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Abstract

This thesis uses historical out-of-sample backtesting to evaluate the performance of short-term

portfolio selection strategies, based on the inputs supplied by 20 different GARCH-EVT-Copula

simulation models. Evaluations are made with respect to three allocation objectives: maximum

Sharpe, minimum variance and minimum CVaR, and allocations based on historical inputs un-

der each objective are used as benchmarks. The strategies are backtested over the period from

Aug. 1st, 2001 to Dec. 31st, 2020, and the portfolio is based on the Dow 30 index composition,

as of 2021. Our main finding is that the performance of these models appears to be time-variant,

and dependent on which type of allocation problem is being solved. Under minimum CVaR,

the exact choice of simulation model seem less important; while under minimum variance and

maximum Sharpe, these choices appear more important.





xi

Sammendrag

Denne masteroppgaven benytter out-of-sample backesting for å prestasjonsevaluere ulike ko-

rtsiktige porteføljeoptimeringsstrategier som bygger på 20 forskjellige GARCH-EVT-Copula

simulerings- modeller. Vi løser tre ulike optimeringsproblemer for hver modell: maksimum

Sharpe, minimum varians og minimum CVaR, og bruker tilsvarende optimeringsproblem for

historiske data som sammenligningsgrunnlag. Strategiene testes i tidstommet 1. Aug. 2001 til

31. Des. 2020, og den aktuelle portføljen er basert på sammensetningen til Dow 30-indeksen.

Hovedfunnet vårt er at prestasjonene til disse strategiene ser ut til å variere for ulike tidsrom,

og avhenge av hvilket type optimeringsproblem som løses. For minimum CVaR synes valget

av konkret simuleringsmodell å være mindre viktig, mens for maksimum Sharpe og minimum

varians ser dette ut til å være av større betydning.
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Chapter 1

Introduction

A fundamental problems faced by investors is how to select the optimal portfolio allocation. The

introduction of Markowitz (1952)’s mean-variance framework marks the beginning of decades

of tireless research on the subject, and a world of different models have been proposed, under

new assumptions, constraints and objectives. As their input parameters, these types of problems

generally require users to state expectations about the future behavior of asset returns. For the

purpose of input prediction, we take a closer look at the GARCH-EVT-Copulamodels described

byWang et al. (2010). Thismulti-component simulationmethodology takes advantage of several

key econometric innovations, and allows for many alternative specifications. A few have already

been examined in previous studies, and many have not. We specify a handful of these models,

and try to determine which is better in context of the Dow 30 equity portfolio.
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1.1 Background and Research Question

For simplicity, Markowitz (1952) used the means and covariances of historical returns as input

estimates for his allocation problem. He never claimed this was appropriate, but neither was

forecasting the objective of his paper. Using out-of-sample backtesting, DeMiguel et al. (2009)

evaluated the historical performance for a range of different MV models under this approach.

Somewhat disappointingly, they concluded that none were able to consistently outperform the

naive (1/N) portfolio in terms of realized Sharpe ratio. Following the decision of the Basel Com-

mittee to impose mandatory VaR evaluations in banking risk management, the research into

risk management and forecasting has received more attention over the past couple of decades.

In a recent literature review into new approaches, Milhomem and Dantas (2020) concluded that

most progress can be made from devoting more attention to the task of input estimation.

The GARCH-EVT-Copula approach represent a different strategy for supplying input estimates

for the allocation problem. These simulation models can be seen as multi-asset extensions of

the single-asset GARCH-EVT models suggested by McNeil and Frey (2000). The GARCH-

EVT approach applies GARCH filtering and EVT-tail modelling to simultaneously account for

volatility clustering and heavy tails in financial return distributions.Wang et al. (2010) proposed

the implementation of copulas as ameasure of association betweenmultipleGARCH-EVTmod-

els. They minimize the CVaR of a Chinese currency portfolio, using the Standard-GARCH(1,1)

and three different copulas: Normal, Clayton and Student t. In later studies on these models,

out-of-sample backtesting is introduced as a means of performance evaluation. It is suggested

that allocations based on the historical inputs be used as a benchmark of comparison. Huang

and Hsu (2015) minimize CVaR for a global equity portfolio, using similar simulation models

as above, less the Clayton copula. They find evidence to suggest that the simulation models

outperforms the benchmark in terms of Sharpe ratio for (very) short balancing intervals. A sim-

ilar study was performed by Sahamkhadam et al. (2018), who found evidence suggesting that

the use of these simulation models helped decreased portfolio risk, also in the very shorter term.

The objective of our thesis is to reveal new evidence regarding the optimal choice of GARCH-

EVT-Copula model. Taking inspiration from the works above, we specify a handful of models
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to be evaluated against the historical input-strategy. Our 20 combinations are based on based on

five different copulas, and four differentGARCHmodels.We use the Standard-GARCH(1,1) and

GJR-GARCH(1,1)1, and specify them using both a constant and time-variant ARIMA(1,0,1)

mean equation. Our five copulas are the Normal, Student t, Clayton, Gumbel and Frank. Our

research question is to determine which of these model combinations performs better.

1.2 Outline of Thesis

In this chapter, we have tried to provide some brief context for our project. In the next chapter,

we will go deeper into the literature, and thus try to further motivate our choices of model

simulation models and allocation objective(s). The methodology chapter is two-fold: sections

(3.1), (3.4) and (3.6) concerns the research design, analysis and data applied, whereas sections

(3.2) and (3.3) concerns the simulation and portfolio allocation methodology. Then follows our

results and subsequent discussion, and also the conclusion of our thesis.

1Proposed by Bollerslev (1986) and Glosten et al. (1993), respectively.
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Chapter 2

Literature

2.1 Portfolio Selection Objectives

When solving a portfolio selection problem, we derive the optimal asset allocation in relation

to some objective. These are typically risk or performance measures, and so it follows that

the development of different allocation problems is closely related to the development of these

metrics. Markowitz (1952) built his classical problem of optimal allocation on the assumption

that investors had mean-variance preferences, and sought to allocate such as to maximize the

ratio of return-to-volatility. He assumed multivariate normality of asset returns, which implies

that their joint behavior can be described by their means and covariances. The weighted sums of

these parameters amounts to the overall portfolio expected return and variance, and allocations

optimal in relation to the mean-variance criterion are located along the efficient frontier. On

the same distributional assumptions, Sharpe (1963) introduced his reward-to-variability ratio.

Using this ratio as the allocation objective, one can reduce the efficient set to a single most

optimal portfolio. This is often referred to as the tangency portfolio, and it has important theo-

retical implications, as it connects the MV model to the Capital Asset Pricing Model (CAPM).

This relationship is closely described in the concluding chapter of Alexander (2008a). Another

common objective under the same distributional assumptions is the minimization of variance.

This portfolio is located at the lower end-point of the efficient frontier.
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In the 1960’s, asymmetric risk metrics like semivariance were first introduced. In his review of

this early literature, Nawrocki (1999) emphasize two main reasons for this development. First,

researchers came to realize that investors were often more concerned with avoiding large losses

than pursuing large gains, suggesting that the symmetric criteria described above were less

representative of investors’ actual preferences. Second, the validity of the normality assumption

started getting questioned in empirical research. Among the earliest evidence was Mandelbrot

(1963) and Fama (1965), and specific problems related to normality is discussed in section

(2.3). According to the literature review, semivariance metrics have proved useful in the case of

skewed distributions. Other notable developments include the Lower Partial Moment (LPM),

and performance metrics based on downside risk metrics have been proposed.

The Value-at-Risk (VaR) have received much attention in later years, following its mandatory

implementation to banking risk management by the Basel Committee in 1995. VaR originated

at JP Morgan in the 1980’s, and is used for tail loss evaluation. The term refers to the maximum

(expected) loss to occur at given probability, within a given period. Rockafellar and Uryasev

(2000) proposed the closely related Conditional Value-at-Risk (CVaR), often referred to as the

expected tail loss. CVaR is consideredmore informative, as it analyzes how big a loss is expected

to occur by the chance that VaR is exceeded. Furthermore, CVaR is generally preferred to VaR

for portfolio selection purposes (see Uryasev (2000) and Pflug (2000)), as it has more desirable

mathematical properties in relation to the coherency requirements suggested by Artzner et al.

(1999). A good overview of asymmetric risk metrics is found in Alexander (2008c).

2.2 Further Developments

It goes without saying that the MV model has been widely influential to the overall devel-

opment of modern financial theory, and Markowitz received the Nobel Price of 1992 for his

contributions. One the other hand, the model has always been treated with a great deal of cau-

tion due to its many limitations (see for example Michaud (1989)). Despite the early concerns

related to the normality assumption, research addressing more secondary concerns related to

the MV model has continued, which has brought a few interesting perspectives. In a recent
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survey, Zhang et al. (2018) discuss how the MV literature has evolved into multiple distinct

branches. One such branch is concerned with how to reshape the problem so that more practical

investment-related issues are accounted for, like transaction costs and trading rules. Another

branch discusses how to implement the MV framework in a dynamic context, meaning how to

accommodate investors’ desire to reallocate as market conditions changes. The original model is

static, meaning its allocations are constant and based on information available pre-investment,

only. It can be undesirable to hold these allocations over long periods of time, as they are

unlikely to remain truly optimal as time passes. The simplest strategy for solving this problem,

is to divide the total investment horizon into multiple sub-periods and treat each sub-period as

a separate (static) MV problem. This strategy is referred to as discrete rebalancing, and there

are alsomore sophisticatedmethodologies that deal with the problem of continuous rebalancing.

