
Johan Fredrik Alvsaker
R/V G

unnerus D
igital Tw

in Infrastructure

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Johan Fredrik Alvsaker

R/V Gunnerus Digital Twin
Infrastructure

Master’s thesis in Marine Technology

Supervisor: Bjørn Egil Asbjørnslett

July 2020

Johan Fredrik Alvsaker

R/V Gunnerus Digital Twin
Infrastructure

Master’s thesis in Marine Technology
Supervisor: Bjørn Egil Asbjørnslett
July 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

NTNU Trondheim

Norwegian University of Science and Technology

Department of Marine Technology

MSC THESIS DESCRIPTION SHEET

Name of the candidate: Johan Fredrik Alvsaker

Field of study: Marine control engineering

Thesis title (Norwegian): Infrastruktur for en digital tvilling av FF Gunnerus

Thesis title (English): R/V Gunnerus Digital Twin Infrastructure

Background

NTNU’s research vessel, R/V Gunnerus, has been in operation since 2006. The vessel serves a wide

variety of marine research purposes, covering fields such as biology, technology, geology, archeology,

oceanography, and fisheries research. In addition to its academic significance, the research vessel

facilitates student activity through a practical, hands-on approach. However, there are added benefits to the

research vessel that can be enabled by using generated data from systems and equipment on board. For

example, a digital twin represents such an enabler, where a remote representation of the vessel has access

to data and can analyze and utilize the data to extract in-operation information or knowledge of other relevant

asset conditions. In short, a digital twin is a digital representation of a physical asset, its related processes,

systems, and information. Ultimately, a digital twin receiving vessel and signal data can add value to the

research vessel, creating a variety of new educational and academic possibilities. Regarding the education

of engineering students, the ability to adopt a digital vessel encourages students to relate learning material

from different subjects to an existing vessel in operation, providing a practical understanding of theory. The

multitude of academic research areas demands a rigid foundation for facilitating different interests.

Through a pre-project carried out in the fall of 2019, an R/V Gunnerus digital twin infrastructure, RVG DTI,

was proposed. The infrastructure intends to facilitate the desired functionality of an R/V Gunnerus digital

twin. The three main components of the proposed infrastructure were data management, modeling and

simulation environments, and software and system realization, and each of the components facilitates

different sub-functionalities. Data management revolves around availability, storage, access, and utilization

of data. Ultimately, data management should enable learning through data analytics. The modeling and

simulation environment provides the necessary elements to represent the real asset in a virtual space. The

environment should only be as realistic as necessary for the digital twin functionality. Although the three

components are separate, they must be intertwined and work together to represent a complete digital twin

foundation. With the concept of these three fundamental building blocks, it is possible to add features for

distinct use without compromising the general foundation. As such, the same digital twin infrastructure can

be a tool for several different applications in different fields.

Objectives

This report will present use-cases for a digital twin of R/V Gunnerus for educational purposes. More

specifically, the use of digital twins in the education of marine engineering students will be in focus. To

present use-cases for such a digital twin, it is necessary also to investigate the definition and properties of

digital twins and apply these to the specific case of R/V Gunnerus. An objective of the project is to promote

further development of an R/V Gunnerus digital twin through theoretical work and developing solutions. In

addition, a case study is carried out as an example of how functionality commonly seen in digital twins can

be used in engineering education. The case study is related to data management, which is one of the core

infrastructure components. In the case study, the goal is to create a framework for real-time anomaly

detection on R/V Gunnerus systems through a data-driven approach. The framework will include a modeling

environment for developing data-driven models and a web application for implementing, testing, and

visualizing the results of the anomaly detection model. The objectives are formalized in a work description.

Work description

1. Perform a background and literature review to provide information and relevant references on:

• Digital twin definitions and use-cases in a maritime context, focusing on the facilitation of

engineering education.

• Previous initiatives related to R/V Gunnerus as a technological platform and access to vessel data.

MSc Thesis Description

Faculty of Engineering Science and Technology
Department of Marine Technology

i

NTNU Faculty of Engineering Science and Technology

Norwegian University of Science and Technology Department of Marine Technology

2

• Write a list with abbreviations and definitions of terms and symbols relevant to the literature study

and project report.

2. Propose a digital twin infrastructure for R/V Gunnerus, serving as a foundation for continued digital

twin development.

3. Present an R/V Gunnerus digital twin as a tool for engineering education, considering pedagogical

value, different use-cases, and the digital twin lifecycle.

4. Present a case study where digital twin-related solutions are used to create a tool for engineering

education at the Institute of Marine Technology. More specifically, the case study consists of creating

a framework for predictive maintenance on R/V Gunnerus which allows implementing and testing data-

driven anomaly detection models.

5. Properly document the case study for readability and reusability and make all source code available

through GitHub repositories. The web application should be launched into production for demonstration

purposes.

6. Propose future work on the topic.

7. Write a report documenting the conducted work, results, and discussion. The report will be in

accordance with the specifications below.

Specifications

The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor,

described topics may be deleted or reduced in extent without consequences with regard to grading.

The candidate shall present personal contribution to the resolution of problems within the scope of work.

Theories and conclusions should be based on mathematical derivations and logic reasoning identifying the

various steps in the deduction.

The report shall be organized in a logical structure to give a clear exposition of background, problem, design,

results, and critical assessments. The text should be brief and to the point, with a clear language. Rigorous

mathematical deductions and illustrating figures are preferred over lengthy textual descriptions. The report shall

have font size 11 pts., and it is not expected to be longer than 70 A4-pages, 100 B5-pages, from introduction to

conclusion, unless otherwise agreed upon. It shall be written in English (preferably US) and contain the

elements: Title page, abstract, project specification, list of symbols and acronyms, table of contents, introduction

(project motivation, objectives, scope, and delimitations), background/literature review, problem formulation,

main parts with design, development, and results, conclusions with recommendations for further work,

references, and optional appendices. Figures, tables, and equations shall be numerated. The original contribution

of the candidate and material taken from other sources shall be clearly identified. Work from other sources shall

be properly acknowledged using quotations and a Harvard citation style (e.g. natbib Latex package). The work

is expected to be conducted in an honest and ethical manner, without any sort of plagiarism and misconduct,

which is taken very seriously by the university and cause consequences. NTNU can use the results freely in

research and teaching by proper referencing, unless otherwise agreed upon.

The thesis shall be submitted with an electronic copy to the main supervisor and department according to NTNU

administrative procedures. The final revised version of this thesis description shall be included after the title

page. Computer code, pictures, videos, dataseries, etc., shall be included electronically with the report.

Start date: 15 January, 2020 Due date: 1 July, 2020

Supervisor: Bjørn Egil Asbjørnslett

Co-advisor(s): Roger Skjetne

Bjørn Egil Asbjørnslett

Supervisor

MSc Thesis Description

Faculty of Engineering Science and Technology
Department of Marine Technology

ii

MSc Thesis Description

Preface
The following report is a master thesis conducted at The Norwegian University of
Science and Technology as part of the Department of Marine Technology. The work
in this report was carried out during the spring of 2020 as part of the course TMR4930
– Marine Technology, master thesis in the field of marine cybernetics. The topic of
the master thesis is digital twins, related explicitly to NTNU’s research vessel R/V
Gunnerus.

As the world has been digitizing at unprecedented speeds, all engineering fields have
been intertwined with computer technology to automate, improve, and make indus-
tries of all kinds more effective. Digitization has always piqued my interests, and
computer science and programming have also become dear to my heart through my
studies. I have taken as many courses relevant to computer science as possible, while
still maintaining an interest in marine applications and marine cybernetics. As such,
it seemed appropriate to fuse my interests in marine technology, digitization, and
computer science for my master’s thesis. I have also developed an interest in peda-
gogy and education, and I firmly believe that it is essential for universities to adapt
teaching methods to new technology sooner rather than later. Hopefully, the results
presented in this report can give coming engineering students a useful introduction
to digital topics highly relevant to the maritime industry of the future.

I went into the project with limited programming experience and had high, somewhat
unrealistic ambitions. It has been overwhelming at times, but I have come out the
other end with more newfound knowledge than I possibly could have imagined. I am
grateful for the chance I got to write a thesis about topics that capture my interests.
Although the report boils down to discussing how and why code was written, there
are thousands of decisions taken and dead ends experienced throughout the project
that are hard to get across in a written report.

I would like to thank my supervisor, Professor Bjørn Egil Asbjørnslett, for guiding
me throughout my assignment, and for motivating me to focus on the most essential
elements and prevent derailing off into new tasks. My co-supervisor, Professor Roger
Skjetne, has provided fruitful discussions and valuable insight necessary to get a
complete overview of, and real understanding, of related topics. Finally, I would
like to thank senior engineer and technical inspector Finn Tore Holmeset at NTNU
Ålesund for his openness and hospitality in providing vessel information regarding
R/V Gunnerus and access to corresponding data.

Trondheim, July 1, 2020

Johan Fredrik Alvsaker

Faculty of Engineering Science and Technology
Department of Marine Technology

iii

Abstract

Abstract
This thesis investigates the potential of digital twins for the education of engineering
students through NTNU’s research vessel R/V Gunnerus. As digital twins are be-
coming more and more relevant for increasing the knowledge of assets in operation,
it is essential to evaluate the benefits of using digital twins for education purposes as
well. This thesis discusses an infrastructure for a digital twin of R/V Gunnerus, how
a digital twin could be a useful tool for educating marine engineering students, and
exemplifying this through a case study based on signal data from the vessel. The
efforts in this thesis are based on a series of previous initiatives related to a digital
twin of R/V Gunnerus and is intended to further the work on the topic.

As the defining properties of a digital twin vary based on its intended purpose and
area of application, it is necessary to look at the specific case of an R/V Gunnerus
digital twin through the overall definition space of digital twins. In an academic
setting, the desired functionality of a digital twin varies based on discipline. To be
a valuable resource to as many disciplines as possible, the digital twin needs a well-
defined foundation. Based on a literary review of digital twin definitions, an R/V
Gunnerus digital twin infrastructure (DTI) is proposed as a fundamental building
block for a digital twin. The DTI consists of three components, namely data manage-
ment, modeling and simulation environment, and software and system realization.
Each component enables specific functions necessary for a true digital twin, and the
facilitation of these functionalities are explored concerning R/V Gunnerus. Next, a
digital twin of R/V Gunnerus is considered as a pedagogical tool, and a lifecycle for
digital twins is suggested to include students in all life phases of a digital twin.

As an example of how a typical digital twin application can be used in marine en-
gineering education, a case study revolving condition-based maintenance through
means of artificial neural networks (ANNs) is conducted. In the case study, a frame-
work for anomaly detection for predictive maintenance is developed, which makes
it possible for students to create, implement, and test data-driven algorithms on a
selection of R/V Gunnerus systems. The framework is twofold, where the first part
consists of a modeling framework made with Python for developing recurrent neu-
ral network (RNN) models. The second part consists of creating a web application
for uploading and visualizing model predictions and detected anomalies in a real-
time environment. The web application is made with a frontend in React through
JavaScript, a backend in Flask through Python, and a database through PostgreSQL
for storing vessel data. The web application is launched into development through
the cloud platform Heroku. Together, the modeling part and web application form
an anomaly detection framework for creating, implementing, and testing sequential
ANN models, and successively applying the developed models to a practical use-case.

Both the modeling framework and the web application are tested against a simulated
error that has been provoked on the exhaust signals on one of the main engines on
R/V Gunnerus, where the temperatures rise above the standard operation maxima.
Through the modeling framework, a simple model based on a Long Short-Term
Memory (LSTM) network – which is a type of RNN – was created as an example to
verify functionality. When testing the model through the modeling framework, the
prediction model managed to detect 95.8 % of the simulated error interval. When
the model was uploaded and tested on the web application, a similar performance
was achieved.

Faculty of Engineering Science and Technology
Department of Marine Technology

iv

Sammendrag

Sammendrag
Denne rapporten undersøker potensialet for bruk av digitale tvillinger i utdannings-
øyemed for ingeniørstudenter gjennom NTNUs forskningsfartøy FF Gunnerus. Sam-
tidig som digitale tvillinger blir mer og mer relevant for å øke kunnskapen om et fartøy
eller system under operasjon, bør man evaluere nytteverdien av digitale tvillinger
også for utdanning. I denne oppgaven foreslås en infrastruktur for en digital tvilling
av FF Gunnerus, samt hvordan en digital tvilling kan være en nyttig ressurs for
utdanningen av mariningeniører. Dette eksemplifiseres i en casestudie basert på sig-
naldata fra FF Gunnerus. Arbeidet i denne rapporten har utgangspunkt i en rekke
tidligere initiativer knyttet til en digital tvilling av FF Gunnerus, og formålet er å
fremme videre arbeid mot en slik tvilling.

Definisjonen av en digital tvilling varierer med formål og anvendelsesområde. Der-
for er det nødvendig å knytte ulike definisjoner opp mot en digital tvilling av FF
Gunnerus. Fra et akademisk ståsted er ønsket funksjonalitet avhengig av disiplin.
For å være en ressurs for mange ulike disipliner trenger en digital tvilling et ro-
bust fundament. Basert på en litteraturstudie rundt definisjoner og bruk av digital
tvillinger foreslås en digital tvilligsinfrastruktur som byggestein for en fullverdig dig-
ital tvilling. Infrastruktur består av tre deler, nemlig databehandling, modellerings-
og simuleringsmiljø, og program- og systemvare. Hver komponent legger til rette
ulike funksjoner som gjennomgås i rapporten. Videre diskuteres verdien av en digital
tvilling som pedagogisk verktøy, og en livssyklusmodell for digitale tvillinger foreslås
for å inkludere studenter i en større del av det teknologiske handlingsrommet knyttet
til digitale tvillinger.

Gjennom en casestudie eksemplifiseres et typisk brukseksempel av en digital tvilling
til utdanning av mariningeniører. Casestudien tar for seg tilstandsbasert vedlike-
hold ved hjelp av kunstige nevrale nettverk (ANNs). Gjennom casestudien utvikles
et rammeverk for avviksdetektering. Rammeverket kan anvendes som et predik-
tivt vedlikeholdsverktøy. Gjennom rammeverket har studenter mulighet til å lage,
implementere og teste data-drevne algoritmer på utvalgte systemer på FF Gun-
nerus. Rammeverket er todelt, hvor den ene delen omhandler et modelleringsverktøy
utviklet i Python for utvikling av tilbakematede nevrale nettverksmodeller (RNNs).
Den andre delen tar for seg utvikling av en webapplikasjon hvor man kan laste opp
trente modeller og visualisere predikert data og detekterte avvik i et sanntidsmiljø.
Webapplikasjonen er utviklet med en React frontend skrevet i JavaScript, en Flask
backend skrevet i Python og et databasesystem for lagring av skipsdata gjennom
PostgreSQL. Webapplikasjonen publiseres gjennom skytjenesten Heroku. Både mod-
elleringsverktøyet og webapplikasjonen testes ved å implementere en testmodell gjen-
nom modelleringsverktøyet. Testmodellen er en type RNN kjent som lang kortsiktig
hukommelsesnettverk (LSTM). Modellen testes mot en simulert feil på to av ekso-
sutløpene på den ene hovedmotoren. Feilen gjør at eksostemperaturen stiger over
forventet maksverdi over et gitt intervall. Gjennom testing klarer modelleringsverk-
tøyet å detektere 95,8 % av de simulerte feilene. Etter å ha lastet opp modellen til
webapplikasjon oppnådde sanntidsvisualiseringen liknende prestasjon, som forventet.

Faculty of Engineering Science and Technology
Department of Marine Technology

v

Contents

Contents
MSc Thesis Description i

Preface iii

Abstract iv

Sammendrag v

List of Figures viii

Nomenclature ix

1 Introduction 1
1.1 Project Motivation . 1
1.2 Objectives . 2
1.3 Scope and Delimitations . 3
1.4 Report Outline . 4

2 Background 6
2.1 R/V Gunnerus . 6
2.2 Previous Initiatives . 7

2.2.1 Ship Technology Platform . 7
2.2.2 Student Activity . 8

2.3 Access to Vessel Data . 8
2.4 Digital Twin Definition . 9

2.4.1 A property-driven approach to digital twins 12

3 Digital Twin Infrastructure for R/V Gunnerus 13
3.1 Digital Twin Properties for R/V Gunnerus . 13
3.2 Infrastructure Proposition . 14
3.3 Data Management . 15

3.3.1 Availability and data storage . 16
3.3.2 Standardization . 18
3.3.3 Security and access . 18
3.3.4 Preprocessing and filtering . 19
3.3.5 Analytics and learning . 19
3.3.6 Modeling and simulation environment . 20

3.4 Co-Simulation . 21
3.5 Open Simulation Platform . 21
3.6 Software and System Realization . 21

4 Digital Twins in Marine Engineering Education 23
4.1 Digital Twin Lifecycle . 24

5 Case Study Problem Formulation 27

6 Anomaly Detection for Predictive Maintenance 29
6.1 Predictive Maintenance . 29
6.2 Artificial Neural Networks . 29
6.3 Long Short-Term Memory Networks . 31
6.4 Anomaly Detection . 34

7 Modeling API for Anomaly Detection 35
7.1 Concept and Methodology . 35
7.2 Functionality . 36

7.2.1 file_management.py . 37
7.2.2 memory.py . 38
7.2.3 modeling_funcs.py . 38
7.2.4 plotting_funcs.py . 39
7.2.5 model.py and model_example_lstm.py . 40

7.3 Results . 41
7.4 Improvements to the API . 45

Faculty of Engineering Science and Technology
Department of Marine Technology

vi

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/file_management.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/memory.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/modeling_funcs.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/plotting_funcs.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/modeling/model.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/modeling/model_example_lstm.py

Contents

8 Web Application for Anomaly Detection 46
8.1 Concept and Methodology . 46
8.2 Flask Backend . 49
8.3 React Frontend . 51

8.3.1 Startpage.js . 52
8.3.2 Header.js . 52
8.3.3 Upload.js . 52
8.3.4 ModelSpecifications.js . 53
8.3.5 ChartDashboard.js . 54
8.3.6 ChartVisuals.js . 54
8.3.7 Chart.js . 55
8.3.8 About.js . 56

8.4 Launching the Web Application to Heroku . 56
8.5 Results . 57
8.6 Improvements to the Web Application . 58

9 Discussion 60

10 Conclusion 60

11 Recommendations for Further Work 61

References 63

Appendices I

A User Manuals for Anomaly Detection Framework I
A.1 Access to Network Drive . I
A.2 Python, pip, and Virtual Environments . I
A.3 Modeling API for Anomaly Detection . II

A.3.1 Installing the project . II
A.3.2 Using the modeling API . III

A.4 Web Application for Anomaly Detection . III
A.4.1 Flask backend . III
A.4.2 React frontend . IV

B Cloud Computing Services VI
B.1 Cloud Computing Models . VI
B.2 Comparison of Cloud Service Providers . VII
B.3 Edge Computing . IX
B.4 Big Data and Storage Considerations . IX

C Data Ecosystems XI
C.1 Comparing Kognifai and Veracity . XII
C.2 Alternative Approaches . XIII
C.3 Discussing the use of Data Ecosystems . XIII

D Prediction Results for Second Exhaust Temperature Signal XIV

E Additional Web Application Results XV

F Supplementary Code XIX
F.1 Flask Application File . XIX
F.2 Removing False Anomaly Outliers . XXV

Faculty of Engineering Science and Technology
Department of Marine Technology

vii

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Startpage.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Header.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Upload.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/ModelSpecifications.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/ChartDashboard.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/ChartVisuals.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Chart.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/About.js

List of Figures

List of Figures
1.1 3D model renderings of R/V Gunnerus and a virtual copy 1
2.1 R/V Gunnerus at sea . 7
2.2 Visual models in Sesam Insight . 8
2.3 Network drive package directories . 9
2.4 Phases of a product lifecycle and marine vessel lifecycle 10
2.5 Digital service needs space and solution space and their interactions 11
2.6 Relating hindsight and foresight information to decision-support 12
3.1 Proposed digital twin infrastructure . 15
3.2 Data sophistication progression for ship operations 16
3.3 Data management functions hierarchy . 16
3.4 Common signal data challenges . 19
3.5 Procedural data chain leading to analytics and learning 19
3.6 Software and system realization . 22
4.1 Digital twin lifecycle . 25
4.2 Digital twin conceived during operation phase . 26
4.3 Digital twin lifecycle predating asset . 26
5.1 Modeling API and web application interaction . 28
5.2 Simulated error on exhaust temperatures. 28
6.1 A simple ANN . 30
6.2 RNN feedback loop . 31
6.3 Repeating LSTM module . 32
6.4 LSTM module with labels . 33
7.1 Modeling API directory structure . 36
7.2 Model training history . 42
7.3 Prediction plot . 43
7.4 Enhanced prediction plot . 43
7.5 Distribution plot of error . 44
7.6 Time series anomaly plot . 44
7.7 Time series anomaly plot zoomed . 45
8.1 HTTP request/response . 47
8.2 Full stack communication channels . 48
8.3 Web Application directory structure . 49
8.4 Table in PostgreSQL database . 50
8.5 Web application start page . 52
8.6 Model specifications . 53
8.7 Completed model selection process . 54
8.8 Web application data visualization . 56
8.9 First anomalies detected in web application . 57
8.10 Last anomalies detected in web application . 58
8.11 Conceptual idea of adding an event logger . 59
A.1 Successful launch of web application . V
B.1 Overview of cloud computing . VI
B.2 Categories and domains of XaaS . VII
B.3 Centralized cloud server connected to multiple edge nodes IX
B.4 V 5 of big data characterization . X
C.1 Company mediator for distributing XaaS through a data platform XI
D.1 Prediction plot for second exhaust temperature . XIV
D.2 Distribution plot of error for second exhaust temperature XIV
D.3 Time series anomaly plot for second exhaust temperature XIV
E.1 Example of erroneous file uploads . XV
E.2 Hover upload help . XV
E.3 Selecting system on R/V Gunnerus . XV
E.4 Selecting input and predicted output signals . XVI
E.5 Automatic configuration when using example files . XVI
E.6 Signal selection for charting . XVII
E.7 Toggling series . XVII
E.8 Error display . XVIII
E.9 About page . XVIII

Faculty of Engineering Science and Technology
Department of Marine Technology

viii

Nomenclature

Nomenclature
Abbreviations and Acronyms

ANN Artificial Neural Network

API Application Programming Interface

AZ-PM Azimuthing Permanent Magnet thruster

CBM Condition-Based Maintenance

CPS Cyber-Physical System

CSS Cascading Style Sheets

DP Dynamic Positioning

DTI Digital Twin Infrastructure

HTTP Hyptertext Transfer Protocol

IoT Internet of Things

KM (CM) Kongsberg Maritime (Commercial Marine)

LSTM Long Short-Term Memory

MTTF Mean Time to Failure

RNN Recurrent Neural Network

SQL Structured Query Language

UROP Undergraduate Research Opportunities Program

V5 Volume, Velocity, Variety, Veracity, Value

VIS Vessel Information System

WSGI Web Server Gateway Interface

Faculty of Engineering Science and Technology
Department of Marine Technology

ix

1. Introduction

1 Introduction
The following report is part of a master’s thesis in marine technology at the Norwe-
gian University of Science and Technology (NTNU). More specifically, the report is
limited to the field of marine cybernetics. The objective of the thesis is to explore
the concept of marine digital twins through NTNU’s research vessel, R/V Gunnerus.
Digital twins are often regarded in an industrial context, but the topic of marine
digital twins is highly relevant for academic purposes as well, and the development
of digital twin technologies rely on both academic and industrial efforts.

This report concerns the academic use of marine digital twins, especially related to
the education of marine engineering students. Marine digital twins in engineering
education is a topic continued from an Undergraduate Research Opportunity Pro-
gram (UROP) started in 2017, which has had several different activities related to
a digital twin of R/V Gunnerus (Asbjørnslett et al., 2019). This thesis represents a
continuation of these preceding activities. A pre-project carried out during the fall
of 2019 lay the foundation for this thesis, as the pre-project revolved around defining
a digital twin infrastructure for R/V Gunnerus. Implied by the name of this report,
the concept of a digital twin infrastructure persists in this thesis as well. What a
digital twin infrastructure entails, and why it is used in the context of marine digital
twins for academic purposes, will be explored in the report.

Figure 1.1: Rendering of R/V Gunnerus and a virtual copy.

1.1 Project Motivation
The motivation from this thesis comes from previous initiatives related to the de-
velopment of an R/V Gunnerus digital twin. Through several projects, engineering
students have been included in digital twin projects alongside professors and indus-
try partners. The projects have shown the value of including students in research
related to new technological concepts, which have been beneficial for both students,
academia, and industry alike. The students have gained valuable insight into relevant
technologies that are not usually lectured in elementary-level marine courses, which
can aid the transition into a competitive, technologically driven working environment
after finishing the education. Academia can benefit from the perspective of students,
both related to developing new ideas, but also related to how digital twins can be
used in education, and whether or not the topic of digital twin captures the interest
of students or not. For industry, working on company interests alongside resources
from the academic field – most notably doctorates and employees – is beneficial as
there are no competitive factors between the two parts. Also, collaborating with

Faculty of Engineering Science and Technology
Department of Marine Technology

1 of 67

1.2 Objectives

academia and students is vital for spreading a company’s reputation.

The thesis is intended to motivate similar work for other students. Both when
it comes to helping develop resources for digital twins but also learning about new
digital technologies through practically using digital twins. From previous initiatives,
several use-cases for digital twins have been proposed (Asbjørnslett et al., 2019). The
case study in this report has been inspired by these proposals and their intention,
which is to use digital twins to aid in the education of engineering students.

1.2 Objectives
The objectives have been outlined in the preliminary thesis description. This report
will present use-cases for a digital twin of R/V Gunnerus for educational purposes.
More specifically, the use of digital twins in the education of marine engineering
students will be in focus. To present use-cases for such a digital twin, it is necessary
also to investigate the definition and properties of digital twins and apply these
to the specific case of R/V Gunnerus. An objective of the project is to promote
further development of an R/V Gunnerus digital twin through theoretical work and
developing solutions. In addition, a case study is carried out as an example of how
functionality commonly seen in digital twins can be used in engineering education.
The case study is related to data management, which is one of the core infrastructure
components. In the case study, the goal is to create a framework for real-time
anomaly detection on R/V Gunnerus systems through a data-driven approach. The
framework will include a modeling environment for developing data-driven models
and a web application for implementing, testing, and visualizing the results of the
anomaly detection model. The objectives are formalized in the work description
below.

1. Perform a background and literature review to provide information and relevant
references on:

• Digital twin definitions and use-cases in a maritime context, focusing on
the facilitation of engineering education.

• Previous initiatives related to R/V Gunnerus as a technological platform
and access to vessel data.

• Write a list with abbreviations and definitions of terms and symbols rel-
evant to the literature study and project report.

2. Propose a digital twin infrastructure for R/V Gunnerus, serving as a foundation
for continued digital twin development.

3. Present an R/V Gunnerus digital twin as a tool for engineering education,
considering pedagogical value, different use-cases, and the digital twin lifecycle.

