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Abstract

Experimental and numerical studies were done on two models. The models were per-
forated plates with different perforation ratios. They were subjected to regular, bi-
chromatic, and irregular motions deeply submerged in water.

Regular forced oscillations were done to establish KC (Keulegan–Carpenter number)
dependent curves for the hydrodynamic added mass and damping for both models. A
laminar 2D viscous flow solver developed by Mentzoni (2020) was used to validate the lab
results for one model. The calculations and the experiments were in close agreement. The
hydrodynamic coefficients were found to have a strong dependence on the KC number
for both models. This agrees well with previous results by Mentzoni (2020) and Molin
(2011). The third harmonic force was also investigated. It was found that in the KC
range of 0.2 and 3, the Morison load model should be used with caution. For small KC
numbers, a large part of the third-harmonics was in phase with the acceleration. The
semi-analytical method by Mentzoni and Kristiansen (2019) for perforated plates was
compared to the experiments, and there was found good agreement for the damping for
both models in the KC range of 0.2 and 2. The added mass was underestimated by the
semi-analytical method for both models. The tested plates have a higher thickness than
the plates the semi-analytical method is based on, which is a possible explanation of the
differences.

Bi-chromatic time series were tested in order to provide data for the irregular tests. There
was a strong dependency for the damping on the KC number for the previous half-cycle
and the KC number of the present half-cycle. The damping was higher if the previous
half-cycle had a larger amplitude of motion than the half-cycle under consideration. The
damping was smaller if the previous half-cycle had a smaller amplitude than the present
half-cycle. There was no particular pattern for the added mass, but the added mass from
the bi-chromatic tests was scattered lower or close to the regular tests’ added mass curve.

The data from the bi-chromatic forced oscillations were used to calculate the forces from
time series with irregular motions generated by a Pierson-Moskowitz spectrum. There was
close agreement between the calculated and measured forces from the experiments, which
confirms that bi-chromatic tests are appropriate for providing hydrodynamic coefficients
for irregular time series. Since the damping coefficient depends on the KC number
of the present and the previous half-cycle, a simple rule is proposed, which makes it
possible to use the coefficients provided by the semi-analytical method by Mentzoni and
Kristiansen (2019). By using the semi-analytical method, the measured and calculated
force were in close agreement when the force is dominated by damping. Based on these
results, Equation 9.43 in the book "Sea Loads on Ships and Offshore Structures" by
Faltinsen (1990), is proposed to be used in irregular seas with KC dependent coefficients
from the semi-analytic method when the forces are dominated by damping. However,
this equation should be tested with experiments, as the interaction effect of waves and
motions in irregular seas is not investigated in this thesis.
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Sammendrag

Eksperimentelle og numeriske studier er utført på to modeller. Modellene er perforerte
plater med ulike perforeringsgrader. De ble utsatt for tvungne svingninger, både regulære,
bikromatiske og irregulære. De tvungne svingningene ble utført når modellene var dypt
neddykket.

Regulære tvungne svingninger ble gjort for å etablere KC-avhengige (Keulegan Car-
penter tall) kurver for hydrodynamisk tilleggsmasse og demping, for begge modellene.
En numerisk løser, utviklet av Mentzoni (2020), ble brukt til å validere labresultatene.
Numeriske og eksperimentelle resultater stemmer godt overens. De hydrodynamiske ko-
effisientene ble funnet å ha en klar avhengighet av KC-tallet for begge modellene. Dette
stemmer overens med tidligere resultater av Mentzoni (2020) og Molin (2011). De tred-
jeharmoniske kreftene ble også undersøkt. Det ble funnet at for KC-tall mellom 0.2 og
3 så må Morisons lastmodell bli brukt med forsiktighet. For små KC-tall er en stor del
av de tredjeharmoniske kreftene i fase med akselerasjonen. Den semianalytiske metoden
av Mentzoni og Kristiansen (2019) for perforerte plater ble sammenlignet med resultater
fra eksperimentene. Det ble funnet god overenstemmelse for dempingskraften for begge
modellene for KC-tall mellom 0.2 og 2. Den hydrodynamiske tilleggsmassen ble un-
derestimert for begge modellene ved bruk av den semianalytiske metoden. Platene som
ble brukt i eksperimentene har en større tykkelse enn platene som den semianalytiske
metoden er basert på, noe som kan være en forklaring på forskjellene i tilleggsmassen.

Bikromatiske tidsserier ble benyttet i eksperimentene for å samle data som kan bli brukt
til de irregulære tidsseriene. Det var en klar sammenheng mellom KC-tallet for den
forrige og nåværende halvsyklusen for dempingen. Dempingen var høy om den forrige
halvsyklusen hadde en amplitude som er større enn den nåværende amplituden. Demping
var lav om amplituden til den forrige halvsyklusen var lavere enn den nåværende. Det ble
ikke funnet noe spesielt mønster for tilleggsmassen, men tilleggsmassen var fordelt lavere
eller nært kurven for regulære tvungne svingninger.

Dataene fra de bikromatisk tvungne bevegelsene ble brukt til å regne ut kreftene i ir-
regulære tidsserier generert fra et Pierson-Moskowitz spektrum. Det ble funnet god ov-
erensstemmelse mellom de utregnede kreftene og de målte kreftene, noe som bekrefter
at bikromatiske tidsserier egner seg godt til å gi hydrodynamiske koeffisienter for irreg-
ulære tidsserier. Siden dempingen er avhengig av både KC-tallet til den forrige og den
nåværende halvsyklusen, er en enkel regel foreslått slik at det er mulig å bruke de hy-
drodynamiske koeffisientene fra den semianalytiske metoden av Mentzoni og Kristiansen
(2019). Ved å benytte den semianalytiske metoden var de utregnede kreftene i god overen-
stemmelse med de målte, så lenge kreftene er dominert av dempingskrefter. Ligning 9.43
i boken "Sea Loads on Ships and Offshore Structures" av Faltinsen (1990), er foreslått til
å bli brukt sammen med KC avhengige koeffisienter, til å regne ut kreftene i irregulær
sjø i kombinasjon med tvungne svingninger. Siden interaksjonseffektene mellom tvungne
svingninger og bølger ikke er studert i denne oppgaven bør denne ligningen bli testet ved
hjelp av fremtidige eksperimenter.
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Nomenclature

η̈ Vertical acceleration

η̇ Vertical velocity

u̇ Horizontal water particle velocity

ẇ Vertical water particle velocity

η Vertical motion

ηa Vertical motion amplitude

ηs Significant vertical motion amplitude in irregular time series

ηa,i Vertical motion amplitude for half-cycle "i"

λ Wavelength

ν Kinematic viscosity

ω Oscillation frequency

ωi Oscillation frequency for half-cycle "i"

φ Velocity potential

ρ Fluid density

τ Perforation ratio

A Added mass

A0 Reference added mass, 1
4
πρD2L

B Damping

Bw Wave-radiation damping

CA Added mass coefficient, A
A0

CD Drag coefficient (Quadratic damping)

CA,i Added mass coefficient for half-cycle "i"

CB,i Damping coefficient for half-cycle "i"

CB Damping coefficient, A
ωA0

D Plate width

h Water depth

KC Keulegan–Carpenter number

KCi Keulegan–Carpenter number for half-cycle "i"
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KCs Significant Keulegan–Carpenter number in irregular time series

L Plate length

T Oscillation period

t Time

Ti Oscillation period for half-cycle "i"

CFD Computational fluid dynamics

CFL Courant–Friedrichs–Lewy condition
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1. Introduction

1 Introduction

1.1 Motivation

The installation of subsea structures is an essential part of oilfield development. These
structures are often complex and consist of cylinders, plates, perforated structures, tubes,
and cables. Calculating the hydrodynamic force acting on the structure during the instal-
lation is a complicated task, and often conservative approaches are needed to guarantee
safe operations. There are two reasons for investigating the hydrodynamic forces.

• Reduce cost for the installation

• Increase the operability of subsea fields

If a conservative approach is used to determine the hydrodynamic forces, the weather
window of operability will be narrower than needed, and the construction vessel will be
waiting for a weather window longer than needed. A construction vessel is expensive
to operate, and it has a high day rate. If the hydrodynamic forces are calculated more
accurately, the operational limit can be increased, so the waiting on weather will decrease.
This will save money, and the operations can be performed more effectively.

If the operational limit can be increased, it will also allow the service companies to
perform the operations in a larger part of the year. Today, many operations need to be
done in the summer months due to that the weather is calmer in this part of the year.
The ultimate goal is to reach all-year operability of marine operations for subsea fields,
and one part in reaching this goal is to understand the hydrodynamic loads in waves and
forces motions.

Mentzoni (2020) divides the lifting operation into five stages when installing a subsea
structure on the seabed.

1. The structure is lifted from the deck and positioned over the side of the vessel.

2. The structure is lifted through the sea surface. It experiences water-entry and
water-exit loads as it goes in and out of waves.

3. The structure is fully submerged, but close to the free surface. The free surface
affects the loads on the structure.

4. The structure is far away from the free surface. The free surface does not affect the
loads on the structure, but it experiences loads from the waves and hydrodynamic
loads caused by the crane´s motion.

5. The structure is close to the seabed, and the proximity from the seabed becomes
important for the hydrodynamic loads.
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1.2 Previous Work

This thesis focuses on stage 4 when the free surface is far away and can be neglected.
The focus has been on forced oscillations of perforated plates. Mentzoni, Abrahamsen-
Prsic and Kristiansen (2018) found that for a simplified structure consisting of two
parallel latedperforated plates with cylinders in between, the hydrodynamic forces were
dominated by the perforated plates. Thus, understanding the hydrodynamic loads on
perforated structures is an important step towards understanding more complex subsea
structures and also subsea structures like hatch covers and mud mats that are perforated
structures.

This thesis is a part of one of the projects of MOVE (Marine Operations in Virtual
Environments) that focuses on loads of subsea structures during lifting operations. Fel-
low students Karoline Vottestad and Marius Robsahm also contributed to the project.
Vottestad did experimental studies of perforated plates near the free surface in regular
waves and forced regular oscillations without waves. Robsahm did experimental studies
on cylinders and perforated plates in the water entry phase in waves. Together, this thesis
and the theses of Vottestad and Robsahm deal with stages 2-4 of the lifting operation.

1.2 Previous Work

There is done much work on hydrodynamic loads on perforated plates. Molin (2011)
summarizes the work he has done regarding hydrodynamic loads on perforated structures.
He uses potential flow theory and applies a quadratic pressure drop boundary condition
instead of the impermeable boundary condition as for a solid plate. He finds that the
added mass and damping are amplitude-dependent and dependent on the porous KCpor
number which is

KCpor =
(1− τ)ηa
µτ 2D

, (1.1)

where µ is the discharge coefficient.

The equation for the pressure drop is

∆p =
(1− τ)ηa

2µτ 2
vr|vr|. (1.2)

The discharge coefficient is given by

µ =
1− τ
Kτ 2

, (1.3)

K is the resistance coefficient
K =

2∆p

ρv2
=

2ρhL
v2

, (1.4)

were hL is the head loss through the orifice. Said with other words, Molin’s results say
how much of the flow that flows around the plate compared to what flows through the
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1.2 Previous Work

perforations. Consequently, the added mass goes to the solid plate added mass, and
the damping goes towards zero as KC goes to infinity. As Molin pointed out himself
in this paper, the physical validity of these results is questionable when flow separation
at the plate edges becomes important. However, these formulas serve as an important
contribution in understanding the perforations’ effects on the added mass and damping.

Sandvik et al. (2006) proposed a drag correction term to correct the damping in Molin’s
method inspired by the results for the drag coefficient by Graham (1980). For solid flat
plates, Graham found by analytical work that the drag coefficient was proportional to
KC−1/3 for low KC numbers. The drag term is expressed as

Fsandvik =
1

2
ραKC−1/3Dwr|wr|. (1.5)

Here, wr is the mean relative velocity through the plate, and α is an unknown constant
but depends on the degree to which the flow is separated.

Molin (2011) used α = 6 with good agreement to experimental data on a circular perfo-
rated disk. Mentzoni and Kristiansen (2019) points on the difficulties of choosing α. The
α that is best for the added mass coefficient is not necessarily the best fit for the damping
coefficient. They propose a new semi-analytic method were both the added mass, and the
damping coefficient are based on the analytical calculations for solid plates by Graham
(1980). They found constants for thin perforated plated by a 2D laminar viscous flow
solver. This method represents the state of the art method to determine the forces in
planar oscillatory flow for perforated plates. It is described briefly in Section 2.2.3.

Ikeda et al. (1988) did experimental studies of a cylinder and a normal flat plate subjected
to regular and bi-chromatic forced oscillations. In regular oscillations, they identified an
increase in the added mass in the second half-cycle when the oscillations started from
rest. This increase becomes significant for KC > 11. For KC = 18, the added mass
increased by a factor of almost two compared to the steady-state added mass for the
same time series. They identified this as a start-up phenomenon. The conclusions that
can be drawn from their results for the normal flat plate for the bi-chromatic tests are

• The damping was larger than the damping in the regular steady-state forced oscil-
lations when the amplitude of the previous half-cycle was larger than the present.

• The damping was smaller than the damping in the regular steady-state forced oscil-
lations when the amplitude of the previous half-cycle was smaller than the present.

• The damping was smaller in a start-up situation compared to the damping in regular
steady-state forced oscillations.

• The added mass was larger in a start-up situation than the added mass in regular
steady-state forced oscillations.

• The effect of the start-up on the added mass was largest for KC = 18, that is when
the forces are dominated by damping.
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1.2 Previous Work

• The added mass was close to or lower than the added mass in regular steady-state
forced oscillations if the previous amplitude was either larger or smaller than the
present. The exception was for half-cycles close to a start-up situation, where
the added mass was larger than the added mass in regular steady-state forced
oscillations.

If we use the coefficients from this paper for the steady-state case for KC = 18, the
total force amplitude is 0.93 for a start-up situation, even if the added mass is almost
twice the steady-state added mass. This is because the drag term is only is 0.8 of the
steady-state value. In other words, the start-up effect can be neglected for plates based
on these experiments.

Graham (1980) argues that the forces on sharp-edged cylinders for small KC numbers
should be written as

F = A0η̈ + Fvortex. (1.6)

The vortex force Fvortex can then be decomposed into components that are in phase
with the acceleration and the velocity, as Mentzoni and Kristiansen (2019) did in their
semi-analytical method.

Graham (1980) presents the drag force and one component of the added mass as a vortex
force. The vortex force can be decomposed into two parts, where one is in phase with the
acceleration and the other is in phase with the velocity. The start-up effect represent a
phase-shift in the vortex force toward the acceleration in the start-up situation. However,
the total force amplitude is smaller than the steady-state case for the KC numbers
investigated by Ikeda et al. (1988) for a solid plate. Strictly speaking, Equation 1.6 is not
valid for KC numbers higher than approximately 3-5 (Mentzoni, 2020) as the plate end
vortices start to interact with each other for larger KC numbers. However, Graham’s
plate model is valuable in getting insight into how the plate end vortices affect the added
mass and damping terms, even for higher KC numbers.

In our experiments, a KC range between 0.2 and 3 is investigated. However, there was
seen a start-up effect in our experiments as well, and an increase of 25 % in the added
mass was seen. Experiments performed through this thesis indicated that the start-
up effect appears for smaller KC numbers than for solid plates, and CFD calculations
also confirmed this. However, it was shown in Section 6.4.2 with a time series, and in
Section 6.4 by plotting the non-dimensional force amplitude, that if a phase-shift in the
calculated force is accepted, the start-up effect could be neglected as the force amplitude
does not increase because the damping decreases. This was also valid when the added
mass force and the damping force are of similar magnitudes because the damping is
smaller in a start-up situation.

The simplified analysis in the recommended practice of DNV-GL (DNV-GL, 2017), rec-
ommends calculating the added mass as
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1.3 Scope and Thesis Structure

A

A0

= 0.7 + 0.3 cos

(
π

(
τ − 0.05

0.34

))
(1.7)

for perforation ratios 0.05 < τ < 0.34.

