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Summary

Theoretical and numerical studies are carried out for a multi-torus concept with elastic bands, which is
designed to be the floating foundation of a solar island. Available theory on truss and floater-modelling
have been adjusted, further developed and combined in order to develop a numerical model for multi-
torus structures. The result is what we call a solar island model, which can be summarized as an elastic
truss model accounting for floater motion. An implicit-explicit Euler time-scheme is used. The model
can in theory be applied to for all kinds of combinations of number of tori, elastic band connections,
number of trusses per elastic band and mooring-configurations for a multi-torus.

The numerical model is implemented in MATLAB, and verification studies are carried out for a single
torus, with and without mooring-lines. Vertical modes, surge and radial modes are first studied
separately. Tme-step studies are performed. Resulting vertical mode RAOs show good accordance
with zero-frequency theory. For radial modes, it is found that modes divisible by four should be
excluded, while the rest of the modes are in accordance with theoretical RAOs. The results in the
surge-study are also satisfying. A combined motion case with heave, surge and radial mode 2 activated
is also tested for three wave frequencies and shows promising results.

Theory for hydrodynamic interaction is implemented in MATLAB, and verification studies on cross-
coupled added mass terms are in good accordance with previously results in WAMIT.

Numerical resulting RAOs from a 2-torus and 5-torus model with one truss per elastic band are
compared with theory. Deviations from theory will indicate structural interactions via the trusses
between the tori. A minor effect is seen for vertical modes, more for radial modes, while the largest
effect is seen for surge motion. For the 5-torus case, the RAO shape in surge is drastically changed
with new, common peaks at kR ' 4.9 for all tori. This is believed to be due to a numerical problem,
or an unwanted effect of how the elastic bands are modelled. It is found that there seems to be an
instability in tension-development. Though this tendency may be linked to the strange observations
in surge, it is not believed to have destroyed the rest of the presented RAOs.

An important goal is to study whether irregularities in previously obtained experimental RAOs for a
5-torus model are due to structural interactions via the elastic bands between tori. Such irregularities
are not at all seen in the numerical results. However, recent inspections of the rubber bands used in
the experimental model show that they do not following Hooke’s law, which is assumed for the trusses
in the numerical model. This of course weakens the potential of the numerical model to represent the
experimental model.

The experimental irregularities cannot be explained directly from the results from the implementation
of hydrodynamic interaction theory either. Nevertheless, deviations from theory due to what should be
structural interactions are seen in the numerical results, and large impact is also seen for vertical modes
in the hydrodynamic interaction study. These are interesting results in themselves, and indicate that
both structural and hydrodynamic interaction between tori may affect the behaviour of a multi-torus.
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Sammendrag

Teoretiske og numeriske studier er gjennomført for en flytende konstruksjon bestående av sirkulære
flytere koblet sammen med elastiske bånd, en såkalt multiflyter. Stukturen er designet for å være et
flytende fundament for en soløy. Eksisterende teori vedrørende fagverk-modellering såvel som flyter-
modellering er blitt justert, videreutviklet og kombinert for å utvikle en numerisk modell for mul-
tiflytere. Resultatet er det vi har valgt å kalle en soløymodell, som enkelt forklart er en elastisk
fagverksmodell som inkluderer flyterbevegelse. Et implisitt-eksplisitt Euler tidsskjema er brukt. Mod-
ellen kan i teorien bli anvendt for alle slags kombinasjoner av antall flytere, elastiske bånd mellom hver
flyter og fagverkselement per elastiske bånd, såvel som ulike fortøyningsoppsett.

Den numeriske modellen implementeres i MATLAB, og verifikasjonsstudier gjennomføres for en enkel
flyter, med og uten fortøyning. Vertikale moder, jaging og radielle moder studeres først separat, og
sensitivitet til tiddsteg underøkes. For vertikale moder er det god overensstemmelse med null-frekvens
teori. For radielle moder blir det funnet at moder som er delelig på fire må ekskluderes, mens resten
av dem er i overenstemmelse med teori. Resultatene i jaging er også tilfredsstillende. En versjon hvor
både hiv, jaging og radiell mode 2 er aktivert blir også testet, og gir tilfredsstillende resultat i de tre
bølgefrekvensene som testes.

Teori for hydrodynamisk interaksjon blir implementert i MATLAB, og resultatene fra et verifikasjon-
sstudie på kryss-ledd for tilleggsmasse viser god overenstemmelse med tidligere reultat som er estimert
i WAMIT.

Resulterende numeriske RAOer for 2-flyter og 5-flyter modeller med ett fagverkselement per elastiske
bånd blir sammenlignet med teori. Avvik fra teoretiske RAO vil være en indikasjon på strukturelle
interaksjoner mellom flytere, via fagverkselementene. Noe effekt er observert for vertikale moder, enda
mer for radielle, men det er i jaging at den mest drastiske effekten er observert. For 5-flytermodellen
endres selve formen på RAOen, og det oppstår en felles topp for alle flytere i kR ' 4.9. Dette
tror man må komme av et numerisk problem, eller en uønsket effekt av hvordan man har modellert
fagverkselementene. En ustabilitet er funnet i enkelte tidsserier for strekk i fagverkselementene. Dette
kan muligens være koblet til de uventede reultatene for jaging, men man tror ikke det har ødelagt
resten av de presenterte RAOene.

Et viktig mål er å studere om irregulariteter i eksperimentelle RAOer fra to tidligere tester med en 5-
flyter modell kan skyldes strukturelle interaksjoner mellom flyterne. Slike irregulariteter er ikke funnet
igjen i de numeriske resultatene. Det må nevnes at det ved nylige inspeksjoner av de elastiske båndene
i den eksperimentelle modellen ble funnet at disse ikke følger Hookes lov, som er antatt i den numeriske
modellen. Dette svekker selve grunnlaget for å bruke den numeriske modellen til å representere den
eksperimentelle.

De eksperimentelle irregularitetene kan heller ikke direkte forklares ut fra resultatene fra implementer-
ing av den hydrodynamiske interaksjonsteorien i MATLAB. Det må likevel belyses at det er funnet
avvik fra teoretiske RAOer på grunn av det som må være strukturelle interaksjoner i de numeriske
resultatene, og også store avvik fra teori i RAOer fra hydrodynamisk interaksjonsteori. Dette er interes-
sante resultater i seg selv, og indikerer at både strukturelle og hydrodynamiske interaksjoner potensielt
kan påvirke bevegelsen til en multiflyter.
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Nomenclature

Abbreviations

ft Floater truss

RAO Response Amplitude Operator

ZFT Zero-frequency theory

Greek Letters

β Angle used for angular position on floater [rad]. (See Figure 2.5)

λ Wave length [m]

ω Circular wave frequency [rad/s]

φ Velocity potential, in general

φF Far-field velocity potential

φN Near-field velocity potential

ξ Damping ratio [%]

ζ Wave profile [m]

ζa Wave amplitude [m]

Roman Symbols

2p Spacing between tori [m]

i [1, 0, 0]

j [0, 1, 0]

k [0, 0, 1]

r [cos(β), sin(β), 0]

sft Unit vector of floater truss, defined from node i to j

sk Unit vector of truss k, defined from node i to j

η1 Surge motion [m]

η2 Sway motion [m]

ρ Density of seawater, ρ = 1025 [kg/m3]

an(t) Mode amplitude for vertical mode n [m]

A11 Added mass in x-direction [kg]

an33 Two-dimensional added mass for vertical floater mode n [kg/m]

arr Added mass per unit length of the floater for radial motion [kg/m]

viii



NOMENCLATURE ix

At,j,n Vertical added mass on torus t due to mode n motion of torus j [kg/m]

at,j,n Two-dimensional vertical added mass on torus t due to mode n motion of torus j [kg/m]

b Cross-sectional water plane area of torus per unit length [m]

bn(t) Mode amplitude for radial mode n [m]

c Cross-sectional radius of floater [m]

C11 Mooring stiffness term [N/m]

EI Torus bending stiffness [N/m]

F addedmass1 Added mass force in x-direction [N ]

F exc1 Wave excitation force in x-direction [N ]

F truss1 Truss force force in x-direction [N ]

faddedmassr Radial added mass force per unit length of the floater [N/m]

fexc,genr Generalized radial wave excitation force per unit length of the floater [N/m]

fexcr Radial wave excitation force per unit length of the floater [N/m]

f trussr Radial truss force per unit length of the floater [N/m]

g Gravitational Constant, g = 9.81 [m/s2]

Jn Bessel function of the first kind.]

k Wave number, k = 2π/λ [rad/m]

km Mooring-line stiffness [N/m]

m Torus mass per unit length [kg/m]

R Center-line curve radius of torus [m]

T Wave period, T = 2π/ω [s]

Tk Tension in truss k [N ]

v(β, t) Radial motion of floater [m]

w(β, t) Vertical motion of floater [m]



Chapter 1

Introduction

The energy demand of the world is increasing. IEA (2017) presents an assessment by the U.S. Energy
Information Administration of the outlook for international energy markets through 2050, and predict
that the world energy consumption rises nearly 50% between 2018 and 2050. Among renewable energy
sources, electricity generation from wind and solar resources are believed to have the largest increase
towards 2050, reaching 6.7 trillion and 8.3 trillion kilowatt hours (kWh), respectively. Important
reasons are the cost-competitiveness of these technologies, as well the support from government policies
in many countries. By 2050, wind and solar are in fact predicted to account for over 70% of the total
renewables generation in the world.

At the same time as the need of energy increases, a drastic reduction in CO2 emissions from fossil fuel
burning is required to limit the extent of global warming. However, carbon-based liquid fuels will in
the foreseeable future continue to be important energy storage media.

1.1 Floating Solar Island Concept

With these problems in mind, scientists from Switzerland and Norway have joined forces and propose a
combination of largely existing technologies to use solar energy to recycle atmospheric CO2 into a liquid
fuel Patterson et al. (2019). The idea is that photo-voltaic cells, laid on clusters of marine floating
islands, will convert sunlight into electrical energy which powers the production of H2 and extraction
of CO2 from seawater. This process will then have zero net CO2 emissions, since the seawater and
the atmosphere are in CO2 equilibrium. Reacting the gases one obtains the energy carrier methanol,
which is then shipped to consumers.

Figure 1.1: Floating Solar island Concept illustration
Illustration of solar islands in a cluster, connected to a FPSO for production of solar fuel. Courtesy of Frode

Mo.

In the development of cheap and robust floating structures to carry the photov-volatic cells, scientists
at NTNU have been inspired by aquaculture structures. Floating elastic tori have been used to support

1
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fish cages, but are now presented as a plausible structural member of a solar island. Several co-centric
tori would support a net-like deck carrying the PIV-cells, as illustrated in Figure 1.1. Professor Trygve
Kristiansen is currently studying several aspects of the multi-torus design. This is the background for
the current study, which is supervised by the Professor.

Geographical locations suitable for the proposed solar islands are illustrated in Figure 1.2. Physical
conditions that must be met are average incident solar radiation > 175 W/m2, 100-year maximum
wave height < 7 m, water depth < 600 m, and absence of tropical hurricanes.

Arrays of solar islands moored together would occupy much less space than typical offshore wind parks
producing the same amount of energy, as illustrated in Figure 1.3. Here, the tori, marked as "floater
elements", are illustrated. The fact that the photo-voltaic cells are surrounded by water increases the
generated power, as the water reflects the sunlight. Lastly, it should be mentioned that the potential
of the structure is not only limited to methanol production offshore, it can also be position closer to
shore to supply cities with electricity through traditional cables, or work as stations for recharging
electrically driven ships.

Figure 1.2: Geographical locations fit for solar islands
Geographical locations fit for solar islands are marked by magneta. Taken from Patterson et al. (2019).

Figure 1.3: Floating solar island set-up
To the left, the proposed design of a multi-torus structure, where several co-centric tori supports a membrane
deck. In the middle, an array of solar islands. To the right, the area occupied by an array of solar islands
compared to the area occupied by four offshore wind turbines, producing approximately the same energy

amount. Taken from Kristiansen et al. (2017)



CHAPTER 1. INTRODUCTION 3

1.2 Literature Review

There are several studies on truss models and floating tori, especially on the semi-submerged single
slender torus. In this section, the main studies that lay the foundation for the current work will be
presented.

The study by Faltinsen (2011) concerns either a semi-submerged elastic cocentric torus or two closely
spaced ones. A slender-body theory is derived based on a rigid free-surface condition, using the limiting
case that the forcing frequency ω → 0. In order to account for 3D effects, an asymptotic matching
between a near-field and far-field description of the torus is used. This theory is also presented in
Faltinsen (2010), where current and wave loads on floating fish farms are studied.

Faltinsen and Li (2012) derive, by matched asymptotic expansions with a near-field and far-field
solution, a low-frequency slender-body theory for the vertical added mass, damping and wave excitation
loads on an elastic semi-submerged torus. It is found that 3D frequency-dependent hydrodynamic
interaction on the scale of the torus diameter is significant, and that hydroelasticity plays a major role.

Marichal (2003) develops an original numerical method to study the equilibrium characteristics of
a cod-end towed at constant speed. It consists of applying basic mechanical equations to a line of
netting twines, leading to a system of equations where the unknown tensions can be found. Implicit
and explicit Euler schemes are then used to find the new positions in time.

Kristiansen (2012) has modified the truss-model by Marichal (2003) to represent a net-cage of the
type used in fish farms, supported by floating collars. In the study, an expression for the acceleration
of a node on the floater is derived, based on Faltinsen (2011), so that this can be included in the
truss-model. Low-frequency theory is also implemented.

Faltinsen and Kristiansen (2015) investigate the mooring loads on an aquaculture net cage in current
and waves by use of dedicated model tests and numerical simulations. Here, the numerical model
presented by Kristiansen (2012) is used.

