
Computers & Operations Research 131 (2021) 105262

Available online 8 March 2021
0305-0548/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An iterative matheuristic for the inventory routing problem

Simen T. Vadseth *, Henrik Andersson , Magnus Stålhane
Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getz veg 3, 7491 Trondheim, Norway

A R T I C L E I N F O

Keywords:
Transportation
Inventory routing
Matheuristic

A B S T R A C T

The paper considers the inventory routing problem with the Maximum Level replenishment policy. Here, the
supplier is in charge of replenishing goods to a number of customers and can decide when, and in what order,
these customers should be visited over a defined time period. The goal is to minimize transportation costs and
inventory holding costs at both the supplier and the customers. We present a matheuristic that uses a giant tour
and simple operators to heuristically create routes that are used in a path-flow formulation. The proposed
method iterates between solving a path-flow model with a small set of routes and updating the route set based on
the optimal solution from the previous iteration. Computational results on known benchmark instances show
that it outperforms state-of-the-art exact methods and heuristics on larger and more difficult instances. It finds
the best-known solution on 179 out of 240 larger multi-vehicle benchmark instances, where 178 of them are
strictly improving upon the previously best-known solution, and does so in considerably shorter time compared
with other methods. In addition, when tested on another set of benchmark instances consisting of 798 smaller
instances, the matheuristic finds the optimal solution in 44.7% of the 642 instances with known optima and has
an average gap of 1.75% on the others. It also improves the best-known solution of 14 out of 156 open instances.

1. Introduction

With an increasing amount of online retailing and goods delivery,
research on efficient routing and inventory control is highly relevant and
applicable. Better goods transportation and inventory control can lead to
significant savings for companies and potentially lower greenhouse gas
emissions. The focus of this paper is on the standard inventory routing
problem (IRP) with the Maximum Level replenishment policy, a well-
studied problem described in great detail by several authors including
Archetti et al. (2017), Coelho et al. (2014), Adulyasak et al. (2014),
Desaulniers et al. (2016) and Archetti et al. (2017). The IRP is a part of a
business practice called vendor-managed inventory (VMI) where the
supplier decides how much quantity of goods it should deliver to each of
its customers and when to do so. The entire supply chain may benefit as
a result of this comprehensive planning as it can lead to better routing
and inventory control, while ensuring that the customers’ storage limits
are respected. However, the IRP has proven to be a very challenging and
computationally hard problem to solve.

Several papers have been written on the standard IRP, and there exist
two relevant surveys from the last decade. The first one by Andersson
et al. (2010) focused on different applications of the IRP, while the
second one by Coelho et al. (2014) studied the methodological aspects.

Integrating inventory management and vehicle routing in the scientific
literature started with the paper of Bell et al. (1983), and the first exact
method on the standard IRP itself was proposed by Archetti et al. (2007).
The authors used a branch-and-cut algorithm to solve the single-vehicle
IRP and solved instances up to 50 customers with three time periods and
up to 30 customers with six time periods to optimality. They also
introduced one of the two sets of benchmark instances that most re-
searchers have worked on since. This set of instances consists of 798
small instances for up to five vehicles. The multi-vehicle version of the
standard IRP was solved exactly by Coelho and Laporte (2013) and
Adulyasak et al. (2014) with branch-and-cut algorithms, while Desaul-
niers et al. (2016) used a branch-cut-and-price algorithm. Avella et al.
(2018) defined a new generic family of valid inequalities for the IRP and
solved the problem with a branch-and-cut algorithm using two specific
subclasses of the proposed valid inequalities. This method tightened the
duality gap of several of the small benchmark instances.

Two additional branch-and-cut algorithms were developed by
Guimarães et al. (2020) and Manousakis et al. (2020). The former
employed two techniques to find improved primal solutions during the
branch-and-cut search. The authors were able to close the duality gap for
several instances and found new best-known solutions for 129 instances
in the set of small benchmark instances. The latter proposed a two-

* Corresponding author.
E-mail address: simen.t.vadseth@ntnu.no (S.T. Vadseth).

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

https://doi.org/10.1016/j.cor.2021.105262
Received 20 October 2020; Received in revised form 3 February 2021; Accepted 19 February 2021

https://doi.org/10.1016/j.cor.2021.105262
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105262&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 131 (2021) 105262

2

commodity flow formulation for the problem and was with the help of a
good starting heuristic able to improve the best-known solution of 139
instances in a set of 300 large benchmark instances introduced by
Archetti et al. (2012).

None of the exact methods described above have been able to solve
larger multi-vehicle instances to optimality. Further, the duality gap can
become very large when the size of the instances increases, and often no
feasible solution is found within a reasonable time frame when an exact
method is used. There is, consequently, a need for good heuristics for the
IRP, and several have been developed over the years. Coelho et al.
(2012b) developed an adaptive large neighborhood search (ALNS)
heuristic for the IRP with transshipment, which the authors also tested
on the single-vehicle IRP. An ALNS for the multi-vehicle version has
been designed by Adulyasak et al. (2014), who solved instances with two
and three vehicles.

The complexity of the IRP has led most researchers to integrate
mathematical programming techniques into their heuristics. These types
of heuristics, regardless of the type of problems they are applied to, have
come to be known as matheuristics. A definition of what a matheuristic is
was proposed by Boschetti et al. (2009) as: “Matheuristics are heuristic
algorithms made by the interoperation of metaheuristics and mathe-
matical programming techniques”. This is also the definition used by
Archetti and Speranza (2014) in their survey on matheuristics for
routing problems. The authors classified matheuristics in three cate-
gories: Decomposition approaches, improvement heuristics and branch-
and-price/column generation-based approaches. They also show that
matheuristics are used to a large extent on problems similar to the IRP, e.
g. the vehicle routing problem (VRP), the production routing problem
and the location routing problem.

To the authors’ knowledge, the first matheuristic used to solve the
standard IRP was developed by Archetti et al. (2012). It is a hybrid
heuristic that combines tabu search with the solution of mixed integer
programs (MIP) and can be classified as an improvement heuristic. The
authors studied the single-vehicle case and, as previously mentioned,
released the second set of benchmark instances that most researchers use
today. The same authors extended the method for the multi-vehicle
version in Archetti et al. (2017). It is both a decomposition and an
improvement search, combining a tabu search heuristic with solving
MIPs. The solutions of 92% of the larger multi-vehicles instances were
improved. However, many of these solutions were further improved by
Chitsaz et al. (2019) with their three-phase decomposition matheuristic
which relies on the iterative solution of different subproblems. Although
designed for the assembly routing problem, the algorithm was able to
find new best-known solutions for 194 out of 300 large instances for the
IRP. Another matheuristic was proposed by Alvarez et al. (2020). They
developed a hybrid heuristic, combining an iterative local search met-
aheuristic and two mathematical programming components, to solve the
IRP with perishable products. The authors also tested the algorithm on
the standard IRP and improved the best-known solution for a few
smaller instances. An additional matheuristic for the IRP was presented
by Diniz et al. (2020). Here, the authors combined an iterative local
search with a randomized variable neighborhood descent, and were able
to find and improve the best-known solutions of several small bench-
mark instances.