4. Present a case study where digital twin-related solutions are used to create
a tool for engineering education at the Institute of Marine Technology. More
specifically, the case study consists of creating a framework for predictive main-
tenance on R/V Gunnerus, which allows implementing and testing data-driven
anomaly detection models.

5. Properly document the case study for readability and reusability and make all
source code available through GitHub repositories. The web application should
be launched into production for demonstration purposes.

Faculty of Engineering Science and Technology
Department of Marine Technology

2 of 67

1.3 Scope and Delimitations

1.3 Scope and Delimitations
As explored in Section 3, the proposed digital twin infrastructure consists of three
main components, namely data management, modeling and simulation environments,
and software and system realization. Initially, when the pre-project carried out dur-
ing the fall of 2019 was concluded, this thesis was intended to further the develop-
ment of the digital twin infrastructure components. However, as learned through
the pre-project, there are several relevant industry-related initiatives currently being
developed, which could easily make the works from a single master’s thesis futile.
Therefore, it was decided to focus on applying potential digital twin functionality to
a specific case study instead, in addition to exploring the use-cases for the education
of marine engineering students.

A relevant topic that arises when considering machine learning and big data is data
quality. Other than having the onboard systems maintained by the vessel vendor,
the transmitted data from the vessel utilized for the case study is not verified to
any extent. Thus, it is assumed that the data used in the case study is a realistic
representation of the vessel’s actual, in-operation state. In reality, this may not be
the case, but since validating data from the transmitted signals is time-consuming
and demands a thorough knowledge of the relevant hardware and software systems,
this is disregarded in the project scope.

Further, only data from R/V Gunnerus’ main engines will be used in the case study.
A simulated error was introduced to the exhaust signals of one of the main engines,
causing the temperatures to rise above the standard operation maxima, making the
main engines useful for testing purposes. The case study functionality will be tested
by creating a sequential model for predicting values on this erroneous data. The
intention of the example model is not to perform as best as possible, but to per-
form sufficiently to detect anomalies successfully. The model should be as simple as
possible to demonstrate model capabilities, make the model implementation com-
prehensible, and save time on tuning the model.

The web application in the case study will be developed without any pre-existing
knowledge of web development. This entails that a part of the thesis work revolves
around learning the necessary languages and tools to fulfill the intended purposes of
the application. Resources that will be used for the case study without pre-existing
knowledge include:

• React library (with Redux, component lifecycle, and document object nota-
tion),

• Python Flask,

• WebSockets with SocketIO and Flask-SocketIO,

• TensorFlow and Keras,

• Database management with PostgreSQL and Flask SQL Alchemy, and

• launching a web application to Heroku through the gunicorn Web Server Gate-
way Interface (WSGI), and

• styling through cascading style sheets (CSS).

Faculty of Engineering Science and Technology
Department of Marine Technology

3 of 67

1.4 Report Outline

Familiar resources include:

• Python (and the modules Pandas, Numpy, and matplotlib, which are used
throughout the case study),

• vanilla JavaScript,

• basic Hypertext Markup Language (HTML), and

• GitHub.

The resource terms are not defined here, but rather in their respective part of the
case study.

1.4 Report Outline
This section is intended to give an overview of the overall structure of the report and
its contents, and what the purpose of each section is.

2. Background:

In the background, necessary definitions of digital twins are explored, and a
property-driven approach to digital twins is presented. The background is, to
a large extent, based on the work carried out in the pre-project during the fall
of 2019.

3. Digital Twin Infrastructure:

Here, a foundation for a digital twin of R/V Gunnerus is presented through
a proposed digital twin infrastructure. The section documents the pre-project
results. These results are used as a guideline throughout the thesis. This
section is also based on the work carried out in the pre-project.

4. Digital twins in marine engineering education:

In this section, digital twins are seen from an education perspective, regarding
the digital twin as a pedagogical tool, presenting some specific use-cases. A
digital twin lifecycle is also suggested to include students in all life phases of a
digital twin.

5. Case study problem formulation:

Here, the case study is properly presented. This is done right before the sections
related to the actual case study to make the choices taken during the case study
more clear.

6. Anomaly detection for predictive maintenance

This section introduces the theoretical background for the case study. The con-
cept of condition-based, predictive maintenance is explored and contextualized
through artificial neural networks. The recurrent neural network architecture
Long Short-Term Memory (LSTM) is presented in-depth, as this architecture
will be used as a sequential model example implemented as a proof of concept
for the case study. The section is concluded by presenting the method for
detecting anomalies.

7. Modeling API for anomaly detection:

Faculty of Engineering Science and Technology
Department of Marine Technology

4 of 67

1.4 Report Outline

This is the first part of the case study, where a modeling framework is de-
veloped. The section begins with the concept and methodology used for the
modeling API before exploring the actual API functionality and structure. The
example Long Short-Term-Memory (LSTM) model is also implemented here.
Then, the example model is tested on the simulated error data, and relevant
results are presented. The section concludes with potential improvements in
the modeling API.

8. Web application for anomaly detection:

This is the second part of the case study. Similarly, this section begins with
the concept and methodology used to implement the full-stack web application.
Then, the implemented Flask backend and React frontend are discussed sepa-
rately. For the backend, the Flask application file is discussed. For the React
frontend, each developed component and its functions are discussed. Next, the
results of uploading and testing the LSTM model on the web application are
given, before the section is concluded by discussing potential improvements to
the web application.

9. Discussion:

Since the results of the anomaly detection framework are discussed in their
respective sections, the discussion revolves around how the case study brings
value to the advancement of an R/V Gunnerus digital twin.

10. Conclusion:

Conclude the report content and results.

11. Further work:

Recommend further work on the topics explored in the report.

After showing the references used, some additional material is given in the following
appendices:

A User manuals for anomaly detection framework:

Necessary user manuals for the anomaly detection framework, including how
to

• get access to the network drive containing vessel data,

• install Python, use the pip package installer, and use virtual environ-
ments,

• how to install the modeling API on a local machine, and

• how to set up a production environment of the web application.

get access to the network drive containing data, using , how to

B Cloud computing services:

Extract from the pre-project carried out in the fall of 2019 discussing cloud
computing services, which is relevant for the discussion of the proposed digital
twin infrastructure.

Faculty of Engineering Science and Technology
Department of Marine Technology

5 of 67

2. Background

C Data ecosystems:

Extract from the pre-project discussing data ecosystems, which is relevant for
the discussion of the proposed digital twin infrastructure.

D Supplementary code:

Includes Flask application file and algorithm for removing neighboring outliers
in the modeling API.

E Prediction results for second exhaust temperature signal:

Provides plots of prediction results for the second exhaust temperature signal
not included in the results section of the modeling API in Section 7.3.

F Additional web application results:

Provides snapshots of web application functionality not included in the React
frontend description in Section 8.3.

2 Background
It is essential to understand the importance of digital twins and why digital twins
are likely to become much-used resources for both industry and academia. As the
Internet of Things (IoT) has become a household term, and data has become a
commodity for a wide range of applications – both industrial and domestic – digital
twins fall into the category of data-driven tools. With the increasing availability and
resolution of data, both in a historical and real-time context, a digital twin enables
a wide variety of use-cases based on analytics and data science. A digital twin could
potentially follow an asset throughout its lifecycle, enhancing asset performance,
functionality, and risk awareness in all phases of operation.

In addition to having value for industry and academic research within many fields,
which is the conventional approach to digital twins, an R/V Gunnerus digital twin
can be used for engineering education as well. As a digital tool, an R/V Gunnerus
digital twin can help prepare students for the digitalized industry of the future,
and provide a more practical approach to theoretical concepts through real-world
applications and visualization of systems and operations.

This section seeks to give an overview of digital twin definitions and relate different
definitions to the specific case of an R/V Gunnerus digital twin through literary
review. As such, it is necessary to briefly present R/V Gunnerus and previous initia-
tives related to an R/V Gunnerus digital twin. Additionally, the concept of a digital
twin infrastructure for R/V Gunnerus is explored. The proposed infrastructure is
viewed in light of the digital twin use-cases and subsequent case study following this
section.

2.1 R/V Gunnerus
R/V Gunnerus is a multi-purpose research vessel owned and operated by NTNU,
contributing to research in the fields of biology, technology, geology, archaeology,
oceanography, and fisheries research. The vessel was originally delivered in 2006 with
a length overall of 31.25 m and a beam of 9.60 m (NTNU, 2006). The research vessel
is seen in Figure 2.1. During the spring of 2019, the midship section was elongated1

1The elongation was managed by Polarkonsult, also responsible for the complete vessel design.

Faculty of Engineering Science and Technology
Department of Marine Technology

6 of 67

2.2 Previous Initiatives

by 5 m. The propulsion system is diesel-electric with three generators, originally
consisting of two fixed pitch, variable speed propellers, and a bow tunnel thruster.
The vessel was retrofitted in 2015 when two azimuthing permanent magnet thrusters
(AZ-PM) developed by former Rolls-Royce Commercial Marine2 were installed.

Figure 2.1: R/V Gunnerus at sea. Courtesy of Fredrik Skoglund.

Currently, research is carried out on R/V Gunnerus through expeditions, imply-
ing that the vessel’s value is extracted through in-operation activities. Since R/V
Gunnerus is a physical entity, the number of concurrent tasks is strictly limited –
the vessel can only be at one location at a time. By establishing a digital twin of
the vessel, the application space increases significantly through data-driven analyt-
ics, simulations, and operation insight. A digital twin can be used for monitoring,
diagnostics, and prognostics (Alam and El Saddik, 2017; Zhang, 2019), in essence,
dealing with situations related to the present, past, and future of the vessel.

2.2 Previous Initiatives
Through initiatives at NTNU in Trondheim and Ålesund, some progress towards
establishing an R/V Gunnerus digital twin has already been made. This section is
intended to summarize these previous initiatives. Many of the initiatives described
here are mentioned in Asbjørnslett et al. (2019).

2.2.1 Ship Technology Platform
Before the vessel was retrofitted in 2015, sea trials were conducted. The purpose
of the sea trials was to document speed and maneuverability and generate data
for comparing full-scale measurements with measurements from model tests and
simulations (Selvik et al., 2015). In 2016, a full-scale test of dynamic positioning
(DP) algorithms was carried out on R/V Gunnerus by Skjetne et al. (2017).

The seakeeping data from the sea trials were later used for sea state estimation by
both Nielsen et al. (2018) and Brodtkorb et al. (2018). The effect of changing the
propulsion system to the AZ-PM thrusters was investigated in the Virtual Prototyp-
ing of Maritime Systems and Operations (ViProMa) project by Skjong et al. (2018).

2Rolls-Royce Commercial Marine (CM) was acquired by Kongsberg Maritime (KM) in 2019.
The integrated service branch is now known as KM CM (Kongsberg Maritime, 2019).

Faculty of Engineering Science and Technology
Department of Marine Technology

7 of 67

2.3 Access to Vessel Data

During this project, Coral was developed, which is an academic co-simulation soft-
ware based on the Functional Mock-up Interface (FMI) standard. Similarly, Hatledal
et al. (2018) at NTNU Ålesund developed the software package FMI4J, enabling co-
simulation based on the FMI standard on a Java Virtual Machine. Many of the
systems onboard R/V Gunnerus have been modeled in MATLAB’s Simulink, such
as the AZ-PM thrusters, hydrodynamic models, and DP algorithms (Zhang, 2019).

2.2.2 Student Activity
An Undergraduate Research Opportunities Program (UROP) was launched at the
Department of Marine Technology in the spring of 2018, where master students per-
formed preliminary work towards a digital twin of R/V Gunnerus. A prototype
development carried out during the summer of 2018 yielded two important contribu-
tions towards an R/V Gunnerus digital twin, namely geometrical 3D models of the
ship and structure – created in Siemens NX – and progress towards standardizing
vessel signals. The standardization was carried out according to ISO 19848 Annex
C through the naming rules of DNV GL–VIS (DNV GL, 2018), where VIS is DNV
GL’s Vessel Information Structure. The naming rules are compatible with DNV GL’s
product model (PMod) for describing vessels. The project also utilized some aspects
of DNV GL’s data platform Veracity, mostly related to storage, hosting, and integra-
tion of applications. Sesam Insight3 was used as a digital twin viewer, integrating the
visual models, PMod for R/V Gunnerus, signal data and metadata, and component
attributes in Siemens Active Workspace.

(a) Generator set. (b) Geometric model. (c) Structure model.

Figure 2.2: Visualization of geometric models, taken as screenshots in DNV GL’s
Sesam Insight.

2.3 Access to Vessel Data
The AZ-PM system has been logging data since installation in 2015 through the
KM CM products Ship Intelligence and Equipment Health Monitoring (EHM)4 (Ok-
savik, 2019). Some of the services have been less reliable, but most of the data
from the thrusters are available through local storage space. During the fall of 2019,
a 4G modem was installed on the vessel to transmit data packages from the ves-
sel continuously (Holmeset, 2019). The modem provides a ship-to-cloud connection
to an Azure data lake5 administered by Kongsberg through the Acon Automation

3Sesam Insight is a web-based application developed by DNV GL, intended to improve commu-
nication and information flow in offshore classification projects (DNV GL, 2019a).

4Ship Intelligence and EHM was formerly known as Health and Monitoring System (HeMoS),
which changed in the mid 2010s (Oksavik, 2019).

5A data lake is used to store raw, unstructured data. This differs from databases and data
warehouses, which require structured data.

Faculty of Engineering Science and Technology
Department of Marine Technology

8 of 67

2.4 Digital Twin Definition

System (Holmeset, 2019; Oksavik, 2019).

Currently, 19 packages related to the AZ-PM logging system are transmitting data.
These packages are connected to individual systems or sub-systems, providing infor-
mation from the thrusters and DP system, as well as some data from weather and
electric switchboard elements. For example, the packages provide Seapath data from
the thrusters, motion reference units (MRUs), and GPS. Also, one of the packages
transmit data from each of the three Scania diesel generators through Scania’s EMS
control system for fuel provision and monitoring (Scania, 2011). Currently, the fre-
quency of each signal is 1 Hz and is divided into comma-separated value (CSV) files
with 10-minute intervals. The data is uploaded continuously to the Azure data lake
through the modem once per hour. The data is synchronous, where each signal is
collected with the same timestamp, removing the need for interpolating values.

During the spring of 2020, a network drive was set up by NTNU Ålesund, which
receives data from the Azure data lake (Holmeset, 2019). Thus, the network drive is
updated at the same frequency as the Azure data lake. However, the packages are
transmitted somewhat at random, which makes it difficult to explore any close to
real-time applications considering both transmission latency and irregularity. This
network drive is accessible for all employees and students at NTNU. Access to the
network drive can be achieved by following the user manual given in Appendix A.1.
After connecting to the network drive, the different packages transmitted from the
vessel are available as the separate directories shown in Figure 2.3.

Figure 2.3: Network drive directories representing the different data packages trans-
mitted from R/V Gunnerus.

The network drive will be the source of data used for the case study in this project.
Expressly, the use of data is limited to the Scania diesel generators.

2.4 Digital Twin Definition
Its name can perceive the basic concept of a digital twin; through a virtual realization,
a digital twin is intended to replicate and complement a real, physical asset as closely
as possible. However, having different types of digital twins with different domains
of application has resulted in a surplus of definitions that vary considerably. The
following section explores some relevant definitions and their implications, which will
serve as the foundation for formulating the R/V Gunnerus digital twin infrastructure

Faculty of Engineering Science and Technology
Department of Marine Technology

9 of 67

2.4 Digital Twin Definition

in Section 3.

The term Digital Twin was introduced in 2002 as a “conceptual ideal for [product
lifecycle management (PLM)]” by Michael Grieves, and is defined by Grieves and
Vickers (2017) as “a set of virtual information constructs that fully describes a po-
tential or actual physical manufactured product . . . ”. The definition provides a gen-
eral understanding of the digital twin concept, highlighting the connection between
physical space and virtual space. The definition of Grieves and Vickers (2017) is
motivated by the PLM aspect, suggesting that a digital twin should be connected to
the physical system throughout its lifecycle. At all stages6, the digital twin will mir-
ror a real, physical asset. A general product lifecycle is seen in Figure 2.4, together
with a common lifecycle representation for marine vessels. The individual phases of
a lifecycle present different needs and challenges, indicating that a complete digital
twin must adapt dynamically to the product lifecycle. Due to the fragmentation of
the maritime industries, different value chain elements affecting different parts of the
lifecycle must also adapt to the introduction of digital twins (Os, 2018). This will
require a paradigm shift in the collaboration between different participants, such as
the shipyard, owner, and class societies performing approval and inspection. Intro-
ducing a digital twin lifecycle of its own can increase the understanding of how a
digital twin can support the PLM, and such a lifecycle is proposed in Section 4.1
from an academic perspective.

PRODUCT LIFECYCLE

CONSTRUCTION

OPERATION

SCRAPPING

DESIGN

PRODUCTION

OPERATION

DISPOSAL

CREATION

MARINE VESSEL LIFECYCLE

Figure 2.4: Phases of a product lifecycle, according to Grieves and Vickers (2017),
and corresponding elements of a marine vessel lifecycle.

Through a simulation-based system engineering approach by NASA in 2010, the
first formal definition of a digital twin was to provide “an integrated multi-physics,
multi-scale, probabilistic simulation of a vehicle or system that uses the best available
physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin.
It is ultra-realistic and may consider one or more important and interdependent vehi-
cle systems” (Shafto et al., 2010). This definition mentions more specific attributes
of a digital twin than the definition of Grieves and Vickers (2017), although it is
specialized towards aeronautical applications. It is common to use the term digital
twin for advanced modeling and simulation of a system, which marks a conceptual
misunderstanding of what a digital twin represents – a digital model representation
with simulation capabilities is not sufficient to constitute a digital twin (Cabos and
Rostock, 2018; Zhang, 2019). To represent a digital twin, the simulations must be

6In the creation phase, a digital twin may be a precursor to its real, physical counterpart, pro-
viding valuable information for the production phase, when the physical asset is realized, providing
the standard for the virtual asset.

Faculty of Engineering Science and Technology
Department of Marine Technology

10 of 67

2.4 Digital Twin Definition

able to replicate the exact behavior of the physical asset, in contrast to only using
synthetic data.

In different engineering fields, the desired properties and limitations of a concept are
related to its intended purpose and functionality. For digital twins, this implies that
the properties of, for instance, a digital twin of a research vessel varies substantially
from a commercial process plant digital twin. These differences relate to the intended
purpose of the digital twin and the corresponding functions needed to fulfill this
purpose. As developing digital twins can be both expensive and time-consuming,
the digital twin must add value to the physical asset to justify investment costs.
Thus, for digital services – such as a digital twin – there should be preexisting,
quantifiable utilities and benefits of these services. Such digital services may be
embodied by a digital twin, which have inherently different purposes and functions
based on the area of application, resources, competencies, and intended degree of
realism (Cabos and Rostock, 2018). A way of characterizing purposes and related
functions can be achieved by looking at the needs space and solution space of digital
service development (Erikstad, 2019), illustrated in Figure 2.5. The asset control
levels forming the foundation of the needs space can be categorized as strategic,
tactical, and operational (Macchi et al., 2018).

ECONOMICS

RISK AND SAFETY

ENVIRONMENT

DECISION-MAKING

PERFORMANCE

NEEDS SPACE

QUANTIFY VALUE

IDENTIFY SOLUTION

ARTIFICIAL INTELLIGENCE

SENSORS

BIG DATA

REAL-TIME DIGITAL TWINS

ONLINE MONITORING

SOLUTION SPACE

Figure 2.5: Digital service needs space and solution space and their interactions,
inspired by Erikstad (2019), where the proposed needs parameters are typical for
maritime applications.

As highlighted by Erikstad (2019), large quantities of data from numerous sensors
may be collected by vendors without knowing how to utilize the data, essentially
making data collection and storage a trivial activity. Therefore, it is necessary to
identify the needs space and evaluate these needs against available solutions. By
developing a tangible needs space for a known area of application, it is possible
to identify potential solutions that can be achieved through digital services. Con-
secutively, the value of these solutions should be quantified to decide whether to
implement them or not. The needs space can consist of unresolved or unconsidered
problems that become resolvable through digital services or optimizable problems
that can be improved through digital services. The same process can be carried out
for digital twins to prevent unnecessary investment, such as creating an ultra-realistic
model – following the principles of Shafto et al. (2010) – in a situation where the
same results could be accomplished with a less detailed model.

In addition to the introduction of needs space and solution space for digital services,

Faculty of Engineering Science and Technology
Department of Marine Technology

11 of 67

2.4 Digital Twin Definition

Erikstad (2019) explores the temporal aspects of service scope and their interaction
by emphasizing information in hindsight and foresight. Figure 2.6 illustrates how
temporal aspects can be used to gain insight for decision-support. The temporal
component is important for distinguishing digital twins from digital models and
model simulations. This is emphasized in Erikstad (2018), where a digital twin is
defined as “a digital model capable of rendering state and behavior of a unique real
asset in (close to) real-time”, consisting of the five intrinsic characteristics of identity,
representation, state, behavior, and context.

HINDSIGHT INSIGHT FORESIGHT

DECISION

UNDERSTAND CURRENT

OPERATION FROM PAST

EXPERIENCES

UNDERSTAND CONSEQUENCES

OF ALTERNATIVE ACTIONS ON

FUTURE PERFORMANCE

Figure 2.6: Relating hindsight and foresight information to decision-support, cour-
tesy of Erikstad (2019).

The concept displays how decision-making can be affected through insight into past
experiences and knowledge of the consequences of different future actions. This
principle is especially valuable for in-operation purposes, as it enables adding value to
the operational context of an asset through somewhat real-time information feedback
and feedforward. Cyber objects analyzing and learning from measured data before
feeding it back to real systems are known as Cyber-Physical Systems (CPS) (Alam
and El Saddik, 2017). To function properly, the temporal latency for CPS would have
to be sufficiently low. Bridging the gap between real-time applications and delay-
tolerant services is an important aspect of CPS, attempted to be solved through
digital twins (Alam and El Saddik, 2017). The concept of extracting decision-making
insight during operation is the topic of the case study, where anomaly detection for
predictive maintenance will be implemented in a real-time environment.

2.4.1 A property-driven approach to digital twins
The definitions and considerations discussed in this section contribute to the concept
of digital twins to some extent. Since the purpose of a digital twin can be multi-
faceted based on the area of application, it is suggested that a digital twin should be
defined based on its properties rather than its intended purpose. From the presented
material, the following four properties are considered necessary for complete digital
twins:

1. Asset representation throughout the lifecycle.

A real, physical asset exists or will come into existence7, and has a mirrored
digital representation made to a sufficient degree of realism, satisfying the
purpose of the digital twin.

2. Simulation environments capable of using synthetic and measured data.

In addition to simulating with synthetic data, the digital twin must be capable
of applying and utilizing data from the vessel in simulations.

7When a digital twin is used in the conception phase of a lifecycle, the physical asset may be
realized at a later stage.

Faculty of Engineering Science and Technology
Department of Marine Technology

12 of 67

3. Digital Twin Infrastructure for R/V Gunnerus

3. Added value through virtual representation.

To justify investments, the digital twin must add tangible value to the real
asset. The value of the twin should also be evaluated periodically, updating
functionality and methodology based on experiences to best reflect the intended
purpose of the twin throughout its lifecycle.

4. Insight and decision-support through past knowledge and future predictions.

Through past and future learning with sufficiently low latency, the established
CPS is able to provide feedback based on past experiences or intervene based
on event prediction.

The four properties encapsulate the digital twin definitions explored through a property-
driven approach. They will be necessary for formalizing the R/V Gunnerus digital
twin infrastructure in Section 3.

3 Digital Twin Infrastructure for R/V Gunnerus
Based on the discussion of definitions and a property-driven approach in Section 2.4,
it is possible to formalize the concept of a digital twin infrastructure (DTI) for
R/V Gunnerus. By definition8, an infrastructure represents an underlying founda-
tion or basic framework for a system or organization. As such, an R/V Gunnerus
DTI should facilitate all of the intended purposes of an R/V Gunnerus digital twin.
Since a complete twin will serve a wide variety of purposes based on discipline and
academic interests, the underlying infrastructure should represent an enabler for sub-
functionality and applications. Initially, a sufficiently functioning subset of functions
may be supported with the flexibility to grow at later stages.

By basing a digital twin on an underlying infrastructure, it is possible to add func-
tionality without compromising the integrity of the twin. If changes are made to
components of the infrastructure, the changes should be compatible with the struc-
tural composition of the infrastructure to maintain functionality. This requires a
thorough description of how the digital twin is structured, optimally providing a set
of guidelines and rules for unobtrusively modifying the twin. Further, as seen in lit-
erature, digital twin definitions are often generalized, making concepts seem abstract
and hard to realize. Establishing a DTI is intended to provide a concrete structure
and set of requirements. Such a structure is useful for both the initial development
and the implementation of new functionality at later stages.

3.1 Digital Twin Properties for R/V Gunnerus
The discussion of digital twin definitions in Section 2.4 was concluded with a property-
driven approach to digital twins, presented in Section 2.4.1. The properties indicate
that digital twins are individualized based on different purposes and desired func-
tions. Before presenting a DTI for R/V Gunnerus, the intrinsic properties of digital
twins are evaluated against the specific case of R/V Gunnerus. Specifically, proper-
ties revolving the lifecycle, added value, and data transmission latency.

From a high-level perspective, a digital twin of R/V Gunnerus serves two primary
purposes for NTNU, namely contributing to academic research, and providing a
learning platform for engineering students. These purposes are contained within the
operating phase of the vessel lifecycle provided in Figure 2.4, indicating that the

8According to the Merriam-Webster dictionary.

Faculty of Engineering Science and Technology
Department of Marine Technology

13 of 67

3.2 Infrastructure Proposition

R/V Gunnerus digital twin is less dependent on lifecycle adaptations to phases other
than the operational phase. However, if the vessel receives substantial modifications
affecting operation, a digital twin must subsequently adapt to preserve the true vir-
tual asset representation. The installation of new thrusters in 2015 and the midship
elongation in 2019 are examples of such changes. For commercial interests of indi-
vidual components or systems, such as the AZ-PM thrusters of KM CM, a digital
twin will serve different purposes. In a longer perspective, where R/V Gunnerus may
potentially be replaced by a new research vessel, the lifecycle aspects of a digital twin
become relevant. An approach to the digital twin lifecycle is explored in Section 4.1.

Since R/V Gunnerus is a sophisticated vessel with several sub-systems of interest –
such as the DP system, propulsion system, and power management system – there
is a different potential for educational benefits in a wide range of engineering disci-
plines. The vast area of application demands a corresponding digital representation
that supports a variety of purposes and functions. The same elements found in
the needs space of digital services in Figure 2.5 are relevant for a DTI for R/V Gun-
nerus. However, the focus is shifted from maximizing commercial profit to improving
knowledge and insight through academic research and education.

Reduced data transmission latency can improve the overall performance of a digital
twin, and increase the appeal of using the twin. By enabling a close to real-time
insight into the vessel’s operation, the possibilities of subsequent testing, verification,
and validation after various analyses through the connection between the digital
twin and real asset. By decreasing latency, it is also possible to use the twin for in-
operation purposes through enabling performance evaluation and decision-support.
The case study presented in Section 5 attempts to fuse topics which may be valuable
from both an educational and commercial operation perspective.