Patterson et al. (2019) present an elastic floating solar island concept for production of methanol fuel
offshore. The solar island structure consists of several co-centric elastic tori supporting a membrane
type deck carrying photo-voltaic-cells.

Winsvold (2018) performs an experimental study into the governing behaviour and response of the solar
island concept proposed by Patterson et al. (2019). The experimental model consists of five co-centric,
elastic tori enclosing each other, connected by elastic bands. The elastic bands enable the structure to
move with the waves. Over-topping waves are identified as the main concern for the structure and solar
panels, threatening the integrity of both. Irregularities are seen in the resulting RAOs when compared
with theory.

Vassdokken Sigstad (2019) performs model tests with a modified version of the model used by Winsvold
(2018), where the elastic bands have been replaced by new, stiffer ones, and the mooring-lines have
been replaced by stiffer ones as well. Irregularities are also here seen in the resulting experimental
RAOs, compared to theory. The coupled truss and floater model by Kristiansen (2012) is implemented
in Python for a single, moored torus with vertical motion, but has an unresolved bug.
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1.3 Objective and Scope

This Master’s thesis investigates a solar island structure, consisting of multiple co-centric tori con-
nected by elastic bands, both theoretically and numerically, and by studying experimental results.
The structure will be referred to as a both a multi-torus and solar island throughout the thesis. A
single torus of the structure will also be called a single floater, being a floater element.

A theoretical model for the multi-torus will be derived, based mainly on the single floater model by
Faltinsen (2011) and the truss model by Marichal (2003). The result will be referred to as a solar island
model, a truss model accounting for floater motion. This should be a good contribution to existing
theory, which is mainly focused on single floaters. The model will be implemented in MATLAB, with
the aim of comparing the resulting RAOs with the experimental ones by Vassdokken Sigstad (2019)
and Winsvold (2018), in an attempt to study whether experimental irregularities are due to structural
interactions via the elastic bands between the tori.

Hydrodynamic interaction theory for the multi-torus structure, recently developed by Professor Trygve
Kristiansen, will also be implemented in MATLAB, with the aim of studying whether hydrodynamic
interactions may contribute to the irregularities in experimental RAOs.

The work is a continuation of a preliminary study performed during the fall of 2019. The main
objectives of this Master’s thesis can be summarized as:

1. Develop a theoretical model for the multi-torus solar island structure, accounting for structural
interactions between tori via truss-members and including both vertical and lateral modes, based
on existing single floater and truss model theory.

2. Implement the numerical solar island model in MATLAB and perform verification studies for a
single, moored floater case.

3. Obtain numerical RAOs for multi-torus cases and compare with single-floater theory as well as
experimentally obtained RAOs.

4. Present multi-torus hydrodynamic interaction theory, implement it in MATLAB, verify with
results from WAMIT, and compare resulting RAOs with single-floater theory as well as experi-
mentally obtained RAOs.

5. Discuss potential hydrodynamic and structural interaction effects on the multi-torus.
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1.4 Outline of Master’s Thesis

Chapter 2 presents relevant theory, such a truss model, regular wave theory, floater modes, zero-
frequency theory and single floater models for vertical and lateral motion. This is all leading up to the
presentation of the developed theoretical solar island model.

Chapter 3 presents hydrodynamic interaction theory, including derivation of cross-coupled added mass
terms, effects on the wave excitation force and RAOs including hydrodynamic interaction between tori.

Chapter 4 presents verification studies, both for the numerical solar island model and the hydrodynamic
interaction theory, which are implemented in MATLAB.

Chapter 5 presents the set-up for previously performed model tests on multi-torus structures.

Chapter 6 presents and discusses experimental results, results obtained by the numerical solar island
model as well as from hydrodynamic interaction theory.

Chapter 7 draws conclusions from the entire study and gives suggestions for further work and research
topics.



Chapter 2

Solar Island Model Theory

The intention of this chapter is to present the theoretical solar island model that has been derived
in this master thesis. The reader will be given some theoretical background related to the floater
and truss models that have been modified and combined in order to develop the solar island model.
Both mechanical vibrations, marine dynamics and hydrodynamics are highly relevant fields, and it is
assumed that the reader has basic knowledge within all of them. The theoretic solar island model will
be presented in full, and is in itself an important result from the work done in this thesis. The entire
theoretic work has been done while closely working together with Master student Øyvind Onestad
Olsen.

2.1 Truss Member

A truss is a long, slender structural member that only transmits axial force along the axis of its center-
line. It can only have tension, not compression, and does not transmit moments. In several previous
studies, truss members have been used to model the twines of aquaculture fish-nets, and in the present
study they will be used to model the elastic bands between the tori of a multi-torus solar island. See
Figure 2.1 for illustrations. Several trusses are needed in order to model one elastic in order for it to
obtain a slack configuration. A lumped-mass technique will be used, as will be presented in Section 2.2.

(a) Elastic bands in solar island (b) Fish-net twines

Figure 2.1: Solar island elastics and fish-net twines
a) Elastic bands connect the floaters of the experimental solar island model. This version of the model has a

membrane deck, and has been turned upside down in the photography. b) Fish-net twines.

The trusses follow Hooke’s law, which describes the experimentally observed linear relation between
stress and strain Dietmar. Gross et al. (2017). It’s validity is restricted by the proportionality limit,
which in elastic-plastic materials frequently coincides with the yield limit. Now, for an uniaxial stress
state as that of a truss, Hooke’s law is given by

6
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T = k∆l (2.1)

where ∆l = l − l0 is the difference between the original, non-tensioned length l0 and the tensioned
length l, k = EA/l0 the stiffness coefficient, E Youngs modulus and A the cross-sectional area of the
truss. Figure 2.2 illustrates the different parameters.

Figure 2.2: Truss with tension
T is the tension in the truss after it is stretched from its original, zero-tension length l0 to length l. A is the

original cross-sectional area of the truss.

2.2 Truss Model

In order to numerically model the mooring lines and elastic trusses between the floaters in the multi-
torus solar island, a truss model developed by Marichal (2003) is used. It was derived for a numerical
study of a cod end, but has since been used by Kristiansen (2012) to model the net panels in aquaculture
fish farms as trusses. In this section, the derivation of the model will be presented. Hydrodynamic
forces as applied to the net panels are not included, because the trusses of the solar island lie in the
ocean surface and the experimental mooring setup as well. The specific derivations presented are a
result of discussions with Professor Trygve Kristiansen, and are not found elsewhere in this form.

2.2.1 Truss System and Notations

A simple chain of trusses will be used to represent both elastics and mooring-lines in the solar island
model. Therefore, the theory will be presented for such a simple truss system. The chain consists of
of N trusses, all with nodes in both ends, meaning a total of n = N + 1 nodes. The mass is evenly
distributed along each truss, and the total mass is lumped into its nodes. This means that an end
node will include the mass halfway to its neighbouring node, while the ones in between will include
the mass halfway to both its neighbouring nodes.

Figure 2.3 illustrates the truss system, with notations that will be used further in this section. As seen,
both nodes and trusses are enumerated from left to right in this case. The important thing is that the
enumeration is consistent, it may as well be from right to left. Further, a single truss k has end-nodes
i and j. The unit vector sij from node i to node j is given by

sij =
xj − xi
lk

(2.2)

Here xi and xj are the (x, y, z) coordinates for node i and j, respectively, while lk is the length of the
truss. The 3D tension in node i due to truss k is given by sijTk, where Tk is the tension in the truss.
For node j it will be sjiTk, so that it is equal in value but opposite direction of that in node i.
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(a) Truss system

(b) Single truss

Figure 2.3: Truss notations
Truss notations. a) The truss system consists of N trusses divided by n nodes. b) A single truss number k,

with nodes i and j at its left and right end, respectively. The tensions acting on both nodes are illustrated. Tk
is the tension in truss k, while sij is the unit vector from node i to j. A consistent enumeration of both

trusses and nodes is needed.

2.2.2 Mechanical Equations

In this subsection, the mechanical equations used will be presented. The fundamental principle of
dynamics can be applied on a given node i as shown in Equation (2.3)

miẍi =
∑

Fi = mig +
∑
l

TilŜil (2.3)

Here mi is the mass of the node, ẍi its acceleration, Fi a force contribution acting on the node, g
the gravitational acceleration, sil the unit vector from node i to its neighboring node l and Til the
tension in the corresponding truss. In this standard case the gravitational force and tensions from
neighbouring trusses are the only external loads acting on a the node. However, if other forces were
present they should also be included. In the case where loads are distributed on the trusses, these are
lumped into the nodes which form the ends of the truss such that the sum of the loads are equally
distributed between them.

By Hooke’s law, earlier presented in Equation (2.1), the tension of an elastic truss at time instance n
can be estimated as

Tn = Tn−1 + k(∆l)n (2.4)

which by the approximation that (∆l)n = ln+1 − ln can be written

ln+1 = ln +
Tn − Tn−1

k
(2.5)

this can be simplified as (∆T )n = k(∆l)n, re-arranged and squared, giving

(ln+1)2

(ln)2
= 1 + 2

(∆l)n

ln
+

(
(∆l)n)

ln

)2

(2.6)

Assuming the change in length is small between time steps, the last term is neglected, resulting in
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(ln+1)2 = (ln)2 + 2ln(∆l)n (2.7)

Equation (2.7) represents the elastic length constraint. Now, Equation (2.3) and Equation (2.7) form a
system of N non-linear equations. This can be solved by using an Euler time-step method originating
from finite different schemes, which will be presented next.

2.2.3 Euler Schemes

With the velocity of the node being vi = ẋi, Equation (2.3) can be written as:

miv̇i =
∑

Fi (2.8)

Further, the acceleration and velocity can be expressed by Equation (2.9) and Equation (2.10), respec-
tively. Here, the notation n represents a given time instant and n+ 1 the next, which have a period of
time ∆t between them.

v̇i '
vn+1
i − vni

∆t
(2.9)

ẋi '
xn+1
i − xni

∆t
(2.10)

Now, inserting Equation (2.9) into Equation (2.8), one obtains

mi(v
n+1
i − vni ) ' ∆tF n

i (2.11)

where F n
i represents all the forces acting on node i at time instant n. Note that here velocities at

time instants n and n + 1 are used to describe the acceleration at time instant n, as an approxima-
tion. Rewriting Equation (2.10) so that terms of equal time instant are collected on each side gives
Equation (2.12), which is an explicit Euler scheme.

vn+1
i ' vni + ∆t

F n
i

mi
(2.12)

Now, with the approximation that the velocity at time instant n + 1 is given by positions at time
instances n and n + 1, Equation (2.10) can be re-written into Equation (2.13), which is an implicit
Euler scheme.

xn+1
i ' xni + ∆tvn+1

i (2.13)

Equations 2.12 and 2.13 now form a set of equations that can be solved as long as initial conditions
are known. The latter can be further written out as:

xn+1
i ' xni + ∆t(vni + ∆t

F n
i

mi
) (2.14)
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2.2.4 Deriving System of Equations

In this subsection, the derivation of a system of equations for finding the unknown tensions will be
presented. These are needed in Equation (2.12), and must be found for each time-step in order to
update the positions of the nodes.

We now study a truss k with end nodes i and j, as illustrated in Figure 2.3b. Expressing the length
at time n+ 1 by its node coordinates, the length constraint in Equation (2.7) can be written as

||xn+1
j − xn+1

i ||2 = (ln)2 + 2ln(∆l)n (2.15)

Now, the n+ 1 terms can be replaced by use of Equation (2.14). ani =
Fn
i
mi

is set for simplicity, and the
same for j-nodes. The resulting equation is then

||xnj − xni + ∆t(vnj − vni ) + ∆t2(anj − ani )||2 = (ln)2 + 2ln(∆l)n (2.16)

Next, the notations α = xnj−xni , β = ∆t(vnj −vni ) and γ = ∆t2(anj−ani ) are set so that Equation (2.16)
can be simplified as:

||α+ β + γ||2 = (ln)2 + 2ln(∆l)n (2.17)

Setting τ = β + γ, this can further be written as:

||α||2 + ||τ ||2 + 2α · τ = (ln)2 + 2ln(∆l)n (2.18)

As ||α||2 = (ln)2, this is again leads to:

||β||2 + ||γ||2 + 2β ·γ = 2ln(∆l)n − 2α · τ (2.19)

Writing this further out one obtains:

∆t2||vnj − vni ||2 + ∆t4||anj − ani ||2 + 2∆t3(vnj − vni )(anj − ani )

+2(xnj − xni )(∆t(vnj − vni ) + ∆t2(anj − ani ))− 2ln(∆l)n = 0
(2.20)

Now, Equation (2.20) can be simplified by neglecting the terms of O(∆t4) and O(∆t3), and setting
bn = ||vnj − vni ||2 and cn = vnj − vni . Further, by setting the truss unit vector sk = sij , the equation
finally becomes:

bn + 2lnsk · (
1

∆t
cn + (anj − ani ))− 1

∆t2
2ln(∆l)n ' 0 (2.21)

From Equation (2.4) we have that (∆l)n = (Tn − Tn−1)/k. The unknown tensions at time instance n
thus lie in this term as well as the acceleration terms. Re-arranging so that the unknown tensions are
on the left side, the equation becomes

sk · (anj − ani )− Tn

k∆t2
= − bn

2ln
− 1

∆t
cn · sk −

Tn−1

k∆t2
(2.22)

For the standard case of gravity and tension from neighbouring trusses being the only external loads
on node i, one has that
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ani =
F n
i

mi
=

1

mi

∑
l

Tilsil + g (2.23)

and correspondingly for node j.

Equation (2.22) applies to one specific truss k, so a total of N such equations represent the chain of
trusses. This forms a system of N equations that can be expressed in matrix form as illustrated in
Equation (2.24). This system can be solved for the unknown tensions at each time instance, and be
given as input to the Euler scheme in Equation (2.12). Given a set of initial and boundary conditions,
the motion of the trusses can thus be estimated in time.