As seen in the paragraphs above, there are several exact methods and
heuristics designed for, and applied to, the IRP. Smaller instances of the
IRP can be solved to optimality by exact methods, while heuristics
outperform exact methods on larger instances. Even though there exists
heuristics for the IRP, there is still room for improvement, especially
when it comes to larger instances. Many of the proposed solution
methods cannot be applied to the largest instances due to the compu-
tational complexity, and those that can, suffer from long computing
times.

The purpose of this paper is to present a new matheuristic to solve
large instances of the IRP in shorter computing times. The matheuristic
iteratively solves an exact mathematical model with a limited number of

routes. The set of routes used in the first iteration is generated from a
giant tour, and is modified by different operators between each itera-
tion. It is tested on known benchmark instances for the IRP and finds
new best solutions on 178 out of 240 instances with multiple vehicles,
and a further seven new best-known solutions for the single-vehicle case.
These improved solutions have also been found in only a small fraction
of the time spent by other heuristics in the literature.

The remainder of the paper is organized as follows. In Section 2, the
standard IRP is defined and presented mathematically, while our
matheuristic is presented in detail in Section 3. Our computational re-
sults are reported in Section 4 and concluding remarks are presented in
Section 5.

2. Problem definition and formulation

The inventory routing problem concerns the repeated distribution of
goods from a supplier to a set of customers over a given planning ho-
rizon. We formulate this problem on a graph G(N ,A) where N is a set
of nodes N = {0,1,…,N} consisting of N customers and a supplier
denoted 0. We also introduce N

′

= {1,…,N} as the set of customers.
The set of arcs A defines movements between each pair of nodes. The
problem is defined over a time horizon T = {0,1,…,T} and we also
introduce the set of planning time periods T

′

= {1,…,T}.
In each time period, V vehicles with capacity Q can be used to deliver

the goods. There is a driving cost Cij, associated with each arc (i, j) ∈ A .
Customer i has a known demand for the commodity, Rit, in each time
period t and a maximum, Ui, and minimum, Li, inventory capacity. The
supplier produces R0t units of the commodity at the beginning of each
time period t. Both the supplier and the customers have an inventory
holding cost CH

i per unit of commodity at the end of each time period.
Each customer can only be visited once per time period. The problem
consists of minimizing the transportation and inventory costs of the
entire supply chain while making sure that no stock-outs occur.

2.1. A path-flow formulation

The proposed path-flow formulation requires some additional nota-
tion. The set R contains all routes. A route is a Hamiltonian cycle
through a subset of the nodes including the supplier. Introducing Aijr as 1
if route r traverses arc (i, j), and 0 otherwise, the cost of route r can be
defined as CT

r =
∑

(i,j)∈A CijAijr. The variable λrt is 1 if route r is used by a
vehicle in time period t, and 0 otherwise. The amount of commodity
delivered at node i in time period t is denoted qit and the inventory level
at node i at the end of time period t is denoted sit. The inventory at node i
at the beginning of the planning horizon is represented by Ii0. Finally, let
lijt be the flow of commodity on arc (i, j) in time period t. With this no-
tation, the model can be formulated as follows:

min
∑

i∈N

∑

t∈T
′

CH
i sit +

∑

r∈R

∑

t∈T
′

CT
r λrt (1)

si0 = Ii0 i ∈ N (2)

s0t − s0(t− 1) − R0t +
∑

i∈N
′

qit = 0 t ∈ T
′

(3)

sit − si(t− 1) +Rit − qit = 0, i ∈ N
′

, t ∈ T
′

(4)

Li⩽sit⩽Ui i ∈ N , t ∈ T (5)

si(t− 1) + qit⩽Ui i ∈ N
′

, t ∈ T
′

(6)

∑

j∈N

ljit − qit −
∑

j∈N

lijt = 0 i ∈ N
′

, t ∈ T
′

(7)

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

3

lijt − Q
∑

r∈R

Aijrλrt⩽0 (i, j) ∈ A , t ∈ T
′

(8)

∑

r∈R

∑

j∈N

Aijrλrt⩽1 i ∈ N
′

, t ∈ T
′

(9)

∑

r∈R

λrt⩽V t ∈ T
′

(10)

λrt ∈ {0, 1} r ∈ R , t ∈ T
′

(11)

qit⩾0 i ∈ N
′

, t ∈ T
′

(12)

lijt⩾0 (i, j) ∈ A , t ∈ T
′

(13)

The objective function (1) minimizes the transportation and in-
ventory holding costs over the entire planning horizon, while constraints
(2) set the starting inventory level at each node. The inventory balance
at the supplier and the customers are taken care of by constraints (3) and
(4). Moreover, the upper and lower limits on the inventory level at each
node are handled by constraints (5) and (6). Constraints (7) ensure that
the flow of goods out of a node is equal to what comes in except for the
amount that is delivered. Constraints (8) make sure that the flow on an
arc does not exceed the vehicle capacity, while constraints (9) state that
two routes that visit the same node are not used in the same time period.
With constraints (10) we make sure that the maximum number of
available vehicles is not exceeded. Moreover, constraints (11) state that
a route is either used or not while constraints (12) and (13) impose non-

negativity for the other variables.

2.2. Valid inequalities

The following valid inequalities, first introduced by Coelho and
Laporte (2014) for the IRP, have been adapted for the path-flow
formulation and added to the model.

∑

r∈R

∑t2

t′ =t1

Airλrt′ ⩾⌈
∑t2

t′ =t1
Rit′ − Ui

min{Q,Ui}
⌉ i ∈ N

′

, t1, t2 ∈ T
′

, t2⩾t1 (14)

∑

r∈R

∑t2

t′ =t1

Airλrt′ ⩾
∑t2

t′ =t1
Rit′ − si(t1 − 1)

min{Q,Ui,
∑t2

t′ =t1
Rit′ }

i ∈ N
′

, t1, t2 ∈ T
′

, t2⩾t1 (15)

Constraints (14) state that if the sum of the demands in a node over time
periods t1 to t2 is greater than the inventory limit, then there must be at
least one visit to this node in the interval. Constraints (15) state the
same, but here the actual inventory at the node at the start of time period
t1 is taken into account instead. Rounding this up is not possible since
the expression then becomes non-linear. The inequalities are also
strengthened by adding the total demand for node i to the denominator.

3. Matheuristic

The formulation given in Section 2.1 is a valid and complete
formulation for the IRP given that the set of routes, R , includes every
feasible route in the graph G. However, the number of feasible routes

Fig. 1. The matheuristic first creates a set of routes using a giant tour and a split algorithm. These routes are used to solve a modified version of the path-flow model.
The model is from there on solved iteratively where the routes of the current best solution are used to create a new set of routes.