A third branch of the literature addresses the robustness of the model. This is understood

as the sensibility of allocations to changes in input parameters, and multiple authors have

raised concerns related to the low robustness of the mean parameters in particular (see Merton

(1980), Michaud (1989) and others). Along these lines, Chopra, Vĳay K. and Ziemba (1993)

even suggest that under most practical circumstances, it would be most feasible to abandon

the mean-variance objective in favor of the minimum variance objective, just to avoid the

problem of erroneous mean estimates. In conclusion, a variety of different MV models have

been proposed, and even greater the paradox is the general lack of empirical evidence of these

models actually performing well as real investment strategies (DeMiguel et al. (2009)).

2.3 The Non-Normality of Asset Returns

The rise of GARCH-EVT-Copula and related methodologies, can be seen as an attempt to

battle the many undesirable statistical properties observed in financial return distributions. It

is very convenient to handle asset returns under assumptions of normality, but loads of em-

pirical evidence to suggest it is not very realistic. citecont2001empirical summarized decades

of empirical research on the matter into eleven "stylized statistical properties of asset returns".

As a starter, there is the widespread occurrence of volatility clustering (or heteroskedasticity),
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meaning that volatility levels do not remain constant over time. The tendency of a negative cor-

relation of volatility and return has also been described, and is often referred to as asymmetric

volatility. The leverage effect (Black (1976)) and volatility-feedback effect (French et al. (1987))

are the two leading theoretical explanations of this phenomenon, and more recent evidence

for equity markets include the findings of Bekaert and Wu (2000). Volatility clustering imply

that the return generating process is not i.i.d. (independently and identically distributed), and

this is highly problematic to the validity of distribution parameter estimates. Second, there is

the common observation of leptokurtic return distributions. Returns they to be "sharp peaked

and heavy-tailed", and these higher moments represent a problem in relation to the ability of

common distribution models to fit the data accurately. Cont (2001) described the heavy tails

as being caused by extreme market events, and that they tend to persist even after making

corrections for the effects of volatility clustering. A third property is that of gain/loss asym-

metries, more specifically that asset return interdependencies tend to be stronger in the case of

market downturns than upturns. This phenomenon can be referred to as asymmetric interde-

pendence, and imply that covariances and linear correlations can give poor descriptions of the

true co-movements of asset returns.

2.4 The GARCH-EVT Approach

In relation to the second problem discussed above, multiple authors have suggested the use of

Extreme Value Theory (EVT) for financial modelling, with some early works including those

of Embrechts et al. (1997) and Nystrom and Skoglund (2002). EVT is a family of statistical

methodologies, used for describing the extreme observations of a sample, with perhaps the most

common application being the Generalized Pareto Distribution (GDP). Using EVT, the second

problem becomes connected to the first, since these are parametric methods and thereby subject

to the i.i.d. requirement. As a solution to the problem, McNeil and Frey (2000) suggested the

use of GARCH filtering to prepare data for EVT-modelling. The filtering procedure can be

understood as the reduction of total variability into white noise only, by the removal of het-

eroskedasticity. The filtered observations are referred to as the standardized residuals, and these

should be perfect for parametric methods, provided the GARCH is well fitted. The ability of this
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approach to improve VaR forecasting accuracy has been confirmed by several later studies (see

Byström (2004) and Fernandez (2005) and others), and a similar approach was independently

proposed by Barone-Adesi et al. (1999, 2002) for non-parametric VaR forecasting.

The Generalized Autoregressive Conditional Heteroskedasticity model was proposed by Boller-

slev (1986), and is a generalization of Engle (1982)’s previously introduced ARCH model.

Contrary to the traditional assumption of constant volatility, GARCH assume volatility is time-

variant and conditional on past information,more specifically the lagged variances and residuals.

This has become a popular tool for volatility modelling, and wide family of similar models

have since emerged from the same concept. These new models are designed to capture other

characteristics of volatility behavior, and a review of the early literature on ARCH/GARCH

models can be found in Bollerslev et al. (1992). Bollerslev et al. (2008) provide a more general

overview of the field, with related terminology and credits to the many co-contributors. Notable

developments include the the introduction of non-linear GARCHmodels, designed to also deal

with asymmetric volatility clustering. This include the three early models proposed by Nelson

(1991), Engle and Ng (1993) and Glosten et al. (1993). There is a strong case for the general

ability of ARCH/GARCH typemodels to capture volatility behavior (see Bollerslev et al. (1992)

and references), but still appears to be no clear consensus to what is the optimal choice of model.

Several comparative studies have found that no single model remains consistently superior over

time, indicating that the optimal choice is likely to be period-specific, see Brailsford and Faff

(1996) and Loudon et al. (2000). As noted in the discussion of Awartani and Corradi (2005),

there are also many conflicting findings in relation to the ability of non-linear GARCH models

to outperform the linear ones.

In all four studies on GARCH filtering named above, Standard-GARCH(1,1) is used. We find

this to be the common choice, including studies more similar to our own (seeWang et al. (2010),

Huang and Hsu (2015) and Sahamkhadam et al. (2018)). Based on the wide variety of GARCH

models available, we are interested to see whether non-linear models are more suitable for

filtering than the linear ones. In addition, Barone-Adesi et al. (2002) suggest the idea of using

ARIMA-GARCHmodels,which has the potential to correct the data of possible autocorrelation.
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These are also adopted in some of the models tested by Sahamkhadam et al. (2018) with

promising results, despite the fact that autocorrelation is not considered a widespread problem

in financial data according to Cont (2001)’s stylized properties.

2.5 The Interdependence of Returns

According to Alexander (2008b), linear correlations and covariances can only model a certain

type of risk. This is relevant with respect to the third problem of financial return distributions

mentioned above, and Embrechts et al. (2002) were among the early to argue the versatility of

copulas, among alternative metric of interdependence. A copula can be understood as a func-

tion describing the dependency structure among a set of distributions, and the fundamentals

were provided already by Sklar (1959). Several families of copulas have been described, with

the Elliptical and Archimedean copulas being the most commonly applied in finance. As the

GARCH-EVT models are only for single-asset simulations, some metric of dependency is nec-

essary to extend the methodology to the multi-asset perspective. From what we have been able

to find, Wang et al. (2010) were the first to propose the use of copulas for this purpose. In their

application of the GARCH-EVT-Copula models, Huang and Hsu (2015) test both the Normal

and Student-t copulas, and optimize their equity index portfolio under the minimum CVaR

objective. They find evidence to suggest that allocations resulting from both simulation models

are able to outperform the "historical" CVaR allocation in the post-financial crisis period. In

addition to these elliptical copulas, Sahamkhadam et al. (2018) apply three Archimedean copu-

las, under different portfolio selection objectives. In relation to minimum CVaR, they conclude

that the elliptical copulas yield better portfolio performance.

They conclude that the Student t and Clayton copulas generally better portray the dependency

structures of their portfolio than the Normal copula.
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Chapter 3

Methodology

3.1 Research Design

We assume an investment universe limited to 26 of the 30 equities included in the Dow 30 index

composition, as of 2021. For this portfolio, we want to study the potential benefits of using

GARCH-EVT-Copula models to supply inputs for the allocation problem, as oppose to solving

the problem directly upon historical data. Our research methodology is a backtesting1 approach,

in which we calculate and evaluate the hypothetical performance of allocations resulting from

these different strategies over an historical period. At fixed ℎ-day increments over this period,

we solve the portfolio selection problem to derive sequences of historical optimal allocations.

The problems are solved using only data that was available at that time, and backtested against

historical returns over the subsequent ℎ days to determine the outcome of the strategy. The

outputs are series of historical returns for different strategies, which can then be analysed using

performance metrics and strategical tools. As means to cross-validate the results, we evaluate

the simulation models in light of three separate allocation objectives: maximum Sharpe ratio,

minimum variance and minimum CVaR. We also find allocations for five different rebalancing

intervals, ranging from 1 day to 5 days. Including the benchmark strategy, there is a total of

(20 + 1) × 5 × 3 = 315 unique allocation and return sequences being generated.

1This is one of several understandings of the term "backtesting", see Christoffersen (2010).
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3.2 Simulation Methodology

In these following sections, we go more into debt about the GARCH-EVT-Copula simulation

methodology, sourcing the approach described by Wang et al. (2010) as our main reference.