3.2 Infrastructure Proposition
A design structure for digital twins was proposed by Erikstad (2018), which includes
structural, creational, insightful, and computational patterns. These patterns are
derived from software system implementation patterns presented by Gamma et al.
(1995), with changes made to fit the case of digital twins. Furthermore, a set of
relevant architecture aspects include runtime environment, structure and content,
integration, and API and usage (Malakuti and Grüner, 2018). It is deemed that a
DTI should be closely linked to this software and system architecture.

With a software and system architecture, in addition to the implications discussed in
Section 2.4 and in this section, a DTI for R/V Gunnerus is proposed with three main
components, namely data management, modeling and simulation environment, and
software and system realization. A visual representation of these components is given
in Figure 3.1. Different functions intended to be facilitated by each of the three main
components are also given, providing a complete picture of the DTI functionality and
purpose.

Faculty of Engineering Science and Technology
Department of Marine Technology

14 of 67

3.3 Data Management

ANALYTICS AND LEARNING

AVAILABILITY AND STORAGE

SECURITY AND ACCESS

ASSET REPRESENTATION

SIMULATIONS

INSIGHT AND DECISION-SUPPORT

TESTING AND VERIFICATION

COLLECTION OF SERVICES

INTEGRATION AND COMPATIBILITY

RUNTIME ENVIRONMENT

INTERFACE AND INTERCONNECTIVITY

R
/V

 G
U

N
N

ER
U

S
D

IG
IT

A
L

TW
IN

 IN
FR

A
ST

R
U

C
TU

R
E

STANDARDIZATION

PREPROCESSING AND FILTERING

VESSEL INFORMATION AND METADATA

MODELING AND SIMULATION
ENVIRONMENT

DATA MANAGEMENT

SOFTWARE AND SYSTEM
REALIZATION

DEVELOPMENT ENVIRONMENT

Figure 3.1: Main components of a proposed digital twin infrastructure for R/V
Gunnerus. Different functions facilitated by each of the three main components are
also given.

The different components are explored in the following sections. Since the case study
in this report is most concerned with the data management aspect of the DTI, the
data management section will be the most detailed.

3.3 Data Management
In this report, data management for digital twins is related to all aspects of managing
data as a resource. This entails retrieving, storing, accessing, transforming, and
utilizing data in an efficient, secure, and cost-effective manner. Most of the relevant
data will come from sources on the real asset, and the data management system is
the mediator between signal data from the real asset and the virtual asset, enabling
data utilization for added value. Data quality control is an essential part of data
management, and as seen in Figure 3.2, the amount of useful data will decrease as
the data management operations progress.

Faculty of Engineering Science and Technology
Department of Marine Technology

15 of 67

3.3 Data Management

SHIP OPERATIONS

Data not
collected

Data not
stored or streamed

Data not
identif able

Data not
accessible

Data not
analysed

Data not
communicated

Data not
used in decision

making

AUTOMATION/
DECISIONS

Data not
monitored

DATA QUALITY

LEVEL OF DATA SOPHISTICATION

HIGHLY REFINED DATARAW DATA

SENSOR/DATA
READINGS

DATA
CAPTURE

DATA
INFRASTRUCTURE

DATA PRE-
PROCESSING

DATA
FILTERING

DATA
ANALYTICS

DATA
VISUALIZATION

Figure 3.2: Data sophistication progression for ship operations, based on Låg and
With (2017).

The facilitated functions proposed in the DTI for R/V Gunnerus in Figure 3.1 high-
light essential aspects of a data management system, and will be used to evaluate
the data management perspectives for a digital twin of R/V Gunnerus. Based on
the facilitated functions for data management, the co-dependent pyramid structure
is seen in Figure 3.3 is suggested. The pyramid follows a best-practice hierarchi-
cal structure where lower-level functions enable those of higher levels. Similarities
can be seen between the structure and the data sophistication progression for ship
operations.

AVAILABILITY AND STORAGE

Figure 3.3: Recommended data management functions hierarchy. The hierarchy is
based on requirements and complexity of facilitated functions in the data manage-
ment component of a DTI for R/V Gunnerus.

The following sections will discuss some aspects related to the data management
functions for the use-case of an R/V Gunnerus digital twin.

3.3.1 Availability and data storage
The first obstacle related to data management is to gain access to data of interest
and store it at an appropriate location. Availability implies connecting information
from the physical asset to the virtual asset. In theory, there is infinite information

Faculty of Engineering Science and Technology
Department of Marine Technology

16 of 67

3.3 Data Management

connected to the operation of a vessel. Thus, there is a need to weigh the expected
data value against cost, implementation, and ease of extraction. For existing signals,
costs are related to network transmission, storage, and maintenance. This is asso-
ciated with the discussion of data abundance by Erikstad (2019), as there should
be proper reasoning for installing sensors and extracting data from them. For a
digital twin of R/V Gunnerus, considerations should be made based on the added
educational value, either related to research or education.

Digital twins will typically have different users at different locations, suggesting data
can be requested at multiple locations simultaneously. The most prominent solu-
tion for data storage is to use cloud computing services. In brief, cloud computing
services offer on-demand network access to shared computing resources (Mell and
Grance, 2011). The topic of cloud computing services, together with cloud service
providers and significant data considerations, was explored in more detail in the
pre-project, as seen in Appendix B. With cloud services, it is possible to establish
a ship-to-cloud solution, circumventing extra transmission layers by having a direct
connection to the ship. With a ship-to-cloud connection, the vessel can transport
data in-operation, improving data readiness, and enabling CPS feedback for decision-
support. In addition to data transportation costs, a drawback of direct ship-to-cloud
transmission is the possible loss of signal, which is undesired if the data is neces-
sary for decision-support. Data transportation can be regarded as the bottleneck
of centralized clouds (Shi et al., 2016), which becomes an argument for preventing
a ship-to-shore intermediary node. A ship-to-shore node would be the receiver and
transmitter of data and information both to and from the vessel and to and from
a centralized cloud, which is demanding for data transportation. If a ship-to-cloud
connection to a centralized cloud is deemed too slow, it may be advantageous to cre-
ate a ship-to-edge connection by establishing an edge node. Edge nodes are part of
edge computing technology, which is detailed in Appendix B.3. Decision-support is
only applicable to established and tested digital twins since the real asset will apply
feedback from the CPS into operation. Therefore, the CPS aspect and real-time data
requirements will not be of immediate use for the case of R/V Gunnerus, meaning
that a centralized ship-to-cloud connection could likely be a sufficient starting point.

If the vessel produces large amounts of data, considerations regarding the challenges
of big data may have to be considered. In Appendix B.4, five Vs characterizing big
data was presented; Volume, Velocity, Variety, Veracity, and Value, hereby referred
to as V 5. Based on the current state of data packages transmitted from the vessel,
as presented in Section 2.3, issues of V 5 are not yet problematic. This can change
in the future if more data becomes available for extraction – potentially at higher
frequencies – and more historical data is accumulated. In addition to being a best-
practice approach, data storage should be optimized to save space and prevent excess
data. As an example, unusable data is generated when the vessel is in harbor, but
without any storage control, the data will be stored nonetheless. Different data
points will also be updated with different frequencies. For instance, data from the
DP system and motion reference units (MRUs) must be updated at a significantly
higher frequency than the number of available satellites. As highlighted by Tjøswold
(2012), a frequency of 1 Hz for the DP system – which is the current data transmission
frequency – is too seldom. If all signals are measured at the highest signal frequency
to ensure no loss of information, the data points that change rarely will occupy
more space than necessary. This could be prevented by having different solutions

Faculty of Engineering Science and Technology
Department of Marine Technology

17 of 67

3.3 Data Management

for different packages, as well as sub-dividing packages taking update frequency into
account. A drawback of having non-uniform logging frequencies is the increased
difficulty of combining data for analytic purposes due to size mismatching.

Optimally, storage control measures should be carried out on the vessel before being
transmitted to the cloud to limit data velocity and volume challenges encountered
in V 5. Instead, if these measures are carried out in the cloud, they would still
limit the data volume challenges from V 5. Storage costs could also be reduced by
considering different storage readiness tiers, commonly divided into hot, warm, cool,
and cold storage (Taylor, 2017). Costs increase based on desired access frequency and
storage system performance. On-demand data, such as data used for CPS feedback,
needs to be in hot storage, whereas warm storage could suffice for slightly aging,
historical data. Cool and cold storage may be a durable way of storing results from
archived projects. If it does not affect performance, data should be moved towards
colder storage to reduce costs and keep processing power available for more urgent
activities.

3.3.2 Standardization
Standardization is important for information transparency and data structuring. For
signal data, standardization can be used to create unique identifiers. These identi-
fiers make it easy to exchange and apply information, prevent misunderstandings,
and reproduce methods and results. As mentioned in Section 2.2.2, some progress
has been made using the DNV GL–VIS naming scheme in Annex C of ISO 198489,
which takes DNV GL’s product model for vessels (PMod) into account. Through
the naming scheme, each onboard signal can be given a universal identifier provid-
ing relevant information about sensor type, location, configuration and capabilities,
quantity, and unit of measure (Låg and With, 2017). Each signal is also given a
unique label reference.

3.3.3 Security and access
As mentioned in Section 2.3, Kongsberg has a logging system sustaining data from
Scania’s EMS control system, AZ-PM system, and DP system. The data from these
systems are transmitted through a ship-to-cloud solution. There are other systems
of interest, such as the bow tunnel thruster from Brunvoll and the hydraulic Palfin-
ger crane. If vendors grant access, signals from these systems could potentially be
included in the logging system through additional packages by re-routing10 the sig-
nal (Holmeset, 2019).

However, gaining access to data from external vendors is not trivial. Although NTNU
has ownership of the research vessel itself, it is often the system and component
providers who own the data from different onboard systems. Access to component
and system data can reveal valuable information in commercial markets, which makes
vendors reluctant to releasing sensitive data. This is also relevant when considering
the AZ-PM thrusters and DP system. According to Oksavik (2019), it is difficult
enough to manage access internally, let alone providing external users access.

Considerations regarding access to data, cybersecurity, and security for vendors,
should be documented in a data management plan. Such a plan would promote

9ISO 19848 is a sensor naming structure for ship and shipboard machinery and equipment (Låg
and With, 2017).

10The re-routing would have to be done manually aboard the vessel, and the signals would have
to follow a compatible messaging protocol.

Faculty of Engineering Science and Technology
Department of Marine Technology

18 of 67

3.3 Data Management

transparency for the different parts involved by documenting what data is desired,
how it will be used, and by whom, how access will be managed, and restrictions
imposed by vendors. A data management plan would also help to share how differ-
ent users intend to make use of the data, which could prevent overlap in research
activities.

3.3.4 Preprocessing and filtering
Applying preprocessing and filtering algorithms is necessary to detect, remove, or
adjust faulted and undesired data. For the preprocessing aspect, computer algo-
rithms are used to transform, reduce, and prepare the data. It can also be a tool for
verifying data formats and expected values. Examples of common challenges related
to data signals can be seen in Figure 3.4. For the filtering aspects, the goal is to
extract temporal or spatial data of interest. For instance, data transmitted from the
vessel in harbor is most often not of interest and should be filtered accordingly. An
intuitive approach would be to divide and label operational data into expeditions,
where a single expedition or a set of expeditions can be filtered out of the entire
data set. As mentioned in Section 2.3 regarding vessel data access, the data is trans-
mitted through a ship-to-cloud connection directly to a data lake, which in principle
contains unstructured data. Some preprocessing measures have already been applied
to the data before transmission, such as replacing non-applicable data and interpo-
lating empty rows (Holmeset, 2019). With these inherent preprocessing measures, it
becomes easier to handle data for the case study.

Figure 3.4: Common challenges related to signal data, courtesy of Sørensen (2018).

3.3.5 Analytics and learning
When the preceding data management procedures have been completed, the sophis-
tication is sufficient to utilize the data. This is represented in Figure 3.5, where
analytics and learning leads to insight.

RAW DATA
APPLYING

STANDARDS

REDUCING

DATA

FILTERING

DATA

TRANSFORMING

DATA

CLEANING

DATA

ANALYTICS

AND LEARNING
INSIGHT ACTION

Figure 3.5: Procedural chain from raw data, to analytics and learning, to insight
and action.

Faculty of Engineering Science and Technology
Department of Marine Technology

19 of 67

3.3 Data Management

Data utilization can be related to the hindsight and foresight aspect from Figure 2.6,
where insight into the operation of the vessel can be gained through data-driven
methods. The insight can be used to improve performance or provide decision-
support and is enabled through methods for analyzing and learning from the data. In
addition to statistical and empirical ways of analyzing data – for instance, evaluating
fuel efficiency during different operational modes – machine learning approaches can
be applied to develop data-driven solutions. A data-driven approach to predictive
maintenance will be a core topic of the case study.

3.3.6 Modeling and simulation environment
Digital twins are driven by modeling and simulations aspect. The modeling is most
often physics-based, where real assets are modeled to a degree of fidelity, either
limited by the knowledge of the system or complexity. In the proposed DTI for R/V
Gunnerus in Section 3.2, the modeling and simulation environment facilitates

• asset representation,

• insight and decision-support,

• simulations,

• testing and verification, and

• vessel information and metadata.

As a digital twin is the digital representation of a physical asset, the representation
should be as close to the real asset as necessary. Thus, the asset representation
should encapsulate the physical realization in a virtual format. This would include
geometrical models, mathematical models, and physics-based models. In essence, the
asset representation includes all of the physical properties necessary to reproduce the
real asset. Together with the vessel information and metadata, the asset represen-
tation will also be able to describe all parts of the real asset. As mentioned by
Erikstad (2017), the models do not necessarily have to be physics-based, as they can
also be based on artificial intelligence and machine learning algorithms, promoting
data-driven models.

Metadata11 is data that provides information about other data. As an example, the
attributes of vessel components consist of different materials, have different prop-
erties, and are instrumented with different signals and standards. By attaching
metadata of components to the geometrical representation of the vessel, information
can be extracted intuitively and at one distinct location. The geometrical 3D model
of R/V Gunnerus from the UROP described in Section 2.2.2 was exported from
Siemens NX through the STEP-format12. Vessel attributes were stored in Siemens
through the PLM Active Workspace, which is disadvantageous when it comes to ease
of access and convenience.

Insight and decision-support, which has been explored earlier, should be derived
through the virtual model environment. Since the virtual environment is a replication
of the real asset, it will – optimally – reproduce the state and behavior correctly.
Thus, based on the response from model simulations, the outcome of a particular
action can be predicted and applied as feedback or feedforward to the system.

11According to the Merriam-Webster dictionary.
12STEP: Standard for the Exchange of Product Data

Faculty of Engineering Science and Technology
Department of Marine Technology

20 of 67

3.4 Co-Simulation

Uncertainties in the modeling become a part of the risk assessment and should be
evaluated continuously through increased experience and data material. This high-
lights the importance of testing and verification to ensure that the system operates
correctly and safely.

Simulations intend to demonstrate the underlying principles controlling the behavior
of a system. As mentioned in Section 2.4, simulations in digital twins should enable
both simulating with synthetic data, but also actual data from the real asset to
enable reproduction of the true state and behavior.

3.4 Co-Simulation
The maritime industry is a multi-vendor environment, where different vessel compo-
nents can be supplied and administered by different parties. As mentioned earlier,
many vendors are concerned with sensitive data and do not wish to share their mod-
els. In a co-simulation environment, simulation models can be divided into individ-
ual modules that can be loosely coupled through black boxes. Thus, the information
about the models themselves will be confidential as the different modules only need
inputs and outputs to communicate. Both Coral and FMI4J, mentioned in Sec-
tion 2.2.1, are examples of co-simulation environments. These environments enable
co-simulation through the FMI standard, which is a standard for model-exchange
and co-simulation (Ludvigsen et al., 2016). The format converts models to C-code,
which is likely faster at runtime than the original model language due to being a
lower-level programming language. In addition to the model code, an XML-file with
metadata is provided, as well as all necessary libraries created during the model ex-
change. Extensible Markup Language (XML) is used to encode data in a format that
is both human- and machine-readable. Since the models are converted to C-code, no
licenses are needed to run the model in the co-simulation.

3.5 Open Simulation Platform
The Coral software was continued through a joint industry project (JIP) where
DNV GL, SINTEF, Kongsberg, and NTNU are founding partners and main develop-
ers. The JIP is working on the Open Simulation Platform (OSP), which is an open
co-simulation environment intended to facilitate digital twins in the future. OSP
consists of the Core Simulation Environment (CSE), which provides the model stan-
dard and some reference models. The co-simulation environment can either simulate
using subsystems, choosing which modules to include, or execute more comprehen-
sive simulations. The simulation advances at a universal time step, but there can
also be individual time steps acting on each module since the mathematical computa-
tions are performed within the module. When advancing a global time step, inputs
and outputs from all of the modules are exchanged. Co-simulation benefits from
the ability of modeling systems as black boxes, in addition to providing specialized
solvers, sub-simulator interfaces, loose coupling between subsystems, and distributed
simulations (Kyllingstad, 2019). A disadvantage relates to poor performance when
simulating tightly coupled systems.

3.6 Software and System Realization
The software and system realization aspect of the DTI for R/V Gunnerus proposed
in Section 3.2 facilitates

• collection of services,

• development environment,

Faculty of Engineering Science and Technology
Department of Marine Technology

21 of 67

3.6 Software and System Realization

• integration and compatibility,

• interface and interconnectivity, and

• runtime environment.

The software and system realization does not add any new insight to the virtual
asset. Instead, it is intended to handle all of the enabling factors that are necessary
to realize, operate, and sustain the digital twin services. A schematic overview of
the software and system realization aspects is seen in Figure 3.6, where a user marks
the final destination of the system realization.

Development

environment

Collec on of services

Integra on and
compa bility

Interface and
interconnec vity

Run me
environment

User

Figure 3.6: Software and system realization.

Collecting services is important for the coherency of a digital twin. If all of the
different parts of a digital twin exist but are scattered between several different
locations, service hosts, and restricted areas, the usability diminishes. Collecting
services will also make the digital twin more appealing, as the virtual asset will be
perceived as more authentic to the real asset if it is maintained within a tightly
connected virtual space. Contrarily, if it is necessary to navigate between several
different services to go from a geometrical component to its attribute metadata,
using the digital twin becomes a timely and cumbersome task.

The integration aspect is responsible for the addition and sustainability of new ser-
vices, whereas compatibility ensures that the services can be integrated into the
system. Once integrated and compatible, the interface should provide a seamless
transition between different components by enabling the exchange of information.
There must be interconnectivity between communicating components. A parallel
can be drawn from interconnectivity to the co-simulation aspect explored in Sec-
tion 3.4, where different modules communicate through inputs and outputs.

A development environment facilitates software realization and is necessary to de-
velop the system as a whole further. Source code, documentation, libraries, and APIs
are contained within the development environment, which should only be changed by
the system developers. Lastly, the runtime environment is responsible for managing

Faculty of Engineering Science and Technology
Department of Marine Technology

22 of 67

4. Digital Twins in Marine Engineering Education

requests from users, ensuring that the services, system variables, and interconnected
functions are executed correctly.

4 Digital Twins in Marine Engineering Education
As mentioned in the project motivation in Section 1.1, this thesis is motivated by
the use of digital twins for educational purposes. The industry is incentivized to
adapt to new technologies based on economic gains and competitive advantages. This
incentive is not as present in the educational system, which can cause the curriculum
to fall behind the technological progression. This can create a gap between the
students’ expectations after graduating and the reality they meet in the industry. In
this case, companies would have to train new employees to meet their technological
standards, which costs time and money. It is a university’s responsibility to prepare
the students for the working life, which underlines the importance of continuously
updating the curriculum to correspond with the latest technologies.

Some of the engineering educations, especially for master students, have a theoreti-
cal approach to most courses. Although it is crucial to understand the underlining
theory, the reality is not understood by theory alone. A practical understanding is
necessary for the holistic perspective necessary to apply theory to real-world prob-
lems. Since solving problems is at the core of engineering, the value of a practical
understanding should not be underestimated.

A tool that can help integrate new technologies into engineering education through
a practical approach is digital twins. In theory, the potential of digital twins as an
educational tool is immense. With the ability to exist as a virtual counterpart to any
given asset, all problem definitions applied to an asset can consequently be applied to
the virtual twin. However, instead of having to be at the same place as the asset to
perform measurements, the digital twin will be available remotely. This opens up the
possibilities of using assets that would otherwise be inaccessible. Take, for instance,
the case of R/V Gunnerus. If the vessel is in operation, a digital twin will allow
others to access the asset as if they were on the vessel. Besides, users from across
the globe could connect to the same digital twin, promoting a global collaboration
initiative of expensive or rare assets between different institutions. This would be
scalable, as long as the digital twin platform can handle the traffic since there is no
physical restriction to the number of connected users. Thus, the required interaction
with the physical asset becomes less of a priority.

Assuming that a digital twin exists, there are several areas of application relevant
for marine engineering education. The applications vary in complexity and can be
as relevant for a first-year student as for a graduate student. Thus, a digital twin
can follow a student through the entire education, providing new ways of utilizing
the twin as the general engineering knowledge of the student increases. For first-year
students, there are many new terms and concepts revolving ships and the marine
industry in general. As humans are visual creatures, having an interactive digital
twin available as a visual tool provides a different level of situational awareness.
For second- and third-year students, the structural and hydrodynamic properties
of a digital twin could be taken into account, where real asset behavior could be
evaluated against simulated behavior, or be used to implement data-driven or model-
driven algorithms for health monitoring, decision-support, control systems, and more.
For fourth- and fifth-year students, the theoretical principles of the digital twin can

Faculty of Engineering Science and Technology
Department of Marine Technology

23 of 67

4.1 Digital Twin Lifecycle

be explored to enhance the twin’s properties, capabilities, and performance. New
functionality could also be added to the digital twin to promote a student’s research
interests.

Although there are many possibilities of using a digital twin for marine engineering
education – and engineering education in general – creating, managing, and distribut-
ing the digital twin is an immediate obstacle with the current technological status of
digital twins. Digital twins are not readily available, and if they are available, they
usually have some limitations. Currently, the enabling technology for digital twins
is still being developed by industry and academic research. Ideally, students should
be involved in this process to take part in – and contribute to – the technological
advancement of digital twins. Here, the concept of a digital twin lifecycle can be
helpful in identifying the different developmental and operational life phases related
to a digital twin.

4.1 Digital Twin Lifecycle
When looking at the lifespan of a digital twin of a real asset, it is common to relate
the digital twin lifecycle to its product or asset lifecycle counterpart. With this
approach, the digital twin follows the same lifecycle phases as the asset does. As
shown in Figure 2.4 from the discussion of digital twin definitions, the asset lifecycle
is typically divided into four main parts, and, as shown, this asset lifecycle definition
could similarly be applied to a marine vessel. However, as digital twins develop and
become more prevalent in the design, operation, and decommissioning of an asset, it
can be valuable to create a lifecycle model for the digital twin itself. In this section,
the different lifecycle phases of a digital twin are explored to propose a complete
lifecycle model for digital twins. The concept was developed for a presentation13 held
February 3, 2020, where different professors at the Institute of Marine Technology
were invited to discuss the future of an R/V Gunnerus digital twin. The presentation
and the following discussions were intended to formulate this master thesis.

The purpose of the life phases of a digital twin presented here is to give a broader
perspective of the use-cases of digital twins, and how engineering students could be
involved in other aspects of a digital twin that are not purely operational. Through
conversations on the topic of digital twin life phases, it was decided that relat-
ing the digital twin to the development of humans would provide a comprehensible
overview (Skjetne, 2020). The proposed digital twin lifecycle is given in fig. 4.1,
along with the defining properties at a given phase.

13The presentation is available in PDF-format (Alvsaker, 2020c).

Faculty of Engineering Science and Technology
Department of Marine Technology

24 of 67

4.1 Digital Twin Lifecycle

CONCEPTION

BIRTH

INFANCY

ADOLESCENCE

ADULTHOOD

RETIREMENT

DECEASEMENT

From idea to design

Building and delivery

Early training and calibra�on

Data genera�on and re�ned learning

Fully opera�onal

Extrac�ng wisdom and sharing data

Archiving and repurposing

Figure 4.1: Lifecycle of digital twins with seven different phases from conception
to deceasement.

The definition of the digital twin lifecycle can affect the use in engineering education
as the application space is increased when compared to conventional approaches.
Instead of just being concerned with the in-operation aspects of a digital twin, stu-
dents can be involved in the development, testing, and implementation of a digital
twin. Further, a digital twin does not have to be restricted to existing assets. In
Figure 4.2, the lifecycle of a real asset is compared to the lifecycle of a digital twin,
where the digital twin is conceived at the beginning of the asset’s operational phase.

Faculty of Engineering Science and Technology
Department of Marine Technology

25 of 67

4.1 Digital Twin Lifecycle

Real instance

Virtual instance

Figure 4.2: Lifecycle of a real asset and its digital twin, where the digital twin is
conceived during the operational phase of the asset’s lifecycle.

However, the real asset does not have to exist for a digital twin to be made. The
asset could be developed in combination with the real asset, where the digital twin
foundation is used as a resource for evaluating the asset during conception and con-
struction. Digital twins can also be conceived before the asset and can help in the
development and testing of said asset. In some ways, this relates to existing methods
for modeling and analyzing assets in the creation phase. The major difference is that
the digital twin is simultaneously developed to fulfill its purpose, which requires an
unprecedented interaction between the coming asset and the digital twin. A digital
twin is also likely to outlive an asset to some extent. Even if the adult phase is
finished, it is possible to extract useful information from the retired digital twin for
evaluation, which could lead to repurposing or recycling of the twin. An expansion
of the digital twin lifecycle in relation to the asset lifecycle is given in Figure 4.3.

Real instance

Virtual instance

Figure 4.3: Lifecycle of a real asset and its digital twin, where the digital twin is
conceived at three different stages of the asset lifecycle; during operation, conception,
or predating the asset.

Expanding the lifecycle of the digital twin allows for a broader perspective regarding
education. As mentioned in Section 1.1, it is beneficial for students to be part of
projects developing new technology. As such, while digital twin technology is still

Faculty of Engineering Science and Technology
Department of Marine Technology

26 of 67

5. Case Study Problem Formulation

in its infancy, students should be included in other phases of the digital twin lifecy-
cle than the adult phase. Through course activities, projects, and interest groups,
students are encouraged to create algorithms, create simulation models, perform
structural analyses, suggest data management plans, and in other ways, become fa-
miliarized with the concept and technologies revolving digital twins. This kind of
student engagement is exemplified in this thesis, where the following case study is
developed as part of a typical digital twin functionality, considering condition-based
maintenance through data-driven methods.

5 Case Study Problem Formulation
As specified in the objectives in Section 1.2, the motivation of the case study is to fa-
miliarize students with machine learning algorithms through a digital twin approach.
By allowing students to create, train, implement, and visualize their own machine
learning models, theoretical knowledge can be applied to a practical case that may
have actual implications on an operating vessel.

