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A B S T R A C T   

The paper considers the inventory routing problem with the Maximum Level replenishment policy. Here, the 
supplier is in charge of replenishing goods to a number of customers and can decide when, and in what order, 
these customers should be visited over a defined time period. The goal is to minimize transportation costs and 
inventory holding costs at both the supplier and the customers. We present a matheuristic that uses a giant tour 
and simple operators to heuristically create routes that are used in a path-flow formulation. The proposed 
method iterates between solving a path-flow model with a small set of routes and updating the route set based on 
the optimal solution from the previous iteration. Computational results on known benchmark instances show 
that it outperforms state-of-the-art exact methods and heuristics on larger and more difficult instances. It finds 
the best-known solution on 179 out of 240 larger multi-vehicle benchmark instances, where 178 of them are 
strictly improving upon the previously best-known solution, and does so in considerably shorter time compared 
with other methods. In addition, when tested on another set of benchmark instances consisting of 798 smaller 
instances, the matheuristic finds the optimal solution in 44.7% of the 642 instances with known optima and has 
an average gap of 1.75% on the others. It also improves the best-known solution of 14 out of 156 open instances.   

1. Introduction 

With an increasing amount of online retailing and goods delivery, 
research on efficient routing and inventory control is highly relevant and 
applicable. Better goods transportation and inventory control can lead to 
significant savings for companies and potentially lower greenhouse gas 
emissions. The focus of this paper is on the standard inventory routing 
problem (IRP) with the Maximum Level replenishment policy, a well- 
studied problem described in great detail by several authors including 
Archetti et al. (2017), Coelho et al. (2014), Adulyasak et al. (2014), 
Desaulniers et al. (2016) and Archetti et al. (2017). The IRP is a part of a 
business practice called vendor-managed inventory (VMI) where the 
supplier decides how much quantity of goods it should deliver to each of 
its customers and when to do so. The entire supply chain may benefit as 
a result of this comprehensive planning as it can lead to better routing 
and inventory control, while ensuring that the customers’ storage limits 
are respected. However, the IRP has proven to be a very challenging and 
computationally hard problem to solve. 

Several papers have been written on the standard IRP, and there exist 
two relevant surveys from the last decade. The first one by Andersson 
et al. (2010) focused on different applications of the IRP, while the 
second one by Coelho et al. (2014) studied the methodological aspects. 

Integrating inventory management and vehicle routing in the scientific 
literature started with the paper of Bell et al. (1983), and the first exact 
method on the standard IRP itself was proposed by Archetti et al. (2007). 
The authors used a branch-and-cut algorithm to solve the single-vehicle 
IRP and solved instances up to 50 customers with three time periods and 
up to 30 customers with six time periods to optimality. They also 
introduced one of the two sets of benchmark instances that most re
searchers have worked on since. This set of instances consists of 798 
small instances for up to five vehicles. The multi-vehicle version of the 
standard IRP was solved exactly by Coelho and Laporte (2013) and 
Adulyasak et al. (2014) with branch-and-cut algorithms, while Desaul
niers et al. (2016) used a branch-cut-and-price algorithm. Avella et al. 
(2018) defined a new generic family of valid inequalities for the IRP and 
solved the problem with a branch-and-cut algorithm using two specific 
subclasses of the proposed valid inequalities. This method tightened the 
duality gap of several of the small benchmark instances. 

Two additional branch-and-cut algorithms were developed by 
Guimarães et al. (2020) and Manousakis et al. (2020). The former 
employed two techniques to find improved primal solutions during the 
branch-and-cut search. The authors were able to close the duality gap for 
several instances and found new best-known solutions for 129 instances 
in the set of small benchmark instances. The latter proposed a two- 
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commodity flow formulation for the problem and was with the help of a 
good starting heuristic able to improve the best-known solution of 139 
instances in a set of 300 large benchmark instances introduced by 
Archetti et al. (2012). 

None of the exact methods described above have been able to solve 
larger multi-vehicle instances to optimality. Further, the duality gap can 
become very large when the size of the instances increases, and often no 
feasible solution is found within a reasonable time frame when an exact 
method is used. There is, consequently, a need for good heuristics for the 
IRP, and several have been developed over the years. Coelho et al. 
(2012b) developed an adaptive large neighborhood search (ALNS) 
heuristic for the IRP with transshipment, which the authors also tested 
on the single-vehicle IRP. An ALNS for the multi-vehicle version has 
been designed by Adulyasak et al. (2014), who solved instances with two 
and three vehicles. 

The complexity of the IRP has led most researchers to integrate 
mathematical programming techniques into their heuristics. These types 
of heuristics, regardless of the type of problems they are applied to, have 
come to be known as matheuristics. A definition of what a matheuristic is 
was proposed by Boschetti et al. (2009) as: “Matheuristics are heuristic 
algorithms made by the interoperation of metaheuristics and mathe
matical programming techniques”. This is also the definition used by 
Archetti and Speranza (2014) in their survey on matheuristics for 
routing problems. The authors classified matheuristics in three cate
gories: Decomposition approaches, improvement heuristics and branch- 
and-price/column generation-based approaches. They also show that 
matheuristics are used to a large extent on problems similar to the IRP, e. 
g. the vehicle routing problem (VRP), the production routing problem 
and the location routing problem. 

To the authors’ knowledge, the first matheuristic used to solve the 
standard IRP was developed by Archetti et al. (2012). It is a hybrid 
heuristic that combines tabu search with the solution of mixed integer 
programs (MIP) and can be classified as an improvement heuristic. The 
authors studied the single-vehicle case and, as previously mentioned, 
released the second set of benchmark instances that most researchers use 
today. The same authors extended the method for the multi-vehicle 
version in Archetti et al. (2017). It is both a decomposition and an 
improvement search, combining a tabu search heuristic with solving 
MIPs. The solutions of 92% of the larger multi-vehicles instances were 
improved. However, many of these solutions were further improved by 
Chitsaz et al. (2019) with their three-phase decomposition matheuristic 
which relies on the iterative solution of different subproblems. Although 
designed for the assembly routing problem, the algorithm was able to 
find new best-known solutions for 194 out of 300 large instances for the 
IRP. Another matheuristic was proposed by Alvarez et al. (2020). They 
developed a hybrid heuristic, combining an iterative local search met
aheuristic and two mathematical programming components, to solve the 
IRP with perishable products. The authors also tested the algorithm on 
the standard IRP and improved the best-known solution for a few 
smaller instances. An additional matheuristic for the IRP was presented 
by Diniz et al. (2020). Here, the authors combined an iterative local 
search with a randomized variable neighborhood descent, and were able 
to find and improve the best-known solutions of several small bench
mark instances. 