This yields A/A0 as 0.78 and 0.54 for model S19 and S28, respectively. From the results
in Section 6.1, this is conservative for the smallest KC that is tested. For KC = 3, the
values from the experiment are close to the added mass from DNV-GL for both plates.
Mentzoni (2020) found that for a large range of perforation ratios and KC numbers, the
hydrodynamic forces are completely dominated by damping. DNV-GL recommends using
CD > 2.5 as a general rule for the simplified analysis for typical offshore structures. If we
use the data from Table 2.1 from the semi-analytic method by Mentzoni and Kristiansen
(2019) we can find the drag coefficient as

CD = b1KC
−1/3. (1.8)

For a plate with perforation ratio τ = 0.2, we have from the semi-analytical method that
CD = 6.1 for KC=2. In the recommended practice, DNV-GL specifies that the drag
coefficient is dependent on KC, but they have no recommendation on how to choose
this based on the KC number for porous structures in the simplified analysis. Therefore
the results on perforated plates by Mentzoni and Kristiansen (2019) closes the gap and
provides a simple method for estimating the drag coefficient for perforated plates. In
the recommended practice by DNV-GL, they specify that if snap loads in the hoisting
wire are likely to occur from the simplified analysis, model tests or CFD calculations
should be performed in order to get a better estimation of the hydrodynamic loads.
The results from Mentzoni (2020) and Mentzoni and Kristiansen (2019) provides more
accurate coefficients for simple calculations, and thus model tests and CFD calculation
can, in many situations, be avoided.

1.3 Scope and Thesis Structure

The current thesis aims to investigate the hydrodynamic loads on perforated plates in
regular and irregular forced oscillations. The hope before the lab experiments was to find
a method to calculate the time series more accurately. Today’s methods of calculating
time series in irregular seas use constant coefficients, but as mentioned in Section 1.2, the
coefficients are strongly dependent on the KC number. The aim was to study irregular
time series for perforated plates and to find a method of choosing the added mass and
damping coefficient in order to be able to calculate a force time series that agrees with
experimental results.

In order to study irregular time series, bi-chromatic motions were used to study the effects
the previous half-cycles have on the present half-cycle for the hydrodynamic coefficients.
Bi-chromatic motions can be expressed as

η = z1 sinω1t+ z2 sinω2t, (1.9)
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1.3 Scope and Thesis Structure

were z1 and z2 are constants. This family of motions is well suited to study the hydro-
dynamic coefficients, as the pattern will repeat after one beating period. Thus, averages
for the hydrodynamic coefficients for each unique half-cycle can be found.

Also, numerical investigations were done for one of the models by the use of CFD. This
was done mainly in order to strengthen the validity of the lab-results. Mentzoni (2020)
found that 2D laminar CFD codes were well suited to simulate the flow of perforated
plates for the KC range of the present experiments. By the use of CFD, some effects in
the lab, such as the free-surface effects or the assumption that the forces from the empty
rig can be subtracted, can be isolated out. This is because the CFD calculations are done
in infinite fluid, and there is no rig that may interfere with the model. Thus, some of the
lab’s biased error sources can be removed, and the simplifications of the flow that is done
in the CFD calculations are likely to be valid if the results agree. CFD calculations and
lab results complement each other.

In this thesis, first some important hydrodynamic coefficients and parameters are pre-
sented together with different load models. Then, the experimental setup and method
are presented. The numerical solver is explained briefly in Section 5. Also, thin vortex
sheet theory is explained, which is needed to understand the main characteristics of the
flow. The results for the regular oscillations is presented together with the CFD cal-
culations in Section 6.1. Subsequently, results for the bi-chromatic tests are presented
and discussed in Section 6.4. Ultimately in Section 7 the knowledge gained from the
bi-chromatic time series is applied on two irregular time series. The recently developed
semi-analytic method by Mentzoni and Kristiansen (2019) is used to calculate the hy-
drodynamic forces, and the calculated forces are compared to the experiment. It was
found close agreement between these two when the forces are dominated by damping.
Because of this close agreement, an equation from Faltinsen (1990) is adapted to take in
KC dependent coefficients from the semi-analytic method for damping dominated forces.

The model with the lowest perforation ratio (S19) was made in conjunction with this
thesis. Thus, a new model is compared to the semi-analytic method. This model showed
close agreement for the damping for KC <2, while the added mass was somewhat un-
derpredicted due to the thickness of the present model.
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2. Theory

2 Theory

2.1 Parameters and Coefficients

There are several parameters which are of importance for perforated plates in oscillatory
flow. The perforation ratio τ is defined as the plate’s ventilated area divided by the total
area of the plate. That is

τ =
Avent
DL

. (2.1)

D is the plate width, and L is the plate length, and Avent is the ventilated area of the
plate.

Keulegan and Carpenter (1958) defined a parameter which is later called theKC number.
This number is important in oscillatory flow, as it contains information on the formed
vortices in the wake relative to the size of the body. The KC number can be expressed
as

KC =
2πηa
D

, (2.2)

were ηa is the amplitude of motion.

Relative surface roughness (Sarpkaya, 1976b) and Reynolds number can influence the
hydrodynamic coefficients in oscillatory flow, especially for circular cylinders where the
separation points are not fixed. The Reynolds number is

Re =
ul

ν
(2.3)

Were u and l are characteristic velocity and length, respectively, and ν is the kinematic
viscosity. The Reynolds number contains information of the inertia in the fluid relative
to the viscous forces.

Sarpkaya (1976) uses a parameter he calls β and is defined as β = Re/KC. However, the
KC number must be specified in addition to the β parameter. Thus, the β parameter
could easily be replaced by the Reynolds number (Faltinsen, 1990). In this thesis, the
surfaces on the model are considered smooth, and the separation points are fixed due to
sharp corners, such that the influence of Reynolds number and relative surface roughness
is not waited to play a major role.

However, there is still necessary to do large scale tests on perforated structures in oscil-
latory flow to investigate the influence of massive changes in the Reynolds number for
perforated plates.
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2.2 Load Models

The force can be decomposed into an inertia term proportional to the acceleratiion, and
a damping term that is proportional to the velocity as

F = −Aη̈ −Bη̇. (2.4)

If the plate oscillates harmonically as

η = ηa cos(ωt), (2.5)

the force can be written as

F

ω2A0ηa
=

A

A0

cos(ωt) +
B

ωA0

sin(ωt). (2.6)

A0 is the reference added mass for a solid flat plate and is

A0 =
π

4
ρD2L, (2.7)

where the length is L, width is D, and ρ is the water density. The amplitude of the force
can be written as

Fa = A0ω
2ηa

√(
A

A0

)2

+

(
B

A0ω

)2

= A0ω
2ηa

√
C2
A + C2

B, (2.8)

for a harmonically oscillating plate in an otherwise still fluid. The normalized added mass
coefficient is

CA =
A

A0

(2.9)

and the normalized damping coefficient is

CB =
B

A0ω
. (2.10)

For bi-chromatic motions, the force amplitude for half-cycle "i" is approximated by a
harmonic equivalent motion, with period and amplitude as defined in Section 4.2. By
doing this, we can write the force amplitude for a half-cycle as

Fa,i = A0ω
2
i ηa,i

√(
Ai
A0

)2

+

(
Bi

A0ω

)2

. (2.11)
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2.2 Load Models

Since the vortex formation is a quadratic process in the velocity, as shown in Section 5.2.2,
it is not possible to decompose the force contribution from each term in the bi-chromatic
motion by the superposition principle. Thus, this approximation of the half cycles must
be made in order to normalize the force coefficients and force amplitude from the bi-
chromatic motions.

2.2.1 Morrison’s Equation

Morison et al. (1950) came up with a load model for surface piercing vertical piles in
waves. They found that for high KC numbers, the fraction of third harmonic forces was
approximately -0.2 of the first harmonic force in phase with the velocity. This means that
the third harmonics can be included in a simple equation with a quadratic drag term.
The equation they came up with for a surface piecing pile is

dFx
dz

= CmA0u̇+
1

2
CDρDu|u|, (2.12)

where A0 is the potential flow added mass, D the characteristic length, Cm = (1 + CA),
and u the water particle velocity in the x-direction.

For a plate subjected to forced oscillations in an otherwise still fluid, the force becomes

F = CAA0η̈ +
1

2
CDρDLη̇|η̇| (2.13)

for a quadratic damping load model. Singh (1979) discusses the load model of Equa-
tion 2.13, and argues that it becomes questionable for KC numbers lower than 20. This
is because a major contribution to the third harmonics for low KC numbers may come
from the vortices that are swept back over the body when the flow is returned. Conse-
quently, the third harmonic does not have to be in phase with the velocity.

2.2.2 Graham’s Load Model for Solid Plates at Low KC Numbers

Graham (1980) suggests that the forces on sharp-edged bodies for small KC numbers
should be written as

F = A0η̈ + Fv, (2.14)

were Fv is a vortex force. Graham then derives the vortex force analytically for a flat
plate as

Fv = bvKC
−1/3η̇2aψ(t/T ) (2.15)
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2.2 Load Models

The function ψ(t/T ) contains the time dependence and a phase shift relative to the
velocity. η̇a is the velocity amplitude. The coefficient bv must be computed or found by
experiments. The vortex force can then decomposed by Fourier analysis into a damping
term and an inertia term as

Fv = A0

(
a1KC

2/3η̈ +
b1
π2
KC2/3η̇

)
(2.16)

If a quadratic damping term as in Equation 2.12 is wanted the vortex force can be written
as

Fv = A0a1KC
2/3η̈ +

1

2
ρb1DLKC

−1/3η̇|η̇|. (2.17)

2.2.3 Mentzoni and Kristiansen’s Semi-Analytical Method for Perforated
Plates

Mentzoni and Kristiansen (2019) utilizes Graham’s findings for solid plates and adapts
the method for perforated plates. They write the force on the perforated plate as

F = A0(a0 + a1KC
2/3)η̈ + A0ω

b1
π2
KC2/3η̇ (2.18)

By curve fitting results from CFD they find a0, a1 and b1 for thin plates as a function
of the perforation ratio. Their results are found in Table 2.1 were the coefficients are
based on calculations for 0.24<KC<2.2. The plates were thin with sharp-edged openings.
Mentzoni and Kristiansen (2020) did experiments of a plate consisting of a row of circular
cylinders. He found that the damping and the added mass was lower compared to a
plate consisting of square cylinders. This is consistent with the theory of Molin (2011),
which says that an increase in the discharge coefficient is equivalent to an increase in
the perforation ratio. The circular cylinders are letting more water flow through the
plate than square cylinders because there are more losses in the flow through the plate
openings if the openings are sharp-edged. Mentzoni also points on the difference in the
zero amplitude added mass for circular cylinders and square cylinders as one reason for
different added mass for these plates.
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2.3 Load Calculations for Marine Operations

Table 2.1: Coefficient used in the semi-analytical method by Mentzoni. Source: (Ment-
zoni and Kristiansen, 2019a)

τ a0 a1 b1
0.05 0.748 0.230 10.1
0.10 0.498 0.252 9.58
0.15 0.281 0.271 8.72
0.20 0.132 0.261 7.67
0.25 0.055 0.222 6.57
0.30 0.017 0.181 5.48
0.35 0.000 0.156 4.44
0.40 0.000 0.120 3.49
0.45 0.000 0.087 2.69
0.50 0.000 0.057 2.04

Thus the non-dimensional added mass and damping coefficients are found as

CA = a0 + a1KC
2/3 (2.19)

and

CB =
b1
π2
KC2/3 (2.20)

with a0, a1 and b1 from Table 2.1.

2.3 Load Calculations for Marine Operations

For marine operations, the force impulse for a half-cycle is the most important parameter.
It is the response of the structure from the hydrodynamic forces that is the important
parameter in a lifting operation. In high seas, the crane tip will move relative to the subsea
structure due to the inertia of the structure and the hydrodynamic loads acting on the
structure. The impulse from the inertia force of the structure and the hydrodynamic
added mass and damping forces determine the stresses in the hoisting wire. Also, slack
in the hoisting wire can occur if the sum of the inertia from the structure’s mass and the
hydrodynamic forces are large.

Section 6.3 shows that the third-harmonic force contribution was not calculated correctly
by using a quadratic damping term. A significant portion of the third harmonics is in
phase with the acceleration. Figure 4.2 shows an example of the third harmonic force.
The contribution to the total impulse from the third harmonic force is small compared
to the first harmonic force for one half-cycle. Because of this, the forces in this thesis are
calculated with a linear damping term as
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2.3 Load Calculations for Marine Operations

F = −CaA0η̈ − CbA0ωη̇. (2.21)

In this thesis, when it is referred to hydrodynamic force coefficients or just hydrodynamic
coefficients, it is the normalized added mass and damping coefficients from Equation 2.9
and Equation 2.10 that are meant.

Page 12 of 93



3. Experimental Investigations

3 Experimental Investigations

3.1 Facilities and Experimental Setup

The experimental tests are conducted in a wave flume at the Marine Technology Center
at the Norwegian University Of Science and Technology. The tank is called Ladertanken
in Norwegian. Mentzoni (2020) developed an experimental setup for conducting forced
oscillation tests on plates in still fluid in conjunction with his doctoral thesis. The main
dimensions of the wave flume can be seen Figure 3.1. The model is placed in the mid-
dle between the bottom of the wave flume and the free surface, i.e., 50 cm above the
tank bottom. Figure 3.1 and Figure 3.2 shows the test rig. There were mounted three
accelerometers in order to be able to measure the accelerations in all axis. The velocity
and position were found by integration of the acceleration signal. A potentiometer was
used to measure the position in the vertical direction, as redundancy for the accelerome-
ter in the vertical direction. A force transducer measured the forces. Wave probes were
placed in the flume as shown in Figure 3.1 in order to be able to investigate the free
surface effects because there was generated some surface waves when the plate was forced
to oscillate. Figure 3.3 is included to show how the wave probes are mounted in the
flume. All sensors were calibrated with linear curves and checked every lab day. The
force transducer was checked with a known weight, and the wave probes were checked
by moving them up and down in known positions. The water temperature varied by
some degrees while conducting the experiments. The variation was in the order of 2-3
oC with an average of approximately 20oC. The water level also varied with around +-
2 cm on a day to day basis. The average was approximately 1 meter from the tank bot-
tom. The temperature change and water level change affected the wave probes, and thus
they were calibrated every lab day. They were also checked in between each new set of
tests. Since pressure forces completely dominate the forces, i.e., high Reynolds number
flow, the change in viscosity due to the temperate change is not expected to affect the
hydrodynamic forces on the model. The density is not changed significantly with these
small changes in temperature.

Catman Easy by HBM is used for data acquisition. All tests were sampled at 200 Hz,
were the sampled data are filtered by Butterworth filtering at 20 Hz.

Page 13 of 93



3.1 Facilities and Experimental Setup

Actuator

Model	Holder
(Acrylic	Glass)
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Figure 3.1: The figure shows the test rig in Ladertanken. It also presents the flume’s
dimensions, the parabolic beaches, and the position of the wave probes (WP1-WP6).
The water depth is 1 meter, and the model is placed 0.5 meters over the tank bottom,
which is in the middle between the free surface and the tank bottom. The force trans-
ducer connects the yellow wooden box and the acrylic glass plate assembly to the rest
of the rig where an actuator is placed. A screw connects the actuator with the force
transducer. When the force transducer moves the assembly of the yellow wooden box,
acrylic glass plates and the model will move, which is how the model is forced to oscillate.
Accelerometers are placed at the wooden box that provides position data.
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Model

Model	Holder
(Acrylic	Glass)

(a)

Force
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Accelerometers

(b)

(c) (d)

Figure 3.2: ((a) Side view of the model in the flume fastened between the acrylic glass
plates. (b) A closer view at where the yellow wooden box is fastened to the rest of the rig
via the force transducer. The figure also shows the accelerometers. (c) Perspective view
at the complete test rig ready for a new test run. (d) The wooden box and the acrylic
glass plate assembly with the model fastened between the acrylic glass plates outside the
tank. The assembly must be taken outside the tank whenever the model is to be changed.
The screw holes in the acrylic glass plate are filled with yellow putty in order to ensure
smoother surfaces.
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3.2 Test Models

Figure 3.3: The figure shows how the wave probes are mounted in the flume.