The case study is related to data management, which is one of the core infrastructure
components. The purpose of the case study is to create a framework for real-time
anomaly detection on systems onboard the vessel through a data-driven approach.
Since the framework is made to be available to others, either for using the framework
or developing it further, reusability, readability, and documentation are emphasized
throughout the case study. The framework will include a modeling environment for
developing data-driven models and a web application for implementing, testing, and
visualizing the results of the anomaly detection model. As such, the case study is
twofold, where one part revolves around a framework for modeling, and the other
part revolves around a framework for model evaluation.

The purpose of the modeling framework is to allow engineering students to implement
their own algorithms for testing and discussion. The modeling topic of choice, as will
be discussed in Section 6.1, is predictive maintenance, which can be approached with
data-driven machine learning algorithms. To be easy and quick to learn, a method of
creating an application programming interface (API) will be used. An API is a set of
reusable functions that can be used without having to learn the complete structure
and methodology of an underlying application or operating system. For the case
study, the API will consist of functions that can be used to speed up the process of
achieving a functioning predictive maintenance model. These functions are related
to memory management, file management, modeling, evaluating performance, and
visualizing results. Although it is essential to understand the entire procedure from
raw data to a predicted outcome, there are parts of the modeling procedure that
can be made significantly more effective without losing the understanding of the
process. This is primarily related to preprocessing and preparing data used for both
training and evaluating models. Since this framework only considers data from R/V
Gunnerus, it is possible to perform several generic tasks that make the process of
using the framework both simpler to understand and less time-consuming. A simple
example will be made to demonstrate functionality.

The purpose of the web application is to connect the modeling API to a realistic
scenario where applications of digital twins through predictive maintenance is used.
In the web application, users should be able to upload trained models, and test these
models against data from the vessel in a simulated real-time environment. Since

Faculty of Engineering Science and Technology
Department of Marine Technology

27 of 67

5. Case Study Problem Formulation

data is updated irregularly, and since a simulated error performed in 2019 will be
used for validation purposes, data will not be updated in real-time. However, the
web application will behave as if data is being supplied in real-time, which creates a
simulated real-time environment. As data is being visualized and updated frequently,
the user will be able to see when anomalies in the data occur. The web application
should also be user-friendly and have a visually appealing interface to make the
application more appealing. The interaction between the modeling API and web
application is demonstrated in Figure 5.1.

Modeling API

Create, modify, test

Web applica on

Apply, predict, visualize

Figure 5.1: Interaction between modeling API and web application in the anomaly
detection framework.

To validate the performance of the example model, and represent a method for test-
ing model implementations, a previously simulated error in the exhaust pipes will
be used, which was provoked with an intention for research purposes by NTNU Åle-
sund (Ellefsen, 2020). On November 21, 2019, between 10:50:16 and 10:56:33, the
simulated error occurred as the exhaust pipe temperatures rise above the ordinary
maximum values for safe operation. The rise in temperatures, together with the sim-
ulated error interval, is seen in Figure 5.2. It can be seen that the temperatures also
rise quickly when the simulated error commences, which provides another detectable
factor for the prediction model.

21 10:50 21 10:55 21 11:00
440

445

450

455

460

Te
m

pe
ra

tu
re

 [C
]

ME1_ExhaustTemp1
ME1_ExhaustTemp2
Interval with simulated error

Figure 5.2: Simulated error on exhaust temperatures.

In general, having a good understanding of component behavior before and during a
failure is important. However, since the error interval is already given, the process of
simulating the error is treated as a black box, and only the result of the simulation
error will be considered.

First, anomaly detection with recurrent neural networks (RNN) for predictive main-
tenance will be presented alongside the specific long short-term memory (LSTM)
recurrent architecture used in the modeling example.

Faculty of Engineering Science and Technology
Department of Marine Technology

28 of 67

6. Anomaly Detection for Predictive Maintenance

6 Anomaly Detection for Predictive Maintenance
The case study explores the topic of predictive maintenance through data-driven
methods. This section is intended to give the necessary theoretical background to
develop the anomaly detection framework.

6.1 Predictive Maintenance
Industrial maintenance on a system, component, or plant can be divided into preven-
tive and corrective maintenance. As implied by their names, preventive maintenance
attempts to interfere before the fault occurs. On the other hand, corrective mainte-
nance is concerned with the repair of a system that has been damaged or degraded
to a point where it affects operation. Driving a component to failure can have se-
vere consequences for some systems, as it can cause unnecessary and abrupt strain
on components. As the time of failures is not generally known, choosing corrective
maintenance can cause unpredictability and sudden downtime. Preventive main-
tenance is often applied to a system using the mean time to failure (MTTF) of a
system as a guideline for when to perform maintenance (Utne and Rasmussen, 2017).
MTTF is equivalent to the expected lifetime of a component or system, E(t), and is
given by

MTTF = E(t) =

∫ ∞
0

R(t)dt =

∫ ∞
0

t · f(t)dt, (6.1)

where R(t) is the reliability function and f(t) is the failure density function. Since
MTTF is a statistical variable based on component or system properties, the actual
time between performed maintenance, known as the predetermined maintenance in-
terval, will have a safety margin to sufficiently reduce the likelihood of failure occur-
ring before maintenance is performed. This safety margin will inevitably make the
predetermined maintenance interval shorter than what is strictly necessary. Exces-
sive maintenance affects both expenses and availability of a component or system,
and can also prevent surrounding equipment from being operational when performing
maintenance.

Another method of implementing preventive maintenance is through predictive main-
tenance, which takes the component or system condition into account, also known
as condition-based maintenance. A predictive maintenance scheme will predict when
failure will occur and suggest when to interfere for maintenance or repair (Trojan
and Marçal, 2017).

Predictive maintenance is an important concept for digital twins, as it enables a direct
sense of health monitoring by exposing the physical well-being of the vessel through
the transmission of data. Feedback from the real asset signals is transmitted to the
virtual representation, which is able to extract knowledge and suggested activity
based on the asset’s behavior and health. Historical data can help prevent failures
in normal conditions by evaluating operational patterns. Additionally, predictive
maintenance can play a vital role in predicting critical failure due to unforeseen
events, which can occur before human operators are able to register and prevent
damage from being done.

6.2 Artificial Neural Networks
Artificial intelligence, especially through machine learning, has become an important
tool for predicting the behavior of systems transmitting large amounts of data. Arti-
ficial neural networks (ANNs), which attempt to replicate the behavior of biological

Faculty of Engineering Science and Technology
Department of Marine Technology

29 of 67

6.2 Artificial Neural Networks

neurons, are among the most common machine learning algorithms applied to in-
dustrial applications (Carvalho et al., 2019). ANNs usually consist of an input layer,
a hidden layer, and an output layer, where each neuron in a layer is connected to
another layer by weights. A simple neural network (NN) is illustrated in Figure 6.1.
Usually, NNs are fully connected, meaning that each neuron in a layer is connected
to all of the neurons in adjacent layers. As implied by its name, a weight is used to
determine how much weight should be added to a connection. In other words, how
important the NN should regard the given connection.

Input layer

Hidden layer

Output layer

Weight

Neuron

Figure 6.1: A simple ANN configuration, displaying neurons, weights, the input
and output layers, and a single hidden layer.

Each node in an NN is concerned with calculating the activation value, which is the
value each neuron represents (Nielsen, 2019). The activation value of neuron i at
layer n, ai,n, is given by

ai,n = ϕ(ai,n−1 ~wi + bi), (6.2)

where ai,n−1 is the previous activation value at neuron i, and ~wi is a vector of weights,
and and bi is the neuron bias. As seen in (6.2), a bias is a constant term added to
the activation function which affects the activation value independently of preceding
layers, whereas the weights represent a connection between the activation neuron and
neurons of the preceding layer. Biases can be used to give individual neurons more
influence by increasing the bias value, in turn making it easier to activate the neuron.
ϕ(·) from (6.2) represents an activation function. Activation functions are non-linear
functions that separate NNs from linear regression models, which perform the input
transformation which enables the network to learn. The most common activation
function type are sigmoid functions, σ(·), which are used to prevent small changes in
weights and biases from causing large changes in the activation value (Nielsen, 2019).
As such, different sigmoid activation functions have a characteristic S -shape. The
principle of sigmoid functions is similar to attenuating feedback in control systems
theory to prevent perturbation effects. The most common sigmoid function is the
rectified linear unit (ReLU) function, given by

ϕ(x) = max (0, x), (6.3)

Faculty of Engineering Science and Technology
Department of Marine Technology

30 of 67

6.3 Long Short-Term Memory Networks

where x is the output value. As seen, the ReLU function maps an activation value
to the positive plane, returning an output value of x = 0 if the calculated output
value is negative.

The ANN displayed in Figure 6.1 is simple, as it only contains a single hidden layer
between the input and output layer. Most often, the NN models used are much more
complicated. A particular branch of machine learning is deep learning, which utilizes
deep NNs. Their depth characterizes these networks as they have a multi-layered
neuron structure with at least two hidden layers. An example of deep NNs is long
short-term memory (LSTM) networks, which in turn is a recurrent neural network
(RNN). RNNs differ from traditional neural networks in that they can consider time
and sequential data. The ANNs discussed in Section 6.2 are examples of feedforward
networks, where outputs are calculated without visiting the same neuron twice. In
contrast, RNNs are feedback networks, meaning that in addition to utilizing the
current input values, the information from the previous input values is also used.
The output calculation of a feedback node is illustrated in Figure 6.2, together with
the unrolled feedback loop for each timestep. Since information is able to persist
from one timestep to another, the looping of input values implies feedback over time.

Figure 6.2: A feedback loop for an RNN and the equivalent unrolled RNN. xi and
hi mark the input values and calculated output values of timestep i, respectively,
while A is some NN structure. Courtesy of Olah (2015).

A critical challenge for RNNs is the vanishing gradient problem, as highlighted in
Jozefowicz et al. (2015). Each neuron in an RNN must maintain a vector of ac-
tivations for each timestep, which demonstrates that RNNs are deep NNs. Since
activation values demand multiplication during the calculation, a problem of re-
peated multiplication between different timesteps makes small values vanishing and,
conversely, high values exploding. The vanishing values turn out to be harder to deal
with and makes it difficult for RNNs to learn if the sequence of timesteps becomes
too long (Bengio et al., 1994). In other words, as the gradient, which is used to
update the RNN weights becomes small, the new weight will not be able to change
much, which makes learning time-consuming.

6.3 Long Short-Term Memory Networks
The LSTM network architecture was developed to specifically avoid long-term de-
pendencies, which resolves the vanishing gradient problem inherent in RNNs. As
implied by its name, an LSTM network is a type of RNN characterized by its ability
to remember previous timesteps in its sequence. Whereas the standard RNN has a
single layer, the standard LSTM network has four layers, as illustrated in Figure 6.3.

Faculty of Engineering Science and Technology
Department of Marine Technology

31 of 67

6.3 Long Short-Term Memory Networks

Figure 6.3: The repeating LSTM module with four interacting layers. The nota-
tions used are indicated at the bottom of the figure. Courtesy of Olah (2015).

The structure of the LSTM module in Figure 6.3 is described in great detail in Olah
(2015). As seen, the four activation functions of the layers, marked by the yellow
squares, consist of three sigmoid functions and one hyperbolic tangent function. In
addition to the input state, ~xt, and the output state, ~ht, the LSTM has two states
that are passed on from one time step to the next, as seen by the horizontal input and
output arrows in Figure 6.3. The line passing through on the top can be referred to
as the cell state, which receives updates from the neural network as it passes through
the cell, as can be observed in the figure. It is this cell state that enables adding and
removing sequential information possible. The line passing through on the bottom
is simply the output state at time step t, ~ht, which indicates that for the cell in
timestep t the output history ~ht−1 is used to calculate ~ht.

There are three sigmoid NN layers which are followed by pointwise multiplication
operators in the LSTM module. These sigmoid layers control the memory of the
LSTM module, and determine what the cell state should forget, add, and modify
based on the input values, ~xt, and previous output values, ~ht−1.

Faculty of Engineering Science and Technology
Department of Marine Technology

32 of 67

6.3 Long Short-Term Memory Networks

Ct-1

ft

Ct

ht

xt

ht-1

it

ot

Ct
~

ht

Figure 6.4: LSTM module with labels for input values, output values, and output
values from NN layers, inspired by Olah (2015).

A pointwise multiplication operator succeeds all of the sigmoid NN layers, and the
sigmoid layers are used to determine how much of its input is allowed to pass through
based on a value between zero and one. Therefore, the output arrow from the three
yellow sigmoid layers is a weight between zero and one, which determines how much
should be allowed through. Since a multiplicative pointwise operator succeeds these
values, everything multiplied with a sigmoid layer output will be filtered by some
fraction, which is why these sigmoid layers are known as gates.

The first gate, denoted by ~ft, determines what the cell state should forget from the
previous timestep. As seen from Figure 6.4, ~ft can be derived as

~ft = σ(Wf · [~ht−1, ~xt] +~bf), (6.4)

with weights and biases similar to those mentioned in Section 6.2. However, since all
states are vectors, and assuming the LSTM layer has n neurons, the previous weight
vector, ~w ∈ Rn, now becomes a weight matrix, W ∈ Rn×n, and the scalar bias, b ∈ R
becomes a bias vector, ~b ∈ Rn. The weight matrix, Wf , contains specific weights for
both the previous output values, Wf,h−1, and input values, Wf,x, but for simplicity,
the weights are combined in the expression Wf · [·]. The forget gate given in (6.3)
decides what to keep and what to throw away from the previous cell state based on
~ht−1 and ~xt.

After the cell state, ~Ct−1 has been told what to forget after being multiplied with ~ft,
it needs to be told what to add. This process is twofold, where an input gate, denoted
by ~it, is used to decide which values will be updated, and a hyperbolic tangent layer
used to calculate a candidate vector, ~̃Ct. As seen in Figure 6.4, the input gate is
given by

~it = σ(Wi · [~ht−1, ~xt] +~bi), (6.5)

Faculty of Engineering Science and Technology
Department of Marine Technology

33 of 67

6.4 Anomaly Detection

and the candidate vector is given by

~̃Ct = tanh (WC · [~ht−1, ~xt] +~bC), (6.6)

where the hyperbolic activation function maps inputs to outputs between unit values
as tanh (x) = y, y ∈ [−1, 1]. With ~ft, ~it, ~̃Ct, and the previous cell state it is possible
to calculate the updated cell state, ~Ct, as

~Ct = ~ft � ~Ct−1 +~it � ~̃Ct, (6.7)

where � is the pointwise product operator. The final gate layer is the output gate,
denoted by ~ot, which decides what the LSTM module with output through ~ht. The
calculated cell state, ~Ct, is sent through a hyperbolic activation function to map the
values between −1 and 1 before it is filtered based on the result of the output gate.
The resulting output is given by

~ht = ~ot � tanhCt, (6.8)

where
~ot = σ(Wo · [~ht−1, ~xt] +~bo), (6.9)

The result of the LSTM module presented in this section is a network with the ability
to keep information from the first timesteps throughout a sequential process and get
rid of information that is deemed invaluable. Since the data from R/V Gunnerus
is represented as a sequential time series where previous time variations will help
predict future values. There is also an added benefit through the operational profile
of a vessel, which may help the model detect recognizable patterns. Due to these
benefits, an LSTM network will be implemented as the example model used to verify
the modeling API and web application functionality.

It is worth mentioning that there have been developed several alternatives and varia-
tions of LSTM with varying results, such as a Gated Recurrent Unit (GRU) (Jozefow-
icz et al., 2015). The case study will be limited to investigating an LSTM network,
but the results from the case study enable testing other sequential RNNs.

6.4 Anomaly Detection
So far, this section has explored concepts of predictive maintenance and creating se-
quential RNNs with an LSTM architecture. Here, the method for applying RNNs for
condition-based maintenance is presented, which is the basis for detecting anomalies
during operation.

Considering the states of a subset of signals at timestep t, ~xt ∈ Rn ⊆ ~Xt ∈ Rm and
n ≤ m. Here, ~Xt represents all signals related to a system or plant. A subset ~xt is
considered to filter out signals that have the least effect on the output. For example,

Faculty of Engineering Science and Technology
Department of Marine Technology

34 of 67

7. Modeling API for Anomaly Detection

a vessel’s latitude and longitude may be able to affect the engine speed. However,
it is more important for the prediction model to include engine power, for instance.
For a prediction model, a set of input signals, such as ~xt, is used to predict a set of
output signals, denoted as ~̂yt. ~̂yt can either be a subset of ~xt or include other values
from ~X. With both ŷt and yt available, it is possible to calculate the absolute error
between the actual value and the predicted value, εp, as

εp = |yt − ŷt|. (6.10)

By introducing an anomaly threshold value, denoted by Ta, absolute errors exceeding
the given threshold are recognized as anomalies. Denoting anomalies as A which is
either 0 (false) or 1 (true), the expression for A is given by

A =

{
1, Ta ≤ εp
0, Ta > εp

. (6.11)

This is the method of condition-based anomaly detection that will be used in the
framework developed in the case study. There are other ways of detecting anomalies,
but the use of absolute errors makes explicit use of the prediction model, which
is a core objective of the case study. In the case study, threshold values will be
calculated through tuning. However, it is possible to implement automated methods
for calculating threshold values as well. For the case study, these methods will not
be explored.

7 Modeling API for Anomaly Detection
The modeling API is the first part of the case study framework and is developed to
provide an environment for modeling, training, and testing sequential RNNs. The
source code is documented on GitHub (Alvsaker, 2020a), and a user manual for the
modeling API is given in Appendix A.3 The code itself is heavily documented to
provide the necessary information to the user while they are using the API.

The modeling API will be tested against the simulation error presented in Figure 5.2
by implementing a simple LSTMmodel example. The example model should perform
well enough to be able to detect the faulted simulation error while still being as simple
as possible. The objective is not to create a model that emphasizes the best possible
performance, but rather a model that can exemplify functionality and indicate how
the modeling API can be utilized. Therefore, there will be no focus on tuning the
example model.

7.1 Concept and Methodology
As mentioned in the problem formulation of Section 5, an API is a set of reusable
functions that can be used without having to learn the complete structure and
methodology of an underlying application or operating system. Developed mod-
els are trained and tested on data from R/V Gunnerus, and the user is able to
choose from any available system transmitting data from the vessel. Available data
streams are explored in Section 2.3. The user chooses a set of input signals that will
be used to make predictions, and can also choose which values will be predicted. The
modeling API supports a multivariate input-space and output-space, meaning that
models with several inputs and several outputs can be implemented.

Faculty of Engineering Science and Technology
Department of Marine Technology

35 of 67

7.2 Functionality

Through user settings presented in the execution file of the modeling API, users are
able to interact with and choose which systems and data streams are of interest,
which interval the model should be trained and tested on, and if the program should
use existing files to speed up run time.

The modeling API will be developed using Python. Python is chosen as it is one of
the most popular programming languages for beginners as it is open-source, has a
human-readable syntax, and has a large developer community for support. Since the
modeling API is intended to be used by students with varying knowledge and inter-
ests in programming, Python is a favorable choice for the implementation language.
Python is also the programming language learned by most first-year engineering
students at NTNU.

In addition to the benefits above, TensorFlow, which will be the library used for
developing models, was originally developed in Python. TensorFlow14 is an open-
source library developed by the Google Brain team for numerical computations, and
is often used for machine learning and neural networks (Abadi et al., 2015). Since
TensorFlow is an end-to-end platform, it emphasizes the ability to export models
after training and apply them to production. Since the models from the modeling
API will be applied to a web application in a simulated production environment,
this is an important functionality. More specifically, the Keras API15 will be used,
which is built on top of TensorFlow as a simple, flexible, and powerful deep learning
API (Chollet et al., 2015). Keras is built to be human-readable, which makes it
fast to pick up and easier to comprehend and implement than a manual alternative.
The aspect of reducing the time spent on tedious tasks is beneficial. However, it is
important that the speed of implementation does not compromise the understanding
of how the API and ANNs in general work, which is why the framework in this case
study relies on complementary teaching material.

7.2 Functionality
The API consists of functions that perform different tasks related to Keras modeling
of sequential models. The API itself is divided into four main files that serve different
purposes. The structure of the modeling API project is seen in Figure 7.1.

modeling api (root)
│ manage.py
│ requirements.txt
│───src
│ ├───api
│ │ │ file_management.py
│ │ │ memory.py
│ │ │ modeling_funcs.py
│ │ └───plotting_funcs.py
│ ├───datastore
│ │ │ test.pickl
│ │ │───models
│ │ └───systems
│ │ rvgunnerus_systems.json
│ └───modeling
│ │ model.py
│ └───model_example_lstm.py
└───venv

Figure 7.1: Project directory structure for the modeling API.

14TensorFlow documentation: https://tensorflow.org/api_docs
15Keras API documentation: https://keras.io/api/

Faculty of Engineering Science and Technology
Department of Marine Technology

36 of 67

https://www.tensorflow.org/api_docs
https://keras.io/api/

7.2 Functionality

At the root directory, two files are located. The manage.py-file is used to execute
the program and includes all of the user settings related to how the program exe-
cutes. The execution file is sectioned into different parts, such as file management
and modeling operations, which makes it easier to understand what the different
settings imply. The requirements.txt is used to install dependencies as explained
in Appendix A.2.

The remaining Python code-files are found in the src-directory, which is subdivided
into three folders. datastore is the program’s native directory for storing files,
including developed models and their metadata history files, data files used during
runtime, and a systems folder. rvgunnerus_systems.json is a JSON16-structured
file containing the structure for different systems, components, and signals on R/V
Gunnerus. Currently, only the three main engines are implemented, but the file can
be expanded to include any of the systems transmitting data. It is also possible to
define the unit of the signals, which is an option that can be included when generating
plots.

The remaining directories are modeling and api. The modeling directory is the main
directory the user will use to interact. Here, sequential models and the necessary logic
and functions surrounding the models are implemented. The api directory contains
the four API-files with their respective functionality. In the following sections, the
different API-files are introduced.

7.2.1 file_management.py
The main purpose of the file management part of the API is to take care of all data-
related aspects up until the Keras modeling begins. The situation is analogous to
parts of the procedural data chain from Figure 3.5, where file_management.py will
be used for transformation, reduction, and filtering of data to enable analytics and
learning. The analytics and learning part of the data chain, followed by insight and
eventually action, is the part of the chain that is made possible through implementing
ANN algorithms for condition-based maintenance.

In manage.py, the user can specify what data interval the program should use, what
system to read from, and which components and signals to extract. If there are
known intervals with faulted data, the user is able to add the interval to a black-
list, which will not be read during execution. It is of utmost importance to not
include faulted data when training the model, such as the simulated error on the ex-
haust temperatures in Figure 5.2, which makes the ability to remove faulty intervals
essential.

The signal data from the vessel are zipped into files containing 10 minutes of data
each, which entails 600 rows per file since the logging frequency is 1 Hz. The file
management functions support unzipping and concatenating the user-specified data
interval to a single data frame. The file management functions can also filter data
based on if the vessel is in operation. This is currently done by removing data where
the engine speed is lower than 1770 RPM, which is the start-up speed required for
operating the vessel (Ellefsen, 2020). The main file management functionality is
summarized in the following list:

16JSON is a JavaScript Object Notation (JSON) that represents a lightweight exchange format
accessible for humans to read and write and easy for computers to parse and generate (Crockford,
2001).

Faculty of Engineering Science and Technology
Department of Marine Technology

37 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/file_management.py

7.2 Functionality

• check if the user has access to the network drive,

• get a list of existing models which the user can select from for testing,

• filter operation based on a signal and corresponding threshold value,

• navigate the network drive hierarchy, read and unzip files in specified intervals,
and filter different systems, components, and signals

• read files from a network drive,

• remove faulty data based on specified intervals, and

• provides progression feedback to the user during file concatenation.

7.2.2 memory.py
The memory file provides functions for storing, loading, and deleting files through
Python’s native pickle-module. The functions are made so that the user can pro-
vide the desired file location, file suffix to append to the end of file names to be
stored/loaded for recognition, and file prefix at the beginning of file names for type
specification. The memory functions come with default values, which means that
these input variables do not have to be specified. The memory functionality is sum-
marized in the following list:

• store any Python object as .pckl-files,

• load .pckl-files,

• store any Keras model file in the designated .h5-format,

• load Keras models with the .h5-format, and

• delete files.

The memory functions intend to reduce the computation time during execution.
Many of the processes related to data management, pre-processing, and Keras model
development are time-consuming. Through memory.py and the settings in manage.py,
the user can choose to create new files or use existing files. If, for instance, testing
is carried out repeatedly using the same data interval, it is possible to load a pre-
existing file rather than create a concatenated file from scratch over and over.

7.2.3 modeling_funcs.py
The modeling functions provide a set of functions useful for creating machine learning
models with TensorFlow and Keras. The file includes functions for transforming and
reshaping data, as well as evaluating the model after it has been trained.

Keras models require data to be input with specific formats. Using LSTM models
as an example, each predicted timestep will look back at a set number of timesteps.
Therefore, the shape of the LSTM data passed to the Keras model must be (ns,t,nf),
where ns is the number of samples in the data set – which in turn will be modified
to correspond with the chosen batch size by Keras – t is the number of timesteps to
look back at, and nf is the number of features (input signals), the model will use for
training. The data has then been reshaped from (ns, nf) to (ns, t, nf). If the model
used only requires t = 1 the function will return the data frame in the appropriate
shape for Keras.

Faculty of Engineering Science and Technology
Department of Marine Technology

38 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/memory.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/modeling_funcs.py

7.2 Functionality

Data transformation functionality is also supported, which maps values to a set
interval based on a chosen scaler. This is important for the NN to interpret each
signal in the same way without having a pre-existing bias towards certain signals. As
an example, a MinMax scaler can be used to map values to a domain based on a given
minimum and maximum value. If this range in (0,1), all values will be scaled to fit
in the range. The scaling process is done per column, which means that the scaling
process is completed for each signal independently of the other signals. Scaling is
required when the features have different ranges, which is the case for many of the
systems at R/V Gunnerus. The supported scalers are currently the MinMax-scaler and
the StandardScaler implemented through scikit-learn’s17 preprocessing scalers,
and adding other scikit-learn-scalers is supported in the API. The choice of scaler
depends on what type of data is used; for instance, the StandardScaler is used for
data that is known to have a normal distribution.

• reshape training and testing data used to create a Keras model,

• get a user-specified scaler for transforming data,

• add new scalers,

• transform data

• transform data to normalized values based on chosen scaler,

• inverse transform values back to their original magnitude based on the same
scaler,

• create a performance evaluation dictionary used to evaluate model perfor-
mance,

• perform reshaping and transformations needed for testing faulty data,

• calculate threshold value for detecting anomalies,

• identify and label all anomalies exceeding the calculated threshold value,

• remove false anomalies based on an outlier approach explained in Appendix F.2,
and

• create a unique string for naming models based on model parameters and time
of creation.

As demonstrated, modeling-funcs.py provides a toolbox that can be used to speed
up essential parts of the modeling process.

7.2.4 plotting_funcs.py
Here, basic plotting functionality is included to evaluate the performance of a model.
The plotting functions of the API support the following visualizations:

• history plots of training variables, such as mean absolute error (MAE) and root
mean square error (RMSE),

• prediction plot showing a time series of actual value and predicted value,

• distribution plots showing histograms and accompanying general kernel density
estimates (KDE) for the error values, together with the calculated threshold,

17Preprocessing documentation: scikit-learn.org/preprocessing.