Related calculations are performed in R, and code is attached in the appendix. We comment on

package choices and estimation techniques. In the first three steps of this methodology, we use

historical data to respectively fit the GARCH model, the EVT model, and then the copula. In

the next few step, we simulate returns by applying the fitted models in the opposite order. In the

concluding step, we solve the allocation problem upon the simulated returns.

3.2.1 GARCH Models

Denote by 8 = 1...= the portfolio assets, and by C = 1...) the historical returns. For each asset 8,

we use ) = 1500 observations of returns (A8C ) to fit the GARCH models. These models requires

a variance equation, a mean-equation, and a distributional assumption for the residuals. We

use the linear Standard-GARCH(1,1) model proposed by Bollerslev (1986), and the non-linear

GJR-GARCH(1,1) model proposed by Glosten et al. (1993). Their variance equations have the

following representations, respectively (see Alexander (2008b), p. p. 135 and 150):

f2
8C = l8 + Un2

8,C−1 + Vf
2
8,C−1 (3.1)

f2
8C = l8 + Un2

8,C−1 + _81{n8,C−1<0}n
2
8,C−1 + Vf

2
8,C−1 (3.2)

Where f8C and n8C are the conditional variances and residuals, l8 is a constant, and U8 and V8

are the coefficients of the residual and variance terms. _8 is the coefficient of the GJR term,

and the indicator function takes the value of 1 if 48,C−1 < 0 and 0 otherwise. In standard-

GARCH(1,1), the parameters are constrained to l8 > 0, U8 , V8 ≥ 0 and U8 + V8 < 1, and to

l8 > 0, U8 , V8 ≥ 0 and U8 + V8 + 1
2_8 < 1 in GJR-GARCH(1,1).

Themean equation holds the GARCHmodel’s assumption about the return generating process.

We use a constant mean, and a time-variant ARMA(1,1) mean. Similar to GARCH, ARMA

assume the current return can be described as a function of lagged returns and residuals, and is

a special case of the ARIMA model with the order of integration set to zero. This is a common

design in the analysis of financial returns time series (see Studenmund (2016)), since they



Chapter 3. Methodology 13

already represent the first (log) difference of the original (price) series. The mean equations

have the following representations, respectively (see Alexander (2008b), p. 136 and 205):

A8C = `8 + n8C (3.3)

A8C = `8 + qA8,C−1 + \n8,C−1 + n8,C (3.4)

In the constant mean equation, `8 is the average historical return. In the time-variant mean

equation, `8 is a constant, and q8 and \8 the coefficient of the return and residual terms.

We assume the residuals of all four model combinations are subject to the Student-t distribution,

i.e. n8 ∼ (CD34=C C (0, f2), and we assume no ARCH-in-mean effects for the ARMA-based

models. Provided that the GARCH model is appropriately fitted to the data, the series of

standardized residuals (I8C ) is characterized as a strict white noise process, with the filtering

being performed as follows (see McNeil and Frey (2000), p. 6):

IC8 =
n8C

f8C
∼ (8.8.3.) (3.5)

Parameters are estimated using the MLE method, an all GARCH-related calculations are per-

formed using the rugarch package. We use the ugarchfit function for fitting, and later the

ugarchsim for simulations. Specifications cross-checked against other theoretical references,

using Ghalanos (2020).

3.2.2 Extreme Value Theory

The second step is to use the 1500 standardized residuals to fit the distribution model, for each

asset 8. The distribution type applied in Wang et al. (2010) is often referred to as an Extreme

Value Mixture (EVM) model, as it applies different distributional assumptions to different parts

of the sample. The standardized residuals are divided into three subsets: the lower tail, centre

and upper tail, based on whether they exceed some threshold values or not. Tail observations

are categorized as extreme, and described with the Generalized Pareto Distribution (GPD).

GPD is a generalization of an EVT methodology known as peek-over-threshold (POT). Centre

observations are categorized as non-extreme, and described with a Gaussian KDE (Kernel

Density Estimator). KDEs are non-parametric smoothing techniques, used for inferring the
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population density from the empirical density of the sample. Closer individual descriptions of

both of these concepts can be found in the third chapter of Alexander (2008a). The EVMmodel

has the following representation (see Wang et al. (2010), p. 4920):

�8 (I8) =


:!
)

(
1 + b!

V!
(D! − I8)

)− 1
b!

, I8 < D!

q(I) , D! < I8 < D'

1 − :'
)

(
1 + b'

V'
(D' − I8)

)− 1
b'

, I8 > D'

(3.6)

Where subscripts ! and ' denote the lower and upper tail parameters. Denote by D the thresh-

old, and by V and b the scale and shape parameters of the GPD estimator. The fraction :/)

measure the number of tail observations to total sample size. q denotes the Gaussian KDE.

In order to apply the model, we need tomake a decision about what are the appropriate threshold

values. In practical use of POT, the choice of threshold values often means striking a balance

between bias and variance in the model. Bias relates to the ability of the GPD estimator to fit the

data properly, and arises from misplacement of the threshold. Variance relates to the accuracy

of the GPD coefficient estimates, and arises from failure of the central limit theorem to hold in

small samples. The freedom to select high thresholds is often limited by sample size, and one

must often accept some bias to achieve accurate coefficient estimates. Multiple authors have

addresses this problem in relation to POT. DuMouchel (1983) argues that GPD is a flexible

distribution, and suggest that an indiscriminate threshold of 10 % for each tail will strike a good

balance between bias and variance. A similar rule of 5 % for each tail is proposed by Neftci

(2000). According to the findings of Nystrom and Skoglund (2002), both of these rules are

appropriate. In this study, GPD estimates are compared over a range of thresholds, for different

sample sizes and underlying distributional assumptions, and found to be similar for thresholds

in the range of 5 % to 13 %. In previous applications of the GARCH-EVT-copula simulation

model, a 5 % rule is adopted by Huang and Hsu (2015), while a 10 % rule is adopted by Wang

et al. (2010) and Sahamkhadam et al. (2018). In our models, we define the thresholds (D! and

D') such that each tail holds 10 % of the sample, i.e. for both tails we fix :/) = 0, 1 so that

: = 150 for a sample of ) = 1500 observations. The model parameters are estimated using the

MLEmethod, and calculations are performed using the spd package in R. The spdfit function

is used for fitting, and the pspd and qspd functions for inversion of samples. Our specifications
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are cross-checked against other theoretical references using Ghalanos (2013).

3.2.3 Copulas

After having determined the distributions (D8 = �8 (I8)) of the standardized residuals, the third

step is to describe the relationship between them. Wang et al. (2010) suggested that copulas

could be used for this purpose. According to Sklar (1959)’s theorem, a joint distribution can

be expressed as a function � of its marginals, given that the marginals are continuous. � is

referred to as the copula distribution function (see Alexander (2008b), p. 259-260):

F(G1, ..., G=) = � (�1(G1), ..., �= (G=)) (3.7)

Where �1, ..., �= denotes a set of marginal distributions, and F2 the corresponding joint distri-

bution. It is not possible to determine a copula specific for our portfolio, as the joint distribution

of standardized residuals is dependent on the portfolio allocation. However, many copulas have

already been derived on basis of the relationships between known univariate and multivariate

distribution functions, and these can be applied to our standardized residuals. We can then eval-

uate how the results are impacted by the different assumptions of association they represent.

Five copulas have been chosen for evaluation, and these belong to two different families: the

elliptical and Archimedean copulas. These represent different tail dependency assumptions,

which according to Alexander (2008b), can be loosely defined as the conditional probability

that one variable takes a value in a tails, given that others do the same. We use two elliptical

copulas: the normal copula that assume no tail dependence, and the Student-t copula that as-

sume symmetric tail dependence (both tails). Based on the univariate and multivariate standard

normal distribution functions (here noted Φ and �), the normal copula is derived as follows

(see Alexander (2008b), p. 266, also 90 and 115):

� (D1, ..., D= ; �) = �
(
Φ−1(D1), ...,Φ−1(D=)

)
(3.8)

And similarly, based on the univariate and multivariate Student-t distributions (Ca and ta), we

see that the Student-t copula is derived as (see Alexander (2008b), p. 268 , also 97 and 117):

�a (D1, ..., D= ; Σ) = ta
(
C−1
a (D1), ..., C−1

a (D=)
)

(3.9)

2Be careful to note that font is not to be understood as matrix notation in this specific context.



16 Chapter 3. Methodology

Archimedean copulas are derived using so-called generator functions (Ψ(D)), instead of real

distribution functions. However, these are based on an otherwise similar concept as the ones

above. We use three Archimedean copulas: described by Gumbel (1960), Clayton (1978) and

Frank (1979). The Gumbel copula is based on the generator function Ψ(D) = −(ln D)U where

U ≥ 1, and assumes dependence for the upper tail only (see Alexander (2008b), p. 272):

� (D1, ..., D= ; U) = exp
(
− [(− ln D1)U + ... + (− ln D=)U]1/U

)
(3.10)

The Clayton copula is derived from the generator function Ψ(D) = U−1(D−U − 1) where U ≠ 0,

and assumes dependence for the lower tail only (see Alexander (2008b), p. 271):

� (D1, ..., D= ; U) =
(
D−U1 + ... + D

−U
= − = + 1

)−1/U (3.11)

The Frank copula is based on the generator function Ψ(D) = − ln
[
(4−UD − 1) (4−U − 1)−1]

where U ≥ 0 (see Yan et al. (2007) p. 4) and assumes dependence for both tails. We do not

present the multivariate representation of this copula as it becomes fairy complicated.