A11 . . . A1N

. . − − −

. − . − −

. − − . −
AN1 − − ANN



T1
.
.
.
TN

 =


B1

.

.

.
BN

 (2.24)

2.3 Linear Wave Theory

Linear wave theory for propagating waves assumes a horizontal sea bottom and free-surface of infinite
horizontal extent Faltinsen (1993). It satisfies potential theory, which assumes that the sea water is
incompressible and inviscid, and the fluid motion irrotational. In linear theory the velocity potential
is proportional to the wave amplitude, which is valid when the characteristic wavelength and body
dimension are large relative to the wave amplitude. Its derivation uses the free-surface and sea bottom
conditions together with the Laplace equation. Derivations will not be shown here, but Faltinsen
(1993) gives a thorough presentation.

Some important results from linear wave theory at infinite water depth will next be presented. Regular
waves with wave amplitude ζa and circular frequency ω propagating along the x-axis are considered.
First one has the velocity potential φ given by

φ =
gζa
ω

exp(kz + ikx− iωt) (2.25)

where g is the acceleration of gravity, k the wave number, i2 = −1, z the vertical coordinate, positive
upwards with z = 0 being the mean water level and t a time variable. The wave period T = 2π/ω,
the wave length λ = 2π/k and wave height H = 2ζa. As seen, complex quantities are used and it is
understood that the physical meaning lies in the real part of the expression.

Next, the connection between wave number and circular frequency, known as the dispersion relation,
is given by

ω2 = kg (2.26)

Figure 2.4 illustrates a linear wave and some of the parameters mentioned.
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Figure 2.4: Linear wave illustration
Linear wave with wave amplitude ζa, wave height H and wave length λ. The free surface, wave crest and wave

through are marked.

2.4 Floater Modes

The solar island consists of several co-centric floaters. When describing a single floaters motion in
waves, modal superposition is very convenient. The fact that the natural modes are orthogonal makes
mathematical simplifications possible, as will be seen in later sections.

Before we present the natural modes of the floater, an introduction to the floater coordinate system
is necessary. It is illustrated in Figure 2.5, which shows a top view of a floater with center-line
curve radius R. The angular coordinate β is connected to the Cartesian coordinate system by x, y =
R cos(β), R sin(β).

Figure 2.5: Floater Coordinate System
Top view of a floater with radius R. The z-axis is out of the paper-plane. The angular coordinate β is

connected to the Cartesian coordinate system by x, y = R cos(β), R sin(β).

2.4.1 Vertical Floater Modes

The vertical motion w(β, t) of the floater is given as the Fourier series in Equation (2.27), where an(t)
and cos(nβ) are modal amplitude and shape for mode n, respectively Li (2017). This representation
works for waves propagating in the positive x-direction, which gives symmetric response about the
x-axis.
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w(β, t) =

∞∑
n=0

an(t) cos(nβ) (2.27)

Figure 2.6 shows the four first vertical floater modes. Mode n = 0 corresponds to heave, n = 1 to
pitch, n = 2 to the first flexible mode, n = 3 to the second flexible, and so on.

Figure 2.6: Vertical floater modes
Mode n = 0 corresponds to heave, n = 1 to pitch, n = 2 to the first flexible mode and n = 3 to the second

flexible.

2.4.2 Lateral Floater Modes

The radial displacement v(β, t) of the floater is expressed by Equation (2.28), where bn(t) and cos(nβ)
are modal amplitude and shape for mode n, respectively Faltinsen (2010). Mode 0 has here been
excluded because one requires that there can be no uniform contraction or expansion of the floater.
Mode 1 represents rigid-body surge, and is treated separately, while the rest of the modes are purely
elastic. Figure 2.7 illustrates the first two natural lateral modes.

v(β, t) =
∞∑
n=2

bn(t) cos(nβ) (2.28)

Figure 2.7: Lateral floater modes
Top view of the floater. Mode 1 corresponds to surge, while mode 2 is the first flexible mode.

2.5 Zero-Frequency Theory for a Semi-submerged Torus

Zero-frequency theory (ZFT) was developed by Faltinsen (2011) for an elastic semi-submerged torus,
with the aim of describing the wave effects on it, thus being able to estimate its motion in waves. The
general assumptions and principles of the theory will be briefly introduced in this section.
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2.5.1 General Assumptions

The theory is based on the following assumptions:

• The torus is semi-submerged.

• The surrounding water has infinite depth and horizontal extent.

• Potential flow theory of incompressible water is valid.

• The wavelength λ is long compared to the torus cross-section 2c, i.e. λ� 2c . This indicates that
long-wave theory is valid and that wave radiation and scattering from the floater is negligible.

• The torus cross-section is small relative to the circular center-line curve radius R of the torus, i.e
c� R. Thus, slender-body theory is appropriate.

• Hydrodynamic loads on the torus are linear.

• Current loads are negligible.

The limiting case that the forcing frequency ω → 0 is studied. In this limit, pressure disturbances
are progressed infinitely fast and in phase everywhere in the water. The free surface is not disturbed,
which means that a rigid free-surface condition can be used. Because linear free-surface theory is partly
assumed, a sea state can be described as a superposition of regular waves.

2.5.2 Asymptotic Matching of Far-field and Near-field Solutions

Matched asymptotic expansion is used in the derivations, and it involves defining a far-field and near-
field solution for the torus that are matched. The far-field and near-field descriptions are illustrated
in Figure 2.8a and Figure 2.8b, respectively.

(a) Far-field view. (b) Near-field view.

Figure 2.8: Near and far-field views of torus
To the left: far-field view of a torus. To the right: cross-section of the torus, with coordinate system and
boundary conditions for the near-field solution of the velocity potential associated with forced vertical

oscillations of Fourier component n. Slightly modified from Faltinsen (2011).

For the far-field view, both a Cartesian coordinate system (x, y, z) and a cylindrical coordinate system
(a, β, z) are defined, with the mean free surface at z = 0 and z positive upwards from the sea surface.
The waves propagate in the positive x-direction. Further, the center-line of the torus is given by
coordinates (ξ, η, 0). The far-field description does not include cross-sectional details of the torus,
and the flow appears as a line distribution of sources with constant density along the center line. In
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accordance with the floater modes presented in Section 2.4, the vertical vibration velocity of the floater
can be expressed as

∑∞
n=0 ȧn(t) cos(nβ).

The cross-sectional details are seen in the near-field view. Both a local Cartesian coordinate system
(O, y′, z′) and polar coordinate system (O, r′, θ) are defined. Now, the submerged semi-circle is forced
vertically with velocity ȧn cos(nθ), corresponding to vertical mode n. At the same time, the image
semi-circle about the free surface is moving with opposite sign to the submerged one. The consequence
of this is that the rigid free-surface condition is satisfied. The complete near field solution of the
velocity potential, φN is found by asymptotic matching with the far-field velocity potential, and is
presented in Equation (2.29). A constant in the near-field solution is determined by the matching, and
makes the solution unique.

φN = ȧn cos(nθ)

{
2c

π

[
ln(

8R

r
)−Kn

]
−
∞∑
m=1

c2m+1 3 cos(mπ) + cos(3mπ)

π2m(4m2 − 1)

cos(2mθ)

π2m(4m2 − 1)

}
(2.29)

The constant Kn is given by

Kn =
1

2
√

2

∫ 2π

0

1− cos(nx)√
1− cos(x)

dx (2.30)

2.5.3 ZFT Vertical Added Mass

Having found the near-field velocity potential for a given mode n, the added mass is easily obtained
through the vertical linear hydrodynamic force associated with each mode. The two-dimensional
vertical added mass for mode n is given by

an33 = 2ρc2


2

π

[
ln

(
8R

c

)
−Kn

]
+
∞∑
n=1

(3 cos(nπ) + cos(3nπ)) cos(nπ)

2πn(4n2 − 1)2︸ ︷︷ ︸
0.07238725793

 (2.31)

where ρ is the fluid density. The three-dimensional added mass is given by

An33 = 2πRan33 (2.32)

2.6 Vertical Floater Model from Curved Beam Equation

In the extension of his ZFT study of the semi-submerged elastic floater, Faltinsen (2010) applies a
curved beam equation as a basis to estimate its motions, both vertical and lateral. A modified version
including a bending stiffness term accounting for the curvature effect of the floater is later presented
by Li (2017). Further, Kristiansen (2012) demonstrates how both forces from the fish net and mooring
lines can be included as external truss forces on a fish-cage floater. That is, both mooring-lines and
the upper row of fish-net twines are modelled as truss members.

In this section, a single floater model for vertical motions, adapted to best represent a solar island
floater, will be presented. We will use the modified curved beam equation by Li (2017) and the same
principles of including truss forces as Kristiansen (2012). For our solar island structure, the trusses
connected to the floater will be elastic bands and horizontal mooring-lines, so that several forces
important for submerged members can be neglected. A lateral solar floater model is presented later in
Section 2.7, following the same principles.
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Figure Figure 2.9 illustrates a solar island floater with evenly spaced points of truss connections. Several
trusses may be attached to the same connection point.

Figure 2.9: Solar island floater
Top view of a floater with radius R and evenly spaced truss-connection points (marked in green). Each truss
connection point may have several trusses attached to it. The z-axis is out of the paper-plane. The angular

coordinate β is connected to the Cartesian coordinate system by x, y = R cos(β), R sin(β).

2.6.1 Vertical Curved Beam Equation

Li (2017) presents a generalized Euler-Bernoulli beam equation for prediction of the vertical motion
w of a semi-submerged elastic torus, accounting for both curvature and axial stiffness. The latter is
important when studying fish farm floaters due to drag on the submerged net-panels, but is neglected
for the solar-island torus. The equation then becomes

m
∂2w

∂t2
+ ρgbw + EI

∂4w

∂s4
+
EI

R2

∂2w

∂s2
= f3(s, t) (2.33)

where m is the floater mass per unit length, EI the bending stiffness, ρ the fluid density, g the
gravitational acceleration, b = 2c the cross-sectional water plane area per unit length, R the center-
line curve radius and ∂

∂s means differentiation along the center line of the torus. The latter is related
to the angular position β by ∂

∂s = R−1 ∂
∂β .

The equation is based on Newton’s second law. The first term from the left accounts for the acceleration
of the floater, the second for buoyancy and the third for bending stiffness. The fourth is an extra
bending stiffness term due to the curvature effect of the torus, which is needed together with the
previous in order to describe a rigid torus when EI →∞ . The right hand term is the the sum of the
vertical added mass, wave excitation and truss forces per unit length, f3 = faddedmass3 + fexc3 + f truss3 .
Potential truss forces will be from elastic bands towards other tori and mooring lines.

2.6.2 Vertical Modal Equation of Motion

As presented earlier in Equation (2.27), the vertical torus motion w(β, t) may be decomposed into
natural modes: w(β, t) =

∑∞
n=0 an(t) cos(nβ). By inserting this into Equation (2.33), multiplying the

new expression by cosmβ and integrating from β = 0 to 2π, one can take advantage of orthogonality
of cosines so that the expression simplifies. The result is the equation of motion for mode n amplitude
an(t),

(m+ an33)än +

(
ρgb+

EI

R4
(n4 − n2)

)
an = fex,gen3n +

1

αnπ

∫ 2π

0
f truss3 cos(nβ)dβ (2.34)
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where αn = 2 for n = 0 and 1 for n ≥ 1, fex,gen3n is the generalized wave excitation force and an33 is the
two-dimensional added mass for mode n. The latter is given in Equation (2.31).

2.6.3 Vertical Wave Excitation Load

The vertical wave excitation load per unit length is divided into a Froude-Kriloff part and a diffraction
part, given by Equations 2.35 and 2.36, respectively Faltinsen (2010). This is based on the velocity
potential from deep-water regular waves propagating along the x-axis, presented in Equation (2.25).

fFK3 = iρgζa

[
Jo(kR) +

∞∑
n=1

2inJn(kR) cos(nβ)

]
b exp(−iωt) (2.35)

fD3 = −iω2ζa

[
Jo(kR)a033 +

∞∑
n=1

2inJn(kR)an33 cos(nβ)

]
exp(−iωt) (2.36)

Here Jn(kR) are Bessel functions of the first kind, k the wave number, ω the wave frequency and
i2 = −1 . With this, it can be shown that the vertical wave excitation force becomes,

fexc3 = ζa exp(−iωt)
∞∑
n=0

(3− αn)inJn(kR) cos(nβ)(ρgb− ω2an33) (2.37)

and further the generalized vertical wave excitation force

fexc,gen3n = in+1(ρgb− ω2an33)ζa(3− αn)Jn(kR) exp(−iωt) (2.38)

2.6.4 Generalized Vertical Truss Force

The last term in Equation (2.34), the generalized truss force, depends on the specific configuration of
trusses that are attached to the floater, denoted floater trusses from now on. For a configuration where
truss-connection points are evenly distributed along the solar island floater, we may approximate the
integral as

∫ 2π

0
f truss3 cos(nβ)dβ ≈

Nft∑
ft=1

f truss3,ft cos(nβft)∆β

=
1

∆s

Nft∑
ft=1

γftTft(sft ·k) cos(nβft)∆β

=
1

R

Nft∑
ft=1

γftTft(sft ·k) cos(nβft)

(2.39)

where ft denotes a certain floater truss, Nft the total number of floater trusses, ∆β the angular
distance between the truss connection points, and f truss3,ft the vertical truss force per unit length of the
floater from truss ft along the stretch ∆s which it covers. Following the notations used in Section 2.2,
Tft and sft are the tension and unit vector of truss ft, respectively. As the unit vector is defined
from node i to node j of a truss, the constant γft must be included to assure correct direction for the
tension. It takes the value γft = 1 if the truss has node i on the floater, and γft = −1 if it has node
j on the floater. The tension is multiplied by k = [0, 0, 1] to get the vertical component of it. See
Figure 2.10 for an illustration of the approximation.
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Figure 2.10: Truss force per unit length
A top view illustration of a floater truss ft in a configuration where truss connection points are evenly spaced
with angular distance ∆β. Tft and sft are the tension and unit vector of the truss, respectively. γft = 1 if the
truss has node i on the floater, and γft = −1 if it has node j on the floater. This is to assure correct direction

of the tension. ∆s is the stretch along the floater covered by the specific truss.

