
when thruster 6 fails to work, the significance of thruster 5
exceeds 35% because thruster 5 as the only main propeller
must generate much more thrust to counteract the influence
of environmental disturbances. When one thruster failure
occurs, the significance of thrusters that play a complemen-
tary role will have a significant increase as shown in Table 5.
For example, the PAWN index of thruster 6 increases from
8% to 30% when thruster 5 fails in ‘strong breeze 45°’. The
same happens to thruster 1 and 2. For the case of ‘101111” in
‘strong breeze 45°’, for instance, the significance of thruster
1 rises by 13% up to 26.42%. For dual thruster failure
‘110110’ in all sea states, at least two of tunnel thrusters’
significance go up to over 20% compared with one thruster
failure. That possibly results from the drastic variation of
the ship heading. It is reflected from the above analysis that
the significance of thrusters depends on the conjunction of
sea states, wind direction as well as thruster failures.

Next, significance analysis of thrusters is carried out in
detail from the respect of statistics and SA. In order to illus-
trate how to do analysis by SA coupled with statistical anal-
ysis, we will use ‘111111” in the case of strong breeze with
attack angle 45° as an example. For the case of "111111” in
‘strong breeze 45°°, an average of thrust and SA results are
shown in Fig. 5. The left y-axis represents the PAWN in-
dex of each thruster while the right one denotes mean value
of thrust. These two analysis methods are able to show the
importance of thrusters from their own perspective. In addi-
tion, there are interior connections between these two meth-
ods. The results of SA show that the order of importance
of thrusters is quite as similar as that of statistical analysis.
The PAWN index shows that thruster 5 has the most influen-
tial effect on positioning capability, at 29.76%. The second-
largest effect is thruster 4, accounting for roughly 22.46%.
Thrusters 3, 1, 2, and 6 follow in that order. Thruster 6 makes
only an 8.17% contribution to the station-keeping ability of
DP vessel despite its similarities to thruster 5, which makes
the largest contribution. However these two methods show
some distinctions, such as inconsistency of SA results with
statistical analysis for thruster 6.

From the perspective of statistics, thruster 6 has as much
thrust as thruster 5 as shown in Fig. 6. The mean and vari-
ance of thrust generated by thruster 5 are the same as those
generated by thruster 6. The two thrusters also consume the
same amount of power and have similar statistical features.
But observing results obtained by the proposed SA method
in Fig. 5, in which all SA indices are drawn as blue bars,
shows that thruster 6 is far less significant than thruster 5. It
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Table 5

SA results of thruster failures in strong breeze and fresh breeze.
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Figure 5: The SA result and average thrust of 6 thrusters for
‘111111" in ‘strong breeze 45°'.

is even less than thruster 2. It reveals that SA results do not
entirely conform with results obtained by statistical analysis.
Both methods did give us insights that thruster 6 consumed
amounts of power but generated too much useless force in
this case.

To obtain more insights from Fig. 5, thrusters 4 and 6 are
for detailed investigation. Fig. 7 displays the PDF of power
consumed by thrusters 4 and 6 respectively. The power con-
sumed mostly appears in the interval [100 KW, 600 KW],