3.2 Test Models

Figure 3.4 shows the main dimensions of the models. The models consist of square
aluminum cylinders with corners that are regarded as sharp enough to assume fixed
separation points. The wall thickness of the square cylinders is 1 mm, and this makes
the models very stiff. Thus, the flexibility of the models is not expected to influence the
results. The models have the same length, width and thickness, but the perforation ratio
is different for the models. The main characteristics of the models are summed up in
Table 3.1. The cylinders are sealed to avoid that the cylinders fill with water.
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3.2 Test Models

L=0.57	m

D=0.36	m

S19

d=2.5	mm

S28

d=4	mm

10	mm

10	mm

10	mm

10	mm

Figure 3.4: Dimensions of the model S19 and S28. They share the same thickness length
and width, and the square cylinders also have the same dimensions. The distance between
the cylinders is the parameter that differs from the models, and thus the perforation ratio
differs. S19 consists of 29 equally spaced square cylinders, and S28 consists of 26. The
perforation ratio τ is 0.194 for S19 and 0.278 for S28. They are made of hollow square
aluminum cylinders with a wall thickness of 1 mm. They are stiff, such that elasticity is
not considered to be a problem in the experiments.

(a) (b)

Figure 3.5: (a) Model S19 and (b) Model S28. The models have the same length,
thickness and width. The dimentions are given in Figure 3.4. The perforation ratio τ is
0.194 for S19 and 0.278 for S28.
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3.3 Test Description

Table 3.1: The table sums up the properties of the models and the weigth of the rig.
The total weight of the plate is m, the perforation ratio is τ . The rest of the dimensions
is given in Figure 3.4.

Model Name D L Thickness τ m Num. of Cylinders
S19 0.36 m 0.57 10 mm 0.194 2.02 kg 29
S28 0.36 m 0.57 10 mm 0.278 1.75 kg 26
Rig 9.25 kg

3.3 Test Description

There were conducted experiments on regular motions, bi-chromatic motions, and irreg-
ular motions on the two models. The regular tests were done do establish KC dependent
curves for the hydrodynamic force coefficients for the models. The bi-chromatic tests
were done in order to learn more about what happens with the coefficients when the
consecutive amplitudes of motion are changing in a time series.

Three different periods were tested for the regular case, T=1.5 s, T=1.75 s, and T=2
seconds.

The regular motions are expressed as

η = ηa sin

(
2π

T
t

)
(3.1)

There are done tests for ηa corresponding to KC=0.2 and up to 3. The rig has a limi-
tation for the acceleration, and thus for T=1.5 s, there is not tested for KC higher than
approximately 1.9. There were 40 cycles in each test, where the five first is ramp up, and
the five last is ramp down. Steady-state was found after just one or two cycles after the
ramp-up for all cases. The coefficients for the regular tests are based on the 15 cycles
between the ramps where steady-state was found. For the bi-chromatic tests, there were
80 half-cycles in each test were the first ten was a ramp up, and the ten last was a ramp
down. Also, for these tests, the hydrodynamic coefficients were calculated based on the
40 half-cycles between the ramps. The rig is programmable, and each set of runs lasted
from 3-4 hours. A pause of 60 seconds between each run was found to ensure calm water
between each run. For each run, an equal run was done without the model for subtracting
the forces.

The bi-chromatic motion has the equation

η =
X0

2
[sin(ωt+ φ) + sin(fω ·ω + φ)]. (3.2)

Six values of fω were used, and for each fω 14 values of X0 was tested to obtain a large
data set. X0 raged from 0.0115 m to 0.1719 m, which corresponds to KC from 0.2 to 3.
φ was zero except for one fω, namely the BiChr 7. For fω=0.5, there was generated an
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interesting time series where there are two consecutive half-cycles with small amplitudes
and two half-cycles with large amplitudes. Motion showed to produce interesting results,
as a start-up situation was made for the two larger half cycles. There were also done
CFD on this bi-chromatic motion. BiChr 7 is shown in Figure 6.12. The rest of the series
can be found in Appendix A.

Table 3.2: Data for the bi-chromatic series of Equation 3.2.

Name X0 (from-to) φ fω ω
BiChr 1 0.0115-0.1719 (m) 0 1/1.1 2π/1.75
BiChr 2 0.0115-0.1719 (m) 0 1/1.2 2π/1.75
BiChr 3 0.0115-0.1719 (m) 0 1/1.3 2π/1.75
BiChr 4 0.0115-0.1719 (m) 0 1/1.4 2π/1.75
BiChr 5 0.0115-0.1719 (m) 0 1/1.5 2π/1.75
BiChr 6 0.0115-0.1719 (m) 0 1/2 2π/1.75
BiChr 7 0.0115-0.1719 (m) π/2 1/2 2π/1.75

There were also done two irregular tests. They are described Section 7. The irregular
tests were done to test if the knowledge gained from the bi-chromatic tests was applicable
to irregularly forced oscillations.

3.4 Error Sources

There are two types of error sources, precision error and biased error. It is not possible
to quantify the total error by exact numbers. However, if we succeed in identifying
the error sources, they can be used to explain the discrepancies between theory and
the experiments. Also, if the error sources are identified, the experiments will be more
valuable in the future for comparison to similar experiments.

3.4.1 Precision Error

The sensors that are used are high-quality sensors, and the precision of the accelerometers,
potentiometer, and the force transducer is in the order of less than 0.1 percent. The
precision of the wave probes is within 1 percent. This is lower than the other biased
error sources. The precision error comes from the uncertainty from the measurements.
Repeated tests mitigate these errors. In these experiments, this is done by using 15 cycles
to find the forces in the regular test. The difference from cycle to cycle is shown in the
results by plotting the standard deviation with error bars. This will not only show the
precision error, and for the regular tests, they will also show the variation in the flow from
cycle to cycle. The deviation is typically 1-3 percent for the regular tests. From this, we
can conclude that the precision error is very small, as we expect more variation in the
flow from cycle to cycle than precision error in the instrumentation that is used. The
variation in the flow from cycle to cycle for regular tests is due to the unstable nature of
high Reynolds number flow.
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3.4.2 Biased Error

These errors are hard to quantify, and they are a result of the lab setup and human errors
while doing the lab. However, several measures are done to mitigate them. The sensors
are calibrated carefully and checked every lab day. The accelerometers are cumbersome
to check because they are fastened to the rig, and thus they are only calibrated once. The
potentiometer is used to check the accelerometers. The potentiometer is checked before
every new run. Also, the force transducer was checked with a known weight each lab
day. The potentiometer, accelerometer and the force transducer are known to be very
robust. They were checked regularly, but there was no need for re-calibration. The wave
probe is sensitive to the water temperature and water level in the tank. The water level
in Ladertanken varies slightly from day to day and this affected the wave probes. Thus,
the wave probes were needed to be re-calibrated every day, and they were checked before
every run.

Fourier averaging is used to find the force coefficients for the regular tests. This method
for finding the coefficients is very robust and accurate if there is no phase lag between the
accelerometer and the force measurement. However, Fourier averaging is very sensitive for
a phase lag between the force measurements and the acceleration. If the phase is wrong,
the coefficients will be split incorrectly even though the total force will be correct. The
sampling frequency must also be high enough to have a good resolution of the time series.
Mentzoni (2020) put serious work into this particular lab setup, and he had a focus on
reducing errors regarding phase lag between the force and acceleration measurements. A
potentiometer was also used as redundancy and to check the accelerometer and the phase.
The rig position measurements were in good agreement between these two. The amplitude
deviated less than 1 percent, and there was no phase lag. The cure for eliminating the
phase lag is to use a high enough sampling rate. A sampling rate of 200 Hz is used in these
experiments. The numerical calculations also strengthen the validity of the experiments,
because, in the calculations, the problem regarding phase lag does not exist. The results
of the experiment and the CFD calculations were in good agreement.

Another source of error is when the least square method is used to find the hydrodynamic
coefficients in the bi-chromatic series. Based on the discussion in Section 4.3.2, the
method is regarded as a good method of finding the force coefficients.

The last error source is regarding the lab setup. There will be hydrodynamic forces on
the acrylic glass plates that hold the model. They are 420 mm wide and 6 mm thick, and
it is 9 mm between the acrylic glass plate and the tank wall. The hydrodynamic forces
will have one added mass component and one drag component due to friction drag. It
was observed that the water between the acrylic plate and the tank wall was oscillating.
These forces are subtracted. This is done by doing a run where the model is removed
and replaced by thin stiffeners with negligible hydrodynamic force. Then the force from
the empty rig is subtracted for each of the time-steps.

Three biased errors occur from this method. The first is that the signals must be aligned
so that the empty rig’s forces are subtracted correctly. This is done by a code coded in
Matlab, and whenever the code found an error in the alignment, it was fixed manually
such that the alignment of the signal always is within the sampling frequency. Therefore
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this error is considered negligible.

The second error source is that whenever the model is changed, the wooden box-acrylic
glass assembly needs to be loosened and taken out of the tank. Thus, there will be some
variation in the distance from the tank wall to the acrylic glass plates from time to time.
The position was marked on the wooden box such that the distance to the tank wall was
equal on each side. A parameter study could have been done to quantify this error, but
this was not done in these experiments. However, this error is considered to be small
since much caution was done when mounting the wooden bow to the rest of the rig. Also,
this error is probably smaller than the third error source.

The third error source regarding the rig is that when the model is present in the test,
there will be a pressure field from the model that probably affects the acrylic glass plates’
forces. This error is not quantified, and the only way of asses this error is to compare
the hydrodynamic load on the model to the hydrodynamic load on the empty rig. A fix
on this problem could for future experiments be to use acrylic glass end plates that are
longer, such that the model is further away from the acrylic glass plate ends. Thus, the
pressure field from the model will not affect the water between the acrylic glass plate and
the tank wall.

The force on the empty rig is decomposed as

Frig = −(mrig + Arig)η̈ −Brigη̇. (3.3)

Figure 3.6 shows the hydrodynamic forces on the rig as defined in Equation 3.3. The
hydrostatic pressure is also included in A. The hydrostatic pressure for the acrylic plates
is 180 degrees out of phase with the position. This means that the hydrostatic pressure is
in phase with the acceleration, which means that the hydrostatic pressure is 180 degrees
out of phase with the hydrodynamic inertia force. However, the hydrostatic pressure is
independent of the frequency, and it is included in the inertia term for simplicity. The
results are in good agreement with the results in Figure 3.10 in the doctoral thesis of
Mentzoni (2020). Note that in his figures, he uses the amplitude of motion on the x-axes,
and he decomposes the rig force by only one term proportional to the acceleration and
one term into damping. The figure suggests that the uncertainty regarding the empty
rig forces decreases as the KC number goes up. The hydrodynamic force on the model
increases more than the hydrodynamic forces on the acrylic glass plates. Figure 3.6 also
shows that the added mass for the empty rig is higher for a lower period of oscillation.
Why this is the case is not known, but it is worth mentioning since it is observed that
the added mass for the model is lower for higher oscillation frequencies.

Table 3.3 shows the added mass and damping of the rig as a fraction of the added mass
and damping found on S28. For small KC numbers, the fraction is larger, and thus the
uncertainty is higher for very small KC numbers than for higher KC numbers regarding
the forces on the acrylic glass plates. For KC numbers larger than 1, the hydrodynamic
forces on the empty rig are smaller than 10 % and decrease to 3.5 % for the damping and
6 % for the added mass. Ideally, a parameter study should be done where the size of the
acrylic plates was changed to see the effect of the pressure field from the model on the
hydrodynamic forces on the acrylic glass plates. This is much work and expensive, and
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maybe even unnecessary as we have shown that the hydrodynamic forces are small on the
acrylic glass plates. Also, there are done CFD calculations that are in good agreement
with the experiments. The CFD strengthens the validity of the assumption that the
empty rig force can be subtracted from the run with the model. Also, it is important to
keep in mind that the model’s presence is less important for smaller KC numbers because
the pressure field from the model is weak. With this, it is argued that the assumption
that the rig forces can be subtracted to be valid for small KC numbers because of a
negligible pressure field from the model. For high KC numbers, the forces on the acrylic
plates are only a small portion of the force on the model, and thus the uncertainty goes
down for high KC numbers.
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Figure 3.6: (a) The added mass coefficient and (b) the damping coefficient. The hy-
drodynamic force coefficients are normalized on on the reference added mass (same as
for the plates) and the KC is also calculated based on the model width D which are the
same for both models. This is done such that the results are directly comparable with
the hydrodynamic force coefficients for the models.

Table 3.3: Hydrodynamic force coefficients for the rig as a fraction of the damping and
added mass for model S28. This table shows that the rig forces becomes small compared
to the hydrodynamic forces on the plate as the KC number increases.

KC Arig/AS28 Brig/BS28

0.5 0.15 0.30
1.0 0.10 0.10
2.0 0.07 0.05
3.0 0.06 0.04
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4 Post Processing

4.1 Filtering

By-pass filtering was used to filter the signals. The force signal is filtered at 10fosc to
ensure all the harmonics from the hydrodynamics are captures. fosc is the frequency
of forced oscillations. This is well below the rig’s eigenfrequency, which is seen from
the hammer test in Figure 4.1. From the figure, one can see that the frequency of the
vibrations from the rig is far from the hydrodynamic forces’ frequency. On this basis,
it is concluded that no relevant information regarding the hydrodynamics, is filtered out
when setting the upper limit at 10fosc and that the noise from the rig is filtered out. The
low limit was 0.2fosc. The signal from the accelerometer was filtered around the first-
harmonics for the regular tests, and for the bi-chromatic and irregular test, the by-pass
filter was set in a range such that all frequencies of the force oscillations are let through.
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Figure 4.1: (a) Hammer test for S19. (b) Force spectrum for S28 at KC=2.04. The
figure shows that most of the force is concentrated at the first and third-harmonics.

Figure 4.2 shows the measured and filtered force time series. It also shows the by-passed
first and third-harmonics of the measured force. The third-harmonic force for S19 has a
similar magnitude as S28 relative to the first-harmonic, but with a different phase relative
to the damping, which can be seen in Section 6.3.
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Figure 4.2: Force measurements for S28 for KC=2.04. The period of oscillation is 2
seconds. The figure shows raw data, filtered data (bypassed in the range [0.2fosc, 10fosc]),
bypassed first-harmonic force and bypassed third-harmonic force. fosc is the frequency of
the forced plate oscillations.
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4.2 Definitions of the Half-Cycle

3.5 4 4.5 5 5.5 6 6.5
Time (s)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Half Cycle i-2 Half Cycle i-1
Half Cycle i Half Cycle i+1

 t
i-1

2
a,i-1

2
a,i

 t
i

Figure 4.3: Definition of the half-cycle.

When the Bi-Chromatic motions are investigated, there is a need for splitting of the time
series into half-cycles. This must be done because the hydrodynamic coefficients will vary
with the amplitude of motion for the half cycle. The half-cycle is defined in Figure 4.3.
The KC number for the half-cycle depends on the amplitude of motion ηa,i in the figure.
The KC number of the half-cycle, KCi becomes

KCi =
2πηa,i
D

(4.1)

In this thesis, the amplitude of the half-cycle refers to the amplitude of motion for the
half-cycle if not specified. The period for a half cycle is defined in Figure 4.3. It is found
as

Ti = 2∆ti (4.2)

The circular frequency for the half-cycle becomes

ωi =
2π

Ti
(4.3)
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4.3 Hydrodynamic Coefficients

The hydrodynamic force on the plate is decomposed by an inertia term and a damping
term as

Fmodel = CaA0η̈ + CBA0ωη̇. (4.4)

To find these coefficients from the lab results, the forces that act on the rig must be
subtracted from the measured force.

The forces on the model were found as

Fmodel = Fmodel+rig − Frig, (4.5)

were Frig was found in the empty rig run without the model. The error sources finding
the forces on the model by subtracting the empty rig are discussed in Section 3.4.2.

In the CFD calculations, there is a pressure gradient in the fluid due to that the fluid
is forced to oscillate instead of the model. Thus, the contribution from the pressure
gradient forces must be subtracted to ensure comparable results with the experiments
(Mentzoni and Kristiansen, 2019b). This subtraction can be done since the kinematics
in the fluid are equal, as in the case where the plate is oscillating. The only difference
in the dynamics in the flow is this pressure gradient (Graham, 1980). The force on the
model in CFD is found as

Fmodel = FCFD − ρV ẇ (4.6)

Here ẅ is the fluid acceleration, and V is the plate volume.