As seen in the paragraphs above, there are several exact methods and 
heuristics designed for, and applied to, the IRP. Smaller instances of the 
IRP can be solved to optimality by exact methods, while heuristics 
outperform exact methods on larger instances. Even though there exists 
heuristics for the IRP, there is still room for improvement, especially 
when it comes to larger instances. Many of the proposed solution 
methods cannot be applied to the largest instances due to the compu
tational complexity, and those that can, suffer from long computing 
times. 

The purpose of this paper is to present a new matheuristic to solve 
large instances of the IRP in shorter computing times. The matheuristic 
iteratively solves an exact mathematical model with a limited number of 

routes. The set of routes used in the first iteration is generated from a 
giant tour, and is modified by different operators between each itera
tion. It is tested on known benchmark instances for the IRP and finds 
new best solutions on 178 out of 240 instances with multiple vehicles, 
and a further seven new best-known solutions for the single-vehicle case. 
These improved solutions have also been found in only a small fraction 
of the time spent by other heuristics in the literature. 

The remainder of the paper is organized as follows. In Section 2, the 
standard IRP is defined and presented mathematically, while our 
matheuristic is presented in detail in Section 3. Our computational re
sults are reported in Section 4 and concluding remarks are presented in 
Section 5. 

2. Problem definition and formulation 

The inventory routing problem concerns the repeated distribution of 
goods from a supplier to a set of customers over a given planning ho
rizon. We formulate this problem on a graph G(N ,A ) where N is a set 
of nodes N = {0,1,…,N} consisting of N customers and a supplier 
denoted 0. We also introduce N

′

= {1,…,N} as the set of customers. 
The set of arcs A defines movements between each pair of nodes. The 
problem is defined over a time horizon T = {0,1,…,T} and we also 
introduce the set of planning time periods T

′

= {1,…,T}. 
In each time period, V vehicles with capacity Q can be used to deliver 

the goods. There is a driving cost Cij, associated with each arc (i, j) ∈ A . 
Customer i has a known demand for the commodity, Rit, in each time 
period t and a maximum, Ui, and minimum, Li, inventory capacity. The 
supplier produces R0t units of the commodity at the beginning of each 
time period t. Both the supplier and the customers have an inventory 
holding cost CH

i per unit of commodity at the end of each time period. 
Each customer can only be visited once per time period. The problem 
consists of minimizing the transportation and inventory costs of the 
entire supply chain while making sure that no stock-outs occur. 

2.1. A path-flow formulation 

The proposed path-flow formulation requires some additional nota
tion. The set R contains all routes. A route is a Hamiltonian cycle 
through a subset of the nodes including the supplier. Introducing Aijr as 1 
if route r traverses arc (i, j), and 0 otherwise, the cost of route r can be 
defined as CT

r =
∑

(i,j)∈A CijAijr. The variable λrt is 1 if route r is used by a 
vehicle in time period t, and 0 otherwise. The amount of commodity 
delivered at node i in time period t is denoted qit and the inventory level 
at node i at the end of time period t is denoted sit. The inventory at node i 
at the beginning of the planning horizon is represented by Ii0. Finally, let 
lijt be the flow of commodity on arc (i, j) in time period t. With this no
tation, the model can be formulated as follows: 

min
∑

i∈N

∑

t∈T
′

CH
i sit +

∑

r∈R

∑

t∈T
′

CT
r λrt (1)  

si0 = Ii0 i ∈ N (2)  

s0t − s0(t− 1) − R0t +
∑

i∈N
′

qit = 0 t ∈ T
′

(3)  

sit − si(t− 1) +Rit − qit = 0, i ∈ N
′

, t ∈ T
′

(4)  

Li⩽sit⩽Ui i ∈ N , t ∈ T (5)  

si(t− 1) + qit⩽Ui i ∈ N
′

, t ∈ T
′

(6)  

∑

j∈N

ljit − qit −
∑

j∈N

lijt = 0 i ∈ N
′

, t ∈ T
′

(7)  
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lijt − Q
∑

r∈R

Aijrλrt⩽0 (i, j) ∈ A , t ∈ T
′

(8)  

∑

r∈R

∑

j∈N

Aijrλrt⩽1 i ∈ N
′

, t ∈ T
′

(9)  

∑

r∈R

λrt⩽V t ∈ T
′

(10)  

λrt ∈ {0, 1} r ∈ R , t ∈ T
′

(11)  

qit⩾0 i ∈ N
′

, t ∈ T
′

(12)  

lijt⩾0 (i, j) ∈ A , t ∈ T
′

(13) 

The objective function (1) minimizes the transportation and in
ventory holding costs over the entire planning horizon, while constraints 
(2) set the starting inventory level at each node. The inventory balance 
at the supplier and the customers are taken care of by constraints (3) and 
(4). Moreover, the upper and lower limits on the inventory level at each 
node are handled by constraints (5) and (6). Constraints (7) ensure that 
the flow of goods out of a node is equal to what comes in except for the 
amount that is delivered. Constraints (8) make sure that the flow on an 
arc does not exceed the vehicle capacity, while constraints (9) state that 
two routes that visit the same node are not used in the same time period. 
With constraints (10) we make sure that the maximum number of 
available vehicles is not exceeded. Moreover, constraints (11) state that 
a route is either used or not while constraints (12) and (13) impose non- 

negativity for the other variables. 

2.2. Valid inequalities 

The following valid inequalities, first introduced by Coelho and 
Laporte (2014) for the IRP, have been adapted for the path-flow 
formulation and added to the model. 

∑

r∈R

∑t2

t′ =t1

Airλrt′ ⩾⌈
∑t2

t′ =t1
Rit′ − Ui

min{Q,Ui}
⌉ i ∈ N

′

, t1, t2 ∈ T
′

, t2⩾t1 (14)  

∑

r∈R

∑t2

t′ =t1

Airλrt′ ⩾
∑t2

t′ =t1
Rit′ − si(t1 − 1)

min{Q,Ui,
∑t2

t′ =t1
Rit′ }

i ∈ N
′

, t1, t2 ∈ T
′

, t2⩾t1 (15)  

Constraints (14) state that if the sum of the demands in a node over time 
periods t1 to t2 is greater than the inventory limit, then there must be at 
least one visit to this node in the interval. Constraints (15) state the 
same, but here the actual inventory at the node at the start of time period 
t1 is taken into account instead. Rounding this up is not possible since 
the expression then becomes non-linear. The inequalities are also 
strengthened by adding the total demand for node i to the denominator. 

