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Abstract: The increasing demand for Electric Vehicle (EV) charging is putting pressure on the power
grids and capacities of charging stations. This work focuses on how to use indirect control through
price signals to level out the load curve in order to avoid the power consumption from exceeding these
capacities. We propose mathematical programming models for the indirect control of EV charging
that aim at finding an optimal set of price signals to be sent to the drivers based on price elasticities.
The objective is to satisfy the demand for a given price structure, or minimize the curtailment of
loads, when there is a shortage of capacity. The key contribution is the use of elasticity matrices
through which it is possible to estimate the EV drivers’ reactions to the price signals. As real-world
data on relating the elasticity values to the EV driver’s behaviour are currently non-existent, we
concentrate on sensitivity analysis to test how different assumptions on elasticities affect the optimal
price structure. In particular, we study how market segments of drivers with different elasticities
may affect the ability of the operator to both handle a capacity problem and properly satisfy the
charging needs.

Keywords: electric vehicle charging; optimization; elasticity; demand response; indirect control

1. Introduction

Today, the transport sector accounts for a large share of global pollutant emissions.
Indeed, in the last few years, the majority of transportation emissions-related health impacts
occurred in the top global vehicle markets. In 2015, 70% of transportation-attributable
deaths occurred in the four largest vehicle markets: China, India, the European Union (EU),
and the United States [1]. As discussed in [2], reducing air pollution from transportation,
and especially carbon dioxide emissions, are at the center stage of discussion by the world
community. For that reason, over the last decade, there has been a dramatic increase in the
number of electric vehicles (EV) in industrialized countries.

The main motivation behind this study is that the large penetration of EV leads to
situations where charging puts pressure on the distribution grid. However, the peak loads
occur only throughout a small part of the day, while during the rest of the day, the grid has
excess capacity. Hence, it is worthwhile to investigate if, utilizing charging flexibility on
the demand side to reduce the peak-loads, can be a valid alternative to grid reinforcements
within charging sites’ expansion [3]. In the distribution grid, this can be done through
demand response, that aims at leveling out the load curve in order to avoid that the power
consumption exceeds the grid capacity.

Two types of demand responses exist. With a direct demand response, customers’
loads are controlled by a third party, such as a retailer, or by the DSO; while with an indirect
demand response, the customer responds to signals, such as price, that are sent to motivate
a certain behaviour that is beneficial for the operator and for the grid [4]. A conceptual
introduction to indirect control for demand-side management is proposed in [5].
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This study utilizes elasticity matrices in indirect control scheduling models for man-
aging the charging of electric vehicles. The objective is to ensure better utilization of the
grid and to reduce the probability of congestion. Assuming that electric vehicle drivers are
willing to change their behaviour according to price variations, the paper provides mathe-
matical optimization models to define optimal charging prices. A price list will be created
according to drivers’ flexibility and sensitivity to price, in order to reduce their charging in
those periods that are critical for the grid because of capacity shortage. The objective is to
minimize the curtailment of charging loads by planning load-shifting and, whenever it is
not possible to only shift demand, find a solution with minimal curtailment.

Compared to other works in the literature that focus on charging patterns’ optimiza-
tion, such as [6–9], the present paper focuses on micro-economics strategies rather than
technical properties of the storage technologies. The proposed approach is not about indi-
vidual pattern optimization. The proposed approach uses an aggregated perspective where
customers’ behaviour can be described by elasticity. From this perspective, customers are
grouped into clusters that have different sensitivity to prices.

The key contribution of this study is the inclusion of the micro-economic concept of
elasticity in the optimization strategy. In particular, the proposed mathematical models
will make use of an elasticity matrix to map the driver’s sensitivity to price and forecast
their reactions to the price signals in terms of a demand increase or decrease. Although
the general concept of elasticity is well-established, its use within the pricing of electric
vehicle charging is relatively new. Due to the novelty of this approach, real-world data
relating the elasticity values to the electric vehicles’ drivers’ behaviour are currently nonex-
istent. Hence, beyond the methodological contribution in terms of mathematical modeling,
the present paper will provide an analytical contribution in terms of sensitivity analyses
and representative case studies aimed at understanding the effect of the elasticity in the
pricing of electric vehicles. The proposed mathematical models are used to investigate
how elasticity data may affect the pricing, the behaviour of drivers, and the ability of the
operator to successfully handle critical periods of capacity shortage.

The rest of the paper is organized as follows. Section 2 will present an overview of
previous literature dedicated to control schemes for EV drivers. Section 3 will discuss the
main concepts of demand curves and the elasticity matrix in the EV sector, while Section 4
will propose mathematical optimization strategies for indirect scheduling of EV charging
with price signals. Computational experiments and sensitivity analyses will be presented
in Section 5 and conclusions will be drawn in Section 8.

2. Literature Review

This section aims at providing a short overview of previous literature dealing with
how to affect EV drivers decisions in a way that is beneficial for the grid. The main areas
are charging scheduling schemes, demand response strategies, and more specifically, the
use of microeconomic concepts, such as elasticity to define charging prices.

A survey on economy-driven approaches for charging electric vehicles in the smart
city is proposed in [10], where the most common approaches are presented and compared.

An example of indirect control can be found in [11], where a fuzzy logic controller
is used to control and manage the charging process in order to maximize electric utility
and the electric vehicles’ owner benefits. Another study presented in [12] compares three
approaches (heuristic, optimization, and stochastic programming) used to schedule under
uncertainty the charging process of three different electric vehicles’ fleets at a common
charging infrastructure. Dynamic price signals are developed in [13] to implement demand-
side management, and alleviate the stress of concurrent charging on the distribution
network. A statistical demand-price model with its application in optimal real-time price is
presented in [14], and a similar work is proposed in [15]. Demand response opportunities
of EV to improve the reliability of distribution networks are explored in [16]. A stochastic
approach to handle uncertainty in price elasticities of electricity demand is proposed in [17].
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A price-based approach to prevent distribution grid congestions by integrating indirect
control in a hierarchical EV’s management system is developed in [18].