Do note that this type of approximation works especially well for the case of a aquaculture floater due
to the dense configuration of top trusses, that is, Nft being large and thus ∆β being small.

2.7 Lateral Floater Model

In this section, a model for lateral floater motions will be presented. The same general steps used in
the derivation of the vertical floater model in Section 2.6 are applied, but an important difference is
that strip theory can be used to estimate the added mass terms. Also, the wave excitation force will
differ. The elastic radial motions are derived based on a radial version of the curved beam equation,
while surge is handled separately by a rigid body model. The solar island floater with evenly spaced
truss connection points is illustrated in Figure 2.9.

2.7.1 Radial Curved Beam Equation

The beam equation for radial floater motion v is given by

m∂2v

∂t2
+ EI

(
∂4v

∂s4
+

1

R

∂2v

s2

)
= faddedmassr + fexcr + f trussr (2.40)

wherem is the floater mass per unit length, EI the bending stiffness, R the center-line curve radius and
∂
∂s means differentiation along the center line of the torus. The latter is related to the angular position
β by ∂

∂s = R−1 ∂
∂β . Further, f

addedmass
r ,fexcr and f trussr are the radial added mass, wave excitation and

truss forces per unit length on the floater. Potential truss forces will be from elastic bands towards
other tori and mooring lines.

The curved beam model requires that the forces act laterally in the cross-sectional plane, and the
structural inertia force due to rigid body surge can therefore not be properly accounted for. This is
why surge motion will be modelled separately by a rigid body model, while the elastic radial modes of
the floater will be modelled based on the radial curved beam equation.
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2.7.2 Radial Modal Equation of Motion

As presented earlier in Equation (2.28), the radial displacement of the floater may be expressed by its
natural modes, v(β, t) =

∑∞
n=2 bn(t) cos(nβ). This is inserted into Equation (2.40). By multiplying the

new expression with cos(mβ) and integrating from 0 to 2π, orthogonality of the modes will simplify
the expression. The result is the equation of motion for mode n > 2 amplitude bn(t),

(m+ arr)b̈n +
EI

R4
(n4 − n2)bn =

1

π
fexc,genrn +

1

π

∫ 2π

0
f trussr cos(nβ)dβ (2.41)

where fexc,genrn is the generalized radial wave excitation force per unit length of the floater. arr is the
added mass for radial motion, given by

arr = ρ
π

2
c2 (2.42)

where c is the cross-sectional radius of the torus.

2.7.3 Radial Wave Excitation Load

The incident wave potential for deep-water regular waves propagating along the x-axis, presented
earlier in Equation (2.25), is considered. From this, the radial wave excitation force per unit length of
the floater can be expressed as

fexcr = 2arrω
2ζa exp(−iωt)

[
J0(kR) +

∞∑
n=1

2inJn(kR) cos(nβ)

]
cos(β) (2.43)

where Jn(kR) are Bessel functions of the first kind, k is the wave number, ω the wave frequency, ζa
the wave amplitude and i2 = −1 Faltinsen (2010). The generalized wave excitation force can from this
be expressed as

fexc,genrn = 2arrπω
2ζa exp(−iωt)in−1 [Jn−1(kR)− Jn+1(kR)] (2.44)

2.7.4 Generalized Radial Truss Force

The last term in Equation (2.41), the generalized radial truss force, is found by the same method as for
the vertical case presented in Section 2.6.4. The important difference is that we now want the radial
truss force contributions instead of the vertical ones. This is taken care of by use of the radial vector
r = [cos(β), sin(β), 0].

∫ 2π

0
f trussr cos(nβ)dβ ≈

Nft∑
ft=1

f trussr,ft cos(nβft)∆β

=
1

∆s

Nft∑
ft=1

γftTft(sft · r) cos(nβft)∆β

=
1

R

Nft∑
ft=1

γftTft(sft · r) cos(nβft)

(2.45)

See Section 2.6.4 for explanations of the different parameters, and Figure 2.10 for an illustration of the
approximation. Figure 2.11 shows how multiplying a floater truss unit vector sft with r will give the
its radial component.
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Figure 2.11: Radial component of truss unit vector
Top view of a floater truss with a node located with angle β on the floater. sft is its unit vector, while sftx
and sfty are its components in x and y-direction, respectively. sftt and sftr are its components in tangential

and radial direction, respectively. It is seen that sftr = sftx cos(β) + sfty sin(β).

2.7.5 Surge Motion from Rigid Body Model

The surge motion of the floater η1 is expressed by a rigid body model. We look to the presentation by
Kristiansen (2012), and modify the truss forces to fit our solar island floater. The equation of motion
is found from Newton’s second law and is given by

Mη̈1 = F exc1 + F addedmass1 + F truss1 (2.46)

where M is the total mass of the floater and F exc1 , F addedmass1 and F truss1 are the wave excitation,
added mass and truss forces respectively along the x-direction. The wave excitation force is once again
found from the incident velocity potential from regular deep-water waves propagating in the positive
x-direction,

F exc1 = 2A11ζaω
2 (J0(kR)− J2(kR)) exp(−iωt) (2.47)

where A11 is the three-dimensional added mass in x-direction. In surge, the radial motion along the
floater is η1 cos(β), and from this it can be shown that

A11 = πRarr (2.48)

Further, the added mass force is given by

F addedmass1 = −A11η̈1 (2.49)

The truss force is found by summation of the x-component of tension from all the floater trusses, as
shown in Equation (2.50). Here, i = [1, 0, 0]

F truss1 =

Nft∑
ft=1

γftTftsft · i (2.50)
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2.8 Solar Island Model - A Truss Model Including Floater Motion

In this section the final derivations leading to the theoretical solar island model will be presented. The
procedure is inspired by Kristiansen (2012), who includes the motion of a single elastic fish cage floater
by Faltinsen (2011) into the truss-model by Marichal (2003).

In our case, the main steps are using the vertical and lateral floater models to find the acceleration of
truss connection points on the floater, and then including it as a truss node acceleration in the truss
model. With this, the truss equation system includes floater motion and can be solved to find the total
motion of the system. The result is what we name a solar island model, which can be used to represent
the full multi-torus solar island. Structural interactions are accounted for through the elastic bands
between the tori. Mooring-lines may also be included.

We will first focus on a single floater node q, lying at a truss connection point. The position of the
node will be (xq, yq) = R(cosβq, sinβq). We will present the node acceleration from vertical and lateral
motions separately, and then finally how these are all included in the truss equation system.

Lastly, we have a look at the full solar island truss system. The different truss types that it consists of
will be presented, and how each of them are included in the truss equation system.

2.8.1 Node Acceleration from Vertical Floater Motion

The vertical node acceleration wq is the sum of all vertical modes, i.e.

ẅq =
∞∑
n=0

än cos(nβq) (2.51)

The mode acceleration än is found by simply re-arranging Equation (2.34), giving

än =
1

(m+ an33)

[
fex,gen3n +

1

αnπ

∫ 2π

0
f truss3 cos(nβ)dβ −

(
ρgb+

EI

R4
(n4 − n2)

)
an

]
(2.52)

Inserting this into Equation (2.51) one obtains

ẅq =
∞∑
n=0

{
cosnβq
m+ an33

[
fex,gen3n +

1

απ

∫ 2π

0
f truss3 cosnθdθ −

(
ρgb+

EI

R4
(n4 − n2)

)
an

]}
(2.53)

Here, θ is used for the truss integral just for a cleaner expression. By expressing the truss integral as
the sum in Equation (2.39), this can rather be written as

ẅq =
∞∑
n=0

{ cosnβq
αnπR(m+ an33)

Nft∑
ft=1

Tftγft(sft ·k) cosnθft

}
︸ ︷︷ ︸

ẅT
q

+

∞∑
n=0

{ cosnβq
m+ an33

[
fex,gen3n −

(
ρgb+

EI

R4
(n4 − n2)

)
an

]}
︸ ︷︷ ︸

ẅrest
q

(2.54)

The tension related part of the vertical acceleration is denoted ẅTq , while the the rest is denoted ẅrestq .
This can next be made three-dimensional by multiplying with k = [0, 0, 1].
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2.8.2 Node Acceleration from Surge Floater Motion

The acceleration in surge η̈1 is found directly by re-arranging Equation (2.46) and is given by

η̈1 =
1

M +A11
2A11ζaω

2 (J0(kR)− J2(kR)) exp(−iωt)︸ ︷︷ ︸
η̈rest1

+
1

M +A11

Nft∑
ft=1

γftTftsfti︸ ︷︷ ︸
η̈T1

(2.55)

where the tension related part is denoted η̈T1 and the rest is denoted η̈rest1 . This will then be the surge
acceleration for all floater nodes q. It is made three-dimensional by multiplying it with i = [1, 0, 0].

The potential acceleration in sway η̈2 due to surge motion is expressed by Equation (2.56) and is denoted
η̈T2 as it is a tension-related term. It is made three-dimensional by multiplying with j = [0, 1, 0].

η̈2 =
1

M +A11

Nft∑
ft=1

γftTftsftj︸ ︷︷ ︸
η̈T2

(2.56)

2.8.3 Node Acceleration from Radial Floater Motion

The radial node acceleration v̈q is expressed by its natural modes, and given by

v̈q =
∞∑
n=2

b̈n cos(nβ) (2.57)

The mode acceleration b̈n is found by simply re-arranging Equation (2.41), giving

b̈n =
1

m+ arr

(
1

π
fexc,genrn +

1

π

∫ 2π

0
f trussr cos(nβ)dβ − EI

R4

(
n4 − n2)bn

))
(2.58)

Inserting this into Equation (2.57) and expressing the truss integral by Equation (2.45), we next obtain

v̈q =
∞∑
n=2

cosnβ

m+ arr

1

πR

Nft∑
ft=1

γftTft(sft · r) cos(nβft)︸ ︷︷ ︸
v̈Tq

+
∞∑
n=2

cosnβ

m+ arr

(
1

π
fexc,genrn − EI

R4

(
n4 − n2

)
bn

)
︸ ︷︷ ︸

v̈restq

(2.59)

Here, the tension related part of the radial acceleration is denoted v̈Tq , while the rest is denoted
v̈restq . The radial acceleration can be made three-dimensional by multiplying it with the radial vector
r = [cosβ, sin(β), 0]. Do note that it has components in both x and y direction.

2.8.4 Adding Floater Motion to Truss Equations

We revisit Equation (2.22), which applies to each truss and forms the truss system of equations in the
truss model. The node accelerations ani and anj for truss nodes i and j respectively should here be
substituted by floater-node accelerations if they in fact lie on a floater.

For a floater node q, the acceleration is given by

aq = [aq1, aq2, aq3] (2.60)
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where aq1, aq2, aq3 are the acceleration components in x, y and z directions, respectively. From
Equation (2.54), Equation (2.55), Equation (2.56) and Equation (2.59) it is seen that these are in fact
given by

aq1 = η̈1 + v̈q cos(β), aq2 = η̈2 + v̈q sin(β), aq3 = ẅq (2.61)

so that the acceleration vector is given by

aq = η̈1i+ η̈2j + v̈qr + ẅqk (2.62)

This is the floater node acceleration that should be inserted into Equation (2.22). Doing so, we
collect the tension related parts on the left and the rest on the right. The results are as shown in
Equation (2.63) and Equation (2.64) for the case of the floater node being an i and j node, respectively.

sk ·
[
anj − (η̈T1 i+ η̈T2 j + v̈Tq r + ẅTq k)

]
− Tn

k∆t2
= − b

n

2lk
−sk

[
1

∆t
cn − (η̈rest1 i+ v̈restq r + ẅrestq k)

]
−T

n−1

k∆t2

(2.63)

sk ·
[
(η̈T1 i+ η̈T2 j + v̈Tq r + ẅTq k)− ani

]
− Tn

k∆t2
= − b

n

2lk
−sk

[
1

∆t
cn + (η̈rest1 i+ v̈restq r + ẅrestq k)

]
−T

n−1

k∆t2

(2.64)

With this, we have a system of equations for the solar island model which can be solved for the
unknown truss tensions at each time step. Inserting this in the Euler scheme, we obtain the entire
systems motion in regular waves.

2.8.5 Solar Island Truss System

The time is now ripe for an overview of the entire solar island truss system. Figure 2.12 shows a
case consisting of three floaters with eight elastic bands connecting each one to the next, these again
consisting of three individual trusses. Four mooring-lines connected to the outer torus are also included.
Do note that this case is just one of many possible configurations. The tori may have different structural
properties, such as cross-sectional and center-line curve diameter, mass per unit length and stiffness.

As seen in the figure, there are really three types of trusses and nodes that the system is built up by.
The node types are floater nodes, which lie on a floater, connecting nodes which do not and are free,
and lastly mooring nodes which are fixed. The truss types are floater trusses which have at least one
floater node, connecting trusses between connecting nodes, and lastly mooring trusses between floater
nodes and mooring nodes.
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Figure 2.12: Solar Island Truss System
A solar island represented by a truss system consisting of floater trusses and floater nodes, connecting trusses

and connecting nodes, and mooring trusses and mooring nodes.