4.3.1 Regular Forced Oscillations

The coefficients for the regular case was found from Fourier averaging as

A

∫
mT

η̈2dt =

∫
mT

Fmodelη̈dt (4.7)

B

∫
mT

η̇2dt =

∫
mT

Fmodelη̇dt (4.8)

Here mT means that the integration is taken over m cycles. For these experiments, 15
cycles are used.
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4.3.2 Curve-Fitting for Bi-Chromatic Motions

The Added mass and damping was found by finding the least-square error of the equation

Fmodel = CaA0η̈ + CbA0ωη̈, (4.9)

were Ca and Cb is to be determined.

They are found by

Cb =

(
N∑
j=1

FmodelFb ·
N∑
j=1

F 2
a −

N∑
j=1

FFa ·
N∑
j=1

FbFa

)
·

1

Cdet
, (4.10)

and

Ca =

(
N∑
j=1

FmodelFa ·
N∑
j=1

F 2
b −

N∑
j=1

FFb ·
N∑
j=1

FbFa

)
·

1

Cdet
. (4.11)

Here Cdet is

Cdet =
N∑
i=1

F 2
b

N∑
j=1

Fa2 −

(
N∑
j=1

FbFa

)2

, (4.12)

and Fa and Fb is
Fa = Fa(tj) = A0η̈(tj) (4.13)

and
Fb = Fb(tj) = A0ωη̈(tj). (4.14)

If this is done for half-cycle "i", ω is ωi. j=1 is the start of the half-cycle and j = N
at last element of half-cycle number "i." The inbuilt Matlab function "lsqcurvefit" is
used to solve these equations. In Figure 4.4, the curve-fit method is checked against
the Fourier averaging method. The figure shows a larger spread for the different half
cycles for the curve-fit, but the averages are the same. The reason for the spread in the
added mass is because it was found that the added mass was dependent on the half-
cycle, whether the model is moving towards the free surface or towards the tank bottom.
The added mass was smaller in half-cycles where the plate was moving towards the free
surface than half-cycles were the plate moves towards the tank bottom. The difference
between these relative to the average was approximately 10-20% for small amplitudes.
The difference is reduced and in absolute value for larger amplitudes, as can be seen
in the Figure 4.4. The reason for this is unknown, but the rig-setup and the observed
oscillating water between the glass acrylic plates can be an explanation. Also, the free
surface could be an explanation. However, then one should expect that the absolute
value of the standard deviation increases when the amplitude increases, due to that the
effect of the free surface becomes more important (but still small) for larger amplitudes
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as is discussed in Section 6.2. There was found a large added mass for one half-cycle
in the series BiChr 7 (half cycle 2 in Figure 6.12) and also this half-cycle was when the
plate was moving towards the tank bottom. However, this increase in the added mass
also occurred for the highest KC numbers for BiChr 7, and the same trend was found
in CFD calculations. Ikeda et al. (1988) found this effect for flat plates in a start-up
situation, and thus the increase in the added mass for BiChr 7 at half-cycle 2 is not likely
to be a result of the difference for half-cycles moving towards the free surface and tank-
bottom. Fourier averaging requires a full cycle to calculate the hydrodynamic coefficient,
and because of this, the standard deviation is lower for Fourier averaging. The figures in
this section show that even though a large spread is found for some KC numbers, the
average is found close to the Fourier average. The variations for the added mass is close
to zero if one separates half-cycles were the plate is going toward the free surface from the
half-cycles were the plates goes toward the tank bottom. Fourier averaging guaranties
that the first-harmonic is isolated, while the curve-fit method does not. However, this
test places more confidence in that the curve-fit method also is a suitable method for
estimating the first-harmonic hydrodynamic coefficients.
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Figure 4.4: Check of the curve-fit method on S28 versus Fourier averaging.T=2s, for
plate S28. (a) Normalized added mass and (b) normalized damping.

4.3.3 Third-Harmonic Force Coefficients

Hydrodynamic forces of the tested models consist mainly of first and third-harmonic
forces. This is shown in Figure 4.2. If the velocity of the forced oscillations of the plate
is

η̇ = ηasin(ωt). (4.15)
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The force can be written as a Fourier series of the first and third-harmonics where the
second-harmonics, and higher-order harmonic terms are neglected. That is

F = a1 cos(ωt) + b1 sin(ωt) + a3 cos(3ωt) + b3 sin(3ωt) (4.16)

The first-harmonic coefficients a1 and b1, relate to the hydrodynamic coefficients as

CA = − a1
ω2A0ηa

(4.17)

and

CB = − b1
ω2A0ηa

(4.18)

The Fourier coefficients a3 and b3 can be found by finding a starting point where the
velocity is zero, and the derivative is positive, such that Equation 4.15 is valid for the
velocity signal. Then by evaluating an integer number of full cycles, the Fourier coeffi-
cients can be found. Figure 4.5 is included to show that the method of aligning the signal
and by use of the inbuilt function fourier8 from Matlab to find the Fourier coefficients
yielded results similar as for Fourier averaging for the first-harmonics, but it is not as
accurate. The fourier8 function in Matlab is based on a non-linear least-square scheme.
The method was tested for some known analytic cases and it was found to be very ro-
bust in finding the correct Fourier coefficients. However, the method is very sensitive to
the alignment of the signal. If the position signal is not sinusoidal, the hydrodynamic
coefficients will not be found correctly as added mass and damping because of the phase
difference. The code that was made for this purpose sometimes failed when aligning the
signal. Thus, these points were removed. The success of the method depends on if it
finds the first-harmonics correctly due to that it is sensitive to the alignment.
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Figure 4.5: Check of fourier8 (inbuilt matlab function) versus Fourier averagig on plate
S28 for regular forced oscillations (T=2s). (a) Normalized added mass and (b) normalized
damping.
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5 Numerical Simulation

5.1 Solver

The solver used in this thesis is developed and programmed by Fredrik Mentzoni and
is described in detail and validated in his doctoral theses (Mentzoni, 2020). The CFD
code supports orbital flow, free surface, oscillatory flow, and a hybrid-flow formulation.
The hybrid flow divides the flow into regions where the diffusion and advection terms
are omitted, and thus these regions have the same properties as a potential flow. The
function used in this thesis is the oscillatory flow. The governing equations are solved
with a fractional-step method, as described by Chorin (1968).

The computational domain and the boundaries are defined in Figure 5.1. The code utilizes
that the same kinematics (velocities) in the flow can be obtained by oscillating the fluid
instead of the model. The only difference in the dynamics (pressure) in the flow is the
linear pressure gradient due to that the fluid is accelerated, but this contribution can be
subtracted after(Graham, 1980). The boundary conditions for the velocity for boundary
1-4 in Figure 5.1 is for the regular runs:

u = 0, w =
D

T
KC sin(ωt), (5.1)

where u and w is the velocity in the x- and z-direction, respectively.

The bi-chromatic motion that was tested is BiChr 7 which mean that the boundary
conditions for boundary 1-4 becomes:

u = 0, w =
X0ω

2

(
cos(ωt+

π

2
) +

1

2
cos(

ω

2
t+

π

2
)

)
(5.2)

The boundary conditions for the pressure is

∂p

∂x
= −ρ∂u

∂t
= 0 and

∂p

∂z
= −ρ∂w

∂t
(5.3)
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Figure 5.1: The figure defines the axis system and names the boundaries of the com-
putational domain.

No-slip condition is applied on the model’s boundaries, together with the impermeable
wall condition, which means that

u = 0, w = 0,
∂p

∂x
= 0, and

∂p

∂z
= 0 (5.4)

Figure 5.2 shows a cell and the staggered grid system for the velocities and the pressure.
The grid needs to be staggered to ensure coupling between the velocity components and
the pressure.

Grid	Cell

Figure 5.2: The velocities and pressure are solved on a staggered grid to ensure coupling
between them.

To simplify the problem the following assumptions about the fluid is done:
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• Constant viscosity

• Incompressible fluid

• No gravity

• Laminar flow

• Isothermal flow

The equations that need to be solved are the continuity equation and the Navier-Stokes
equation. With the given assumptions about the fluid and Einstein notation, the conti-
nuity equation can be written as

∂ui
∂xi

= 0, (5.5)

and the incompressible Navier-Stokes equation can be written as

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

. (5.6)

These equations are solved using a numerical scheme. The viscous flow solver is based
on a fractional-step method where the Navier-Stokes equation is split into two steps as

u∗i − uni
∆t

= −uj
∂ui
∂xj

+ ν
∂2ui
∂x2j

(5.7)

and

un+1
i − u∗i

∆t
= −1

ρ

∂p

∂xi
. (5.8)

Since the requirement of no divergence at the new time step the continuity equation at
the new time step is

∂un+1
i

∂xi
= 0. (5.9)

By taking the divergence of Equation 5.8 and by combining it with Equation 5.9, a new
equation for the pressure is obtained as

∂2p

∂x2i
=

ρ

∆t

∂u∗i
∂xi

. (5.10)

This equation is a Poisson equation for the pressure and needs to be solved for each time
step in order to ensure the flow is divergence-free.
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Equation 5.7, Equation 5.8 and Equation 5.10 need discretization in both time and space.

The diffusion term in Equation 5.7, the pressure gradient in Equation 5.8 and both sides of
Equation 5.9 is discretized in space using second order accurate central difference scheme.
For the advection term on the right-hand side of Equation 5.7 a first order upwind scheme
is used.

To solve Equation 5.7 implicit Euler scheme is used. A first-order forward scheme is used
to find the new velocity in Equation 5.8. The advection term is linearly discretized in
time on the left-hand side of Equation 5.7.
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5.2 Convergence Study

A convergence study is done to make sure the result from the CFD simulations has
converged. This means that we will make sure that we have reached a fine enough grid
and time step such that further refinement of the mesh of time will not affect the results
much. If this state is reached, we say that the results have converged, and the result is
not sensitive to a further refinement of the mesh. However, this is not a guarantee that
the solved flow corresponds with the real flow. Examples, where the computed results do
not converge to the true results, are if physical phenomena like shock or turbulence are
important for the real flow and are not supported or captured by the numerical scheme
or the equations that are solved. Thus, it is important to have a priori knowledge of the
flow or verify the CFD results by experiments.

Even simple flow problems like a uniform flow about a circular cylinder at low Reynolds
numbers can be challenging to solve correctly without knowledge about the problem.
Critical parameters for the case of a cylinder is that the boundary layer is properly
refined and that there are enough cells around the cylinder to get the correct separation
point.

In the case of model S28 that is used in these calculations, there are only sharp corners.
This simplifies the analysis and the need for a fine mesh. The reason for this is mainly
because of the points of separation are fixed. The separation point is fixed due to a
geometrical singularity at the sharp corner. The vorticity flux into the wake is not
sensitive to the refinement of the boundary layer, because it is determined by the velocity
outside the boundary layer at the point of separation. Separation and vorticity generation
is described more in the two following sections.

5.2.1 Separation

Steady viscous fluid-flows always separate at corners with a geometrical singularity. In an
accelerated fluid from rest, Pullin (1978) found that the roll-up of the vortex sheet starts
immediately in a self-similar manner. This means that the boundary layer is not attached
to the body but rolls up as a vortex at the sharp edge even at very small time instances
due to the vorticity in the boundary layer. The flow separates because of irreversible
losses due to viscosity. The entropy rises in the flow and causes loss in the mechanical
energy, as some of the energy goes to heat. This means that the pressure cannot reach
infinite values at the corner as in potential flow. Consequently, the fluid parcel cannot
have infinite acceleration around the corner, and due to the inertia of the fluid, the flow
separates. The condition that the flow separates at geometrical singularities is called
the Kutta-condition. The Kutta-condition states that a fluid always leaves tangentially
from the surface before the corner. The Kutta-condition is a widely used engineering tool
and is used in inviscid flow modeling were separation must be considered, as in vortex
tracking methods (Kristiansen and Faltinsen, 2008). The losses in the flow couples the
continuity equation to the momentum equation, which makes them complicated to solve,
and numerical tools are needed.
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5.2.2 Vorticity Generation

The vorticity generation is important because the vorticity is shed into the wake and
forms vortices. The velocity profile of the boundary layer and the vorticity flux into
the wake is generally of importance. For bluff bodies with rounded corners, the velocity
profile is of importance in order to be able to determine the correct adverse pressure
gradient in the boundary layer, which in turn is important to determine the correct
location of the separation point. However, for sharp-edged bodies, the separation points
are fixed at the sharp edges. Consequently, the most important parameter that defines
the wake is the flux of vorticity that is shed into the wake. The theory in this chapter
is a combination of lecture notes from the course "Hydrodynamic Aspects of Marine
Structures 2", which is taught by Trygve Kristiansen, and theory from the book "Sea
Loads on Ships And Offshore Structures" by Faltinsen (1990), page 181-184. This theory
is necessary to include to be able to understand why good force prediction can be obtained
on a relatively coarse mesh for sharp-edged objects even though the boundary layer is
not fully resolved.

Let the velocity field of an potential be described by

∇φ =
−→
V , (5.11)

were −→
V = uı̂ + v̂ (5.12)

and
∇ =

∂

∂x
ı̂ +

∂

∂y
̂, (5.13)

and ı̂ and ̂ are the unit vectors in the x- and y-direction, respectively.

Since the flow is irrotational, the only contribution to the circulation is the discontinuity
in the vector field introduced by the vortex sheet. The separation is introduced by a
Kutta-condition. The circulation over a curve surrounding the vortex, as the green curve
c in Figure 5.3, can be found by taking a closed curve integral over the curve

Γ =

∮
c

∇φ · ŝ ds =

∮
c

∂
−→
V

∂s
ds = φ+ − φ− (5.14)

The pressure is impressed from both sides of the sheet as

p+ = p− (5.15)

This holds, even if the vortex sheet is curved if we assume that the vortex sheet is very
thin. The unsteady Bernoulli equation without the gravity term is

− 1

ρ
p =

∂φ

∂t
+

1

2
∇φ ·∇φ =

∂φ

∂t
+

1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂y

)2

. (5.16)
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By using Equation 5.15 and Equation 5.16 the pressure difference of the upper- and lower
side of the vortex sheet can be written as

0 =
1

ρ
(p−−p+) =

∂φ+

∂t
−∂φ

−

∂t
+

1

2

(
∂φ+

∂x

)2

−1

2

(
∂φ−

∂x

)2

+
1

2

(
∂φ+

∂y

)2

−1

2

(
∂φ−

∂y

)2

(5.17)

At stagnation point A, at the corner in Figure 5.3, the velocity in the y-direction is zero
such that

∂φ+

∂y
=
∂φ−

∂y
= 0. (5.18)

At the upper side of the vortex sheet at the stagnation point, the velocity in the x-direction
is zero, which means that ∂φ−/∂x = 0 .

If the vortex sheet is thin, i.e. δ → 0, we get that

∂φ+

∂x
= Us, (5.19)

where Us is the velocity of the flow just outside the boundary layer. Us is found, for
instance, from the inviscid velocity potential together with a Kutta-Condition.

By combining the knowledge of the velocities at the stagnation point, Equation 5.17
reduces to

0 =
∂

∂t
(φ+ − φ−) +

1

2
(
∂φ+

∂x
)2 (5.20)

By using Equation 5.14 and Equation 5.19 we get that the vorticity flux that is shed into
the wake is

∂Γ

∂t
= −1

2
U2
s . (5.21)
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A 			A

Free	Vortex
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Free	Vortex
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Boundary
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Figure 5.3: Example of a boundary layer that is separated from a sharp corner, called
A. The vorticity flux is given by the Bernoulli equation, is only dependent on the velocity
just outside the boundary layer Us. φ is the velocity potential, p is the pressure. The
axis is defined in the close-up part of the figure. The positive and negative superscripts
for p and φ are introduced to show the discontinuity over the vortex sheet.