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

4

grows exponentially with the number of customers and thus becomes so
large that, even for small instances, it is not possible to generate all of
them within a reasonable amount of time. However, the number of
routes used in any feasible solution is bounded by V⋅T. Thus, it is
possible to obtain feasible (and optimal) solutions to the problem by
replacing R with a small set of routes R̂ , given that |R̂ | is in the same
magnitude as V⋅T.

The matheuristic presented in this paper exploits this fact by itera-
tively generating a set of promising routes and then solving the path-
flow model presented in Section 2.1 using this subset. The outline of
our heuristic solution method is illustrated in Fig. 1. The method starts
by generating a giant tour, which is split into routes in different ways to
generate an initial set of promising routes. Then, for a number of iter-
ations, the method alternates between solving the path-flow model and a
method that updates the set of routes based on the optimal solution to
the path-flow model. In the following, we go through the details of each
part of the matheuristic. Section 3.1 describes how the initial set of
routes is generated. In Section 3.2, we explain how the set of routes is
modified based on the previous solution to the path-flow model.

3.1. Generating an initial set of routes

The first step of the heuristic is to generate an initial set of promising
routes. The details of this step are outlined in Algorithm 1. First, a giant
tour (GT) with the minimal total distance on the graph G = (N

′

,A) is
created by solving a travelling salesman problem using the function
solveTSP(N ′

, A). In the implementation, we obtain the giant tour by
using the TSP-solver released by Helsgaun (2009), which is considered
to be the fastest implementation of the Lin-Kernighan algorithm (Lin and
Kernighan, 1973).

After the giant tour is created, it is split into segments, and routes are
created by inserting copies of the supplier node at the start and end of
each segment. To do this, we utilize the split algorithm proposed by
Vidal (2016) for the capacitated vehicle routing problem (CVRP). The
split algorithm aims to partition a giant tour solution into separate
routes. It does this by solving a shortest path problem on an acyclic

graph Ĝ = (N , Â) where Â includes one arc (i, j) with cost CÂ =
ij

C0(i+1) +
∑

k=i+1,…,j− 1Ck(k+1) +Cj0 for any feasible route visiting cus-
tomers i+1 to j. Here, the node order follows the ordering of the giant
tour where 1 represents the first node in the giant tour. Traditionally, a
version of Bellman’s equation has been used to solve the problem, but
the aforementioned paper introduces a more efficient labeling algorithm
with additional dominance rules. By using the open-source code
released by the author, we are able to solve the splitting problem with a
limited fleet size in O(N⋅V).

However, to utilize the split algorithm on the obtained giant tour, the
giant tour must be turned into a sequence of nodes by choosing a starting
node (iStart). In addition, since, unlike the CVRP, the IRP does not have
pre-determined demands at each customer, the algorithm must create an
array d of customer demands. Thus, the function Split(GT, iStart , d)
returns the set of routes obtained by applying the split algorithm to a
given giant tour, start node, and demand combination.

To create a diverse set of routes in the initial set of routes R̂ , the
function Split(GT, iStart , d) is called n times with different input combi-
nations. In a given iteration, the algorithm first selects the start node
using the getStartNode(j) function, which returns the j-th closest node to
the supplier. Since the first node in the giant tour is the first node on the
first route, it is likely that this node should lie close to the supplier, and
the number j is thus varied between 1 and 5. To create customer demand
d[i] at node i in a given iteration, the algorithm multiplies the upper
inventory limit Ui with a percentage P. This percentage is reduced for
each iteration of the algorithm by a given value D. Thus, we get a varied
set of routes as splits of the giant tour using large customer demands give
short routes, and splits using small customer demands give longer

routes.
Algorithm 1: Generating initial set of routes

1. initialize d – array of customer demands
2. initialize P – percentage

3. R̂ = ∅
4. GT = solveTSP(N

′

,A)

5. for n iterations do
6. iStart = getStartNode((nmod5) + 1)
7. for i ∈ N

′

do
8. d[i] = P⋅Ui

9. end for
10. R̂ = R̂ ∪ Split(GT, iStart ,d);
11. P = P − D
12. end for
13. return R̂

3.2. VRP heuristic and operators

Algorithm 2: Updating route set

1. input: λ*
rt , r ∈ R̂ , t ∈ T

2. input: q*
it , i ∈ N

′

, t ∈ T

3. R̂ = {r ∈ R : ∃t ∈ T ,λ*
rt = 1}

4. for t ∈ T do

5. R̂ = R̂
⋃

solveVRP(q*
it)

6. end for
7. N̂ = ∅

8. R̂ = R̂
⋃

RemoveNodes(R̂ , N̂) (Algorithm 3)

9. R̂ = R̂
⋃

InsertNodes(R̂ , N̂) (Algorithm 4)

10. for r ∈ R̂ do
11. r = solveTSP(r)
12. end for
13. return R̂

After a solution from the path-flow model is obtained, the route set is
updated with the aim of improving the solution of the path-flow model
in the next iteration. A pseudo-code outlining how the route set is
updated is given in Algorithm 2. First, the algorithm solves a VRP
heuristically for each time period (lines 4–6), where the optimal quan-
tities from the last solution of the path-flow model, q*

it , are used to define
the quantities delivered to each customer. This gives (near) optimal
routing for these quantities, which may be an improvement on the initial
route set. The new routes are added to the set of routes, R̂ , which is
added to the path-flow model in the next iteration together with the
routes given from the last solution. In this paper, the genetic algorithm
proposed by Vidal et al. (2012) has been used as the VRP-heuristic. The
authors of this paper have used the open-source implementation which
is described in Vidal (2020).

Next, nodes from each of these routes are removed using the method
RemoveNodes(R̂ , N̂) (line 8). The resulting routes are added to the set
R̂ . In addition, every node that is removed from a route is added to the
set N̂ . These nodes are then re-inserted into different routes in the
method InsertNodes (line 9). The resulting routes from these insertions
are included in the set R̂ . The two methods are described in detail in
Algorithms 3 and 4.

Once this process is completed, all routes to be used in the path-flow
model in the next iteration have been generated. However, as a final
step, the TSP-heuristic, solveTSP(r), is used on each route r to (possibly)
reduce the distance driven (line 10–12). This is done because even
though a node is removed from or inserted into a route in the cheapest
possible way there is no guarantee that the resulting route is optimal.
Finally, the route set R̂ is returned and the path-flow model can be re-
solved. Since the new set of routes, R̂ , includes the optimal routes from
the previous iteration, we know that this route set provides a solution
that is at least as good as in the previous iteration. This is ensured by

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

5

warm starting the solver with the solution of the previous iteration.
Algorithm 3: RemoveNodes

1. input: R̂ , N̂

2. R new = ∅

3. for r ∈ R̂ do
4. for k ∈ K ⧹{RandomRemoval} do
5. r′ = Nk(r)

6. N̂ = N̂
⋃
(N̂ r⧹N̂ r′)

7. R new = R new⋃{r′ }
8. end for
9. for cnt = 1,…,Y do

10. k = Random Removal
11. r′ = Nk(r)
12. N̂ = N̂

⋃
(N̂ r⧹N̂ r′)

13. R new = R new⋃{r′ }
14. end for
15. end for
16. return R new

The method RemoveNodes is described in Algorithm 3 and consists
of using a set, K , of operators on each route in the set R̂ . These oper-
ators, represented by the functions Nk(r), remove one node from a route
in different ways before returning the resulting route. The set of oper-
ators K consists of Cheapest Removal, Least Served Removal, Most Served
Removal and Random Removal. All operators have time complexity O(n),
except Random Removal that has O(1).