In these expressions, we see that the copulas are not functions of the standardized residuals

directly, but indirectly through the corresponding cumulative probabilities. Using the EVM

models described in the previous section, the series of standardized residuals are first inverted

into new series of cumulative probabilities, i.e. we calculate D8C = �8 (I8C ) for each asset 8. We

then compose a ) × = matrix of these series, and estimate (or calibrate) the relevant copula

parameters accordingly. The parameters are estimated using the MLE method, and all copula-

related calculations are performed using the copula package in R. The copulafit function is

used for fitting, and later the rCopula function for simulations. Our specifications are cross-

checked against other theoretical references using Yan et al. (2007). After deriving the copula

parameters, the model is fitted to the data and simulations may begin.
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3.2.4 Simulating ℎ-day Returns

After fitting the model components, we want to simulate an (( × =) matrix of ℎ-day returns, as

input for the allocation problem. Seeing as we have fitted the models to daily data, we first need

to simulate sequences of ℎ daily returns, and then accumulate them in the end to find the ℎ-day

return. For each day within the forecasting horizon, we perform the following two steps:

1. For each 9 trial, we use the fitted copula to simulate3 =-length semi-random vectors of ,

i.e. H 9 = [H1 9 , ..., H= 9]. Compiling these vectors yields an (( × =) matrix, with numbers

similar to the cumulative probabilities of section (3.2.3).

2. For each 8 column in the semi, random matrix, we use the fitted inverse distribution

functions from section (3.2.2) to impose on the numbers the same distribution as the stan-

dardized residuals of section (3.2.1), i.e. G8 = [G81, ..., G8(] = [�−1
1 (H81), ..., �

−1
1 (H8()].

Based in the corresponding elements of these matrices, we have ( × = paths of simulated

standardized residuals over the forecasting horizon, i.e. {G1 98 , G2 98 , ..., Gℎ 98}. The last step is to

use the corresponding GARCH models of section (3.2.1) to perform the filtering in reverse4.

We use as starting values the last observations of return (A8) ), residual (48) ) and volatility (f8) )

in the historical data. This procedure yields (×= paths of simulated returns over the forecasting

horizon, i.e. {A∗1 98 , A
∗
2 98 , ..., A

∗
ℎ 98
}. The last step is to accumulate them into ℎ-day returns.

3See Wang et al. (2010), p. 4920-4922 for in-debt descriptions of copula simulations.
4See Barone-Adesi et al. (1999) for closer descriptions on GARCH simulations.
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3.3 Portfolio Selection Objectives

Next, we provide the details for the three portfolio allocation problems. As explained above,

the inputs for these problems are the (( × =) matrices of simulated returns in the case of

our GARCH-EVT-Copula models, and the () × =) matrices of daily historical returns in the

case of out benchmarks. Input matrices are denoted r, and the resulting allocation vector as

w = [F1, ..., F=] ′. The problems are solved assuming no transaction costs or short-selling, and

for calculations we use the fPortfolio package in R.

3.3.1 Mean-Variance Framework

As explained above, the mean-variance framework assume asset behavior can be described by

the normal distribution parameters: expectation and variance. Let � (r) = [� (A1), ..., � (A=)] ′

denote the vector of expected asset returns, � the covariance matrix and A 5 the risk-free rate.

The portfolio expected return and variance are defined as (see Alexander (2008a), p. 238-239):

� (A?) = w′� (r) (3.12)

f2
? = w′�w (3.13)

Furthermore, the Sharpe (1964) ratio is defined as (see Alexander (2008b), p. 250):

(' =
� (A?) − A 5

f?
=

w′� (r) − A 5√
w′�w

(3.14)

I.e., the minimum variance problem can be formulated as (see Alexander (2008a), p. 243):

min
w∈R=

w′�w

s.t. w) 1 = 1

F8 ≥ 0 ∀8 ∈ [1, ..., =]

(3.15)

And the maximum Sharpe problem as (see Alexander (2008a), p. 244):

max
w∈R=

w′� (r) − A 5√
w′�w

s.t. w) 1 = 1

F8 ≥ 0 ∀8 ∈ [1, ..., =]

(3.16)
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3.3.2 Conditional Value-at-Risk

The VaRU is understood as the maximum loss that is likely to occur at a given probability level

U ∈ [0, 1]. The corresponding CVaRU is understood as the expectation of losses when VaRU is

exceeded. In the context of portfolio selection, VaRU and CVaRU are usually defined in relation

to the portfolio loss distribution, in which losses are located in the upper tail, and gains in the

lower tail (see Salahi et al. (2013), p. 3-4):

5 (w, r) = −w′r (3.17)

For a given allocation, the portfolio VaRU is expressed:

VaRU (w) = min{W : Pr ( 5 (w, r) ≤ W) ≥ U} (3.18)

In relation to a certain VaRU (or U-level), CVaRU can formulated using the expression proposed

by Rockafellar and Uryasev (2000):

CVaRU = �̄U (w, W) = W + ((1 − U)()−1
(∑
9=1
[−w′r − W]+ (3.19)

I.e. the minimum CVaRU problem can be formulated as:

min
w∈R= ,U

�̄U (w, W)

s.t. w)C 1 = 1

F8 ≥ 0 ∀8 ∈ [1, ..., =]

(3.20)
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3.4 Analysis

Next, we explain how we analyze the 315 output sequences of portfolio returns. Sahamkhadam

et al. (2018) apply the same allocation objectives as ourselves, and analyse performance using

standard deviation, and the 1st and 99th percentiles. Huang and Hsu (2015) apply the minimum

CVaR objective, and analyze performance in terms of CVaR for different sub-periods of their

series (under and after the 2007/09 financial crisis). We use a similar approach, in which

we analyze performance separately for the periods before, under and after the financial crisis5.

Also, we want performance metrics to be specific to the underlying allocation objective, and run

separate comparisons for each objective based onwhich performancemetrics seems appropriate.

For each sub-period, the 105maximumSharpe portfolios are compared in terms (annual) Sharpe

ratio, the 105 minimum CVaR portfolios in terms of CVaR, and the 105 minimum variance

portfolios in terms of (annual) standard deviation6. Like Sahamkhadam et al. (2018), we run

(dummy) regressions to compare performance across different input models and rebalancing

intervals, nine such models in total. Regressions are based on two sets of dummy variables:

input-strategy (20 dummies) and forecasting horizon (4 dummies). Both sets apply the one-day

historical-inputs portfolio as their common reference category.

('Pre-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.21)

('Sub-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.22)

('Post-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.23)

�+0'Pre-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.24)

�+0'Sub-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.25)

�+0'Post-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.26)

5See section (3.1) for more information
6The daily Sharpe ratios and volatilities are annualized before regression for visual purposes, without

further impact to the regression outputs. We assume a year of 252 trading days.
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(�Pre-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.27)

(�Sub-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.28)

(�Post-Crisis = V0 + V1,<"1,< + V2,ℎ�ℎ + n8 (3.29)

Where < = [1, 2, ..., "] refers to the dummies representing different input-strategies, and

ℎ = [1, 2, ..., �] refers to the dummies representing different investment horizons. 105 obser-

vations apply to each regression, as explained above.

Although the regression provide information about the statistical inference for the target func-

tions w.r.t. the applied model composition, it can be difficult to distinguish between the models.

To get a better overview and a more intuitive understanding of the underlying relations, we

find it appropriate to further present accompanying box-plots to the regression results. This

enables us to visualize the dispersion in the target function w.r.t. model composition, where we

get information about the median, 1BC (Q1) and 3A3 (Q3) quantile, the interqantile (IQR) and

further the upper and lower whisker as well as potential outliers. The box-plots are presented

as a supplement in B.1, B.2 and B.3.
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3.5 Quality

In these concluding sections of the chapter, we evaluate our approach with respect to reliability,

validity, and the potential to generalize results. The evaluations apply mainly to the research

design (choice of dataset, the backtesting approach, the choice of performance metrics and

sub-periods, and the comparisons by regression), whereas the design of our trading strategies

are subject to evaluation in the results and discussion chapter.

3.5.1 Generalization

This point concerns the choice of data. Calculations related to the trading strategies are com-

putationally demanding, and so it is very time-consuming to backtest these types of models for

large quantities of data. Our strategies are backtested for only one portfolio composition, but still

over a lengthy period of about 18.5 years. The world economy has experienced several different

states over this period, and strategy performance under many circumstances are represented in

the resulting sequences of strategy return. With 4800 observations in each sequence, we should

be well equipped to perform sound statistical analysis of these results, also when differentiat-

ing into shorter sub-periods. Provided our subsequent choice of analysis is reasonable, we are

confident in our ability to draw good conclusions for this specific portfolio. The big but is of

course the world of equities that are not included in our study, and therefore we conclude that

the potential to really generalize results to other portfolio compositions is fairly limited.

