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A B S T R A C T   

The temporomandibular joint (TMJ) is typically involved in 45–87% of children with Juvenile Idiopathic 
Arthritis (JIA). Accurate diagnosis of JIA is difficult as various clinical tests, including MRI, disagree. The purpose 
of this study is to optimize the methodological aspects of Dynamic Contrast Enhanced (DCE) MRI of the TMJ in 
children. In this cross-sectional study, including data from 73 JIA affected children, aged 6–15 years, effects of 
motion correction, sampling rate and parametric modelling on DCE-MRI data is investigated. Consensus among 
three radiologists determined the regions of interest. Quantitative perfusion parameters were estimated using 
four perfusion models; the Adiabatic Approximation to Tissue Homogeneity (AATH), Distributed Capillary 
Adiabatic Tissue Homogeneity (DCATH), Gamma Capillary Transit Time (GCTT) and Two Compartment Ex-
change (2CXM) models. Effects of motion correction were evaluated by a sum of least squares between corrected 
raw data and the GCTT model. The effect of systematically down sampling the raw data was tested. The sum of 
least squares was computed across all pharmacokinetic models. Relative difference perfusion parameters be-
tween the left and right TMJ were used for an unsupervised k-means based stratification of the data based on a 
principal component analysis, as well as for a supervised random forest classification. Diagnostic sensitivity and 
specificity were computed relative to structural image scorings. Paired sample t-tests, as well as ANOVA tests, 
were used (significant threshold: p < 0.05) with Tukeys post hoc test. High-level elastic motion correction 
provides the best least square fit to the GCTT model (percental improvement: 72–84%). A 4 s sampling rate 
captures more of the potentially disease relevant signal variations. The various parametric models all leave 
comparable residues (relative standard deviation: 3.4%). In further evaluation of DCE-MRI as a potential diag-
nostic tool for JIA a high-level elastic motion correction scheme should be adopted, with a sampling rate of at 
least 4 s. Results suggest that DCE-MRI data can be a valuable part in JIA diagnostics in the TMJ.   

1. Introduction 

Juvenile Idiopathic Arthritis (JIA) encompasses all cases of arthritis 

of unknown origin with onset prior to the 16th birthday, persisting for a 
minimum of 6 weeks [1]. Reported JIA prevalence varies between 0.07 
and 4.01 per 1000 children [2]. Continuation of active disease into 
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adulthood has, depending on the study, been reported for 41% and 67% 
of the patient cohort [3,4]. Early effective treatment is contingent on 
early detection of the disease, yet therapeutic interventions are often 
hampered by differing methodologies and asymptomatic temporoman-
dibular joints (TMJs) [2,5,6]. Inflammation in the (TMJ) are frequently 
reported in cases of JIA, and it is estimated that the TMJ may be involved 
in between 45% and 87% of the cases [5], [7–10]. 

Methods for detecting JIA-involvement of the TMJ include structural 
imaging (radiographs, ultrasound, computed tomography and MRI) and 
clinical assessment including restricted mouth opening, mandibular 
deviation during mouth opening, facial asymmetry, and history of pain. 
[5], [10–13]. Reading of structural MRI images post contrast injection (i. 
e. T1 static) is currently one of the most sensitive assessment methods 
[8,9], [11]. Even though a variety of MRI techniques for examination of 
the temporomandibular joint exist, static images remain the gold stan-
dard. The TMJ may also be studied under the hypothesis that the 
inflammation is an origin of pain, accompanied by increased vascularity 
[8,14,15]. In addition to the MRI techniques recently reviewed [16], the 
TMJ may also be assessed with Dynamic Contrast Enhanced (DCE)-MRI. 
To capture the increased vascularity, the microvasculature may be 
assessed by measuring the change in signal intensity due to the passing 
of a contrast agent in time (i.e. T1 dynamic) [8]. DCE-MRI dynamics can 
be studied by means of semi-quantitative measures derived directly from 
the signal intensity time curves [17–19] or by tracer kinetic modelling 
[20,21]. No standard pipeline to process the DCE-MRI data in the 
temporomandibular joint exists. There are several models that can be 
applied in tracer kinetic modelling. A general feature of these ap-
proaches is that the capillary bed is regarded as a box (being the imaged 
tissue voxel or region of interest) with an inlet and an outlet, where 
blood containing contrast agent flows in and out, respectively. The 
contrast agent may also diffuse back and forth across the capillary wall. 
It is assumed that the system is linear and time invariant, and that 
contrast agent is neither generated nor destroyed in the system [21,22]. 
In general, the change in the measured contrast agent concentration 
within the capillary bed, C(t), is the sum of all in-fluxes with the sum of 
all out-fluxes subtracted, Eq. (1), 

