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Abstract

The thesis explore feasibility of sea state estimation based on measured vessel motion. Spatially
distributed IMU sensors installed on a DP vessel enables the accelerations of the vessel to be
estimated, which is further used to train the sea state estimation models.

A 6 DOF simulation model for the 1:90 model vessel C/S Arctic Drillship is implemented in
Simulink. This includes modeling of long-crested regular and irregular waves and the corresponding
vessel response. Realistic measurements are modeled from four spatially distributed IMUs, and a
sensor fusion algorithm is applied for estimation of the vessel motion in the center of control. A
motion control system is also modeled, including a guidance module, a model-based DP controller,
and a model-based nonlinear passive observer. The motion control system is designed based on a
simplified 3 DOF control design model, only acting in the horizontal plane.

The sea state estimation model consists of three convolutional neural networks implemented in
parallel. Two are built as regression models for estimating specific wave height and peak wave
period. The last is a classification model for estimating relative wave direction defined in twelve
sectors of 30◦. The labeled acceleration data in heave, roll, and pitch from the simulation is firstly
used to find the general architecture and secondly the optimal hyperparameters for the neural
networks.

Four IMUs are installed on the actual vessel and tested in the Marine Cybernetics Laboratory with
long-crested regular waves generated in the basin. The measurements are filtered, and used to
estimate the 3 DOF accelerations in the vessel center of control.

The models are trained and tested on labeled data from simulation in long-crested irregular waves,
producing very satisfactory results. A mean significant wave height error of 3.133%, a mean peak
period error of 0.896%, and 100% accuracy for wave direction is achieved. Similarly satisfying results
are found when the models are trained on unfiltered data with noise and bias, demonstrating the
robustness of the end-to-end models.

The sea state estimation models are then trained on simulation data in long-crested regular waves
before they are tested on the experimental data from the lab. The estimation results are good for
the wave period model but worse for wave height and direction. This is, however, as expected due
to the natural discrepancies between modeled and actual motion. It still shows the potential for
using convolutional neural networks for sea state estimation for DP vessels.
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Preface

This thesis concludes my master’s degree from Engineering and ICT at the Norwegian University of
Science and Technology, with specializations within marine cybernetics and artificial intelligence.
The work presented is partly a continuation of my project thesis, which focused on auto-tuning of
DP algorithms using derivative-free optimization.

The experimental data presented in this thesis is produced in the Marine Cybernetics Laboratory
at NTNU, and the set-up consumed many hours during the first two months. The laboratory,
unfortunately, closed in March due to the COVID-19 outbreak. As a result, the test data retrieved
from the lab prior to the closing is used, despite not being sufficient for fully evaluating the scope
of the sea state estimation models. The motion control system was implemented on the vessel,
however the controller was not tuned. The initial data was therefore generated from the vessel
being strapped in the basin for position keeping, although the vessel was planned to be in actual
DP operation during the experiment.

Much time went into reading up on, and brief testing of different machine learning methods and
their ability to interpret time series data. Boosted trees, LSTMs, and hybrid CNN-LSTM are some
of the models initially explored.

The thesis process has enriched my knowledge and experience with hardware and real-world sensor
data, which I believe is valuable hands-on experience for future work in the industry. The thesis
has also made me expand my knowledge on topics like marine hydrodynamics, control theory, and
deep neural networks.

Acknowledgement

I would like to thank my supervisor Professor Roger Skjetne for giving me the idea of the master
thesis, combining my two specializations marine cybernetics and artificial intelligence. I was wel-
come to his office for several helpful discussions even on short notice. He also provided me with my
two co-advisors Zhengru Ren and Håvard Snefjellå Løvås. Zhengru invested a lot of time helping
me with the direction of the thesis, as well as proofreading. Håvard has also helped me a great
deal through several academic discussions. In the laboratory, I received crucial assistance dealing
with the IMUs and other hardware challenges from Torgeir Wahl, who answered my many calls
and messages at all hours of the day. Lastly, I would like to extend my gratitude and appreciation
to my friend Ola Scheele Moe for his serious knowledge on the subject of autonomy, resulting in
many helpful discussions.



5

Abbreviations

• ANFIS: Adaptive neuro-fuzzy inference system

• ANN: Artificial neural network

• CDM: Control design model

• CG: Center of gravity

• CLF: Control Lyapunov function

• CNN: Convolutional neural network

• CO: Center of control

• CSAD: C/S Arctic Drillship

• DNN: Deep neural networks

• DOF: Degrees of freedom

• DP: Dynamic positioning

• DR: Dead reckoning

• DSV: Diving support vessel

• ECEF: Earth-centered earth-fixed reference frame

• ECI: Earth-centered inertial reference frame

• EMSA: European Maritime Safety Agency

• FFNN: Feed-forward neural network

• FFT: Fast Fourier transform

• FRF: Frequency response functions

• GES: Globally exponentially stable

• GNSS: Global navigation satellite system

• GPS: Global positioning system

• GRU: Gated recurrent unit

• HHT: Hilbert-Huang transform

• HIL: Human in-the-loop

• IMU: Inertial measurement unit

• ITTC: International towing tank conference
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• LSTM: Long short-term memory

• MIMO: Multiple-input multiple-output

• MSS: Marine systems simulator

• NCA: Norwegian coastal authority

• NED: North-east-down reference frame

• NLP: Natural language processing

• NN: Neural network

• OSV: Offshore support vessel

• PLSR: Partial least squares regression

• PSO: Particle swarm optimization

• PSV: Platform supply vessel

• QDA: Quadratic discriminant analysis

• QTM: Qualisys track manager

• RAO: Response amplitude operator

• ReLU: Rectified linear unit

• RF: Random forest

• RNN: Recurrent neural network

• ROV: Remotely operated vehicle

• RPM: Rotations per minute

• SGD: Stochastic gradient descent

• SISO: Single-input single-output

• SVM: Simulation verification model

Nomenclature

• η: NED frame position

• ψ: Heading angle of vessel x-axis relative to North

• χ: Course angle of vessel velocity vector relative to North

• β: Crab angle of vessel velocity vector relative to body x-axis
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• ν: velocity vector in body reference frame

• τ : forces and moments in body reference frame

• α: thruster orientation

• Tp: Peak wave period

• Hs: Significant wave height
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1 Introduction

1.1 Motivation

The desire for reducing operational expenses, fuel consumption, and emissions in conjunction with
increasing reliability, efficiency, and safety has incentivized the development of autonomous vessels.
An extensive area of The Trondheims Fjord has been designated for testing by the Norwegian
Coastal Authority (NCA). Yara Birkeland, the world’s first commercially available autonomous
ship, will be delivered in the fall of 2020 (Stensvold). The two milestones represent huge progress
towards autonomy at sea.

Perhaps the most challenging difference between autonomous cars and vessels is the dynamic en-
vironment in which a vessel operates. Accurate estimation of sea state- the height, frequency, and
direction of the waves - is crucial and fundamental for the safety of an autonomous vessel. It can
also increase the performance of vessels with a lower level of autonomy, such as dynamic positioning
(DP) vessels. Optimal tuning of the control system of a DP vessel is dependent on the sea state,
which is typically assumed to be stationary for 20-minute intervals. This leads to a desire for at
least equally frequent updates of the tuning parameters. The precision of the sea state estimate is
effectively working as an upper limit for the performance of all higher-level algorithms and systems
- they are only as good as the underlying estimate.

The vessel motion is partly influenced by the waves, implying that information about the sea
state is contained in measured vessel motion. The importance of accurate, real-time knowledge
of the environment in which the vessel operate motivates research into the possibility of sea state
estimation solely based on vessel motion measurements.

1.2 Objectives

The vessel motion can be measured using an IMU, containing an accelerometer and a gyroscope.
For generation of realistic IMU measurements, the first objective is to design a simulation model for
the C/S Arctic Drillship (CSAD), described in section 4. The control algorithms for the dynamic
positioning system is further presented in section 5.

To create data-sets ready for model training, the relevant pre-processing is presented in section 7.
This section also includes the development and tuning of the sea state estimation models based on
the data-sets from simulation.

Section 8 presents the instrumentation of the IMUs and the experimental set-up in lab. Finally the
sea state estimation results are presented in section 9.
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1.3 Scope and delimitations

The thesis is focused on the C/S Arctic Drillship, a 1:90 model vessel. This vessel is chosen as
it is the largest vessel in the MC-lab fleet, enabling the installation of four spatially distributed
IMUs. The sea state estimation models are trained on simulated motion data from the vessel and
are therefore only applicable for sea state estimation for CSAD.

Current and wind are neglected for simplicity, resulting in vessel motion induced only by actuators
and waves. The data-sets used to train the models are also generated under the assumption of
perfect measurements.

While the simulated data thoroughly represent all sea states from moderate to high sea, the exper-
imental data only represent a few different sea states. The reason is the unexpected closing of the
lab in March and the inability to conduct further experiments.

1.4 Contributions

The main contributions of the thesis are

• A robust, efficient sea state estimation model solely dependent on measured vessel motion.
The model can handle noisy measurements, and performs accurate estimation based on only
40 seconds of measured vessel motion.

• A 6 DOF simulation model for the C/S Arctic Drillship with dynamic positioning system,
ability to set realistic sea states, and modelling of related IMU measurements.

• DP system for CSAD implemented in Veristand with configuration for logging of IMU mea-
surements.
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2 Technical background

2.1 Autonomous marine operations

There are several levels of autonomy, with each level having increased system independency and
hence decreasing level of human interaction. According to NIST (2016) and Ludvigsen and Sørensen
(2016), the levels can be categorized as follows

• Automatic operation (remote control) means that even though the system operates automat-
ically. The human operator directs and controls all high-level mission planning functions,
often preprogrammed (human-in-the-loop/human operated).

• Management by consent (teleoperation) means that the system automatically makes recom-
mendations for mission actions related to specific functions, and the system prompts the
human operator at important points in time for information or decisions. At this level the
system may have limited communication bandwidth including time delay, due to i.e. distance.
The system can perform many functions independently of human control when delegated to
do so (human-delegated).

• Semi-autonomous or management by exception means that the system automatically executes
mission-related functions when response times are too short for human intervention. The
human may override or change parameters and cancel or redirect actions within defined time
lines. The operators attention is only brought to exceptions for certain decisions (human-
supervisory control).

• Highly autonomous, which means that the system automatically executes mission- related
functions in an unstructured environment with ability to plan and re-plan the mission. The
human may be informed about the progress. The system is independent and "intelligent"
(human-out-of-the loop).

Ludvigsen and Sørensen (2016) also proposes a "bottom-up" architecture for autonomous vessels,
as an attempt to explain the critical parts of an autonomous system

• Mission planner level: The mission objective is defined and the mission is planned. Subject to
contingency handling, any input from payload sensor data analysis and any other input from
the autonomy layer, the mission may be re-planned.

• Guidance and optimization level: Handles waypoints and references commands to the con-
troller.

• Control execution level: The plant control and actuator control takes place.

A fully autonomous vessel will be able to optimize the mission planning, by continuously analysing
mission-critical data. Being unmanned enables lower sailing speed since it no longer implies a
longer crew shift. Mission planning can be more cargo dependent, not limited by human crew
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consideration. This leads to a reduction in operational cost, fuel consumption, and emissions.
An increased operational window will also come as a result of the system handling more extreme
weather. On the guidance and optimization level, an autonomous vessel will better optimize the
waypoints with regards to the measured environmental loads, which further reduce emissions and
fuel consumption. The advanced systems for collision avoidance already in place today will also
eliminate the human-error caused accidents. These accidents accounted for 65.8% of all accidents at
sea in 2019, according to the European Maritime Safety Agency, EMSA (2019). Control execution
level autonomy will enable real-time tuning of control algorithms, depending on updated knowledge
of the environment - further increasing efficiency and safety.

There are nevertheless many challenges associated with autonomous vessels, including cyber-attacks
and the moral questions regarding hardcoded decision-making in life-threatening situations. An-
other challenge is the dynamic and unpredictable environment it operates, at least in comparison
to autonomous cars. Waves strongly influence the performance of such a vessel, demanding highly
advanced systems for sea state estimation.

2.2 Dynamic positioning

Dynamic positioning (DP) control system enables a vessel to automatically maintain position and
heading, or low speed tracking. The system is based on a mathematical model describing the
relationship between forces acting on the vessel and its motion. From the GNSS and often sup-
plementary sensors, the system calculates the summed environmental forces affecting the vessel
position. The necessary low-level actuator set-points to counteract the environmental forces can be
calculated. This also enables the system to keep operating for some time in case of loss of positional
signal, called dead reckoning.