Now, for each truss in the system, its end node types will decide what modifications are needed in
Equation (2.22) in order to include its node accelerations. When this is known, one can easily add the
truss into the matrix system to be solved in Equation (2.24). For a connecting node, its acceleration is
simply given by the sum of tensions and gravitational force acting on it, as presented in Equation (2.23).
For a floater node, it is based on the motion of the floater it is attached to and given by Equation (2.62).
Lastly, for a mooring node it is always zero. To summarize, the possible accelerations for the nodes of
a truss k in the solar island system are given by

aq = η̈1i+ v̈qr + ẅqk (2.65)
aci = Tksk − Tk−1sk−1 + g (2.66)
acj = Tk+1sk+1 − Tksk + g (2.67)
am = [0, 0, 0] (2.68)

Here, aci is connecting node i acceleration, acj is connecting node j acceleration, and am is mooring
node acceleration. For the connecting nodes, k − 1 denotes the neighbouring truss connected to node
i of truss k, while k + 1 denotes the neighbouring truss connected to node j of truss k.

The specific set-up of the A-matrix and B-vector of the truss matrix system in Equation (2.24) depends
on the specific solar island truss system and chosen indexing of the different nodes and trusses.

2.9 Response Amplitude Operators

In this section, the theoretical response amplitude operators (RAOs) for the different vertical and
lateral modes of a single floater will be presented. These are all based on the modal equation of
motions presented in Section 2.6 and Section 2.7.
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2.9.1 Vertical Mode RAOs

The general expression for the RAO of a vertical mode n is given by

RAOn =

∣∣∣∣an,aζa
∣∣∣∣ (2.69)

where an,a is the amplitude of the specific mode amplitude motion an(t). It is assumed that the mode
amplitude has a harmonic motion, so that

an(t) = an,a exp(−iωt) (2.70)

where ω is the circular wave frequency of the incident wave. This means that the mode acceleration
än(t) becomes

än(t) = −ω2an,a exp(−iωt) (2.71)

The mode amplitude and acceleration in Equation (2.70) and Equation (2.71) are next inserted into
the vertical modal equation of motion in Equation (2.34), neglecting truss forces. The exponential
terms can then be cancelled, and the equation re-arranged to give the RAO of the mode. The result is

∣∣∣∣an,aζa
∣∣∣∣ =

∣∣∣∣∣ (3− αn)(ρgb− ω2an33)i
n+1Jn(kR)

−ω2(m+ an33) + ρgb+ EI
R4 (n4 − n2)

∣∣∣∣∣ (2.72)

Here ρ is the fluid density, g the gravitational acceleration, b floater cross-section, a(n)33 the 2D added
mass of mode n, Jn(kR) Bessel functions of the first kind, k the wave number, m the mass per unit
length, E Young’s modulus, and I the area moment of inertia. αn = 2 for n = 0 and 1 for n > 0.

2.9.2 Surge RAO

For surge motion, the RAO is given by

RAO =

∣∣∣∣η1,aζa
∣∣∣∣ (2.73)

where η1,a is the amplitude of the surge motion. As in the previous section, it is assumed a harmonic
motion in surge, so that the surge motion η1(t) and acceleration η̈1(t) are given by

η1(t) = η1,a exp(−iωt), η̈1(t) = −ω2η1,a exp(−iωt) (2.74)

Inserting this into the surge equation of motion in Equation (2.46), neglecting truss forces, the expo-
nential terms can be cancelled and the equation re-arranged to give

∣∣∣∣η1,aζa
∣∣∣∣ =

∣∣∣∣2A11 (J0(kR)− J2(kR))

−(M +A11)

∣∣∣∣ (2.75)

where A11 is the added mass in x-direction. For the case of a moored single floater, the effect of the
mooring lines can be included in the RAO by use of a stiffness term presented by Faltinsen (1993).
This is given by

C11 =

Nmt∑
mt=1

kmtcos
2βmt (2.76)
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where the summation is over all mooring trusses mt, Nmt is the total number of mooring trusses
attached to the floater, kmt is truss stiffness, and βmt is the truss angle, defined earlier in Figure 2.5.
Including the mooring-lines in the RAO, the result becomes

∣∣∣∣η1,aζa
∣∣∣∣ =

∣∣∣∣2A11ω
2 (J0(kR)− J2(kR))

C11 − ω2(M +A11)

∣∣∣∣ (2.77)

2.9.3 Radial Mode RAOs

The general expression for the RAO of a radial mode n is given by

RAOn =

∣∣∣∣bn,aζa
∣∣∣∣ (2.78)

where bn,a is the amplitude of the specific mode amplitude motion bn(t). Once again it is assumed
that the mode amplitude has a harmonic motion, so that bn(t) and b̈n(t) are given by

bn(t) = bn,a exp(−iωt), b̈n(t) = −ω2bn,a exp(−iωt) (2.79)

The mode amplitude and acceleration are next inserted into the radial modal equation of motion in
Equation (2.41), neglecting truss forces. Cancelling the exponential terms, the equation is re-arranged
to give the RAO of the mode. The result is

∣∣∣∣bn,aζa
∣∣∣∣ =

∣∣∣∣∣2arrω2in−1[Jn−1(kR)− Jn+1(kR)]

−ω2(m+ arr) + EI
R4 (n4 − n2)

∣∣∣∣∣ (2.80)

where arr is the radial added mass per unit length.

2.10 Natural Frequencies

The natural frequencies of a floater in different modes are found by the same methods as for the RAOs,
that is, by assuming harmonic motion. Now, there are however no external forces. Equation (2.81)
gives the natural frequency in vertical modes, Equation (2.82) in surge, and Equation (2.83) in radial
modes.

ωn,vertical =

√
ρgb+ (n4 − n2)EI

R4

m+ an33
(2.81)

ωn,surge =

√
C11

M +A11
(2.82)

ωn,radial =

√
(n4 − n2)EI

R4

m+ arr
(2.83)

2.11 Rayleigh Damping

A Rayleigh type damping may be necessary in the numerical runs of the solar island model in order
to avoid unphysically large floater motions when waves coincide with the natural frequencies. This
means that there will be added a damping force in the modal equation of motions for each torus in
each mode. The damping term is defined as a fraction ξ of the critical damping in this mode. This is
then multiplied with the specific mode velocity to get the damping force.
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For vertical modes n, the damping force to be included on the right hand side in Equation (2.34) is
thus given by

f rayleighvertical = −2ξ(m+ an33)ωn,verticalȧn (2.84)

For surge motion, the damping force to be included on the right hand side in Equation (2.46) is given
by

f rayleighsurge = −2ξ(M +A11)ωn,surgeη̇1 (2.85)

For radial modes n, the damping force to be included on the right hand side in Equation (2.41) is given
by

f rayleighradial = −2ξ(m+ anrr)ωn,radialḃn (2.86)



Chapter 3

Hydrodynamic Interaction Theory

In this chapter, a method to include hydrodynamic interaction forces between the solar island tori
in the form of vertical added mass cross-terms will be presented. This theory was derived by Kris-
tiansen (2020) during the last few weeks of May 2020 and has therefore not yet been published. He
derives approximate formulas for cross-coupling added mass coefficients, and incorporates them in the
floater equations of motion. The derivation of the added mass cross-terms will be presented first,
then adjustments made in the wave excitation force, and lastly how to obtain RAOs with these terms
included.

3.1 Multi-torus Geometry

Figure 3.1 illustrates the multi-torus solar island structure, now with focus on the tori. It consists of
a number of T tori, equally spaced with distance 2p between their center-lines, connected by elastic
bands and with mooring-lines at the outer torus. The outer torus is given the index 1, while the inner
then becomes torus number T . Further, the global radius of a torus is 2Rt. As before, structural
properties such as mass per unit length, mt, cross-sectional diameter 2ct and bending stiffness EIt
may vary from torus to torus.

Figure 3.1: Multi-torus geometry
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3.2 Hydrodynamic Interaction in Floater Equations

The modified curved beam equation, presented earlier in Equation (2.34), is still used to model the
vertical motion w of a torus. The aim now, however, is to include hydrodynamic interaction forces on
the specific torus due to the presence of the other tori in the system. Including a hydrodynamic force
term, the equation becomes

mt
∂2w

∂t2
+ ρgbtw + EIt

∂4w

∂s4
+
EIt
R2

∂2w

∂s2
= faddedmasst + fexct + f trusst + fhydr,intt (3.1)

where faddedmasst , fexct , f trusst and fhydr,intt are vertical added mass, wave excitation, truss and hydro-
dynamic interaction forces per unit length on torus t, respectively. The previously used vertical index
3 has here been removed.

Following the procedure in Section 2.6, the vertical motion is decomposed into its natural modes and
inserted into Equation (3.1). Multiplying the new expression by cosmβ and integrating from β = 0
to 2π, one can take advantage of orthogonality so that the expression simplifies. The result is the
equation of motion for mode n amplitude at,n of torus t,

(mt+at,t,n)ät,n+

(
ρgb+

EI

R4
(n4 − n2)

)
at,n = fexc,gent,n +

1

αnπ

∫ 2π

0
f trusst cos(nβ)dβ+fhydr,int,gent,n (3.2)

where at,t,n is the added mass per unit length on torus t due to its mode n motion. The generalized
hydrodynamic interaction force, fhydr,int,gent,n , will be expressed by cross-coupling (off-diagonal) added
mass terms.

Now, picture a torus t in the structure moving. This will induce a pressure disturbance throughout the
water, and thus induce a pressure load on all the other tori. Since we consider the zero-frquency limit,
the induced load will be in phase with the motion of the moving torus. We remember from Section 2.5
that pressure disturbances are progressed infinitely fast and in phase everywhere in the water when
this limit is considered. The free surface is not disturbed. Further, because of orthogonality of the
modes, a motion of a torus in a given mode will only induce a load in the same mode on the other tori.
Looking at the case in Figure 3.1, this means that forced heave motion of torus 1 will induce added
mass forces in heave only on tori 2-5. No loads are induced in the other modes. This is very fortunate,
as the number of necessary cross-coupling added mass terms in the equation of motion reduces.

From the discussion above, the hydrodynamic interaction force can be expressed as the sum of added
mass forces on torus t from the other tori. Equation (3.2) is accordingly re-written, resulting in

mtät,n +

(
ρgb+

EI

R4
(n4 − n2)

)
at,n = fexc,gent,n +

1

αnπ

∫ 2π

0
f trusst cos(nβ)dβ −

T∑
j=1

at,j,näj,n (3.3)

Here, at,j,n is the added mass per unit length on torus t from mode n motion of torus j, and äj,n is the
mode n acceleration of torus j. As seen, the generalized added mass and hydrodynamic interaction
forces have been combined into a summation expression over all tori in the structure, from the outer
torus j = 1 to the inner j = T . In this sum, at,t,nät,n is the added mass force per unit length on the
torus t due to its own mode n motion, while for j 6= t the force is a cross-coupling added mass force.

3.3 Zero-frequency limit radiation problem

We consider the zero-frequency radiation problem in Figure 3.2, where torus j is heaving a distance
2p from its neighbouring torus t. The cross-sectional diameter is 2c for both tori.
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Figure 3.2: Zero-frequency radiation problem
The zero-frequency radiation problem of two neighbouring tori j and t, where torus j is heaving. The physical
domain is mirrored to the upper half-plane. The cross-sectional diameter of the tori is 2c, and the distance
center-to-center between the tori is 2p. The dashed line is the still free-surface at z = 0. Slightly modified

from Kristiansen (2020).

We assume that the presence of the other (fixed) tori does not significantly affect the diagonal added
mass term Aj,j,n as long as the spacing is above some value, say p/c > 2. The thought behind this
assumption is that the other tori represent small dipol-like obstacles, so that they will only disturb
the pressure distribution from the moving torus locally near themselves, and not close to the moving
torus. With this, the the ZFT added mass for a single torus presented in Equation (2.32) is still used
for the diagonal added mass terms.

Now over to the cross-coupled added mass terms. The moving torus j induces a source-like flow, it gives
a net mass flux in the combined physical/mirrored domain and thus induces pressure far from itself.
We therefore expect that it induces loads on the other tori. The mirrored problem is not given by a
single potential source, but its far-field behaviour is however given by a source. The reason is that the
non-constant normal velocity results in disturbances only very local to the torus, which are decaying
rapidly, while the (logarithmic) source term is not. The source-like far-field behavior is illustrated in
Figure 4. As seen, some distance away the flow is well represented by a source at the torus center,
while this is not the case near the torus.

Figure 3.3: Source-like far-field behaviour
Mirrored problem of a semi-submerged torus j heaving. As seen, the far-field behaviour is source like. Slightly

modified from Kristiansen (2020).

Now, since we can assume that the induced flow is only slightly affected by the presence of the other
tori, we use the far field solution of the moving torus j as incident flow on the fixed torus t. Further,
we assume that the induced ambient pressure is uniform over torus t. This is integrated to get the
Froude-Kriloff load. There is no vertical diffraction problem since the flow is nearly horizontal near
the surface.
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3.4 Cross-Term Added Mass from Far-Field Solution

To represent the induced pressure, either the outer expansion of the near field solution or the far-field
solution of the moving torus may be used. Kristiansen (2020) presents both methods, but only the
latter will be presented here.

The far-field velocity potential due to forced vertical mode n motion of torus j is given by

φFj (x, y, z, t) =
Q

4π

∫ 2π

0

cosnβ0
|x− x0|

Rjdβ0 (3.4)

where x0 = [x0, y0, z0] are the source points, located on the circular center axis of the torus. We take
z = z0, so that the vertical coordinate is at the free-surface, and transform into cylindrical coordinates
by the relations x = r cosβ, y = r sinβ. With this we get

φFj (r, β, 0, t) =
QRj
4π

∫ 2π

0

cosnβ0(
r2 + r20 − 2rr0 cos(β − β0)

)0.5dβ0 (3.5)

Now, evaluating this at r = Rt and R0 = Rj the resulting expression is

φFj (Rt, β, 0, t) =
QRj
4π

∫ 2π

0

cosnβ0(
R2
t +R2

j − 2RtRj cos(β − β0)
)0.5dβ0 (3.6)

Further, Q is determined by satisfying the body-boundary condition in the inner problem and is
presented by Faltinsen (2011) to be

Q = 4cȧj,n (3.7)

By the Bernoulli equation, the induced pressure by the torus j motion is given by

pj = −ρ
∂φFj (Rk, β, 0, t)

∂t
(3.8)

and the total load per unit length on torus t is then found by integrating the pressure over its cross-
sectional wetted area, resulting in

ft,j,n(β, t) = −äj,n
2

π
ρc2Rj

∫ 2π

0

cosnβ0(
R2
t +R2

j − 2RtRj cos(β − β0)
)0.5dβ0 (3.9)

where one has used that
∫ π/2
−π/2 cos θ′′dθ′′ = 2.