None of the above works include elasticity formulations within mathematical opti-
mization models, to study the price sensitivity of the drivers. As previously outlined, there
are no papers that use elasticities within scheduling models for the charging of electric
vehicles, which in the same way is proposed in this paper. However, a few papers make
use of it in related models and analyses.

The broad concept of real-time price elasticity of electricity has been addressed in [19],
where the authors provide a quantification of the real-time relationship between total peak
demand and spot market prices. Elasticity theory and its relevance within a scheduling
program is presented in [20], but the focus is on general electric load management, and
not related to electric vehicles’ management in conditions where there is a lack of capacity.
Elasticities are used in [21] to analyse investment decision-making and investigate the
propensity to switch from a private car trip to a car-sharing service, as well as the propensity
to choose an electric vehicle for such a service. A heuristic method is proposed in [22] to
forecast elasticity values, but the main application is households’ electric load management
and not indirect control of electric vehicles. A demand response model with elasticity
inclusion to handle general electric loads is proposed in [23], but without the objective
of defining an optimal set of prices. Indeed, prices are not generated by the model,
but rather provided as input parameters within the case studies. Moreover, the study is
not directly related to electric vehicle scheduling. Similarly, in [24], the authors make use
of an elasticity matrix to develop models for residential demand response. Both [25,26]
propose methodologies to handle demand response in systems that include electric vehicles,
but their main focus is the possibility to manage the uncertainty by using the renewable
resources in the system rather than the electric vehicles and their impact on the available
capacity of the grid. The optimal installed capacity allocation of renewable resources in
conjunction with demand response is also analysed in [27], where authors do make use
of an elasticity matrix to forecast the consumers’ behaviour. The study in [28] proposes
a smart-charging management system considering the elastic response of electric vehicle
users to the electricity charging price. However, a deeper investigation of the actual
sensitivity of elasticity values is not provided. A behavioural modeling of electric vehicles
using price elasticities is proposed in [29] to provide insights into the degree of demand-
shifting that can occur across various day-ahead electricity market scenarios. An approach
to model demand flexibility of electric vehicles is proposed in [30], where the demand
flexibility offered by an EV is represented using a price elasticity matrix which is calculated
with respect to a flat reference price scenario. However, the work does not provide enough
insights into the value of an elasticity matrix due to the lack of elasticity data.

A methodology for an optimal operation and bidding strategy of a Virtual Power
Plant integrated with energy storage and an elasticity-based demand response is presented
in [31]. The price elasticity of consumers is also taken into account in [32], where the
objective is the development of a decentralized robust model for optimal operation of
distribution companies with private micro-grids. An optimal real-time pricing of electricity
based on demand response is tested in [33] to encourage customers to participate in the
electricity market operation.

One of the challenges in all of the above papers that include elasticities in real-world
applications for energy systems, is the lack of actual elasticity data. Additionally, no sensi-
tivity analyses are performed to actually show what is the impact of including an elasticity
matrix within the proposed optimization models. Most of the papers propose the use of
elasticity values, but they do not provide a thorough investigation of the elasticity impact
on the pricing strategies and on the models’ results. There is a need to gain a better under-
standing of the impact that such elasticity data would have within specific optimization
models, and how heavily such values would affect the final results and decisions.

While indirect control in pricing has been used already in the past for demand manage-
ment, the price elasticity has not been combined together with indirect control strategies in
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ways suitable for inclusion within real-time decision-making tools based on optimization
within the green transportation sector. In addition, while the concept of pricing in a certain
time-period is well-established (self-elasticity), the concept of switching between time-
periods through price sensitivity (cross-elasticity) has not been fully investigated in the
literature, especially for the particular application of electric vehicle charging scheduling.
The cross-elasticity of demand is an economic concept that measures the responsiveness in
the quantity demanded of one commodity when the price for another commodity changes.
The proposed work identifies charging time as a commodity for real-time decision-making
processes, where different time-periods are regarded as different alternative commodities,
and where drivers are aggregated into segments with different sensitivities to the charging
price in different time-periods.

Therefore, the key contribution of the proposed study is to combine indirect control
together with price elasticities and check the insights that can be gathered through sensitiv-
ity analyses. From this point of view, the key contribution of the present paper is not only
proposing a methodology to define optimal price lists to send to electric vehicles’ drivers in
order to better manage critical periods of a lack of capacity in the grid, but also performing
sensitivity analyses with an in-depth investigation of how the elasticity values would affect
the pricing and the ability of the system to fulfill the demand requirements.

The main purpose of the study is to discuss what kind of insight can be gathered by
using elasticity within mathematical optimization models for indirect control of electric
vehicle charging. Therefore, the focus is on demonstrating the use of elasticity for this
specific application, and understanding the value of using elasticity in analysing the
outcome of a real-time decision-making process.

3. Demand Curves in the Electric Vehicles Sector

The relationship between the demand of a good and its price is represented with
a demand curve. Normally, the demand for goods decreases as the price of the good
increases. However, there is also a relation to the price of so-called “substitute goods” that
consumers consider as similar or comparable, meaning that demand is reduced if the price
of a substitute good decreases.