According to Sørensen et al. (1996), the first DP system became commercially available in the
1960s. This system was a simple analog PID controller which did not estimate environmental
forces or model errors, and was therefore useless in most weather situations. Kalman filtering,
advanced digital data transmission, and big improvements within control theory have led to the
advanced, robust systems in place today. In 2013 there were 1800 registered DP vessels in the
world, according to The Nautical Institute (2013). The most common are Platform supply vessels
(PSV), Offshore Support-(OSV), Diving Support- (DSV), ROV Support-, Drill-, and Pipe Laying
Vessels.

IMCA (2010) lists the alternatives to dynamic positioning as mainly jack-up barge and anchor-
ing. The advantages for these are that they are not dependent on complex thruster systems with
controllers, and blackouts or system failures are not critical with regards to the position keeping.
The disadvantages are limited or no maneuverability once the position is set, and dependency on
relatively shallow water. Additional disadvantages for anchoring is limitation by obstructed seabed
and the dependency on anchor handling tugs. Advantages of DP are thus the maneuverability,
water depth independent, unrestricted by obstructed seabed, and quick set up. There is, however,



2.3 Sea state estimation 16

a high initial cost for the system.

Dynamic positioning is under the control execution level of vessel autonomy, see section 2.1. For the
algorithms in the DP control system to function optimally, extensive parameter tuning is required.
Today this is done manually by an operator with sea trials. The parameters are dependent on
the vessel design but also on the sea state. The challenge in practice becomes the underlying
dependency on real-time, accurate estimation of the sea state.

2.3 Sea state estimation

Weather forecast and statistics can contribute with much information for a vessel in operation,
however, it does not contain the local precision needed for optimal functioning of a DP control
system. Regardless of the vessel’s level of autonomy, a high-precision sea state estimate is useful,
even if only for decision support systems with an operator present. Online sea state estimates
can be used directly for manipulating parameters in the control algorithms, or as a trigger for
switching between several pre-tuned control laws. The sea state is considered the combination of
three parameters; the mean wave height of the one third highest waves (Hs), the period of the most
energetic waves (Tp), and the relative wave direction (β). Many efficient methods for estimating
the wave period exist, but dependable algorithms for the two others are less common.

Wave buoys have been frequently used for sea state estimation, but are limited to a fixed location
of operation. Wave radar is an alternative according to Stredulinsky and Thornhill (2011), Clauss
et al. (2009a), and Clauss et al. (2009b), however the precision quickly decreases with large vessel
movements. The current most promising method is using the vessel itself as a wave buoy, often
called wave buoy analogy. The theoretical foundation of the wave buoy analogy is the existence
of a mathematical relationship between the motion of the vessel and the current sea state. Many
approaches to identify this relation, enabling mapping of measured vessel motion to a sea state,
exist. They are typically divided into model-based and data-driven methods, and further into
parametric and non-parametric.

The model-based approaches combine wave-induced measurement-spectrum on board with a mathe-
matical model of the vessel and wave spectrum. These approaches are mostly based on the frequency
domain, where the relationship between the vessel cross response spectra and the directional wave
spectrum are calculated offline. The calculations are done in hydrodynamic simulation software
using the vessel hull geometry, and the mathematically expressed relation is called the response
amplitude operator (RAO). The RAO hence express the vessel motion in response to first order
waves given the wave parameters. The relation is further utilized to map the motion experienced by
the sensors onboard to a specific wave spectrum. A parametric approach means that a certain form
of the wave spectra is initially assumed, while the opposite is true for non-parametric approaches.
The drawback of model-based approaches is the dependency on accurate vessel models which are
expensive, and impossible for more complex sea.
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Data-driven approaches, on the other hand, are not dependent on prior knowledge of the vessel
and are therefore more easily generalized. These approaches apply machine learning techniques to
identify temporal and frequency features. Non-parametric models include, for example, k-nearest
neighbors where the similarity in measurements indicate similar output. The model does not assume
a form of the underlying function it is trying to approximate. Neural networks are examples of
parametric models, where the relationship between sea state and measurements are approximated
by optimizing model parameters to produce the desired output. The number of parameters is set,
and hence the assumption of the form/complexity of the underlying mapping function.

One of the initial studies on the model-based wave buoy analogy was Takekuma and Takahashi
(1972). The response amplitude characteristics of the vessel were used to calculate the power
spectral density of the waves, under assumption of linear superposition. This was, however, limited
to stationary vessels and only based on pitch motion. The method was taken further by Hirayama
and Hagino (1985), where accelerometers and vertical gyros were utilized also to consider forward
speed of the vessel. The wave direction was obtained by using the ship’s radar. The problem caused
by the Doppler effect in following sea was not approached until Iseki and Ohtsu (2000).

A number of studies have been published in later years focusing on model-based sea state estimation
for DP applications. Load variations, operational trim, and other factors change the dynamic
behavior of a vessel and are often not considered in the RAO. Tannuri et al. (2003) focuses on
the errors in the estimated wave spectrum induced by these unmodelled changes. In Brodtkorb
et al. (2018b) a non-parametric approach is tested for directional wave spectrum estimation. The
RAO is simplified into a set of closed-form expressions, which introduces a computationally efficient
algorithm that operates under limited knowledge of vessel hull geometry. This method was further
extended to applications with forward speed and for short-crested sea states in Nielsen et al. (2018).
Both approaches use pre-sampled data from simulation or full-scale sea trials and are hence per
definition offline estimation. In Brodtkorb et al. (2018a) the previously mentioned approaches are
implemented for online sea state estimation on a DP vessel.

A combination of parametric and non-parametric models has been attempted to utilize the advan-
tages of both models. In Pascoal and Guedes Soares (2008), a non-parametric formulation is applied
initially to get an a-priori estimation of swell and wind sea spectral properties, a parametric fitting
procedure is further applied based on the estimated properties. It is an improvement of Pascoal
et al. (2008), where the minimization procedure is refined and it presents a scheme of estimating
spectral parameters by fitting a parametric form.

Nielsen (2007) implements two different methods for directional wave spectrum estimation, namely
Bayesian modeling and parametric modeling. Both methods are based on complex-valued fre-
quency response functions (FRF) and are therefore favorable for evaluating how the filtering aspect
influences the final estimation.

The aforementioned model-based approaches are formulated in the frequency domain. Depending
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on the accuracy of the RAOs, and hence on the spectral analysis like Fast Fourier Transform
(FFT). The vessel’s ability to remain stationary highly influences the results due to the time
needed to perform the analysis, limiting these approaches. In Nielsen et al. (2015) a hybrid model
consisting of a model-based approach and a data-driven approach is implemented. The estimation
of wave frequency is done in time domain solely based on the measured vessel motion, hence the
stationarity dependency is removed. The wave amplitude and phase are estimated using a model-
based approach.

Due to the limitations of approaches formulated in the frequency domain, some research has been
done on sea state estimation directly in time domain. Pascoal and Guedes Soares (2009) proposes
a Kalman filter-based method with waves in-phase and quadrature components as states. Wave
height and direction can then be accurately estimated. Nielsen et al. (2016) is another example
of the wave buoy analogy formulated directly in time domain, only partly dependent on RAO.
The wave frequency estimation is independent of the RAO, while wave amplitude and phase are
estimated using nonlinear least squares fitting. The paper is a continuation of the previously
mentioned theoretical paper Nielsen et al. (2015), now applied to model-scale experiments.

Roll, pitch, and heave are movements that are expensive to control, considering the benefit to
the objective of dynamic positioning. The DP system is hence limited to controlling motion in
the horizontal plane. As a result, the motion in the initially mentioned degrees of freedom is
predominantly induced by the waves, and therefore, the most suitable for sea state estimation.

2.4 Machine learning applications

The previously mentioned methods are based on knowledge of some version of the vessel transfer
function and are hence model-based. The transfer function of a vessel can be complex to calculate,
and if nonlinear effects are not correctly accounted for, larger errors will be introduced in more
extreme sea states. Transforming the time series samples into frequency domain loses information
about the phase differences between the signals, which is crucial information for sea state estima-
tion. Data-driven approaches have therefore become increasingly popular, and the current available
computation power has given the earlier disregarded methodologies of neural networks and other
ML techniques its renaissance.

An artificial neural network is a function approximator that needs training on labeled data. It
consists of several layers of nodes, where each node in a layer takes the weighted sum of outputs
from the previous layer as input. An activation function in each node then decides the output, based
on the mentioned input. A key element to the activation function is its non-negative derivative
- an increased input imply the same or increased output. The number of layers between the
input and output layer varies depending on the complexity of the underlying target function, but
networks with more than one hidden-layer is often referred to as deep neural networks. The
network is trained, and hence fitted, to the target function by a scheme called backpropagation.
The error between the network’s estimation and the target is backpropagated through the network
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by adjusting each node’s weight in the direction of decreased error - gradient descent. The two most
popular architectures of deep neural networks (DNN) used in time series analysis are convolutional
and recurrent.

Figure 1: Layout of one type of deep neural network (Vieira et al. (2017))

Instead of only densely connected hidden layers, a convolutional neural network typically consists
of several convolutional layers, pooling layers, fully connected layers, and normalization layers. The
convolutional layers work as a sliding dot product, applying several filters over the time series. This
method is based on multiple sets of shared weights, learning to respond to patterns in the time series
while maintaining the spatial or temporal relationship between the patterns. The pooling layers
further reduce the dimensions of the data by extracting only a single statistic from a predetermined
number of neighbouring elements. It works as a sample-based discretization process, where the
most common types are max- and min pooling - extracting the maximum or minimum value from
a selected region. Several such convolutional stages can be implemented in series, where each stage
hierarchically combines the local features into more global features. Lastly, fully connected layers
are applied to interpret the encoding. The convolutional neural network architecture is therefore
very good for recognizing patterns in image or time series data, indiscriminate to spatial or temporal
location of the pattern.

The recurrent neural network (RNN) architecture facilitates input with no limit on size. Through
the use of loops it has hidden states that work as memory, enabling the input to be interpreted in
light of the previous values of the signal. RNNs are hence often used for sequential data such as
natural language processing (NLP), where a word or sentence can be ambiguous without knowledge
of the context. A problem with the most basic RNNs, often called vanilla RNNs, is the vanishing
gradient problem. The backpropagation of the error signal becomes vanishingly small over a long
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term temporal interval. The solution was introduced by Hochreiter and Schmidhuber (1997) called
Long Short Term Memory (LSTM). The main improvement is introduced through using weighted
gates to decide what information to keep in each cell. This way, dependencies in the signal over
long temporal or spatial distance can be remembered. Another simpler version of the LSTM with
fewer gates is the gated recurrent unit (GRU), Cho et al. (2014), which has also grown popular in
recent years.

When performing dead reckoning (DR) navigation for DP vessels, it often involves integrating
several IMU measurements before applying for example Bayesian filtering. The challenge is the
delay induced by such methods, as the filtering needs measurements over several waves. Diamant
and Jin (2014) uses an Expectation-Maximization algorithm to map short time period acceleration
measurements to different pitch states. The acceleration measurements are then combined within
each state and integrated to get the pitch compensated distance estimate.

In Ferrandis et al. (2019), machine learning is applied for approximating the complex nonlinear
mapping between the stochastic wave elevation and vessel motion in heave, roll, and pitch. Different
recurrent neural network models, namely standard, GRU, and LSTM, are trained on expensive CFD
simulations offline. The result is a model-independent, more computationally efficient simulation
model for 3 DOF vessel motion in extreme sea states.

In Arneson et al. (2019), data-driven sea state estimation is also approached with machine learning.
The raw vessel motion data is initially transformed to frequency domain before the frequency
domain response is integrated over the frequency range. The result is training data with a single
response value for each DOF. Quadratic Discriminant Analysis (QDA) is further applied to the
training data for classification of wave direction, as the primary differentiating factor for vessel
motion is the wave direction. Partial Least Squares Regression (PLSR), a multivariate regression
method, is lastly used to estimate Hs and Tp based on the wave direction.

Mak and Düz (2019) intends to estimate relative wave direction based on 6 DOF vessel motion.
The data was produced by a frigate installed with wave radar over two years. Three different
deep neural networks are trained on the data, and the results compared. The three networks are
CNN for regression, a multivariate LSTM-CNN, and a Sliding Puzzle network. For each network, a
hyperparameter tuning study is carried out to optimize the performance and efficiency, and hence
limiting the influence of hyperparameter choice. The results show feasibility, however, a lack of
data for all sea states is emphasized.