3. Matheuristic 

The formulation given in Section 2.1 is a valid and complete 
formulation for the IRP given that the set of routes, R , includes every 
feasible route in the graph G. However, the number of feasible routes 

Fig. 1. The matheuristic first creates a set of routes using a giant tour and a split algorithm. These routes are used to solve a modified version of the path-flow model. 
The model is from there on solved iteratively where the routes of the current best solution are used to create a new set of routes. 
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grows exponentially with the number of customers and thus becomes so 
large that, even for small instances, it is not possible to generate all of 
them within a reasonable amount of time. However, the number of 
routes used in any feasible solution is bounded by V⋅T. Thus, it is 
possible to obtain feasible (and optimal) solutions to the problem by 
replacing R with a small set of routes R̂ , given that |R̂ | is in the same 
magnitude as V⋅T. 

The matheuristic presented in this paper exploits this fact by itera
tively generating a set of promising routes and then solving the path- 
flow model presented in Section 2.1 using this subset. The outline of 
our heuristic solution method is illustrated in Fig. 1. The method starts 
by generating a giant tour, which is split into routes in different ways to 
generate an initial set of promising routes. Then, for a number of iter
ations, the method alternates between solving the path-flow model and a 
method that updates the set of routes based on the optimal solution to 
the path-flow model. In the following, we go through the details of each 
part of the matheuristic. Section 3.1 describes how the initial set of 
routes is generated. In Section 3.2, we explain how the set of routes is 
modified based on the previous solution to the path-flow model. 

3.1. Generating an initial set of routes 

The first step of the heuristic is to generate an initial set of promising 
routes. The details of this step are outlined in Algorithm 1. First, a giant 
tour (GT) with the minimal total distance on the graph G = (N

′

,A ) is 
created by solving a travelling salesman problem using the function 
solveTSP(N ′

, A ). In the implementation, we obtain the giant tour by 
using the TSP-solver released by Helsgaun (2009), which is considered 
to be the fastest implementation of the Lin-Kernighan algorithm (Lin and 
Kernighan, 1973). 

After the giant tour is created, it is split into segments, and routes are 
created by inserting copies of the supplier node at the start and end of 
each segment. To do this, we utilize the split algorithm proposed by 
Vidal (2016) for the capacitated vehicle routing problem (CVRP). The 
split algorithm aims to partition a giant tour solution into separate 
routes. It does this by solving a shortest path problem on an acyclic 

graph Ĝ = (N , Â ) where Â includes one arc (i, j) with cost CÂ =
ij 

C0(i+1) +
∑

k=i+1,…,j− 1Ck(k+1) +Cj0 for any feasible route visiting cus
tomers i+1 to j. Here, the node order follows the ordering of the giant 
tour where 1 represents the first node in the giant tour. Traditionally, a 
version of Bellman’s equation has been used to solve the problem, but 
the aforementioned paper introduces a more efficient labeling algorithm 
with additional dominance rules. By using the open-source code 
released by the author, we are able to solve the splitting problem with a 
limited fleet size in O(N⋅V). 

However, to utilize the split algorithm on the obtained giant tour, the 
giant tour must be turned into a sequence of nodes by choosing a starting 
node (iStart). In addition, since, unlike the CVRP, the IRP does not have 
pre-determined demands at each customer, the algorithm must create an 
array d of customer demands. Thus, the function Split(GT, iStart , d)
returns the set of routes obtained by applying the split algorithm to a 
given giant tour, start node, and demand combination. 

To create a diverse set of routes in the initial set of routes R̂ , the 
function Split(GT, iStart , d) is called n times with different input combi
nations. In a given iteration, the algorithm first selects the start node 
using the getStartNode(j) function, which returns the j-th closest node to 
the supplier. Since the first node in the giant tour is the first node on the 
first route, it is likely that this node should lie close to the supplier, and 
the number j is thus varied between 1 and 5. To create customer demand 
d[i] at node i in a given iteration, the algorithm multiplies the upper 
inventory limit Ui with a percentage P. This percentage is reduced for 
each iteration of the algorithm by a given value D. Thus, we get a varied 
set of routes as splits of the giant tour using large customer demands give 
short routes, and splits using small customer demands give longer 

routes.  
Algorithm 1: Generating initial set of routes 

1. initialize d – array of customer demands  
2. initialize P – percentage  

3. R̂ = ∅  
4. GT = solveTSP(N

′

,A )

5. for n iterations do  
6. iStart = getStartNode((nmod5) + 1)
7. for i ∈ N

′

do  
8. d[i] = P⋅Ui  

9. end for 
10. R̂ = R̂ ∪ Split(GT, iStart ,d);  
11. P = P − D  
12. end for 
13. return R̂   

3.2. VRP heuristic and operators  

Algorithm 2: Updating route set 

1. input: λ*
rt , r ∈ R̂ , t ∈ T  

2. input: q*
it , i ∈ N

′

, t ∈ T  

3. R̂ = {r ∈ R : ∃t ∈ T ,λ*
rt = 1}

4. for t ∈ T do  

5. R̂ = R̂
⋃

solveVRP(q*
it)

6. end for 
7. N̂ = ∅  

8. R̂ = R̂
⋃

RemoveNodes(R̂ , N̂ ) (Algorithm 3)  

9. R̂ = R̂
⋃

InsertNodes(R̂ , N̂ ) (Algorithm 4)  

10. for r ∈ R̂ do  
11. r = solveTSP(r)
12. end for 
13. return R̂   

After a solution from the path-flow model is obtained, the route set is 
updated with the aim of improving the solution of the path-flow model 
in the next iteration. A pseudo-code outlining how the route set is 
updated is given in Algorithm 2. First, the algorithm solves a VRP 
heuristically for each time period (lines 4–6), where the optimal quan
tities from the last solution of the path-flow model, q*

it , are used to define 
the quantities delivered to each customer. This gives (near) optimal 
routing for these quantities, which may be an improvement on the initial 
route set. The new routes are added to the set of routes, R̂ , which is 
added to the path-flow model in the next iteration together with the 
routes given from the last solution. In this paper, the genetic algorithm 
proposed by Vidal et al. (2012) has been used as the VRP-heuristic. The 
authors of this paper have used the open-source implementation which 
is described in Vidal (2020). 

Next, nodes from each of these routes are removed using the method 
RemoveNodes(R̂ , N̂ ) (line 8). The resulting routes are added to the set 
R̂ . In addition, every node that is removed from a route is added to the 
set N̂ . These nodes are then re-inserted into different routes in the 
method InsertNodes (line 9). The resulting routes from these insertions 
are included in the set R̂ . The two methods are described in detail in 
Algorithms 3 and 4. 