3.5.2 Reliability

The question of reliability is highly relevant when examining a framework such as GEC. The

outline of such research includes a certain amount of data being digested through a software

program in which we do not know for sure what the program does with the data. This problem

is referred to as the black box problem within the computer science environment. Thus, it

is critical to examine whether the input data is treated the right way and end up as correct

output data. To ensure that the filtering process described in Section 3.2.4 is correctly specified

in R, we have performed the same calculations manually in Excel. The same yields for the
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optimizations for the portfolio selection strategies, where we have performed a random sample

cross-examination using the Excel solver to compare the optimal weights allocated through R.

We are confident that the applied software packages in this thesis are reliable as they are widely

used in the literature. It is worth noting that some raw data went missing in the correspondence

of the asset returns and risk free rate due to date differences. Further, some data also went

missing due to estimation errors when running the models (See Section 3.6 below). All in all,

the missing data appears random, expect that we observe some larger proportion of estimation

errors related to 2008 period.

3.5.3 Validity

This thesis is a relatively broad examination of different model compositions within the GEC

framework. To ensure that the analysis in this thesis is sufficient to announce anything about the

theoretical validity for the GEC framework, the research design is set up in a way that isolates the

portfolio performance for each model composition across the three portfolio selection models.

Thewell-established portfolio selectionmodels optimizes certain performancemetrics, inwhich

we use these respective metrics as measurement on how the model compositions are performing

with and without the application of the GEC-framework. The analysis of these performance

metrics are set up in a dummy regression that compares each distinct model performance against

the traditional in-sample historical strategy. Thus, the analysis provides information about the

performance as is and equally important the performance relative to the traditional portfolio

strategies. A final remark should be that the broad examination naturally put some constrains

on the the ability to provide robust statistical tests on the results obtained. Since our research

examine 300 distinct portfolios, we suffer from the magnitude it would cause to perform robust

pairwise test on the portfolio performance metrics. That said, our research is able to provide

reasonably good guidelines for further research within this framework.
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3.6 Data and Descriptive Statics

3.6.1 Dataset

Our investment universe is limited to 26 of the 30 equities included in the Dow Jones Industrial

Average (DJIA) index composition, as of 2021. The remaining four equities are removed due to

insufficient data history, and changes to the index composition during the period of the analysis

are not accounted for. The index is chosen due to its position as a key financial indicator, the

manageable size of the underlying portfolio, and the lengthy histories of (most) assets included.

We acquire daily price data from Eikon, and calculate series of log returns for the period of

22/08/1995 to 31/12/2020. A rolling estimation window of 1500 observations (about 6 years

of data) of returns are used for each model, and so we need returns also prior to 31/07/2001. In

addition, we acquire daily observations of a risk-free rate proxy for the period of 31/07/2001 to

30/12/2020, needed for the Maximum Sharpe problem. Our rates are based on the 1Month U.S.

Treasure Bill, and downloaded from the US Department Of The Treasury (2021c). These are

Constant Maturity Treasury (CMT) rates, and represent the annualized bond equivalent yield

(BEY) for securities that pay semi-annual interest7. The annualized rates are scaled down by a

factor of 3658 to reflect the daily risk-free dates. After lining up the interest rates and returns,

making sure that the dates are corresponding after 31/07/2001, they have lengths 4849 and

6349, respectively. Next, we look at some descriptive statistics for the returns.

3.6.2 Descriptive Statistics

In table (3.1), we present descriptive statics over the length of the asset returns series. We note

that normality of returns is rejected for all stocks by the Jarque-Bera (JB) statistic9, which is not

surprising since all are leptokurtic, or "sharp-peaked and heavy-tailed". In the case of APPL

and PG, kurtosis is extreme, and the majority of stock are also negatively skewed. We note as

well that stationary of all series is rejected by the Augmented Dickey-Fuller (ADF) test10.

7See US Department Of The Treasury (2021c) and US Department Of The Treasury (2021a).
8See US Department Of The Treasury (2021b)
9See Alexander (2008a), p. 158.
10See Alexander (2008b), p. 218.



Chapter 3. Methodology 25

Table 3.1: Descriptive statistics of raw data

Descriptive statistics from the full sample returns of the 26 individual stocks in the investment universe. The full sample period yields from 22/08/1995 to 31/12/2020 (6449

observations). The average return and the standard deviation is annualized under the assumption of 252 trading days per year.

Ticker Mean(%) Std.dev(%) Skewness Kurtosis Jarque-Bera ADF(1)

AXP 9.10 36.20 0.07 10.36 28347∗∗∗ −58.92∗∗∗

AMGN 11.18 33.41 0.20 4.94 6494∗∗∗ −60.77∗∗∗

AAPL 22.52 45.07 −2.53 75.16 1498750∗∗∗ −57.37∗∗∗

BA 7.54 34.67 −0.52 16.19 69511∗∗∗ −52.88∗∗∗

CAT 9.13 32.99 −0.25 4.22 4774∗∗∗ −56.21∗∗∗

CSCO 10.33 39.38 0.07 6.99 12903∗∗∗ −59.23∗∗∗

CVX 4.27 27.41 −0.60 17.96 85572∗∗∗ −57.63∗∗∗

HD 12.80 31.59 −0.95 19.79 104395∗∗∗ −57.33∗∗∗

HON 9.13 31.22 −0.26 12.82 43458∗∗∗ −56.51∗∗∗

IBM 5.77 28.30 −0.09 8.15 17557∗∗∗ −57.40∗∗∗

INTC 6.86 38.40 −0.45 8.26 18204∗∗∗ −58.59∗∗∗

JNJ 8.15 20.91 −0.41 9.83 25712∗∗∗ −59.87∗∗∗

KO 4.36 22.45 −0.24 6.45 11052∗∗∗ −56.71∗∗∗

JPM 7.76 38.61 −0.20 12.43 40875∗∗∗ −58.94∗∗∗

MCD 9.17 24.58 −0.08 10.19 27439∗∗∗ −58.76∗∗∗

MMM 7.09 24.36 −0.24 5.90 9246∗∗∗ −59.26∗∗∗

MRK 4.24 27.45 −1.17 22.50 135160∗∗∗ −57.28∗∗∗

MSFT 13.60 31.62 −0.18 7.00 12985∗∗∗ −58.51∗∗∗

NKE 15.50 32.08 −0.13 9.32 22952∗∗∗ −57.89∗∗∗

PG 8.16 23.19 −2.88 75.28 1505422∗∗∗ −59.86∗∗∗

TRV 6.15 29.23 −0.26 17.14 77639∗∗∗ −58.47∗∗∗

UNH 14.98 34.99 −1.72 27.98 209817∗∗∗ −54.75∗∗∗

VZ 3.24 25.19 0.13 5.61 8341∗∗∗ −59.15∗∗∗

WBA 7.15 29.68 −0.24 6.80 12271∗∗∗ −57.48∗∗∗

WMT 9.19 25.82 0.18 5.78 8866∗∗∗ −59.63∗∗∗

DIS 8.57 30.59 −0.11 8.86 20760∗∗∗ −58.56∗∗∗

*: p-value<0,1, **: p-value<0,05 and ***: p-value<0,01

JB refers to the Jarque-Bera test for normality. The null hypothesis is that the respective time series is normally distributed.

ADF(1) is short for the Augmented Dickey-Fuller test statistic of order(i.e lag) 1. Since we operate with daily returns, which tend to variate between a mean equal zero, we

use the equation with no constant term nor trend variable to test for stationarity.The conclusion of these tests is that all the equity log returns is non-normally distributed, but

can be assumed to have eliminated the unit root11. Although not reported, the conclusion is consistent for up to 10 lags.
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Table 3.4: Estimated long-term volatilities for the individual stocks

The following table presents the annualized unconditional volatilises calculated from applying the respective GARCH equation on the full sample data set. The period yield

from 22/08/1995 to 31/12/2020 (6449 observations). Estimates are annualized by using the square-root-of-time rule under the assumption of 252 trading days per year.