For EV charging, the demand curve represents the relationship between the charging
price of electric vehicles and the amount of drivers that are willing to charge at a certain
price in a certain time-step. The substitute goods can be described as the possibility to shift
the load and charge in a time-step that is different from the desired one because the related
charging price potentially is lower. This study proposes a stylized approach in order to
study how elasticities can be used to understand the effect that prices have in order to
move demand between time-periods. For the purposes of demonstrating the concept, we
simplify the charging scheduling problem to depend only on price. Such simplification is
reasonable, since we do not refer to individual drivers, but rather to the aggregated markets’
demand curves. The main purpose of this work is to show how elasticities can be used
to better understand the effects that price have on shifting demand between time-periods.
In sum, as shown in Formula (1), the charging demand of electric vehicles is a function of
both the price in a certain time-step t and the price that the operator shows in alternative
time-steps (t± i).

Qt = f (Pt, Pt±i) (1)

Moreover, it is important to note that when analysing consumers’ response to price,
the focus is generally not on the single consumer demand, but on the aggregated demand
curve stemming from aggregating the demand curves of individual consumers. As a
first approximation, it is possible to consider one whole aggregated demand curve for
charging, aggregating all the electric vehicles’ drivers. As an extension, it is possible to
imagine market segmentation, that aims at aggregating the electric vehicles’ drivers into
groups, or segments, where drivers within a group respond similarly to a market action
(i.e., price change).

Aggregated Demand Curves within Multiperiod Optimiztion Models
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It is difficult, if not impossible, to quantify exactly a real non-linear demand curve that
is a function of several prices and that involves consideration of prices in different time-
steps. Still, using Taylor’s first-order approximation theorem, we know that a multivariate
function, that is, f (x, y) can be approximated linearly in the neighborhood of the point of
evaluation (x∗, y∗) as:

f (x, y) ' f (x∗, y∗) + fx(x∗, y∗)(x− x∗) + fy(x∗, y∗)(y− y∗), (2)

where fx denotes the partial derivative of the function with respect to x and similarly for
y. The same approximation can be easily extended if f is a function of more than two
variables. This can be used to approximate the demand function showed in Equation (1),
where demand is a function of different prices in different time-steps. Hence, through
the Taylor’s theorem, we are now moving into a description of demand based on point-
price elasticity.

The standard definition of elasticity ε is shown in Formula (3). In this formula, ∂Q/∂P
is the partial derivative of the quantity demanded taken with respect to the price, P0 is a
specific price for the good, and Q0 is the quantity demanded at the price P0.

ε =
∂Q/Q0

∂P/P0 . (3)

In order to include this concept within mathematical optimization models, the stan-
dard formulation can be approximated, as shown in Formula (4), where the elasticity ε is
defined as the ratio of the percentage change in quantity to the percentage change in price.

ε =
∂Q/Q0

∂P/P0 '
∆Q/Q0

∆P/P0 =
∆Q
∆P

P0

Q0 (4)

Within the electric vehicle charging sector, two types of elasticities can be identified,
the self-elasticity and the cross-time elasticity.

The self-elasticity defines the percentage change in demand Q at time-step t, due
to the corresponding percentage change in the price P, at the same time-step t. It has a
negative sign, meaning that an increase of price in a certain time-step will cause a decrease
of demand in the same time-step.

The cross-time elasticity describes the percentage change in demand Q at time-step t
due to a change in price at a different time-step (t′ = t± i). It has a positive sign, meaning
that an increase of price in a certain time-step t can cause an increase of demand in a
different time-step (t′ = t± i).

As shown in Figure 1, such elasticity values can be summarized into matrices that give
us a quick view of consumers’ sensitivity to prices in different time-steps. Hence, we will
no more rely on an exact demand function, but rather on a mapping of drivers’ flexibility,
expressed by elasticities and applied to a first-order Tailor approximation.

Figure 1. Example of elasticity matrix with self- and cross-elasticity values.

Here, it is important to remember that the elasticity is a concept to be applied to large
groups of users. It does not represent a single driver’s behaviour, but rather the behaviour
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of a group of drivers that belong to the same market segment and respond similarly to a
market action like price variation. We will refer to a group of drivers as a cluster. The idea
behind the mathematical model that will be proposed later, is that when a price signal is
sent to a group of drivers, some of them will be discouraged and give up the charging,
while others will still decide to connect. The objective of the pricing scheme is to shift a
portion of drivers in such a way that the capacity limit is respected.

Figure 2 shows the basic idea behind the pricing models. Figure 3 shows a simple
example. In time-step T2, there is a load that exceeds the capacity and that has to be reduced.
Therefore, the objective is to send a price signal that motivates the shifting of the exceeding
load in T1 or T3. The elasticity tells us how sensitive a cluster of drivers is. The elements on
the diagonal represent the self-elasticity: in this particular example, we assume we increase
the price in T2 to get a decrease of demand in T2, and we decrease the price in T1 or T3 to
get an increase of demand in T1 or T3. Elements above or below the diagonal represent the
cross-elasticity. On the left diagram of Figure 3, there is a cross-elasticity T3T2 below the
diagonal, that represents the variation of the demand in T3 due to a change in price in T2.
Therefore, an increase of price in T2 will not only cause a reduction of demand in T2, but it
will also motivate a demand increase in T3; hence, part or all the load that has been cut
in T2 can be shifted in T3 as a function of the cross-time elasticity of drivers. On the right
diagram of Figure 3, there is a cross-elasticity T1T2 above the diagonal, that represents the
variation of demand in T1 due to a variation of price in T2. Therefore, for that group of
drivers, an increase of price in T2 not only causes a reduction of demand in T2, but it will
also motivate a demand increase in T1, hence part or all the load that has been cut in T2 can
be shifted in T1 as a function of the cross-time elasticity of drivers. When only one market
segment is involved, such load movements in time are easy to handle. However, when
more market segments with different sensitivities react to the same price signal, then a
model is needed to define the optimal price in order to shift the total load while taking
into account the different reactions of different clusters. The next section will discuss a
mathematical optimization approach for that purpose.