Once this process is completed, all routes to be used in the path-flow 
model in the next iteration have been generated. However, as a final 
step, the TSP-heuristic, solveTSP(r), is used on each route r to (possibly) 
reduce the distance driven (line 10–12). This is done because even 
though a node is removed from or inserted into a route in the cheapest 
possible way there is no guarantee that the resulting route is optimal. 
Finally, the route set R̂ is returned and the path-flow model can be re- 
solved. Since the new set of routes, R̂ , includes the optimal routes from 
the previous iteration, we know that this route set provides a solution 
that is at least as good as in the previous iteration. This is ensured by 
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warm starting the solver with the solution of the previous iteration.  
Algorithm 3: RemoveNodes 

1. input: R̂ , N̂  

2. R new = ∅  

3. for r ∈ R̂ do  
4. for k ∈ K ⧹{RandomRemoval} do  
5. r′ = Nk(r)

6. N̂ = N̂
⋃
(N̂ r⧹N̂ r′ )

7. R new = R new⋃{r′ }
8. end for 
9. for cnt = 1,…,Y do  

10. k = Random Removal  
11. r′ = Nk(r)
12. N̂ = N̂

⋃
(N̂ r⧹N̂ r′ )

13. R new = R new⋃{r′ }
14. end for 
15. end for 
16. return R new   

The method RemoveNodes is described in Algorithm 3 and consists 
of using a set, K , of operators on each route in the set R̂ . These oper
ators, represented by the functions Nk(r), remove one node from a route 
in different ways before returning the resulting route. The set of oper
ators K consists of Cheapest Removal, Least Served Removal, Most Served 
Removal and Random Removal. All operators have time complexity O(n), 
except Random Removal that has O(1). 

– Cheapest removal: Removes the node from the route that gives the 
largest reduction in route cost, if removed. 
– Least served removal: The node in the route that received the 
smallest quantity of goods in the last solution of the path-flow model 
is removed from the route. 
– Most served removal: The node in the route that received the largest 
quantity of goods in the last solution of the path-flow model is 
removed from the route. 
– Random removal: A randomly selected node is removed from the 
route. 

An element of stochasticity is added to the algorithm in the form of 
Random Removal so that it is highly unlikely that two consecutive iter
ations of the path-flow model optimize over the same set of routes R̂ . 
Unlike the other operators, Random Removal is run several times. The 
number of times Random Removal is used per route is a parameter 
denoted Y. 

All nodes removed from a route are added to the set N̂ (line 6) and 
N̂ r is the subset of nodes visited on route r. The routes generated using 
the removal operators are added to the set R new which thereafter is 
included in the set R̂ .  

Algorithm 4: InsertNodes 

1. input: R̂ , N̂  

2. R new2 = ∅  

3. R 1,R 2⊆R̂  

4. for n ∈ N̂ do  
5. R new2 = R new2⋃{I(R 1,n)}

⋃
{I(R 2,n)}

6. end for 
7. for r ∈ R 1 do  
8. R new2 = R new2⋃{C(r)}
9. end for 

10. return R new2   

The method InsertNodes is described in Algorithm 4 and consists of 
inserting the nodes in N̂ back into different routes and hence creating 
new routes for the path-flow model. Here, the increase in route cost 
when inserting a node into a route decides which route it is inserted into. 

This is described as function I(R *,n), which receives a set of routes, R *, 
and a node n. The function calculates the cheapest position to insert the 
node into each route. The node is inserted into the route with the lowest 
marginal cost and the resulting route is returned by the function. I(R *,

n) is run twice - once for the routes in the current optimal solution of the 
path-flow model and the routes generated by the VRP-heuristic 
(described by the set R 1), and once for the routes generated by 
RemoveNodes (described by the set R 2). By partitioning the route set R̂ 

into two subsets, we ensure to create routes that are longer than our 
original ones and that nodes are inserted into routes that have been 
shortened. 

InsertNodes also includes an operator named Closest Insertion which 
is described as function C(r) in the algorithm. Closest Insertion takes a 
route and finds the closest neighbor to each of its nodes. All the closest 
neighbors are added to the route given that they are not already 
included. The resulting route is added to Rnew2 which thereafter is 
included in the set R̂ . 

4. Computational study 

To evaluate the proposed matheuristic, we have tested it on known 
benchmark instances for the IRP found in the literature. Section 4.1 
introduces the benchmark instances used. In Section 4.2, implementa
tion issues and parameter testing is discussed. The computational results 
are presented in Section 4.3, while the effect of the improvement phase 
is investigated in Section 4.4. 

4.1. Benchmark instances and solution methods 

Two sets of benchmark instances have been used. The first set of 
instances are those created by Archetti et al. (2007) for the IRP with a 
single vehicle. It consists of 100 instances with three time periods 
ranging from 5 to 50 customers, where one-half of the instances has high 
inventory costs while the other half has low. For the rest of this paper, 
we call this subset of instances SV-S3 (single-vehicle - small 3). There are 
also 60 instances with six time periods ranging from 5 to 30 customers. 
Again, one half of them has high inventory costs while the other half has 
low. These are called SV-S6. The instances were modified for the multi- 
vehicle version by Adulyasak et al. (2014) and Coelho et al. (2012a) by 
dividing the original vehicle capacity by the number of vehicles avail
able and rounding to the nearest integer. Up to five vehicles are 
considered. These are called MV-S3 and MV-S6, where M stands for 
multiple. The second set of benchmark instances was created by Archetti 
et al. (2012). The instances are larger and more challenging, consisting 
of 100 instances with 50 customers, 100 instances with 100 customers 
and 100 instances with 200 customers. They are ranging from one to five 
vehicles and one half of them has high inventory costs, while the other 
half has low. We call the single-vehicle version SV-L6 and the multi- 
vehicle version MV-L6 where L stands for large. All the instances have 
six time periods. 

To evaluate the proposed matheuristic, our results are compared 
with the results presented in other papers that have used the same in
stances. Some of these methods are exact and some are heuristics. Most 
of the exact methods have focused on solving the smaller instances, 
while the newer heuristics have also focused on finding good solutions to 
the larger ones. As mentioned previously, our main focus has been on 
improving the solution quality of the larger instances. However, the 
heuristic is also tested on the smaller ones to evaluate its performance on 
instances with known optima. The methods and results presented in the 
literature span several years and have all used different CPUs and soft
ware. Hence, making a fair comparison of their time consumption is 
hard. In Table 1, we summarize the other solution methods and their 
most important features. A complete overview of which instances each 
paper has solved can be found in Table 2. 
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4.2. Algorithmic implementation and parameters 

The parameter values used in this computational study are a result of 
preliminary testing, where different parameter configurations of the 
matheuristic were tested and compared. The final parameter values 
selected are presented in Table 3. There are big differences in the 
number of customers, vehicles, and time periods between the various 
instances and different parameter settings are thus more suitable for 
different sets of instances. However, to avoid overfitting of the param
eters to the benchmark instances, we have chosen to keep the parame
ters, except for the time limit, the same for all sets of instances. 