One of the latest contributions to rapid online sea state classification for DP application is Tu et al.
(2018). The approach utilizes 4 DOF vessel motion, namely surge, sway, roll, and yaw. K-means
clustering and filtering are performed, before the processed data is categorized via Hilbert-Huang
transform (HHT). Further feature extraction is performed, before a three-layered classification
structure with Adaptive Neuro-Fuzzy Inference System (ANFIS), Random Forest (RF) and Particle
Swarm Optimization (PSO) based combination classifiers are implemented for the final sea state
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estimation.

The dependency on many hand-crafted features could influence the result to a large degree. Cheng
et al. (2019) presented an end-to-end deep neural network that is hence not sensitive to human
interventioned pre-processing. An LSTM recurrent neural network detects the long dependencies,
a CNN extracts the time-invariant features, and finally, an FFT is employed for the extraction of
frequency features. All the features are combined and weighted in a feature fusion layer.

A densely connected CNN is proposed in Cheng et al. (2020) extended also to consider wave
direction and generalized for ship motion with forward speed. The network consists of stacked
CNN blocks with dense connections. Channel attention modules extract the features form each
block, while two feature attention mechanisms intend to combine the hierarchical features.
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3 Problem Formulation

The 6 DOF motion of a DP vessel, namely the CS Arctic Drillship model vessel, is simulated in
Simulink based on the seakeeping model with zero-speed potential coefficients Fossen (2011), due
to the assumption of stationkeeping and low-speed maneuvering.

The wave-frequency excitation forces τwave are calculated using the vessel low-frequency motion
and the vessel RAO. The thesis will cover long-crested regular and irregular sea, assuming deep
water and hence applicability of the dispersion function for deepwater. A 3 DOF backstepping
control law for τ is designed based on the objective of following a path described by the variable s

η(t) → ηd(s(t))

ṡ(t) → vs(t, s)

}
as t→ ∞.

The vessel actuators highly influence the vessel motion in the horizontal plane, however, the vessel
motion in heave, roll, and pitch is mostly caused by environmental excitation. Assuming negligible
wind and current, the motion therefore contains information about the sea state that the vessel is
currently operating in.

An inertial measurement unit (IMU) is a device that is able to measure the aforementioned motion
using accelerometers and gyroscopes. Fixed to a body, the accelerometer measures the specific
force, while the gyroscope measures the angular velocity. In combination with GPS data, the linear
and angular accelerations of the body can be estimated.

Accurate estimation of sea state is crucial and fundamental for the safety of an autonomous vessel,
but can also increase the performance of vessels with a lower level of autonomy, such as dynamic
positioning. The optimal gains in the control system of a DP vessel is dependent on the sea state,
which is typically assumed to be stationary for 20-minute intervals - leading to a desire for at least
equally frequent updates of the gains. The precision of the sea state estimate is effectively working
as an upper limit for the performance of all higher-level algorithms and systems - they are only as
good as the underlying estimate.

As seen in chapter 2, several factors limit the model-based sea state estimation approaches. Exam-
ples are the accuracy of the transfer function, the assumption of linearity between the wave spectrum
and vessel response, and the time delay induced by the optimization problem accompanying the
spectral analysis. There are, however, challenges related to data-driven approaches as well. They
include but are not limited to DP ship motion data containing not only wave-induced, but also ship
actuator induced motion, the high dimensionality of the sensor data, and noisy measurements. The
most critical challenge is still gathering enough accurate data from real-world operations, alterna-
tively building a simulation model that accurately captures most of the non-linear and stochastic
dynamics of a vessel in waves.
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The first objective of the thesis is to build the simulation model similar to real-world dynamics,
including IMU measurements. The second objective is to determine the feasibility of data-driven
approaches to sea state estimation. More specifically whether a convolutional neural network (CNN)
can be trained to estimate the sea state solely based on 3 DOF accelerations from a DP vessel in
simulation. Subsequently, four IMUs are to be installed on the actual model vessel, enabling real
motion data to be gathered from the vessel in the basin in MC-lab. The third objective is to
determine the precision of the CNN model for the experimental data, alternatively determining
how generalized the models have to be also to capture the features of this data.
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4 Modeling

Following are the mathematical expressions used to build the simulation model derived and pre-
sented. This includes the relevant reference frames, and how vectors are transformed between them.
Also included are the dynamics relating forces and vessel motion, the simplified vessel dynamics
used for the DP control system, and how the IMU measurements are modelled. Lastly the modeling
of the sea state is presented, and how the waves are translated into forces acting on the vessel. The
6 DOF model parameters for the C/S Arctic Drillship are used, from Bjørnø (2016).

4.1 Kinematics

The kinematics describe the geometrical aspects of motion. It is used to describe the pose; posi-
tion and attitude, of an object or reference frame with regards to another frame. An example is
the relation between the earth fixed NED reference frame and the moving body reference frame
visualised in 3 DOF in figure 2.

Figure 2: Orientation of the moving body fixed reference frame with regards to the fixed NED
reference frame (Breivik). Heading angle ψ, course angle χ and crab angle β are also indicated.

4.1.1 Reference Frames

• Earth-centered inertial (ECI); {i} = (xi, yi, zi). Reference frame fixed in space, with origin
oi in the center of the earth. Axis zi pointed along the earths axis of rotation, with positive
direction north. Newton’s laws of motion applies to this non-accelerating frame. The IMU
measurements are expressed in {i}.

• Earth-centered Earth-fixed (ECEF); {e} = (xe, ye, ze). ze and origin oe equal to ECI, however
xe and ye follows the earths rotation ω = 7.2921× 10−5 rad/s. GPS position is given in this
reference frame.

• North-East-Down (NED); {n} = (xn, yn, zn). Usually defined as the tangent plane, spanned
by xn pointing north and yn pointing east, on the earth surface. Axis zn points down, and
the reference frame usually moves with the vessel. For local navigation the NED frame can
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be assumed inertial and fixed to a point on the surface of the earth. This implies applicability
of Newton’s laws. The location of {n} with regards to {e} is uniquely described by longitude
and latitude.

• Body; {b} = (xb, yb, zb). Fixed to the vessel, usually with ob at the center of gravity (CG)
or at some specified center of control (CO). Axis xb pointing towards the bow, yb pointing
towards starboard and zb pointing down normal to the plane spanned by the two others. The
vessel velocities in six degrees of freedom are usually expressed in this reference frame, while
the pose of the vessel, and hence the frame {b}, is expressed in {n}.

Figure 3: Relations between the aforementioned reference frames (Fossen (2011))

• Sensor; {s} = (xs, ys, zs). Local reference frame for the inertial measurement units. The rota-
tional velocities are expressed according to the right hand rule, while the linear accelerations
are expressed according to the left hand rule (figure 4). The linear acceleration measurements
are multiplied with −1 henceforth to simplify transformations between reference frames.

• Basin; {f} = (xf , yf , zf ). The reference frame used in the basin at the MC-lab, where xf
points in the longitudinal direction towards the wave generator, zf points down and further yf
according to the right hand rule. All positional and orientational Qualisys Oqus measurements
are expressed in this reference frame.

Figure 4: IMU sensor reference frame (Devices)
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Figure 5: Basin {f}, body {b} and sensor {s} reference frame (Udjus (2017))

4.1.2 Vectorial notation

The vectorial notation in this thesis is adopted from Fossen (2011), and uses sub- and super scripts
describing which reference frames the vector is described in and related to.

pnb/n = [N,E,D]⊤: position of ob with respect to {n} expressed in {n}

Θnb = [ϕ, θ, ψ]⊤: Euler angles between {n} and {b}

vbb/n = [u, v, w]⊤: linear velocity of ob with respect to {n} expressed in {b}

ωbb/n = [p, q, r]⊤: angular velocity of {b} with respect to {n} expressed in {b}

abb/n = [ax, ay, az]
⊤: linear acceleration of ob with respect to {n} expressed in {b}

αb
b/n = [αx, αy, αz]

⊤: angular acceleration of {b} with respect to {n} expressed in {b}

f bb = [X,Y, Z]⊤: force with line of action through ob expressed in {b}

mb
b = [K,M,N ]⊤: moment about ob expressed in {b}

This enables the description of the motion of a vessel in 6 DOF by

η =

[
pnb/n
Θnb

]
, ν =

[
vbb/n
ωbb/n

]
, τ =

[
f bb
mb

b

]
. (1)

4.1.3 Transformations

An important part of kinematic equations are the transformation matrices

JΘ(η) =

[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]
. (2)
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They vary depending on which reference frames the transformation is between. The linear ve-
locities and accelerations are transformed through the rotation matrix R(Θ) according to the
zyx-convention - the axis rotations are done in the order of zyx. The matrix has the property
Rn
b (Θ)−1 = Rn

b (Θ)⊤ = Rb
n(Θ).

ṗnb/n = Rn
b (Θnb)v

b
b/n = Rx,ϕRy,θRz,ψv

b
b/n

=

cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψcϕsθ

sψcθ cψcϕ+ sϕsθsψ −cψsϕ+ sθsψcϕ

−sθ cθsϕ cθcϕ

vbb/n. (3)

Angular velocities and accelerations are transformed between reference frames using the transfor-
mation matrix TΘ(Θ). This matrix, however, does not have the same property as the rotation
matrix TΘ(Θ)−1 ̸= TΘ(Θ)⊤.

Θ̇nb = TΘ(Θnb)ω
b
b/n =

1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

ωbb/n. (4)

Worth noticing is that the derivative of a rotation matrix is Ṙ
b
n = Rb

nS(ω
n
bn), where S(ω) is the

skew-symmetric matrix for some ω = [ωx, ωy, ωz]
⊤, i.e.,

S(ω) =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (5)

4.1.4 Kinematic equations

The vectorial notation and the transformation matrices are used to express the 6 DOF kinematic
equations for a vessel. Velocities are transformed from {b} to {n} as

η̇ = JΘ(η)ν

⇕ (6)[
ṗnb/n
Θ̇nb

]
=

[
Rn
b (Θnb) 03x3

03x3 TΘ(Θnb)

][
vbb/n
ωbb/n

]
.
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4.2 Kinetics

The kinetic equations describe the relationship between forces acting on the vessel and the motion
of the vessel. According to Fossen (2011)

Mν̇ +C(ν)ν +D(ν)ν +Gη = τwave + τ (7)

or in presence of 2D irrotational current νr = ν − νc, where ν̇ ≈ 0

Mν̇r +C(νr)νr +D(νr)νr +Gη = τwave + τ . (8)

The matrices can be decomposed accordingly; the mass constant M = MRB +MA, representing
rigid body and added-mass contributions. Coriolis and centripetal term C(ν) = CRB(ν)+CA(ν),
representing rigid-body and added mass contributions. The damping term D(ν) = DL+DNL(ν),
representing the linear and non-linear contributions. Lastly, G is the restoring matrix.

The equation can be categorized into rigid-body, hydrodynamic, and hydrostatic forces as

MRBν̇ +CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+MAν̇r +CA(νr)νr +D(νr)νr︸ ︷︷ ︸
hydrodynamic forces

+ Gη︸︷︷︸
hydrostatic forces

= τ + τwave. (9)

4.3 Simulation verification model

The Simulation verification model (SVM) takes the low level actuator set-points as input and
outputs the updated pose of the ship η. The 6 DOF SVM has been adopted from Perez and
Fossen (2007) and is modelled using the kinematic equation presented in section 4.1.4. The kinetic
equation (9) is modified under the assumption of zero-speed potential coefficients. In addition
speed-dependent fluid memory effects are included

η̇ = Rn
b (ψ)ν

Mν̇ +CRBν +CAνr +Dνr + µ+Gη = τwave + τ (10)

where the speed-dependent fluid memory effects are defined as

µ =

∫ t

0
K(t− τ)[ν(τ)− Ue1]dτ. (11)

The wave forces τwave are modeled using a wave block created by Oyvind Smogeli and a response
amplitude operator block made by aforementioned and Thor I. Fossen. Both blocks are from
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the MSS toolbox. The wave block calculates harmonic wave component parameters from a wave
spectrum based on the inputs of significant wave height, peak frequency, direction, and number of
frequencies. The wave component parameters in addition to the vessel low-frequency motion are,
through the RAO block, used to calculate the wave-frequency excitation forces.