– Cheapest removal: Removes the node from the route that gives the
largest reduction in route cost, if removed.
– Least served removal: The node in the route that received the
smallest quantity of goods in the last solution of the path-flow model
is removed from the route.
– Most served removal: The node in the route that received the largest
quantity of goods in the last solution of the path-flow model is
removed from the route.
– Random removal: A randomly selected node is removed from the
route.

An element of stochasticity is added to the algorithm in the form of
Random Removal so that it is highly unlikely that two consecutive iter-
ations of the path-flow model optimize over the same set of routes R̂ .
Unlike the other operators, Random Removal is run several times. The
number of times Random Removal is used per route is a parameter
denoted Y.

All nodes removed from a route are added to the set N̂ (line 6) and
N̂ r is the subset of nodes visited on route r. The routes generated using
the removal operators are added to the set R new which thereafter is
included in the set R̂ .

Algorithm 4: InsertNodes

1. input: R̂ , N̂

2. R new2 = ∅

3. R 1,R 2⊆R̂

4. for n ∈ N̂ do
5. R new2 = R new2⋃{I(R 1,n)}

⋃
{I(R 2,n)}

6. end for
7. for r ∈ R 1 do
8. R new2 = R new2⋃{C(r)}
9. end for

10. return R new2

The method InsertNodes is described in Algorithm 4 and consists of
inserting the nodes in N̂ back into different routes and hence creating
new routes for the path-flow model. Here, the increase in route cost
when inserting a node into a route decides which route it is inserted into.

This is described as function I(R *,n), which receives a set of routes, R *,
and a node n. The function calculates the cheapest position to insert the
node into each route. The node is inserted into the route with the lowest
marginal cost and the resulting route is returned by the function. I(R *,

n) is run twice - once for the routes in the current optimal solution of the
path-flow model and the routes generated by the VRP-heuristic
(described by the set R 1), and once for the routes generated by
RemoveNodes (described by the set R 2). By partitioning the route set R̂

into two subsets, we ensure to create routes that are longer than our
original ones and that nodes are inserted into routes that have been
shortened.

InsertNodes also includes an operator named Closest Insertion which
is described as function C(r) in the algorithm. Closest Insertion takes a
route and finds the closest neighbor to each of its nodes. All the closest
neighbors are added to the route given that they are not already
included. The resulting route is added to Rnew2 which thereafter is
included in the set R̂ .

4. Computational study

To evaluate the proposed matheuristic, we have tested it on known
benchmark instances for the IRP found in the literature. Section 4.1
introduces the benchmark instances used. In Section 4.2, implementa-
tion issues and parameter testing is discussed. The computational results
are presented in Section 4.3, while the effect of the improvement phase
is investigated in Section 4.4.

4.1. Benchmark instances and solution methods

Two sets of benchmark instances have been used. The first set of
instances are those created by Archetti et al. (2007) for the IRP with a
single vehicle. It consists of 100 instances with three time periods
ranging from 5 to 50 customers, where one-half of the instances has high
inventory costs while the other half has low. For the rest of this paper,
we call this subset of instances SV-S3 (single-vehicle - small 3). There are
also 60 instances with six time periods ranging from 5 to 30 customers.
Again, one half of them has high inventory costs while the other half has
low. These are called SV-S6. The instances were modified for the multi-
vehicle version by Adulyasak et al. (2014) and Coelho et al. (2012a) by
dividing the original vehicle capacity by the number of vehicles avail-
able and rounding to the nearest integer. Up to five vehicles are
considered. These are called MV-S3 and MV-S6, where M stands for
multiple. The second set of benchmark instances was created by Archetti
et al. (2012). The instances are larger and more challenging, consisting
of 100 instances with 50 customers, 100 instances with 100 customers
and 100 instances with 200 customers. They are ranging from one to five
vehicles and one half of them has high inventory costs, while the other
half has low. We call the single-vehicle version SV-L6 and the multi-
vehicle version MV-L6 where L stands for large. All the instances have
six time periods.

To evaluate the proposed matheuristic, our results are compared
with the results presented in other papers that have used the same in-
stances. Some of these methods are exact and some are heuristics. Most
of the exact methods have focused on solving the smaller instances,
while the newer heuristics have also focused on finding good solutions to
the larger ones. As mentioned previously, our main focus has been on
improving the solution quality of the larger instances. However, the
heuristic is also tested on the smaller ones to evaluate its performance on
instances with known optima. The methods and results presented in the
literature span several years and have all used different CPUs and soft-
ware. Hence, making a fair comparison of their time consumption is
hard. In Table 1, we summarize the other solution methods and their
most important features. A complete overview of which instances each
paper has solved can be found in Table 2.

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

6

4.2. Algorithmic implementation and parameters

The parameter values used in this computational study are a result of
preliminary testing, where different parameter configurations of the
matheuristic were tested and compared. The final parameter values
selected are presented in Table 3. There are big differences in the
number of customers, vehicles, and time periods between the various
instances and different parameter settings are thus more suitable for
different sets of instances. However, to avoid overfitting of the param-
eters to the benchmark instances, we have chosen to keep the parame-
ters, except for the time limit, the same for all sets of instances.

The number of iterations, n, of the split algorithm is set as a result of
the initial value of P which is multiplied by Ui, and the percentage, D,
which P is decreased by in each iteration. The preliminary testing
showed that having P larger than 80% usually results in the split algo-
rithm splitting the giant tour into routes visiting a single customer while

having P less than 40% gives a single route visiting all customers. Hence,
having P outside of this range rarely results in additional routes.
Decreasing P by 2.5% per iteration is, in most cases, sufficient to alter
the routes between each iteration, and having P starting at 80% and
ending at 40% gives n = 16.

Sometimes, commercial solvers can spend a large amount of time to
close the duality gap of a MIP without improving the primal solution.
Since the path-flow model is solved with a small set of routes, the dual
bound is not meaningful, only the primal solution is. Therefore, a
maximum time limit on the time spent solving the path-flow formulation
in each iteration of the matheuristic is set. The parameter, 1. Time limit,
refers to the time limit put on the first run of the path-flow model, while
Time limit refers to the consecutive runs as described in Section 3. The
number of iterations and the number of times the Random Removal
operator is used in RemoveNodes are both set based on the preliminary
testing.

Moreover, there are stochastic elements in the matheuristic, and
hence two different runs on the same instance will not necessarily lead to
the same solution. As a consequence, every instance has been run ten
times in our computational study.