Faculty of Engineering Science and Technology
Department of Marine Technology

39 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/api/plotting_funcs.py
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

7.2 Functionality

• calculated error for each timestep against the calculated threshold value to
identify which values are above the threshold, and

• anomaly plot showing time-series data and detected anomalies based on the
calculated threshold value.

The plotting functionality also supports adding simple formatting options for the
plots. Users are encouraged to make their own plots to evaluate the performance of
models, but these plots intend to serve as guidelines and simple model verification.

7.2.5 model.py and model_example_lstm.py
As mentioned, the modeling directory is where users implement their own mod-
els. model.py consists of a modeling template with empty functions representing
the general structure the user should maintain while using the modeling API. The
modeling template is given in Listing 7.1. The model_example_lstm.py is a helper
file showing how an LSTM architecture can be implemented through the API. The
LSTM example follows the exact same structure as Listing 7.1. It is recommended
to use the LSTM example as a guideline when using the api.

Listing 7.1: Functional template for creating machine learning models.
1 # Standard library:
2 import os, pickle , sys
3

4 # External modules:
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import pandas as pd
8 from tensorflow import keras
9

10 # Local API:
11 from src.api import file_management as filemag
12 from src.api import memory as mem
13 from src.api import modeling_funcs as mfnc
14 from src.api import plotting_funcs as pfnc
15 #---
16 def create ():
17 """ Implement your model creation function here."""
18 sys.exit(’Not implemented.’)
19

20 # return model
21

22 def train ():
23 """ Implement your model training function here."""
24 sys.exit(’Not implemented.’)
25

26 # return model , history
27

28 def test ():
29 """ Implement your model testing function here."""
30 sys.exit(’Not implemented.’)
31

32 # return performance
33

34 def visualize ():
35 """ Implement your result visualization function here."""
36 sys.exit(’Not implemented.’)
37

38 # return

Faculty of Engineering Science and Technology
Department of Marine Technology

40 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/modeling/model.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/blob/master/src/modeling/model_example_lstm.py

7.3 Results

The actual LSTM model is implemented, as shown in Listing 7.2.

Listing 7.2: Defining the example model through an LSTM architecture.
1 # Model parameters:
2 UNITS_LSTM = 128
3 DROPOUT_RATE = 0.2
4 DENSE_UNITS = 2
5

6 # Instantiate a sequential model:
7 model = keras.Sequential ()
8

9 # Add LSTM layer:
10 model.add(layers.LSTM(UNITS_LSTM , input_shape =(input_shape)))
11

12 # Add dropout layer to prevent overfitting:
13 model.add(layers.Dropout(DROPOUT_RATE))
14

15 # Add densely -connected neural network layer:
16 model.add(keras.layers.Dense(DENSE_UNITS))
17

18 # Compile model using MAE (mean absolute error), adam optimizer
19 # (stochastic gradient descent algorithm):
20 model.compile(loss=’mae’, optimizer=’adam’)

The example model has a simple structure with one LSTM layer, one dropout layer,
and one dense layer. The LSTM layer has the properties of a deep NN, as explored in
Section 6.3. The input values to the LSTM layer function is units and input shape.
The input shape is the number of timesteps and features as (t, nf), respectively.
This means that the values in each batch will share this shape. The input units,
denoted in Listing 7.2, represents the hidden state, or latent dimension. Recalling
the discussion of LSTMs and Figure 6.4, the hidden state is ~Ct. Thus, UNITS_LSTM =
64 implies that the cell state vector has 64 elements. Since the shape of the input and
output values are decided externally, the LSTM cell state vector indirectly affects
the dimensionality of the weights, since multiplying input/output values with the
weights have to result in a vector that coincides with the cell state length. The value
can, in principle, be any value and is chosen through limited testing in this case
study. The value affects improves the cell’s ability to remember over time, but at
the cost of computational power.

The dropout rate is used to drop a random selection of input units during model
training by setting their values to zero (Chollet et al., 2015). With a dropout rate
of 0.2, 20 % of the input units will be dropped out. A dropout layer is used to
prevent overfitting the data where the model performs much better on training data
compared to testing data. This is not beneficial for the model as it would perform
poorly as soon as it is applied to a real production environment with new data.

The dense layer is a standard dense ANN and is included to add more depth to the
model. Setting DENSE_UNITS = 2 implies that the hidden layer has two neurons.

7.3 Results
The implemented LSTM example is tested on the simulated error values in Figure 5.2.
The results shown here are generated by using a selection of the plotting functions
in the API. Although the figures will include captions, the title of the plots will not
be removed as it is a part of the API. The model was trained for 30 epochs with a
batch size of 128, meaning that the training data cycle was repeated 30 times over,
and the model completed 128 predictions before it was updated. The number of
timesteps in the prediction sequence was set to 30, the number of features in the

Faculty of Engineering Science and Technology
Department of Marine Technology

41 of 67

7.3 Results

input shape was 12, and the model was trained on data from November 2019 to May
2020. The 12 inputs coincide with the 12 available signals on the first main engine,
which is where the simulated error in exhaust temperatures occurs. The output
signals to predict were accordingly the exhaust temperature on the two exhaust
pipes. The anomaly outlier neighborhood described in Appendix F.2 was used with
a neighborhood requirement of five consecutive values, indicating that sequences of
less than five consecutive anomalies were labeled as outliers and removed from the
registered anomalies. The model history for the epochs is given in Figure 7.2, where
the mean absolute error (MAE) during training and testing is shown.

Figure 7.2: Model training history over 30 epochs. loss is the error during training,
while val_loss is the validation error during training. Both the training and testing
loss values decrease over time and seem to converge.

The loss values start off low. This might be because of the extensive training set,
which allowed the value to update many times over before the first epoch was ter-
minated. This was somewhat visually confirmed as the dynamic testing loss value
during training started at 1.0, and quickly decreased to around 0.6 during the first
few batches. Both the training and validation losses seem to converge, but the val-
idation loss applied to the testing data struggles with fluctuating values. This may
be due to overfitting.

Predicted values alongside the actual values for the first exhaust temperature is given
in Figure 7.3.

Faculty of Engineering Science and Technology
Department of Marine Technology

42 of 67

7.3 Results

Figure 7.3: Prediction plot for the first exhaust temperature time series.

As can be seen, the model is clearly able to follow the different patterns of the actual
values. The model does seem to perform better at some parts of the time series
and struggles with a constant offset at other intervals. An enhanced view of the
prediction plot is given in Figure 7.4.

Figure 7.4: Enhanced prediction plot for the first exhaust temperature time series.

Manually changing the bias value to see if the areas of constant offset are affected
might be able to change this behavior. A distribution plot of the error values is seen
in Figure 7.5 together with a threshold value of Ta = 7.0, which was found through
tuning.

Faculty of Engineering Science and Technology
Department of Marine Technology

43 of 67

7.3 Results

Figure 7.5: Distribution plots for predicted time series error together with a thresh-
old value of Ta = 7.0.

With the threshold value found through the help of the distribution plot, the resulting
anomalies in Figure 7.6 were identified.

Figure 7.6: Time series plot with detected anomalies highlighted.

Zooming in on the detected anomalies yields the plot in Figure 7.7.

Faculty of Engineering Science and Technology
Department of Marine Technology

44 of 67

7.4 Improvements to the API

Figure 7.7: Closer view of time series plot with detected anomalies marked.

The first detected anomaly is at 10:50:25, which is 9 seconds after the simulated error
has been started. All of the values in the simulated error interval after 10:50:25 up
until 10:56:26 are marked as anomalies, while the simulated error actually ends at
10:56:33, missing the last 7 seconds. Thus, the prediction model managed to detect
95.8 % of the simulated error interval. However, as can be seen from Figure 7.7,
the prediction model falsely detects a range of anomalies after the simulated error
interval ends. This is not optimal behavior, as false positives can lead to unnecessary
inspections and increased downtime. However, since the prediction model intends
to function as an example, the results provided in this section are deemed sufficient.
The model still manages to detect most of the simulated error. Similar results for the
second exhaust temperature is given in Appendix D, where a threshold value of Ta =
was used, as the performance of the second exhaust temperature had a noticeably
larger offset. Again, the effect of adding manual biases may prove valuable and could
be a case for further testing.

7.4 Improvements to the API
There are three immediate improvements that will be considered. The first is that
the API should have proper API documentation outside of the user manual provided
here and the comments in the manage.py-file and API itself. This could be located
at GitHub or another hosting site, or be created as a PDF. It could also be integrated
into the web application created in the second part of the case study.

The second is the use of web applications for implementing the API and executing
the project. This could be done with services such as the Jupyter Notebook, which is
an open-source platform for interactive computing (Pérez, 2014). A benefit of using a
web application for implementation is that the requirements for processing power do
not depend on each individual computer. In addition, such web applications would
allow running parts of the code and storing the results in memory, meaning that code
can be executed in blocks, preventing the same problems described in relation to the
memory.py functionality. The data stored in memory is only temporary, however,
and all of the code would have to run upon revisiting the code at a later stage.

The third part is to improve upon the example LSTM model implemented. Since
there was little time spent tuning the model, it was not determined how different
configurations affect the specific case of the main engines, and there is likely room
for substantial improvements in the example model.

Faculty of Engineering Science and Technology
Department of Marine Technology

45 of 67

8. Web Application for Anomaly Detection

8 Web Application for Anomaly Detection
The second part of the case study revolves around creating a web application that
can be used to test sequential Keras prediction models made through the modeling
API, or independently, in a simulated real-time environment. Since the current
data transmission from the vessel is updated at irregular intervals, at most once per
hour, it is not ideal for creating a visualization in real-time due to the infrequency of
updates. In addition, the web application is meant to be used for anomaly detection,
and the only anomalies currently known to have occurred on the vessel are from
a historically simulated error from Figure 5.2. Thus, the web application will be
made to have a real-time environment revolving around historical data. This means
that data will be requested and updated live, but through values that, theoretically
speaking, already exist. The web application will, however, be made in such a way
that the transition from a simulated real-time environment to an actual real-time
environment will be seamless. The web application is tested by uploading an example
LSTM model and attempting to detect anomalies on the faulty exhaust temperature
data.

As part of the work description in Section 1.2, the web application has been launched
into a production environment through a Web Server Gateway Interface (WSGI)
for demonstration purposes through the container-based cloud Platform-as-a-Service
(PaaS) Heroku (Lindenbaum et al., 2007). The launched website is located at
https://rv-gunnerus-anomaly-detection.herokuapp.com/. Note that Heroku is an
open-source platform with limited resources for free users. The application will
be dormant if not accessed in a while, and since it includes large space-demanding
modules, such as TensorFlow, it will take some time to load it the first time. The
web application is demanding when it comes to resources since data is being re-
quested, processed, and updated every second. Therefore, the website is prone to
be overloaded and run out of memory. If the website is not functioning correctly,
or the user is stuck on a loading screen, try refreshing the page. If this does not
work, try waiting some time before attempting to access the page again or delete the
browser cache and cookies related to the website18. The user manual for setting up
the development environment is given in Appendix A.4.

8.1 Concept and Methodology
With no pre-existing experience with web development, it seems unnecessary to
create a web application to demonstrate the purpose of the modeling API. The choice
of developing a web application relates back to the discussion of using digital twins
for education. Apart from having pedagogical value, implementing an application
tool successfully into an education environment requires the application to be simple,
easily accessible, easy to use, portable, and scalable. All of these properties can be
embodied in a web application. A web application represents a modern solution
to creating applications and can excel in a cloud computing environment, detailed
in Appendix B, where performance and speed can be scaled to fit the needs of the
application. In brief, the premise of the web application is to create an environment
where users can

1. Upload Keras sequential models (or use example files),
18If the website still does not work, a set of animations that demonstrate website functionality

can be found in the GitHub repository.

Faculty of Engineering Science and Technology
Department of Marine Technology

46 of 67

https://rv-gunnerus-anomaly-detection.herokuapp.com/
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application

8.1 Concept and Methodology

2. choose which systems and signals the model is based on,

3. enable and disable signals for visualizing based on these chosen signals,

4. real-time visualization of readings for selected signals with an update frequency
of 1 Hz, and

5. visualize predicted values when applicable, as well as to detect anomalies based
on a user-specified threshold value.

To achieve this, a full-stack solution will be implemented with a separate client-side
frontend and server-side backend. React, which is an open-source JavaScript library
for building user interfaces (Facebook, 2013), will be used as frontend. Thus, the fron-
tend is available for the interactions a user has with a web application and its data,
as well as creating a visual interface. This includes making requests to the server, in
other words interacting with the backend. Flask will be used as the backend, which
is a microframework in Python (Ronacher, 2010). Since Flask is a microframework,
it functions independently of other tools and libraries, which allows backend flexi-
bility. The standard message communication between a frontend and backend uses
the Hypertext Transfer Protocol (HTTP) requests and responses (Fielding et al.,
1999). Here, a client sends an HTTP request to the server with information about
the request. Based on this information, the backend sends a response back to the
client. This type of HTTP messaging is visualized in Figure 8.1.

React (JS)

Frontend, client-side Backend, server-side

Figure 8.1: Standard HTTP message request(1)/response(2) interaction between a
React frontend and Flask backend.

A drawback to the standard HTTP messages is that the client has to wait for a
request before it can send a response. This is a result of the unidirectional compo-
sition of HTTP messages. For the web application in the case study, a key concept
is that the backend looks for changes in a database and sends these changes to the
frontend. To enable unprovoked message responses to the frontend, WebSocket will
be implemented through Socket IO. WebSocket is a bidirectional protocol – whereas
HTTP is unidirectional – which allows opening a communication channel between
a single connection where both the client and server can send and receive data at
will (Fette et al., 2011). The bidirectional WebSocket protocol will be implemented
through Socket IO for the React frontend (Rauch, 2014), and Flask-SocketIO for the
Flask backend (Grinberg, 2014). Since Socket IO is originally a JavaScript library,
Flask-SocketIO is an adapted version of Socket IO for Python.

The bidirectional communication enabled by the Socket IO is seen in Figure 8.2.
Here, the database is included on the server-side. The database is able to hold

Faculty of Engineering Science and Technology
Department of Marine Technology

47 of 67

8.1 Concept and Methodology

data in structured tables. For the web application, only the vessel data will be
stored in the database, while all other session-dependent data will be kept in the
browser memory. There are many different databases, and since the website will be
launched to Heroku, a Heroku native database will be utilized, which allows for a
cloud-hosted database. The open-source database PostgreSQL will be used through
Heroku (PostgreSQL Global, 1996). The backend is able to query data, and upon
request, the database sends data to the backend server. An updated communication
chart of the client-side, server-side, and database is seen in Figure 8.2.

React (JS)

Socket IO

Frontend, client-side Backend, server-side

Database

Figure 8.2: Full stack communication channels, with HTTP request(1)/response(2),
bidirectional websocket(3), and database querying(4) makes up the communication
channels between client, server, and database.

The project file and directory structure is given in Figure 8.3. In this project
folder, the backend development is done with Python api.py and models.py lo-
cated in flask-backend. The frontend development is done with JavaScript in the
src/components folder of the react-frontend directory. Styling of the web page
has been done through Sass style sheets with the files located in the styles direc-
tory (Catlin et al., 2006).

Faculty of Engineering Science and Technology
Department of Marine Technology

48 of 67

8.2 Flask Backend

web application (root)
 │ requirements.txt
 ├───flask-backend
 │ │ .flaskenv
 │ │ api.py
 │ │ models.py
 │ ├───instance
 │ │ ├───examples
 │ │ │
 │ │ │

example_model.h5
example_scaler.pckl

 │ │ │
 │ │ └───uploads
 │ └───venv
 └───react-frontend
 │ package.json

├───build
├───node_modules
├───public
└───src

├───components
│ About.js
│ Chart.js
│ ChartDashboard.js
│ ChartVisuals.js
│ Header.js
│ ModelSpecifications.js
│ Startpage.js
│ Upload.js
├───img
└───styles

Figure 8.3: Condensed project directory structure for the web application.

8.2 Flask Backend
Flask is used as a backend for several reasons. First, Flask is a Python framework,
which coincides with the modeling API. Python is the preferred language when using
TensorFlow since TensorFlow was originally developed for Python, and the Flask
backend needs to use TensorFlow to make predictions with a Keras model. Further,
Flask has its own library supporting the use of SocketIO through Flask-SocketIO,
which increases the compatibility between the Flask framework and the React library.
Lastly, Flask was chosen over the popular Django framework alternative due to its
lightweight implementation, making Flask flexible for smaller applications.

The backend is implemented through the api.py and models.py files. The api.py is
the core of the Flask application, including all specifications related to the database,
sockets, routing, and computations. The models.py file is concerned with the tables
in the PostgreSQL database. Interactions with the database are handled through
Flask-SQL Alchemy. SQL Alchemy is an object-relational mapper (ORM), implying
that the library maps relations in a database to Pythonic objects (Pallets, 2010). A
reason for using an ORM is to avoid writing raw SQL code, which interacts with a
backend. Nevertheless, it should be noted that it is essential to have an understand-
ing of how the underlying SQL works to utilize the ORM correctly and efficiently.
As the documentation specifies, the tables have to be instantiated as classes – even if
the tables already exist. The tables are instantiated in the models.py file. A snap-
shot from the Nogva engines table for the main engines defined in the PostgreSQL
database is given in Figure 8.4. The snapshot is taken from PostgreSQL’s PgAdmin4
software.

Faculty of Engineering Science and Technology
Department of Marine Technology

49 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/flask-backend/api.py
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/flask-backend/models.py

8.2 Flask Backend

Figure 8.4: Table in PostgreSQL database.

The Flask application embodied in api.py is given in its entirety in Appendix F.1.
Up until line 66, all of the code is concerned with instantiating the different resources
used in the Flask application, in addition to specific global variables.

After the necessary resources have been declared, different Flask routes included in
the application are defined. Routes are used as gateways to the frontend application
such that a frontend client can make HTTP requests to the backend through the
route handlers. The different routes are explained in the application file and include
functionality for

• sending static files to the frontend client (necessary for production),

• returning a list of systems based on existing tables in the PostgreSQL database,

• returning a list of signals based on the column entries found for a defined
system,

• loading, storing, and reading the properties of Keras models,

• loading, storing, and reading the properties of scikit-learn scalers,

• creating, starting, and ending thread activities for multiprocessing, and

• running thread and emitting values at a pre-defined interval (1 Hz) to the
frontend client.

In the functionality above, threading is referenced. Threading refers to the Threading
Python module, which is used in the backend to run multiple processes simultane-
ously19. This is necessary since the backend emits data queried from the database
continuously with a given interval, which is 1 Hz. Without threading, the backend
server would not be able to handle other requests from the client while emitting
values, since the backend is only allowed one process. Threading enabled process
parallelism such that values can be emitted to the client while still receiving other

19According to the Threading module, which is a native module in Python:
https://docs.python.org/3/library/threading.html

Faculty of Engineering Science and Technology
Department of Marine Technology

50 of 67

https://docs.python.org/3/library/threading.html

8.3 React Frontend

requests from the client-side. In addition to the routes, two Flask-SocketIO handlers
are included to handle WebSocket connection and disconnection.

The last part of the application file is concerned with the actual prediction of values.
The route that creates the multiprocessing thread includes the following lines of
code:

1 thread = ValueThread(system , input_cols , output_cols , timesteps)
2 thread.scaler = get_scaler(storage[’scaler_path ’])
3 thread.keras_model = get_model(storage[’keras_model_path ’])
4 thread.X_pred = thread.get_first_input_values ()

First, an object variable of the class ValueThread is defined as thread, with system
properties and the timesteps used in the sequential Keras model as inputs. Next,
the scaler and Keras model are loaded from a storage cookie, which means that the
thread object has access to the appropriate scaler and Keras model. Lastly, the
thread calls a function of the ValueThread class that retrieves the first input values
used for prediction. This means that thread queries the database for the given
number of timesteps, t, in the Keras model, and collects the t first input values.
By doing this, the input values are already available as soon as the client asks for
predicted values. As an example, if the timesteps used were t = 30 and the number
of input features was nf = 12, the thread would collect the first 30 timesteps of these
12 features and store them in the session cookie. Now, when a prediction is made,
the input values can be used, and the first of the 30 timesteps can be dropped for a
new value from the database.

All of the functionality related to prediction of values is defined in the ValueThread-
class. In addition to the get_first_input_values() function mentioned above, the
ValueThread-class has a get_data() function. This is where value prediction and
emitting values to the frontend is done. When the values have been queried from the
database and predictions have been made through the Keras model, the get_data()
function calls

1 socketio.emit(’values ’, values)

which emits the values to the frontend through a custom socket-emitter called ’values’.
The frontend client listens to messages with this specific emitter-name and catches
the values as soon as an incoming message exists.

8.3 React Frontend
React is a component-based library where a web page consists of different, separate
components with individual states. Thus, web pages created with React can have
states updated independently of other components, which makes the library dynamic.
States from a parent component can be passed to child components as properties,
and conversely, child components can pass states to parents through methods. This
hierarchical approach is efficient for limiting which components have access to the
states, making sure that information is only passed on to the components which need
them. This helps prevent data leaks and makes the library fast.

In the following sections, the different components developed for the frontend will
be explored. Additional snapshots of web application functionality are provided in
Appendix E.

Faculty of Engineering Science and Technology
Department of Marine Technology

51 of 67

8.3 React Frontend

8.3.1 Startpage.js
The Startpage-component is the first interface the user meets and intends to glue
all components together. Based on the user’s interaction with the start page, three
different display options are controlled by the Startpage-component, namely the

• selection page for uploading Keras model and data scaler files, as well as pro-
viding specifications related to inputs and outputs used by the Keras model,

• chart dashboard, which is the visualization page for readings, predictions, and
anomaly detection based on the provided Keras model and scaler, and

• about page, which gives a summary of the purpose of the web application and
links to relevant GitHub repositories.

The Startpage-component also has a home button that takes the user back to the
default view, which is the selection page without any user selections or uploaded
files. Figure 8.5 shows the first view the user sees when navigating to the web page.

Figure 8.5: Web application start page.

8.3.2 Header.js
The Header-component consists of the current dashboard title and the home- and
about-button. If the user clicks on the about-page, the Header also displays the
GitHub source code repositories of the modeling API and web application.

8.3.3 Upload.js
Here, the user is able to drag and drop or browse files that will be used by the
application. The user has to upload two files, a Keras sequential model and a data
scaler for transforming and inverse transforming of the data. Scalers were explored
in Section 7.2.3. The upload functionality is in part based on the react-dropzone20

component library.

Several mechanisms for preventing erroneous uploads have been implemented, in-
cluding conflicting file formats, multiple files, files exceeding the maximum file size
of 100 MB, and files that can not be identified as either a Keras model or data
scaler. If the user’s uploads are invalid, the appropriate error is given as feedback.
The visual feedback of uploading erroneous files is seen in Figure E.1, and the user

20Documentation for react-dropzone: https://react-dropzone.js.org/.

Faculty of Engineering Science and Technology
Department of Marine Technology

52 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Startpage.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Header.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Upload.js
https://react-dropzone.js.org/

8.3 React Frontend

can hover over a question mark in the upload box to receive more information about
the files to be uploaded, which is seen in Figure E.2.

As seen in the start page in Figure 8.5, there is also an option to use example files.
When pressed, the application will load these example files into memory, and the
user will be able to proceed.

8.3.4 ModelSpecifications.js
When the user has successfully uploaded files, the ModelSpecifications-component
will allow users to select the system that the model was made with, as seen in
Figure E.3. The systems are loaded from the PostgreSQL-database by first sending
a request to the backend, which queries the database. Currently, only the Nogva
engines table contains data. When a system is selected, the ModelSpecifications-
component will send a new request to the backend, which queries the database for
signals found of the chosen system and sends these signals back to the client. The
user must then choose which signals the model uses as input, and consequently, which
signals the model have as predicted outputs. This selection process is visualized in
Figure 8.6.

Figure 8.6: Model specifications.

Here, the user is trusted to choose the correct signals, since there is no way of
verifying that the chosen inputs and outputs coincide with the uploaded model. As
an alternate verification tool, the application reads the number of inputs and outputs
from the model file and limits the number of selections the user can make.

When all of the model specifications are chosen, the start page selection phase is
finished, and a continue button will become active, as seen in Figure 8.7. If the
example files are used, the system, inputs, and outputs are chosen automatically, as
seen in Figure E.5.

Faculty of Engineering Science and Technology
Department of Marine Technology

53 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/ModelSpecifications.js

8.3 React Frontend

Figure 8.7: Completed model selection process with Keras model and scaler spec-
ifications shown, as well as selected system, inputs, and predicted outputs.

8.3.5 ChartDashboard.js
When continuing, the ChartDashboard-component will become active, which handles
all activities related to the visualizing of readings, predictions, and anomalies. The
ChartDashboard is responsible for

• creating a WebSocket connection with the backend through SocketIO,

• using the SocketIO connection to receive and handle values from the database
through the backend,

• giving the user the ability to select which signals to visualize, and

• adding and removing charts based on user selection.

The initial charting dashboard the user sees is given in Figure E.6, where the signal
selection menu is open.

8.3.6 ChartVisuals.js
Most of the visual representation, and some of the functionality, is taken from a sam-
ple IoT-application for peak detection of randomly generated data (Hassan, 2019).
There are many open-source visualization modules available online. Therefore, it was
deemed better to reuse appropriate resources rather than develop visual function-

Faculty of Engineering Science and Technology
Department of Marine Technology

54 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/ChartDashboard.js
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/ChartVisuals.js

8.3 React Frontend

ality from scratch. The ChartVisuals-component uses the D321 JavaScript library
as a template for the charting visualization. The component has been changed to
function with predictions and visualizing anomalies, in addition to some adjusting
to the axes.

8.3.7 Chart.js
The Chart-component bridges the ChartVisuals-component and the flow of data
through the ChartDashboard-component. For each signal the user selects in the
chart dashboard, a new instance of a Chart-component is instantiated. The Chart-
component receives data as properties from ChartDashboard and transforms the
data to its appropriate format for the ChartVisuals-component. In addition, the
Chart-component handles the connection status of the visual component, as well as
the threshold selection, which affects the anomaly detection. The Chart-component
is responsible for

• showing the name of the visualized signal and its last reading,

• showing the connection status of the signal,

• toggling the different series (readings, predictions, and anomalies can be toggled
on or off by clicking on their respective labels),

• enabling threshold selection for anomaly detection and displaying the current
threshold value,

• calculating the prediction error and determining if an anomaly is active,

• transmitting active anomalies to the ChartVisuals-component, which visual-
izes the anomalies,

• showing the deviation between the reading and predicted value (if applicable),
and

• showing a timestamp of the last received reading.

When the user selects signals in the ChartDashboard, charts are added as seen in
Figure 8.8.

21Documentation for D3: https://github.com/d3/d3/wiki.

Faculty of Engineering Science and Technology
Department of Marine Technology

55 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/Chart.js
https://github.com/d3/d3/wiki

8.4 Launching the Web Application to Heroku

Figure 8.8: Visualization of data from two selected signals.