The thruster dynamics transforms the control outputs u and α to the actuator forces acting on
the vessel through

τ (u,α) = T (α)KTu. (12)

The angles off the thrusters are all fixed to α = [π, π4 ,
−π
4 , 0,

5π
4 ,

3π
4 ].

Figure 6: Thruster configuration CSAD (Frederich (2016))

Table 1: Thruster locations CSAD model (Frederich (2016))

Thruster Position X[m] Position Y[m]
1 1.0678 0.0
2 0.9344 0.11
3 0.9344 -0.11
4 -1.1644 0.0
5 -0.9911 -0.1644
6 -0.9911 0.1644

4.4 Control design model

Due to assumption of low speed manoeuvring, the simplified, low-frequency vessel dynamics are
used for the control design model (CDM). The control system only acts in the horizontal plane,
and is therefore formulated in 3 DOF - surge, sway, and yaw. The kinematic and kinetic equations
are given by
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η̇ =R(ψ)ν (13)

Mν̇ +DLν = R(ψ)b+ τ . (14)

The bias b approximates the sum of the low frequency environmental forces and moments, as well
as model inaccuracies. The first-order Markov model is used

ḃ = −T−1
b b+Ebwb, (15)

where T b is a diagonal matrix consisting of the time constants in 3 DOF, while Eb scales the zero
mean white noise wb. The state-space representations of the wave spectra is adopted from Fossen
(2011). The motion RAO is formulated as a state-space model, where a second-order system of
relative degree one approximates the true wave spectrum

h(s) =
Kws

s2 + 2λω0s+ ω2
0

. (16)

The the gain is defined according to Kw = 2λω0σ, σ describe the wave intensity, λ is a damping
coefficient, and ω0 is the dominating wave frequency. By transforming to time domain, the state
space model with zero mean white noise w becomes

ẋw =

[
03×3 I3×3

−Ω2
0 −2ΛΩ0

]
︸ ︷︷ ︸

Aw

xw +

[
03×3

Kw

]
︸ ︷︷ ︸

Ew

w (17)

yw =
[
03×3 I3×3

]
︸ ︷︷ ︸

Cw

xw (18)

where Ω0 = diag([ω1, ω2, ω3]) and Λ = diag([λ1, λ2, λ3]). The resulting CDM that will serve as
basis for the model-based observer and controller, i.e,

ẋw = Awxw +Eww (19a)

η̇ = R(ψ)ν (19b)

ḃ = −T−1
b b+Ebwb (19c)

Mν̇ +DLν = R(ψ)b+ τ (19d)

y = η +Cωxw (19e)
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4.5 Measurement modeling

4.5.1 IMU measurement modeling

An inertial measurement unit (IMU) measures linear specific force and angular velicities in the
sensor frame {s} with respect to an inertial frame. The sensor frame has to be aligned with the
body frame {b}. If not the sensor data first has to be rotated into alignment with {b}. The output
of the IMU is the linear specific force in the sensor frame, including the acceleration of gravity,
bias, and noise. Inspired by Skjetne (2018), let {a} be an inertial frame

f ss/a = Rs
a(p̈

a
s/a − ḡa) + bsas +ws

as , (20)

where bsas is the bias, ḡa is the gravitational vector and ws
as is the noise. Expressed in {b}, the

measurement equation is formulated as

f bs/a = abb/a −Rb
aḡ

a + S
(
ωbab

)2
lbs + S

(
αb
ab

)
lbs + bas +was (21)

= abb/a − ḡb + ωbb/a ×
(
ωbb/a × lbs

)
+αb

b/a × lbs + bas +was . (22)

Under the assumption of inertial NED frame {n} the vessel motion equations can be stated as

pns/n = pnb/n +Rn
b l
b
s (23)

ṗns/n = ṗnb/n + Ṙ
n
b l
b
s

= ṗnb/n +Rn
bS(ω

b
b/n)l

b
s (24)

p̈ns/n = p̈nb/n + Ṙ
n
bS(ω

b
b/n)l

b
s +Rn

bS(ω̇
b
b/n)l

b
s

= p̈nb/n +Rn
bS(ω

b
b/n)

2lbs +Rn
bS(ω̇

b
b/n)l

b
s. (25)

(26)

Relating to the inertial ECI frame {i} gives
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pis/i = pie/i + pin/e + pis/n

= Ri
e

(
pen/e +Re

np
n
s/n

)
(27)

ṗis/i = Ṙ
i
e

(
pen/e +Re

np
n
s/n

)
+Ri

e

(
ṗen/e + Ṙ

e
np

n
s/n +Re

nṗ
n
s/n

)
= Ri

eS
(
ωee/i

)(
pen/e +Re

np
n
s/n

)
+Ri

eR
e
nṗ

n
s/n (28)

p̈is/i = Ṙ
i
eS
(
ωee/i

)(
pen/e +Re

np
n
s/n

)
+Ri

eS
(
ωee/i

)(
ṗen/e + Ṙ

e
np

n
s/n +Re

nṗ
n
s/n

)
+ Ṙ

i
eR

e
nṗ

n
s/n +Ri

eṘ
e
nṗ

n
s/n +Ri

eR
e
np̈

n
s/n

= Ri
eS
(
ωee/i

)2
pes/e + 2Ri

eS
(
ωee/i

)
Re
n

(
ṗnb/n +Rn

bS
(
ωbb/n

)
lbs

)
+Ri

eR
e
n

[
p̈nb/n +Rn

bS
(
ωbb/n

)2
lbs +Rn

bS
(
ω̇bb/n

)
lbs

]
. (29)

Utilize the fact that pie/i = 0, Ṙe
n = 0, pen/e = 0 and ω̇ee/i = 0.

vbb/n := Rb
nṗ

n
b/n, ṗnb/n = Rn

b v
b
b/n (30)

abb/n := Rb
nv̇

n
b/n = Rb

np̈
n
b/n, p̈nb/n = Rn

ba
b
b/n (31)

abb/n = v̇bb/n + S
(
ωbb/n

)
vbb/n (32)

αb
b/n = ω̇bb/n (33)

Substituting (30)-(33) into (29), introducing the 3 DOF linear velocities and accelerations as well
as angular acceleration, yields

p̈is/i = Ri
b

[
abb/n + S

(
ωbb/n

)2
lbs + S

(
αb
b/n

)
lbs

]
+Ri

eS
(
ωee/i

)2
pes/e + 2Ri

eS
(
ωee/i

)
Re
nR

n
b

(
vbb/n + S

(
ωbb/n

)
lbs

)
. (34)

Inserting into the measurement equation, with ge = ḡe − S
(
ωee/i

)2
pes/e
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f bs = Rb
i

(
p̈is/i −Ri

eḡ
e
)
+ bbas +wb

as

= abb/n −Rb
ng

n + S
(
ωbb/n

)2
lbs + S

(
αb
b/n

)
lbs + 2S

(
ωbe/i

)(
vbb/n + S

(
ωbb/n

)
lbs

)
+ bbas +wb

as

= v̇bb/n + S
(
ωbb/n

)
vbb/n + S

(
ωbb/n

)2
lbs + S

(
αb
b/n

)
lbs + 2S

(
ωbe/i

)(
vbb/n + S

(
ωbb/n

)
lbs

)
−Rb

ng
n + bbas +wb

as (35)

which constitutes as the IMU simulation equation for a single IMU placed at arm lbs from ob,
generating specific force measurements expressed in {b}.

4.5.2 IMU sensor fusion

For redundancy it is often desirable combining the measurements of several IMUs to accurately
identify the linear and angular accelerations of the body. Inspired by Skjetne (2018), using the
knowledge of the location of each sensor in {b} and the Euler accelerations, we first define

z := col
(
abb/i,α

b
b/i, ω̄

)
∈ R12 (36)

ξls := abs/i = abb/i − S (ls)α
b
b/i +H (ls) ω̄ ∈ R3 (37)

where ls = lbs = col (lx, ly, lz) and

ω̄ := col
(
ω2
x, ω

2
y , ω

2
z , ωxωy, ωxωz, ωyωz

)
∈ R6 (38)

H (ls) :=

 0 −lx −lx ly lz 0

−ly 0 −ly lx 0 lz

−lz −lz 0 0 lx ly.

 . (39)

By defining

W ls :=
[
I3×3 −S

(
lbs
)

H
(
lbs
) ]

∈ R3×12 (40)

we get

ξls = abs/i = W lsz. (41)
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Inserting into the specific force measurement equation f bs = abs/i − ḡb + bas + was for an IMU s,
we get

f bs = W lsz − ḡb + bas +was . (42)

In this case with four IMUs, and l := col (l1, l2, l3, l4) ∈ R12 we define

ξ :=


ξl1
ξl2
ξl3
ξl4

 =


abs1/i
abs2/i
abs3/i
abs4/i

 =


W l1

W l2

W l3

W l4

 z =: W (l)z, W (l) ∈ R12×12. (43)

According to Zappa et al. (2001) the matrix W (l) is invertible as long as the IMUs are not coplanar -
at least one IMU is not in the plane spanned by the three others. The Moore-Penrose pseudoinverse
is hence applicable

z = W (l)†ξ. (44)

This yields the combined measurement equation

f bc = W (l)z − 1N ⊗ ḡb + bc +wc (45)

z = W (l)†
[
f bc + 1N ⊗ ḡb

]
−W (l)† [bc +wc] (46)

where A⊗B is the Kronecher Product and the combined measurement, bias and noise defined as

f bc := col
(
f b1 , f

b
2 , f

b
3 , f

b
4

)
∈ R12 (47)

bc := col (ba1 , ba2 , ba3 , ba4) ∈ R12 (48)

wc := col (wa1 , wa2 , wa3 , wa4) ∈ R12. (49)

Using

Ha :=
[
I3×3 03×9

]
∈ R3×12

Hα :=
[
03×3 I3×3 03×6

]
∈ R3×12

(50)



4.6 Waves and vessel response 35

and the assumption of accurate signals for ωbb/n(t),f
b
c(t), and pib/i(t) = pib/e(t) = Ri

e(t)p
e
b/e(t), the

linear and angular acceleration of the vessel center of control with respect to {i} is

abb/i = Haz

αb
b/i = Hαz.

(51)

4.6 Waves and vessel response

Long-crested irregular sea is modeled as a sum of waves with different frequencies and amplitudes all
going in the same direction - the pattern is constant along the breadth of the wave. Long-crested
regular sea is simply modelled as a single wave. The elevation of the surface can be described
according to

ζ(t) =
n∑
i=1

ai cos (ωit+ ϵi) (52)

where ai is the amplitude, ωi the frequency, and ϵi the phase randomly sampled from a uniform
distribution.

Figure 7: Visualization of the structure of a wave spectrum (Ferrandis et al. (2019))

The energy distribution over the wave frequencies in long-crested sea is described by the wave
power spectrum S(ω). The statistical properties used to set the different sea states are significant
wave height Hs and peak period Tp. The first describes the mean height of the 1/3 highest waves,
while the second describe the period and hence the frequency in the irregular sea with the highest
power. They are related to the wave spectrum through
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Hs := 4
√
m0, m0 :=

∫ ∞

0
S(ω)dω (53)

Tp :=
2π

ωp
, ωp := arg max

j
S(ωj). (54)

The wave direction Θ, or relative wave direction β, indicate the direction of the long-crested irregular
sea, see figure 8. The open sea is divided into 12 sectors, each representing π/6 rad or 30◦.

Figure 8: Definition of wave direction sectors (Brodtkorb et al. (2018b))

Table 2: Combinations of significant wave heights (Hs) and peak periods (Tp) (Price (1974))

Sea state Description Hs [m] Tp [s]
0 Calm (glossy) 0 -
1 Calm (rippled) 0 - 0.1 4.87 - 5.66
2 Smooth (wavelets) 0.1 - 0.5 5.66 - 6.76
3 Slight 0.5 - 1.25 6.76 - 7.95
4 Moderate 1.25 - 2.5 7.95 - 9.24
5 Rough 2.5 - 4.0 9.24 - 10.47
6 Very rough 4.0 - 6.0 10.47 - 11.86
7 High 6.0 - 9.0 11.86 - 13.66
8 Very high 9.0 - 14.0 13.66 - 16.11
>8 Phenomenal > 14 > 16.11

Table 2 shows the most commonly used definition for sea states credited Price (1974). The CSAD
vessel used in this thesis is a 1:90 model ship, and the wave height is thus scaled down with a factor
of 100 for simplicity. Now the dispersion function for deepwater is λ = g

2πT
2. If the vessel is scaled

down to 1/k, then the corresponding wave length is scaled with 1/k and the wave period
√

1/k.
The wave period has therefore been scaled down by a factor

√
90. The vessel works like a lowpass
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filter in the way that small wave lengths compared to the vessel dimensions will not be registered
by the sensors. Only the more powerful sea states have been chosen for this thesis, described in
table 3.