The vorticity shed into the wake can also be found by evaluating the boundary layer.
The rate of change in the circulation of the vortex formed at the corner is

∂Γ

∂t
= −

∫ δ

0

(
∂u

∂y
− ∂v

∂x
)udy = −

∫ δ

0

∂u

∂y
udy = −1

2
[u2]δ0 = −1

2
U2
s , (5.22)

which is the same result as when a vortex sheet is introduced in the velocity potential. It is
worth noting that the vorticity flux is not dependent on the shape of the boundary layer’s
velocity profile. This means that the two boundary layers in Figure 5.4 generate the same
amount of circulation as long Us is the same. Thus, a full resolution of the boundary
layer is not needed if the separation point is fixed, and Us is correctly computed.
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wall

Figure 5.4: The figure shows examples of two different boundary layers, BL1 and BL2.
Even if the shape of the boundary layer if different, the vorticity flux is equal if the
velocity just outside the boundary layer Us is equal for both. BL2 is the shape of the
boundary layer if there is only one cell in the boundary layer in the CFD calculations.
BL1 is the real boundary layer.

Three conditions still need to be fulfilled to capture the behavior of the flow:

1. The cells in the wake close to the plate is small enough, to resolve the large-scale
vortices behind each cylinder.

2. The cell size is in the same order as the thickness of the boundary layer. This is
required in order to obtain correct velocity outside the boundary layer at the corner.

3. A minimum of two cells between the cylinders to allow fluid flow through the open-
ings in the plate.

5.3 Mesh Sensitivity Analysis

A mesh parameter sensitivity analysis was done. The domain size, cell stretching, and
cell size were varied. A minimum of 2 cells between each cylinder is required to have a
fluid flow between the cylinders. The different meshes that were tested are summarized
in Table 5.1. Figure 5.5 and Figure 5.6 show small dependency of the mesh parameters.
The mesh that is the most different from the others is mesh 1, which is the finest of
the meshes. It was found that calculations carried out on this mesh was in the closest
agreement with the experiment. However, the computational cost of this mesh is too
high, and the other meshes yield good results. Mesh 7 is chosen as the mesh where the
results for the bi-chromatic motions are calculated. The mesh is shown in Figure 5.7
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and Figure 5.8. Mesh 4 yielded similar results as Mesh 1, and one reason for this can
be that that the plate-end vortices are better resolved due to less cell stretching. Thus
Mesh 4 has a finer mesh in the region closer to the plate compared with the meshes that
have a higher stretch. The number of cells is larger on Mesh 4 compared to Mesh 7, and
the precision that is gained is not enough to justify the extra computational time that is
needed with the limited time frame of this thesis. The results are done on Mesh 7, both
for the solid plate and the perforated plate. A large domain is needed in order to make
sure that the boundary conditions of the domain boundaries do not affect the flow close
to the plate.

Table 5.1: Mesh details for the different meshes. The first column to the left contains
the names of the meshes. The column "Min. Cell Size" contains the size of the cells close
to the plate. "Domain Size" is the total dimension of the computational domain. "Num.
of Cells" is the total number of cells in the computational domain. "Max Aspect Ratio"
is the maximum aspect ratio of the cells in the domain, and "Stretch" is how much a cell
is stretched from one cell to another when moving in the domain away from the plate.
The cell is stretched until the maximum allowed aspect ratio is reached.

Name Min. Cell Size Domain Size Num. of Cells Max Aspect Ratio Stretch
Mesh 1 1x1 mm 3x3 m 167 478 25 1.2
Mesh 2 2x2 mm 3x3 m 112 666 12.5 1.2
Mesh 3 2x2 mm 3x3 m 59 894 25 1.1
Mesh 4 2x2 mm 3x3 m 85 486 25 1.05
Mesh 5 2x2 mm 2x2 m 31 270 25 1.2
Mesh 6 2x2 mm 4x4 m 69 190 25 1.2
Mesh 7 2x2 mm 3x3 m 48 630 25 1.2
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Figure 5.5: Mesh convergence for the added mass and the damping coefficients. Figure
(a) is the added mass as a function of the KC number for the different meshes. Figure
(b) is the dimensionless damping. Figure (a) and (b) share the same legends. Details of
the different meshes are found in Table 5.1.
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Figure 5.6: Higher order force coefficients. Figure (a) shows the Fourier coefficient
fraction a3/a1, and Figure (b) shows b3/b1. The coefficients are the Fourier coefficients
for the force and are defined in Section 4.3.3.
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Figure 5.7: The figure shows a distant view of the final mesh to show the mesh further
out in the computational domain (Mesh 7 in Table 5.1). The cross-section of the plate
is placed in the center of the computational domain. Note that the whole domain is 3x3
meters. In the digital version, it is possible to zoom in for more details.
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Figure 5.8: Close-up view of the final mesh (Mesh 7) at the right edge of the plate.
Details about the mesh and domain can be found in Table 5.1.
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5.4 Time Step Convergence

An important parameter regarding the time step is the CFL number (Courant Friedrichs
Lewy number). It can be written as

CFL =
Umax∆t

∆lmin
, (5.23)

were Umax is max(
√
u2 + w2) in the simulation, and ∆lmin is the length of the shortest

side of the smallest cell in the simulation. Umax is not known a priori of the simulation.
Thus, a simulation needs to be done by taking an educated guess of the maximum velocity
for the first run and then checking with the simulation. Since the time marching scheme
is an implicit scheme, the simulation is stable, even if the CFL number is larger than one.
However, the accuracy needs to be checked, and one way of doing that is a convergence
test of the CLF number. Figure 5.9 shows a small dependency of the CLF number, and
convergence is reached if the CFL number is kept smaller than one. In all simulations,
the time step is chosen conservatively such that the CFL number is always between 0.3
and 0.6. To ensure the high resolution of the time series is, a minimum of 200 steps per
second is chosen, which is the same as the sampling frequency in the experiments.
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Figure 5.9: CFL sensitivity study. The CLF number is changed for Mesh 7 at KC=1.
Figure (a) shows the Added Mass and Damping as a function of the CLF number. Figure
(b) shows the higher-order force coefficients that are defined in Section 4.3.3. Both figures
show very little sensitivity of the CLF number at KC=1. The figures show, in general,
little sensitivity of the CLF number. The CLF number is defined in Equation 5.23.
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5.5 Solid Plate Convergence Study

5.5 Solid Plate Convergence Study

The solid plate simulations were done for KC=0.78 to see if the larger added mass for
the bi-chromatic motion named BiChr 7 in Table 3.2 was an effect of plate perforation.
A convergence test was done for KC=1 for the domain size and KC =0.78 for the cell
size. The solid plate has the same dimensions as S28, but the perforation ratio is 0.
Figure 5.11 and Figure 5.12 shows that the results are not sensitive for changing the
mesh. Thus, Mesh 7 is also used for solid plate simulations. The time step is the same
as in the perforated plate simulations. Velocities for the solid plate are smaller than for
perforated plates because the highest velocities are through the plate openings. Thus,
the time step will be conservative for solid plates. Figure 5.10 shows the mesh for the
solid plate.
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Figure 5.10: The figure shows a distant view of the final mesh and solid plate that is
used to perform the CFD analysis on the solid plate. The mesh that is used is also Mesh
7. For more details of this mesh see Table 5.1
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5.5 Solid Plate Convergence Study
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Figure 5.11: Mesh convergence for the added mass and the damping coefficients for the
solid plate. Figure (a) is the added mass for the different meshes. The x-axis shows for
which KC number it was tested. Figure (b) is the dimensionless damping. Figure (a) and
(b) share the same legends. Mesh 5,6 and 7 have equal cell size but different domain sizes
of 2x2m,4x4m, 3x3m, respectively. Mesh 1 and 7 have equal domain size but a minimum
cell size of 1x1mm and 2x2mm, respectively. More details of the different meshes are
found in Table 5.1. The figure shows that the coefficients are almost independent of the
mesh. Mesh 1 was tested on KC=0.78. Mesh 5, Mesh 6 was tested on KC=1. Mesh 7
was tested on both KC numbers.
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Figure 5.12: Mesh convergence for the higher-order force coefficients, which is defined
in Section 4.3.3. Figure (a) and (b) share the same legends. The figures show that the
coefficients are almost independent of the mesh. It also shows that higher-order harmonics
are not important for a solid plate for tested KC numbers.

5.6 CFD Visualization

Some flow visualization is done for plate S28 to understand the major differences between
Mesh 1 (1mm cells) and Mesh 7 (2mm cells) from Table 5.1. The added mass was slightly
underpredicted for Mesh 7 compared to Mesh 1 and the experiments for KC=2, which
Figure 6.2 shows. Figure 5.13 suggests that a candidate for this underprediction is that
the vortices behind each cylinder are not fully resolved for Mesh 7 at KC =2. However,
the damping is expected to be dominated by the plate-end vortices, which can be seen
in Figure 5.14 Consequently, the damping is less sensitive to the mesh size because the
plate-end vortices are much larger than the vortices behind each cylinder. The results
of Mesh 4 (2 mm cells and less stretching compared to Mesh 7) also suggests that less
stretching of the cells yields more accurate results for the added mass. However, the gain
in accuracy is considered less than the extra computational cost. Mesh 7 yields results
that agree well with the experiments in the computed KC range.
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5.6 CFD Visualization
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(a) Mesh 1
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Figure 5.13: Visualization of the flow near the square cylinders when the acceleration
is at its maximum, and the velocity is zero. Some details are lost for the coarsest mesh
(mesh 7), and it is a candidate for why the added mass is underestimated for the coarser
mesh at KC = 2. (a) Mesh 1 and (b) Mesh 7. Figure (a) and (b) shows equally spaced
levels for the stream function were the same levels are plotted in both figures, such that
they compare.
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Figure 5.14: The figure shows streamlines forKC=2. Large plate-end vortices dominate
the damping, and thus the damping is less sensitive to the mesh size. The time is 0.4T
into a regular oscillation cycle of a cycle where the velocity is at its maximum at 0.25T
and 0.75T.
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5.7 Turbulence

5.7 Turbulence

The code is a 2D laminar code and does not take the effect of turbulence into account.
Turbulence is a 3D phenomenon in fluid flows. The transition into turbulent flow is due
to the unstable nature of high Reynolds number flow. However, turbulence in the flow
can be important. Turbulence will have two major contributions that will change the
flow:

1. Change of the boundary layer velocity profile and boundary layer thickness

2. Increase of the energy dissipation rate

Since the corners are sharp, item number 1 is not waited to be of importance. However,
the wake is turbulent, and because of the oscillatory flow, the wake will return over the
plate. Thus, the turbulence level in the wake can influence the forces on the plate. The
Reynolds number is an important parameter, also in turbulent flow and is

Re =
ul

ν
, (5.24)

where u and l are characteristic velocity and length, respectively. For KC = 2 with T=2,
the Reynolds number becomes 1.3e5 if the characteristic length is the plate width, and
the characteristic velocity is the free stream velocity amplitude. For model S28, the local
Reynolds number for the cylinders will be approximately 1/τ = 3.57 larger than the free
stream velocity. 1/τ = 3.57 is based on a mass balance though the plate and neglecting
that the water is allowed to flow around the plate. If the characteristic length is based
on the cylinder members and the local flow between the cylinders, we get a Reynolds
number of approximately 1.2e4. Since the Reynolds number is high, it is expected that
the wake becomes turbulent.

In turbulence theory, it is common practice to use scaling laws in order to get some insight
into the effect of turbulence. Two important scaling laws are viscous- and turbulent
energy dissipation in the flow. Turbulent dissipation is also due to viscous effects, but
the processes of turbulent dissipation are due to energy transfer from larger to smaller
vortices, where the kinetic energy ultimately transforms into heat due to viscosity. An
important parameter in the cascade of turbulent energy is the so-called vortex stretching,
which is a fully 3D effect (Tennekes and Lumley, 1972). The turbulent dissipation rate
of the vortices in the wake scales as u3/l while the viscous dissipation scales as ν2/l2
(Tennekes and Lumley, 1972). Here u and l are characteristic length and velocity in the
wake. This means that an estimate of the ratio of turbulent and viscous dissipation rate
scale as

Eturbulent
Eviscous

= Re (5.25)

For the case of the tested perforated plates, the ratio of turbulence and viscous dissipation,
even for the small vortices behind each cylinder, is in the order of many thousands. This
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5.7 Turbulence

dissipation due to turbulence is not taken into account in the solver. Thus, experimental
results are important to validate the results from the CFD and to see if the assumption
to neglect the effect turbulence has on the flow field holds for the KC numbers under
consideration. Mentzoni (2020) did a sensitivity analysis on the viscosity, and from this
analysis, he found that the solver was not sensitive to the value of the kinematic viscosity
unless for very small Reynolds numbers where wall friction started to be of importance.

Also, the assumption of 2D flow needs to be validated by experiments. Even though the
experimental setup is close to 2D, 3D effects in the flow due to instabilities and turbulence
may occur. The experiments and CFD agree well for both plates. Thus, the assumption
of negligible influence of turbulence and 3D effects in the flow holds for these models and
scales. However, large scale experiments of perforated structures lack in the literature
and is an area of further research. An interesting parameter regarding large scale tests for
the perforated plate is the turbulent dissipation rate. This parameter can be assessed by
assuming that the kinetic energy of the large scale vortices in the wake scales as ρu2 per
unit volume, and the rate of transfer of energy to the smaller vortices, called the energy
cascade, is proportional to u/l for a turbulent flow. As an estimate, the length scale l
is assumed to be the width of the flow (Tennekes and Lumley, 1972). Over one period,
the large scale vortices in the wake have lost an amount of energy to smaller vortices
as ρu3T/l per unit volume. By dividing this by the kinetic energy of the large scale
vortices in the wake, we obtain a parameter that is uT/l. This is recognized as the KC
number. This simple analysis suggests that an estimate for the turbulent dissipation rate
also scales as the KC number. However, this is an estimate under several assumptions,
and thus the only way to investigate the effect of turbulent wakes of very large Reynolds
numbers is to perform large scale experiments.
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6 Results and Discussion for Regular and Bi-Chromatic
Tests

6.1 Results for Regular Forced Oscillations and Comparison with
CFD

The hydrodynamic coefficients from the regular experiments and CDF calculations are
presented in Figure 6.2 and Figure 6.3. The regular forced oscillation tests were done to
obtain curves that were later used in the irregular calculations. Error bars are included
in the figure. The error bars are the standard deviation of the hydrodynamic coefficient
under consideration and a measure of the variation from cycle to cycle. The coefficients
are obtained by the use of Fourier averaging. The coefficients are close to independent
of the period of oscillation, and the larges difference was seen in the added mass. The
difference in the period is considered small. Both the free surface and the rig setup are
candidates for this period dependence in the added mass.

Generally, good agreement is found between the lab experiments and the CFD calcu-
lations. The damping is somewhat overestimated in the CFD, and the added mass is
underestimated in the CFD, especially for the coarsest mesh. The differences are small,
so it is hard to point on specific reasons for this. However, one important difference from
the experiments is that CFD calculations are done in 2D without turbulence modeling.
The wake is expected to be turbulent in the model tests as the Reynolds number is
high. Thus, we expect the wake to have some degree of turbulence, which could affect
the results. However, the CFD results show that good results are obtained from CFD
by neglecting the turbulence and 3D effects of the flow for plate S28. This means that
the CFD results strengthen the lab results for both plates. The lab results confirm that
turbulence can be neglected for the investigated KC numbers and Reynolds numbers.
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6.1 Results for Regular Forced Oscillations and Comparison with CFD
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Figure 6.1: Legend for Figure 6.2 and Figure 6.3. Mesh 1 has a minimum cell size of
1x1mm and mesh 7 has a minimum cell size of 2x2mm.
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Figure 6.2: Normalized hydrodynamic force coefficients for S28. (a) Normalized added
mass and (b) normalized damping.
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Figure 6.3: Normalized hydrodynamic force coefficients for S19. (a) Normalized added
mass and (b) normalized damping.
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6.2 Wave Radiation Damping

6.2 Wave Radiation Damping

Since there were observed radiated waves during the experiments, the damping from the
waves is calculated to be ensure they can be neglected. This is done for the regular tests.
The damping can be found by time-averaging the far-field radiated waves and the force on
the body due to the radiated waves (Faltinsen, 1990). By doing this, the wave radiation
damping becomes

Bw =
4cgEw
ω2
oscη

2
a

, (6.1)

were cg is the group velocity, ωosc is the circular frequency of the force oscillations, and
η2a is the amplitude of the oscillation.

Newman (1977) gives the equations for water waves at the intermediate water dept, and
all the equations regarding the water waves in this section are found from his book. The
mean energy in the waves in the tank is not dependent on the water depth, and is

Ew =
1

2
ρgζ2aL (6.2)

were ζa is the amplitude on the radiated waves, and L is the plate length.