Sea states | Direction (deg) Thruster PAWN index
failure Thrl Thr2 Thr3 Thrd Thrb Thr6
111111 | 0.1342 | 0.1040 | 0.1576 | 0.2246 | 0.2976 | 0.0817
011111 0 0.3701 | 0.1448 | 0.1480 | 0.2284 | 0.1087
.5 101111 | 0.2642 0 0.0604 | 0.1069 | 0.3222 | 0.2459
110111 | 0.1992 | 0.2080 0 0.0850 | 0.3058 | 0.2019
Strong 111011 | 0.1415 | 0.2483 | 0.0853 0 0.3472 | 0.1775
breeze 111101 | 0.2629 | 0.1839 | 0.1433 | 0.1098 0 0.3000
111110 | 0.1674 | 0.1225 | 0.1435 | 0.1456 | 0.4209 0
110110 | 0.2106 | 0.2026 0 0.2050 | 0.3818 0
% 111111 |0.2877 | 0.1211 | 0.0829 | 0.1485 | 0.1313 | 0.2283
101111 | 0.2723 0 0.1103 | 0.1100 | 0.2985 | 0.2089
110110 | 0.0737 | 0.3337 0 0.2392 | 0.3534 0
135 111111 | 0.1832 | 0.1638 | 0.1224 | 0.1888 | 0.2544 | 0.0873
101111 | 0.0987 0 0.3491 | 0.3273 | 0.1268 | 0.0980
110110 | 0.2285 | 0.4016 0 0.0997 | 0.2702 0
111111 | 0.1373 | 0.0729 | 0.1317 | 0.0771 | 0.3460 | 0.2350
Fresh 45 101111 | 02591 | 0 | 0.1007 | 0.0901 | 0.3401 | 0.2099
breeze 110110 | 0.1826 | 02113 | 0 | 02282 |0.3780 | 0
5 %1073

—— Thr5:mean=608 KW,var=2.50 x 10° KW>

2 /\ Thr6:mean=564 KW,var=2.46 x 10° KW? |
' \ /\ 1
.

; T \ \
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—— Thr6:mean=84 KN,var=387 KN
15+ ]
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Generated thrust [KN]

Figure 6: The PDF of consumed power and thrust generated
by thrusters 5 and 6 for ‘111111’ with strong breeze and a =
45°.

which is far less than the power consumed by thruster 6 as
shown in the blue area. Moreover, the mean of thrust gener-
ated by thruster 4 is far less than that generated by thruster
6. Based on Fig. 5 and Fig. 7, we can find that thruster
6 consumed more power and generated more thrust but less
contribution than thruster 4.

Through SA and statistical analysis, it is definitely found
that some thrusters have fewer influences on DP capabil-
ity, although they consumed more power. That results in
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Figure 7: The power consumed by thrusters 4 and 6 in ‘strong
breeze 45° 111111'.

a waste of power. Therefore, significance results could be
used to provide guidance to improve the power allocation al-
gorithm. For example, sensitivity indices as weighting fac-
tors are added into the algorithm. In this case, thruster 6
with high power consumption but a little contribution to DP
capability will be reallocated less power by the power sys-
tem. Instead, more power should be redistributed to thruster
4, which could improve DP capability with low power con-
sumption.

4.4. Real-time computation of thrusters’
sensitivity

Although the existing method is efficient to analyze the
thrusters’ significance in [11], it is not competent in the real-
time computation of thrusters’ sensitivity. This section is to
verify the feasibility of the proposed method in estimating
thrusters’ sensitivity online.

A simulation experiment is carried out when thruster
state changes from ‘111111” to ‘011111” in ‘strong breeze
45°’. The thrust generated by thrusters is shown in Fig. 8.
Red dotted line represents the point at which thruster 1 fails
to work. In order to visualize each curve clearly, multiple
shifts of 80 KN along the y-axis direction is performed for
thruster 2-6. In fact, the value of the thrust of all thrusters
starts from 0.

Fig. 9 shows the variation of sensitivity indices of
thrusters over time. The horizontal axis denotes sensitivity
index is computed at a window time of 25s that comprises
500 sample points. Evidently, the proposed method is able
to gain the contribution of each thruster to the DP capability
in the process of vessel counteracting against environmental
forces. Especially, when thruster 1 shuts down at 650s de-
picted by a red circle, the importance of thruster 1 becomes
0 thereafter. On the other hand, thruster 2 plays a more and
more important role since this point. This is because thruster
1 and 2 are bow thrusters, as shown in Fig. 3, the malfunc-
tion of thruster 1 leads to the rise of thruster 2 importance in

500 ) .
, —— Thrl
1 ——Thr2
400 . ——Thr3 | |
: Thr4
1 ——Thr5
2 300 : Thr6 |
< |
17 1
E200¢t ]
= 1
}
1
100 + 1
}
1
0 4
L L 1

0 250 500 750 1000 1250 1500 1750
Time [s]

Figure 8: Time-domain variation of thrust from ‘111111’ to
‘011111,

the long term. In addition, the importance of other thrusters
rises to some extent as well after thruster 1 fails to work.