4.3. Computational results

In this section, the results of the proposed matheuristic are compared
with the results of the benchmark solution methods. First, a comparison
between the results obtained by our matheuristic and the best-known
solutions for the smaller benchmark instances is made in Section
4.3.1. Since the majority of these have been solved to optimality, a
comparison can give valuable insight into how close to optimality the
obtained solutions are. In Section 4.3.2, we present the results for the
larger instances to see how good the proposed matheuristic is compared
with existing heuristics and exact methods. The detailed computational
results, and solutions, can be found at http://axiomresearchproject.
com/publications/.

Table 1
Benchmark solution methods. We present the solution approach, running plat-
form, number of threads and standard MIP solver. Note: Sol: Solution approach,
E: Exact, H: Heuristic/Metaheuristic, M: Matheuristic, Def: Default.

Reference Name Sol CPU #Threads Solver

Archetti et al.
(2007)

A-BC E Pentium IV 2.8
GHz

Def Cplex 9.0

Coelho and
Laporte (2013)

CL-
BC

E Xeon 2.66 GHz 6 Cplex 12.3

Desaulniers et al.
(2016)

D-
BPC

E Core i7-2600 3.4
GHz

1 Cplex 12.2

Avella et al.
(2018)

AV-
BC

E Core i7-2620,
2.70 GHz

1 Xpress 7.6

Guimarães et al.
(2020)

G-BC E Xeon E5-2630 v2
2.60 GHz

6 Gurobi 8.1

Manousakis et al.
(2020)

M-BC E Intel Core i7-
7700 CPU 3.60
GHz

8 Gurobi 8.1

Coelho et al.
(2012b)

CL-H H Intel T7700, 2.4
GHz

Def –

Adulyasak et al.
(2014)

AB-H H 2.10 GHz Duo
CPU PC

Def Cplex 12.3

Archetti et al.
(2012)

AR-
H1

M Intel Dual Core
1.86 GHz

Def Cplex 10.1

Archetti et al.
(2017)

AR-
H2

M Xeon W3680,
3.33 GHz

8 Cplex 12.5

Chitsaz et al.
(2019)

C-H M Xeon X5650 2.67
GHz

1 Cplex 12.6

Alvarez et al.,
2020

AL-H M Xeon X5650 2.67
GHz

1 Cplex 12.8

Diniz et al.
(2020)

D-H M Intel Core i7-
8700 K 3.7 GHz

1 LEMON
library

This paper V-H M Xeon Gold 6144
3.5 GHz

1 Gurobi 9.0

Table 2
Number of instances solved by each solution method. Note: V: number of vehicles.

Name A-BC CL-BC D-BPC AV-BC G-BC M-BC CL-H AB-H AR-H1 AR-H2 C-H AL-H D-H V-H

Set V Size E E E E E E H H M M M M M M

SV-S3 1 100 100 100 – – 100 – 100 – 100 – 100 100 100 100
SV-S6 1 60 60 60 – – 60 – 60 – 60 – 60 60 60 60
MV-S3 2 100 – 100 100 10 100 100 – 100 – 100 100 100 100 100

3 100 – 100 100 10 100 100 – 100 – 100 100 100 100 100
4 100 – 100 100 10 100 100 – – – 100 100 100 100 100
5 100 – 100 100 10 100 100 – – – 100 100 100 100 100

MV-S6 2 60 – 60 60 40 60 60 – 50 – 60 60 60 60 60
3 60 – 60 60 40 60 60 – 50 – 60 60 60 60 60
4 60 – 60 60 40 60 60 – – – 60 60 60 60 60
5 58 – 58 58 38 58 58 – – – 58 58 58 58 58

SV-L6 1 60 – 60 – – 60 60 – – – 60 – – 60
MV-L6 2 60 – 40 – – 60 40 – – – 60 60 – – 60

3 60 – 40 – – 60 40 – – – 60 60 – – 60
4 60 – – – – 60 40 – – – 60 60 – – 60
5 60 – – – – 60 40 – – – 60 60 – – 60

Table 3
Parameter values

Parameter Value

Split algorithm: Start Percentage, P 80%
Split algorithm: Decr. Percentage, D 2.5%
Split algorithm: Iterations, n 16
Path Flow: 1. Time Limit 2 s ⋅ (number of customers)
Path Flow: Time Limit 1.5 s ⋅ (number of customers)
Path Flow: Iterations, maxIt 5
RemoveNode: number of Random Removal, Y 3

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

7

4.3.1. Small benchmark instances
The results of running the proposed matheuristic (denoted V-H) 10

times on each of the 798 small test instances are compared with existing
results from the literature. All the computational results are summarized
in Tables 4–6. In Table 4, the average gap of each solution method is
presented. The gap of a solution method on an instance is calculated as
the method’s objective value minus the best known objective value (not
considering the objective value of V-H) divided by the best known
objective value. The average per instance set is then calculated. For V-H,
two values are given. V-H Best is the average gap of the best solution
obtained over all instances in each set. For V-H Average, the average gap
over the ten runs has been calculated for each instance, and then the
average over these for each instance set is reported.

It is clear that the most recent exact methods, G-BC and M-BC,
outperform all the heuristics in terms of solution gap. This is natural
since 642 of the 798 small test instances have been solved to optimality.
In fact, the only subsets of instances where the majority of instances still
have not been solved to proven optimality are MV-S6 with four and five
vehicles. V-H Best and V-H Average have the smallest solution gaps for
these instances among all heuristics. Overall, the results of V-H are
competitive compared with the other heuristics and V-H Best has an
average gap of 0.99% over all instances. D-H is the only heuristic that
has a better average gap with 0.37% over all instances. However, there is
a significant performance difference between the three and six time
period instances for V-H. V-H Best has an average gap of 0.40% for the
multi-vehicle instances with six time periods which is lower than all the
other heuristics.

In Table 5, the number of best-known solutions found by each so-
lution method is presented. V-H Best has the same meaning as above, but
its column has an extra number written within parentheses. This shows
the number of best-known solutions that have a strictly lower objective
value than the previously best-known solution, i.e. the number of new
best-known solutions found. V-H Best finds more best-known solutions
than any of the other heuristics, except D-H, with 306 solutions, of which
14 are new solutions. The column V-H Worst shows the number of in-
stances where all the ten runs of V-H have found the best-known solu-
tion. With 215 best-known solutions, it is still competitive compared
with the other heuristics. As in Table 4, V-H performs significantly better
on the six time period instances, compared with those that have three
time periods. For the six time period instances, V-H Best finds the best-

known solution for 59 out of 180 instances for the three, four and five
vehicle instances. This is significantly higher compared with the other
heuristics.

Table 6 presents the average computing time for each solution
method in seconds on each set of instances. V-H Average represents the
average computing time over the ten runs, while V-H Max is the average
of the runs with the maximal computing times for each instances. The
results show that V-H’s computing time is similar to C-H and D-H, and it
is substantially shorter than the other solution methods. The best exact
solution method on the MV-S6 instances, M-BC, spends on average 4,210
s with an average gap of 0.02%, while V-H spends, on average, 138 s
with an average gap of 0.75%. Thus, the results indicate that V-H pro-
duces close to optimal solutions within a small fraction of the computing
time used by exact methods.