dC(t)
dt

=
∑

in
Ji(t) −

∑

out
Jo(t) (1)  

where Ji(t) is the in-flux and Jo(t) is the out-flux [21]. The concentration 
at the input of the voxel is called an arterial input function (AIF). The 
measured tracer concentration, C(t), is determined by the impulse 
response of the system and is given by the convolution in Eq. (2), 

C(t) =
∫ t

0
Cp(τ)⋅i(t − τ)dt = [x ∗ i](t) (2)  

where Cp(t) is the AIF and i(t) is the impulse response [21]. The impulse 
response is given by the specific model describing the microvasculature. 
Each model has several analytical parameters that are varied to provide 
the best fit between the left- and right-hand side of Eq. (2). 

The aim of the current study is to explore the feasibility of DCE-MRI 
in the diagnosis of TMJ involvement in JIA. Methodological aspects of 
motion correction, signal sampling and parametric modelling are eval-
uated. Three levels of motion correction were applied and the results on 
the data examined and the sampling rate capturing the dynamics of the 
TMJ is investigated, [23]. Additionally, the ability of the Adiabatic 
Approximation to the Tissue Homogeneity Model (AATH), Distributed 
Capillary Adiabatic Tissue Homogeneity Model (DCATH), Gamma 
Capillary Transit Time Model (GCTT) and Two Compartment Exchange 
Model (2CXM) to produce parameters that are able to distinguish be-
tween presumed healthy and affected TMJ are examined. Finally, it is 
discussed if DCE-MRI can be of added value in the diagnosis of JIA 
affected TMJ. 

2. Material and methods 

2.1. Data collection 

All data were acquired and used in agreement with ethical approval 
from REK Vest. Written informed consent was obtained from their care 
takers and participants older than 12 years. DCE-MRI was included as 
part of an extensive, longitudinal, multicentre study on quality of life, 
oral health and imaging in JIA (the Norwegian study in JIA, Nor JIA), in 
a larger group of children. The analysed data consists of DCE-MRI ac-
quisitions of the TMJ in a subset of 73 children, aged 6–15 years, 
diagnosed with JIA with possible TMJ involvement. The data constitutes 
a balanced subset of patients ranging from radiologically severe arthritis 
to cases with only subtle findings. With a sampling rate of 4 s, 60 image 
volumes (160x160x16 image matrices) were acquired from each 
participant, using a MAGNETOM Skyra 3 T system (Siemens Healthi-
neers, Erlangen, Germany), using a 64-channel head coil and a 3D- 
FLASH sequence (TR/TE/FA = 4 ms/1 ms/9◦). The contrast agent Gd- 
DOTA i.e. Dotarem®, (Guerbet, Villepinte, France) was injected at a 
rate of 5 mL/s, at 10 s after acquisition start, using a power injector and a 
subsequent saline injection. The MRI data was collected at three study 
sites, using identical acquisition parameters. Clinical scores derived 
from assessment of structural MR images determined a measurement of 
likelihood of affected and unaffected TMJs. The assessment was per-
formed by a by an expert paediatric radiologist. These scores were 
available from the local site only, comprising 52 participants. Among 
these 11 participants were deemed to have affected TMJ, 41 participants 
to have unaffected TMJ. 