The number of iterations, n, of the split algorithm is set as a result of 
the initial value of P which is multiplied by Ui, and the percentage, D, 
which P is decreased by in each iteration. The preliminary testing 
showed that having P larger than 80% usually results in the split algo
rithm splitting the giant tour into routes visiting a single customer while 

having P less than 40% gives a single route visiting all customers. Hence, 
having P outside of this range rarely results in additional routes. 
Decreasing P by 2.5% per iteration is, in most cases, sufficient to alter 
the routes between each iteration, and having P starting at 80% and 
ending at 40% gives n = 16. 

Sometimes, commercial solvers can spend a large amount of time to 
close the duality gap of a MIP without improving the primal solution. 
Since the path-flow model is solved with a small set of routes, the dual 
bound is not meaningful, only the primal solution is. Therefore, a 
maximum time limit on the time spent solving the path-flow formulation 
in each iteration of the matheuristic is set. The parameter, 1. Time limit, 
refers to the time limit put on the first run of the path-flow model, while 
Time limit refers to the consecutive runs as described in Section 3. The 
number of iterations and the number of times the Random Removal 
operator is used in RemoveNodes are both set based on the preliminary 
testing. 

Moreover, there are stochastic elements in the matheuristic, and 
hence two different runs on the same instance will not necessarily lead to 
the same solution. As a consequence, every instance has been run ten 
times in our computational study. 

4.3. Computational results 

In this section, the results of the proposed matheuristic are compared 
with the results of the benchmark solution methods. First, a comparison 
between the results obtained by our matheuristic and the best-known 
solutions for the smaller benchmark instances is made in Section 
4.3.1. Since the majority of these have been solved to optimality, a 
comparison can give valuable insight into how close to optimality the 
obtained solutions are. In Section 4.3.2, we present the results for the 
larger instances to see how good the proposed matheuristic is compared 
with existing heuristics and exact methods. The detailed computational 
results, and solutions, can be found at http://axiomresearchproject. 
com/publications/. 

Table 1 
Benchmark solution methods. We present the solution approach, running plat
form, number of threads and standard MIP solver. Note: Sol: Solution approach, 
E: Exact, H: Heuristic/Metaheuristic, M: Matheuristic, Def: Default.  

Reference Name Sol CPU #Threads Solver 

Archetti et al. 
(2007) 

A-BC E Pentium IV 2.8 
GHz 

Def Cplex 9.0 

Coelho and 
Laporte (2013) 

CL- 
BC 

E Xeon 2.66 GHz 6 Cplex 12.3 

Desaulniers et al. 
(2016) 

D- 
BPC 

E Core i7-2600 3.4 
GHz 

1 Cplex 12.2 

Avella et al. 
(2018) 

AV- 
BC 

E Core i7-2620, 
2.70 GHz 

1 Xpress 7.6 

Guimarães et al. 
(2020) 

G-BC E Xeon E5-2630 v2 
2.60 GHz 

6 Gurobi 8.1 

Manousakis et al. 
(2020) 

M-BC E Intel Core i7- 
7700 CPU 3.60 
GHz 

8 Gurobi 8.1 

Coelho et al. 
(2012b) 

CL-H H Intel T7700, 2.4 
GHz 

Def – 

Adulyasak et al. 
(2014) 

AB-H H 2.10 GHz Duo 
CPU PC 

Def Cplex 12.3 

Archetti et al. 
(2012) 

AR- 
H1 

M Intel Dual Core 
1.86 GHz 

Def Cplex 10.1 

Archetti et al. 
(2017) 

AR- 
H2 

M Xeon W3680, 
3.33 GHz 

8 Cplex 12.5 

Chitsaz et al. 
(2019) 

C-H M Xeon X5650 2.67 
GHz 

1 Cplex 12.6 

Alvarez et al., 
2020 

AL-H M Xeon X5650 2.67 
GHz 

1 Cplex 12.8 

Diniz et al. 
(2020) 

D-H M Intel Core i7- 
8700 K 3.7 GHz 

1 LEMON 
library 

This paper V-H M Xeon Gold 6144 
3.5 GHz 

1 Gurobi 9.0  

Table 2 
Number of instances solved by each solution method. Note: V: number of vehicles.  

Name A-BC CL-BC D-BPC AV-BC G-BC M-BC CL-H AB-H AR-H1 AR-H2 C-H AL-H D-H V-H 

Set V  Size E E E E E E H H M M M M M M 

SV-S3 1 100 100 100 – – 100 – 100 – 100 – 100 100 100 100 
SV-S6 1 60 60 60 – – 60 – 60 – 60 – 60 60 60 60 
MV-S3 2 100 – 100 100 10 100 100 – 100 – 100 100 100 100 100  

3 100 – 100 100 10 100 100 – 100 – 100 100 100 100 100  
4 100 – 100 100 10 100 100 – – – 100 100 100 100 100  
5 100 – 100 100 10 100 100 – – – 100 100 100 100 100 

MV-S6 2 60 – 60 60 40 60 60 – 50 – 60 60 60 60 60  
3 60 – 60 60 40 60 60 – 50 – 60 60 60 60 60  
4 60 – 60 60 40 60 60 – – – 60 60 60 60 60  
5 58 – 58 58 38 58 58 – – – 58 58 58 58 58 

SV-L6 1 60 – 60 – – 60 60 – –  – 60 – – 60 
MV-L6 2 60 – 40 – – 60 40 – – – 60 60 – – 60  

3 60 – 40 – – 60 40 – – – 60 60 – – 60  
4 60 – – – – 60 40 – – – 60 60 – – 60  
5 60 – – – – 60 40 – – – 60 60 – – 60  

Table 3 
Parameter values  

Parameter Value 

Split algorithm: Start Percentage, P  80% 
Split algorithm: Decr. Percentage, D  2.5% 
Split algorithm: Iterations, n  16 
Path Flow: 1. Time Limit 2 s ⋅ (number of customers)  
Path Flow: Time Limit 1.5 s ⋅ (number of customers)  
Path Flow: Iterations, maxIt 5 
RemoveNode: number of Random Removal, Y  3  
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4.3.1. Small benchmark instances 
The results of running the proposed matheuristic (denoted V-H) 10 

times on each of the 798 small test instances are compared with existing 
results from the literature. All the computational results are summarized 
in Tables 4–6. In Table 4, the average gap of each solution method is 
presented. The gap of a solution method on an instance is calculated as 
the method’s objective value minus the best known objective value (not 
considering the objective value of V-H) divided by the best known 
objective value. The average per instance set is then calculated. For V-H, 
two values are given. V-H Best is the average gap of the best solution 
obtained over all instances in each set. For V-H Average, the average gap 
over the ten runs has been calculated for each instance, and then the 
average over these for each instance set is reported. 