4.3.2. Large benchmark instances
The results of running the proposed matheuristic (denoted V-H) ten

times on each of the 300 large test instances are compared with existing
results from the literature. The results are summarized in Tables 7–9. In
Table 7, average gaps are presented. Here, V-H Best and V-H Average
have the same meaning as in Section 4.3.1. Both G-BC and M-BC as well
as AR-H1 produce lower gaps for the single-vehicle instances. However,
the results for V-H Best, an average gap of 1.65%, are in fact quite good
taken into account that in this subset of instances all 50 customer in-
stances are solved to optimality and most 100 customers instances have
a duality gap of less than one percent for its best-known solution. On the
multi-vehicle instances, V-H reports lower average gaps than all the
other solution methods except for two vehicles. V-H Best has an average
gap of − 0.54% for MV-L6, while M-BC, which has the second-lowest
average gaps, has an average gap of 0.28%. However, M-BC has not
been tested on the 200 customers instances which are the largest and
most challenging ones. In fact, the authors themselves state that they are
not solved, because their exact solution method provides no insightful
results within 2 h on these instances. C-H, which has been tested on all
instances, has in comparison a gap of 1.24%.

In Table 8, the number of best-known solutions for each solution
method is presented. V-H Best and V-H Worst have the same meaning as
in Section 4.3.1 and the extra number shows the number of strictly
improving best-known solutions. V-H Best has the best-known solution
for 179 out of 240 multi-vehicle instances and naturally outperforms the

Table 4
Average gaps for the different solution methods. The best average gap for each subset of instances is highlighted.

Set V # Instances A-
BC

CL-
BC

D-
BPC

AV-
BC

G-
BC

M-
BC

CL-
H

AB-
H

AR-
H1

AR-
H2

C-H AL-
H

D-H V-H
Best

V-H
Average

SV-S3 1 100 0 0 – – 0 – 0.44 – 0 – 1.93 1.03 0.02 0.16 0.16
SV-S6 1 60 0 0 – – 0 – 0.49 – 0.14 – 1.09 2.68 0.15 0.77 1.15
MV-

S3
2 100 – 0.01 12.32 1.13 0 0.01 – 8.48 – 0.14 1.79 2.58 0.04 1.17 1.32

3 100 – 0.77 7.92 2.90 0.03 0.05 – 9.14 – 0.38 1.30 2.70 0.11 2.07 2.38
4 100 – 3.27 6.73 7.29 0.30 0.11 – – – 1.07 1.58 2.84 0.51 1.61 2.03
5 100 – 5.86 5.92 11.24 0.85 0.06 – – – 1.71 2.08 2.89 0.65 1.47 1.85

MV-S3:
Average
Gap

400 – 2.48 8.22 5.64 0.30 0.06 – 8.81 – 0.83 1.69 2.75 0.33 1.58 1.90

MV-
S6

2 60 – 1.43 33.11 1.38 0 0.03 – 4.05 – 0.35 3.98 3,01 0.12 0.44 0.73

3 60 – 1.84 36.80 3.46 0.17 0.04 – 3.71 – 1.74 4.76 2.68 0.47 0.43 0.81
4 60 – 3.75 36.41 4.91 0.63 0.02 – – – 3.24 5.61 2.59 0.85 0.41 0.75
5 58 – 4.89 34.39 6.53 1.05 0 – – – 4.00 6.80 2.52 1.19 0.31 0.70

MV-S6:
Average
Gap

238 – 2.98 35.18 4.07 0.46 0.02 – 3.88 – 2.33 5.28 2.70 0.66 0.40 0.75

Total:
Average
Gap

798 0 2.03 18.33 4.32 0.29 0.04 0.46 7.20 0.05 1.38 2.74 2.52 0.37 0.99 1.28

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

8

other methods. It also finds new best-known solutions for seven single-
vehicle instances with 200 customers.

Table 9 gives the average computing time for each solution method
for the set of larger instances. Unsurprisingly, the exact solution
methods spent significantly more time than the heuristics, since they
focus both on finding primal and dual bounds for each instance. How-
ever, for the larger instances, also all heuristics proposed in the literature
spend, on average, more than one hour (3600 s) on each instance. C-H

and AR-H2 are the two other heuristics that have been tested on the full
set of larger instances. AR-H2 used a CPU with approximately the same
clock speed as V-H, however, they used eight cores versus the one core
used by V-H. C-H also used one core, but their clock speed is lower.
However, V-H only spent a small fraction of the computing time C-H
spent on the larger instances. For some of the largest instances, C-H
spent almost 25,000 s, while V-H never spent more than 2,300 s. Hence,
it is unlikely that the improved computing times are only a result of the

Table 5
The number of best-known solutions for the different solution methods. The solution method with the highest number for each subset of instances is highlighted.

Set V # Instances A-BC CL-BC D-BPC AV-BC G-BC M-BC CL-H AB-H AR-H1 AR-H2 C-H AL-H D-H V-H Best V-H Worst

SV-S3 1 100 100 100 – – 100 – 49 – 98 – 23 57 96 84 (0) 84 (0)
SV-S6 1 60 60 60 – – 60 – 22 – 24 – 7 8 44 25 (0) 11 (0)
MV-S3 2 100 – 98 66 7 100 99 – 11 – 59 19 33 87 56 (0) 40 (0)

3 100 – 75 71 2 86 86 – 10 – 54 23 23 71 32 (0) 19 (0)
4 100 – 44 69 0 71 75 – – – 32 17 14 43 18(1) 8 (0)
5 100 – 38 80 0 58 84 – – – 23 20 22 36 16 (0) 11 (0)

MV-S6 2 60 – 40 18 15 59 46 – 0 – 14 0 1 31 16 (0) 10 (0)
3 60 – 22 15 0 41 43 – 2 – 14 0 2 13 24 (5) 11 (1)
4 60 – 13 17 0 20 50 – – – 4 0 1 5 20 (5) 14 (1)
5 58 – 8 14 0 16 54 – – – 6 0 2 4 15 (3) 7 (1)

Total small
instances

798 160 498 350 24 611 537 71 23 122 206 109 163 430 306 (14) 215(3)

Table 6
The average solution time for each solution method. The solution times of other methods are directly adopted from the corresponding papers. Note: N/A = not
available.