2.2. Data processing 

Regions of interest were defined by manually selected masks, 
covering the left and right synovial TMJ, respectively, in the 5th imaged 
volume (acquired 20 s after acquisition start), Fig. 1. These were based 
on a consensus among three radiologists with between 5 and 15 years of 
experience. The DCE-MRI was acquired in coronal plane but several 
other acquisitions in both sagittal and coronal plane were also available 
to the image readers. When drawing the ROIs (on the coronal DCE- 
acquisition) the involved image readers (trained radiologists) carefully 
checked the location of the ROI also in sagittal plane, thereby avoiding 
the retrodiscal area and areas of abundant joint fluid. It is probably not 
possible to fully separate condylar cartilage from synovium. However, 

Fig. 1. Regions of interest, covering left (blue) and right (red) TMJ. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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contrast enhancement of the condylar cartilage is not a known marker of 
active inflammation in TMJ and does therefore not pose a diagnostic 
problem in this setting. 

Relative enhancement curves were extracted from the DCE-MRI data 
by averaging pixel signal values contained in the regions of interest, 
subtracted and divided by the baseline signal, (signal - baseline)/base-
line. Semi-quantitative perfusion parameters, Table 1 were computed 
directly from the relative enhancement curves. 

Quantitative perfusion parameters, Table 1, were estimated using an 
inhouse developed MATLAB tool, version R2017a, (MathWorks Inc., 
Natick, Massachusetts, US). An AIF was not measured for each indi-
vidual TMJ. Instead, a population-based AIF based on a random sample 
of 22 participants was used in the analysis. The 22 individual AIFs were 
selected semi-automatically by choosing voxels with the highest signal 
peak within a region containing the large brain feeding arteries. By 
finding delay between peaks, the AIFs were temporally aligned, and a 
median AIF calculated. The median AIF is composed of two peaks (due 
to the first and second bolus passage). The final AIF was obtained by a 
parametric fit and scaling according to the Parker model [24,25]. 

According to a previous study [26], it is unlikely that both TMJs in 
one participant are equally affected. In the following, relative parameter 
difference between the left and right TMJ, Eq. (3), are reported, 

Prel =

⃒
⃒Pleft − Pright

⃒
⃒

Pleft + Pright
(3)  

where Pleft and Pright are the parameters derived from the left and right 
TMJ, respectively and Prel is the ensuing relative parameter difference. 
Since relative parameter differences between the left and right TMJ are 
reported the choice of using an identical AIF, in this case a population- 
based AIF, is motivated by the goal of highlighting the asymmetry be-
tween the joints. 

2.3. Pharmacokinetic models 

The Adiabatic Approximation to the Tissue Homogeneity Model 
(AATH) assumes a plug-flow of the blood through the intravascular 
space, so that the tracer concentration, c(x, t) is dependent on the dis-
tance x from the inlet and the time t after the tracer enters at the inlet. 
The extravascular extracellular space (EES) is modelled as a single 
compartment [22], [27–29], and the contrast agent is assumed to cross 
the capillary wall only at the outlet (adiabatic approximation). Ex-
change of the contrast agent between the intra- and extra-vascular space 
is assumed in both directions. 

Since there is both many capillaries and EES inside a DCE-MRI voxel, 
there will be a variation in transit times inside of each voxel. This is 
taken into account by the Distributed Capillary Adiabatic Tissue 

Homogeneity Model (DCATH), which measures the contrast agent 
concentration in a voxel as a sum of concentrations in the capillaries in 
the voxel, iteratively applying either a normal, truncated normal or 
skewed Gaussian distribution of transit times (in this study the truncated 
normal distribution was applied). DCATH model thus outputs an addi-
tional parameter σ, which is the standard deviation in transit times in a 
voxel [30]. 