Sea state no. Description Hs [m] Tp [s]
1 Moderate 0.0125 - 0.025 0.84 - 0.97
2 Rough 0.025 - 0.04 0.97 - 1.1
3 Very rough 0.04 - 0.06 1.1 - 1.25
4 High 0.06 - 0.09 1.25 - 1.44

Table 3: The four sea states for irregular long crested sea used in the thesis

In the simulation model, the harmonic wave component parameters are calculated using a block in
the MSS toolbox made by Oyvind Notland Smogeli. The spectrum type is ITTC with randomly
chosen combination of wave direction, specific wave height and peak frequency. The following static
parameters are chosen

• Number of frequencies in grid: 40

• Number of waves: 5

• Frequency cutoff factor: 3

Figure 9: Plotted wave spectrum with Hs = 0.03 m and Tp = 1 s.
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5 Motion control

The motion control is split into three different subsystems; guidance, control, and navigation. The
first subsystem generates the optimal path based on set-points. The second subsystem generates the
desired thrust based on sensor signals and desired position from the guidance module. It is further
split into a model based motion controller and a fixed thrust allocation. Finally, the navigation
module contains a model based observer that filters the sensor signals and recreates unmeasured
signals.

Figure 10: The DP control system.

5.1 Maneuvering-based guidance design

The guidance algorithm is implemented according to Skjetne (2019), where the objective is to follow
a path based on calculated desired positions and velocities along the path. We let pd : R → R2 be
parametrized by the continous path variable s1 and similarly ψd : R → R be parametrized by s2.
The desired pose then describes a path

ηd(s) =

[
pd(s1)

ψd(s2)

]
, s ∈ R2 (55)

Based on the desired path speed ud, the speed assignment can be formulated as

vs(t, s1) =
ud(t, s1)

|ps1d (s1)|
(56)

To accomplish the objective of moving in a straight line from (p0, ψ0) to (pt, ψt) the speed along
the path shall be governed by ṡ which again abide by the limitation of speed and acceleration
limitations the CSAD in all three DOFs.
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Initially let the path between two points be parametrised by s accordingly

pd(s1) =
(1 + λ− s1)p0 + s1pt

1 + λ
, 0 < λ≪ 1 (57)

ψd(s2) =
(1 + λ− s2)ψ0 + s2ψt

1 + λ
, 0 < λ≪ 1 (58)

Then

ps1d (s1) =
pt − p0

1 + λ
= ps1d (59)

ψs2d (s2) =
ψt − ψ0

1 + λ
= ψs2d (60)

The resulting position and heading filter becomes

ṡ1 = vs(t, s1) = σp(t)
us(s1)

|psd|+ ϵ
(61)

ṡ2 = σψ(t)
rs(s2)

|ψsd|+ ϵ
(62)

The two σ parameters are activation signals for the motion in position and heading, σ : R≥0 → {0, 1}

ηd(s) =

[
pd(s1)

ψd(s2)

]
, ηsd =

[
ps1d
ψs2d

]
, ηs

2

d =

[
p
s21
d

ψ
s22
d

]
(63)

5.2 Model-based DP controller

The DP controller is implemented from Skjetne (2019), and is intended to accomplish the maneu-
vering control objective by designing the control law for τ such that

η(t) → ηd(s(t))

ṡ(t) → vs(t, s)

}
as t→ ∞

which implies that with two separate path parameters the control law τ will ensure
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p(t) → pd(s1(t))

ψ(t) → ψd(s2(t))

}
as t→ ∞.

The LgV backstepping design is chosen, hence let

z1 := R(ψ)⊤
[
η − ηd(s)

]
, z2 = ν −α1, ω = ṡ− vs(t). (64)

Step 1

The design follows these steps

ż1 = Ṙ
⊤
[η − ηd] +R(ψ)⊤[η̇ − ηsdṡ] = −rSz1 + z2 +α1 −R(ψ)⊤ηsd(ω + vs) (65)

the skew-symmetric matrix S

S =

0 −1 0

1 0 0

0 0 0

 . (66)

The first control Lyapunov function (CLF) is chosen as

V1 =
1

2
z⊤
1 z1 (67)

differentiating

V̇1 = −rz⊤
1 Sz1 + z⊤

1 z2 + z⊤
1

[
α1 −R(ψ)⊤ηsd(ω + vs)

]
. (68)

To cancel the unnecessary terms α1 is chosen as

α1 = −K1z1 +R(ψ)⊤ηsdvs +α10, K1 = K⊤
1 > 0 (69)

and the first tuning function
ρ1 = −z⊤

1 R(ψ)⊤ηsd. (70)

Applying Young’s inequality to the derivated CLF gives

V̇1 ≤ −z⊤
1 K1z1 + ρ1ω + κ1z

⊤
1 z1 +

1

4κ1
z⊤
2 z2 + z⊤

1 α10, κ1 > 0 (71)

with
α10 = −κ1z1 (72)
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we get

V̇1 ≤ −z⊤
1 K1z1 + ρ1ω +

1

4κ1
z⊤
2 z2 (73)

α1(t, s,η) = −(K1 + κ1I)R(ψ)⊤[η − ηd(s)] +R(ψ)⊤ηsd(s)vs(t, s). (74)

We now have

ρ1 = −z⊤
1 R(ψ)⊤ηsd = V s

1 (η, s) (75)

V̇1 = −z⊤
1 K1z1 − ωηsd(s)

⊤R(ψ)z1 +
1

4κ1
z⊤
2 z2. (76)

Choosing the tracking update law ω = 0

⇒ ṡ = vs(t, s). (77)

Finally let K̃1 = K1 + κ1I, then we have

α1(t, s,η) = K̃1R(ψ)⊤[η − ηd(s)] +R(ψ)⊤ηsd(s)vs(t, s) (78)

ż1 = −
(
K̃1 + rS

)
z1 + z2 −R(ψ)⊤ηsd(s)ω (79)

ṡ = vs(t, s) (80)

V̇1 ≤ −z⊤
1 K1z1 +

1

4κ1
z⊤
2 z2. (81)

To cancel α̇1 we get α̇1 = σ1 +αs
1ṡ where

σ1(t, s,η,ν) = rK̃1Sz1 − K̃1ν − rSR(ψ)⊤ηsd(s)vs(t, s) +R(ψ)⊤ηsd(s)v
t
s(t, s) (82)

αs
1(t, s,η) = K̃1R(ψ)⊤ηsd(s) +R(ψ)⊤ηs

2

d (s)vs(t, s) +R(ψ)⊤ηsd(s)v
s
s(t, s). (83)

Step 2

Mż2 = Mν̇ −Mα̇1 = −Dν + τ +R(ψ)⊤b−M [σ1 +αs
1ṡ]. (84)

The new CLF partly consisting of the CLF from part 1

V2 = V1 +
1

2
z⊤
2 Mz2. (85)
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Derivating

V̇2 = V̇1 + z2Mż2 (86)

and inserting previous findings we get

V̇2 ≤ −z1K1z1 +
1

4κ1
z⊤
2 z2 + z⊤

2

[
−D(z2 +α1) + τ +R(ψ)⊤b−M(σ1 +αs

1ṡ)

]
. (87)

Choosing the control law

τ = −K2z2 +Dα1 −R(ψ)⊤b+M(σ1 +αs
1ṡ), K2 = K⊤

2 > 0 (88)

makes the CLF V2 pdf and V̇2 ndf for all z ̸= 0, under the constraints of K1, K2 and κ1

V̇2 ≤ −z⊤
1 K1z1 − z⊤

2

(
K2 −

1

4κ1
I

)
z2. (89)

The final control law and closed-loop system becomes

ṡ = vs (90)

τ = −K2z2 +Dα1 −R(ψ)⊤b+M(σ1 +αs
1ṡ) (91)

with z dynamic

ż1 = −
(
(K1 + κ1I) + rS

)
z1 + z2 (92)

Mż2 = −(D +K2)z2 (93)

where K1 = K⊤
1 > 0, K2 = K⊤

2 > 0 and κ1 > 0 are gain matrices tuned using the optimization
algorithm fminsearch.

5.3 Model-based observer

A nonlinear passive observer is implemented mainly due to its tuning simplicity compared to
other similar nonlinear observes like the Extended Kalman Filter. It can also be proven globally
exponentially stable (GES). The observer takes the position signal η as well as the saturated
controller calculated desired forces τ sat and outputs estimates for position η̂, velocity ν̂, and bias
b̂.
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The first objective of the observer is to filter out the firste order wave forces. It is disadvantageous
for the controller to react to these high-frequency signals, as it leads to unnecessary/unachievable
energy demand as well as wear and tear on the equipment. The second objective is to reconstruct
states that are unmeasurable or expensive to measure, namely the velocity ν̂ and the bias b̂.
Assuming negligible process and measurement noise ω = υ = 0 and negligible wave-induced yaw
rotation ψ ≈ ψ + ψw the DP observer equations Fossen (2011) can be formulated as follows

˙̂xw = Aωx̂w +K1ỹ (94a)
˙̂η = R(ψ)ν̂ +K2ỹ (94b)
˙̂
b = −T−1b̂+K3ỹ (94c)

M ˙̂ν = −Dν̂ +RT (ψ)b̂+ τ +RT (ψ)K4ỹ (94d)

ŷ = η̂ +Cωx̂w (94e)

where the gains are

K1 = [diag([k1, k2, k3]), diag([k4, k5, k6])]
⊤ (95)

K2 = diag([k7, k8, k9]) (96)

K3 = diag([k10, k11, k12]) (97)

K4 = diag([k13, k14, k15]). (98)

The gains are tuned using the optimization algorithm fminsearch under the constraints of the
general tuning rules described by Fossen (2011)

ki = −2(ζni − λi)
ωci
ωoi

(99a)

k3+i = 2(ζni − λi)ωoi (99b)

k6+i = ωci (99c)

k9+i ≫
k12+i
Tb,i

(99d)

where i = 1, 2, 3, λ is the relative damping of the wave spectrum, ζ is a damping parameter, ω0 is
the peak frequency of the wave spectrum, ωc is the filter cut-off frequency and Tb is the bias time
constant.

5.4 Thruster allocation

For simplicity, the thruster orientations are fixed and set to α = [π, π4 ,
−π
4 , 0,

5π
4 ,

3π
4 ]. The trans-

formation from desired forces and moments to low level actuator setpoints u is adopted from
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Lyngstadaas (2018)

u = K−1
T T †(α)τ sat (100)

T (α) =

cos(α1) cos(α2) cos(α3) cos(α4) cos(α5) cos(α6)

sin(α1) sin(α2) sin(α3) sin(α4) sin(α5) sin(α6)

ϕ(α1) ϕ(α2) ϕ(α3) ϕ(α4) ϕ(α5) ϕ(α6)

 (101)

where ϕ(αi) = Li cos(βi) sin(αi), Li =
√
L2
i,x + L2

i,y and βi = tan(
Li,x

Li,y
). T †(α) is the pseudo

inverse of T (α). The forces and moments are saturated according to Løvås (2019), which is the
recommended adaptation of the saturation limits suggested by Lyngstadaas (2018)

τmax =

 3N

3N

3Nm

 τ̇max =

 2.88N/s

1.60N/s

1.36Nm/s

 (102)
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6 Convolutional neural networks

An artificial neural network (ANN) is, as briefly mentioned in section 2.4, a function approximator
inspired by the human brain. It is a parametric model, trained by supervised learning on labeled
data sampled from the unknown target function. The layered structure of artificial neurons mimics
that of the brain in how each neuron receives an input, processes it, and signals all neurons connected
to it. More specifically, a single artificial neuron, seen in figure 11 a), receives weighted outputs
from neurons in the previous layer. The weighted outputs are added a bias, summed, and passed
through an activation function which has a non-negative derivative - described in more detail in
section 6.3. The biases are neglected here for simplicity. Feed-forward neural networks (FFNN)
are the most basic type of artificial neural network where the information is passed in only one
direction, from input to output. Figure 11 b) show an FFNN with two hidden layers. All layers
are dense or fully connected, meaning each neuron has an incoming edge from all neurons in the
previous layer, as well as an outgoing edge to all neurons in the next layer.