At the point of 650s, the detailed information can be
found in the Fig. 10. From this figure, the importance of
thruster 2 and 4 grow rapidly compared with other thrusters.
Therefore, the instant change of the indices could provide
the operator evidence to improve the power-consuming of
thruster 2 and 4 to promote the DP capability quickly after
the failure of thruster 1.

To sum up, the proposed method is capable of finding
the contribution of all thrusters in a real-time manner.

4.5. Discussion

For the case of ‘111111 in ‘strong breeze 45°’ in Fig.
6, the discrepancy in terms of power and thrust between
thruster 5 and 6 possibly results from the fact that the rudder
angle of main thrusters is fixed. As shown in Fig. 3, in order
to resist the wind whose attack angle is 45°, thruster 5 must
bear much more load than thruster 6. Therefore, the power
and thrust of thruster 5 vary more drastically compared with
those of thruster 6. It can be shown from the above analysis
that thruster’s importance is affected by a synthesized factor,
including the configuration of thrusters, the attack angle of
sea states, and the thrust allocation algorithm.

In Fig. 4, the result of BP and ELM is not as ideal as
that of SVM. This situation mainly results from the limited
training sample on account of online significance analysis.
Considering the requirement of on-board support, therefore,
SVM is used for the real-time estimation of sensitivity in-
dices. Since the sensitivity index computed by SVM can
converge to a stable value after 500 training samples, we
chose a window time of 25s corresponding to 500 training
samples under the sampling frequency of 20HZ in Section
4.4.

Chunlin Wang et al.: Preprint submitted to Elsevier

Page 9 of 11



Figure 9: Real-time computation of the significance of thrusters.
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Figure 10: The instant variation of the significance of thrusters

before and after thruster 1 failure.

5. Conclusion

This paper proposes a method that mainly focuses on
studying the significance of thrusters based on a synthesized
positioning capability criterion in different thruster failure
conditions. In order to quantify the DP capability, a synthe-
sized assessment criterion is proposed by integrating ship
position, heading and power. Next, the Ishigami function
is used as a benchmark to determine an optimal modelling
method. Through the comparison with ANN and ELM,
SVM is selected to construct a surrogate model between
thrusters and DP capability. Finally, different thruster fail-
ure cases in two sea states are designed to elaborate on how

Time [s]

1250
1500
1750

statistical features and SA are combined to quantify and an-
alyze the significance of thrusters.

The purpose of significance analysis results is as follows:
1) they can provide onboard support to control power system
to allocate more power to the most significant thruster when
thruster fails to work, which contributes to efficiently im-
proving DP capability; 2) they also can be used to provide
guidance to optimize power allocation. By observing statis-
tics of power, and sensitivity results, thrusters that consumed
more power but made much less contribution to positioning
capability should be reallocated less power. This is able to
be accomplished by, for example, adding sensitivity indices
as weighting factors into the allocation algorithm. That is
helpful to improve vessel’s DP capability with less power
consumption.

For future work, efforts will be put on investigating the
impact of azimuth thrusters and the thrust allocation logic
on the significance of thrusters in DP operations.

Acknowledgment

The research is supported by a grant from the IKTPLUSS
Project “Remote Control Centre for Autonomous Ship Sup-
port” ( Project nr: 309323), and by a grant from the Re-
search Based Innovation “SFI Marine Operation in Virtual
Environment (SFI-MOVE)” (Project nr: 237929) in Nor-
way. The author Chunlin Wang would like to thank the spon-
sorship of the Chinese Scholarship Council for funding his
research at Norwegian University of Science and Technol-
ogy. The authors would like to thank Offshore Simulator
Centre for their support in relation to performing the simu-
lation study.