Ticker sGARCH(%) ARIMA-sGARCH(%) GJR(%) ARIMA-GJR(%)

AXP 77.43 78.67 81.29 66.94
AMGN 38.93 38.54 45.1 41.67
AAPL 82.01 88.68 122.66 113.79
BA 35.13 35.58 36.12 33.34
CAT 37.38 37.33 36.96 34.48
CSCO 65.9 67.83 83.07 76.03
CVX 26.53 26.55 25.95 24.67
HD 39.32 39.94 55.01 42.54
HON 51.74 57.09 62.9 40.14
IBM 38.93 38.91 42.25 38.97
INTC 50.11 51.27 48.79 47.02
JNJ 29.68 29.15 35.79 28.5
KO 29.47 29.07 29.71 25.6
JPM 77.35 78.93 87.56 66.08
MCD 37.34 31.59 35.12 28.92
MMM 39.51 40.15 34.88 29.96
MRK 29.31 29.26 29.04 27.88
MSFT 68.85 66.37 99.25 69.74
NKE 42.65 43.07 68.55 50.32
PG 26.87 28.49 31.2 26.29
TRV 35.87 37.77 37.31 33.66
UNH 36.96 38.15 41.75 37.18
VZ 27.69 27.66 28.37 27.24
WBA 32.21 32.52 32.83 32.13
WMT 30.03 30.01 45.49 36.93
DIS 36.53 36.51 39.61 32.14

In tables (3.2) and (3.3), we have run the four different GARCH models described in section

(3.2.1) over the full samples of returns (22/08/1995 to 31/12/2020) for each asset. The presence

of ARCH and GARCH effects (U and V) is tested in all four models. For all assets, GARCH

effects are fully confirmed by all models, while ARCH effects are confirmed by most models. In

the asymmetric models, the GJR parameter (W) is significant for most assets. In the time-variant

mean-models, the AR and MA parameters (q and \) are significant for most assets. Interest-

ingly, there appears to be some negative relationship in which the AR parameter tend to be

positive when MA is negative and vise verse. Without further considerations of the differences

in parsimony across these models, the ARIMA-GJR appears to provide the best overall fit based

calculations of the average log likelihoods across assets.
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In table (3.4), we have estimated the long-term volatilities12 for the four different GARCH

models described in section (3.2.1) over the full samples of returns (22/08/1995 to 31/12/2020)

for each asset. This provides some intuition of what level of volatility is assumed by the

respective GARCH model as oppose to the standard deviations of table (3.1). We see that the

long-term volatilise supplied by theGARCHmodels are generallymuch higher than the standard

deviations, suggesting that volatility would generally be underestimated under the assumption of

normality. We also observe some differences between the different GARCH models, but these

are generally small in comparisons. The GJR-GARCH models seem to generate the highest

volatility estimates, e.g. APPL has an estimated annualized volatility of over 100 % for both

GJR-GARCHs, compared to only 45 % in table (3.1).

3.6.3 Calculation Outputs and Sub-Periods

Regarding the simulation and portfolio selection procedure described in sections (3.2) and

(3.3), 49 dates were removed from the sequences of allocations and portfolio returns due to

failure of the R solver to fit one or more GARCH model at these dates. As there were 4849

observations within the test period to begin with, the output allocation and return sequences

have an exact length 4800 (!). For 1-day strategies, the rolling calculations did produce 4800

unique set of weights, and then respectively 2400, 1600, 1200 and 960 for the longer balancing

intervals. In these series, we define the first 1348 observations (01/08/2001 to 31/12/2006) as

pre-financial crisis, the next 1000 (03/01/2007 to 10/02/2011) as under-financial crisis, and the

last 2453 (11/02/2011 to 31/12/2020) as post-financial crisis. The pre-financial crisis period

contains historical events such as the 9/11 terror attack, resulting in closed markets for a certain

period of time and high uncertainty. In addition, this period contains the ending of the Dot-Com

bubble, which further developed to become an expansion period. The sub-financial is defined

extra long, as to include both the early events and the recession that followed. The post-crisis

period is defined by generally high growth in the financial markets, but also events like collapse

of the oil-price and the COVID-19 crisis.

12See (Alexander (2008b), p.136)
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Chapter 4

Results

4.1 Regression Outputs

Table (4.1) display the regression outputs, based on the nine models explained in section (3.4).

The (dummy) coefficients measures the response of different simulation models to the respec-

tive performance metrics. Returns of maximum Sharpe portfolios are analyzed in terms of

Sharpe ratio, and positive coefficients are to be interpreted as improvements in risk-adjusted

performance relative to the benchmark. Returns of minimum CVaR portfolios are analyzed

in terms of CVaR, and positive coefficients are to be interpreted as risk reductions relative

to the benchmark. Minimum Variance portfolios are analyzed in terms of (annualized) Stan-

dard Deviation, and negative coefficients are to be interpreted as risk reductions relative to the

benchmark. We report significance at levels 0.1, 0.05 and 0.01, and interpret coefficients with

significance greater than 0.05 as zero-difference.

To evaluate the reliability for the analysis presented in this thesis, the classical Ramsey´s

Regression Specification Error test (RESET) are presented, which aim to determine whether a

regression model is correctly specified. For each cross-sectional (dummy) regression in Table

4.1, it emerges that 6 out of 9 regressions rejects the null hypothesis of correct specification

on 5 percent level, which in isolation imply a high uncertainty related to the regression output.

Though, further examination of central specification criteria offer some leverage to the analysis.
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Table 4.1: Cross-sectional dummy regression

The table displays the results of the dummy regression, for three allocation objectives, and three sub-periods for each objective. The coefficients measures the response of

different simulation models and forecasting horizons to the respective performance metrics. Performance metrics are the Sharpe ratio for maximum Sharpe allocations, CVaR

for minimum CVaR allocations, and Standard Deviation for minimum variance allocations. Benchmark are the one-day historical allocation for the respective strategies. We

note that Sharpe ratios and Standard Deviations are annualized based on the assumption of 252 trading days per year.

Maximum Sharpe (MSR) Minimum CVaR (CVaR) Minimum Variance (GMV)

Simulation Model Pre-Crisis Sub-Crisis Post-Crisis Pre-Crisis Sub-Crisis Post-Crisis Pre-Crisis Sub-Crisis Post-Crisis

sGARCH-EVT-Normal 0.2998∗∗∗
(0.0576)

−0.1016
(0.1658)

0.0378
(0.093)

0.0035∗∗∗
(0.0005)

−0.0012∗
(0.0006)

−0.0012∗∗∗
(0.0004)

−0.0073∗∗∗
(0.0015)

0.0003
(0.0021)

0.0028
(0.0018)

sGARCH-EVT-Student 0.3328∗∗∗
(0.081)

−0.1704
(0.1731)

0.0882
(0.1371)

0.0055∗∗∗
(0.0004)

−0.0004
(0.0006)

−0.0007
(0.0005)

−0.0097∗∗∗
(0.0016)

0.0026
(0.0017)

0.0017
(0.0015)

sGARCH-EVT-Clayton −0.112
(0.0718)

−0.5228∗∗∗
(0.1719)

−0.1873∗∗
(0.0798)

0.003∗∗∗
(0.0004)

−0.0019∗∗∗
(0.0006)

0.0004
(0.0003)

−0.0038∗∗
(0.0016)

0.0069∗∗∗
(0.0018)

0.0056∗∗
(0.0023)

sGARCH-EVT-Gumbel 0.0189
(0.1541)

0.0964
(0.2337)

−0.2063∗∗
(0.0966)

0.0034∗∗∗
(0.0004)

−0.0066∗∗∗
(0.0007)

−0.0045∗∗∗
(0.0002)

−0.0106∗∗∗
(0.0016)

0.0032∗
(0.0019)

0.0005
(0.0016)

sGARCH-EVT-Frank 0.2092∗∗∗
(0.0534)

0.0013
(0.1886)

0.2074∗
(0.1121)

0.0021∗∗∗
(0.0005)

−0.0051∗∗∗
(0.0005)

−0.0044∗∗∗
(0.0005)

−0.0089∗∗∗
(0.0015)

0.0031∗
(0.0018)

0.0017
(0.0015)

GJR-EVT-Normal 0.7672∗∗∗
(0.1162)

−0.0919
(0.1813)

−0.2013∗∗
(0.0829)

0.0035∗∗∗
(0.0004)

−0.0027∗∗∗
(0.0007)

−0.0011∗∗∗
(0.0004)

−0.0071∗∗∗
(0.0015)

−0.0067∗∗∗
(0.0023)

−0.0001
(0.0014)

GJR-EVT-Student 0.6499∗∗∗
(0.1226)

−0.222
(0.1928)

−0.133
(0.1066)

0.0043∗∗∗
(0.0006)

−0.0017∗∗∗
(0.0006)

0.0009
(0.0004)

−0.0079∗∗∗
(0.0015)

−0.0046
(0.0031)

0.0002
(0.0015)

GJR-EVT-Clayton 0.1727
(0.1279)

−0.4118∗∗
(0.1637)

−0.3051∗∗∗
(0.0841)

0.0003
(0.0007)

−0.0038∗∗∗
(0.0006)

−0.0017∗
(0.0009)

−0.0031∗
(0.0016)

0.0001
(0.0028)

0.0022
(0.0017)

GJR-EVT-Gumbel 0.0747
(0.0657)

−0.0269
(0.1718)

−0.3187∗∗∗
(0.0917)

0.0033∗∗∗
(0.0003)

−0.006∗∗∗
(0.0005)

−0.003∗∗∗
(0.0002)

−0.0092∗∗∗
(0.0015)

−0.0045∗
(0.0024)

−0.0008
(0.0017)

GJR-EVT-Frank 0.5992∗∗∗
(0.0954)