Looking back at Equation (3.1), the vertical hydrodynamic interaction force per unit length for torus
t may now be expressed as a sum of modal loads per unit length,

fhydr,intt =

∞∑
n=0

T∑
j=1

ft,j,n (3.10)

Now, the generalized hydrodynamic interaction force, fhydr,int,gent,n , is found by multiplying this force
with cos(mβ) and integrating from 0 to 2π, resulting in
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fhydr,int,gent,n =
1

αnπ

∫ 2π

0

T∑
j=1

ft,j,n cosnβdβ (3.11)

where α0 = 2 and αn = 1 for n ≥ 1. The summation term over modes has been cut due to the
fact that only the term where m = n will stand left because of orthogonality of cosine integrals. By
comparing with the generalized hydrodynamic interaction force term in Equation (3.3), it is seen that
the cross-term added mass (for j 6= t) is given by

at,j,n =
2

αnπ2
ρc2Rj

∫ 2π

0

∫ 2π

0

cosnβ0 cosnβ

(R2
t +R2

j − 2RtRj cos(β − β0))0.5
dβ0dβ (3.12)

3.5 Including Hydrodynamic Interaction in Wave Excitation Force

The wave excitation force will also have to be adjusted for hydrodynamic interaction between tori.
The Froude-Kriloff part is of course as for a single torus, and the part of the diffraction force due to
the diffraction by torus t itself is also as for a single torus. However, the diffraction force involves a
boundary layer problem with body velocity equal to minus the incident wave velocity, and there is
therefore a hydrodynamic interaction load due to the other tori, similar as in the radiation problem.

By satisfying the boundary condition on the center-axis of each torus and use of the far-field approach,
the generalized wave excitation force per unit length accounting for hydrodynamic interaction can be
expressed as

fexc,gent,n = ζa

2ρgcJn(kRt)− ω2
T∑
j=1

ak,j,nqnJn(kRj)

 in+1e−iωt (3.13)

This can then be used in the modal equation of motion, Equation (3.3).

3.6 RAOs accounting for Hydrodynamic Interactions

The modal equation of motion in Equation (3.3) can be used to obtain the floater-node accelerations to
be used in the numerical solar island presented in chapter 2. However, neglecting the trusses between
the tori, a much simpler solution method in the frequency domain can be applied to obtain vertical
mode RAOs. This will then not account for structural interactions between the tori, only hydrodynamic
ones. The method will be presented briefly in this section, using a 2-torus case as an example, as this
is sufficient to describe the procedure. The cross-sectional radius and mass per unit length are set to
be identical for the tori. The modal equations of motions are in this case

(m+ a1,1,n)ä1,n + a1,2,nä2,n +
EI1
R4

1

(n4 − n2)a1,n + ρg2ca1,n = fexc,gen1,n

(m+ a2,2,n)ä2,n + a2,1,nä1,n +
EI2
R4

2

(n4 − n2)a2,n + ρg2ca2,n = fexc,gen2,n

(3.14)

We further assume steady state conditions, i.e that at,n = ãt,ne
−iωt. With this, the set of equations

can be stated in matrix form as[
−ω2(m+ a1,1,n) + EI1

R4
1

(n4 − n2) + 2ρgc −ω2a1,2,n

−ω2(m+ a2,2,n) + EI2
R4

2
(n4 − n2) + 2ρgc −ω2a2,1,n

] [
ã1,n
ã2,n

]
=

[
f̃exc,gen1,n

f̃exc,gen2,n

]
(3.15)

where ˜ refers to motion or force amplitude. RAO-values for different ω can then be obtained by
|ãt,n/ζa|.
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3.7 Three-Dimensional Cross-Coupled Added Mass

In this section, the derivation of three-dimensional cross-coupled added mass will be presented.

The vertical load in mode m on torus t can be found by multiplying the vertical load per unit length
in Equation (3.9) by the mode shape cosmβ of torus t and integrating this over torus t. The result is
then that the vertical load in mode m of torus t due to a mode n motion of torus j is given by

Ft,j,m,n(β, t) = −äj,n
2

π
ρc2RjRt

∫ 2π

0

∫ 2π

0

cosnβ0(
R2
t +R2

j − 2RtRj cos(β − β0)
)0.5dβ0 cosmβdβ (3.16)

so that the cross-coupled added mass is accordingly given by

At,j,m,n(β, t) =
2

π
ρc2RjRt

∫ 2π

0

∫ 2π

0

cosnβ0(
R2
t +R2

j − 2RtRj cos(β − β0)
)0.5dβ0 cosmβdβ (3.17)

As discussed earlier, At,j,m,n = 0 for m 6= n, so the expression can rather be written

At,j,n(β, t) =
2

π
ρc2RjRt

∫ 2π

0

∫ 2π

0

cosnβ0 cosnβ(
R2
t +R2

j − 2RtRj cos(β − β0)
)0.5dβ0dβ (3.18)



Chapter 4

Verification Studies

In this chapter, verification studies for both the numerical solar island model and the hydrodynamic
interaction theory will be presented. For the numerical solar island, vertical modes, surge and radial
modes will first be studied separately for a single floater, with and without mooring-lines. Lastly, a
combined motion case where both heave, surge and the first flexible lateral mode are activated will be
studied. In the hydrodynamic interaction verification studies, cross-coupled added mass terms for a
5-torus case will be studied, and compared to previous results from WAMIT.

In the preliminary project thesis, verification studies on simple inelastic and elastic truss cases were per-
formed, and showed good results. The elastic verification cases are added in Appendix B. A flowchart
of the numerical solar island model is illustrated in Figure H.1.

4.1 Introduction to Single Floater Verification Studies

A simple, single floater geometry will be the basis for the verification studies on the numerical solar
island model. This is illustrated in Figure 4.1. fnode denotes floater-node, and as seen there are four
of them. For the tests including mooring-lines, these will be modelled by one truss each, with indexing
as seen in the figure. The floater-nodes are defined to be j nodes, so that the sft-vectors of the trusses
are pointing towards the floater.

Figure 4.1: Solar island configuration for verification studies
.
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Torus properties are constant throughout the studies, and set to be equal to the full scale values for
the experimental multi-torus model by Vassdokken Sigstad (2019). In the hope of using a pre-tension
value more fitting for a single moored floater, it is set equal to the full scale value used by Li (2017)
in his model tests on a single moored torus. The values are listed in Table 4.1. Further, descriptions
for varying parameter values that will be presented later for each study are listed in Table 4.2. The
ramping is included by simply multiplying the wave excitation force by t/(end − time) for all time-
instances t up until the defined end − ramp. Very long ramping-times are generally used throughout
the verification studies, which is done to absolutely assure stable runs. Of course this is quite extreme,
and makes the runs take much longer time than what is probably necessary. Quite large kR-ranges
are also tested for the RAOs, as it is interesting to see how the model works for a wide set of wave
frequencies, even though many of these will represent nonphysical waves.

Table 4.1: Constant parameter values in single floater verification studies

Description Parameter Value

Density of seawater ρ [kg/m3] 1025
Bending stiffness EI [Nm2] 2.65 · 108

Cross-sectional diameter of torus bw [m] 1.6
Radius of torus R [m] 25

Pre-tension in mooring-trusses Tpm [N ] 78125

Table 4.2: Varying parameter values in single floater verification studies

Description Parameter

Mooring-truss stiffness km [N/m]
Mooring-truss length lm [m]

Wave amplitude ζa [m]
Wave period Tw [s]
Time-step dt [s]

End of time-series end− time [s]
End of ramping of wave excitation force end− ramp [s]

Start of stable region of time-series stable− time [s]
Damping ratio, for Rayleigh damping ξ [%]

When reading through the verification studies on the numerical solar island model, some of the choices
made along the way may seem strange, such as varying ramping for the runs as well as not checking
the exact same time-steps in the time-step studies for the different modes. The reader should however
keep in mind that these verification studies are from a process stretching over several months. Vertical
motion, surge and radial modes for a single moored floater were implemented separately before they
were combined, and verification studies were carried out on each of them. Therefore, different aspects
were studied for each of them. The final verification of the numerical solar island model is far from
complete, but the studies so far show promising results, which is why one went on to expand to several
tori rather than keep working on verification studies.

4.2 Vertical Motion of Single Floater

In this section, the verification study of a single floater with vertical motion will be presented.

4.2.1 Including Ramping and Rayleigh Damping

The effect of including ramping of the wave excitation force as well as Rayleigh damping to avoid
excitation of the natural modes of the floater are studied. A realistic wave condition is tested. The
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parameter-values used in the runs are listed in Table 4.3, and mooring-lines are included. The mooring-
truss stiffness is set equal to that in the experimental model by Vassdokken Sigstad (2019).

Table 4.3: Parameter values - ramping and Rayleigh damping study

vertical modes ζa [m] Tω [s] km [N/m] lm [m] dt [s] end-time [s] ξ [%] end-ramp [s]

0 : 3 0.1 10 35.9 · 103 1000 0.001 40 ·Tw 3 10 ·Tw

Figure 4.2 shows the resulting tension time-series from different combinations of including ramping
and/or Rayleigh damping. Comparing Figure 4.2a and Figure 4.2b it is seen that including ramping
stabilizes the solution, natural frequencies are suppressed. Still we see some influence in tension,
especially for truss 1. From Figure 4.2a and Figure 4.2c it is seen that including Rayleigh damping
stabilizes the solution after some time, but at the very start the natural frequencies are excited, which
is still not preferable. In Figure 4.2d, both ramping and Rayleigh damping are included, and the
tension development is entirely stabilized. This is clearly the best option.

(a) No ramping or Rayleigh damping (b) Ramping but no Rayleigh damping

(c) Rayleigh damping but no ramping (d) Rayleigh damping and ramping

Figure 4.2: Including ramping and Rayleigh damping
Tension time-series are presented for the case of a floater with vertical modes 0− 3 activated, for all 4 of its
mooring-trusses. The difference in tension T from the initial pre-tension Tp is plotted. The effects of ramping
of the wave excitation force and Rayleigh damping of natural modes are shown from the different time-series.

Regarding the resulting tension-values, these are all reasonable. Truss 1 and 3 lie along the x-axis and
are thus most affected by the wave so that they get largest fluctuations in tension. Truss 2 and 4 lie
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along the y-axis and thus get less. Also, none of the truss-tensions go below pre-tension, as it should
be when there is only vertical motion activated for the floater.

We also find satisfying effect of including ramping and Rayleigh damping in FFT transform of the
signal, as seen in Figure 4.3. In this case, the FFT of the z-position of node 1 is taken. |P1| is the
single-sided amplitude spectrum of Z1(t) for node 1. Including ramping and Rayleigh damping, the
natural frequencies of the modes are no longer excited, and the only peak is at the wave frequency, as
it should be.

(a) No ramping or Rayleigh damping (b) Rayleigh damping and ramping

Figure 4.3: Effect on FFT from ramping and Rayleigh damping
Single-sided amplitude spectra |P1| of the z-position time-series z1(t) of node 1 are presented, for the case of
including ramping and Rayleigh damping and not. Natural frequencies for the single floater in the activated
vertical modes,ω0 − ω3 are marked by stippled lines, as well as the incident circular wave frequency ωwave.

Time-series for modal amplitudes, as well as z-position for the 4 floater-nodes are added in Ap-
pendix C.1. For the rest of the runs in the verification studies on a single floater, ramping and
Rayleigh damping is always included in order to assure stable runs.

4.2.2 Time-Step Study of Heave RAO

A time-step study of the single floater model RAO in heave is performed. The mooring-lines are
removed, so that the resulting RAO should follow the ZFT RAO in Equation (2.72). A set of 80 kR
values in the range 0.01 to 11 are run, the amount of points being denser near the value corresponding
to the natural frequency in heave, kRn. RAO values from each kR run are found by dividing the
single-sided spectrum peak of the heave modal amplitude time-series by the incoming wave amplitude
ζa. The Fourier transform is taken for a stable range of the time-series, from stable-time to end-time.
To find such a stable region, a wave condition at kRn is run to assure that it is stable even when
the incoming circular wave frequency coincides with the natural frequency in heave. A time-series
illustrating this is added in Appendix C.2.

Table 4.4 presents the parameter values used in the runs. The wave period Tω is of course set by
the specific kR number for a run. Do also notice that a constant wave amplitude ζa is used, so that
the tested waves do not have the same steepness. The largest will be H/λ = ζakR/(πR) ' 0.014 for
kR = 11.

Table 4.4: Parameter values - time step study for heave RAO

vertical modes ζa [m] dt [s] ξ [%] end-ramp [s] stable-time [s] end-time [s]

0 0.1 0.0005− 0.2 1 100 ·Tw 150 ·Tw 200 ·Tw
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We see from Figure 4.4 that the resulting RAOs are all seemingly identical to ZFT, except from close
to kRn. Here, they are damped due to the fact that Rayleigh damping is included. The damping
effect seems somewhat large considering the damping ratio is set to 1% only. We see that there is
increased damping for increased time-step. There seems to be a convergence for dt = 0.005 s, and for
this time-step the peak matches kRn perfectly. This time-step will therefore be used in the rest of the
vertical mode studies.