For a wave with period 2 seconds, the wavelength in deep waters is 6.25 meters, but the
tank is only 1 meter deep. Thus, deep water wave approximation does not hold, and the
equations for intermediate water depth need to be used. The group velocity is dependent
on the wavelength, λ, and since we have intermediate wave dept for the waves that are
radiated the group velocity is

cg =
1

2
cp

(
1 +

4πh

λ

1

sinh
(
4πh
λ

)) (6.3)

were

cp =
λωw
2π

. (6.4)

Here ωw the circular frequency for the wave and h is the depth. For intermediate waters,
Equation 6.5 has to be solved numerically to find the wave length.

λ =
g

2π

(
2π

ω

)2

tanh

(
2π

λ

)
(6.5)

The wave height was found by using the fast Fourier transform of the wave signal of wave
probe 6 (WP6 in Figure 3.1).
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Figure 6.4: Normalized wave radiation damping for regular plate oscillations, and nor-
malized with respect to the plate dimensions. (a) Plate S19 and (b) Plate S28.
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Figure 6.5: Wave radiation damping for regular forced oscillations as fraction of the
total damping B for both models. The figure shows that a very small portion of the
damping is from radiated waves. (a) Plate S19 and (b) Plate S28.
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6.2 Wave Radiation Damping

Figure 6.4 shows the wave radiation damping normalized to the plate dimensions and
the frequency of oscillation. Figure 6.5 shows the wave radiation damping as a fraction
of the total damping. The figures show that the damping from the waves is small for
both models and that the wave radiation damping never becomes larger than 5% of the
total damping. Thus, the assumption that the plate is far enough from the free surface
to assume deep water oscillations is considered valid for these experiments in the tested
KC range.

The far-field wave approximation needs some attention since the wave probes are placed
close to the plate. There was found a 3ωw wave component in the signal. However, the
amplitude of this signal was always less than one half of the ωw waves’ amplitude. Also,
the group velocity of the 3ωw wave is approximately 1/3 of the ωw waves’ group velocity.
Consequently, the energy transportation rate of the 3ωw wave will always be lower than
1/12 of the ωw wave. With these arguments, the results from these tests are considered
valid even though the wave probes were placed close to the model.
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6.3 Third-Harmonic Forces

Morison et al. (1950) suggested that the forces of vertical piles in waves can be decomposed
into an inertia term proportional to the acceleration and a drag term proportional to the
square on the velocity. The Morrison load model is used with great success in a large
range of KC numbers, both for normal flat plates and cylinders. However, the Morrison
load model is built on the assumption that the forces’ third-harmonics are in phase with
the velocity. For the definition of the coefficients in this section, see Section 4.3.3.

For regular motions, the Morrison load model will yield very close results to the measured
data when a3=0 and b3/b1=-0.2. This can be shown by evaluation the Fourier series of
sin(ωt)|sin(ωt)|. This will yield an=0 for all n, b1 = 8/(2π), b2 = 0 and b3 = −8/(15π).
There is some small contribution from higher-order odd numbers bn, but they are small
compared to the first and third-harmonics. From Figure 6.7, we can conclude that a
quadratic damping model, as in Morrisons load model, should not be used uncritically,
especially for the lowest KC numbers in the figure. For the tested perforated plates, a
large part of the third-harmonics is in phase with the acceleration, especially for S28.
However, it is interesting to see that the third-harmonic for S19, −b3/b3 goes towards
0.2, which is the factor that is assumed in the Morrison load model. The same trend can
be seen for S28, but it goes slower towards 0.2. The figure shows that CFD calculations
for S28 are in agreement with the results from the experiments and show the same trend
for the third-harmonics.

For marine operations, the force impulse is the crucial parameter. It is the impulse that
determines the responses of the lifted object. The third-harmonic force impulse is small
due to their narrow peaks. The third-harmonics can be significant if fatigue is a concern.
However, fatigue from hydrodynamic forces is not considered as a problem for marine
operations. In the rest of this thesis, the forces are calculated by only assessing the
first-harmonic hydrodynamic coefficients, i.e., the damping B and the added mass A.
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Figure 6.6: Legend for Figure 6.7
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Figure 6.7: The third-harmonic Fourrier coefficient as a fraction on the first-harmonic
Fourier coefficient. a1FA and b1FA is found from Fourier averaging, while a3 and b3 is
found from a function in Matlab called fourier8. The time series are aligned such that
−a1/(ω2A0ηa) corresponds to CA and −b1/(ω2A0ηa) becomes CB. The CFD calculations
are in good agreement with the experiments, although they are somewhat higher. (a)
Plate S19 and (b) Plate S28.
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6.4 Results for Bi-Chromatic Motions

In this section, the hydrodynamic coefficients for the bi-chromatic motions are presented.
Figure 6.9 contains the normalized damping coefficients for the bi-chromatic runs. The
damping coefficients show a clear pattern when sorted forKCi/KCi−1 and plotted against
the KC number for the present half-cycle, which is KCi on the x-axis. The damping is
smaller than for regular cycles for half cycles when the previous amplitude of the half-
cycle is smaller than the present. The damping is larger if the previous amplitude is
smaller than the previous. This was found for all the tested bi-chromatic motions. No
clear pattern was found for the added mass, but the added mass is always close to or
lower than for regular oscillations, with one exception, and this is recognized as a start-up
effect. The start-up effect is discussed in detail in Section 6.4.2.

KCi/KCi−1 was chosen as the parameter to sort the data, because the KC number
is connected to the circulation of the free shear layer that is shed during a half cycle,
and thus this parameter will be a measure of the velocity that is included from the
vortices from the previous half cycle. Also, there was an attempt to sort the data as
KC2

i /KC
2
i−1 ·ωi/ωi−1 to take the change of the period from one cycle to another into

account. Generally, the period should be taken into account since the period changes the
circulation of the previously formed vortex, and the rate of change of the vortex circulation
is proportional to U2

s as shown in Section 5.2.2, were Us is the velocity just outside the
boundary layer at the point of separation. If a single half-cycle is evaluated where the
vortices from the previous half cycles are neglected, the circulation of the shed vortex
during a half cycle is proportional to U2

aT . This also assumes the high Reynolds number
approximation, which means that we can use potential flow outside the boundary layer,
which in turn means that Us is proportional to Ua, were Ua is the free stream velocity.
Thus, we can imagine that a measure of the circulation of the plate-end vortex shed for
the previous half-cycle is KC2

i−1/Ti−1. This is a simplification of the reality, because
the vortex formed in one half-cycle is also dependent on the induced velocity from the
previously formed vortex due to an increase in Us from the previously formed vortex.
However, the simplification serves a qualitative explanation of why the data sorts nicely
out for the damping and dimensionless force amplitude by the parameter KCi/KCi−1.
The Figure 6.9 and Figure 6.11 shows that there is a clear trend in this parameter. From
these figures, it is concluded that it is enough to only take the previous half cycle into
account when the hydrodynamic forces are calculated in a time series.

In Figure 6.9 and Figure 6.10 error bars are included to show the variation on the co-
efficients for identical half cycles by the standard deviation. This can be done for a
bi-chromatic time series since the pattern of motion repeats itself. Generally, the error
bars show that there are small variations. For some series, one could only obtain one
repeating half-cycle in the position, and these are removed from these figures. The re-
moved data points were not in conflict with any of the conclusions that can be drawn for
the figures, but when comparing the method of least squares to Fourier averaging for the
regular series, it was found that there can be some spread from half-cycle to half-cycle
due to variations in the flow also for the regular oscillations, and thus averages should be
used.
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Figure 6.9: Normalized damping coefficient for the bi-chromatic tests. This figure is
included to show that the coefficients have a clear pattern when sorted by KCi/KCi−1.
This is utilized in Section 7.1.4, where these data is used to calculate irregular time series.
(a) Plate S19 and (b) Plate S28.

Page 58 of 93



6.4 Results for Bi-Chromatic Motions

0 1 2 3
0

0.2

0.4

0.6

0.8

(a) Plate S19

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Plate S28

Figure 6.10: Normalized added mass coefficient. This figure is included to show that
the coefficients are spread, and no particular pattern is found. However, most of the
coefficients are close to the regular curve, or below. One exception is the yellow star
markers, which are from the BiChr 7 set. This larger added mass is recognized as a
start-up effect, which is discussed in Section 6.4.2. (a) Plate S19 and (b) Plate S28.
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Figure 6.11: Normalized force amplitude coefficient. This figure is included to show that
the force amplitude sorts even better than the damping when sorted with KCi/KCi−1.
Consequently, the start-up effect in the added mass can be neglected if the important
parameter is the force amplitude. Larger figures are provided in Appendix B in order to
see that the yellow star markers are close to the regular curve for the force amplitude.
(a) Plate S19 and (b) Plate S28.
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6.4.1 Comparison of CFD and Experiment
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Figure 6.12: Definitions of half cycles for BiChr 7. Each half-cycle is assigned to
different colors. The start-up effect for the added mass was identified for half-cycle 2.
The vertical dotted lines correspond to the vertical dotted lines Figure 6.15.

Computations were performed for BiChr 7 on Mesh 7 for S28. Mesh 7 was used since
it showed results that were in good agreement with the experiments, and it was not
as computational demanding as Mesh 1. However, the added mass was found to be
slightly smaller for Mesh 7 compared to Mesh 1, but for this project, Mesh 1 was too
computationally demanding. Figure 6.14 shows that the same trends can be seen in
CFD and experiments for BiChr 7. However, the added mass is underpredicted in the
CFD, which is as expected if we are returning to the discussion of mesh convergence in
Section 5.3. The CFD results strengthen the assumption that the empty rig can also be
subtracted in bi-chromatic and irregular time series. Also, the assumption that the free
surface can be neglected for bi-chromatic tests holds.
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Figure 6.13: Legend for Figure 6.14 and Figure 6.16. The half cycles for BiChr 7 is
defined in Figure 6.12
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Figure 6.14: Comparison of CFD and experiment for BiChr 7 on plate S28. Legend
is found in Figure 6.8. The same trends for CFD and experiments are found for the
damping and the added mass for all half-cycles, but the added mass is shifted down, and
the damping is shifted up for the CFD results compared to the experiments. The reason
for that the added mass is shifted down is because that Mesh 7 underestimates the added
mass as discussed in Section 5.6. Legend is found in Figure 6.13. (a) Normalized added
mass and (b) normalized damping.

6.4.2 Start-Up Effect for Added Mass

In certain conditions, the added mass increased by 20-25 % in the bi-chromatic tests even
if the previous swing had the same amplitude as the present. This happened for all tested
KC numbers for one particular bi-chromatic motion, namely BiChr 7. This motion has
two small equal half amplitudes and two equally large half-cycle amplitudes. Because
of two small half-cycle amplitudes and two large, this motion creates a similar situation
when regular motions start in a still fluid. The finding of increased added mass relative
to the regular test added mass is consistent with the findings of Ikeda et al. (1988). From
the discussion in Section 1.2 of the results of Ikeda et al. (1988), it was found that the
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6.4 Results for Bi-Chromatic Motions

start-up effect did not increase the total force amplitude as the drag force decreased more
than the added mass force increased.

A CFD run for a solid plate case was done to ensure that the increase in the added mass
was due to the perforation of the plate, not a consequence of the motion. The convergence
study for the solid plate can be found in Section 5.5. The simulation was also done on
the BiChr 7 motion, with KC2 = 0.78. The result showed that the normalized added
mass coefficient for half cycle 2 was 1.29, while the added mass for the regular case where
KC = 0.78 was 1.23. This means that the increase in the added mass was only 5 % for
the solid plate case for KC = 0.78 in a start-up situation. This is consistent with the
findings of Ikeda et al. (1988), that did not find any significant start-up effect for KC <
11 for solid plates.

A time series is shown for plate S19 for KC2 = 0.76 in Figure 6.15. S19 is shown since
it has a higher added mass to damping ratio than S28. Figure 6.15 shows the computed
time series compares to the measured time series. The corresponding time series for
the position is found in Figure 6.12. The red curve is calculated with the coefficients
extracted from the regular curve in Figure 6.3 and is calculated as in Section 7.1.3. The
yellow curve is calculated with the calculated added mass and damping for this particular
force time series by use of the discussed curve fit method. The focus of interest is what
happens between the time interval between 1 second and 1.5 seconds. Figure 6.15 shows
that the maximum values of the two calculated force time series are approximately equal.
This is because coefficients from the regular time series have higher damping than half
cycle 2 in BiChr 7. The increased added mass from the start-up effect is thus considered
negligible for the case where the added mass and damping forces are approximately equal
or when they are damping dominated. This is also shown in Figure 6.11 where the non-
dimensional force amplitude is plotted. From this, it is concluded that for KC numbers
larger than 0.76, the startup-effect is negligible for S28 and S19.
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Figure 6.15: Force time series for BiChr 7 for plate S19. The force amplitude does not
change much when the calculated force is based on the regular time series, compared to
when the coefficients found from this particular force time series. The only change is a
shift in phase towards damping when the force is calculated with coefficients from the
regular curve. The corresponding position for the plate is found in Figure 6.12. The
dotted vertical lines are at the same time instances as in Figure 6.12.
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Figure 6.16: Normalized hydrodynamic coefficients for S19 for BiChr 7 run. Legend is
found in Figure 6.13. (a) Normalized added mass and (b) normalized damping.

Table 6.1: The coefficients that are used to calculate the force-time series in Figure 6.15
for half-cycle 2. It can be seen that the damping is less for half-cycle 2 than for a regular
series, and the added mass is higher due to the start-up effect. Ca,2 and Cb,2 are from
Figure 6.16 at KC = 0.76. Ca,reg and Cb,reg are taken from Figure 6.3.

Half Cycle nr: 2
KC2 0.76
CA,reg (from regular curve at KC=0.76) 0.55
CA,2 (from present half cycle) 0.67
CB,reg 0.72
CB,2 0.62
CA,2/CA,reg 1.22
CB,2/CB,reg 0.86
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7 Calculations of Irregular Force Time Series

The knowledge we gained from the bi-chromatic time series is applied to an irregular time
series obtained from a Pierson-Moskowitz spectrum. Spectra of the Pierson-Moskowitz
type can be expressed as

S(ω) =
APM
ω5

exp

(
−BPM

ω4

)
, (7.1)

were

BPM = 24 π
3

T 4
m0

, (7.2)

and

APM = 0.11 · 2η2sω
4
1 (7.3)

and

ω1 = 1.23B
1
4
PM . (7.4)

Note that BPM and APM have nothing to do with added mass and damping, they are
just parameters in the spectrum.

ηs is the significant position amplitude (equivalent to one half of the significant wave
height if waves are the statistical property) and Tm0 is the zeroth moment of the period,
which corresponds to the expected period in the time series realization.

A time realization can be generated by introducing a random phase angle, εm, between
0 and 2π, which is uniformly distributed. A number of M = 100 components were used,
and the spectrum was divided into 100 equally spaced rectangles with height S(ω) and
width ∆ω. The position of the plate is

η(t) =
M∑
m=1

ηam sin(ωmt+ εm), (7.5)

where

ηam =
√

2S(ωm)∆ω. (7.6)

Tm0=1.75 seconds and ηs=0.1 meters. This amplitude corresponds to a significant KC
number of KCs=1.75. Since we are not going to generate statistical data, a run of 4
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minutes was found to be enough to find interesting events. However, if statistical data
for the forces is desired, a longer run is preferable. However, from a hydrodynamic point
of view, details can be analyzed by inspection of the time series. Definitions half-cycles
irregular time series are the same as for bi-chromatic time series, which is defined in
Section 4.2.

7.1 Strategies of Choosing Hydrodynamic Coefficients

A challenge is to choose wisely the hydrodynamic coefficients, and four strategies are
compared in this section. The strategies are

• Constant coefficients through the entire series, chosen based on statistical data.

• A method based on KCi only.

• A method based on KCi−1 and KCi.

• A method based on the data from the bi-chromatic experiments.