Chunlin Wang et al.: Preprint submitted to Elsevier

Page 10 of 11



634

635

References

(1]
[2]
(3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

D. AS, Assessment of station keeping capability of dynamic position-
ing vessels (2016).

D. Lee, S. J. Lee, S. C. Yim, Reinforcement learning-based adaptive
pid controller for dps, Ocean Engineering 216 (2020) 108053.

A. H. Brodtkorb, S. A. Verng, A. R. Teel, A. J. Sgrensen, R. Skjetne,
Hybrid controller concept for dynamic positioning of marine vessels
with experimental results, Automatica 93 (2018) 489-497.

P. Han, G. Li, R. Skulstad, S. Skjong, H. Zhang, A deep learning
approach to detect and isolate thruster failures for dynamically posi-
tioned vessels using motion data, IEEE Transactions on Instrumenta-
tion and Measurement (2020).

R. Skulstad, G. Li, T. I. Fossen, B. Vik, H. Zhang, Dead reckoning
of dynamically positioned ships: Using an efficient recurrent neural
network, IEEE Robotics & Automation Magazine 26 (3) (2019) 39—
S1.

H. Chen, B. Nygird, et al., Quantified risk analysis of dp operations-
principles and challenges, in: SPE International Conference and Ex-
hibition on Health, Safety, Security, Environment, and Social Respon-
sibility, Society of Petroleum Engineers, 2016.

A. Karlsen, L. Pivano, E. Ruth, Dnv gl dp capability-a new stan-
dard for assessment of the station-keeping capability of dp vessels,
in: proceedings of Marine Technology Society (MTS) DP Confer-
ence, Houston (TX), USA, 2016, pp. 1-15.

S. Xu, X. Wang, L. Wang, X. Li, Investigation of the positioning
performances for dp vessels considering thruster failure modes by a
novel synthesized criterion, Journal of Marine Science and Technol-
ogy (2017) 1-15.

F. Benetazzo, G. Ippoliti, S. Longhi, P. Raspa, Advanced control for
fault-tolerant dynamic positioning of an offshore supply vessel, Ocean
Engineering 106 (2015) 472-484.

X. U. Sheng wen, X. F. Wang, L. Wang, A dynamic positioning ca-
pability analysis for a semi-submersible considering thruster failure
mode, Journal of Ship Mechanics (2016).

S. Xu, X. Wang, L. Wang, S. Meng, B. Li, A thrust sensitivity
analysis based on a synthesized positioning capability criterion in
dpcap/dyncap analysis for marine vessels, Ocean Engineering 108
(2015) 164-172.

X. Cheng, G. Li, R. Skulstad, S. Chen, H. P. Hildre, H. Zhang,
A neural-network-based sensitivity analysis approach for data-driven
modeling of ship motion, IEEE Journal of Oceanic Engineering 45 (2)
(2019) 451-461.

L. Pivano, D. Nguyen, @. Smggeli, Full-scale validation of a vessel’s
station-keeping capability with dyncap, in: ASME 2017 36th Interna-
tional Conference on Ocean, Offshore and Arctic Engineering, Amer-
ican Society of Mechanical Engineers, 2017, pp. VO09T12A054—
VO09T12A054.

L. Wang, J.-m. Yang, S.-w. Xu, Dynamic positioning capability anal-
ysis for marine vessels based on a dpcap polar plot program, China
Ocean Engineering 32 (1) (2018) 90-98.

L. Pivano, @. Smggeli, S. Muddusetti, J. Ramsey, Better analysis-
better data-better decisions-better operational risk management= de-
livery of incident free operations: Enabled by dyncap, in: Dyn. Posi-
tion. Conf, 2014.

C. Wang, X. Cheng, S. Chen, G. Li, H. Zhang, A svm-based sensi-
tivity analysis approach for data-driven modeling of ship motion, in:
2018 IEEE International Conference on Mechatronics and Automa-
tion (ICMA), IEEE, 2018, pp. 803-808.