(a) Full kR range (b) Zoomed in around kRn

Figure 4.4: Time-step study of heave RAO
Numerical RAO’s in heave for a single floater using different time-steps ranging from dt = 0.2 to 0.0005 s are
shown. These are plotted against the corresponding theoretical ZFT RAO, and the theoretical kR value at

natural frequency in heave, kRn, is marked by a stippled line. Figure a) shows the full kR-range tested, while
figure b) is a zoomed in version showing the details around kRn. Rayleigh damping ξ = 1% is used in the

numerical runs.

4.2.3 Vertical Mode RAOs

In this subsection, resulting RAOs for vertical modes of a single floater without mooring-lines will be
presented, and compared to ZFT. Damping ratios of both 1,2 and 3% are tested. Parameter values
listed in Table 4.5 are used in the runs. Each run has only one mode activated, so that the vertical
modes are studied separately.

Table 4.5: Parameter values - vertical mode RAOs

ζa [m] dt [s] ξ [%] end-ramp [s] stable-time [s] end-time [s]

0.1 0.005 1, 2, 3 200 ·Tw 300 ·Tw 350 ·Tw

RAOs for heave. pitch and the 1st flexible mode are shown in Figure 4.5. Detailed plots of the area
near the kR corresponding to the natural frequency in the specific mode n, kRn are also included. As
seen, the numerical RAOs are seemingly identical to the ZFT RAOs, except for the area near kRn,
where they are damped. Increased damping lowers the peaks, as it should. Increased damping also
shifts the peaks to the left in heave, which is in accordance with simple harmonic oscillator theory,
the damped natural frequency being lower than the un-damped. One may notice that the numerical
results do not match perfectly with the kRn values for mode 2 and 3, even for Rayleigh damping of
1%. This difference is however quite low and all in all the results are seen as satisfactory.



CHAPTER 4. VERIFICATION STUDIES 39

(a) Heave RAO (b) Heave RAO -zoomed in around kRn

(c) Pith RAO (d) Pitch RAO - zoomed in around kRn

(e) 1st flexible RAO (f) 1st flexible RAO - zoomed in around kRn

Figure 4.5: RAOs for the 3 first vertical modes
Numerical RAO for a single floater without trusses, plotted against the corresponding theoretical ZFT RAO,
for both heave, pitch and first flexible vertical mode. The theoretical kR value at natural frequency in mode n,
kRn, is marked by a stippled line. Both the full kR-range tested and zoomed in version showing the details

around kRn are included for all modes. Rayleigh damping of ξ = 1, 2 and 3% are used in the numerical runs.

Figure 4.6 shows the resulting RAOs for the modes 3 − 6, from runs of 500 kR-values in the range
0.01 − 50. The natural frequencies in these modes correspond to such large kR-values that they are
not included in this range and are not of interest. For mode 3 we see some influence to the right in the
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plot, as this is close to kRn for this mode. For the rest of the modes, there is full accordance between
the numerical results and ZFT. Similar plots for modes 7 − 20 are added in Appendix C.3, and also
show good accordance with ZFT.

(a) mode 3 (b) mode 4

(c) mode 5 (d) mode 6

Figure 4.6: RAO’s for vertical modes 3 to 6
Numerical RAO’s for a single floater without trusses, plotted against the corresponding theoretical ZFT RAO,

for vertical modes 3− 6. Rayleigh damping of ξ = 1, 2 and 3% are used in the numerical runs.

All in all, the results from the vertical motion study of the single floater are satisfactory. Though
RAOs with mooring-lines are not run, we have seen from the time-series in Section 4.2.2 that there is
reasonable tension behaviour.

4.3 Surge Motion of Single Floater

In this section, the verification study of the single floater with surge motion will be presented.

4.3.1 Trusses vs Theoretical Mooring Stiffness Term

In this subsection, we compare results using trusses to model the mooring-lines of the floater versus
using the mooring-line stiffness expression in Equation (2.76) to include an additional stiffness force
−C11η1 in the equation of motion for surge, Equation (2.46). The latter option means that one can
just update the nodal acceleration directly from the modal equation of motion, as there is no need to
solve for unknown tension. However, we will still calculate the distance from the floater-nodes to the



CHAPTER 4. VERIFICATION STUDIES 41

mooring-nodes, so that we get the length of the "virtual" truss that is expressed through the stiffness
term. The parameter values used in the runs are listed in Table 4.6.

Table 4.6: Parameter values - trusses vs C11-term Test

ζa [m] km [N/m] lm [m] dt [s] ξ [%] end-ramp [s] end-time [s]

1 35.9 · 103 100 0.005 3 50 ·Tw 100 ·Tw

Figure 4.7 shows the resulting x-position of floater nodes by use of the numerical solar island model,
and by the mooring-stiffness term alternative. As seen, the methods give almost identical results. This
indicates that the trusses behave as they should in surge motion, they give the wanted influence on the
motion of the floater-nodes. We also notice that all floater-nodes have the same motion, as it should
be in surge motion as the whole floater moves as a rigid body.

(a) Floater node 1 x-position (b) Floater node 2 x-position

(c) Floater node 3 x-position (d) Floater node 4 x-position

Figure 4.7: Truss Forces vs Stiffness Term
Time-series for x-position of floater-nodes. X −Xp is the difference in x-position X from the position Xp in
the initial, pre-tensioned set-up. Each plot includes the resulting time-series from using truss forces (solar
island model), and replacing the truss-forces with an additional stiffness force in the equation of motion in

surge, −C11η1.

4.3.2 Time-step Study of Surge RAO

A time-step study of the surge RAO of the single, moored floater is conducted. A range of time-steps
are studied, from dt = 0.1 to 0.001 s. The kR-range is concentrated around the natural frequency for
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the floater in this mode, kRn ' 0.75. The parameter values used in the runs are are listed in Table 4.7.

Table 4.7: Parameter values - time step study of surge RAO

ζa [m] km [N/m] lm [m] dt [s] ξ [%] end-ramp [s] stable-time [s] end-time [s]

0.1 35.9 · 103 100 0.001− 0.1 1 150 ·Tw 200 ·Tw 250 ·Tw

Figure 4.8 shows the resulting RAOs for the different time-steps used, plotted against the theoretical
RAO. The latter is calculated form Equation (2.77). As seen, the RAOs are seemingly identical, exept
for in the area near kRn, where the numerical RAO is damped. We observe that the peak is somewhat
shifted to the right compared to the ZFT peak. This is quite a small difference, and we must also keep
in mind that the influence of the pre-tension is not included in the theoretical RAO. Further, as for
the heave RAO, increased time-step increases the damping of the peak. The results from time-steps
dt = 0.005 and dt = 0.001 are very close, and lower time-steps are not tested due to the long run-time.
A time-step of dt = 0.005 gave convergence for the heave RAO case, and from the surge RAO also
seems to be sufficient enough, just giving a somewhat smaller peak tan dt = 0.001 s. It will therefore
be used in the rest of the surge motion verification studies for the single, moored floater.

(a) Full kR range (b) Zoomed in around kRn

Figure 4.8: Time-step study of surge RAO
Numerical RAOs in surge for the single, moored floater using different time-steps ranging from dt = 0.1 to
0.001 s are shown. These are plotted against the theoretical RAO, and the theoretical kR-value at natural
frequency in surge, kRn, is marked by a stippled line. Figure a) shows the full kR-range, while figure b) is a

zoomed in version around kRn. Rayleigh damping ξ = 1% is used in the numerical runs.

4.3.3 RAOs in Surge

RAOs in surge for the single, moored floater are run for three different values of Rayleigh damping,
ξ = 1, 2 and 3%. The parameter-values used are listed in Table 4.8. The mooring-stiffness has been
lowered to get a more realistic natural period in surge of 30 s.

Table 4.8: Parameter values - time step study of surge RAO

ζa [m] km [N/m] lm [m] dt [s] ξ [%] end-ramp [s] stable-time [s] end-time [s]

0.1 35.9 · 103 100 0.005 1− 3 150 ·Tw 200 ·Tw 250 ·Tw

Figure 4.9 shows the resulting RAOs, plotted against the theoretical RAO in surge. First of all, the
peak value is decreasing with increased Rayleigh damping, as it should be. Secondly, we observe that
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the peak is somewhat shifted to the right, for all the three different damping values. This does not
represent a large mismatch in natural frequency, and we also keep in mind that the theoretical RAO
does not take into account the pre-tension of the mooring-lines. All in all, the implementation of surge
motion for a single moored floater is thought to be successful.

It should be mentioned that the natural frequency in surge is quite high with the applied mooring-
stiffness value for this single floater case, and is more appropriate for the multi-torus case. The effect
on the theoretical RAO when lowering the mooring-line stiffness is shown in Figure D.1b. When the
mooring-line stiffness decreases, the natural frequency decreases and the peak shifts to the left.

(a) Full kR range (b) Zoomed in around kRn

Figure 4.9: Damped RAOs in surge
Numerical RAOs in surge for a single, moored floater using different values for Rayleigh damping ξ, plotted
against theory, The theoretical kR value at natural frequency in surge, kRn, is marked by a stippled line.

Figure a) shows the full kR-range, while figure b) is a zoomed in version around kRn.

Figure 4.10: RAO in surge without mooring-lines
Numerical RAO in surge for a single floater without mooring-lines is plotted against the corresponding

theoretical RAO. No Rayeligh damping is used.

A RAO is also run for the case of no mooring-lines. The truss-forces are then turned off, and the node
accelerations found directly from the floater equations. Since there is no natural frequency in surge
for this case, the Rayleigh damping is set to 0. The result is shown in Figure 4.10, and the theoretical
RAO is also plotted. The latter is then calculated form Equation (2.77), but the mooring-stiffness
term C11 is set to zero. The numerical result is seen to be identical to the theoretical, indicating that
the floater equations (without truss-forces) are implemented correctly.
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4.4 Radial Motion of Single Floater

The verification study for the single floater with radial motion is presented in this section.

4.4.1 Time-step Study of First Flexible Lateral Mode RAO

A time-step study is performed for the first flexible lateral mode, radial mode 2, for the single floater
with no mooring-lines. The parameter-values used are listed in Table 4.9.

Table 4.9: Parameter values - time step study of 1st flexible lateral mode RAO

ζa [m] dt [s] ξ [%] end-ramp [s] stable-time [s] end-time [s]

0.1 0.1− 0.001 1 150 ·Tw 200 ·Tw 300 ·Tw

The resulting RAOs for the different time-steps are plotted together and against the theoretical RAO
for this mode. The latter is calculated by Equation (2.78). The result is seen in Figure 4.11. We
observe that to the left of kRn, increased time-step gives slightly increased damping, while to the right
it gives slightly increased damping. Furthermore, there seems to be a convergence at dt = 0.01 s, so a
time-step of dt = 0.005 s, which was found to be fitting for vertical modes and surge, is thought to be
a good choice for the radial modes as well, and will be used for the rest of the radial mode runs.

(a) Full kR range (b) Zoomed in around kRn

Figure 4.11: Time-step study of 1st flexible lateral mode RAO
Numerical RAOs in 1st flexible lateral mode, radial mode 2, for a single floater using different time-steps

ranging from dt = 0.1 to 0.001 s are shown. These are plotted against the corresponding theoretical RAO, and
the theoretical kR value at natural frequency, kRn, is marked by a stippled line. Figure a) shows the full
kR-range, while figure b) is a zoomed in version around kRn. Rayleigh damping ξ = 1% is used in the

numerical runs.

All radial modes above 2 have natural frequency corresponding to kRn larger than 50, which is not
a range of interest. It should however bee noted should one want to study the resulting RAOs also
in this area, the time-step must be significantly reduced in order to obtain a proper amount of points
during a wave period. As an example, a time-step of dt = 0.0005 s improves the RAO for mode 20
significantly compared to using dt = 0.005s. This is illustrated in Figure D.2.

4.4.2 Radial Mode RAOs

RAOs for radial modes in the range 2− 20 are next studied. Damped RAOs using damping ratios of
1 and 3% are obtained from runs in MATLAB for the single floater without mooring-lines, and also
RAOs for the case that the floater is moored, using damping ratio 1%. A kR-range of 0.01− 50 is run,
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consisting of 500 points for the moored case, and somewhat more for the floater-only case. Each mode
is studied separately, so there is only one mode activated in each run. The parameter-values used are
listed in Table 4.10.

Table 4.10: Parameter values - Radial RAOs

ζa [m] km [N/m] lm [m] dt [s] ξ [%] end-ramp [s] stable-time [s] end-time [s]

0.1 5325 100 0.005 1, 3 150 ·Tw 200 ·Tw 300 ·Tw

Figures 4.12a and 4.12b show the resulting RAO for radial mode 2 of the single floater without mooring-
lines, plotted against the theoretical RAO. Increased Rayleigh damping is seen to give increased damp-
ing, and there is generally good accordance with the theoretical RAO. Figures 4.12c and 4.12d show
the resulting RAO for the case with mooring-lines, plotted against the corresponding theoretical RAO
as well as the resulting RAO for the case without mooring-lines at the same damping level. We ob-
serve that some distance away from kRn, the RAO is unaffected by the mooring-lines, there is a good
match. Near the peak, however, we see a spike, a larger value for the case with mooring-lines. The
moored RAO values are even larger than the theoretical RAO for some kR-values. We keep in mind
that the theoretical RAO does not include stiffness or pre-tension effects from the mooring-lines. The
truss-forces in radial direction are quite large compared to in vertical direction, so such a deviance
from the theoretical RAO is not unreasonable.

RAO plots for radial modes 3 − 10, for the single floater without mooring-lines, are added in Ap-
pendix D.3. The natural kR value for these modes all lie above kR = 50, and for the studied range
the RAOs are practically identical to the theoretical RAO.
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(a) without mooring-lines, full kR range (b) without mooring-lines, zoomed in around kRn

(c) With vs. without mooring-lines, full kR range (d) With vs. without mooring-lines, zoomed in around
kRn

Figure 4.12: RAOs for the first flexible lateral mode
Figure a) shows the resulting RAOs for the 1st flexible lateral mode, radial mode 2, for the single floater

without mooring-lines, for Rayleigh damping values of 1 and 3%, plotted against the theoretical RAO. Figure
b) is the same plot, just zoomed in around kRn. Figure c) shows the resulting RAO for a single floater with

mooring-lines with Rayleigh damping of 1% applied. The corresponding RAO for the case without
mooring-lines is also plotted, as well as the theoretical RAO. Figure d) is the same plot as c), just zoomed in

around kRn.