Set V # Instances A-
BC

CL-
BC

D-
BPC

AV-
BC

G-BC M-BC CL-
H

AB-
H

AR-
H1

AR-
H2

C-
H

AL-
H

D-
H

V-H
Average

V-H
Max

SV-S3 1 100 436 10 – – 28 – 522 – 336 – 47 N/A 32 2 2
SV-S6 1 60 880 33 – – 114 – 458 – 664 – 50 N/A 54 9 11
MV-

S3
2 100 – 703 3,418 2,350 456 368 – N/A – 936 62 N/A 64 16 16

3 100 – 2,556 3,226 4,285 1,791 2,611 – N/A – 1,207 65 N/A 105 17 18
4 100 – 4,547 2,877 5,228 3,385 3,738 – – – 615 69 N/A 150 20 21
5 100 – 5,052 2,395 5,400 4,135 3,735 – – – 694 65 N/A 202 25 26

MV-
S6

2 60 – 2,610 5,292 4,114 1,616 2,658 – N/A – 1,797 80 N/A 136 53 60

3 60 – 5,496 5,622 5,050 4,294 4,549 – N/A – 2,214 76 N/A 227 141 156
4 60 – 6,034 5,503 5,124 5,693 4,703 – – – 1,108 81 N/A 325 178 180
5 58 – 6,254 5,896 5,190 6,148 4,930 – – – 1,294 65 N/A 414 181 182

Table 7
Average gaps for the different solution methods. The best average gap for each subset of instances is highlighted.

Set V # Instances CL-BC G-BC M-BC AR-H1 AR-H2 C-H V-H Best V-H Average

SV-L6 1 60 11.04 0.23 0.25 0.39 – 3.64 1.65 1.98
MV-L6 2 60 69.64 3.94 0.11 – 3.89 1.77 0.22 0.56

3 60 115.61 10.11 0.04 – 4.48 1.36 − 0.77 − 0.46
4 60 – 19.11 0.80 – 6.17 0.81 − 0.80 − 0.46
5 60 – 25.42 0.18 – 6.35 1.00 − 0.79 − 0.37

MV-L6: Average Gap 92.63 14.65 0.28 – 5.22 1.24 − 0.54 − 0.18
All Instances: Average Gap 65.43 11.67 0.28 0.39 5.22 1.72 − 0.10 0.25

Table 8
The number of best-known solutions for the different solution methods. The solution method with the highest number for each subset of instances is highlighted.

Set V # Instances CL-BC G-BC M-BC AR-H1 AR-H2 C-H V-H Best V-H Worst

SV-L6 1 60 20 44 15 8 0 0 7 (7) 4 (4)
MV-L6 2 60 0 11 20 0 0 2 28 (28) 18 (18)

3 60 0 0 14 0 0 0 47 (46) 37 (37)
4 60 0 0 6 0 0 3 51 (51) 32 (32)
5 60 0 0 4 0 0 3 53 (53) 29 (29)

Total large instances 300 20 55 59 8 0 8 186 (185) 120 (120)

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

9

difference in hardware. Also looking at the exact methods that have
solved the largest instances, it is clear that V-H still has the best per-
formance. On the multi-vehicle instances, V-H only spends a small
fraction of time compared with what the exact methods do and still
obtain much better solutions. On the single-vehicle instances, where V-H
does not obtain the best solutions, we notice that V-H spends 105 s on
average while all the other solution methods spend over 3,600 s.

In summary, we see that on the larger instances, the heuristic pro-
posed in this paper produces, on average, less costly solutions than
previous heuristics suggested, and it does so by using significantly less
computing time. The heuristic has found the best-known solution on 186
out of the 300 larger instances, and where 185 of them are an
improvement of what is previously reported in the literature. The
numbers are 179 out of 240 instances if we only consider the multi-
vehicle instances.

4.4. Effect of improvement phase

As seen in Section 3, the proposed matheuristic consists of two parts.
The first part involves creating an initial solution through the use of a
giant tour. Then follows an iterative process where the solution is
improved by a set of operators and a VRP-heuristic. The effect the
different operators, and the VRP heuristic, has on the final objective
value of VH-Best is summarized in Table 10. The table shows the average
improvement in percentage between the initial objective value and the
final objective value for each subset of instances. The percentage is
calculated as the final objective value minus the initial objective value
divided by the initial objective value.

From the numbers presented in Table 10, it is clear that the
improvement phase contributes to reducing the objective value obtained
from solving the path-flow model with only columns from the giant tour.
However, each iteration of the matheuristic increases the computing
time and there is a trade-off between performance and time spent.
Further, increasing the number of iterations generally has a diminishing
effect, and only marginally improves the solution. Hence, finding the
right number of iterations is crucial and something we tested extensively

in the preliminary testing.
Another interesting analysis is to study where the routes that

contribute to an improved solution originate from. Most of the routes in
the solution from an iteration are identical to the routes in the previous
iteration’s solution. However, as seen in Table 10, the objective value
usually gets better from the first iteration to the last. We have analyzed
all routes that have contributed to a better solution and tracked their
origin. Table 11 shows the percentage that each operator (and the VRP
heuristic) contributes to this set of improved routes.

From Table 11 we observe that the VRP heuristic is the second largest
contributor of routes that improve the objective value. This is reasonable
due to the nature of the heuristic. Especially in larger instances, the
initial distribution of nodes between vehicles can be suboptimal in a
time period given the stated demand, and the heuristic tries to find a
better distribution. In addition, the operators which remove nodes
produce more improving routes than the operators which add nodes.
This indicates that the initial solution created from the routes from the
giant tour consists of routes that are generally too long. This is reason-
able since they consist of segments of the giant tour. In an optimal so-
lution, the nodes from a segment might not be part of an optimal route,
which is a weakness of our proposed heuristic. However, the operators
that remove nodes are included in the matheuristic to take care of this.
The random operators are the most used removal operators. This is an
indication that it is often not obvious which nodes should be removed
from a route.

5. Concluding remarks

In this paper, we propose a heuristic algorithm that relies on creating
a giant tour and a split algorithm to create promising routes that make
up the route set for a path-flow formulation of the IRP. The path-flow
model is re-solved for a number of iterations where the route set is
updated between each iteration with the help of simple operators.
Computational results show that the matheuristic provides high-quality
solutions for larger benchmark instances of the IRP. Out of 240 larger
multi-vehicle instances, the matheuristic finds the best-known solutions
on 179 instances, where 178 of them have a strictly lower objective
value than the previously best-known solution. It also finds a new best
upper bound for seven single-vehicle instances. In addition, the math-
euristic often only spends a small fraction of the time that existing so-
lution methods from the literature use. Although it has not been the
focus of this paper, the proposed matheuristic also performs very well on
smaller instances. Its average solution gap is similar to other heuristics
and it has the second-highest number of best-known solutions among all

Table 9
The average solution time for each solution method. The solution times of other methods are directly adopted from the corresponding papers.

Set V # Instances CL-BC G-BC M-BC AR-H1 AR-H2 C-H V-H Average V-H Max

SV-L6 1 60 64,509 5,562 5,734 3630 – 6,668 105 122
MV-L6 2 60 86,400 7,200 7,200 – 4,066 6,657 351 390

3 60 86,400 7,200 7,200 – 4,540 4,209 635 735
4 60 – 7,200 7,200 – 4,257 5,132 953 1,096
5 60 – 7,200 7,200 – 4,418 5,527 1,197 1,280

Table 10
Overview of the objective value improvements due to operators

Set V Improvement [%]

SV-S3 1 − 0.18
SV-S6 1 − 3.29
MV-S3 2 − 2.10

3 − 2.31
4 − 2.91
5 − 3.13

MV-S6 2 − 3.04
3 − 2.45
4 − 1.74
5 − 1.55

SV-L6 1 − 1.78
MV-L6 2 − 3.36

3 − 3.76
4 − 3.71
5 − 3.45

Table 11
The percentage of the routes that improve the solution that
comes from different operators and the VRP heuristic

Route Percentage

Cheapest Removal 12.6
Least Served Removal 9.3
Most Served Removal 4.7
Random Removal 17.7
Closest Insertion 2.9
Cheapest Insertion 27.6
VRP-heuristic 25.2

S.T. Vadseth et al.