Figure 2. Graphical representation of the basic idea behind pricing models that make use of the
elasticity concept to handle electric vehicle charging needs.
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Figure 3. Simple example to understand how the elasticity affects the loads’ cut and shifting.

4. A Mathematical Model for Indirect Scheduling with Price Signals

This section proposes a mathematical model for indirect control of electric vehicle
charging through smart price signals, based on the variables and parameters illustrated
in Table 1.

Table 1. Nomenclature list.

Sets and Indexes

T Set of time-periods
H Set of market segments that define different clusters of drivers with different preferences
t time-period
h Demand segment

Parameters

Q0
t,h Initial reference forecasted demand of segment h in time-period t

P0
t Initial reference price in time-period t

Ct Available capacity of grid for EV charging in time-period t
εt,t,h′ Elasticity coefficient of segment h (demand variation in time t due to a variation of price in time t′)

Variables

pt Price signal in time-period t
qt,h New forecasted demand of segment h in time-period t

There exist different clusters of EV drivers with different preferences (for example,
speed of charging) that are represented as market segments, each with their own aggregated
demand curve. We will propose a first basic model that provides a single price list with one
price per time-step t. Then, we propose a model extension that generates separate price
lists for two different charging speeds (fast or slow charging). Please note that there is no
price discrimination between the market segments. The segments just represent different
preferences reflected by the elasticities.

4.1. Different Aggregated Demand Segments and Real-Time Price List

In the first basic model for the indirect control of the charging of electric vehicles,
the objective is to define an optimal price list to motivate drivers to reduce the charging
demand in those time-steps where the total load exceeds the capacity, and increase the
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charging demand in those time-steps where an excess of capacity is available. Drivers’
sensitivity to price will be mapped according to their elasticity coefficients.

minimize ∑
t,h

Q0
t,h −∑

t,h
qt,h (5)

∑
h

qt,h ≤ Ct ∀t : ∑
h

Q0
t,h ≤ Ct (6)

∑
h

qt,h = Ct ∀t : ∑
h

Q0
t,h > Ct (7)

∑
t,h

qt,h ≤∑
t,h

Q0
t,h (8)

qt,h = Q0
t,h + ∑

t′

Q0
t,h

P0
t′

εt,t′ ,h(pt′ − P0
t′) ∀h, t : ∑

h
Q0

t,h > 0 (9)

The objective function (5) minimises the difference between the total initial forecasted
demand for the chosen time horizon T and the total new demand that will result after
reducing load in critical time-steps and increasing the loads in non-critical time-steps.
Critical time-steps are those where the total initial demand ∑h Q0

t,h is greater than the
available capacity Ct, while non-critical time-steps are those where there is space for
load increase.

Constraint (6) defines the new demand in non-critical time-steps that is not allowed
to exceed the available capacity. While constraint (7) defines the new demand in critical
time-steps, that is setting it equal to the available capacity. That means the model is forced
to find the optimal price signal to cut only the exceeding load, in order to exploit all the
available capacity.

Constraint (8) imposes that the total new demand summarized over the defined time
horizon T should not exceed the total original demand. That means the model is only
allowed to cut and shift loads without creating new additional demand.

The elasticity concept outlined in Formula (3) is integrated in constraint (9) where the
demand variation in every time-step is calculated according to the price variation and the
elasticity for each of the market segments.

It is important to note that in order to use the concept of elasticity to forecast demand
and price variations, we need to define a “reference price” and a “reference demand”,
which will represent the first term of the right-hand side of the proposed constraint (9).
That is because the elasticity defines the increase and decrease of demand related to a small
change in price. The reference price can, for example, be a market price that would occur
in a normal situation where there is no congestion. The reference demand can be set as the
original initial aggregated forecast demand of the market segments.

4.2. Discussion Potential Model Extensions

The model proposed in the previous section can be further extended to include
different features that may be of interest for different real-world purposes. Two main
additional features will be briefly introduced below, with regard to price discrimination
based on membership, and different pricing for fast- and slow-charging modes.

4.2.1. Price Discrimination Based on Membership

Assuming a certain number of demand segments, h1 may have a membership card,
and it is possible to send different price signals to different subsets of demand segments,
so that membership card holders can receive a better price compared to other segments
that do not hold a membership.

In order to include such a feature, the demand segments can be split into two subsets,
namely: segments with h = 1...h1 are those that have a membership card; segments with
h = (h1 + 1)...H are those that do not have a membership card.
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For this purpose, the index h should be added to the price variable and parameter,
since the price signal is now dependent not only on the time t, but also on the segment h.

Then, two new price parameters should be included: Pmin
t,h and Pmax

t,h defining the
minimum and maximum price allowed in every time-step t for different demand segments
h based on membership.

Two price constraints should be added as follows, such that different price ranges will
be allowed for members and non-members:

Pmin
t,h ≤ pt,h ≤ Pmax

t,h ∀t, h = 1...h1 (10)

Pmin
t,h ≤ pt,h ≤ Pmax

t,h ∀t, h = (h1 + 1)...H. (11)

Different membership levels can also be considered, by further splitting the demand
segments into more subsets (i.e., silver, or gold membership that would allow different
price benefits).