It is clear that the most recent exact methods, G-BC and M-BC, 
outperform all the heuristics in terms of solution gap. This is natural 
since 642 of the 798 small test instances have been solved to optimality. 
In fact, the only subsets of instances where the majority of instances still 
have not been solved to proven optimality are MV-S6 with four and five 
vehicles. V-H Best and V-H Average have the smallest solution gaps for 
these instances among all heuristics. Overall, the results of V-H are 
competitive compared with the other heuristics and V-H Best has an 
average gap of 0.99% over all instances. D-H is the only heuristic that 
has a better average gap with 0.37% over all instances. However, there is 
a significant performance difference between the three and six time 
period instances for V-H. V-H Best has an average gap of 0.40% for the 
multi-vehicle instances with six time periods which is lower than all the 
other heuristics. 

In Table 5, the number of best-known solutions found by each so
lution method is presented. V-H Best has the same meaning as above, but 
its column has an extra number written within parentheses. This shows 
the number of best-known solutions that have a strictly lower objective 
value than the previously best-known solution, i.e. the number of new 
best-known solutions found. V-H Best finds more best-known solutions 
than any of the other heuristics, except D-H, with 306 solutions, of which 
14 are new solutions. The column V-H Worst shows the number of in
stances where all the ten runs of V-H have found the best-known solu
tion. With 215 best-known solutions, it is still competitive compared 
with the other heuristics. As in Table 4, V-H performs significantly better 
on the six time period instances, compared with those that have three 
time periods. For the six time period instances, V-H Best finds the best- 

known solution for 59 out of 180 instances for the three, four and five 
vehicle instances. This is significantly higher compared with the other 
heuristics. 

Table 6 presents the average computing time for each solution 
method in seconds on each set of instances. V-H Average represents the 
average computing time over the ten runs, while V-H Max is the average 
of the runs with the maximal computing times for each instances. The 
results show that V-H’s computing time is similar to C-H and D-H, and it 
is substantially shorter than the other solution methods. The best exact 
solution method on the MV-S6 instances, M-BC, spends on average 4,210 
s with an average gap of 0.02%, while V-H spends, on average, 138 s 
with an average gap of 0.75%. Thus, the results indicate that V-H pro
duces close to optimal solutions within a small fraction of the computing 
time used by exact methods. 

4.3.2. Large benchmark instances 
The results of running the proposed matheuristic (denoted V-H) ten 

times on each of the 300 large test instances are compared with existing 
results from the literature. The results are summarized in Tables 7–9. In 
Table 7, average gaps are presented. Here, V-H Best and V-H Average 
have the same meaning as in Section 4.3.1. Both G-BC and M-BC as well 
as AR-H1 produce lower gaps for the single-vehicle instances. However, 
the results for V-H Best, an average gap of 1.65%, are in fact quite good 
taken into account that in this subset of instances all 50 customer in
stances are solved to optimality and most 100 customers instances have 
a duality gap of less than one percent for its best-known solution. On the 
multi-vehicle instances, V-H reports lower average gaps than all the 
other solution methods except for two vehicles. V-H Best has an average 
gap of − 0.54% for MV-L6, while M-BC, which has the second-lowest 
average gaps, has an average gap of 0.28%. However, M-BC has not 
been tested on the 200 customers instances which are the largest and 
most challenging ones. In fact, the authors themselves state that they are 
not solved, because their exact solution method provides no insightful 
results within 2 h on these instances. C-H, which has been tested on all 
instances, has in comparison a gap of 1.24%. 

In Table 8, the number of best-known solutions for each solution 
method is presented. V-H Best and V-H Worst have the same meaning as 
in Section 4.3.1 and the extra number shows the number of strictly 
improving best-known solutions. V-H Best has the best-known solution 
for 179 out of 240 multi-vehicle instances and naturally outperforms the 

Table 4 
Average gaps for the different solution methods. The best average gap for each subset of instances is highlighted.  

Set V  # Instances A- 
BC 

CL- 
BC 

D- 
BPC 

AV- 
BC 

G- 
BC 

M- 
BC 

CL- 
H 

AB- 
H 

AR- 
H1 

AR- 
H2 

C-H AL- 
H 

D-H V-H 
Best 

V-H 
Average 

SV-S3 1 100 0 0 – – 0 – 0.44 – 0 – 1.93 1.03 0.02 0.16 0.16 
SV-S6 1 60 0 0 – – 0 – 0.49 – 0.14 – 1.09 2.68 0.15 0.77 1.15 
MV- 

S3 
2 100 – 0.01 12.32 1.13 0 0.01 – 8.48 – 0.14 1.79 2.58 0.04 1.17 1.32  

3 100 – 0.77 7.92 2.90 0.03 0.05 – 9.14 – 0.38 1.30 2.70 0.11 2.07 2.38  
4 100 – 3.27 6.73 7.29 0.30 0.11 – – – 1.07 1.58 2.84 0.51 1.61 2.03  
5 100 – 5.86 5.92 11.24 0.85 0.06 – – – 1.71 2.08 2.89 0.65 1.47 1.85  

MV-S3: 
Average 
Gap 

400 – 2.48 8.22 5.64 0.30 0.06 – 8.81 – 0.83 1.69 2.75 0.33 1.58 1.90  

MV- 
S6 

2 60 – 1.43 33.11 1.38 0 0.03 – 4.05 – 0.35 3.98 3,01 0.12 0.44 0.73  

3 60 – 1.84 36.80 3.46 0.17 0.04 – 3.71 – 1.74 4.76 2.68 0.47 0.43 0.81  
4 60 – 3.75 36.41 4.91 0.63 0.02 – – – 3.24 5.61 2.59 0.85 0.41 0.75  
5 58 – 4.89 34.39 6.53 1.05 0 – – – 4.00 6.80 2.52 1.19 0.31 0.70  

MV-S6: 
Average 
Gap 

238 – 2.98 35.18 4.07 0.46 0.02 – 3.88 – 2.33 5.28 2.70 0.66 0.40 0.75  

Total: 
Average 
Gap 

798 0 2.03 18.33 4.32 0.29 0.04 0.46 7.20 0.05 1.38 2.74 2.52 0.37 0.99 1.28  
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other methods. It also finds new best-known solutions for seven single- 
vehicle instances with 200 customers. 