Computers and Operations Research 131 (2021) 105262

10

reported heuristics.

CRediT authorship contribution statement

Simen T. Vadseth: Conceptualization, Methodology, Software,
Investigation, Writing - original draft, Writing - review & editing,
Visualization. Henrik Andersson: Conceptualization, Methodology,
Supervision, Writing - review & editing. Magnus Stålhane: Conceptu-
alization, Methodology, Supervision, Writing - original draft, Writing -
review & editing, Project administration.

Acknowledgement

The authors thank Doctor Masoud Chitsaz for providing the updated
results of Chitsaz et al. (2019) and for sharing the material he had
gathered on the best-known solutions for the benchmark instances, and
Professor Rafael Martinelli for sharing the detailed results of Diniz et al.
(2020). Doctor Masoud Chitsaz and Professor Jean-Francois Cordeau
also provided valuable feedback during the writing of this paper. We
also thank two anonymous referees for their constructive comments and
suggestions, which helped improve the quality of the paper. Lastly, we
would like to thank the Norwegian Research Council for funding the
research and our collaborators in the AXIOM project for their valuable
feedback.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.cor.2021.105262.

References

Adulyasak, Y., Cordeau, J.-F., Jans, R., 2014. Formulations and branch-and-cut
algorithms for multivehicle production and inventory routing problems. INFORMS
Journal on Computing 26 (1), 103–120.

Alvarez, A., Cordeau, J.-F., Jans, R., Munari, P., Morabito, R., 2020. Formulations,
branch-and-cut and a hybrid heuristic algorithm for an inventory routing problem
with perishable products. European Journal of Operational Research 283 (2),
511–529.

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., Løkketangen, A., 2010. Industrial
aspects and literature survey: Combined inventory management and routing.
Computers & Operations Research 37 (9), 1515–1536.

Archetti, C., Speranza, M.G., 2014. A survey on matheuristics for routing problems.
EURO Journal on Computational Optimization 2, 223–246.

Archetti, C., Bertazzi, L., Laporte, G., Speranza, M.G., 2007. A branch-and-cut algorithm
for a vendor-managed inventory-routing problem. Transportation Science 41 (3),
382–391.

Archetti, C., Bertazzi, L., Hertz, A., Speranza, M.G., 2012. A hybrid heuristic for an
inventory routing problem. INFORMS Journal on Computing 24 (1), 101–116.

Archetti, C., Boland, N., Grazia Speranza, M., 2017. A matheuristic for the multivehicle
inventory routing problem. INFORMS Journal on Computing 29 (3), 377–387.

Avella, P., Boccia, M., Wolsey, L.A., 2018. Single-period cutting planes for inventory
routing problems. Transportation Science 52 (3), 497–508.

Bell, W.J., Dalberto, L.M., Fisher, M.L., Greenfield, A.J., Jaikumar, R., Kedia, P., Mack, R.
G., Prutzman, P.J., 1983. Improving the distribution of industrial gases with an on-
line computerized routing and scheduling optimizer. Interfaces 13 (6), 4–23.

Boschetti, M.A., Maniezzo, V., Roffilli, M., Röhler, A.B., 2009. Matheuristics:
Optimization, simulation and control. International Workshop on Hybrid
Metaheuristics 171–177.

Chitsaz, M., Cordeau, J.-F., Jans, R., 2019. A unified decomposition matheuristic for
assembly, production, and inventory routing. INFORMS Journal on Computing 31
(1), 134–152.

Coelho, L.C., Laporte, G., 2013. The exact solution of several classes of inventory-routing
problems. Computers & Operations Research 40 (2), 558–565.

Coelho, L.C., Laporte, G., 2014. Improved solutions for inventory-routing problems
through valid inequalities and input ordering. International Journal of Production
Economics 155, 391–397.

Coelho, L.C., Cordeau, J.-F., Laporte, G., 2012a. Consistency in multi-vehicle inventory-
routing. Transportation Research Part C: Emerging Technologies 24, 270–287.

Coelho, L.C., Cordeau, J.-F., Laporte, G., 2012b. The inventory-routing problem with
transshipment. Computers & Operations Research 39 (11), 2537–2548.

Coelho, L.C., Cordeau, J.-F., Laporte, G., 2014. Thirty years of inventory routing.
Transportation Science 48 (1), 1–19.

Desaulniers, G., Rakke, J.G., Coelho, L.C., 2016. A branch-price-and-cut algorithm for the
inventory-routing problem. Transportation Science 50 (3), 1060–1076.

Diniz, P., Martinelli, R., Poggi, M., 2020. An efficient matheuristic for the inventory
routing problem. International Symposium on Combinatorial Optimization 273–285.

Guimarães, T.A., Schenekemberg, C.M., Coelho, L.C., Scarpin, C.T., Pécora Jr, J.E., 2020.
Mechanisms for feasibility and improvement for inventory-routing problems. Tech.
Rep. CIRRELT-2020-12, Université de Montréal, Canada.

Helsgaun, K., 2009. General k)opt submoves for the Lin-Kernighan TSP heuristic.
Mathematical Programming Computation 1 (2–3), 119–163.

Lin, S., Kernighan, B.W., 1973. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research 21 (2), 498–516.

Manousakis, E., Repoussis, P., Zachariadis, E., Tarantilis, C., 2020. Improved branch-and-
cut for the inventory routing problem based on a two-commodity flow formulation.
European Journal of Operational Research 290, 870–885.

Vidal, T., 2016. Split algorithm in O(n)) for the capacitated vehicle routing problem.
Computers & Operations Research 69, 40–47.

Vidal, T., 2020. Hybrid genetic search for the cvrp: Open-source implementation and
swap* neighborhood. arXiv preprint arXiv:2012.10384.

Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W., 2012. A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Operations
Research 60 (3), 611–624.

S.T. Vadseth et al.

	An iterative matheuristic for the inventory routing problem
	1 Introduction
	2 Problem definition and formulation
	2.1 A path-flow formulation
	2.2 Valid inequalities

	3 Matheuristic
	3.1 Generating an initial set of routes
	3.2 VRP heuristic and operators

	4 Computational study
	4.1 Benchmark instances and solution methods
	4.2 Algorithmic implementation and parameters
	4.3 Computational results
	4.3.1 Small benchmark instances
	4.3.2 Large benchmark instances

	4.4 Effect of improvement phase

	5 Concluding remarks
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A Supplementary data
	References