The Gamma Capillary Transit Time Model (GCTT) also, like the 
DCATH model, takes into account that a DCE-MRI voxel contains many 
capillaries of different sizes, causing varying transit times of the contrast 
agent through the capillaries. However, the GCTT model assumes a 
gamma distribution of transit times [20]. It can be shown that other 
tracer kinetic models, such as the Tofts, Extended Tofts, the Two 
Compartment Exchange Model (2CXM) and the AATH model, are special 
cases of the GCTT model when different transit time distributions are 
applied [20]. A special parameter for the GCTT model is α− 1, which 
measures the width of the transit time distribution. α− 1 varies between 
0 and 1, representing the limiting cases of a delta function distribution 
(α− 1 = 0), corresponding to the AATH model and the exponential 
function distribution (α− 1 = 0), corresponding to the 2CXM model [20]. 

2.4. Effects of motion correction 

In motion correction, an input image is adjusted to fit a reference 
image. Three levels of motion correction were applied successively; no 
image registration, primary (affine) registration and elastic registration. 
A common parametric approach is to define a transformation which will 
align an input x image to the reference image, Eq. (4), 

T(x) = Ax+ t (4)  

where T(x) is the transformation function, A is a matrix containing 
parameters, that in the case of affine registration allow rotation, scaling 
and skewing of the input image. The vector t contains parameters 
causing translation of the input image. The open source software Elastix 
[31,32] was used to implement a 3D affine registration. Thus, by finding 
the optimal four times three parameters of A and t, the 3D affine 
registration should correct for translational or rotational movements of 
the region of interest (head). The time series volumes were aligned to 
volume number five, which was acquired 20s after acquisition start. At 
this time the contrast agent was injected, but not accumulated in the 
region of interest. This volume was also used to draw the regions of 
interest, Fig. 1. Initial transformation parameters, as well as other details 
of the affine registration as applied with the Elastix software [31–33], 
are defined in a publicly available parameter text file [34]. 

The time series volumes were expected to exhibit varying levels of 
contrast, due to changes in tracer concentration in time. Therefore, 
mutual information [35] was chosen as an alignment quality measure on 
which to base the cost function of the motion correction transformation. 
Due to differences in tracer levels, a pixel in the reference image may 
have an intensity value that differs from the intensity value in the cor-
responding pixel in the input image. A two-dimensional histogram plot 
comparing the intensity values of input (x-axis) and reference image (y- 
axis), respectively, governs the approach. Lower degree of entropy in the 
histogram plot expresses more accurate image registration [35]. The 
transformation parameters were optimized using an iterative process 
dubbed adaptive stochastic gradient descent [31,36]. 

A second motion correction algorithm was applied on the affine 
registered images. This was an elastic motion correction scheme, origi-
nally developed in-house for registration of kidney images [37]. In the 
elastic motion correction scheme, the regions of interest (i.e. the gross 
TMJ volumes) were co-registered to later time points independent from 
the rest of the image. After registration of the regions of interest, they are 
re-inserted into the image. The registration is based on co-aligned image 
intensity gradient vectors in the input and reference image. However, 
image intensities vary in time due to the passing of contrast agent. 

Table 1 
Parameter descriptions. Semi-quantitative (RT, M, S, A) and quantitative (Fp, E, 
ve, Tc, α− 1, σ, BAT and PS) perfusion parameters, estimated by application of the 
pharmacokinetic models.  

Parameter Unit Description 

RT s Time from baseline to the first maximum of relative 
enhancement curve 

M – First maximum value of the relative enhancement curve 
S – Slope of the relative enhancement curve tail 
A – Area under the relative enhancement curve 
Fp ml/ml/ 

min 
Blood plasma flow 

E – Extraction fraction 
ve – Extravascular extracellular fraction 
Tc min Mean capillary transit time 
α− 1 – Width of the capillary transit time distribution 
σ min Standard deviation of mean transit time 
BAT min Bolus arrival time (AIF vs ROI delay) 
PS ml/ml 

min 
Permeability surface product  
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Therefore, the gradients in the input and reference image are normal-
ized. [37]. Normalizing the gradients meant removing their amplitude, 
letting the gradient vector entries take on relative values between 0 and 
1, while the gradient direction remains the same, such that the 
geometrical outlines in the region of interest could be exploited. 