In all methods, we find the hydrodynamic coefficients CA and CB from the curves obtained
in the regular tests. The hydrodynamic coefficients are functions of theKC number. That
is

CA = CA(KC) (7.7)

and

CB = CB(KC). (7.8)

7.1.1 Constant Hydrodynamic Coefficients Coefficients from Statistical Data

In this method, the damping and added mass are constant and chosen based on a charac-
teristic KC value in the time series. The characteristic KC value is chosen to be based on
the significant amplitude of motion which was used in the Pierson Moskowitz spectrum
and is

KCs =
2π

D
ηs (7.9)

The constant hydrodynamic coefficients then become

CA = CA(KCs) = constant (7.10)
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and

CB = CB(KCs) = constant, (7.11)

where CA(KC) and CB(KC) are the curves obtained from the regular forced oscillations
experiments. The force is then calculated as

F (t) = −CA(KCs)A0η̈ − CB(KCs)A0
2π

Tm0
η̇ (7.12)

Here Tm0 is a statistical property used as input in the Pierson Moskowitz spectrum, and
it is the mean period of the cycles.

7.1.2 Hydrodynamic Coefficients Based on the Present Amplitude

In this method, the hydrodynamic coefficients are constant for the half-cycle that is under
consideration. They are still functions of the KC number and expressed as

CA,i = CA(KCi) (7.13)

and

CB,i = CB(KCi). (7.14)

This notation for the hydrodynamic coefficients is used throughout this thesis. The force
for the half-cycle "i" becomes

F = −CA,iA0η̈ − CB,iA0ωiη̇. (7.15)

ωi = 2π/Ti is the frequency defined in Section 4.2. To calculate a continuous force, the
inertia term CA,iA0η̈ needs to change its coefficient 90 degrees before the damping term
such that the value of the inertia coefficient, CA,i changes when the acceleration is zero.
The inertia term has its maximum 90 degrees before the damping term. Thus the added
mass is ahead of the damping. This is always done in this thesis when force time-series
are calculated.

7.1.3 Hydrodynamic Coefficients Based on the Previous and Present Am-
plitude

The method of Section 7.1.2 underestimates the force when the amplitude is decreasing
because the circulation of the plate-end vortices is larger from the previous half-cycle
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than what is the case for regular steady-state forced oscillations. These vortices induce a
higher relative velocity of the water relative to the plate. Higher relative velocity means
that Us (discussed in Section 5.2.2) increases and the circulation of the vortices in the
present half-cycle will thus have a higher circulation than for regular steady-state forced
oscillations. Thus, the damping coefficient is chosen based on the presentKC value, KCi,
if the present position amplitude is larger than the previous, and the previous amplitude,
KCi−1, if the present amplitude is smaller than the previous.

There was no clear pattern in the added mass, CA, based on the previous half-cycle
amplitude. However, CA was distributed close to the regular CA curve, or lower, except
for start-up situations. In these situations, CA was 20-30 % higher than for regularly
forced oscillations, even if the previous half-cycle had the same amplitude as the present.
This is discussed in more detail in section Section 6.4.2. However, it was found that the
damping decreased in these situations. Because of this, the added mass is chosen based
on the present KC value, KCi.

The force for the half-cycle "i" is given by

Fi(t) = −CA,iA0η̈ − CB,iA0ωiη̇ if KCi > KCi−1, (7.16)

and
Fi(t) = −CA,iA0η̈ − CB,(i−1)A0ωiη̇ if KCi < KCi−1. (7.17)

The notation for the added mass and damping coefficients are defined in Equation 7.13
and Equation 7.14.

7.1.4 Hydrodynamic Coefficients Based on Data from Bi-Chromatic Tests

In this method also, we assume that the added mass is found by assuming that one can
use the regular curve and the present KC if KCs is in the damping dominated regime.
The damping coefficient is found by multiplying the damping coefficient that is found
from the regular test curve at the present KC value, KCi by a factor that is a function of
the value of the fraction KCi/KCi1 . This factor is based on Figure 7.1 and is presented
in Table 7.1. bbiBhr is found by interpolating in the table.
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Figure 7.1: The legend is found in Figure 6.8. The damping divided by KC2/3b1. b1 is
a constant that is adjusted such that the regular curve is close to 1 in this figure. One
can see from the figure that a good approximation for all intervals of KCi/KCi−1 is to
multiply the regular curve with constants. These constant, which are from this figure,
are found in Table 7.1. (a) Plate S19 and (b) Plate S28.

Table 7.1: The table shows the factor, bbiChr that are used in the improved method.
The data in the table is base on the bi-chromatic tests in Figure 7.1. S28 and S19 in the
parenthesis denotes the plate name.

KCi/KCi−1 0 0.24 0.55 0.75 0.9 1.1 1.4 2 4.5 ∞
bbiChr (S19) 1.8 1.8 1.4 1.2 1.1 0.95 0.85 0.8 0.6 0.6
bbiChr (S28) 1.8 1.8 1.5 1.2 1.1 0.95 0.9 0.8 0.7 0.7

Physically bbiChr is not bounded by an upper value when KCi/KCi−1 → 0 since the circu-
lation from the previous vortex contributes to the production of a new vortex. However,
since the present amplitude for the half-cycle is small when KCi/KCi−1 → 0, the forces
will be small compare to larger amplitudes of motion. Thus, these forces are not consid-
ered to be important in the time series and are limited at 1.8 times the damping found
from the curve from the regular steady-state forced oscillations. This value was observed
to be the highest in Figure 7.1. When KCi/KCi−1 → ∞, the damping is bounded by
the case where the plate is accelerated in still fluid because there are no previous vortices
that increase the relative velocity in a still fluid.

The force for half-cycle "i" can then be found as

Fi(t) = −CA,iA0η̈ − bbiChrCB,iA0ωiη̇. (7.18)
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7.2 Irregular Force Time Series

This section presents a part of an irregular time series for plate S28 and S19. The
same time series for the position is used as input for both plates in the experiments.
The part of the time series presented is chosen since it contains interesting events like;
small amplitude to large amplitude, from large amplitude to small amplitude, similar
consecutive amplitudes, and large amplitudes close to the maximum.

There are three figures for each plate with different ways of calculating the force, which are
presented in Section 7.2.1 and Section 7.2.3. The computed force is based on the methods
presented in Section 7.1. The measured force and the calculated force from the method of
Section 7.1.3 are plotted in all figures. The method in Section 7.1.3 is plotted in all figures,
because it is simple to use, and it seems like it computes conservative results for both
increasing and decreasing half-cycle amplitudes. The improved method in Section 7.1.4,
which is based on the bi-chromatic time series, yielded the best results. However, the
method complicates the problem, and the coefficient is specific only for these models. The
simplest method, based on the statistical data, yielded the most inaccurate results and
over-predicted the force for small half-cycle amplitudes and underpredicted the force for
large half-cycle amplitudes. An improvement is seen for the method that only takes the
present KC number, KCi, into account. However, the method underpredicts the force
if the half-cycle amplitude is going from a large to a small amplitude. The method that
uses both KCi and KCi−1 fixes this problem, and it seems to yield conservative results
with an exception in the event that is discussed in Section 7.2.2. The improved method
based on the bi-chromatic results fixes some of the overshooting for the method, of KCi
and KCi−1. However, the improvement is not considered significant, taking into account
the added complexity.

The measured force’s maxima are expected to be somewhat larger than the calculated
force since we are only considering the first-harmonic hydrodynamic coefficients in the
calculations. Since we are interested in crane operations and lowering structures towards
the seabed, the force’s impulse is the important parameter. The force peak from the
third-harmonics does not contribute much to the impulse since the third-harmonic peak
is narrow.
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7.2.1 Irregular Force Time Series for Plate S28

In this section, a part of the time series for model S28 is presented for KCs=1.75. The
methods that are discussed in Section 7.1 are compared to each other. Note that all
figures contain the measured force from the experiments and the calculated force from
the method in Section 7.1.3. The methods that are compared are given in the figure
texts.
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Figure 7.2: Plate: S28. Method that is compared: Method were the normalized damp-
ing coefficient CB is chosen based on the KC value for the present half-cycle.
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Figure 7.3: Plate: S28. The method that is compared is the improved method where
the normalized damping coefficient CB is chosen based on the bi-chromatic tests’ data.
The event in the green circle is discussed in Section 7.2.2.
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Figure 7.4: Plate: S28. Method that is compared: Method were the normalized damp-
ing coefficient CB is constant and chosen based on the statistical data.

7.2.2 Discussion of Half-Cycles with Three Zero Crossings in the Accelera-
tion.

The event that is marked with a green circle in Figure 7.3 requires some attention. The
half-cycles have a saddle-like shape of the position signal. This means that the half-cycle
has three zero crossings in the acceleration. In this situation, the forces are underpredicted
by the methods and are seen in Figure 7.6. The reason for this is not known, but since
we know when it happens, it can be corrected if necessary. However, these situations
never lead to the largest forces in the time series, since the three zero crossings of the
acceleration flatten the force curve. This effect is not discussed any further, but it is
worth mentioning if a conservative force prediction is needed in the whole time-domain.
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Figure 7.5: (a) Position time series in the area of interest shown with a green circle in
Figure 7.3. The curve of the position signal has a decrease in the derivative in some half-
cycles, followed by an increase. This means that the acceleration has three zero-crossings
for one half-cycle. (b) Added mass and damping computed with the improved method
based on the bi-chromatic tests.
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Figure 7.6: Plate: S28. The figure shows that the force gets underpredicted by the
calculations at Time=251.5 s. This happens when the acceleration has three zero crossings
in one half-period. Calc. (improved) finds coefficients based on the Bi-Chromatic tests,
and Calc. (KCi andKCi) refers to the method were the hydrodynamic coefficients chosen
based on if the amplitude of the previous half cycle is larger or smaller than the present
half-cycle.
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7.2.3 Irregular Force Time Series for Plate S19

In this section, a part of the time series for model S19 is presented for KCs=1.75. The
methods that are discussed in Section 7.1 are compared to each other. Note that all
figures contain the measured force from the experiments and the calculated force from
the method in Section 7.1.3. The methods that are compared are given in the figure
texts.
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Figure 7.7: Plate: S19. The method that is compared: Method were the normalized
damping coefficient CB is chosen based on the KC value for the present half-cycle.
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Figure 7.8: Plate: S19. The method that is compared: Improved method where the
damping coefficient CB is chosen based on the data for the Bi-Chromatic tests.
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Figure 7.9: Plate: S19. The method that is compared: Method where the damping
coefficient CB is constant and chosen based on the statistical data.

Page 76 of 93



7.3 Discussion of an Event with Large Changes in Motion Amplitudes

7.3 Discussion of an Event with Large Changes in Motion Am-
plitudes

The time series for S28 is chosen to be studied further. The time series for S19 is shows
a similar behavior as for S28, which can be seen in Section 7.2.1 and Section 7.2.3 .

Three events are of special interest and are studied further in this section. The three
events for the half-cycles are:

• When the amplitude increases

• When the amplitude decreases

• Large amplitudes

240 245 250 255 260 265 270 275

-0.1

0

0.1

Plate Position

-100

0

100

Experiments

Figure 7.10: The figure shows a part of the irregular time series for plate S28. The
green circle shows the area of interest that is studied further in this section.

Figure 7.10 shows the area of interest that has all these events. Figure 7.11 (b) shows
that the method where the coefficients are held constant and based on the significant
KC from ηs, overpredicts the forces when the motion amplitude increases and under
predicts for the largest amplitude. The method that is based on the present KC number
overpredicts the force when the amplitude increases and underpredicts it when it decreases
from one half-cycle to another. It predicts the maximum well, and the difference between
the experimental and calculated force is because the third-harmonic force is not taken
into account. However, the third-harmonic force has a limited contribution to the force
impulse because the peak is narrow. For offshore operations, the force impulse is the
critical parameter. Figure 7.12 (a) shows that the method based on both the previous
and the present KC number, corrects the underprediction when the half-cycle amplitude
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decreases from one half-cycle to the next, but it does not fix the overshoot when the
KC number increases. Figure 7.12 (b) shows that the overprediction of the forces can be
corrected by using the improved method, where the hydrodynamic coefficients are chosen
based on the bi-chromatic tests. However, due to its added complexity, the improved
method is not regarded as the best method for a simplified analysis. The method where
the coefficients are based on KCi and KCi−1 is considered to be the best due to its
simplicity, and due to that it computes conservative, but most of the time, accurate
results. Figure 7.13 shows the decomposed forces plotted against the measured force.
The damping dominates the forces, and thus the most important component to calculate
accurately is the damping for the KC values in this part of the time series.
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Figure 7.11: (a) Position in the area of interest shown in Figure 7.10. The value of
each half amplitude is shown. The maximum KC number is 2.14. (b) Force time series
measured from experiments, calculated force based on the present amplitude KCi, and
calculated force where the hydrodynamic coefficients are constant and chosen based on
statistical data. ηs is significant amplitude and Tm0 is the zero moment period in the
Pierson-Moskowitz spectrum.
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Figure 7.12: (a) Close up view of force-time series measured from experiments, calcu-
lated force based on the previous and present amplitude, KCi, and KCi−1. These are
plotted against calculated force based on the present amplitude, KCi. (b) The improved
method refers to the method were the coefficients come from the bi-chromatic experiments
.

272 274 276

-100

-50

0

50

100

Total Force (measured)
Inertia Component
Damping Component

Figure 7.13: Measured force compared to the calculated inertia force component and
damping force component. The damping force is almost twice as large as the added mass
force for the largest force amplitude in the figure. The inertia force component (FA) is
calculated by choosing the added mass coefficient based on the present amplitude and by
using the added mass curve found by the regular tests. The damping force component
(FB) is calculated by choosing the damping coefficient with the method that is made based
on the bi-chromatic experiments. Thus, F = FA + FB is the green curve in Figure 7.12
(b).
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7.4 Mentzoni and Kristiansen’s Semi-Analytical Method Applied
on the Time Series

In this section the semi-analytical method of Mentzoni and Kristiansen (2019) is used
to find the hydrodynamic coefficients for the irrigular time series. The semi-analytical
method is described in section Section 2.2.3. The perforated plates that the method is
based on are thinner than the models in the present study, and thus some variations are
expected, especially for the added mass since the zero amplitude added mass is different
when the plate thickness is increased.

The hydrodynamic coefficients can be easily obtained by a code programmed in Matlab,
as in Figure 7.14.

Figure 7.14: Example of a code that finds the hydrodynamic coefficients from the
semi-analytical method of Mentzoni and Kristiansen (2019)

Figure 7.15 and Figure 7.16 compares the semi-analytical method with the results ob-
tained from the regular experiments. The figures show that the added mass is under-
predicted. This is expected since the semi-analytical method is based on thin perforated
plates, while in our experiments, the plates are thicker. A candidate for the larger added
mass for S19 and S28 compared to the semi-analytical method is that the added mass in
potential theory is higher when the thickness is increased. The figures also show that the
damping is well predicted, and since the forces are damping dominated for higher KC
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numbers, the most important for the force amplitude is the damping. If the damping is
twice the inertia force, the damping contributes to 89.4 % of the force amplitude. This
is because the force amplitude is calculated as

Fa = A0ω
2ηa

√(
A

A0

)2

+

(
B

A0ω

)2

= A0ω
2ηa

√
C2
A + C2

B. (7.19)

Figure 7.15 and Figure 7.16 shows that damping is more than twice the added mass force
if KC > 1.5 for both plates, S28 and S19. Figure 7.11 shows that the largest amplitude
is equivalent to a KC number of 2.14 for this part of the time series. Thus the force
is damping dominated for both plates for the larges amplitudes in the time series. The
damping force alone will contribute to almost 90% on the maximum force when it is twice
the added mass force.
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Figure 7.15: Comparison of the experiments and the semi-analytical method for plate
S19. The plots show (a) the normalized added mass, CA, and (b) damping CB. The
figure also shows that the damping force is twice the added mass force when KC number
is approximate 2.
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Figure 7.16: Comparison of the experiments and the semi-analytical method for plate
S28. The plots show (a) the normalized added mass, CA, and (b) damping CB. The figure
also shows that the damping force is twice the added mass force when KC is approximate
1.5.