If the Chart-component encountered an error when fetching values, the signal be-
comes disconnected, as seen in Figure E.8. As mentioned, the user can toggle different
series in the plot, which is demonstrated in Figure E.7, where the prediction series
is disabled. For signals that are not part of the predicted output signals, meaning
they will not be predicted by the model, only the "Reading"-series is available.

8.3.8 About.js
The about-page can be seen in Figure E.9.

8.4 Launching the Web Application to Heroku
As mentioned, the web application has been launched to Heroku through a Web
Server Gateway Interface (WSGI). More specifically, this was done through gunicorn,
which is a PythonWSGI HTTP server (Chesneau, 2010). When deploying to Heroku,
a Procfile is necessary for specifying production parameters. The Procfile can be
seen in the root folder of the web application seen in Figure 8.3, and includes the
code seen in Section 8.4.

1 web: gunicorn --preload --no -sendfile --worker -class eventlet -w 1
2 --chdir flask -backend api:app

The Procfile includes settings specified by both Heroku, gunicorn, and other parts

Faculty of Engineering Science and Technology
Department of Marine Technology

56 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application/blob/master/react-frontend/src/components/About.js

8.5 Results

of the web application that demands certain behavior. It is especially important to
note the restrictions in workers, given by –worker-class eventlet -w 1, which sets
the maximum number of workers to 1. This is necessary when using Flask-SocketIO
together with gunicorn22.

8.5 Results
Similar to the modeling API, the functionality of the web application is tested against
the simulated error on the exhaust temperatures seen in Figure 5.2. Both of the
exhaust temperature signals can detect anomalies in the first few seconds of the
simulated error. This is seen in Figure 8.9, where the threshold values are based on
testing and are similar to the threshold values from Section 7.3.

Figure 8.9: Visualization of the first detected anomalies for both exhaust temper-
atures.

The first chart encounters its first anomaly at 10:50:30 with a threshold value of
Ta = 6.5, which is 14 seconds after the simulated error begins. The second chart
encounters its first anomaly at 10:50:22, which is 8 seconds after the simulated error
begins. Both of the signals continue to mark the values as anomalies until the
simulated error is close to its end. The last detected anomalies are seen in Figure 8.10.

22This is specified by Grinberg (2014) in this discussion thread.

Faculty of Engineering Science and Technology
Department of Marine Technology

57 of 67

https://github.com/miguelgrinberg/Flask-SocketIO/issues/722

8.6 Improvements to the Web Application

Figure 8.10: Visualization of the last detected anomalies for both exhaust temper-
atures.

The first chart encounters its last anomaly at 10:56:11, which is 22 seconds before
the simulated error ends. The second chart encounters its last anomaly at 10:56:09,
which is 24 seconds before the simulated error ends. Although the web application
stops detecting anomalies a period before the simulation error ends, the values are
seen to normalize in the simulated error, which indicates that the values may be in
the operating range. The results are similar to the results from the testing of the
modeling API in Section 7.3, which indicates that the web application successfully
marks anomalies based on the uploaded Keras model and scaler.

8.6 Improvements to the Web Application
When it comes to web development, there are always ways of incrementally im-
proving an application. Therefore, many small changes would improve the quality
of the application for the user and for the maintenance of the server-side backend.
The application, as is, lacks several elements of a standard web application, most
prominently as authentication and user handling. Authentication was not prioritized
during development since this is beside the objectives of the thesis. Also, NTNU has
an authentication service that can be integrated into the application. Since user
authentication is not included, each user’s history is not stored, which means that
uploaded files and user specifications are not stored. Adding user areas with file stor-
age would be a significant improvement to the longevity of the application. There
also lacks some error handling, which would make it easier for users to know what
to do if an error occurs.

Faculty of Engineering Science and Technology
Department of Marine Technology

58 of 67

8.6 Improvements to the Web Application

Currently, the most significant improvement would be to continue working on the
plotting capabilities. The web application only supports a live feeding of data. In
contrast, it would be beneficial to add the ability to, for instance, access historical
data, save intervals of interests, change the number of data points displayed, and
pause the plotting. It would also be possible to introduce an event log at the top of the
visualization dashboard, where the user receives a message every time a critical event
has occurred. This way, the user does not have to check every signal to know when
an anomaly has occurred or when a system has been disconnected. A conceptual
idea of such an event logger is given in Figure 8.11. Implementation would not be
too demanding since all of the information is available, but due to time constraints,
it was not prioritized. At the moment, the database only includes data from the
Nogva engines. Adding new data to the database is trivial, and could demonstrate
the application’s flexibility and open up for testing algorithms on other systems on
R/V Gunnerus. Due to database restrictions on Heroku, only the main engines were
added for a short time interval. Setting up a database maintained by NTNU would
enable scaling the database, which could interact with the streams directly from R/V
Gunnerus, giving the application close to real-time functionality.

EVENT LOGGER

Show more events

Figure 8.11: Conceptual idea of adding an event logger. Critical, active events are
displayed at the top, and historical events are displayed in a list of limited shown
entries.

The application is intended to display functionality relevant to digital twins. As such,
it could be valuable to implement other elements of a digital twin in the web appli-
cation, such as implementing different 3D models which the user can interact with

Faculty of Engineering Science and Technology
Department of Marine Technology

59 of 67

9. Discussion

to extract information and data. The models are available, but creating an inter-
action between model components and a framework such as this anomaly detection
application would be too demanding for this project.

9 Discussion
With a functioning framework for anomaly detection on R/V Gunnerus, the case
study should be evaluated against its intended purpose. The case study is meant
to represent an educational resource for marine engineering students. Although the
framework is not a direct derivative of the proposed DTI, it is based on the data
management component, where the end-goal is to provide insight into operation
based on analytics and learning. What makes the framework a valuable contribution
towards a digital twin of R/V Gunnerus is the real-time visualization environment.
If it assumed that data is transmitted from the vessel in close to real-time, the web
application could be modified to query these values at the same time as they are
received by the server. Predicted values are calculated as soon as new values are
queried from the database, which means that the web application would be able to
detect anomalies and provide feedback close to real-time.

Circling back to what would make a digital twin a valuable resource for education,
availability, and ease of access is emphasized. This was the main reason for developing
a web application, and the web application was developed with these factors in mind
as well. Thus, the application is as simple as possible to use, without any superfluous
settings, configurations, or options. These additional functions could perhaps have
increased the performance, but if it at the expense of availability or user experience,
it would go against its purpose.

Based on the conducted case study, the anomaly detection framework can be used by
implementing it into a relevant course in marine technology education at NTNU. This
would require a theoretical motivation related to the use of ANNs for condition-based
maintenance. After a theoretical introduction, students could be given exercises or a
project description where the task is to implement their neural networks for anomaly
detection.

10 Conclusion
Through the thesis, several aspects related to a digital twin of R/V Gunnerus have
been approached. First, through a property-driven evaluation of digital twin defi-
nitions, a digital twin infrastructure was proposed, consisting of three main compo-
nents. These components were data management, modeling and simulation environ-
ment, and software and system realization. These building blocks, and the functions
they facilitate, represent a useful approach for creating digital twins for education
since there is a vast application space where functionality should be added on top
of a strong foundation. Also, the lifecycle of a digital twin suggests that, as digi-
tal twins are still in their technological infancy, students should be included in the
development of digital twins, and not just the utilization of digital twins.

Through the case study, an anomaly detection framework was developed. The frame-
work consists of a modeling API for creating, modifying, and testing sequential ANN
models, and a web application for applying models, predicting values, and visualizing
readings, predictions, and detected anomalies in a real-time environment. The mod-
eling API has functionality for managing files, memory, and plotting, in addition to

Faculty of Engineering Science and Technology
Department of Marine Technology

60 of 67

11. Recommendations for Further Work

several functions for accelerating the modeling process. The web application supports
uploading a sequential Keras model – or using an example LSTM model – and visu-
alizing data for the chosen system the model is applied to. The web application was
developed with a React frontend in JavaScript, and a Flask backend in Python, with a
PostgreSQL database. The web application has been launched to production through
Heroku and is available at https://rv-gunnerus-anomaly-detection.herokuapp.com/.

To test the functionality of the anomaly detection framework, a simple LSTM se-
quential model of one of the main engines on R/V Gunnerus was implemented and
tested on an interval with a simulated error on the engine’s exhaust signals. After
using the model to predict the behavior of the exhaust signals, the plotting functions
supported by the modeling API were used to verify the results. The LSTM model
was able to detect 95.8 % of the values in the erroneous data interval without de-
tecting any false anomalies. The predicted values also followed the measured signal
values without any abnormal deviations but struggled with a constant offset at times.
This can be a result of overfitting the data. The LSTM model was made as simple
as possible to demonstrate how quickly a model could be implemented through the
modeling API. When the example model was tested in the web application, similar
results were achieved.

The anomaly detection framework illustrates how a typical application of a marine
digital twin can be developed to be used in an educational context.

11 Recommendations for Further Work
All of the different topics explored in this thesis have potential for further work.
In general, the topics in the thesis have been discussed as means to continuing the
development of a digital twin of R/V Gunnerus. The recommendations in this section
revolves around specific ways of continuing this development.

The proposed digital twin infrastructure is the first obvious approach. In this report,
the infrastructure has been proposed as a foundation for a digital twin of R/V Gun-
nerus, and if a true digital twin of the research vessel is to be made, the infrastructure
is a starting point for achieving the necessary basic functionality. There are different
industry projects being developed on the topic of digital twins, and co-operating
with industry is mutually beneficial. Creating a closer connection with industry
through participating in industry projects, either by contributing to development
or through testing functionality, will help promote the use of digital twins in both
an academic and educational context. In addition to fusing academic and industry
interests, co-operation across institutes could prove beneficial. In experience, differ-
ent groups working for a large company or university often work on similar topics
without being aware of it. As NTNU has a maritime branch in both Trondheim and
Ålesund, improving the dialogue between the two institutes would help accelerate the
development of an R/V Gunnerus digital twin and prevent duplicate assignments.

When it comes to the case study conducted in this thesis, there are several points
of departure for further work. As mentioned in the discussion in Section 9, with
a theoretical introduction the results from the case study can be applied directly.
Alternatively, it is possible to use the case study as a starting point, either for
building upon directly, or by using the case study as a template for creating other,
similar resources. Due to the thorough documentation of code for both the modeling
API and web application development, building on the developed tools should be

Faculty of Engineering Science and Technology
Department of Marine Technology

61 of 67

https://rv-gunnerus-anomaly-detection.herokuapp.com/

11. Recommendations for Further Work

possible if the necessary programming experience is known or taught.

A section for potential improvements were included with the modeling API in Ap-
pendix A.3 and with the web application in Section 8. These sections explored some
alternatives to continue the development of the anomaly detection framework. For
the modeling API, developing a separate documentation for the API would be the
immediate action. In addition, exploring cloud platforms for interactive computing
to limit the requirements for computing power, making the API more accessible. For
the web application, it should be launched to an NTNU server with the appropriate
resources available. There are many parts of the web application that needs improve-
ment, as the application was implemented as a minimal bare-bone application with
essential functionality such as user authentication and file storage. Implementing
other aspects of a digital twin into the web application could also be of interest, but
implementing the functionality of the web application into a digital twin application
would be a more likely approach.

Faculty of Engineering Science and Technology
Department of Marine Technology

62 of 67

References

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Tal-
war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2015), ‘TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems’, url=https://www.tensorflow.org/. Software
available from tensorflow.org.

Alam, K. M. and El Saddik, A. (2017), ‘C2PS: A Digital Twin Architecture Reference Model
for the Cloud-Based Cyber-Physical Systems’, IEEE Access Vol. 5, p. 2050–2062.

Alvsaker, J. F. (2020a), ‘R/V Gunnerus Anomaly Detection Modeling API ’. GitHub repos-
itory, https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-
api.

Alvsaker, J. F. (2020b), ‘R/V Gunnerus Anomaly Detection Web Application’. GitHub
repository, https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-
application.

Alvsaker, J. F. (2020c), ‘R/V Gunnerus Digital Twin Infrastructure Presentation’. Presen-
tation held at the Institute of Marine Tecnology, available at https://drive.google.com/
file/d/1CZ19jXreofsXKAhSY3Mdqgx85zQa4-ID/view?usp=sharing.

Asbjørnslett, B. E., Pettersen, S. S., Erikstad, S. O., Rølvåg, T., Alvsaker, J. F., Bjørum,
L. O., Borgersen, M., Rølvåg, P. and Stålesen, K. (2019), ‘Report on the use of Dig-
ital Twins in Engineering Education’. UROP NTNU, Department of Marine Tech-
nology. Available at https://drive.google.com/file/d/1U9MVTphmfkr34dO1_gL8Dwu-
GJr65Wuc/view?usp=sharing.

Bengio, Y., Simard, P. and Frasconi, P. (1994), ‘Learning long-term dependencies with gra-
dient descent is difficult ’, IEEE transactions on neural networks / a publication of the
IEEE Neural Networks Council 5, 157–66.

Berre, A. and Ørnulf Rødset (2018), From digital twin to maritime data space: Transparent
ownership and use of ship information, in ‘ISIS – MTE18 Conference’, Berlin.

Brodtkorb, A. H., Nielsen, U. D. and Sørensen, A. J. (2018), ‘Sea state estimation using
vessel response in dynamic positioning’, Applied Ocean Research Vol. 70, p. 76 – 86.

Cabos, C. and Rostock, C. (2018), Digital Model or Digital Twin? , in ‘COMPIT’18 Confer-
ence’, Pavone.

Cano, J. (2014), ‘The V’s of Big Data: Velocity, Volume, Value, Variety, and Ve-
racity ’, www.xsnet.com/blog/bid/205405/the-v-s-of-big-data-velocity-volume-
value-variety-and-veracity.

Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., da P. Francisco, R., Basto, J. P. and Alcalá,
S. G. S. (2019), ‘A systematic literature review of machine learning methods applied to
predictive maintenance’, Computers & Industrial Engineering 137, 106024.

Catlin, H., Weizenbaum, N. and Eppstein, C. (2006), ‘Sass: Syntactically Awesome Style
Sheets’, https://sass-lang.com/documentation.

Chesneau, B. (2010), ‘gunicorn’, https://gunicorn.org/#docs.

Chollet, F. et al. (2015), ‘Keras’, https://keras.io.

Faculty of Engineering Science and Technology
Department of Marine Technology

63 of 67

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api
https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application
https://github.com/johanfal/rv-gunnerus-anomaly-detection-web-application
https://drive.google.com/file/d/1CZ19jXreofsXKAhSY3Mdqgx85zQa4-ID/view?usp=sharing
https://drive.google.com/file/d/1CZ19jXreofsXKAhSY3Mdqgx85zQa4-ID/view?usp=sharing
https://drive.google.com/file/d/1U9MVTphmfkr34dO1_gL8Dwu-GJr65Wuc/view?usp=sharing
https://drive.google.com/file/d/1U9MVTphmfkr34dO1_gL8Dwu-GJr65Wuc/view?usp=sharing
www.xsnet.com/blog/bid/205405/the-v-s-of-big-data-velocity-volume-value-variety-and-veracity
www.xsnet.com/blog/bid/205405/the-v-s-of-big-data-velocity-volume-value-variety-and-veracity
https://sass-lang.com/documentation
https://gunicorn.org/#docs
https://keras.io

References

Crockford, D. (2001), ‘JavaScript Object Notation’, https://www.json.org/json-en.html.

de Carvalho, C. A. R. (2019), Personal communication (meeting October 22, 2019). Senior
Researcher in Group Technology and Research, DNV GL.

DNV GL (2018), ‘DNVGL–VIS Naming rules’, https://data.dnvgl.com/dnvgl-vis/.

DNV GL (2019a), ‘Collaboration in Offshore Engineering – Sesam Insight ’, www.dnvgl.com/
services/collaboration-in-offshore-engineering-sesam-insight-115356.

DNV GL (2019b), ‘Open Simulation Platform: Taking digital twins to the next level ’,
www.dnvgl.com/feature/open-simulation-platform-osp.html.

Ellefsen, A. L. (2020), Personal communication (e-mails in April and May of 2020). PhD
candidate, NTNU Ålesund.

Erikstad, S. O. (2017), Merging Physics, Big Data Analytics and Simulation for the Next-
Generation Digital Twins, in ‘HIPER Conference’, Zevenwacht.

Erikstad, S. O. (2018), Design Patterns for Digital Twin Solutions in Marine Systems Design
and Operations, in ‘COMPIT’18 Conference’, Pavone.

Erikstad, S. O. (2019), Designing Ship Digital Services, in ‘COMPIT’19 Conference’, Tul-
lamore.

Facebook (2013), ‘React.js’, https://reactjs.org/docs/.

Fette, I., Carter, M. and Hickson, I. (2011), ‘The WebSocket Protocol ’, https://
tools.ietf.org/html/rfc6455.

Fielding, R., Irvine, U., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and
Berners-Lee, T. (1999), ‘HTTP Message’, https://www.w3.org/Protocols/rfc2616/
rfc2616-sec4.html.

Firican, G. (2017), ‘The 10 Vs of Big Data’, https://tdwi.org/articles/2017/02/08/
10-vs-of-big-data.

FullToTech (2019), ‘Top Benefits of using Cloud Computing ’, http://fulltotech.info/
2019/10/top-benefits-of-using-cloud-computing/.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), ‘Design patterns – elements of
reusable object-oriented software code’. Published by Addison-Wesley.

Grieves, M. and Vickers, J. (2017), Digital Twin: Mitigating Unpredictable, Undesirable
Emergent Behavior in Complex Systems, in ‘Transdisciplinary Perspectives on Complex
Systems’, Springer, pp. 85–113.

Grinberg, M. (2014), ‘Flask SocketIO ’, https://flask-socketio.readthedocs.io/en/
latest/.

Gupta, A. and Awasthi, L. K. (2009), Peer enterprises: A viable alternative to Cloud com-
puting?, in ‘2009 IEEE International Conference on Internet Multimedia Services Archi-
tecture and Applications (IMSAA)’, Bangalore, pp. 1–6.

H. Øverby, & J. A. Audestad (2018), Digital Economics, Amazon, Great Britain.

Harvey, C. and Patrizio, A. (2019), ‘Aws vs. azure vs. google: Cloud compari-
son’, www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-
comparison.html.

Hassan, H. (2019), ‘D3-TS-Chart ’. GitHub repository, https://github.com/iammowgoud/
Peak-Detection-Visualization/tree/master/src/d3-helpers.

Faculty of Engineering Science and Technology
Department of Marine Technology

64 of 67

https://www.json.org/json-en.html
https://data.dnvgl.com/dnvgl-vis/
www.dnvgl.com/services/collaboration-in-offshore-engineering-sesam-insight-115356
www.dnvgl.com/services/collaboration-in-offshore-engineering-sesam-insight-115356
www.dnvgl.com/feature/open-simulation-platform-osp.html
https://reactjs.org/docs/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html
https://tdwi.org/articles/2017/02/08/10-vs-of-big-data
https://tdwi.org/articles/2017/02/08/10-vs-of-big-data
http://fulltotech.info/2019/10/top-benefits-of-using-cloud-computing/
http://fulltotech.info/2019/10/top-benefits-of-using-cloud-computing/
https://flask-socketio.readthedocs.io/en/latest/
https://flask-socketio.readthedocs.io/en/latest/
www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
https://github.com/iammowgoud/Peak-Detection-Visualization/tree/master/src/d3-helpers
https://github.com/iammowgoud/Peak-Detection-Visualization/tree/master/src/d3-helpers

References

Hatledal, L. I., Zhang, H., Styve, A. and Hovland, G. (2018), FMI4j: A Software Package
for Working with Functional Mock-Up Units on the Java Virtual Machine, in ‘SIMS’59
Conference’, Oslo.

Holmeset, F. T. (2019), Personal communication (audio-meeting October 24, 2019 and May
11, 2020, continuous exchange of e-mails throughout the fall of 2019 and spring of 2020).
1Head Engineer, NTNU Ålesund, 2Technical Inspector, R/V Gunnerus.

IntelliPaat (2019), ‘AWS vs Azure vs Google – Detailed Cloud Comparison’, https://
intellipaat.com/blog/aws-vs-azure-vs-google-cloud/.

Jozefowicz, R., Zaremba, W. and Sutskever, I. (2015), An Empirical Exploration of Recurrent
Network Architectures, in ‘32nd International Conference on Machine Learning’, Lille.

Kavis, M. J. (2014), Architecting the Cloud: Design Decisions for Cloud Computing Service
Models (SaaS, PaaS, and IaaS), Wiley, Canada.

Kongsberg Maritime (2019), ‘Acquisition of Rolls-Royce Commercial Marine’,
www.kongsberg.com/maritime/about-us/who-we-are-kongsberg-maritime/rolls-
royce-commercial-marine-information.

Kyllingstad, L. T. (2019), ‘Open Simulation Platform – Co-Simulation, Standards, and Soft-
ware’. Presentation held at NTNU Trondheim, November 13, 2019.

Laney, D. (2001), 3D Data Management: Controlling Data Volume, Velocity, and Variety,
Technical report, META Group.

Leavitt, N. (2013), ‘Hybrid Clouds Move to the Forefront ’, IEEE Computer Vol. 46, p.
15–18.

Lindenbaum, J., Wiggins, A. and Henry, O. (2007), ‘Heroku’, https://
devcenter.heroku.com/categories/reference.

Ludvigsen, K. B., Jamt, L. K., Husteli, N. and Øyvind Smogeli (2016), Digital Twins for
Design, Testing and Verification Throughout a Vessel’s Life Cycle, in ‘COMPIT’16 Con-
ference’, Lecce.

Låg, S. and With, S. B. (2017), ‘Standardisation as an Enabler of Digitalisation in the
Maritime Industry ’. Group Technology & Research, DNV GL. Position Paper.

Macchi, M., Roda, I., Negri, E. and Fumagalli, L. (2018), ‘Exploring the role of Digital Twin
for Asset Lifecycle Management ’, IFAC-PapersOnLine Vol. 51(Num. 11), p. 790–795.

Malakuti, S. and Grüner, S. (2018), Architectural Aspects of Digital Twins in IIoT Systems,
in ‘ECSA’18 Conference’, Madrid.

Mell, P. and Grance, T. (2011), ‘The NIST Definition of Cloud Computing ’, https://
csrc.nist.gov/publications/detail/sp/800-145/final.

Miller, H. and Veiga, J. (2009), ‘Cloud Computing: Will Commodity Services Benefit Users
Long Term? ’, IT Professional Vol. 11(Num. 6), p. 57–59.

Mittal, V. (2019), Personal communication (audio-meeting October 2, 2019). Product man-
ager for Data Fabric, Veracity.

Nielsen, M. (2019), ‘Neural Networks and Deep Learning ’, http://
neuralnetworksanddeeplearning.com/.

Nielsen, U. D., Brodtkorb, A. H. and Sørensen, A. J. (2018), ‘A brute-force spectral approach
for wave estimation using measured vessel motions’, Marine Structures Vol. 60, p. 101 –
121.

Faculty of Engineering Science and Technology
Department of Marine Technology

65 of 67

https://intellipaat.com/blog/aws-vs-azure-vs-google-cloud/
https://intellipaat.com/blog/aws-vs-azure-vs-google-cloud/
www.kongsberg.com/maritime/about-us/who-we-are-kongsberg-maritime/rolls-royce-commercial-marine-information
www.kongsberg.com/maritime/about-us/who-we-are-kongsberg-maritime/rolls-royce-commercial-marine-information
https://devcenter.heroku.com/categories/reference
https://devcenter.heroku.com/categories/reference
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

References

NTNU (2006), ‘RV GUNNERUS – LNVZ ’, https://www.ntnu.edu/oceans/gunnerus/
spesifications.

NTNU (2019), ‘Research Data’, https://innsida.ntnu.no/researchdata.

Oksavik, T. (2019), Personal communication (mail exchange November 11 to December 5,
2019). Data Scientist, Kongsberg Maritime.

Olah, C. (2015), ‘Understanding LSTM Networks’, https://colah.github.io/posts/
2015-08-Understanding-LSTMs/.

Os, J. V. (2018), The Digital Twin throughout the Lifecycle, in ‘COMPIT’18 Conference’,
Pavone.

Pallets (2010), ‘Flask SQL Alchemy ’, https://flask-sqlalchemy.palletsprojects.com/
en/2.x/.

Pedersen, T. A. (2019), Personal communication (meeting October 22, 2019). Principal
Researcher in Group Technology and Research, DNV GL.

PostgreSQL Global (1996), ‘PostgreSQL’, https://www.postgresql.org/docs/.

Pérez, F. (2014), ‘Project Jupyter ’, https://jupyter.org/documentation.

Qi, Q., Zhao, D., Liao, T. and Tao, F. (2018), Modeling of Cyber-Physical Systems and
Digital Twin Based on Edge Computing, Fog Computing and Cloud Computing Towards
Smart Manufacturing, in ‘MSEC’13’, Texas.

Rauch, G. (2014), ‘Socket IO ’, https://socket.io/docs/.

Ronacher, A. (2010), ‘Flask ’, https://flask.palletsprojects.com/en/1.1.x/.

Scania (2011), Operator’s Manual DI16 EMS with S6/PDE Marine engine.

Selvik, Ø., Berg, T. and Gavrilin, S. (2015), Sea trials for validation of shiphandling simu-
lation models-a case study, in ‘MTEC’14 Conference’, London.

Serrano, N., Gallardo, G. and Hernantes, J. (2015), ‘Infrastructure as a Service and Cloud
Technologies’, IEEE Software Vol. 32(Num. 2), p. 30–36.

Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J. and Wang, L.
(2010), ‘DRAFT Modeling, Simulation, Information Technology & Processing Road Map’.
National Aeronautics and Space Administration.

Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016), ‘Edge Computing: Vision and
Challenges’, Internet of Things Vol. 3(Num. 5), p. 637–646.

Skjetne, R. (2020), Personal communication (meetings January 10, 2020, and February 3,
2020). Professor in Marine Control Engineering, NTNU Trondheim.

Skjetne, R., Sørensen, M. E. N., Breivik, M., Værnø, S. A. T., Brodtkorb, A. H., Sørensen,
A. J., Kjerstad, Ø. K., Calabrò, V. and Vinje, B. O. (2017), ‘AMOS DP Research Cruise
2016: Academic Full-Scale Testing of Experimental Dynamic Positioning Control Algo-
rithms Onboard R/V Gunnerus’. OMAE 2017, p. 1–10.

Skjong, S., Rindarøy, M., Kyllingstad, L. T., Æsøy, V. and Pedersen, E. (2018), ‘Vir-
tual Prototyping of Maritime Systems and Operations: Applications of Distributed Co-
simulations’, Journal of Marine Science and Technology Vol. 23(Num. 4), p. 835–853.

Sverdrup, J. (2017), ‘Open Digital Platform Ecosystem – Industry Meets Science: Offshore
Wind ’. Presentation held at NTNU Trondheim, November 13, 2019.