2.5. Effects of sampling rate 

The imaging data was acquired with a 4 s sample rate. Decreased 
sampling rates were mimicked by re-binning and averaging signal 
samples into bins of size 2, 3, 4 and 5. The results are relative 
enhancement curves with temporal resolutions of 8 s, 12 s, 16 s and 20 s, 
respectively. To investigate the effect of sampling rate on the informa-
tion in the sampled signal, semi-quantitative relative parameter differ-
ences (Prel) were computed and compared across the temporal 
resolutions. 

2.6. Data-driven stratification of participants 

Four semi-quantitative parameters and seven quantitative parameter 
differences were defined, Table 1. Each of the parameters was stan-
dardized and principal component analysis performed with Scikit-learn 
[38]. 

Using the MATLAB R2017a, (MathWorks Inc., Natick, Massachu-
setts, US) k-means clustering algorithm, the participants were divided 
into two groups based on four principal independent components, iter-
atively minimizing the distance between the vectors and the central 
point in each group. The k-means algorithm has a random starting point, 

and the results would therefore vary slightly in each run. To generate a 
basis for investigating the likelihood of a participant belonging to the 
group he or she would be assigned to the algorithm was implemented 
1000 times. Finally, each participant was assigned a decimal number 
between − 1 and + 1, depending on the number of times the k-means 
algorithm would assign the participant to either of the groups. A positive 
number denoted the affected group, negative numbers denoted the un-
affected group. A number close to | − 1| would indicate a greater 
probability for the participant belonging to his or her assigned group. A 
number closer to zero should not be interpreted as evidence that the 
corresponding individual is necessarily closer to the opposite group. 

Data labels, i.e. structural image scorings, were available from the 
local cite, comprising 52 participants. These data were divided in 
balanced training and test sets and fitted to the random forest machine 
learning algorithm in Scikit-learn [38]. 75% (parameters from 39 par-
ticipants) were used for training and 25% (parameters from 13 partici-
pants) were used for testing. 

2.7. Statistics 

The three levels of motion correction were compared by applying a 
least square fit (χ2) between the measured data and the applied phar-
macokinetic model (GCTT). Later analysis showed that the model curves 
do provide similar fits to the raw data. Moreover, since the GCTT model 
has an extra parameter, it would be more likely to overfit the data, and 
thus minimize the least square fit, making this a conservative approach. 
Three successive levels of motion correction (non-registered, affine and 
elastic) were compared based on a one-way ANOVA test. Tukey’s post 

Fig. 2. Effects of three levels of motion correction in a random participant. Relative contrast agent enhancement curves from the left Temporomandibular Joint 
(TMJ) (upper row, red), right TMJ (lower row, green). DCE-MRI signal with no motion correction (left column), signal after affine motion correction (middle column) 
and signal after elastic registration (right column). The pharmacokinetic model GCTT is overlaid (blue). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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hoc test was applied to check for pairwise statistically differing means. 
The semi-quantitative parameter distributions of the GCTT model were 
visualized in boxplots with decreasing temporal resolutions, and with 
the different levels of motion correction applied. Semi-quantitative 
relative parameter difference (Prel) distributions with low temporal 
resolutions (8 s, 12 s, 16 s and 20 s) were compared to the high temporal 
resolution (4 s) parameter distribution, using a paired sample t-test. p- 
values describing the levels of significance between the k-means clus-
tered groups were computed based on a two-way ANOVA test with 
Tukeys post hoc test. 

A significance threshold of p = 0.05 was selected in all statistical tests 
described above, meaning that any p-value lower than 0.05 indicates 
that the compared parameter distributions are statistically 
distinguishable. 

3. Results 

3.1. Effects of motion correction 

Motion corrected relative enhancement curves from a randomly 
selected participant were overlaid by the GCTT model curves, Fig. 2, 
suggesting that elastic registration outperforms non-registration and 
affine registration. Without motion correction, the GCTT model failed to 
estimate parameters in 26 participants. The elastic registration scheme 
outperforms the affine registration, Table 2. The GCTT model was 
applied to the left and right TMJ from the remaining 47 participants. 
Measuring the sum-of-squares, χ2, between the measured motion cor-
rected data in each TMJ and the corresponding modelled curve for each 
level of motion correction (no motion correction, affine registration and 
elastic registration), a better fit to higher-level motion corrected data is 
observed, Table 3. 