0.1141
(0.1702)

−0.1559∗
(0.0876)

0.0021∗∗∗
(0.0003)

−0.0053∗∗∗
(0.0006)

−0.0041∗∗∗
(0.0004)

−0.0078∗∗∗
(0.0015)

−0.0025
(0.0034)

0.0006
(0.0015)

ARIMA-sGARCH-EVT-Normal 0.261∗∗∗
(0.0834)

−0.0069
(0.2135)

0.3535∗∗∗
(0.0971)

0.0036∗∗∗
(0.0004)

−0.0001
(0.0006)

−0.0017∗∗∗
(0.0003)

−0.0069∗∗∗
(0.0015)

−0.0002
(0.0023)

0.0035∗
(0.0018)

ARIMA-sGARCH-EVT-Student 0.2699∗∗∗
(0.0933)

−0.0981
(0.22)

0.3546∗∗∗
(0.0749)

0.0045∗∗∗
(0.0007)

−0.0005
(0.0007)

−0.0014∗∗∗
(0.0004)

−0.0093∗∗∗
(0.0016)

0.0034∗
(0.0018)

0.0031∗
(0.0016)

ARIMA-sGARCH-EVT-Clayton 0.1024
(0.1075)

−0.3000∗
(0.1728)

0.2213∗∗∗
(0.0843)

0.0031∗∗∗
(0.0004)

−0.0018∗∗∗
(0.0005)

−0.001∗
(0.0005)

−0.0039∗∗
(0.0016)

0.005∗∗∗
(0.0019)

0.0058∗∗∗
(0.002)

ARIMA-sGARCH-EVT-Gumbel 0.2249∗∗∗
(0.0857)

0.1432
(0.1792)

0.278∗∗∗
(0.0821)

0.0032∗∗∗
(0.0005)

−0.0058∗∗∗
(0.0006)

−0.0047∗∗∗
(0.0002)

−0.0113∗∗∗
(0.0017)

0.0032
(0.0019)

0.0012
(0.0015)

ARIMA-sGARCH-EVT-Frank 0.3026∗∗∗
(0.0678)

0.2273
(0.1807)

0.4044∗∗∗
(0.0834)

0.0022∗∗∗
(0.0005)

−0.0044∗∗∗
(0.0005)

−0.0045∗∗∗
(0.0005)

−0.009∗∗∗
(0.0015)

0.0027
(0.0019)

0.0022
(0.0015)

ARIMA-GJR-EVT-Normal 0.6804∗∗∗
(0.0592)

−0.0142
(0.1672)

0.1149
(0.1516)

0.003∗∗∗
(0.0004)

−0.0024∗∗∗
(0.0006)

−0.001∗∗∗
(0.0004)

−0.0065∗∗∗
(0.0015)

−0.0003
(0.0023)

−0.0003
(0.0015)

ARIMA-GJR-EVT-Student 0.6161∗∗∗
(0.1158)

−0.2009
(0.182)

0.1363
(0.113)

0.0038∗∗∗
(0.0006)

−0.0014∗∗
(0.0006)

−0.0003
(0.0003)

−0.0072∗∗∗
(0.0016)

0.0036
(0.0017)

−0.0004
(0.0017)

ARIMA-GJR-EVT-Clayton 0.1753∗
(0.096)

−0.2465
(0.1681)

0.0466
(0.1297)

0.0014∗∗∗
(0.0004)

−0.0033∗∗∗
(0.0005)

−0.0016∗∗
(0.0007)

−0.0025
(0.0016)

0.0076∗∗∗
(0.0017)

0.0022
(0.0017)

ARIMA-GJR-EVT-Gumbel 0.3039∗∗∗
(0.0355)

0.0111
(0.1757)

0.0728
(0.0906)

0.0031∗∗∗
(0.0004)

−0.0057∗∗∗
(0.0006)

−0.0035∗∗∗
(0.0003)

−0.0094∗∗∗
(0.0017)

0.0031
(0.0021)

−0.0001
(0.0016)

ARIMA-GJR-EVT-Frank 0.4228∗∗∗
(0.0819)

0.2305
(0.1995)

0.1374
(0.1383)

0.0023∗∗∗
(0.0004)

−0.0052∗∗∗
(0.0006)

−0.0043∗∗∗
(0.0004)

−0.008∗∗∗
(0.0015)

0.0042∗∗
(0.0018)

0.0004
(0.0014)

2-day simulations 0.0672
(0.0555)

0.1993∗∗
(0.0774)

−0.0524
(0.0402)

0.0001
(0.0002)

−0.0001
(0.0002)

0.0003
(0.0003)

0.0004
(0.0004)

0.0015
(0.0012)

−0.0003
(0.0005)

3-day simulations 0.0407
(0.0547)

−0.0413
(0.0688)

−0.0563
(0.0453)

0.0001
(0.0002)

−0.0005∗∗∗
(0.0002)

−0.0009∗∗∗
(0.0003)

0.0019∗∗∗
(0.0004)

0.0029∗∗
(0.0011)

0.0018∗∗∗
(0.0005)

4-day simulations 0.0678
(0.0704)

−0.5024∗∗∗
(0.0757)

−0.2782∗∗∗
(0.0451)

−0.0002
(0.0002)

−0.0006∗∗
(0.0003)

−0.0002
(0.0003)

0.0047∗∗∗
(0.0005)

0.0039∗∗∗
(0.0012)

0.0051∗∗∗
(0.0005)

5-day simulations −0.0858
(0.062)

−0.5698∗∗∗
(0.0695)

−0.3223∗∗∗
(0.0605)

−0.001∗∗∗
(0.0003)

−0.0019∗∗∗
(0.0003)

0.0003
(0.0003)

0.0075∗∗∗
(0.0005)

0.0097∗∗∗
(0.0014)

0.0068∗∗∗
(0.0008)

Constant 0.0749
(0.0508)

0.5539∗∗∗
(0.1562)

0.7354∗∗∗
(0.0787)

−0.0359∗∗∗
(0.0003)

−0.0476∗∗∗
(0.0006)

−0.038∗∗∗
(0.0003)

0.1385∗∗∗
(0.0015)

0.1747∗∗∗
(0.0019)

0.1366∗∗∗
(0.0014)

Observation 105 105 105 105 105 105 105 105 105
'2 0.6803 0.7522 0.7563 0.7789 0.9223 0.8368 0.9192 0.7541 0.7942
Ramsey RESET 4.03∗∗ 2.13 2.60∗ 18.93∗∗∗ 3.74∗∗ 1.24 28.45∗∗∗ 10.98∗∗∗ 30.96∗∗∗

Jarque-Bera 1.095 2.198 0.4923 0.7022 0.2321 1.861 9.839∗∗∗ 17.63∗∗∗ 8.018∗∗

*: p-value<0,1, **: p-value<0,05 and ***: p-value<0,01
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All of the regressions report a '2 above 75 %, except from one reporting 68 %. This, in relation

with the overall significant coefficients across the regressions imply that the they do not suffer

from severe multicollinearity. We have also accounted for heteroskedasticity by applying robust

standard errors for the hypothesis tests. It further provides confidence to the analysis that the

accompanying box plots for each regression, presented in Appendix B, overall imply the same

effects as the regression. Thus, the analysis is informative and appear reliable, although the

regression output in isolation needs to be interpreted with some caution. We note also note that

the assumption of normally distributed residuals seem to be satisfied in the first two periods,

but not for the latter period.

Our research design is based on the idea of cross-validating results across different allocation

objectives (and performance metrics), and we mainly look for coefficients being significant

across multiple objectives within the same sub-period. The general impression is that the

simulation models perform considerably better in the pre-financial crisis period. As many as

14/20 simulation models outperform the benchmark under all three objectives in this period,

17/20 under at least two objectives, and 19/20 models under at least one objective. Only one

model perform the same as the benchmark, and no model performs significantly worse. Also,

we see that the least favorable results are all related to the asymmetric copulas, the Clayton in

particular. We also note that fewer models perform well under the maximum Sharpe objective.

For the second and third periods however, the story is very different. Here, the best-performing

models do so under only one objective each: and this goes for just 1/20 models during the

financial crisis, and 5/20 models post-financial crisis. We also observe that the most brutal shift

in performance is under the minimim CVaR objective: from 19/20 models outperforming the

benchmark in the first period, to 16/20 and 14/20 models performing significantly worse than

the benchmark in the second and third period.

4.2 Accumulated Wealth

For the 1-day maximum Sharpe strategies, we have also calculated the accumulated wealth on

basis of the series of return. These are reported in figure (4.1), and appear consistent with the
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Figure 4.1: Accumulated wealth for the maximum Sharpe strategy

Accumulated wealth from an initial investment of 100 for the 20 model compositions within the MSR optimization that use 1 day a head out-of-sample return simulation.

The in-sample historical strategy and the risk free rate are marked in red.