Figure 11: Layout of a deep feed-forward neural network (Vieira et al. (2017))

The convolutional neural network (CNN) is a type of ANN, however, in addition to dense layers,
the CNN typically consists of blocks of convolutional and pooling layers. This NN architecture was
created and is mostly used for image classification and object detection due to the convolutional
filter’s ability to recognize features regardless of temporal or spatial location. Figure 12 illustrate
how a CNN can be applied to the problem of image classification. The input layer is a 2d matrix
of pixel values, which is filtered and downsampled several times through convolution and pooling.
Finally, the data cube of information is flattened and used as input to a regular feed-forward neural
network. This enables the model to learn nonlinear combinations of the features outputted from
the last convolution block. The last layer utilizes the softmax activation function that outputs a
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probability distribution over all the possible targets.

Figure 12: Layout of a convolutional neural network (Prabhu (2018))

6.1 Convolutional layer

Figure 13: The filters in a convolutional layer (Vo (2018))

A number of different filters/kernels are applied to the input matrix, as seen in figure 15. In the
example, a filter of size 3× 3 is "slid" across the input matrix from upper left to lower right, row by
row, resulting in a size reduction. Different filters extract different features such as edge detection,
blurring, and sharpening. In addition to number of filters and the filter dimension, the stride is an
important parameter of the convolutional layer. The stride can be explained as the speed of the
filter - the step size between each convolutional operation. Convolutional layers can also be applied
to one-dimensional data such as text or time signals, as seen in figure 14a. The convolutional
layers are often used after each other in blocks to capture low-level details - however, at the cost
of computational complexity.
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(a) 1D convolutional filter (b) 2D convolutional filter

Figure 14: The two different convolutional filters with size 2 and 2×2, and stride 1(Missinglink.ai
(2019))

6.2 Pooling layer

To decrease the computational power needed and to extract only the most dominant features from
a convolution layer or block, a pooling layer is used. A pooling layer traverses the input matrix in a
similar manner as the convolutional filters, only extracting max, min, or average value within a set
area. The important parameters for the pooling layer is the size of each kernel, as well as whether
to extract min, max, or average values. Max pooling intuitively also works as a noise suppressant,
as the high-frequency variations will be lost through the layer. This is one of the reasons that a
CNN needs less data pre-processing than other ML methods.

6.3 Activation functions

The choice of activation function is crucial when building deep neural networks. It is highly influ-
ential for the model’s ability to learn, convergence speed, and accuracy. The activation function is
illustrated in figure 11 a) as a function of the sum of the weighted outputs from the previous layer

f

(
n∑
i=1

xiwi

)
. (103)

One such activation function is attached to each neuron in the network, and based on the sum of the
weighted outputs from the previous layer, it decides to which degree the neuron should be activated.
The activation functions also normalize the output values to a range between 0 and 1, or -1 to 1.
It can be as simple as a step function, making each neuron either active or inactive. Another
simple type is some linear activation function, f(x) = ax. The problem with linear activation
functions, is that the backpropagation algorithm used to train the model weights depends on the
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derivative - which is constant for linear functions. Another problem is the inability of the model to
fit a nonlinear function. Regardless of the number of hidden layers, a linear combination of linear
functions is still linear.

Figure 15: Most common activation functions used in deep learning (Feng et al. (2019))

Figure 15 shows the most common nonlinear activation functions. In these cases, the derivative
function exists and can be related to the input. This enables the gradient method to use knowledge
of the derivative to adjust the weights in the right direction. The other outcome of nonlinear
activation functions is that a model can theoretically fit any target function - the more hidden layers
and nodes, the more complex function can be fitted. The downside is the increased computational
complexity. When training, the model calculates the output of each neuron’s activation function for
each iteration - possibly millions of calculations. The function therefore has to be as computationally
efficient as possible.

The sigmoid and tanh functions both have smooth derivatives and normalizes the output, but are
more computationally expensive. Another disadvantage is the vanishing gradient problem. When
the input is very large or small, the derivative becomes vanishingly small - again causing the weight
change during training to be similarly small. This often causes the model to stop learning or learn
extremely slow. The largest difference between the two is that tanh is zero centered, making it
better suited for inputs with equally positive and negative numbers.

The rectified linear unit (ReLU) activation function has the advantage of being less computationally
expensive. On the other hand, negative values result in the derivative being zero and the weights
will not change during training. The leaky ReLU function is a solution to this problem, as it outputs
az (0 < a < 1) for negative input values. This does, however, come at the cost of consistency for
negative input values.

There are two different types of tasks a neural network can perform; classification and regression.
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The first outputs the class affiliation of the input. An example is figure 12, where the CNN outputs
whether the input image is a car, van, truck, or bicycle. This kind of task calls for the softmax
activation function, which outputs a probability distribution over the possible classes. Softmax is
only used in output layers. Regression, on the other hand, intends to output a real number close
to the target value. Linear activation functions, or ReLU if the output should be positive, are
therefore most common in the output layer of a regression model. Classification outputs discrete
or categorical variables, while regression outputs continuous variables.

6.4 Training

The next challenge is to train the network. More specifically, to tune the weights and biases of
the network, henceforth referred to as the parameters. A central part of training is deciding on
a loss/cost function that is based on the error between output value and target/true value. The
loss function enumerates the current performance of the model, but its derivative with respect to
each parameter is also actively utilized for the algorithm to bump the parameters in the direction
of decreased loss. The algorithm for training a neural network is hence twofold; calculating the
gradients and using them to adjust the parameters in the right direction.

Perhaps the most important principle when training a supervised machine learning model is splitting
the data set into training and test set. The goal is for the model to learn an unknown function
by seeing labeled samples. There is hence of paramount importance that a part of the data set is
put aside to get a post-training, final indication of how the model has actually fitted the unknown
function. Limited by computational memory, the model is trained on batches, subsamples of the
training data, for each parameter update. An ANN often trains faster with batches, due to the
more frequent parameter update - one for each batch. The downside is that if the batch size is too
small, the cases in the batch are not a good representation of the training set, and the estimated
gradients become inaccurate. Another critical factor is that the training set is shuffled so that each
batch, to some degree, represents the full training set. One parameter update for all the batches in
the training set is called an epoch - one training run on the entire training set.

6.4.1 Loss function

As mentioned, training a neural network is basically the task of finding the combinations of param-
eters that minimize the loss function. The function has to capture as many aspects of the model
as possible and map them to a single real number - the lower the number, the better the model. In
the case of neural networks, the function is based on the error between the model’s output values
and the target values. Minimizing the loss function hence implies minimizing the error. The error
refers to the mean error of a batch of training cases. For a regression model, where the target is
one or more continuous variables, the most common loss function is the mean squared error
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L(X, X̂) =
1

n

n∑
i=1

(Xi − X̂i)
2 (104)

where n is the batch size, Xi is the target value, and X̂i is the estimated value. Other loss
functions for regression problems are mean absolute error and mean absolute percentage error.
The binary cross-entropy and categorical cross-entropy are the most popular for binary and multi-
class classification problems, respectively. The output distribution of the model is compared to the
target values where only the true class is 1 and the rest is 0 - represented as a one-hot encoded
vector. Categorical cross-entropy is mathematically formulated as

L(X, X̂) = −
m∑
j=0

n∑
i=0

(Xij log(X̂ij)). (105)

6.4.2 Backpropagation and gradient methods

The term backpropagation refers to the algorithm that calculates the gradient of the loss function.
Gradients are derived with respect to each individual weight δL

δwi
and each individual bias δL

δbi
. The

algorithm was initially published in the 1970s, however, most of the attention is credited Rumelhart
et al. (1986). The algorithm’s main contribution is its efficiency, enabling the calculation of hundreds
of thousands of gradients within reasonable time. The layered structure enables the calculation of
the gradients analytically, instead of numerical approximation. Once the gradients in the last layer
are found, they can be propagated backwards through the network - hence backpropagation.

Subsequently, some gradient method is needed to update the parameters based on the calculated
gradients. A gradient method is simply an optimization algorithm that minimizes some function
f(x) by using its gradient for search direction - gradient descent. Many existing algorithms are
applicable for training a neural network, the differences are mostly how they balance convergence
speed versus robustness. The single most important parameter for the optimizer is the learning
rate - the step size taken for each parameter update.

Batch gradient descent updates the parameters based on the cost for the entire data set. This can
be time-consuming, which resulted in an improved algorithm; Stochastic gradient descent (SGD).
SGD does parameter updates for each training example, drastically reducing convergence time. On
the other hand, the frequent parameter update based on a small part of the training data causes
large fluctuations in the loss. Overshooting and oscillations is also a common problem with SGD.
The challenges with both approaches are tuning the learning rate, and that the same learning rate
is applied to all parameters, which is often not optimal.

Momentum is a method that takes on some of the challenges with SGD. Inspired by physics and
potential energy, the loss functions are viewed as terrain with tops and valleys. The steeper the
terrain, the faster the parameter update - not unlike a ball rolling down a hill. The algorithm
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considers previous gradients and has a term limiting the size of the parameter change - effectively
working the same way as air resistance. This limits the overshoot and decreases oscillations by
better directional guidance.

In later years algorithms have been published that take care of the difficult choice of learning
rate, as well as using adapted learning rates for each parameter. They still need hyperparameter
consideration but are more forgiving towards imprecise tuning. Adagrad, published by Duchi et al.
(2011), is an example of such. If a feature occurs often, the associated parameters are given a
lower learning rate than if the features occur more seldom. A potential challenge is decreasing
learning rates as the model train, leading to diminishing learning rates and stagnation. As opposed
to Adagrad, RMSprop only consider a moving average of limited past gradients, avoiding the
diminishing learning rates. Adam, an algorithm inspired by both Momentum and RMSprop, is
considered to be one of the best gradient descent optimization algorithms in general - fast and
good performance on most function surfaces. It uses adapted learning rates as RMSprops, but
unlike Momentum, the "ball" has friction against the surface.

6.4.3 Overfitting

When fitting a neural network to an underlying function, the most common cause of poor perfor-
mance is overfitting the training data. Overfitting is when the model learns the training data too
well, and lose the ability to generalize towards new, unseen data. The model learns the irrelevant
details and noise in the training data, not present in the test data. The end goal in supervised
learning is not to learn the outputs of the training data, but to learn the underlying function based
on an incomplete sampling.

Figure 16: Development of training error versus test error during training of a neural network.
Initially the error is large on both data sets. As the model parameters are adjusted the error
decreases until the error on the test set start increasing. From that point on further fitting to the
training data is at the cost of the models ability to generalize (Saxena (2020))

Using what is called a validation set often provides a good indication of when the model is at best
fit. A subsample of the training set is set aside, often around 10-20 %. The model is trained on the
remaining cases and tested on the validation set after each epoch. After the model is fully trained,
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the the training set’s loss can be plotted against the loss of the validation set for each epoch of the
training, see figure 17.

Figure 17: Plot of training and validation loss for overfit model (Wang (2018)).

The validation set can be the same for the entire training, or one can do x-fold cross-validation -
splitting the training set into x parts. The model is trained x times for each epoch, each time on
a new combination of x− 1 parts. The final part is used for validation. The validation loss for the
epoch is then the average validation loss for each of the x training iterations.

Figure 18: 10 fold cross validation (Niu et al. (2018))

Dropout is another technique to avoid overfitting. It was first published in Hinton et al. (2012),
introducing ... a regularization method that approximates training a large number of neural net-
works with different architectures in parallel (Browlee (2018)). Dropout ignores a certain number
of outputs from a layer. Which outputs being ignored changes probabilistically for each iteration.
This introduces noise to the model, preventing overfit. Since different nodes are active each time
information is passed forward through a layer with dropout, several nodes are forces to take re-
sponsibility for the same features - increasing robustness. The most important hyperparameter for
a dropout layer is the rate, setting the probability of each node being ignored - usually around .5.

A practical way to make sure the best model, meaning the architecture and the parameters, is
kept is using validation-based early stopping. Many models start overfitting after some number
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of epochs, hence the solution is to always save the model with the smallest validation loss. The
patience is often used as a hyperparameter indicating how many epochs the model is allowed to
train without seeing a reduction in validation loss, preventing a lot of time spent training a model
that has surpassed its best fit.
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7 Sea state estimation based on simulated IMU measurements

7.1 Data generation

For generating a large enough and realistic data set, the simulation model is run in DP operation
for 40 seconds in each sea state - with long-crested irregular sea. The data set is equally distributed
over the 12 wave directions. The choice of significant wave height and peak period is chosen first
by random choice of sea state, and further by a random choice of the two parameters from within
the domains defined by the sea state. 2000 simulations are run for each wave direction, resulting
in a data set consisting of 24000 cases. Each case contains linear acceleration in heave and angular
velocities in roll and pitch, from four different IMUs.