Estimated GCTT relative perfusion parameter differences (Prel) do 
not display mean values that differ significantly, Fig. 3, nor are the 

Fig. 3. Comparison of mean parameter values, Prel, (Blood plasma flow Fp, Extraction fraction E, EES volume ve, Capillary transit time Tc, GCTT transit time dis-
tribution width α− 1 and Bolus arrival time BAT) between the left and right TMJ obtained with different motion correction methods (Non-registration, Affine and 
Elastic) in 47 participants. 

Table 3 
Effects of motion correction on DCE-MRI relative parameter differences. Means, 
standard deviations and p-values comparing the relative parameter difference, 
Prel, distributions (Blood plasma flow Fp, Extraction fraction E, EES volume ve, 
Capillary transit time Tc, GCTT transit time distribution width α− 1 and Bolus 
arrival time BAT) obtained with different motion correction methods (Non- 
registration, Affine and Elastic) in the 47 participants in which it was possible to 
estimate GCTT parameters without prior motion correction. The p-values are 
computed using the ANOVA test with three independent variables; no motion 
correction, affine motion correction and elastic Significance threshold p < 0.05.  

Parameter 
(unit) 

No motion 
correction 

Affine motion 
correction 

Elastic motion 
correction 

p- 
value 

Mean Std. 
dev. 

Mean Std. 
dev 

Mean Std. 
dev. 

Fp 0.16 0.1 0.17 0.1 0.14 0.1 0.56 
E 0.18 0.2 0.22 0.2 0.24 0.2 0.47 
ve 0.62 0.4 0.62 0.4 0.61 0.4 0.98 
Tc 0.28 0.3 0.27 0.2 0.23 0.2 0.51 
α− 1 0.61 0.3 0.51 0.4 0.56 0.3 0.40 
BAT 0.05 0.1 0.03 0.02 0.02 0.2 0.31  

Table 2 
Sum of squares, χ2, between the relative enhancement curves and the fitted 
GCTT model after different applied motion corrections (non-registered, affine 
and elastic) across 47 participants. Percentages in round brackets refer to the 
percental improvement relative to non-registered data.  

Registration Method Left TMJ Right TMJ 

Sum of Squares Sum of Squares 

Not registered (n = 47) 2.18 3.74 
Affine (n = 47) 0.95 (56%) 0.90 (76%) 
Elastic (n = 47) 0.60 (72%) 0.60 (84%)  
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ANOVA p-values comparing the various motion corrected schemes sig-
nificant, Table 3. Means, standard deviations and p-values comparing 
the relative parameter difference, Prel, distributions obtained with 
different motion correction methods (Non-registration, Affine and 
Elastic) in the 47 participants in which it was possible to estimate GCTT 
parameters without prior motion correction were calculated, Table 4. 
With increasing the level of motion correction, the p-values comparing 
the semi-quantitative relative parameter differences (Prel) in the lower 
resolution data to the high (4 s) resolution data tend to decrease but are 
not statistically significant. 

3.2. Effects of sampling rate 

Reducing sampling rate reduces the variability in the estimated semi- 
quantitative relative parameter differences, Prel, Fig. 4. When succes-
sively comparing Prel of high temporal resolution (4 s), with lower 
temporal resolution (8 s, 12 s, 16 s and 20 s), Table 4, the distributions 
Prel also change significantly with sufficiently decreased sample rates. 
With elastic motion correction this happens when the temporal resolu-
tion drops from 4 s to 8 s and suggests that it is important to have a 
sampling rate of 4 s. 

3.3. Data-driven stratification of participants 

The four pharmacokinetic models are all suited to fit the DCE-MRI 
data, and differ little in performance, Fig. 5. The relative standard- 
deviation of the sum of squares of residuals between the elastic regis-
tered raw data curve and the model curves is 3.4%. 