4.2.2. Different Pricing for Fast-Charging and Slow-Charging

Progressive tariffs can also be included, in order to send different price signals based
on the charging speed preferences of the different market segments. A progressive tariff
can act as an incentive for the drivers to charge their electric vehicles with a lower power.
With a progressive energy tariff, the price per kWh per time-period will be lower for
consumers with a normal charging, than for consumers which use fast charging. This
provides another mechanism to manage capacity shortage. In addition to smoothing out
consumption, this tariff has another benefit. It ensures a more fair distribution of costs
among drivers, as only the drivers with a high power consumption should pay more per
kWh, while the drivers with a low power consumption do not have to pay more per kWh,
as they are not the ones contributing the most to congestion.

One natural extension would be to introduce different price signals for different types
of charging (i.e., slow charging and fast charging) with substitution elasticities between
them. Slow charging can, for instance, be regarded as up to 4 kWh/h, while fast charging is
the amount of charging power exceeding this limit. Further extensions can include a wider
variety of charging type requests according to the amount of demanded power per unit of
time. For instance, slow charging, fast charging, and rapid charging may correspond to 7.4,
22 and 50 kW, respectively.

In order to include such a feature, it is possible to create different demand segments
for fast charging and slow charging. Therefore, the demand and price parameters and
variables, as well as the elasticity parameters, can each be split into “fast” and “slow”,
namely, Q0,slow

t,h , Q0, f ast
t,h P0,slow

t , P0, f ast
t , pslow

t , p f ast
t qslow

t,h , q f ast
t,h , εslow

t,t′ ,h, ε
f ast
t,t′ ,h.

The constraint defining the demand variations according to the price (constraint (9))
can be split accordingly, for fast and slow charging, in particular:

• The demand for fast charging now, depends on the fast charging price now, and the
fast charging price in the future;

• The demand for slow charging now, depends on the slow charging price now, and the
slow charging price in the future.

Moreover, the constraint defining the demand variations according to the price (con-
straint (9)) can also be split and changed, in order to describe the substitution effect between
slow and fast charging, in particular:

• The demand for fast charging now, depends on the fast charging price now, and the
slow charging price in the future;

• The demand for slow charging now, depends on the slow charging price now, and the
fast charging price in the future.

While in the previous models, the capacity Ct was mainly assumed as the grid capacity,
in this new model, extension Ct can be defined either as the grid capacity, or the charging
capacity (combination of fast and slow charging availability).
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A new constraint can also be included defining Ct as the minimum between the grid
capacity and the charging capacity.

5. Computational Experiments and Sensitivity Analyses
5.1. Introduction to the Case Studies

While elasticises are routinely calculated in a number of areas, the research literature
on EV-charging has had little focus on them, and as a result, no empirical studies also
exist. In our case study, we therefore focus on sensitivity analyses illustrating the effect
that different values of the elasticities will have on the scheduling. We provide some basic
case studies to investigate the effect of the elasticity concept within the indirect control of
electric vehicles. We are particularly interested in investigating how the elasticity affects
the price, the forecast behaviour of drivers, and the ability of the operator to successfully
handle critical periods of capacity shortage. In sub-cases with different demand segments,
we aim at understanding how the elasticity matrix of different segments affect the solution,
how they interact, and how the combination of different matrices affect the pricing and the
demand reactions. We investigate only the situation with one charging quality.

5.2. Case Studies with One Aggregated Demand Segment

The basic case study with one aggregated demand segment is shown in Figure 4. We
consider a basic sub-case of two time-steps T1 and T2. In T1 we assume a total demand D
that exceeds the available capacity C, while lower demand is assumed in T2. The model
will therefore cut loads in T1 and increase loads in T2 according to different self- and
cross-elasticity values in an elasticity matrix like the one shown in Figure 4.

Figure 4. Graphical representation of the basic case study for the sensitivity analyses.

In particular, looking at Figure 4, the value in the cell T1T1 defines the self-elasticity
in T1 (variation of demand in T1 as a result of a variation of price in T1), the value in the
cell T2T2 defines the self-elasticity in T2 (variation of price in T2 as a result of a variation
of price in T2), the value in the cell T2T1 defines the cross-elasticity (variation of demand
in T2 as a result of a change of price in T1), and the value in the cell T1T2 defines another
cross-elasticity (variation of demand in T1 as a result of a change of price in T2).

Price signals will be sent to T1 (increasing the price to cut the load) and to T2 (decreas-
ing the price to motivate load increase in this time-step). The price in T2 will be allowed
to drop to zero. No minimum price will be set in order to observe the model behaviour
without lower bounds that may hide some relevant price-signal variations in T2.

We will vary the ratio capacity/demand C/D and the elasticity values in order to
create patterns and trends that will show the elasticity effects on prices and load variations.
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The objective is to investigate how the different self- and cross-elasticity values affect the
pricing and the ability of the system to manage critical periods.

When studying price signals, it is also worthwhile to make a comparison between
the charging price and the price of an alternative diesel solution to see if and when the
pricing of electric vehicles is going to be competitive with a traditional combustion engine
vehicle. In order to compare the charging cost of an electric vehicle and the cost of filling
a traditional diesel vehicle, we calculate the cost per km. The analyses are based on
Norwegian cases. Hence, the prices will be given in Norwegian Krones (kr).

The reference price of charging at home is 1kr (100 øre). We assume that an average
vehicle requires 1.7 kWh to make 10 km, that means that a realistic cost per km of a
home-charged electric vehicle can be assumed to be 17 øre/km.