The specific have height is intuitively positively correlated with the accelerations, and negatively
correlated with the peak period. The exceptions are introduced when the peak period of the
waves is close to the natural period in either of the three degrees of freedom. In case of induced
resonance, the accelerations will diverge from the aforementioned pattern. The roll motions are
anti-symmetric about the x-axis, while the heave motions are symmetric. This is the main pattern
utilized in differentiating between port and starboard waves. Similarly, the relation between pitch
motion and heave motion and their temporal difference contains information for differentiating
between head and following sea.

7.2 Pre-processing

Initially, the measurements from the four IMUs are used to find the accelerations in CO, using the
derived equations in section 4.5.2. The data set is then split up into training set and test set, with
the latter consisting of 10 % of the original data set. From the training set, a validation set of 20%
is further extracted.
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Figure 19: 3 DOF acceleration data from different sea states in irregular sea

Since the wave directions are defined in sectors, and hence into 12 classes, one-hot encoding is
necessary for the CNN not to be biased towards any one class. One-hot encoding does binarization
on the wave direction label of each case. The result is that the wave direction is represented by 12
binary values, where only the n’th value is 1 in the case of sector n being the true wave direction.
The output layer of the wave direction model therefore need to have 12 nodes. The main reason
for one-hot encoding is that a data labeling according to the wave direction sector number, 1-12,
would result in bias towards higher sector numbers. In addition, the first sector is equally close to
sectors 2 and 12, however the difference in activation in the output node between sector 2 and 12
would be close to the difference between min and max activation. Illustration of the process seen
in table 4.
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Table 4: Illustration of one-hot encoding

case number case label
1 7
2 3
3 1
4 3
5 2

⇒

case label
case number 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 1 0 0
2 0 0 1 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0

7.3 Hyperparameter tuning

Any parameter that is initialized in the CNN before training, and hence can not be estimated
from the data, is a hyperparameter. The choice of each hyperparameter highly influences the
performance of the model, and needs to be carefully chosen. To determine which hyperparameters
bring out the best performance, the loss on the test set after 60 epochs are compared. Grid search
is a common approach where each combination of values for two or more hyperparameters is tested
and compared with regards to some external data set not used during training. Another important
factor is setting the random seed when splitting the data set into training and test set. When using
a set random seed, the same cases are chosen as test set when splitting the data set. Resulting in
all models being compared on the same test set.

Early stopping is naturally utilized to avoid overfitting. The optimizer has been chosen to be Adam
for all three models, due to its speed and adaptive learning rates. ReLU is chosen as activation
function in all hidden layers, for all three models. The reason is the simplicity of the function,
and therefore speed, while still being non-linear enough for the backpropagation algorithm. An
increased stride can decrease the training time, however the training time is acceptable with a
stride of 1. This ensures no features or patterns in the data are missed in the convolution layers.
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Figure 20: General architecture of the regression CNN models before grid search. The red
rectangles represent the filter/kernel, and the lines represent how one filter extraction is represented
in the next layer.

The following three models are organized in parallel.

7.3.1 Specific wave height model

The specific wave height model is a regression model with only positive outputs, so the ReLU
activation function is used in the output layer. Manual testing is performed for kernel size and
number of kernels in the convolution layers, as well as size of the pooling filters. A grid search is
then performed for the number of layers per convolution block, and number of such blocks in the
model, see figure 20. The static hyperparameters for each convolutional layer during the search are

• Number of filters/kernels: 254

• Size of filter/kernel: 10

• Stride: 1

Pooling layers are added after each convolution block, max-pooling with filter/kernel size 3 after all
except the last block, where the global average pooling layer is added. In addition there is a dropout
layer with rate at 0.5 before the output layer. With the aforementioned static hyperparameters,
the result of the grid search is seen in table 5.
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Table 5: Grid search results for different number of convolutional blocks and layers per block.

Layers per No. blocks Mean squared Mean percentage Standard deviation
block error error percentage

2 2 5.159×10−6 4.171 3.963
3 2 3.792×10−6 3.826 3.626
4 2 3.865×10−6 3.944 4.106
1 3 4.775×10−6 3.990 3.613
2 3 2.938×10−6 3.460 3.685
3 3 3.134×10−6 3.242 3.484
4 3 3.387×10−6 3.535 3.799
1 4 3.155×10−6 3.401 3.524
2 4 2.258×10−6 3.149 3.544
3 4 2.189×10−6 3.133 3.177
4 4 3.427×10−6 3.773 3.613
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Figure 21: Architecture of the wave height model after grid search. Three convolutional layers
per block and four blocks achieved the best accuracy.

7.3.2 Peak period model

The static hyperparameters for each convolutional layer during the search are

• Number of filters/kernels: 254

• Size of filter/kernel: 10

• Stride: 1

For finding the best number of layers in each convolution block, and the number of blocks, similar
grid search is performed to the peak period model. The architecture with five layers per block and
three blocks is chosen.
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Table 6: Grid search results for different number of convolutional blocks and layers per block.

Layers per No. blocks Mean squared Mean percentage Standard deviation
block error error percentage

1 2 0.03910 2.756 1.987
2 2 0.00771 1.145 0.886
3 2 0.01620 1.680 1.346
4 2 0.00392 0.877 0.657
1 3 0.00834 1.176 0.985
2 3 0.01377 1.564 1.199
3 3 0.00446 0.934 0.747
4 3 0.01014 1.412 1.002
1 4 0.00484 0.955 0.679
2 4 0.00434 0.875 0.686
3 4 0.00686 1.111 0.932
1 5 0.00618 1.052 0.787
2 5 0.00539 1.052 0.765
3 5 0.00391 0.896 0.693
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Figure 22: Architecture of the peak period model after grid search.

7.3.3 Wave direction model

The same base architecture is used for the wave direction model, however since it is a classification
model, the softmax activation function is used in the output layer. For finding the best number of
layers in each convolution block, and the number of blocks, the same grid search is performed. The
architecture with three layers per block and two blocks is chosen.
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Table 7: Grid search results for different number of convolutional blocks and layers per block.

Layers per block No. blocks Accuracy on test set
1 2 99.87%
2 2 99.92%
3 2 100%
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Figure 23: Architecture of the wave direction model after grid search.
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8 Instrumentation and experimental set-up

The Marine Cybernetics Laboratory contains a wave basin with advanced instrumentation package
and a towing carriage. The dimensions of the wave basin is 40× 6.45 m with a constant depth of
1.5 m, see figure 24. The lab has a fleet of model ships which are primarily used for experimental
testing of marine control systems and hydrodynamic testing. For more information see the Marine
Cybernetics Laboratory Handbook (2017).

Figure 24: Basin in MCLab (Udjus (2017))

8.1 CS Arctic Drillship

In 2016, John Bjørnø built a 1:90 model of the Cat I Arctic Drillship, a ship built by Inocean
for Equinor in 2013. The model was originally built for his research on thruster-assisted position
mooring. It is equipped with six azimuth thrusters, where the angles are controlled through a
servo motor, while the RPMs are set by a speed controller. The main dimensions of the vessel is
presented in table 8. The large size makes it desirable for mounting additional sensors.

The control system is ran on a National Instruments CompactRIO-9024 (cRIO), which is an em-
bedded real-time controller. It reads the Qualisys Track Manager (QTM) pose data, and sets the
low-level set points for the servo motors and the speed controllers. Any Simulink code compiled
to C-language can be exported to the cRIO. The playstation controller sends the user commands
via bluetooth to the Raspberry Pi, which further sends the signals to the cRIO via ethernet cable.
From figure 25 the two ways of vessel control is shown; laptop and playstation controller.
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Figure 25: Communication diagram Marine Cybernetics Laboratory Handbook (2017)

Description Data
Length over all (Loa) 2.578 [m]
Breadth (B) 0.440 [m]
Depth moulded (D) 0.211 [m]
Draft (T) 0.133 [m]

Table 8: Scaled data for the CSAD (Bjørnø (2016))

Figure 26: the CSAD, a 1:90 model ship of the Inocean Cat I Arctic Drillship (Bjørnø (2016))

8.2 Qualisys Motion Capture System

Qualisys Motion Capture System provides pose data of surface vessels for all 6 DOFs. The system
consist of three high speed infrared cameras set up along one of the short sides of the lab. The
cameras register the reflections of the four antennas, see figure 28. The Qualisys Track Manager
(QTM) software installed on one of the lab computers calculates and broadcasts the vessel pose
over the wireless network. The signal sampling is at 50Hz, and with millimeter precision. The
QTM is meant to emulate a full scale global navigation satellite system (GNSS).
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8.3 Wave generator

The lab is equipped with a wave generator that is 6 meter wide. An Active Wave Absorption
Control System is in place to minimize the reflections of the waves from the basin. Available
spectrums are first order Stoke, JONSWAP, Pierson-Moskowitz, Bretschneider, ISSC and ITTC.
Due to the single paddle, the generator is naturally limited to long-crested waves. The system has
the following capabilities

Significant wave height [m] Peak period [s]
Regular waves H < 0.25 0.3–3.0
Irregular waves Hs < 0.15 0.6–1.5

Table 9: The wave maker capabilities (Marine Cybernetics Laboratory Handbook (2017))

8.4 IMU

The four IMUs mounted on the vessel are of the type ADIS16364 by Analog Devices. Each IMU
contains a triaxis gyroscope and triaxis accelerometer, with built-in compensation for bias, align-
ment and sensitivity. Each of the four IMUs are connected to a microprocessor, of the type Arduino
Leonardo ETH, which enables sampling of the IMU data and communication through ethernet to
the cRIO. The data is sampled at a rate of 20 Hz. Synchronization of the sampling from the four
IMUs is handled by one master IMU sending an interrupt signal to the three others- initiating
sampling simultaneously.

Figure 27: The IMU and the Arduino Leonardo ETH microprocessor (Udjus (2017))

For full technical documentation of the IMUs see Analog Devices, and for more description of the
sampling, processing, and communication of the signal see Udjus (2017).
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8.5 Set-up, data generation, and pre-processing

The DP control system was implemented and tested using a human-in-the-loop (HIL) procedure,
however not tuned for the actual vessel. The HIL procedure was performed using the same hardware
as installed on the vessel, but with a simulation model installed on the cRIO, generating updated
positional data based on low-level actuator commands.

Generation of the data from the CSAD in actual DP operation in the basin was initially planned.
However, due to the pandemic and closing of the lab, the data from what was originally intended
to be an initial test of the sensors had to be used. The set-up in lab is seen in figure 28, where the
CSAD is loosely strapped for limited movement in the horizontal plane. This set-up enables motion
data generation for a single wave direction with only small displacements in vessel heading. Several
different combinations of wave height, frequency, and direction for long-crested regular waves were
used in the experiment, however, only some of the motion data is applicable in this thesis due to
the choice of sea state domains, described in table 3.

Figure 28: CSAD in the basin, strapped for wave direction data

The IMU sensor configuration is visualized in figure 29, and each IMUs pose and location in {b}
is presented in table 10. For obvious reasons, measuring the precise location of the IMUs was
difficult, likely introducing measurement errors. The measurements from the accelerometer had to
be rotated in order for positive directions to be according to the right hand rule. In addition the
measurements were scaled from mg to m/s2. Subsequently, all IMU measurements were rotated
to align with {b} using the rotation matrix described in section 4.1.3 and the pose of the IMUs
in table 10. Low-pass filtering was applied to the measurements, and the bias removed using the
mean measurement values. The angular accelerations were derived from the filtered gyroscope
measurements before IMU sensor fusion was performed.
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Figure 29: The set up of the four IMUs on CSAD

IMU no. x [mm] y [mm] z [mm]
1 -244 184 82
2 -950 -130 0
3 740 130 82
4 450 -160 82

IMU no. ϕ [deg] θ [deg] ψ [deg]
1 180 0 0
2 180 -17.5 6.5
3 180 0 180
4 180 0 180

Table 10: Location and pose of each IMU in {b}
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9 Results and discussion

The model architectures found after hyper-parameter search and testing are used, described in
section 7. The estimation results from the models trained on data from simulation in long-crested
irregular sea, under the assumption of perfect measurement, is presented in the first subsection.
Subsequently the models are trained and tested on unfiltered noisy data, as a robustness test.
Lastly the models are trained on data from simulation in long-crested regular sea. The data is
downsampled to 20 Hz, since that is the sampling frequency of the IMUs in lab. Experimental data
from lab is used as verification set, ensuring sufficient generalization of the models. The models are
then fed the experimental acceleration data set from lab, and the estimation results are presented.