Table 9 gives the average computing time for each solution method 
for the set of larger instances. Unsurprisingly, the exact solution 
methods spent significantly more time than the heuristics, since they 
focus both on finding primal and dual bounds for each instance. How
ever, for the larger instances, also all heuristics proposed in the literature 
spend, on average, more than one hour (3600 s) on each instance. C-H 

and AR-H2 are the two other heuristics that have been tested on the full 
set of larger instances. AR-H2 used a CPU with approximately the same 
clock speed as V-H, however, they used eight cores versus the one core 
used by V-H. C-H also used one core, but their clock speed is lower. 
However, V-H only spent a small fraction of the computing time C-H 
spent on the larger instances. For some of the largest instances, C-H 
spent almost 25,000 s, while V-H never spent more than 2,300 s. Hence, 
it is unlikely that the improved computing times are only a result of the 

Table 5 
The number of best-known solutions for the different solution methods. The solution method with the highest number for each subset of instances is highlighted.  

Set V  # Instances A-BC CL-BC D-BPC AV-BC G-BC M-BC CL-H AB-H AR-H1 AR-H2 C-H AL-H D-H V-H Best V-H Worst 

SV-S3 1 100 100 100 – – 100 – 49 – 98 – 23 57 96 84 (0) 84 (0) 
SV-S6 1 60 60 60 – – 60 – 22 – 24 – 7 8 44 25 (0) 11 (0) 
MV-S3 2 100 – 98 66 7 100 99 – 11 – 59 19 33 87 56 (0) 40 (0)  

3 100 – 75 71 2 86 86 – 10 – 54 23 23 71 32 (0) 19 (0)  
4 100 – 44 69 0 71 75 – – – 32 17 14 43 18(1) 8 (0)  
5 100 – 38 80 0 58 84 – – – 23 20 22 36 16 (0) 11 (0) 

MV-S6 2 60 – 40 18 15 59 46 – 0 – 14 0 1 31 16 (0) 10 (0)  
3 60 – 22 15 0 41 43 – 2 – 14 0 2 13 24 (5) 11 (1)  
4 60 – 13 17 0 20 50 – – – 4 0 1 5 20 (5) 14 (1)  
5 58 – 8 14 0 16 54 – – – 6 0 2 4 15 (3) 7 (1)  

Total small 
instances 

798 160 498 350 24 611 537 71 23 122 206 109 163 430 306 (14) 215(3)  

Table 6 
The average solution time for each solution method. The solution times of other methods are directly adopted from the corresponding papers. Note: N/A = not 
available.  

Set V  # Instances A- 
BC 

CL- 
BC 

D- 
BPC 

AV- 
BC 

G-BC M-BC CL- 
H 

AB- 
H 

AR- 
H1 

AR- 
H2 

C- 
H 

AL- 
H 

D- 
H 

V-H 
Average 

V-H 
Max 

SV-S3 1 100 436 10 – – 28 – 522 – 336 – 47 N/A 32 2 2 
SV-S6 1 60 880 33 – – 114 – 458 – 664 – 50 N/A 54 9 11 
MV- 

S3 
2 100 – 703 3,418 2,350 456 368 – N/A – 936 62 N/A 64 16 16  

3 100 – 2,556 3,226 4,285 1,791 2,611 – N/A – 1,207 65 N/A 105 17 18  
4 100 – 4,547 2,877 5,228 3,385 3,738 – – – 615 69 N/A 150 20 21  
5 100 – 5,052 2,395 5,400 4,135 3,735 – – – 694 65 N/A 202 25 26 

MV- 
S6 

2 60 – 2,610 5,292 4,114 1,616 2,658 – N/A – 1,797 80 N/A 136 53 60  

3 60 – 5,496 5,622 5,050 4,294 4,549 – N/A – 2,214 76 N/A 227 141 156  
4 60 – 6,034 5,503 5,124 5,693 4,703 – – – 1,108 81 N/A 325 178 180  
5 58 – 6,254 5,896 5,190 6,148 4,930 – – – 1,294 65 N/A 414 181 182  

Table 7 
Average gaps for the different solution methods. The best average gap for each subset of instances is highlighted.  

Set V  # Instances CL-BC G-BC M-BC AR-H1 AR-H2 C-H V-H Best V-H Average 

SV-L6 1 60 11.04 0.23 0.25 0.39 – 3.64 1.65 1.98 
MV-L6 2 60 69.64 3.94 0.11 – 3.89 1.77 0.22 0.56  

3 60 115.61 10.11 0.04 – 4.48 1.36 − 0.77  − 0.46   
4 60 – 19.11 0.80 – 6.17 0.81 − 0.80  − 0.46   
5 60 – 25.42 0.18 – 6.35 1.00 − 0.79  − 0.37   

MV-L6: Average Gap 92.63 14.65 0.28 – 5.22 1.24 − 0.54  − 0.18  
All Instances: Average Gap 65.43 11.67 0.28 0.39 5.22 1.72 − 0.10  0.25  

Table 8 
The number of best-known solutions for the different solution methods. The solution method with the highest number for each subset of instances is highlighted.  

Set V  # Instances CL-BC G-BC M-BC AR-H1 AR-H2 C-H V-H Best V-H Worst 

SV-L6 1 60 20 44 15 8 0 0 7 (7) 4 (4) 
MV-L6 2 60 0 11 20 0 0 2 28 (28) 18 (18)  

3 60 0 0 14 0 0 0 47 (46) 37 (37)  
4 60 0 0 6 0 0 3 51 (51) 32 (32)  
5 60 0 0 4 0 0 3 53 (53) 29 (29)  

Total large instances 300 20 55 59 8 0 8 186 (185) 120 (120)  
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difference in hardware. Also looking at the exact methods that have 
solved the largest instances, it is clear that V-H still has the best per
formance. On the multi-vehicle instances, V-H only spends a small 
fraction of time compared with what the exact methods do and still 
obtain much better solutions. On the single-vehicle instances, where V-H 
does not obtain the best solutions, we notice that V-H spends 105 s on 
average while all the other solution methods spend over 3,600 s. 