As for a diesel vehicle, the cost per liter in Norway is set on 1200 øre/liter. We assume
that an average vehicle requires 0.7 L to make 10 km. Therefore, a realistic cost per km of a
diesel vehicle can be assumed as 84 øre/km. The proposed approximation is suitable to get
a preliminary idea of cost levels.

5.3. Case Study 5.01—Effect of Self-Elasticity on the Price and Comparison with a Diesel Vehicle

The main objective of this case study is to analyse the price signal in T1 that is necessary
to cut the load to match capacity. The other objective is making a comparison with the cost
of filing a traditional diesel vehicle in order to see in which elasticity range the pricing of
electric vehicles can still be competitive. For that purpose, we run the model with different
ratios’ capacity/demand (C/D) and by varying only the self-elasticities while keeping
the cross-elasticities to zero. In practice, that means that there is no willingness to move
demand in time, but demand is price-dependent. Figure 5 shows the results.

Figure 5. Effect of the self-elasticity on the price increase in time-step T1 and comparison with the
cost of a traditional diesel vehicle.

The curves show that as the self-elasticity in T1 increases, the users become more
sensitive to the price, and therefore a lower price change can be used to cut the same
amount of load as compared to a low elasticity. Therefore, for every single curve, the
required price in T1 decreases as the self-elasticity in T1 increases.

Within every curve, a constant value of the ratio capacity/demand (C/D) is kept.
Looking at all the curves together, as the ratio C/D decreases, more loads have to be cut
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in T1, and therefore a higher price signal has to be sent. This can be noted watching the
curves that are shifted up for higher values of C/D.

The red line shows the linear load increase in T2 according to the price decrease in T2.
Note that no cross-elasticity has been considered so far.

The black line represents the cost of a traditional diesel vehicle and it gives a prelimi-
nary idea of how and when the pricing of electric vehicles are competitive with the alterna-
tive use of a traditional diesel car—in particular, it is possible to see which combinations of
C/D and self-elasticity values are below the curve and are therefore still competitive.

It is important to note that comparing the price of charging an electric vehicle with
the current cost of the fuel for a traditional vehicle, does not mean that charging at a higher
cost than diesel is not feasible in the short-term.

5.4. Case Study 5.02—Effect of Cross-Elasticity T2-T1 on the Load-Shifting

The objective of this case study is to observe the effect of the cross-elasticities on the
loads in time-step T2 and make a comparison for different sub-cases with different ratios of
capacity/demand (C/D).

Figure 6 shows the results. Looking at every single dotted line, it can be observed that
as the cross-elasticity increases, the effect on load in time T2 increases, as well as a response
to a price increase in T1. Every dotted line represents a constant value of the ratio C/D.
Looking at all the dotted lines together, we see that as the ratio C/D decreases, a higher
amount of load has to be cut, meaning that the price signal in T1 has to be higher. Per
definition, the cross-elasticity T2T1 defines the variation of the demand in T2 as a function
of the variation of price in T1, hence a price signal in T1 works better the lower the C/D
ratio is. This can be noted from the different dotted lines that correspond to different C/D
ratios and that are shifted up as the ratio C/D decreases. A lower C/D ratio means that the
amount of demand D that exceeds the capacity C is very high. Hence, the lower the C/D
ratio, the higher is the amount of demand that exceeds the capacity. This implies that the
amount of demand that has to be cut is higher; therefore, the price that has to be sent in
order to shift the demand is higher too. The reader will observe a higher demand shifted
in T2, if the ratio C/D is lower, because a higher cut must be done in T1 in order to bring
the demand back within the available capacity limits.

Figure 6. Effect of the cross-elasticity T2T1 on the load-shifting.
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The price signals work better when cross-elasticities’ effects add on top of the self
elasticities’ effects. Indeed, compared to the previous example where only self-elasticity
was considered, here the demand increase is higher, because the cross-elasticity effect is
summing over the self-elasticity effect.

6. Case Studies with Two Aggregated Demand Segments

This section discusses case studies where two clusters of drivers are considered.
The objective is to show how market segments with different elasticities can be utilized
when exposed to the same price signal. Three different case studies are presented in order
to illustrate relevant interactions between different elasticity values and pricing. Hence,
the data have been chosen for illustration purposes only, as no real-world elasticity data
for the electric vehicles field are available at the current state of the knowledge.

6.1. Case Study 6.01

In this first case study, we analyse the influence that clusters with different self-
elasticity have on the price signals and how they interact.

Table 2 represents a basic sub-case where the whole demand in time-steps T1 and T2
belong to segment number 1. To the left, the table shows the input data (available capacity,
reference price, and initial demand in every time-step) and the results obtained after the
optimization to the right (new forecasted demand and new price in every time-step for the
two demand segments considered). The lower part of the table shows the elasticity matrix
for the demand segments.

In the results, the price is higher in T1, causing a lower demand in T1, while the price
drops to zero in T2, causing a higher demand in T2.