F. Pianosi, T. Wagener, A simple and efficient method for global sen-
sitivity analysis based oncumulative distribution functions, Environ-
mental Modelling and Software 67 (2015) 1-11.

V. Todorov, I. Dimov, T. Ostromsky, S. Apostolov, R. Georgieva,
Y. Dimitrov, Z. Zlatev, Advanced stochastic approaches for
sobol’sensitivity indices evaluation, Neural Computing and Applica-
tions (2020) 1-16.

S. Tarantola, T. A. Mara, Variance-based sensitivity indices of com-
puter models with dependent inputs: The fourier amplitude sensitivity
test, International Journal for Uncertainty Quantification 7 (6) (2017).

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

I. Kovacs, A. Iosub, M. Topa, A. Buzo, G. Pelz, A gradient-based
sensitivity analysis method for complex systems, in: 2019 IEEE 25th
International Symposium for Design and Technology in Electronic
Packaging (SIITME), IEEE, 2019, pp. 333-338.

F. K. Zadeh, J. Nossent, F. Sarrazin, F. Pianosi, A. V. Griensven,
T. Wagener, W. Bauwens, Comparison of variance-based and
moment-independent global sensitivity analysis approaches by appli-
cation to the swat model, Environmental Modelling & Software 91 (C)
(2017) 210-222.

F. Pianosi, F. Sarrazin, T. Wagener, A MATLAB toolbox for global
sensitivity analysis, Elsevier Science Publishers B. V., 2015.

W. Yun, Z. Lu, X. Jiang, An efficient method for moment-independent
global sensitivity analysis by dimensional reduction technique and
principle of maximum entropy, Reliability Engineering & System
Safety 187 (2019) 174-182.

E. Plischkeabc, Global sensitivity measures from given data, Euro-
pean Journal of Operational Research 226 (3) (2013) 536-550.

G. Li, B. Kawan, H. Wang, H. Zhang, Neural-network-based mod-
elling and analysis for time series prediction of ship motion, Ship
technology research 64 (1) (2017) 30-39.

W. Zhang, Z. Liu, Real-time ship motion prediction based on time
delay wavelet neural network, Journal of Applied Mathematics 2014
(2014).

P. Mizythras, E. Boulougouris, A. Priftis, A. Incecik, O. Turan,
D. Reddy, Sensitivity analysis of the tool for assessing safe manoeu-
vrability of ships in adverse sea conditions, in: International Confer-
ence on Shipping in Changing Climates 2016, 2016, pp. 1-13.

M. Schneider, W. Ertel, F. Ramos, Expected similarity estimation for
large-scale batch and streaming anomaly detection, Machine Learning
105 (3) (2016) 1-29.

F. T. Liu, K. M. Ting, Z. H. Zhou, Isolation-based anomaly detection,
Acm Transactions on Knowledge Discovery from Data 6 (1) (2012)
1-39.

S. Kuhlmann, M. Tressl, Comparison of exponential-logarithmic and
logarithmic-exponential series, Mathematical Logic Quarterly 58 (6)
(2012) 434-448.

F. Pianosi, T. Wagener, Distribution-based sensitivity analysis from
a generic input-output sample, Environmental modelling & software
108 (2018) 197-207.

C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector ma-
chines, ACM Transactions on Intelligent Systems and Technology
2 (2011) 27:1-27:27, software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

K. Cui, X. Jing, Research on prediction model of geotechnical param-
eters based on bp neural network, Neural Computing and Applications
31 (12) (2019) 8205-8215.

Z. Shao, M. J. Er, An online sequential learning algorithm for regu-
larized extreme learning machine, Neurocomputing 173 (2016) 778-
788.

T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control, John Wiley & Sons, 2011.

Chunlin Wang et al.: Preprint submitted to Elsevier

Page 11 of 11


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