(a) Accumulated wealth for standard GARCH models:

(b) Accumulated wealth for GJR GARCH models:
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(c) Accumulated wealth for ARIMA-sGARCH models:

(d) Accumulated wealth for ARIMA-GJR models:
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regression outputs. In all plots, we see that the Gumbel and Student t copulas yields the highest

performance, and then the Frank copula. In the case of sGARCH and GJR-GARCH under

constant means, the Clayton and Gumbel are both outperformed by the benchmark strategy. We

do not see fit to use the same type of analysis for the minimum variance and minimum CVaR

objectives, as these are risk-based strategies, and not necessarily expected to outperform their

benchmarks in terms of accumulated wealth.
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Chapter 5

Discussion

5.1 Overall Remarks

As explained in the introduction, the aim of our analysis is to evaluate whether we can find

GARCH-EVT-Copula simulation models with favorable applications in the field of portfolio

selection. Evaluations are based on cross-comparisons over the table (4.1), in which we look

for patterns and consistencies with respect to which type of strategy is being used. We look

at overperformance, underperformance and equal performance, relative to the benchmark. The

three chosen allocation objectives have differences and similarities with respect to two dimen-

sions: investor preferences and underlying assumptions about the behavior of asset returns. The

minimum CVaR impose no particular distributional assumptions on the assets, whereas the

two others are bound within the assumption of multivariate normality. The maximum Sharpe

objective aims to improve risk-adjusted performance, whereas the two others seek to reduce

portfolio risk. With respect to the second dimension, we feel as if we have represented a broader

group of investors: the preferences of personal investors and mutual funds on one hand, and

those of commercial banks bound by the Basel requirements on the other hand. In other words,

if the benefits of GARCH-EVT-Copula models can be cross-validated for all objectives, they

would have proven wide applications within the risk management field. Based on the comments

in the results section, we know that this is a high bar in the second and third period. Before

drawing further conclusions, we want to extend our comments in the results chapter with some
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more in-dept interpretations in light of the theory previously discussed.

In our interpretation, the most prevalent finding is the general development from the first period

to the last. The majority of simulation models outperforms the benchmark under all objectives

in the pre-financial crisis period, and then performance appears to deteriorate into the next two

periods. This is especially clear under the CVaR objective, which has the highest number of

simulation models outperforming the benchmark in the first period, and the highest number

of models underperforming the benchmark in the second and third periods. For the maximum

Sharpe and minimum variance objectives, these results are less consistent across different

models. Also, these are mostly zero-difference results. In relation to CVaR minimization,

Huang and Hsu (2015) found evidence to suggest that GARCH-EVT-Copula simulation models

perform better under periods of economic expansion. These results are consistent with our

findings with respect to the first and second periods, but not for the third however, which has

been characterized by mostly strong economic growth. We have not been able to find previous

literature on GARCH-EVT-Copula that can support or disprove these pattern for the maximum

Sharpe and minimum variance objectives.

5.2 Choices of GARCH and Copula

Under the maximum Sharpe andminimum variance objectives, it clearly emerges from the table

that lack of performance under maximum Sharpe and minimum variance is related to the Clay-

ton and Gumbel, both of which asymmetric and Archimedean. These findings are not nearly as

prevalent under minimum CVaR. This is interesting, because Wang et al. (2010) reports that

the Clayton copula (and Student-t) provide more accurate measure of interdependency than the

Normal Copula. This in mind, an interpretation could be that the Clayton copula provides better

information into the simulation models and thus the optimization problem, which would yield

in better portfolio allocation. Our findings suggests the opposite, where the overall impression

is that the elliptical Normal and Student-t copula, following each other relative closely, out-

perform the other copulas in regards of generating higher proportion of positive coefficients

(relative to negative) as well as generally more appealing coefficient values. In his stylized
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facts, Cont (2001) emphasized the prevalence of gain/loss asymmetries in return distributions.

This is not necessarily inconsistent with our findings, since our copulas are applied to the error

distributions instead of the return distributions directly.

We also take a closer look at the results for the four different GARCH models. Based on the

stylized facts proposed by Cont (2001), we expected the stand-alone GJR-GARCH would prove

the better alternative (prevalent asymmetric volatility, and less prevalent autocorrelations). In the

pre-financial crisis period, we see that most GJR-based models prove better than the sGARCH-

basedmodels, at least under themaximumSharpe andminimumCVaR objectives, and themean

equation appears to be of less importance. In the post-financial crisis period however, we see all

5/60 coefficients implying satisfactory performance are related to the ARIMA-sGARCHmodel,

all under the maximum Sharpe objective. The post-crisis findings are interesting, because they

are highly consistent with the findings of Sahamkhadam et al. (2018). There may appear to

have been a shift from the third period from the last, which is not unlikely with respect to the

findings discussed in section (2.4), but we do not want to draw any solid conclusions since

these results are not cross-validated across multiple objectives in the third period. All-in-all,

the ARIMA-sGARCH is archives the highest numbers of satisfactory results across the table.

5.3 Rebalancing Intervals

The overall impression of applied investment horizon across the different portfolio selection

strategies is rather consistent.We recall that the return paths are simulated ℎ-days ahead, and that

the dispersion of these paths naturally should increase as an effect of increasing the forecasting

horizon. Longer rebalancing intervals increases the probability of estimation error, consistent

with what one would expect. Table (4.1) report only one single coefficient that suggest a positive

impact of increasing the length of forecasting horizons. The remaining coefficients are either

insignificant, or significant but indicate worse performance. Although, it is fairly important

to (once again) highlight that our research do not account for transaction cost, meaning that

the one-day strategies might appear more favorable than what they would do under normal

circumstances.
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Conclusion

In our thesis, we have backtested the performance of portfolio selection strategies based on 20

different GARCH-EVT-Copula simulation models, over a period of 18,5 years. The relevant

strategies apply three different allocation objectives, and intends for rebalancing in the very

short-term (1-5 days). We have discussed whether any of the simulation models are related to

superior performance across multiple objectives and sub-periods simultaneously, and 1) the

conclusion to this question is negative. Instead, we have found rather strong indications that

2) the performance of these models generally varies across different time frames, and 3) the

optimal choice of simulation model appears related to which type of portfolio selection prob-

lem is being solved. In relation to Sharpe optimization and variance minimization (both within

the mean-variance framework), there are weaker indications that 3) performance may be posi-

tively related the ARIMA-sGARCH-EVT-Copual model, and 5) negatively related to the use of

asymmetric copulas (Clayton and Gumbel). Also, 6) we have not found similar model-specific

indications for CVaR minimization. As the literature on these simulation models is still fairly

limited, it has been generally hard to cross-validate findings in relation to similar findings in

other studies, all else equal (even though we have identified a few consistencies). In addition, we

have experienced some problems in our regression analysis. Our all-in-all conclusion is that we

can be fairy sure of conclusions (1)-(3),while (4)-(6)must be carefully interpreted as indications.
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Appendix A

R-code

The rugarch package is used for specifying and fitting our ARIMA and GARCH models.

model1 <- ugarchspec( variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),

mean.model = list(armaOrder = c(1, 1), include.mean=TRUE),

distribution.model = "std")

<>34;1 < −D60A2ℎB?42(E0A80=24.<>34; = ;8BC (<>34; = ”B��'��”, 60A2ℎ$A34A = 2(1, 1)), (A.1)

<40=.<>34; = ;8BC (0A<0$A34A = 2(1, 1), 8=2;D34.<40= = )'*�), (A.2)

38BCA81DC8>=.<>34; = ”BC3”) (A.3)
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Appendix B

Box plots

Figure B.1: Box Plots MSR

The figures below displays the calculated Sharpe Ratios from the 20 model compositions as well as the benchmark strategy for the 3 sub-

periods (Before, during and after the financial crisis). They are presented in box plots that include observations from applying the respec-

tive model composition across the 1-5 day investment horizon. The attractive models are located at the right hand side with low dispersion.

(a) Box plot MSR pre-financial crisis:
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(b) Box plot MSR sub-financial crisis:

(c) Box plot MSR post-financial crisis:
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Figure B.2: Box Plots CVaR

The figures below displays the calculated CVaR from the 20 model compositions as well as the benchmark strategy for the 3 sub-periods (Before, dur-

ing and after the financial crisis). They are presented in box plots that include observations from applying the respective model composition across the 1-5

day investment horizon. The CVaR is expressed in negative values (i.e. losses). The attractive models are located at the right hand side with low dispersion

(a) Box plot CVaR pre-financial crisis

(b) Box plot CVaR sub-financial crisis
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(c) Box plot CVaR post-financial crisis
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Figure B.3: Box-plot GMV

The figures below displays the calculated annualized unconditional volatility from the 20 model compositions as well as the benchmark strategy for the 3 sub-periods (Before,

during and after the financial crisis). They are presented in box plots that include observations from applying the respective model composition across the 1-5 day investment

horizon. The higher volatility, the higher risk is estimated. The attractive models are located on the left hand side with low dispersion:

(a) Box plot GMV pre-financial crisis

(b) Box plot GMV sub-financial crisis
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(c) Box plot GMV post-financial crisis
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