Faculty of Engineering Science and Technology
Department of Marine Technology

66 of 67

https://www.ntnu.edu/oceans/gunnerus/spesifications
https://www.ntnu.edu/oceans/gunnerus/spesifications
https://innsida.ntnu.no/researchdata
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://www.postgresql.org/docs/
https://jupyter.org/documentation
https://socket.io/docs/
https://flask.palletsprojects.com/en/1.1.x/

References

Synergy Research Group (2019), ‘Strategic market intelligence for emerging it & cloud’,
https://www.srgresearch.com/.

Sørensen, A. J. (2018), Marine Cybernetics – Towards Autonomous Marine Operations and
Systems, Department of Marine Technology, NTNU.

Taylor, C. (2017), ‘The Cold Cloud: Long-Term Backup Storage in the Pub-
lic Cloud ’, www.enterprisestorageforum.com/storage-services/the-cold-cloud-
long-term-backup-storage-in-the-public-cloud-1.html.

TensorFlow (2020), ‘Install TensorFlow 2 ’, https://www.tensorflow.org/install.

Tjøswold, S. (2012), Verifying and Validation of a Manoeuvring Model for NTNU’s Research
Vessel R/V Gunnerus, Master’s thesis, Norwegian University of Science and Technology,
Department of Marine Technology.

Trojan, F. and Marçal, R. F. M. (2017), ‘Proposal of Maintenance-types Classification to
Clarify Maintenance Concepts in Production and Operations Management ’, Journal of
Business and Economics Vol. 8(Num. 7), p. 560 – 572.

Utne, I. B. and Rasmussen, M. (2017), ‘Reliability, Availability, Maintenance and Safety
(RAMS) in Design and Operation of Marine Systems’.

Watts, S. and Raza, M. (2019), ‘SaaS vs PaaS vs IaaS: What’s The Differ-
ence and How To Choose’, www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-
difference-and-how-to-choose/.

Zhang, H. (2019), Personal communication (audio-meeting October 10, 2019). Professor on
Robotics and Cybernetics, NTNU Ålesund.

Faculty of Engineering Science and Technology
Department of Marine Technology

67 of 67

https://www.srgresearch.com/
www.enterprisestorageforum.com/storage-services/the-cold-cloud-long-term-backup-storage-in-the-public-cloud-1.html
www.enterprisestorageforum.com/storage-services/the-cold-cloud-long-term-backup-storage-in-the-public-cloud-1.html
https://www.tensorflow.org/install
www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/

A. User Manuals for Anomaly Detection Framework

A User Manuals for Anomaly Detection Framework
The following user guides will be tailored towards the Windows operating system.
However, the commands used for the installation procedure are universally known for
all operating systems, and through a search engine, it should not be much different
for other operating systems. The section includes user manuals for

• accessing network drives (used to get data in modeling API),

• use of Python, pip, and virtual environments,

• modeling API for anomaly detection,

• local web application set up for development (both backend and frontend).

A.1 Access to Network Drive
Data from R/V Gunnerus is transmitted to a server run by Kongsberg, which is the
main data provider of the vessel. The data used in the case study is retrieved from a
network drive based on some of the data transmitted from the vessel through a 4G
transmitter aboard the vessel. The 4G transmitter was set up and is administered by
NTNU Ålesund, which provided access to the network drive for this project (Holme-
set, 2019). To get access to the network drive, the user must have a valid network
connection to NTNU, either through physical presence or through a virtual private
network (VPN). NTNU uses Cisco as VPN provider. To connect to a network drive,
this NTNU guide for Windows can be used. Similar guides for Mac OS and Linux
can be found here and here, respectively. The directory path filled out in step three
of the process can be found here. If the network drive was added successfully, it
should show up in the file explorer of your operating system. When attempting
to access the network drive, the user will be prompted to log in via their NTNU
credentials. After adding credentials, the user should have read access to the R/V
Gunnerus network drive.

A.2 Python, pip, and Virtual Environments
For both the modeling API and the backend application in Flask, Python, pip, and
virtual environments will be used to initiate and run the projects. pip is a package
manager for Python used to install dependencies, and virtual environments are used
to maintain project-related packages in a single directory, preventing incompatibility
issues regarding package versions in other Python projects. Other package managers
can be chosen, but for this project, pip will be used.

Python can be downloaded from the official website, python.org/downloads. Be
aware that TensorFlow, which is used extensively for both applications, only work
with Python releases 3.5-3.8, and it is essential to download a 64-bit version as
32-bit versions are not supported (TensorFlow, 2020). The modeling API and web
application is known to work with Python 3.8 and above.

After downloading Python, project dependencies are installed through pip, which is
integrated into Python for versions 3.4 and higher. However, if pip is not installed,
there are countless resources online to help installing pip. To check if pip is already
installed, run
>pip help

in the command line, which will return an error if no valid installation of pip is
found. Here, the ">" symbol is used to mark the command line interface symbol,

Faculty of Engineering Science and Technology
Department of Marine Technology

I

https://innsida.ntnu.no/en/wiki/-/wiki/Norsk/Koble+til+nettverksomr%C3%A5de+med+Windows
https://innsida.ntnu.no/wiki/-/wiki/Norsk/Koble+til+nettverksomr%C3%A5de+med+Mac+OS+X
https://innsida.ntnu.no/wiki/-/wiki/Norsk/Koble+til+nettverksomr%C3%A5de+med+Linux
https://docs.google.com/spreadsheets/d/1LgqX1kLHEDRwQ6bCKNRe06w23tD4ITkivmf6dyltMiM/edit?usp=sharing
https://www.python.org/downloads/

A.3 Modeling API for Anomaly Detection

and is not actually written out. Remember to upgrade pip to its latest version. For
Windows this is done by the command
>python -m pip install --upgrade pip

It is recommended to use virtual environments when installing dependencies in
Python, as to not interfere with other Python projects on your machine. There are
several packages that can be used to handle virtual environments, such as virtualenv,
which is installed by running
>pip install virtualenv

Now, a virtual environment can be initiated in the desired directory (which should
be the Python project root directory) by running
>virtualenv venv

in the command line. Here, venv is the chosen name of the virtual environment,
but this can be changed to an environment name of choice. To activate the virtual
environment, run
>venv/scripts/activate

in the same directory as the location of venv. If the activation has succeeded, (venv)
will be visible at the start of the command line prompt. To deactivate the virtual
environment, run
>deactivate

While the virtual environment is active, the required Python packages for the project
can be installed with the pip package manager.

A.3 Modeling API for Anomaly Detection
The following section is intended to help setting up the modeling API environment in
Python. The application in its entirety is found as a repository on GitHub (Alvsaker,
2020a). Setting up the environment is similar to setting up other Python projects.

A.3.1 Installing the project
First of all, the modeling API project must be copied or downloaded to a local
machine. This is done by navigating to the GitHub repository and pressing the
"clone"-button. The user can eiher choose to clone the repository, which will instan-
tiate a new git-project, or download the project as a .zip-folder. After downloading
the directory, open a command line tool of choice and navigate to the root directory
of the downloaded project. The project directory structure for the modeling API
was given in Figure 7.1.

As mentioned in Appendix A.2, it is suggested to use a virtual environment for
handling necessary modules locally. With a virtual environment active, run
>pip install -r requirements.txt

in the root project directory to install required modules. If all requirements are
installed successfully, and a Python version supporting TensorFlow is installed, the
user should be able to run the project through
>python manage.py

from the command line. Note, however, that it is necessary to alter the user settings
in the manage.py-file.

Faculty of Engineering Science and Technology
Department of Marine Technology

II

A.4 Web Application for Anomaly Detection

A.3.2 Using the modeling API
All of the coding files in the modeling API are heavily commented to ease the use of
the modeling tool. It is recommended to use the project files themselves to familiarize
with the project. Overall, a user of the API have to interact with at least two of the
files given in the modeling API structure in Figure 7.1, namely the manage.py-file and
model.py-file. manage.py is used to run the project. In the file, all necessary module
imports are included, and the user is able to handle all project settings from the same
file. Creating machine learning models is done in the model.py-file, which is located
in the modeling-directory. The model.py-file consists of a modeling template with
empty functions representing the general structure the user should maintain while
using the modeling API. The modeling template is given in Listing 7.1.

As the template shows, developing models in the API is divided into four distinct
parts. Suggested return attributes for the different parts are also included. If the user
is not sure where to start, it is recommended to use the model_example_lstm.py-file
as guidance, where a functioning LSTM model structure has been implemented. The
example model uses the exact same function structure as the model.py template. As
described in the manage.py-file, it is possible for users to run the program with the
example model by changing which model file the manage.py-file references. This is
easily assessed by inspecting the different module imports in manage.py and changing
the call from the model.py module to the model_example_lstm.py module. If git is
used, it is also possible to change to the example_model branch23 and run manage.py
from the modeling example branch.

A.4 Web Application for Anomaly Detection
The following section is intended to help setting up the web development environment
in Flask and React. The application in its entirety is found as a repository on
GitHub (Alvsaker, 2020b). The procedure is not different from similar projects, and
if some part of the set up procedure fails, there are many resources available online.

First of all, the modeling API project must be copied or downloaded to a local
machine. This is done by navigating to the GitHub repository and pressing the
"clone"-button. The user can eiher choose to clone the repository, which will instan-
tiate a new git-project, or download the project as a .zip-folder. After downloading
the directory, open a command line tool of choice and navigate to the root direc-
tory of the downloaded project. A condensed view of the project directory structure
can be seen in Figure 8.3, where the root directory is divided into a flask-backend
and react-frontend directory. When downloading or cloning the project, the venv
and node_modules directories will be missing, as these are package dependencies
that have to be installed locally. There are also some additional files in the project,
but the structure seen in Figure 8.3 represent the files and directories relevant for
development.

A.4.1 Flask backend
All parts of the web application related to the Flask backend is located in the
flask-backend directory. It is recommended to create a virtual environment in
this directory, which can be done as described in Appendix A.2. After creating and
activating a virtual environment, the necessary packages can be installed through
>pip install -r ’../ requirements.txt’

23The branch can be found here.

Faculty of Engineering Science and Technology
Department of Marine Technology

III

https://github.com/johanfal/rv-gunnerus-anomaly-detection-modeling-api/tree/model_example

A.4 Web Application for Anomaly Detection

This will install the packages defined in requirements.txt. Since the file containing
package requirements is located in the root project directory, the ’../’ notation
must be included. If, however, the installation is performed from the root project
directory, running
>pip install -r requirements.txt

is required instead. Since the backend makes use of a PostgreSQL database hosted
by Heroku, the access to the database must be added to the backend application
file. In production, the access is handled automatically by Heroku’s configuration
variables, and the secret key and database URL are set in the Flask application file
through

1 app.secret_key = os.environ.get(’SECRET ’)
2 app.config[’SQLALCHEMY_DATABASE_URI ’] = os.environ[’DATABASE_URL ’]

In development, however, these configuration variables are added manually for this
project. Changing the configuration variables is done by navigating to the Flask
application file, api.py, in the flask-backend directory, and changing the secret
key and database URL configurations found in the application as

1 # Add Heroku configuration variables here:
2 app.secret_key = "ADD_SECRET_KEY_HERE"
3 app.config[’SQLALCHEMY_DATABASE_URI ’] = "ADD_DATABASE_URL_HERE"

Hard-coding the configuration variables like above is not optimal, as the configura-
tion variables change routinely. Therefore, for development over time, it is suggested
to create a separate Heroku application where the owner can manage the config-
uration variables in a more flexible way. It is also possible to share access to the
Heroku application through e-mail address, which would allow access to individual
configuration variables. As a quick fix, the configuration variables can be changed
to the values given here.

If the packages are installed successfully and the configuration variables have been
changed, the Flask backend can be started by running
>flask run

in the command line from the flask-backend directory. By default, the Flask app
will run on port 5000.

A.4.2 React frontend
For the React frontend, Node.js will be used for handling all client-side server ac-
tivities, and must be installed to receive necessary command line functionality for
JavaScript. Node.js can be downloaded for the appropriate operating system from
the official website, nodejs.org/download. To check if Node.js has been installed
successfully, run
>node -v

in a terminal, which should provide the current Node version. It is possible to use
Node’s native package manager, npm, but for better performance, yarn is a better
option. yarn can be installed through npm with
>npm install yarn

Faculty of Engineering Science and Technology
Department of Marine Technology

IV

https://docs.google.com/spreadsheets/d/1rI0AsG-GTKZnwJccTmwYDN9Y6AnJKYXypZagPMTpfGs/edit?usp=sharing
https://nodejs.org/en/download/

A.4 Web Application for Anomaly Detection

After installing yarn (or deciding to stick with npm) navigate to the react-frontend
directory in the root project directory. To install the necessary Node modules, run
>yarn install

This command will search the package.json file in the react-frontend directory,
install the modules found, and add these to a new directory node_modules. If all
modules have been succesfully installed, a server for the React application can be
created by running
>yarn start

in the command line. By default, the React application will run on port 3000.
If both the Flask and React applications have been initiated successfully, the web
application should be up and running on localhost:3000/, and the start page seen
in Figure A.1 should be visible.

Figure A.1: The start page should be visible from localhost:3000/ if the React
application were launched successfully.

Faculty of Engineering Science and Technology
Department of Marine Technology

V

B. Cloud Computing Services

B Cloud Computing Services
Disclaimer: the following section was part of the pre-project delivered in the fall of
2019, and the contents have not been altered since then.

Cloud services refer to any remote service made available via the Internet through a
cloud computing service provider. Similarly, cloud computing describes on-demand
network access to shared computing resources (Mell and Grance, 2011), which facil-
itates the existence of all cloud services. As opposed to on-premise services, cloud
services are hosted on the centralized servers of the service provider. Although there
exist viable alternatives – for instance, peer enterprises with reduced environmental
impact and energy usage (Gupta and Awasthi, 2009) – cloud computing is becoming
the de facto mode of computing for industry applications. Figure B.1 display the
types of clouds and overarching services of cloud computing. Private clouds are of-
ten used by solitary businesses through private networks for improved security and
ability to perform big data analytics. Hybrid clouds can be used to prevent cloud-
bursting through sudden activity spikes, where private clouds are combined with
public clouds that manage activities that exceed expected behavior (Leavitt, 2013).

Figure B.1: An overview of the types of clouds that comprise cloud computing, as
well as their overarching services. Courtesy of FullToTech (2019).

By outsourcing services covered by cloud computing, clients receive a reliable solu-
tion from established companies who possess bandwidth capabilities and web security
systems that are often unattainable for small companies and single-purpose applica-
tions. As cloud services have dynamic scalability, service providers can easily adjust
to a client’s demand. Cloud services are an important enabler for digital twins, pro-
viding a foundation for aspects related to data management, namely storage, access,
sharing, computing, and analysis.

B.1 Cloud Computing Models
Different components within cloud computing are known as Anything-as-a-Service
(XaaS). XaaS can be sub-divided into three cloud service models for Software-,
Platform-, and Infrastructure-as-a-Service (Kavis, 2014), or SaaS, PaaS, and IaaS,
respectively. The different models relate to the number of services outsourced to an
external provider.

Faculty of Engineering Science and Technology
Department of Marine Technology

VI

B.2 Comparison of Cloud Service Providers

From a client perspective, the different models give access to:

• SaaS, on-demand software applications administered and ran at a remote location;

• PaaS, an environment for developing, running, and managing application;

• IaaS, computing resources and high-level APIs in a virtual environment.

The virtual machine is a common denominator for each cloud service model, provid-
ing processing power, memory, and permanent storage. The differences between the
cloud service models – in addition to a division of responsibilities between client and
vendor – is given in Figure B.2, according to Watts and Raza (2019). In addition to
the XaaS models, an on-premise scenario is included where there is no involvement
from a cloud service provider.

Applica ons

Run me

Middleware

Opera ng System

Virtualiza on

Servers

Networking

Storage

Data

On-Premise

Applica ons

Run me

Middleware

Opera ng System

Virtualiza on

Servers

Networking

Storage

Data

IaaS
Infrastructure as a Service

Applica ons

Run me

Middleware

Opera ng System

Virtualiza on

Servers

Networking

Storage

Data

PaaS
Pla orm as a Service

Applica ons

Run me

Middleware

Opera on System

Virtualiza on

Servers

Networking

Storage

Data

SaaS
So ware as a Service

Managed by ProviderManaged by Client

Figure B.2: Categories of XaaS, displaying the pyramid structure from an on-
premise situation managed by the client, to a SaaS situation managed by the
provider.

For XaaS, clients purchase services from major cloud service providers to fit their
business needs. This is beneficial for clients, who do not need to develop their own
solutions. Due to its dynamic scalability and service model hierarchy, XaaS is highly
adaptable to client demands.

B.2 Comparison of Cloud Service Providers
The requirements of established infrastructure and capacity result in a cloud com-
puting market dominated by large organizations (Gupta and Awasthi, 2009). This
resembles an oligopoly, although some companies have pursued smaller, more niche
segments. A market overview of different cloud computing providers and correspond-
ing service segmentation has been made by Synergy Research Group24. The market
overview shows that for the cloud service models of interest – SaaS, PaaS, and IaaS,
as well as private cloud hosting – American organizations Amazon, Microsoft, and

24Synergy Research Group provides periodic reports of market development in cloud-related mar-
kets (Synergy Research Group, 2019)

Faculty of Engineering Science and Technology
Department of Marine Technology

VII

B.2 Comparison of Cloud Service Providers

Google are at the forefront of the competition. Table B.1 shows some of the main
providers and their corresponding competitive segment(s). Other relevant vendors
include IBM, Oracle, Salesforce, and Rackspace. The Chinese vendors Alibaba and
Tencent have considerable market shares, however, they are mostly targeting domes-
tic markets.

Table B.1: Overview of the most prominent cloud computing providers, together
with their respective competitive market segment(s) (Serrano et al., 2015; Synergy
Research Group, 2019).

Cloud Service Provider Competitive segment(s)

Alibaba Cloud IaaS & PaaS, hosted private clouds

Amazon Web Services IaaS & PaaS, public clouds

Google Cloud Platform IaaS & PaaS, hosted private clouds, Enterprise SaaS

IBM Cloud Hosted private clouds

Microsoft Azure IaaS & PaaS, hosted private clouds, Enterprise SaaS

Oracle Cloud Enterprise SaaS, IaaS & PaaS, hosted private clouds

Rackspace Cloud Hosted private cloud services

Salesforce Enterprise SaaS

Tencent Cloud IaaS & PaaS

Each of the main providers have benefits and drawbacks to their solutions which must
be weighed against individual organizations’ needs for cloud computing. Table B.2
gives an overview of PaaS and IaaS services25. As the first company to offer cloud
computing services in 2006 (Miller and Veiga, 2009), Amazon Web Services (AWS)
is the most dominant, but Azure and Google Cloud Platform (GCP) have had larger
market growths in recent years.

Table B.2: Overview of PaaS, IaaS, and virtual private cloud (VPC) for Amazon,
Microsoft, and Google. Each company has several SaaS, such as Amazon Connect,
Microsoft Office 365, and Google G Suite.

Service Amazon Web Services Microsoft Azure Google Cloud Platform

PaaS Elastic Beanstalk Azure Cloud Services App Engine (GAE)

IaaS Elastic Compute Cloud (EC2) Azure Virtual Machines Compute Engine (GCE)

VPC Amazon VPC Virtual Network (VNet) Google VPC

AWS is mostly concerned with public clouds, which is not ideal for digital twins. GCP
and Azure target many of the same segments and have some overlapping services.
GCP is not as established but benefit from Google’s experience and corresponding
services within big data, analytics, and ML (Harvey and Patrizio, 2019). Azure is
well-established and favored by businesses that already use Microsoft services, as
Azure emphasizes seamless compatibility and integration. The large and mostly pre-
existing user-base, a variety of applications and services, and private cloud hosting
make Azure suitable for businesses.

25A more complete overview of services for the main providers is given in IntelliPaat (2019).

Faculty of Engineering Science and Technology
Department of Marine Technology

VIII

B.3 Edge Computing

Currently, the cloud computing services provided by Amazon, Microsoft, and Google
are different, but they may become commoditized with time (Miller and Veiga, 2009),
rendering the services interchangeable. A fungible development is common for digital
services (H. Øverby, & J. A. Audestad, 2018), exemplified by the file-hosting SaaS
solutions OneDrive and Dropbox, which are near indistinguishable from a customer’s
point of view.

B.3 Edge Computing
For CPSs, data should be transmitted with sufficiently low latency to fulfill their in-
tended purposes. If computations are carried out in centralized cloud servers, there
may be significant delay. For IoT devices and CPSs, new data may be produced in
large volumes at great velocities. If this data is supposed to be used for feedback
in decision-support, centralized cloud servers may become problematic, since data
must be queried, uploaded, processed, downloaded, and applied to make appropriate
decisions. It is possible to reduce latency by introducing edge clouds as a supple-
ment to centralized clouds, illustrated in Figure B.3. Such edge servers represent a
decentralization of services and will serve as intermediary nodes moving computation
power and data storage closer to where traffic originates.

CENTRALIZED CLOUD

EDGE NODE

Figure B.3: Centralized cloud server connected to multiple edge nodes, which
serve as close-proximity cloud servers for connected users, reducing data transmission
latency for IoT devices and CPSs.

The processing speed of centralized clouds are superior to edge clouds, but the trans-
mission speed from, for instance, IoT devices and CPSs becomes a bottleneck due
to limitations in speed of data transportation (Shi et al., 2016). Since both data
producers and data consumers are included at the edge node, unit-level CPSs and
digital twins will benefit from edge computing (Qi et al., 2018). The edge nodes can
connect to multiple devices simultaneously, as well as other nodes.

B.4 Big Data and Storage Considerations
When transmitting data from a multitude of signals at high frequency, the amount
of data will ramp up quickly. Laney (2001) highlighted the need to control three of
the main characteristics of big data, namely Volume, Velocity, and Variety. Later,
several additional characterizations have been considered, most notably Veracity and
Value (Cano, 2014; Firican, 2017), which will be denoted V 5.

Faculty of Engineering Science and Technology
Department of Marine Technology

IX

B.4 Big Data and Storage Considerations

BIG DATA
CHARACTERIZATION

VELOCITY

VERACITY VARIETY

Amount of data is large enough to
create challenges related to storing
and processing.

Genera on of new data
happens raipdly, and data
latency must be balanced
against data requirements
and decision cyles.

VOLUME

The quality of data is prone to
vary based on human and
system errors, reducing overall
accuracy and trustworthiness.

VALUE
To limit the challenges related to the volume, velocity,
and variety of available data, excess data without
tangible value should not be managed.

Inconsistencies in data formats
and seman cs create a structural
diversity in the collected data.

Figure B.4: V 5 of big data characterization.

These characterizations, which present ever-increasing challenges as IoT devices and
CPSs become even more prominent, represent a prevalent challenge for digital twins.
Thus, considerations related to V 5 are important when establishing data manage-
ment systems, especially related to the realization of CPSs through digital twins.

Faculty of Engineering Science and Technology
Department of Marine Technology

X

C. Data Ecosystems

C Data Ecosystems
Disclaimer: the following section was part of the pre-project delivered in the fall of
2019, and the contents have not been altered since then.

Since there are many different aspects of ship operation, it has become a trend
for the maritime industry service providers to offer a wide variety of data services
to their customers, typically managing activities and providing operation insight
through data-driven services. These services are cloud-based solutions based on the
presented cloud computing service models from Appendix B.1. Some companies have
also created data platforms, intending to offer a complete ecosystem for all aspects of
operation, such as secure cloud storage, applications for data insight, and analytics
and learning. The software and system realization part of an R/V Gunnerus DTI
can, to some extent, be achieved by using an appropriate data ecosystem.

The cloud computing service providers – consisting of large technology companies
such as Amazon, Microsoft, and Google – provide the foundation for smaller compa-
nies that operate in a wide variety of industries. These companies do not necessarily
have the capacity or competence to develop self-sustained software infrastructures
or platforms, making existing cloud computing services desired. The value chain
from the cloud computing service to a data platform user with a service mediator
in-between is illustrated in Figure C.1.

CLOUD COMPUTING

SERVICE PROVIDER IaaS

SaaS
2

PLATFORM SUBSCRIBERS

COMPANY EMPLOYEES

PLATFORM AND APPLICATION

DEVELOPMENT

SaaS
2PaaS

SERVICE MEDIATOR

SaaS
1

SaaS
1

Figure C.1: Company mediator for distributing SaaS through a data platform.
The dotted lines indicate that the receiving end chooses what to receive based on
a pool of on-demand services. SaaS1 includes applications developed by the cloud
computing service provider, hosted on their platform, whereas SaaS2 are developed
by the service mediator, hosted on the service mediator’s platform.

In this scenario, the service mediator receives all three cloud computing service mod-
els, IaaS, PaaS, and SaaS, from a provider. The IaaS is the foundation for the data
ecosystem developed by the service mediator, which enables creating and maintaining
applications based on the service mediator’s desired operating system, middleware,
and runtime environment, as evident from Figure B.2. The data ecosystem can then
distribute on-demand SaaS to company employees internally, and to customers ex-
ternally. In addition, pre-existing SaaS developed by the cloud computing service

Faculty of Engineering Science and Technology
Department of Marine Technology

XI

C.1 Comparing Kognifai and Veracity

provider is available to the company employees and platform subscribers if desired.
If a service mediator utilize both IaaS and PaaS from a cloud computing service
provider, a hybrid data ecosystem is achieved, in contrast to an ecosystem where
only IaaS is utilized.

Typical mediators will be industry service providers, such as through Kongsberg’s
Kognifai, DNV GL’s Veracity, Maersk’s TradeLens, Siemens’ Xcelerator, and Cog-
nite. In this section, the data ecosystems provided by Kongsberg and DNV GL will
be considered. Kongsberg is responsible for a substantial part of the instrumentation
onboard R/V Gunnerus, including the DP system and AZ-PM thruster system. As
Kongsberg is responsible for much of the data generated onboard, there exists an in-
herent compatibility with their data platform, Kognifai. DNV GL has been involved
with preceding R/V Gunnerus digital twin initiatives, and is a leading partner in the
development of the Open Simulation Platform (OSP), which, to some extent, will
be customized to fit DNV GL’s data platform Veracity (Pedersen and de Carvahlo,
2019).

C.1 Comparing Kognifai and Veracity
In many ways, Kognifai and Veracity are similar. The data ecosystems were both
launched in the first quarter of 2017, and are built on top of Microsoft Azure.
The Azure cloud computing service is responsible for the ecosystems’ infrastruc-
ture through its IaaS, Azure Virtual Machines. Customers can choose desired SaaS
through a marketplace, which exists both in Kognifai and Veracity. In addition to
providing on-demand applications, SaaS, the data ecosystems facilitate secure data
management, sharing, and storage. Both platforms are open, which means that
external users are encouraged to develop own applications. External applications
will have to be developed based on the PaaS of the data ecosystem and must be
implemented and launched following the ecosystems’ guidelines. The services of the
ecosystems are available for both employees internally and customers externally, and
access is administered by the PaaS. A comparison of available functions for Kognifai
and Veracity is seen in Table C.1 (Mittal, 2019; Sverdrup, 2017).

Table C.1: Comparison of Kognifai and Veracity as data ecosystems.