A k-means algorithm was applied to categorize the participants into 
two groups, group A and group B. This was to investigate if the models 
categorize the participants very differently, based on the relative 
parameter differences. Based on a comparison to structural image 
scorings, group A was assumed to correspond to unaffected individuals, 
and group B was assumed to correspond to affected participants. Out of 
the 73 participants, 62 individuals were placed in group A, and 11 in-
dividuals were placed in group B, when analysing the data with the 

GCTT model. Using the DCATH model instead, 59 individuals were 
placed in group A, and 14 were placed in group B. With the AATH model 
66 individuals were placed in group A, and 7 individuals were placed in 
group B. Finally, with the 2CXM model, 63 individuals were placed in 
group A and 10 individuals were placed in group B. 

Scorings, giving an indication of whether or not a participant was 
affected by JIA, based on structural MRI images were available for 52 of 
the 73 participants. Sensitivities and specificities were calculated 
assuming structural MRI data as the ground truth, using both unsuper-
vised k-means stratification on all of the labelled data, as well as random 
forest classification on the balanced 25% of data used for testing of the 
random forest stratification, Table 5. 

Across the pharmacokinetic models there was agreement about 52 
participants; 51 of which were placed in group A, and one of which was 
placed in group B. Structural image scorings were available for 40 of the 
52 participants between which there was agreement about group as-
signments across all pharmacokinetic models. Sensitivity of scores 
across models relative to the structural image scores was found to be 0, 
and the specificity 0.96. There clearly is an overlap between relative 
parameter differences (Prel) in affected and unaffected participants 
Fig. 6, where the parameters are calculated with the DCATH model and 
there is agreement between the k-means clustered groupings and the 
structural image scores in 41 cases. Based on a two-way ANOVA test 
(significance threshold <0.05) with the standardized relative parame-
ters and group scorings as independent variables and Tukey’s post hoc 
test, that neither the parameters, nor the interaction of parameters with 
group scorings were significant. However, group scorings were found to 
be significant (p = 1.0 ⋅ 10− 6). 

4. Discussion 

There is need for more accurate diagnostic tests for JIA in general, 
since reported disease prevalence varies between 0.07 and 4.01 per 
1000 children [2]. More specifically, reported TMJ involvement in 
confirmed cases of JIA covers a range from 45% to 87%, and this is 
largely due to differing diagnostic methodology and asymptomatic TMJ 
[2], [5–13]. In the current study DCE-MRI is explored as a potential tool 
to aid in the diagnosis. 

We have examined the methodology in application of DCE-MRI as a 
possible diagnostic tool and found that a better fit to the GCTT model is 
obtained with high-level elastic motion correction. We recommend a 
sampling rate of at least 4 s to capture potentially disease relevant signal 
variations after application of high-level motion correction. The various 
parametric models all leave comparable and small residues. Since none 
of the applied perfusion models left a substantial residue and since they 
display comparable sensitivities and specificities relative to the struc-
tural image scores, in principle, all the models are potentially applicable 
to the TMJ. It remains to be tested whether one of the models out-
performs the others in the diagnostics of JIA affected TMJ, and since the 
diagnostic criteria are still hampered by differing diagnostic methodol-
ogies, the model estimations must be evaluated in the light of more 
clinical data. 

High-level motion correction, specifically elastic image registration, 
provides smoother relative enhancement curves and a better fit to the 
GCTT model approximation. The model approximation also becomes 
smoother with increasing levels of motion correction of the raw data. 
The statistical comparison between mean values of parameter distribu-
tions does not suggest that the post registration parameter distributions 
differ significantly from pre-registration parameter distributions. A large 
proportion of data stemming from minimally moving participants could 
be a reason for this. Even though estimated parameter values do not 
change on a population level, individual parameters might still be esti-
mated more accurately when motion correction is applied. 