In summary, we see that on the larger instances, the heuristic pro
posed in this paper produces, on average, less costly solutions than 
previous heuristics suggested, and it does so by using significantly less 
computing time. The heuristic has found the best-known solution on 186 
out of the 300 larger instances, and where 185 of them are an 
improvement of what is previously reported in the literature. The 
numbers are 179 out of 240 instances if we only consider the multi- 
vehicle instances. 

4.4. Effect of improvement phase 

As seen in Section 3, the proposed matheuristic consists of two parts. 
The first part involves creating an initial solution through the use of a 
giant tour. Then follows an iterative process where the solution is 
improved by a set of operators and a VRP-heuristic. The effect the 
different operators, and the VRP heuristic, has on the final objective 
value of VH-Best is summarized in Table 10. The table shows the average 
improvement in percentage between the initial objective value and the 
final objective value for each subset of instances. The percentage is 
calculated as the final objective value minus the initial objective value 
divided by the initial objective value. 

From the numbers presented in Table 10, it is clear that the 
improvement phase contributes to reducing the objective value obtained 
from solving the path-flow model with only columns from the giant tour. 
However, each iteration of the matheuristic increases the computing 
time and there is a trade-off between performance and time spent. 
Further, increasing the number of iterations generally has a diminishing 
effect, and only marginally improves the solution. Hence, finding the 
right number of iterations is crucial and something we tested extensively 

in the preliminary testing. 
Another interesting analysis is to study where the routes that 

contribute to an improved solution originate from. Most of the routes in 
the solution from an iteration are identical to the routes in the previous 
iteration’s solution. However, as seen in Table 10, the objective value 
usually gets better from the first iteration to the last. We have analyzed 
all routes that have contributed to a better solution and tracked their 
origin. Table 11 shows the percentage that each operator (and the VRP 
heuristic) contributes to this set of improved routes. 

From Table 11 we observe that the VRP heuristic is the second largest 
contributor of routes that improve the objective value. This is reasonable 
due to the nature of the heuristic. Especially in larger instances, the 
initial distribution of nodes between vehicles can be suboptimal in a 
time period given the stated demand, and the heuristic tries to find a 
better distribution. In addition, the operators which remove nodes 
produce more improving routes than the operators which add nodes. 
This indicates that the initial solution created from the routes from the 
giant tour consists of routes that are generally too long. This is reason
able since they consist of segments of the giant tour. In an optimal so
lution, the nodes from a segment might not be part of an optimal route, 
which is a weakness of our proposed heuristic. However, the operators 
that remove nodes are included in the matheuristic to take care of this. 
The random operators are the most used removal operators. This is an 
indication that it is often not obvious which nodes should be removed 
from a route. 

5. Concluding remarks 

In this paper, we propose a heuristic algorithm that relies on creating 
a giant tour and a split algorithm to create promising routes that make 
up the route set for a path-flow formulation of the IRP. The path-flow 
model is re-solved for a number of iterations where the route set is 
updated between each iteration with the help of simple operators. 
Computational results show that the matheuristic provides high-quality 
solutions for larger benchmark instances of the IRP. Out of 240 larger 
multi-vehicle instances, the matheuristic finds the best-known solutions 
on 179 instances, where 178 of them have a strictly lower objective 
value than the previously best-known solution. It also finds a new best 
upper bound for seven single-vehicle instances. In addition, the math
euristic often only spends a small fraction of the time that existing so
lution methods from the literature use. Although it has not been the 
focus of this paper, the proposed matheuristic also performs very well on 
smaller instances. Its average solution gap is similar to other heuristics 
and it has the second-highest number of best-known solutions among all 

Table 9 
The average solution time for each solution method. The solution times of other methods are directly adopted from the corresponding papers.  

Set V  # Instances CL-BC G-BC M-BC AR-H1 AR-H2 C-H V-H Average V-H Max 

SV-L6 1 60 64,509 5,562 5,734 3630 – 6,668 105 122 
MV-L6 2 60 86,400 7,200 7,200 – 4,066 6,657 351 390  

3 60 86,400 7,200 7,200 – 4,540 4,209 635 735  
4 60 – 7,200 7,200 – 4,257 5,132 953 1,096  
5 60 – 7,200 7,200 – 4,418 5,527 1,197 1,280  

Table 10 
Overview of the objective value improvements due to operators  

Set V  Improvement [%] 

SV-S3 1 − 0.18  
SV-S6 1 − 3.29  
MV-S3 2 − 2.10   

3 − 2.31   
4 − 2.91   
5 − 3.13  

MV-S6 2 − 3.04   
3 − 2.45   
4 − 1.74   
5 − 1.55  

SV-L6 1 − 1.78  
MV-L6 2 − 3.36   

3 − 3.76   
4 − 3.71   
5 − 3.45   

Table 11 
The percentage of the routes that improve the solution that 
comes from different operators and the VRP heuristic  

Route Percentage 

Cheapest Removal 12.6 
Least Served Removal 9.3 
Most Served Removal 4.7 
Random Removal 17.7 
Closest Insertion 2.9 
Cheapest Insertion 27.6 
VRP-heuristic 25.2  
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reported heuristics. 
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Optimization, simulation and control. International Workshop on Hybrid 
Metaheuristics 171–177. 

Chitsaz, M., Cordeau, J.-F., Jans, R., 2019. A unified decomposition matheuristic for 
assembly, production, and inventory routing. INFORMS Journal on Computing 31 
(1), 134–152. 

Coelho, L.C., Laporte, G., 2013. The exact solution of several classes of inventory-routing 
problems. Computers & Operations Research 40 (2), 558–565. 

Coelho, L.C., Laporte, G., 2014. Improved solutions for inventory-routing problems 
through valid inequalities and input ordering. International Journal of Production 
Economics 155, 391–397. 

Coelho, L.C., Cordeau, J.-F., Laporte, G., 2012a. Consistency in multi-vehicle inventory- 
routing. Transportation Research Part C: Emerging Technologies 24, 270–287. 

Coelho, L.C., Cordeau, J.-F., Laporte, G., 2012b. The inventory-routing problem with 
transshipment. Computers & Operations Research 39 (11), 2537–2548. 

Coelho, L.C., Cordeau, J.-F., Laporte, G., 2014. Thirty years of inventory routing. 
Transportation Science 48 (1), 1–19. 

Desaulniers, G., Rakke, J.G., Coelho, L.C., 2016. A branch-price-and-cut algorithm for the 
inventory-routing problem. Transportation Science 50 (3), 1060–1076. 

Diniz, P., Martinelli, R., Poggi, M., 2020. An efficient matheuristic for the inventory 
routing problem. International Symposium on Combinatorial Optimization 273–285. 
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