9.1 Long crested irregular waves

9.1.1 Perfect measurements
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(a) Plotted loss over number of epochs.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
true

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

es
tim

at
ed

Linear Regression
Linear regression
y = 0.9718*x +0.001
data

(b) Linear regression plot for estimated over true Hs

Figure 30: Result Hs model. Best validation loss registered after episode 54.

The model loss during training is seen in figure 30a, converging around epoch 60. Figure 30b
shows the scatter plot of estimated versus true Hs, and a linear regression is performed giving an
indication of the estimation accuracy. The following numerical results were achieved

• MSE: 2.189× 10−6m2

• Mean error: 3.133%

• Standard deviation error: 3.177%

The results are very satisfactory in comparison to Arneson et al. (2019), discussed in section 2.4,
where a data-driven approach is also tested for sea state estimation. The data in the paper is also
generated from simulations in long-crested irregular waves using a single-peaked spectrum, based
on very similar sea state domains. The paper presents an average significant wave height estimation
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error of 0.7 m, or roughly 10%. The result is also satisfactory in comparison to Brodtkorb et al.
(2018b), discussed in section 2.3, where an average significant wave height estimation error of 5.79%
with a standard deviation of 3.78% is reported.

In figure 31 the peak frequency is plotted against wave direction for the cases that the Hs model
estimated with the largest error. The cases with an estimation error of more than the mean
percentage error (3.133%) is shown. They are distributed relatively even over the wave directions,
however it indicates that higher peak frequency, or lower peak period, makes it harder to estimate
significant wave height.
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Figure 31: Characteristics of worst estimated cases

Peak wave period/frequency

0 10 20 30 40 50 60
Epoch

10 2

10 1

100

101

Lo
g 

Lo
ss

Model loss
Train
Validation

(a) Plotted loss over number of epochs.

es
ti
m
at
ed
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Figure 32: Result Tp model after grid search for finding optimal number of layers per block and
number of blocks. Best validation loss registered after episode 56.

The model loss during training is seen in figure 32a. Figure 32b shows the scatter plot of esti-
mated versus true peak frequency, and a linear regression is performed giving an indication of the
estimation accuracy. The following numerical results were achieved,
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• MSE: 0.00391(rad/s)2

• Mean error: 0.896%

• Standard deviation error: 0.693%

These results are also very satisfactory compared to Arneson et al. (2019) and Brodtkorb et al.
(2018b). The prior presents an average peak period error of 1.5s, translating to approximately 12%,
while the latter presents an average peak period error of 7.59%.

In figure 33 the significant wave height is plotted against wave direction for the cases that the
Tp model estimated with the largest error. The cases with an estimation error of more than the
mean percentage error (0.896%) is shown. They are distributed relatively even over the wave
directions, however it indicates that higher significant wave height makes it harder to estimate
peak period/frequency.
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Figure 33: Hs plotted agains wave direction for the worst estimated cases by the Tp model. Worst
cases defined as the cases with an estimation error of more than mean percentage error (0.896)

Wave direction

The train and validation loss is plotted over number of epochs of training the wave direction model
in figure 34, while the confusion matrix is seen in figure 35. The model achieve 100% accuracy
on the test set. Even though each sector is as much as 30◦, the often mentioned problems of
distinguishing between head and tail sea, or port and starboard sea seems non-existent.
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Figure 34: Plotted loss over number of epochs for wave direction model

Figure 35: Confusion matrix for estimated wave direction sector

9.1.2 Measurements with unfiltered noise and bias

Following are the results from the models trained and tested on unfiltered IMU measurements with
noise and bias based on the parameters:

• Gyro StD = [0.0026, 0.0027, 0.0025] π180

• Accelerometer StD = [0.001887, 0.0005518, 0.0008167]
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Figure 36: 3 DOF noisy acceleration data from different sea states in irregular sea
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(b) Linear regression plot for estimated over true Hs

Figure 37: Result Hs model. Best validation loss registered after episode 43.

The linear regression plot in figure 37b shows very similar results as for the data generated under
the assumption of perfect measurement. This demonstrates the filtering capability, and robustness,
of the convolutional neural networks. Figure 38 also supports the indication that higher peak
frequency, or lower peak period, makes it harder to estimate significant wave height. The numerical
results for the specific wave height estimation were

• MSE: 3.6307× 10−6m2

• Mean error: 3.8142%

• Standard deviation error: 3.6405%
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Figure 38: Peak frequency plotted agains wave direction for the worst estimated cases by the Hs

model. Worst cases defined as the cases with an estimation error of more than mean percentage
error (3.814)
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Figure 39: Result Tp model. Best validation loss registered after episode 40.

Also for the Tp model, the results are equally good for the noisy data set, further substantiating
the filtering capabilities of the CNNs. The numerical results achieved were

• MSE: 0.00361(rad/s)2

• Mean error: 0.848%

• Standard deviation error: 0.709%
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Figure 40: Hs plotted agains wave direction for the worst estimated cases by the Tp model. Worst
cases defined as the cases with an estimation error of more than mean percentage error (0.848)

Wave direction

The train and validation loss is plotted over number of epochs of training the wave direction model
in figure 41, while the confusion matrix is seen in figure 42. The model achieve 100% accuracy on
the test set.
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Figure 41: Plotted loss over number of epochs for wave direction model

Figure 42: Confusion matrix for estimated wave direction sector

9.2 Long crested regular waves

The models are trained on IMU data, under the assumption of perfect measurement, from simula-
tion in long-crested regular waves. They are subsequently tested on processed measurements from
lab, see section 8.5.



9.2 Long crested regular waves 74

Wave height

0 10 20 30 40 50 60
Epoch

20

30

40

50

M
ea

n 
ab

s p
er

ce
nt

ag
e 

er
ro

r [
%

]

Model precision
Train
Validation

(a) Mean absolute percentage error over number of
epochs trained

0 10 20 30 40 50 60
Epoch

10 4

10 3

Lo
g 

lo
ss

Model loss
Train
Validation

(b) Model loss over number of epochs trained

Figure 43: Model performance over number of epochs trained.

Figure 43a shows the mean absolute percentage error over number of epochs trained for the training
and validation set. The percentage error relatively early starts oscillating around 20%, and the final
model achieve approximately 16%. This is a good result considering the discrepancies between
modeled and actual motion of the vessel. The wave height estimation is probably sensitive to
modeling inaccuracies, since the value of the max accelerations are presumably weighted heavily
during estimation. The results achieved were

• MSE: 4.7318× 10−4m2

• Mean error: 16.5379%

• Standard deviation error: 11.6194%

estimated

Figure 44: Estimated wave height for experimental data
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Figure 45: Result wave period model trained on simulation data, with experimental data as
validation set.

Figure 45a shows the mean absolute percentage error over number of epochs trained for the training
and validation set. The percentage error relatively early starts oscillating around 10%, and the
final model achieve approximately 5%. This is a satisfying result in comparison to the model-based
approach of Brodtkorb et al. (2018b), which also tests on real data from DP vessel operation. As
mentioned, the paper presents a mean error of 7.59%. The results achieved were

• MSE: 0.10987(rad/s)2

• Mean error: 5.076%

• Standard deviation error: 6.175%
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Figure 46: Estimated wave frequency for experimental data
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Figure 47: Accuracy estimated wave direction for experimental data

The estimation results for wave direction, seen in figure 48, are not very good. It can be partly
explained by the sensitivity to modeling inaccuracies. The model is mostly able to distinguish
between head and tail sea, but the fine details in the motion that distinguishes between the degrees
of head/starboard sea is clearly not modeled accurately.

estimated

Figure 48: Estimated wave direction for experimental data

9.3 General discussion

The data-driven sea state estimation models using convolutional neural networks perform very
well for long-crested irregular waves, and achieves results that are similar or better than other
published model-based and data-driven approaches. The results show that the models have no
problem with estimating the higher sea states, which has introduced problems for other sea state
estimation approaches. The common problem of differentiating between head and tail sea also
seems non-existent. The results for the noisy measurements show the robustness of the models. It
is an end-to-end approach, not sensitive to human interventioned pre-processing, nor dependent on
hand-crafted features. The results on the experimental data are also relatively good, considering
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the simplification and inaccuracies in the simulation model.

Another advantage for these models is their effectiveness, using only 40 seconds of response mea-
surements for the estimations in irregular sea. In comparison, the approach in Brodtkorb et al.
(2018b) uses 10 minutes. For regular sea, the models use only 10 seconds of response measurements.
This makes the models applicable for online sea state estimation. The approach can also be used
for initial estimates for other better tested approaches.

One reason for great results for irregular sea is potentially that the sea is modeled with five waves
in the spectrum, see section 4.6, and only for long-crested sea. Another limiting factor is that
the sea states tested are moderate to high sea. The capabilities of the models for very small and
extreme sea states are hence not known. This is, however, to the author’s knowledge, still a similar
approach as the other mentioned papers.

A noticeable and important characteristic of all the loss plots from the training of the models for
irregular sea data is that the validation loss is lower than the training loss. This is something to
be careful with since it can be a sign of data leakage, bad sampling, or the validation set being too
small. Data leakage is when parts of the training data are present in the validation data - indicating
artificially good generalization of the model. The loss achieved on the test set is, however, for all
models, at the same level as the best validation loss. This substantiates that the validation set is
in fact a good representation of the test set. The reason for the lower validation loss can therefore
be explained by two factors. Firstly the regularization caused by the dropout layer is only applied
to the training data, not during validation and testing. As explained in section 6.4.3, the dropout
layer ignores the contribution of half the nodes, resulting in less precision. The last factor is that
the training loss is calculated during an epoch, and based on all the batches, while the validation
loss is calculated after each epoch. The validation loss is therefore based, on average, on half an
epoch more of training.
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10 Conclusion

The simulation model was successfully implemented, with the ability to generate realistic IMU
measurements from the DP vessel in long-crested regular and irregular sea. Pre-processing tech-
niques were applied to the measurements, enabling the generation of labeled data set consisting of
estimated vessel accelerations in center of control.

A computationally effective data-driven sea state estimation approach for DP vessels was presented.
The convolutional networks require very little pre-processing and no hand-engineered feature ex-
traction. For long-crested irregular sea the method produced good results, with a mean significant
wave height error of 3.133%, a mean peak period error of 0.896%, and 100% accuracy in classifying
the relative wave direction within the right 30◦ sector. Very similar results were accomplished on
the raw, noisy acceleration data, demonstrating the robustness of the model.

Four IMUs were installed on the C/S Arctic Drillship in MC-lab, and tested for the vessel in
long-crested regular sea. The results indicated the feasibility of a sea state estimator trained on
simulated data, however reflecting the discrepancies between modeled and real vessel dynamics.

The dilemma is that a data-driven approach is desirable as it does not require knowledge about the
vessel characteristics, however, it relies on a large amount of collected sensor data from operation.
It has proven hard to collect the amount and broad distribution of data needed to train a sufficiently
robust model. The alternative is, as attempted in this thesis, to train the model on simulated data.
This takes us back to the original problem, where the simulation model has to capture all the
real-life dynamics of the vessel as well as waves, which again requires precise knowledge about the
vessel characteristics.

This thesis was, however, not meant to solve the aforementioned problem. The objective was rather
to demonstrate that, given IMU measurement data from a DP vessel in a sufficient number of
different sea states, a data-driven approach using CNNs for sea state estimation is computationally
effective, robust, and accurate.

11 Further work

Suggestions for further work are

• Test whether a recurrent neural network, or a hybrid model with a convolutional neural
network, could improve the sea state estimation capabilities.

• Extend the approach to also consider forward speed of the vessel, perhaps by using the speed
and heading/coarse angle as additional input to the neural networks.

• Test the approach for short-crested waves.

• Test the approach for simulation data generated from other wave spectrums, like Jonswap
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and Torsethaugen. Perhaps also with other more complex wave spectrum parameters.

• Use the estimated relative wave direction as input to a heading controller for optimal heading
control.

• Tune the controller and collect more data in lab from the vessel in actual DP mode.
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