Table 2. Case Study 6.01—basic sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 150 0 80 0 166.7
T2 150 100 70 0 119 0 0
T3 150 100 0 0 0 0 0
T4 150 100 0 0 0 0 0

Tot demand for each segment 220 0 199 0

Tot demand 220 199

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 0 0
T4 0 0 0 0

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 0 0
T4 0 0 0 0

Table 3 shows the change in a case study in which the total load in time-steps T1 and
T2 is split among Segments 1 and 2. Self-elasticity values of Segment 1 are higher than those
of Segment 2. In order to cut the same total load in time-step T1, it is necessary to send a
higher price signal, because part of the total load now belongs to Segment 2, with lower
elasticity. This higher price signal sent in T1 affects the reaction of Segment number 1, that
will respond with a higher percentage of demand reduction compared to the basic sub-case
(48/100 as compared to 80/150). Hence, the total initial demand for the two sub-cases is
the same (220), but the fact that the demand is spread differently among segments with
different elasticity, affects the way it is cut in T1 and the way it increases in T2. In the second
sub-case, the presence of a segment with lower elasticity, interestingly causes a lower total
new demand compared to the basic sub-case.
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Table 3. Case Study 6.01—second sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 100 50 48.4 31.6 173.7
T2 150 100 50 20 85 30 0
T3 150 100 0 0 0 0 0
T4 150 100 0 0 0 0 0

Tot demand for each segment 150 70 133.4 61.6

Tot demand 220 195

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 0 0
T4 0 0 0 0

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 0 0
T4 0 0 0 0

Table 4 shows a sub-case in which the two segments have the same demand, but seg-
ment number 1 has all loads concentrated in time-step T1, while segment number 2 has
the same amount of loads concentrated in time-step T2. The amount of loads to be cut is
the same for the two segments, but the price signal sent in time-step T1 is lower compared
to the price signal sent in time-step T2, because segment number 1 has higher elasticity
values, therefore lower price signals are required to cut the same amount of load. Similarly,
the load increase in time-step T3 is higher than the one in T4 because segment number 1 has
higher elasticity compared to segment number 2; hence, even though the price reduction in
time-steps T3 and T4 is the same, Segment 1 reacts with a higher load increase compared to
Segment 2.

Table 4. Case Study 6.01—third sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 150 0 80 0 166.7
T2 80 100 0 150 0 80 193.3
T3 150 100 70 0 119 0 0
T4 150 100 0 70 0 105 0

Tot demand for each segment 220 220 199 185

Tot demand 440 384

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0 0 0 −0.5

Table 5 shows a sub-case in which the load in all time-steps is split among the two
segments in T1 and T2 with (100, 50) and (50, 100). Compared to the third sub-case, the price
signal in T1 is higher to cut the same total load, because of the lower elasticity of Segment
2 that now has a load in time-step T1 as well. On the other hand, compared to the third
sub-case, the price signal in time-step T2 is lower to cut the same amount of exceeding load,
because of the higher elasticity of Cluster 1 that now has a load in time-step T2.
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Table 5. Case Study 6.01—fourth sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 100 50 48.4 31.6 173.7
T2 80 100 50 100 21.2 58.8 182.4
T3 150 100 50 20 85 30 0
T4 150 100 20 50 34 75 0

Tot demand for each segment 220 220 188.6 195.4

Tot demand 440 384

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0 0 0 −0.5

6.2. Case Study 6.02

In this second case study, we analyse how the cross-elasticities affect the price signals
and how the consequent reactions of the segments affect each other.

Table 6 represents the basic sub-case in which two segments with the same type of
load are placed in time-steps T1, T2, T3 and T4. Results when only self-elasticities are
involved are shown. Loads are cut in T1 and T2 and increased in T3 and T4 according to
the self-elasticity values of the two segments. As Segment 1 has higher elasticity values, it
reacts with higher demand cuts and higher demand reductions compared to Segment 2.

Table 6. Case Study 6.02—basic sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 70 70 35 45 171.4
T2 80 100 60 60 36.7 43.3 155.6
T3 150 100 20 20 34 30 0
T4 150 100 20 20 34 30 0

Tot demand for each segment 170 170 139.7 148.3

Tot demand 340 287.9

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0 0 0 −0.5

Table 7 shows the results when cross-elasticity T4T1 (below the diagonal of the elasticity
matrix) is added for Segment 2. Compared to the basic sub-case, the price signals remain
the same, but the load increase in time-step T4 for Segment 2 is higher due to the effect
of the cross-elasticity. Hence, even though the price is the same, we note a greater load
increase in T4, and the total new demand in this sub-case is higher than the total new
demand of the basic sub-case.
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Table 7. Case Study 6.02—second sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 70 70 35 45 171.4
T2 80 100 60 60 36.7 43.3 155.6
T3 150 100 20 20 34 30 0
T4 150 100 20 20 34 37.1 0

Tot demand for each segment 170 170 139.7 155.4

Tot demand 340 295.1

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0.5 0 0 −0.5

Table 8 shows the results when cross-elasticity T1T4 (above the diagonal of the elasticity
matrix) is added for Segment 2. Compared to the basic sub-case, the price signal in T1
becomes lower, but the total amount of load cut in time T1 remains the same. Due to the
cross-elasticity T1T4, a lower price signal is required to cut the same amount of total load.
However, the way through which the total load is cut is different for the two segments.
In particular, due to the price decrease in T4 and due to the cross-elasticity T1T4 for Segment
2, the new demand in T1 for Segment 2 is lower compared to the second sub-case (hence, a
higher demand cut is forecast for Segment 2). Then, to compensate the higher load cut of
Segment 2 and keep the total demand equal to the total available capacity, the new demand
of Segment 1 in T1 is higher compared to the second sub-case. At the same time, the effect of
the cross-elasticity T4T1 (below the diagonal of the elasticity matrix) for Segment 2 becomes
weaker due to the lower price signal sent in T1. Hence, the demand increase in T4 for
Segment 2, compared to the second sub-case, is lower. However, it is important to note
that the demand increase of Segment 2 in T4 is still higher than the basic sub-case in which
no cross-elasticity was available.