Built on top of Azure

Based on Azure Virtual Machines (IaaS)

Has developed in-house PaaS

Has marketplace for SaaS

Data management

Secure storage and sharing

Third-party solutions

Centralized cloud solutions

Edge-solutions

Supports data analytics, ML, and AI

Open ecosystem

Can be integrated with hardware

Will have OSP compatibility

Focus on digital assurance and class solutions

Focus on supporting commercial products

As illustrated, many of the functions are supported by both ecosystems. The dis-

Faculty of Engineering Science and Technology
Department of Marine Technology

XII

C.2 Alternative Approaches

similarities are based on specific applications in each respective marketplace – which
will not be elaborated in this report – as well as the overall vision of each ecosystem.
Whereas DNV GL is a class society, Kongsberg is a commercial company focusing on
selling advanced technological equipment to a range of industries. Thus, it is reason-
able that Kognifai is customized to enhance their products. Comparatively, Veracity
is intended to promote digital innovation and collaboration for the entire maritime
industry, in addition to own interests of digital assurance and class solutions. Since
many of the systems onboard R/V Gunnerus are supplied by Kongsberg, there is
a clear benefit of the ability to integrate hardware into the overall ecosystem. On
the other hand, the Core Simulation Environment (CSE), model catalogue, and all
platform mechanisms related to OSP will be hosted on Veracity (DNV GL, 2019b).

DNV GL has previously been involved in initiatives related to developing an R/V
Gunnerus digital twin, and has been positive to continuing the collaborative ef-
forts (Mittal, 2019). Kongsberg has vested interests in R/V Gunnerus due to the
installed systems onboard, especially related to the AZ-PM thrusters, which rep-
resents new technology that is under development and testing. Kongsberg have
several employees working with the vessel, its instrumentation, and data communi-
cation. Unlike DNV GL, Kongsberg is a pure commercial company. Still, they have
often been involved in academic projects with the intent of furthering technology
and research, which is similar to DNV GL.

C.2 Alternative Approaches
In addition to the presented ecosystems, a Maritime Data Space (MDS) is being
developed by SINTEF as a data exchange and sharing platform, which takes data
governance and shared database problems into consideration (Berre and Ørnulf Rød-
set, 2018). NTNU has also started a research data initiative, intended to provide
a storage, archive, and data management plan for employees and students (NTNU,
2019). The initiative is, however, deemed too underdeveloped at the moment.

C.3 Discussing the use of Data Ecosystems
There are advantages and disadvantages to using external cloud computing services
and data ecosystems. The most appealing advantage – which is also the underlying
reason cloud computing services exist – is that an established IaaS shifts the focus
from software architecture and development, to platform and service development
that directly contribute to the digital twin functionality. The biggest drawback is
the loss of control, flexibility and predictability. Systems may change without notice,
causing loss of functionality or the need to make big changes to maintain integrity.
Data ecosystems, such as Kognifai and Veracity, offer SaaS which can provide im-
mediate functionality to the vessel. Nevertheless, these ecosystems are driven by
commercial companies, and the academic purpose of an R/V Gunnerus digital twin
is not necessarily facilitated by available applications. Since the explored data ecosys-
tems are open, it is possible to develop and launch applications independently of the
ecosystem SaaS. Thus, since it greatly reduces the threshold for establishing a digital
twin foundation, it is advised to utilize data ecosystems, at least in the developing
phases.

Faculty of Engineering Science and Technology
Department of Marine Technology

XIII

D. Prediction Results for Second Exhaust Temperature Signal

D Prediction Results for Second Exhaust Temperature
Signal

Here, the same plots as presented in the result section of Section 7 is shown for
the second exhaust temperature, which resulted in an anomaly threshold value of
Ta = 14.0. The results are similar to the ones for the first exhaust temperature, but
the predictions perform worse.

Figure D.1: Prediction plot for the first exhaust temperature time series.

Figure D.2: Distribution plots for predicted time series error together with a thresh-
old value of Ta = 7.0.

Figure D.3: Time series plot with detected anomalies marked.

Faculty of Engineering Science and Technology
Department of Marine Technology

XIV

E. Additional Web Application Results

E Additional Web Application Results
Additional features of the web application are documented here through snapshots.
The website is available at https://rv-gunnerus-anomaly-detection.com/ and the
code is documented in a GitHub repository (Alvsaker, 2020b).

Figure E.1: Example of erroneous file uploads.

Figure E.2: Additional information about file uploads on hover.

Figure E.3: Selecting system on R/V Gunnerus.

Faculty of Engineering Science and Technology
Department of Marine Technology

XV

https://rv-gunnerus-anomaly-detection.herokuapp.com/

E. Additional Web Application Results

Figure E.4: Selecting input and predicted output signals.

Figure E.5: Automatic configuration when using example files.

Faculty of Engineering Science and Technology
Department of Marine Technology

XVI

E. Additional Web Application Results

Figure E.6: Signal selection for charting.

Figure E.7: Disabled prediction series, and showing a chart for a signal that is not
part of the predicted output signals.

Faculty of Engineering Science and Technology
Department of Marine Technology

XVII

E. Additional Web Application Results

Figure E.8: Error display when no new values are found. The last valid reading is
also shown.

Figure E.9: About page.

Faculty of Engineering Science and Technology
Department of Marine Technology

XVIII

F. Supplementary Code

F Supplementary Code
F.1 Flask Application File
Here, the Flask application file api.py is documented. The file is also found in the
GitHub repository for the web application (Alvsaker, 2020b).

Listing F.1: Main application file for running Flask backend.
1 from werkzeug.utils import secure_filename
2 from models import * # all table classes and function get_table_classes ()
3 from tensorflow.keras.models import load_model
4 import os
5 import pickle
6 import time
7 from threading import Event , Thread
8

9 import eventlet
10 import numpy as np
11 from flask import Flask , redirect , render_template , request , url_for
12 from flask import session as storage
13 from flask_socketio import SocketIO , emit , send
14 from sqlalchemy import create_engine , inspect
15 from sqlalchemy.orm import load_only , session
16

17 # Instantiate Flask application
18 app = Flask(
19 __name__ ,
20 static_folder=’../react -frontend/build ’,
21 static_url_path=’/’)
22

23 eventlet.monkey_patch () # ensure appropriate threading behavior
24

25 in_production = os.environ.get(’IN_PRODUCTION ’, None)
26 if in_production:
27 # Add secret key
28 app.secret_key = os.environ.get(’SECRET ’)
29 # Configure PostgreSQL Heroku database with the database URL
30 app.config[’SQLALCHEMY_DATABASE_URI ’] = os.environ[’DATABASE_URL ’]
31 else:
32 # Add Heroku configuration variables here:
33 app.secret_key = "ADD VALID SECRET KEY HERE"
34 app.config[’SQLALCHEMY_DATABASE_URI ’] = "ADD DATABASE URL HERE"
35

36 # Directories for uploaded files and sample files:
37 UPLOADS_DIR = os.path.join(app.instance_path , ’uploads ’)
38 SAMPLES_DIR = os.path.join(app.instance_path , ’samples ’)
39 os.makedirs(UPLOADS_DIR , exist_ok=True)
40

41 # Prevent unnecessary console warning:
42 app.config[’SQLALCHEMY_TRACK_MODIFICATIONS ’] = False
43

44 # Initiate database engine:
45 engine = create_engine(
46 app.config[’SQLALCHEMY_DATABASE_URI ’],
47 pool_size =40,
48 max_overflow =80)
49

50 # Initialize PostgreSQL Heroku database with SQL Alchemy:
51 db = SQLAlchemy(app)
52 db.init_app(app)
53

54 # Initialize Flask -SocketIO:
55 socketio = SocketIO(app)
56 socketio.init_app(app , cors_allowed_origins=’*’)
57

58 INTERVAL = 1 # fetch interval from database in seconds (data frequency)
59

60 # Instantiating variables for global scope:
61 thread = Thread () # define thread object

Faculty of Engineering Science and Technology
Department of Marine Technology

XIX

F.1 Flask Application File

62 thread_stop_event = Event() # define threading -event (used for termination)
63

64

65 @app.route(’/’)
66 def index ():
67 return app.send_static_file(’index.html’)
68

69

70 @app.route(’/systems ’, methods =[’GET’, ’POST’])
71 def get_systems ():
72 """ Return a list of systems based on the entry tables in the PostgreSQL
73 database , which are instantiated through SQL Alchemy in ’models.py ’."""
74 # Dict of all model classes from models.py with table names as key:
75 table_classes = get_table_classes () # from models.py
76 systems = {}
77 tables = engine.table_names ()
78 for table in tables:
79 if not table_classes[table].query.first ():
80 systems[table] = False # if result is None (empty table)
81 else:
82 systems[table] = True # if result is not None (non -empty table)
83 # return boolean dictionary with tables as keys
84 return {’systems ’: systems}
85

86

87 @app.route(’/signals/<system_table >’, methods =[’GET’, ’POST’])
88 def get_signals(system_table):
89 """ Return a list of signals based on the entry table in the PostgreSQL
90 database , which is instantiated through SQL Alchemy in ’models.py ’. The
91 function takes a string ’system_table ’ as input variable , which is the
92 name of the selected system from the database."""
93 # Properties of current system table , used to retrieve table columns:
94 table_props = inspect(engine). get_columns(system_table)
95 signals = [] # placeholder for signals
96

97 # Name of each column of the selected system:
98 for col in table_props:
99 signals.append(col[’name’])

100 return {’signals ’: signals}
101

102

103 @app.route(’/start_thread ’)
104 def start_thread ():
105 """ Start thread for processing parallelism."""
106 if not thread.is_alive ():
107 thread.start ()
108 return {’thread_alive ’: True}
109

110

111 @app.route(’/reload ’, methods =[’GET’])
112 def stop_thread ():
113 """If the client window is reloaded and a thread is active in the
114 background , this function discontinues the thread , meaning that upon page
115 reload , a new thread will be initiated with new properties."""
116 global engine , thread , thread_stop_event
117 if thread.is_alive ():
118 thread_stop_event = Event() # define stop event
119 thread_stop_event.set() # set stop event
120 del thread # delete thread to prevent double -initiation
121 thread = Thread () # create new thread object
122 print(f’Upon page reload , the thread has been discontinued.’)
123 return {’thread_stopped ’: True}
124 engine.dispose ()
125 return {’thread_stopped ’: False}
126

127

128 @app.route(’/keras_model/<use_sample >’, methods =[’GET’, ’POST’])
129 def save_uploaded_model(use_sample):
130 """ Receives uploaded Keras model file from frontend client. If use_sample
131 is true , the sample model , uploaded locally , is used instead."""

Faculty of Engineering Science and Technology
Department of Marine Technology

XX

F.1 Flask Application File

132 # Delete model path if already defined in flask storage session:
133 storage.pop(’keras_model_path ’, None)
134 if use_sample == ’true’: # load sample model
135 storage[’keras_model_path ’] = os.path.join(
136 SAMPLES_DIR , ’sample_model.h5’)
137 keras_model = load_model(storage[’keras_model_path ’])
138 else: # load uploaded model based on filename request from client
139 file = request.files[’file’] # request from client
140 storage[’keras_model_path ’] = os.path.join(
141 UPLOADS_DIR , secure_filename(
142 file.filename))
143 # save to UPLOADS_DIR with provided filename
144 file.save(storage[’keras_model_path ’])
145 print(f"succesfully saved model to ’{storage[’keras_model_path ’]}’")
146 try:
147 # Attempt to load Keras model with native Keras function:
148 keras_model = load_model(storage[’keras_model_path ’])
149 except BaseException:
150 # Something went wrong during Keras model loading:
151 storage[’model_properties ’] = False
152 try:
153 # Attempt to set properties through native Keras attributes:
154 storage[’model_properties ’] = {
155 ’inp’: keras_model.input_shape [2],
156 ’out’: keras_model.output_shape [1],
157 ’timesteps ’: keras_model.input_shape [1]
158 }
159 except BaseException:
160 # Something went wrong when reading model properties:
161 storage[’model_properties ’] = False
162 return {’fileprops ’: storage[’model_properties ’]}
163

164

165 @app.route(’/scaler/<use_sample >’, methods =[’GET’, ’POST’])
166 def save_uploaded_scaler(use_sample):
167 """ Receives uploaded sklearn scaler file from frontend client. If
168 use_sample is true , the sample scaler , uploaded locally , is used
169 instead."""
170 # Delete scaler path if already defined in flask storage session:
171 storage.pop(’scaler_path ’, None)
172 if use_sample == ’true’: # load sample scaler
173 storage[’scaler_path ’] = os.path.join(
174 SAMPLES_DIR , secure_filename(’sample_scaler.pckl’))
175 with open(storage[’scaler_path ’], ’rb’) as f:
176 scaler = pickle.load(f)[0] # retrieve scaler from pickle object
177 # Set scaler properties:
178 scaler_properties = {
179 ’type’: str(scaler),
180 ’features ’: scaler.n_features_in_ ,
181 ’samples ’: scaler.n_samples_seen_
182 }
183 else: # load uploaded scaler based on filename requested from client
184 file = request.files[’file’] # request from client
185 storage[’scaler_path ’] = os.path.join(
186 UPLOADS_DIR , secure_filename(file.filename))
187 # Save to UPLOADS_DIR with provided filename
188 file.save(storage[’scaler_path ’])
189 print(f"succesfully saved scaler to ’{storage[’scaler_path ’]}’")
190 try:
191 with open(storage[’scaler_path ’], ’rb’) as f:
192 # Attempt to load scaler with native pickle function:
193 scaler = pickle.load(f)
194 # Scaler part of modeling API exported file , containing
195 # [scaler , df_train , df_test]:
196 try:
197 scaler = scaler [0]
198 except BaseException:
199 pass # scaler uploaded independently of modeling API:
200 # Attempt to set properties through native Sklearn attributes:
201 scaler_properties = {

Faculty of Engineering Science and Technology
Department of Marine Technology

XXI

F.1 Flask Application File

202 ’type’: str(scaler),
203 ’features ’: scaler.n_features_in_ ,
204 ’samples ’: scaler.n_samples_seen_
205 }
206 except BaseException:
207 # Something went wrong when loading scaler or reading properties:
208 scaler_properties = False
209 return {’fileprops ’: scaler_properties}
210

211

212 @app.route(’/create_thread/<system >/<input_cols >/<output_cols >’,
213 methods =[’GET’, ’POST’])
214 def initiate_thread(system , input_cols , output_cols):
215 global thread , thread_stop_event
216 # convert strings from client to lists with comma -delimiter:
217 input_cols = input_cols.split(’,’)
218 output_cols = output_cols.split(’,’)
219 timesteps = storage[’model_properties ’][’timesteps ’]
220 if not thread.is_alive ():
221 print(f’Creating thread object ..’)
222 thread = ValueThread(system , input_cols , output_cols , timesteps)
223 thread.scaler = get_scaler(storage[’scaler_path ’])
224 thread.keras_model = get_model(storage[’keras_model_path ’])
225 thread.X_pred = thread.get_first_input_values ()
226 else:
227 print(f’Attempting to connect while thread is active ’)
228 return {’thread_created ’: True}
229

230

231 @socketio.on(’connect ’)
232 def on_connect ():
233 """ SocketIO connect event."""
234 global thread , thread_stop_event
235 sio_id = request.sid
236 thread.sio_id = sio_id # socket IO identification
237 thread_stop_event.clear()
238 print(
239 f"New client ’{request.args.get(’system ’)}’ connected with "
240 f"connection id: {sio_id}"
241)
242

243

244 @socketio.on(’disconnect ’)
245 def disconnect ():
246 """ SocketIO disconnect event."""
247 global engine
248 sys_id = request.args.get(’system ’)
249 engine.dispose ()
250 print(’Engine disposed after disconnecting ’)
251 print(f"Client ’{sys_id}’ has been disconnected.")
252

253

254 class ValueThread(Thread):
255 """ Handles signal thread , which allows the dynamic relationship between
256 the database and client , allowing for a realtime transmission of data
257 through websockets."""
258

259 def __init__(self, system , input_cols , output_cols , timesteps):
260 """ Instantiate class object."""
261 self.system = system
262 self.input_cols = input_cols # inputs used for prediction in model
263 # Get table model for current system (used for querying database):
264 table_classes = get_table_classes ()
265 self.sys_table = table_classes[system]
266 # Variable for columns that will be queried from database:
267 self.fetch_columns = [’time’]
268 self.fetch_columns.extend(self.input_cols)
269 self.output_cols = output_cols # predicted output columns of model
270 self.output_indices = self.get_output_indices ()
271 self.delay = INTERVAL # frequency of updates

Faculty of Engineering Science and Technology
Department of Marine Technology

XXII

F.1 Flask Application File

272 # model timesteps used
273 self.timesteps = timesteps
274 # Set initial index (database follows a not -null approach , meaning the
275 # first row index is 1):
276 self.index = self.timesteps # initial index
277 # Get the input values for the first timestep -values:
278 super(ValueThread , self). __init__ ()
279

280 def get_first_input_values(self):
281 """ First input values corresponding with the Keras model timesteps.
282 If the model uses n timesteps , the function fetches the first n values
283 of the requested system from the database , and returns a scaled numpy
284 array -vector of size n, which is used for predicting new values. The
285 input_columns variables coincide with the columns used to create the
286 model , and are the same as the chosen inputs during model and scaler
287 uploading."""
288 timesteps = self.timesteps
289 input_cols = self.input_cols
290 system = self.system
291 with app.app_context (): # enable database access through SQLAlchemy
292 X_pred = [] # Placeholder for each timestep of signal values
293 for i in range(1, timesteps):
294 ordered_values = []
295 values = db.session.query(self.sys_table). options(
296 load_only (* input_cols)).get(i). get_dict ()
297 for col in input_cols:
298 ordered_values.append(values[col])
299 # append current timestep values
300 X_pred.append(ordered_values)
301 # Return transformed values with shape (timesteps , features):
302 db.session.close()
303 return self.scaler.transform(X_pred)
304

305 def get_output_indices(self):
306 """ Returns a list with the position of each output column in the
307 ordered input list. During reverse transform of data (from normalized
308 to original magnitude of values) the order of the signals matters.
309 Since the original data is fetched , and can be transmitted to the
310 client before normalization , only the predicted values must be reverse
311 transformed before being sent to the client."""
312 indices = []
313 for pred_sig in self.output_cols:
314 indices.append(self.input_cols.index(pred_sig))
315 return indices
316

317 def get_data(self):
318 """ Continuously emit information about the current database index to
319 the client , which fetches data based on the index."""
320 # Create placeholder list for predicted values , which must be filled
321 # with all input columns to reverse transform properly:
322 pred_vals_list = [[None] * len(self.input_cols)]
323 while not thread_stop_event.is_set ():
324 with app.app_context ():
325 start_time = time.time()
326

327 # Query values as dictionary containing input_cols and time:
328 try:
329 values = db.session.query(self.sys_table). options(
330 load_only (*self.fetch_columns)).get(
331 self.index). get_dict ()
332 values[’time’] = str(values[’time’])
333 ordered_values = []
334 # Order values correctly according to model , and exclude
335 # time:
336 for col in self.input_cols:
337 ordered_values.append(values[col])
338 # Scale new values:
339 scaled_values = self.scaler.transform ([ordered_values])
340 # Add new values to the end of X_pred:
341 self.X_pred = np.append(

Faculty of Engineering Science and Technology
Department of Marine Technology

XXIII

F.1 Flask Application File

342 self.X_pred , scaled_values , axis =0)
343

344 # Predict values at the next timestep (the input must be a
345 # numpy array with shape (1,timesteps , features)):
346 pred_values = self.keras_model.predict(
347 np.array([self.X_pred]))
348 pred_value_counter = 0
349 # Add values to placeholder list for predictions:
350 for index in self.output_indices:
351 pred_vals_list [0][index] = pred_values [0][
352 pred_value_counter
353]
354 pred_value_counter += 1
355 # Inverse transform predicted values:
356 pred_vals_list = self.scaler.inverse_transform(
357 pred_vals_list)
358 # Add predicted values from placeholder list to values
359 # dict:
360 pred_value_counter = 0
361 for pred_col in self.output_cols:
362 pred_key = f’{pred_col}_pred ’
363 values[pred_key] = pred_vals_list [0][
364 self.output_indices[pred_value_counter]
365]
366 pred_value_counter += 1
367

368 socketio.emit(’values ’, values)
369 self.X_pred = self.X_pred [1:]
370 # Time used for prediction , manipulations , and emission:
371 calculation_time = time.time() - start_time
372 if calculation_time > 1:
373 sleep_time = 0
374 else:
375 sleep_time = self.delay - calculation_time
376 time.sleep(sleep_time)
377 self.index += 1
378

379 except BaseException:
380 thread_stop_event.set()
381 db.session.close()
382 try:
383 thread_stop_event.set()
384 except BaseException:
385 pass
386 socketio.emit(’values ’, False)
387 engine.dispose ()
388 print(’Engine disposed after threading ’)
389

390 def run(self):
391 self.get_data ()
392

393

394 def get_scaler(path):
395 """ Loads the pickle -file containing data scaler specified by the
396 ’scaler_path ’."""
397 with open(path , ’rb’) as f:
398 scaler = pickle.load(f)
399 try:
400 return scaler [0]
401 except BaseException:
402 return scaler
403

404

405 def get_model(path):
406 """ Loads the Keras model -file specified by the ’keras_model_path ’."""
407 return load_model(path)
408

409

410 if __name__ == ’__main__ ’:
411 app.run(host=’0.0.0.0 ’, debug=False , port=os.environ.get(’PORT’, 80))

Faculty of Engineering Science and Technology
Department of Marine Technology

XXIV

F.2 Removing False Anomaly Outliers

F.2 Removing False Anomaly Outliers
At times, unwanted anomalies are detected by the ML model. Such anomalies can
represent outliers or rapid changes in state values upon engine start-up. To pre-
vent unwanted anomalies, which cause the threshold value necessary to successfully
detect true anomalies to ramp up, an approach of evaluating the neighboring val-
ues surrounding a detected anomaly was implemented in the modeling API. In this
approach, a neighborhood, N , of size |N | = n, is used to determine the validity
of a detected anomaly. In short, the algorithm presented below checks for a given
number of consecutive anomalies. If the required number of consecutive anomalies
is not met, the anomaly will be deemed an outlier and is removed from the list of
anomalies.

Listing F.2: Functions used to implement outlier algorithm for false anomalies.
1

2 def get_anomaly_range(df_loss: pd.DataFrame , threshold: float , size: int = 0
3) -> pd.DataFrame:
4 """ Calls the neighborhood checking function with a boolean dataframe where
5 loss values above the input threshold is True."""
6

7 df_bool = df_loss > threshold
8 return _check_neighboring_bools(df_bool , size=size). values
9

10

11 def _check_neighboring_bools(df_bool: pd.DataFrame , size: int = 0
12) -> pd.DataFrame:
13 """ Checks if the neighborhood surrounding a boolean True value is also
14 True. If not , the boolean value is changed to False. The function helps
15 remove false outliers which will otherwise trigger unnwanted anomalies.
16 The input variable ’size’ defines the number of elements to include
17 in the neighborhood of each timestep. If size=2n, timestep t will
18 result in a neighborhood containing values t-n, t-n+1,...,t,...,t+n-1,t+n,
19 thus yielding a neighborhood of 2n+1 elements (including t). If desired
20 neighborhood size is odd with neighborhood =2n+1, the function will
21 include an extra comparison value at a later timestep , resulting in the
22 values t-n,...,t,...t+n+1."""
23

24 df_nh = _get_neighborhood(df_bool , size)
25 df_center_anoms = df_nh.all(axis=’columns ’)
26 df_center_anoms_nh = _get_neighborhood(df_center_anoms , size)
27

28 return df_center_anoms_nh.any(axis=’columns ’)
29

30

31 def _get_neighborhood(df_bool: pd.DataFrame ,
32 neighborhood: int = 0) -> pd.DataFrame:
33 df_neighborhood = pd.DataFrame(df_bool.values)
34 """ Gets the neighborhood on each side of a selection column through the
35 dataframe shift -function. If the ’neighborhood ’ input value is odd , an
36 extra value is added below the selected column , skewing the symmetry by
37 one entry."""
38 for i in range(1, int(neighborhood / 2) + 1):
39 df_neighborhood[f’-{i}’] = df_bool.shift(-i, fill_value=False). values
40 df_neighborhood[f’+{i}’] = df_bool.shift(i, fill_value=False). values
41 if neighborhood % 2:
42 j = int((neighborhood + 1) / 2)
43 df_neighborhood[f’+{j}’] = df_bool.shift(j, fill_value=False). values
44 return df_neighborhood

Faculty of Engineering Science and Technology
Department of Marine Technology

XXV

Johan Fredrik Alvsaker
R/V G

unnerus D
igital Tw

in Infrastructure

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Johan Fredrik Alvsaker

R/V Gunnerus Digital Twin
Infrastructure

Master’s thesis in Marine Technology

Supervisor: Bjørn Egil Asbjørnslett

July 2020

	MSc Thesis Description
	Preface
	Abstract
	Sammendrag
	List of Figures
	Nomenclature
	Introduction
	Project Motivation
	Objectives
	Scope and Delimitations
	Report Outline

	Background
	R/V Gunnerus
	Previous Initiatives
	Ship Technology Platform
	Student Activity

	Access to Vessel Data
	Digital Twin Definition
	A property-driven approach to digital twins

	Digital Twin Infrastructure for R/V Gunnerus
	Digital Twin Properties for R/V Gunnerus
	Infrastructure Proposition
	Data Management
	Availability and data storage
	Standardization
	Security and access
	Preprocessing and filtering
	Analytics and learning
	Modeling and simulation environment

	Co-Simulation
	Open Simulation Platform
	Software and System Realization

	Digital Twins in Marine Engineering Education
	Digital Twin Lifecycle

	Case Study Problem Formulation
	Anomaly Detection for Predictive Maintenance
	Predictive Maintenance
	Artificial Neural Networks
	Long Short-Term Memory Networks
	Anomaly Detection

	Modeling API for Anomaly Detection
	Concept and Methodology
	Functionality
	file_management.py
	memory.py
	modeling_funcs.py
	plotting_funcs.py
	model.py and model_example_lstm.py

	Results
	Improvements to the API

	Web Application for Anomaly Detection
	Concept and Methodology
	Flask Backend
	React Frontend
	Startpage.js
	Header.js
	Upload.js
	ModelSpecifications.js
	ChartDashboard.js
	ChartVisuals.js
	Chart.js
	About.js

	Launching the Web Application to Heroku
	Results
	Improvements to the Web Application

	Discussion
	Conclusion
	Recommendations for Further Work
	References
	Appendices
	User Manuals for Anomaly Detection Framework
	Access to Network Drive
	Python, pip, and Virtual Environments
	Modeling API for Anomaly Detection
	Installing the project
	Using the modeling API

	Web Application for Anomaly Detection
	Flask backend
	React frontend

	Cloud Computing Services
	Cloud Computing Models
	Comparison of Cloud Service Providers
	Edge Computing
	Big Data and Storage Considerations

	Data Ecosystems
	Comparing Kognifai and Veracity
	Alternative Approaches
	Discussing the use of Data Ecosystems

	Prediction Results for Second Exhaust Temperature Signal
	Additional Web Application Results
	Supplementary Code
	Flask Application File
	Removing False Anomaly Outliers