Even without application of motion correction, the results of this 
study indicate that if the sampling rate is lower than 4 s, it is possible 
that important information about the dynamics in the TMJ is lost. The 

Table 4 
Effects of sampling rate in DCE-MRI. Statistical differences in relative parameter 
difference distributions in the Temporomandibular Joint in 73 participants 
across sampling rates and degree of motion correction. Significance threshold p 
< 0.05.  

Parameter Registration 
scheme 

8 s 12 s 16 s 20 s 

Rise Time, 
RT 

Not registered 0.01 < 
0.005 

< 
0.005 

< 
0.005 

Affine 0.01 < 
0.005 

< 
0.005 

< 
0.005 

Elastic < 
0.005 

< 
0.005 

< 
0.005 

< 
0.005 

Max, M Not registered 0.90 0.42 < 
0.005 

< 
0.005 

Affine 0.72 0.97 < 
0.005 

< 
0.005 

Elastic 0.03 0.01 < 
0.005 

< 0.05 

Slope, S Not registered 0.83 0.48 0.26 0.24 
Affine 0.03 0.23 0.06 < 

0.005 
Elastic 0.01 0.01 0.04 0.05 

Area, A Not registered 0.62 0.70 < 
0.005 

< 
0.005 

Affine 0.48 0.29 < 
0.005 

< 
0.005 

Elastic 0.02 0.07 < 
0.005 

< 
0.005 

The significance threshold was set to p=0.05, and hence all values in table 4 
below this threshold were rendered in bold. Bold font was chosen for easy 
reading of the table, drawing the attention to the pattern of the data. 
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parameter distributions with diminishing temporal resolution become 
more dissimilar with a higher level of motion correction. This could also 
suggest the importance of high sampling rates to avoid loss of potentially 
valuable diagnostic information. 

There is substantial overlap within detectable differences in param-
eter estimations between the left and right TMJ in presumed affected 
versus unaffected participants. However, DCE-MRI may be a feasible 
diagnostic tool in the evaluation of JIA affected TMJ, as a specific, rather 
than a sensitive tool. The current study focuses on the methodological 
aspects of DCE-MRI data processing, to ensure that the data can be 
evaluated in JIA diagnostics. Since no consensus yet exists in the eval-
uation of JIA affected TMJ, to further assess DCE-MRI data for this 
application, DCE-MRI data should be compared to other clinical data in 
a larger study cohort. 

A limitation of this study is the use of a population-based AIF, as 
opposed to patient specific AIFs, since patient specific AIFs might be 
better suited for the description of individual biology. However, 
measuring individual AIFs would be user dependent, adding another 
level of variability to the data. A recent study did not find that patient 
specific AIFs improved the repeatability in the head and neck area [39]. 
Furthermore, we have been comparing relative perfusion parameter 
differences between the left and right TMJ. We have therefore assumed 
that inaccuracies that are not disease relevant, caused by the AIF are 
cancelled out. While it is unlikely that both TMJs are equally affected 
[26], one should keep in mind that the possibility that they are, though 
small, is still present. Our approach is conservative, in that if both TMJs 

should indeed be equally affected it would not contribute towards a 
positive conclusion about the DCE-MRI feasibility as a diagnostic tool for 
JIA. We have aimed to highlight the disease relevant information con-
tained in the measurements, given that we do not know whether abso-
lute parameter measurements can be directly compared between 
children. 

In conclusion, we have found that any of the pharmacokinetic 
models investigated can be used to model the TMJ vascularity. A tem-
poral resolution of at least 4 s should be used in the measurement of the 
DCE-MRI data. A high temporal resolution in DCE-MRI data from the 
TMJ holds information which is not available in corresponding lower 
sampled data. Elastic image registration allows motion affected data to 
be sufficiently recovered to be included for pharmacokinetic modelling. 
Motion correction thus facilitates the data analysis for evaluation of 
DCE-MRI as a diagnostic tool for JIA affected TMJ. To further assess the 
diagnostic value of high temporal resolution DCE-MRI data, as well as of 
motion corrected DCE-MRI data, the estimated perfusion parameters 
should be correlated to other clinical information in a larger study 
cohort. 
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