Table 8. Case Study 6.02—third sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 70 70 47.2 32.7 146.4
T2 80 100 60 60 36.7 43.3 155.6
T3 150 100 20 20 34 30 0
T4 150 100 20 20 34 35 0

Tot demand for each segment 170 170 151.9 140.7

Tot demand 340 292.6

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0.3
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0.5 0 0 −0.5

Table 9 shows the results when a lower capacity is assumed in time-steps T4 and
additional cross-elasticity values are included below the diagonal of the elasticity matrix.
Compared to the basic sub-case, adding a cross-elasticity T4T1, for instance, means that we
should expect a higher amount of load shifted in time-steps T4 for Segment 2. However, the
lower capacity available makes it not possible to allow the demand increase that would
be theoretically allowed with that combination of elasticity values. Therefore, compared
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to the previous sub-cases, the system has to put a higher price in time-step T4, in order to
keep the load increase below the capacity limit. Hence, the price in time-step T4 still drops
to motivate the load increase, but it cannot drop to zero in order not to end up with an
increase which is too high that would go beyond the available capacity. To compensate that,
the price signal in T3 drops to zero, in order to motivate a higher amount of load increase
in T3 where enough capacity is available.

Table 9. Case Study 6.02—fourth sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 70 70 35 45 171.4
T2 80 100 60 60 36.7 43.3 155.6
T3 150 100 20 20 51.8 42.7 0
T4 80 100 20 20 43.3 36.7 60.3

Tot demand for each segment 170 170 166.8 167.7

Tot demand 340 334.5

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0.7 0.7 −0.7 0
T4 0.7 0.7 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0.5 0.5 −0.5 0
T4 0.5 0.5 0 −0.5

6.3. Case Study 6.03

This third case study has been made to analyse the effects in a sub-case with a very
tight capacity limit also in non-critical time-steps. In the previous case studies, there was
always enough available capacity in non-critical time-steps to increase the load. In this
case study, we impose a very low limit of capacity to investigate the ability of the system to
handle the demand cut and increase through pricing.

Table 10 represents the basic sub-case in which two segments with different loads
are placed in time-steps T1, T2, T3 and T4. Results when only self elasticities are involved
are shown.

Table 10. Case Study 6.03—basic sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 70 70 35 45 171.4
T2 80 100 60 60 36.7 43.3 155.6
T3 80 100 20 20 34 30 0
T4 80 100 20 20 34 30 0

Tot demand for each segment 170 170 139.7 148.3

Tot demand 340 288

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0 0 0 −0.5

Table 11 shows the result when the cross-elasticity T1T4 (above the diagonal of the
elasticity matrix) is added for Segment 2. Compared to the basic sub-case, the price signal
in time-step T1 is lower, but the demand cut in time-step T1 for Segment 2 is higher (the
new demand in time-step T1 for Segment 2 is lower than the basic sub-case, meaning that
a higher cut has been done). At the same time, a lower price signal in T1 means a lower
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cut for Segment 1. Finally, the price in T4 is higher than the basic sub-case, because the
capacity is saturated, and therefore it is not possible to allow an increase of load equal to
the one that would occur if the price dropped to zero.

Table 11. Case Study 6.03—second sub-case, data, and results.

Initial Demand New Demand

Time Capacity Reference Price Segment 01 Segment 02 Segment 01 Segment 02 New Price

T1 80 100 70 70 55.4 24.6 129.8
T2 80 100 60 60 36.7 43.3 155.6
T3 60 100 20 20 31.7 28.3 16.7
T4 60 100 20 20 31.7 28.3 16.7

Tot demand for each segment 170 170 155.4 124.6

Tot demand 340 280

Elasticity

Segment 01 T1 T2 T3 T4

T1 −0.7 0 0 0
T2 0 −0.7 0 0
T3 0 0 −0.7 0
T4 0 0 0 −0.7

Elasticity

Segment 02 T1 T2 T3 T4

T1 −0.5 0 0 0.6
T2 0 −0.5 0 0
T3 0 0 −0.5 0
T4 0 0 0 −0.5

7. Limitations and Future Work

The main limitations of the proposed work lie in the uncertainty of the dataset, and in
the lack of proper data to build the elasticity matrix. Another limitation lies in the main
assumption that all drivers charge their EVs only at a certain period of the day and that
they will be sensitive only to the price of electricity, without including the effects of other
peak-shaving options. Therefore, future research directions have been identified as follows:

• Further develop the model towards stochastic formulation to consider uncertainty in
the input dataset that can affect the quality of the real-time decisions as output.

• Implement a prescriptive analytics approach where machine-learning tools are utilized
to predict the elasticity matrix, and the optimization tools are utilized to optimize over
the predictions.

• Implement and compare machine-learning approaches and statistical methods for a
better definition of the elasticity matrix.

• Include other options for peak-shaving and see how a combination of vehicle to grid
and vehicle-to-vehicle options together would affect the decision-making process of
indirect control through elasticities.

8. Conclusions

This paper presented a method based on price elasticities to produce price signals for
indirect control and capacity scheduling for electric vehicle charging.

The study demonstrates that understanding drivers’ elasticity is essential and crucial
to build pricing models and properly handle capacity shortages in charging stations and the
grid. Both self elasticities, within a time-period, and cross-elasticities between time-periods
plays a role. The paper illustrates the effects in a number of case studies and sensitivity
analyses. In addition, suggestions for how to model price discrimination are provided.

More research should be done in this field in order to provide the data needed for
this type of scheduling, in particular empirical studies to identify the needed elasticity
matrices for different consumer clusters in different times of the day and different areas.
This research area is currently completely uncovered, but our results show that once
elasticity data for drivers exist, they provide the basis for effective peak pricing of electric
vehicle charging.

Further model extensions can be built to handle the uncertainty in the elasticity
definition. Moreover, indirect control models should be integrated with models for the
optimal design and expansion of charging sites.
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