The choice of coefficients (CA and CB) is based on the present and previous KC number,
which is presented in Section 7.1.3. The hydrodynamic coefficients are obtained either
from the regular experiments or the semi-analytical method, for comparison. Figure 7.17
and Figure 7.18 shows a part on the time series for S19 and S28 respectively. A closer view
for both plates is seen in Figure 7.19 at the same event that is discussed in Section 7.3.
Figure 7.19 shows that the semi-analytical method is well suited to predicting the forces
in a time series generated by a Pierson-Moskowitz spectrum with a significant KCs=1.75
for both plates. The forces on both models are dominated by damping for this value of
KCs. For a hatch cover with 7.5 meters width, Ks = 1.75 corresponds to a significant
half-cycle amplitude of 4.18 meters. For a 10 meters wide hatch cover, this corresponds to
a significant half-cycle amplitude of 5.57 meters, which is large amplitudes in the context
of marine operations. However, the KC values are realistic for smaller structures.
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Figure 7.17: Plate: S19. Comparison of hydrodynamic coefficients obtained from the
regular experiments and the semi-analytical method by Mentzoni and Kristiansen (2019).

235 240 245 250 255 260 265 270 275

-0.1

-0.05

0

0.05

0.1

Plate Position

-100

-50

0

50

100

Experiment Calc. (Curve From Regular Exp.) Calc. (Curve From Mentzoni)

Figure 7.18: Plate: S28. Comparison of hydrodynamic coefficients obtained from the
regular experiments and the semi-analytical method by Mentzoni and Kristiansen (2019).
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Figure 7.19: A closer view of the comparison between hydrodynamic coefficients from
the regular experiments and the semi-analytical method by Mentzoni and Kristiansen
(2019). Time series for (a) plate S19 and (b) plate S28.

7.5 Semi-Analytical Method Applied on Irregular Time Series in
the Inertia-Damping Range

Plate S19 was chosen to look more into because the added mass relative to the damping
is slightly higher than for S28. The same time realization is used as before, but with
KCs = 0.87. This KC number corresponds to a significant amplitude of motion of
2.1 meters for a 7.5 meters wide hatch cover. For a 10 meters wide hatch cover, this
corresponds to a significant amplitude of motion of 2.79 meters in still water. The time
series for the position for the zoomed-in forces is the same as Figure 7.11 (a), but the
KC values and η is divided by two, such that the maximum KC value, KC3 is 1.07.

Figure 7.20 (a) shows the damping and added mass term plotted against the measured
force from the experiment. The damping and added mass are calculated based on the
improved method based on the Bi-Chromatic tests. It is described in Section 7.1.4, and
the added mass and damping curves are obtained from the regular tests. The figure shows
that the damping and added mass term amplitude values are close in magnitude.

Figure 7.20 (b) shows the calculated force, which is based on the method that takes into
account the present and previous KC numbers, as described in Section 7.1.3. The only
difference between the two curves is that the hydrodynamic coefficients are taken either
from the semi-analytical method or the regular experiments for (T=2s). As discussed in
Section 6.4.2, the force amplitude is not affected by a start-up situation. Thus the force
is calculated as in Section 7.1.3.

Figure 7.20 (b) and Figure 7.21 shows that the method also works in the smaller KC
range if the coefficients are taken from the regular experiments. The figure also shows that
the semi-analytical method computes smaller forces compared to when the coefficients
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are taken from the experiments. The reason for this can be explained by that the semi-
analytical method of Mentzoni and Kristiansen (2019) underestimates the added mass
because it is based on thin plates. When added mass and damping terms have similar
amplitudes, the semi-analytical method should be used with caution if the plate has
some thickness. This difference can probably be accounted for in the semi-analytical
method by adding a constant term for the added mass, such that it can be used for other
structures than thin plates. This is an area of further research. The zero-amplitude added
mass (potential-flow) is smaller for thin perforated plates compared to thicker perforated
plates, and it looks like this increases the added mass for all tested KC numbers, which
can be seen in Figure 7.15 (a) and Figure 7.16 (a).
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Figure 7.20: (a) Added mass and damping force plotted against the measured force.
(b) Comparison between force time series with coefficients from the regular experiments
and the semi-analytical method by Mentzoni and Kristiansen (2019) for plate S19.
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Figure 7.21: Comparison of force time series when the hydrodynamic coefficients are
obtained either from the regular experiments or the semi-analytical method by Mentzoni
and Kristiansen (2019). The model is plate S19.

7.6 Proposed Method for Force Calculation in Long Crested Ir-
regular Seas with Long Wave Length for Damping Domi-
nated Forces far from the Free Surface

This proposed method calculates the forces in long-crested irregular seas with long-
wavelength components, for damping dominated perforated plates far from the free sur-
face and the seafloor. In this context, "far away from the free surface and seafloor" means
that the mean position of the plate is more than 1.39D under the free surface or 1.39D
above the seafloor for KC numbers up to 2.5. This distance is based on the findings of
the conducted experiments.

In waves in combination with forced oscillations in heave, the KCi number should be
based on the relative velocity between the water and the plate. We call it the relative
KCr value. The relative velocity is

urel =
dη(t)

dt
− w(t) (7.20)

According to Faltinsen (1990) w in Equation 7.20 can be generalized to irregular long
crested sea as
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w(t) =
M∑
m=1

wAm sin(ωmt+ εm). (7.21)

A relative position can be found by taking the integral of the relative velocity.

ηr(t) =

∫ t

0

ureldt. (7.22)

wAm is the vertical velocity amplitude component at the water depth that is evaluated.
Then the relative KC number for the half cycle becomes

KCri = 2π
ηrai
D
. (7.23)

and the relative oscillation frequency is

ωri =
2π

Tri
. (7.24)

This is the same as we did in Section 4.2, but instead of using η and T we now use ηr
and Tr.

If the water is oscillating, as in waves, the Froude-Krylov force must be added. This is
because of the pressure gradient that is present in an accelerating fluid. If we assume
that all wave components in Equation 7.21 are long relative to the plate width, we can
assume an uniform acceleration field. The Froude-Krylov force simplifies to

Ffk = ρV ẇ. (7.25)

V is the volume of the solid members of the perforated plate, and ρ is the density of the
fluid. The pressure gradient due to the accelerating fluid is only dependent on the fluid
acceleration. The total force for the relative half-cycle "i" becomes

Fi(t) = −CA(KCri)A0u̇rel − CB(KCrj)ωriA0urel + ρV ẇ. (7.26)

Note that CA and CB are functions of theKC number and taken from the curves from the
regular tests. Equation 7.26 is based on equation 9.43 in the book "Sea Loads on Ship and
Offshore Structures" (Faltinsen, 1990) but modified with KC dependent hydrodynamic
coefficients. The hydrodynamic coefficients can be taken from the semi-analytic method
of Mentzoni and Kristiansen (2019) or from experiments with regular forced oscillations.
The subscript "i" refers to the present half-cycle, and the subscript j varies as j = i
if KCri > KCr(i−1) and j = i − 1 if KCri < KCr(i−1). This method of choosing KC
numbers for the hydrodynamic coefficients is discussed in Section 7.1.3, and time series
showed that this way of choosing the hydrodynamic coefficients was good in the case of
no waves.
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Equation 7.26 is a simplification of the effects of waves in combination with forced oscil-
lations. In waves, there is also a horizontal velocity component that affects the vertical
forces on the plate. Mentzoni and Kristiansen (2020) did experiments on perforated plates
in waves. They also did CFD calculations in orbital flow and in a numerical wave tank.
They found that in orbital flow, and in waves, there are created unsymmetrical plate-end
vortices. This asymmetry reduced the forces on the plate in the vertical direction. One
can argue by this that Equation 7.26 yields conservative results. However, numerical
calculations or experiments must be performed in order to confirm Equation 7.26 yields
conservative results when waves and oscillations are present.

What is meant by "far from the free surface and seafloor " can be discussed. In the
present experiments, the plate was positioned 1.39D under the free surface, and 1.39D
above the tank floor. For the KC range that was tested in the experiments of this thesis,
this submergence is sufficient to avoid most of the free surface interaction. For a 7.5-meter
wide hatch cover plate, this corresponds to 10.4 meters under the free surface. Vottestad
(2020) studied perforated plates close to the free surface. She did experiments in waves,
and experiments were the plate was forced to oscillate in heave. She found that that
added mass decreased and goes towards zero and even negative values when the plate
is forced to oscillate close to the free surface. The KC numbers were chosen such that
water exit and entry were avoided. The total damping increased when the plate was
closer to the free surface (viscous and wave radiation). Since the forces are changed close
to the free surface, further research is needed to find simple methods of estimating the
hydrodynamic coefficients, when the plate oscillates close to the free surface.

The semi-analytical method by Mentzoni and Kristiansen (2019) could be used if the
forces are damping dominated. If we are in the inertia dominated region, one should be
careful with the added mass coefficient from the semi-analytical method if the perforated
plate has some thickness, because the method is based on thin perforated plates.

In a real marine lifting operation, the flow is allowed to separate from all corners. Ment-
zoni and Kristiansen (2019) compared results from 2D CFD simulations with results from
An and Faltinsen (2013), which used a 3D setup were the flow was allowed to separate
from all four edges of the perforated plate. The damping was predicted higher in the 2D
simulations than for the 3D experiments, and they differ by approximately 10-15%. The
added mass was close for KC<1 for both tested perforation ratios (τ=0.08 and τ=0.16).
More research is needed in this area, but this suggests that coefficients from simplified
2D simulations give reasonable estimates for the forces in real marine lifting operations
as well.
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8 Concluding Remarks and Further Research

8.1 Regular Forced Oscillations

Experiments for regular forced oscillations were done to establish KC dependent curves
for the added mass and damping for two perforated structures. The structures were
screens consisting of square cylinders. The models are named S19 and S28, with perfo-
ration ratio 0.19 and 0.28, respectively. A laminar 2D viscous flow solver developed by
Mentzoni (2020) was used to validate the lab results for the screen with the highest per-
foration ratio. The numerical and experimental results agreed well. This strengthens the
validity of the present lab results. Some period dependence on the added mass was seen.
The free surface of the water and the lab setup were pointed out as possible explanations
for this. However, the dependence of the period was small compared to the dependence
of the KC number, and the conclusion is that both the added mass and damping showed
negligible period dependence. However, there was a strong KC dependence on the added
mass and the damping, which agrees well with previous results by Mentzoni (2020) and
Molin (2011). The third-harmonic force was also studied to see if the Morrison load model
with a quadratic damping term was appropriate for perforated plates. It was found that
in the KC range of 0.2 and 3, the Morrison load model should not be used uncritically.
For small KC numbers, a larger part of the third-harmonics was in phase with the ac-
celeration than with the velocity, especially for the model with the highest perforation.
Since the third harmonics have a small contribution of the force impulse compared to
the first harmonics, the Morrison load model was not used to calculate the forces in this
thesis.

The semi-analytical method by Mentzoni and Kristiansen (2019) for perforated plates
was compared to the present experiments, and there was found good agreement for the
damping for the highest perforation ratio for the KC range of 0.2 to 3. The damping
was predicted well for the lowest perforation ratio for KC numbers between 0.2 and 2.
The added mass was underestimated by the semi-analytical method for both models, but
the relative difference decreased as the KC number is increasing. It was pointed out
that the semi-analytical method was developed for thin perforated plates, while in the
experiments conducted in conjunction with this thesis, models with larger thickness are
used. However, the semi-analytical method provides coefficients that calculate the force
time-series well when the forces are damping dominated when KC < 3 for S28 and KC
< 2 for S19.

8.2 Bi-Chromatic Motions

Several bi-chromatic tests were done to provide data for the irregular tests. There was
a strong dependency on the KC number from the previous half-cycle, together with the
KC number from the present half-cycle for the damping. The damping was larger if the
previous half-cycle had a larger amplitude than the present. The damping was smaller if
the previous half-cycle had a smaller amplitude than the present.

There was not found any particular pattern for the added mass, but the coefficient was
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distributed lower or close to the curve for the regular test. An increase in the added mass
compared to the regular steady-state oscillations was found in start-up situations, with
an increase in the added mass of 25 %. CFD calculations showed the same trend. This
was identified as a start-up phenomenon and was also reported by Ikeda et al. (1988)
for solid plates. For KC > 11, they found an increase in the added mass of up to 75 %
when the plate was forced to oscillate from rest, compared to regular steady-state forced
oscillations. In our experiments, the increase in added mass occurs for all tested KC
numbers. CFD was also done for a solid plate at KC = 0.78 in the bi-chromatic motion
where the start-up situation occurred. The increase in added mass was only 5 % compared
to the added mass for regular steady-state forced oscillations for KC = 0.78 for a solid
plate. Thus, this increase in the added mass in a start-up situation is more important
for a perforated plate than for a solid plate for KC < 3. However, the damping is
smaller in a start-up situation compared to regular steady-state forced oscillations, which
results in equal or smaller force amplitudes for the start-up situation compared to regular
steady-state forced oscillations. For problems were the force amplitude is the important
parameter, as in marine lifting operations, the start-up phenomenon is negligible for all
tested KC numbers for both models.

8.3 Irregular Motions

The data from the bi-chromatic motions were used to calculate the forces from time
series with irregular motions generated by a Pierson-Moskowitz spectrum. There was
close agreement between the calculated forces and the measured forces from the exper-
iments. This confirms that bi-chromatic tests are appropriate to provide hydrodynamic
coefficients for irregular time series.

Since the damping coefficient depends on the KC number of the present and the previous
half-cycle, a simple rule is proposed to use together with the hydrodynamic coefficients
provided by the semi-analytical method by Mentzoni and Kristiansen (2019) in order to
calculate the time-series. The rules for the damping are:

• Use the KC number from the previous half-cycle if the KC number of the present
is smaller than the previous half-cycle.

• Use the KC number from the present half-cycle if the KC number of the present
is larger than the previous half-cycle.

The added mass was found by only considering the KC number of the present half-cycle.
The calculated forces are in close agreement with the measured, as long the largest KC
numbers in the time series is in the damping dominated regime. When the coefficients
are based on the semi-analytical method, the forces are underestimated if the largest KC
numbers are in the range where the damping and inertia terms are close in magnitude.
This is because the semi-analytical method underestimates the added mass. After all, the
semi-analytical method is based on thin plates, while in this thesis, hydrodynamic loads
on thicker plates are investigated. Since the calculations based on the semi-analytical
method yielded results close to the experiments, Equation 9.43 in the book "Sea Loads

Page 90 of 93



8.4 Further Research

on Ships and Offshore Structures" by Faltinsen (1990) is modified with KC dependent
added mass and damping when the forces are damping dominated. However, this equation
should be tested with experiments, as we do not know well how the waves interact with
plate motions.

8.4 Further Research

The interaction effects of an oscillating perforated plate in waves is a subject of further
research. The discussed equation of Faltinsen (1990) with KC dependent coefficients and
a perforated plate with regular heave motions and in regular waves could be used as a
start for further investigations.

More research on perforated plates where the flow is allowed to separate from all edges
would be preferable, i.e. a 3D experimental setup, as this is the case for a real ma-
rine operation. Scaling effects for structures in oscillating flows is an area of further
research, as the effect of turbulence in the returning wake may influence the structure’s
forces. It is not recommended to do more research on irregular motions, as the crucial
parameters used to predict the forces in a time-series come from the hydrodynamic co-
efficients in regular steady-state forced oscillations. Thus, further research should focus
on finding simple methods for finding KC dependent hydrodynamic coefficients, as the
semi-analytical method by Mentzoni and Kristiansen (2019). More research would be
favorable to expand the semi-analytical method to be valid also for thicker perforated
plates, especially regarding the added mass.
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A. Bi-Chromatic Motions

A Bi-Chromatic Motions

This appendix shows the time series for the bi-chromatic motions that was tested. More
data can be found in Table 3.2. The names of the series is given in the title of each
plot, and corresponds to the names in Table 3.2. η is the position and X0 is defined by
Equation 3.2.
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B. Full Size Figures of Normalized Force Amplitude

B Full Size Figures of Normalized Force Amplitude

In this appendix larger figures of Figure 6.11 (a) and (b) is presented. This appendix is
included to show that the yellow star markers (BiChr 7), which is identified as a start
up situation, are close to the regular curve, even though the added mass is larger for this
particular half cycle. This is because the damping is correspondingly smaller. The legend
for these figures is found in Figure 6.8.
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Figure B.1: Normalized force amplitude coefficients for S19.
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B. Full Size Figures of Normalized Force Amplitude
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Figure B.2: Normalized force amplitude coefficients for S28.
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