Figure 4.13 shows the resulting RAOs with and without mooring-lines for radial modes 3− 8, plotted
against the corresponding theoretical RAO. Except for modes 4 and 8, both the moored and un-moored
case fit the theoretical RAO extremely well. For mode 4 and 8, the RAO without mooring-lines fits
the theoretical RAO, while the one with mooring-lines included lies at a much higher, constant value.
The results for modes 9 − 20 are added in Appendix D.4. Here, the same strange result is seen for
modes 12, 16 and 20. This will be studied more in detail in the next subsection.
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(a) Mode 3 (b) Mode 4

(c) Mode 5 (d) Mode 6

(e) Mode 7 (f) Mode 8

Figure 4.13: Radial mode 3-8 RAOs - with vs without mooring-lines
Resulting numerical RAOs for the single floater, run both with and without mooring-lines. A Rayleigh

damping value of 1% is used. The corresponding theoretical RAO is also plotted.
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4.4.3 Problem With Modes Divisible by Four

From the resulting RAOs, there is clearly a problem with radial modes 4, 8, 12, 16 and 20 for the single
floater with mooring-lines. These are all modes divisible by four. The problem is further studied
by looking at the radial modal amplitude and generalized radial truss force time-series for a specific
wave-condition, with parameter-values listed in Table 4.11 used for the run.

Table 4.11: Parameter values - radial mode time-series

ζa [m] Tw [m] km [N/m] lm [m] dt [s] ξ [%] end-ramp [s] end-time [s]

0.1
√
g 5325 100 0.005 1 150 ·Tw 300 ·Tw

Figure 4.14a shows the resulting radial mode amplitude time-series. We immediately observe that
mode 4 has an impulse-like behaviour from the very start, and oscillates at a level of about 0.025 m.
This is certainly not the wanted or expected behaviour. Most of the modes oscillate about zero, and
slowly build up during the ramping of the wave-excitation force, which is the expected behaviour. In
Figure 4.14b one has zoomed in on the two first wave-periods in the time-series, and also focused on
what happens closer to the time-axis. As seen, modes 8, 12, 16 and 20 all have the same impulse-like
behaviour as mode 20, oscillating at positive, non-zero levels.

Now, what is the reason for the strange behaviour of the radial modes divisible by four? The answer is
related to the generalized radial truss force expression in Equation (2.45) as well as the specific mooring-
truss configuration used, illustrated in Figure 4.1. In the truss-integral, the term cos(nβft) = 1 for
all truss positions βft = 0, π/2, π and 3π/2 for modes n divisible by four. In addition, the start
configuration of the trusses makes it so that the truss-force contribution at start, γftTft(sft · r) = Tft
for all the trusses ft. By this, we get maximum generalized radial truss force from the very start. This
is indeed seen in the time-series of the generalized radial truss forces, added in Appendix D.5. It is
identical for all the modes divisible by four, oscillating at a level near 4000 N from the very start. The
rest of the modes oscillate around zero. This explains the impulse-like behaviour in mode-amplitude
for the modes divisible by four, and why they oscillate at positive non-zero levels throughout the
time-series.

It is interesting to see the effect of lowering the pre-tension in the mooring-trusses. The same case is
therefore run with a pre-tension of Tpm = 781.25 N, which is 100 times lower than the initial run. The
resulting plots are added in Appendix D.5. Though the resulting mode-amplitude time-series appears
much better, with no impulse behaviour seen with the mere eye, the same problem is in fact seen when
studying a zoomed-in version of the plot. Radial modes divisible by four are still oscillating at positive
non-zero levels, just with smaller amplitudes and closer to the time-axis. It is therefore decided to
stick with radial modes 2 and 3 only in future runs, to avoid potential problems arising when when
including mode 4.
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(a)

(b)

Figure 4.14: Mode Amplitude Problem
Mode amplitude time-series are plotted for radial modes M = 2− 20. Figure a) shows the full time-series,

while b) is zoomed in version of the same plot, the mode amplitude axis shortened to 0− 1.2 · 10−3 m and the
time-axis to 0− 2. A pre-tension of Tpm = 78125 N is used.

4.5 Combined Motion of Single Floater

Having studied vertical and lateral modes separately, the next step is to test a single, moored floater
with combined modes. The case of surge, heave and radial mode 2 activated is therefore studied. Three
different cases of wave frequencies are tested in order to see if the resulting time-series seem reasonable.
These are Tw ≈ 1.675, 1.988 and 0.698 s. The first is the natural frequency in heave, the second to
the natural frequency in radial mode 2, while the third corresponds to a more realistic wave condition
with wave period of 9 s. The parameter values used in all three runs are listed in Table 4.12. Though
a wave condition corresponding to the natural frequency in surge is not tested, it should be mentioned
that it is 0.209 rad/s.
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Table 4.12: Parameter values - combined mode cases

ζa [m] km [N/m] lm [m] dt [s] ξ [%] end-ramp [s] end-time [s]

0.1 5325 100 0.005 3 100 ·Tw 200 ·Tw

4.5.1 Case 1 - Natural Frequency in Heave

The natural frequency in heave is found from Equation (2.81) and is 1.675 rad/s. The resulting node
motion time-series for the four floater-nodes using this as the incoming wave frequency are presented
in Figure 4.15. Heave clearly dominates, as expected at this wave frequency. The amplitude of the
z-motion is close to the incoming wave amplitude, ζa = 0.1 m. Further, nodes 1 and 3 do not have
any motion in y-direction, as it should be for the activated modes. The motion in x-direction for these
nodes are from a combination of surge and the first flexible lateral mode. The difference in x-motion
amplitude is thought to come from the interaction between surge and the first flexible radial mode.
Lastly, nodes 2 and 4 have identical motion, where radial mode 2 for these nodes only gives motion in
y-direction.

Time-series for truss-tension, as well as mode amplitudes are added in Appendix E, and also give
satisfying results. The tension is in accordance with node-motions, and the mode-amplitudes are
stable. All in all, this case is thought to give reasonable results.

(a) (b)

(c) (d)

Figure 4.15: Node motion for combined mode case 1
Node motion time-series for the four floater-nodes of a single, moored floater. X,Y and Z are the x,y and

z-position of a node, while Xp, Yp and Zp are the corresponding initial positions for the pre-tensioned floater.
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4.5.2 Case 2 - Natural Frequency in Radial Mode 2

The natural frequency in radial mode 2 is found from Equation (2.83) and is 1.988 rad/s. The resulting
node-motion time-series using this as the incoming wave frequency are shown in Figure 4.16. The
motion is now largest in x and y-direction, which means that radial mode 2 is dominating, as one
would expect for this wave condition. Other than this, the general expected behaviour discussed for
case 1 are still seen; the z-displacement is identical for all nodes since heave is the only vertical mode
included, nodes 2 and 4 have identical motion and there is no motion in y-direction for nodes 1 and 3.
The x-displacement amplitude is still larger for node 1 than node 3, likely because of the interaction
between surge and radial mode 2.

Time-series for truss-tension as well as mode-amplitudes are added in Appendix E. The tension in the
trusses follow the node-motions, and the mode amplitudes are all stable. With this, the results from
the tested case seem reasonable all over.

(a) (b)

(c) (d)

Figure 4.16: Node motion for combined mode case 2
Node motion time-series for the four floater-nodes of a single, moored floater. X,Y and Z are the x,y and

z-position of a node, while Xp, Yp and Zp are the corresponding initial positions for the pre-tensioned floater.

4.5.3 Case 3 - Relevant Wave Frequency

Figure 4.17 shows the resulting node-motion time-series for the case of an incoming wave frequency
of 0.698 s, which corresponds to a wave period of 9 s. This represents a realistic and relevant wave
frequency, away from the natural frequencies of the floater in the activated modes. We observe quite
identical motion for all nodes in both x and z-direction, and also y-motion for nodes 2 and 4 due to
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radial mode 2. The difference in x-motion amplitude is no longer apparent between floater-nodes 1
and 3, which must simply mean that surge and radial mode 2 no longer interact in such a way that
this happens. Put differently, that the floater is perfectly circular at both ends of maximum surge
displacement.

Additional plots for truss-tension and mode amplitudes are added in Appendix E. These also show
satisfactory behaviour of the floater. All in all, the results from this case are thought to be reasonable.

(a) (b)

(c) (d)

Figure 4.17: Node motion for combined mode case 3
Node motion time-series for the four floater-nodes of a single, moored floater. X,Y and Z are the x,y and

z-position of a node, while Xp, Yp and Zp are the corresponding initial positions for the pre-tensioned floater.
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4.6 Verification Study of Hydrodynamic Interaction Theory

In this section, verification studies on the hydrodynamic interaction theory in chapter 4 will be pre-
sented. First, the three-dimensional cross-coupled added mass in heave for a 2-torus case will be
compared with previous results from WAMIT. Lastly, different mode combinations are tested for the
same case in order to study whether off-diagonal terms become zero, as discussed in the derivation of
the theory.

4.6.1 Comparing Cross-coupled Added Mass with WAMIT

The expression for the three-dimensional cross-coupled added mass in Equation (3.18) is implemented
in MATLAB, so that the resulting values can be studied. The expression includes an inner integral of
the type

∫
1

(a− b cosα)0.5
dα

where a > b > 0. This will involve elliptic integrals, and as it is not known how to solve this analytically,
it is rather integrated numerically in MATLAB. A lowest order, basic numerical integration scheme is
used.

Emilie Debernard performed a study on zero-frequency limit added mass coefficients on multi-torus
models in WAMIT during the summer of 2019. We will compare our results with the ones she obtained
for a 2-torus model in heave, with the outer torus radius being R1 = 25 m, the inner being R2 = 20 m
and the cross-sectional radius of both tori being c = 0.8 m. Figure 4.18 shows her resulting added mass
coefficients plotted for different distances 2p between the center-lines of the tori. The added masses
are non-dimensionalized by the body mass of each torus, Mt = ρπ2Rtc

2. We digitize the two lines of
interest, which are the added mass on the inner torus due to the outer torus and the added mass of the
outer torus due to the inner torus. With our notations, these correspond to the cross-coupled added
mass terms A2,1,0/M2 and A1,2,0/M1.

Figure 4.18: WAMIT computations for 2-torus model
Zero-frequency limit added mass coefficients due to forced heave of each torus in a 2-torus model. The radius
of the outer torus is R1 = 25 m, while the radius of the inner is R2 = R1 − 2p

c m. The cross-sectional radius is
c = 0.8 m for both. The coefficients are non-dimensionalized by the body mass of each torus, Mt = ρπ2Rtc

2.
Courtesy of Emilie Debernard.

The exact same case is tested for the far-field theory expression, and plotted against the digitized data.
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The result is seen in Figure 4.19. There is good accordance with WAMIT for the entire variation of
spacing between tori.

Figure 4.19: Non-dimensional cross-term heave added mass
Non-dimensional cross-term added mass in heave for a 2-torus case using far-field approach, plotted against

WAMIT results. The radius of the outer torus is R1 = 25 m, while the radius of the inner is R2 = R1 − 2p
c m.

The cross-sectional radius is c = 0.8 m for both.

4.6.2 Studying Off-diagonal Added Mass Cross-terms

In the derivation of the hydrodynamic interaction theory, it is discussed that cross-term added mass is
zero for n 6= m, that is, off-diagonal terms are zero. In order to verify this, all possible 16 combinations
of the four lowest modes n = 0, 1, 2, 3 are tested for the same 2-torus geometry.

Figure 4.20 shows the results for all of the 16 tested combinations. As seen, only the diagonal terms
are non-zero. This indicates clearly that off-diagonal added mass cross-terms can be set to zero.
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Figure 4.20: Non-dimensional cross-term added mass for different mode combinations
The red line corresponds to A1,2,m,n/M1, that is, non-dimensional added mass on torus 1 in mode m due to
mode n motion of torus 2. The blue line corresponds to A2,1,m,n/M2, that is, non-dimensional added mass on
torus 2 in mode m due to mode n motion of torus 1. The radius of the outer torus is R1 = 25 m, while the

radius of the inner is R2 = R1 − 2p
c m. The cross-sectional radius is c = 0.8 m for both.



Chapter 5

Previous Model Tests

In this section, previously conducted model tests on the studied solar island model concept will be
presented. The resulting experimental RAOs from these tests are of special interest when studying our
own numerical results. The first model tests were conducted by Winsvold (2018), who performed an
experimental study into the governing behaviour and response of a solar island structure consisting of
five elastic tori enclosing each other, connected through elastic bands. Later on, Vassdokken Sigstad
(2019) performed experiments on a slightly different version of the model used by Winsvold (2018),
and eventually added a membrane to simulate the deck carrying photo-voltaic cells.

Both of the experimental studies cover multiple aspects of the behaviour of the solar island structure,
such as response in irregular wave conditions and over-topping. However, when presenting these model
tests our focus will lie on the parts that are essential when comparing experimental and numerical
results later on. In other words, an overview of the experimental set-up as well as model properties.
For a more detailed presentation of the experimental studies, one should therefore look to the original
master theses by Winsvold (2018) and Vassdokken Sigstad (2019).

5.1 Model Tests by Winsvold

5.1.1 The model

Figure 5.1 shows a photo of the multi-torus model used in the experimental studies by Winsvold (2018),
with instrumentation and mooring-lines. Corrugated tubes are used for the tori, and water-repellent
tape is wrapped around them in order to increase their bending stiffness and also make them smoother.
The elastic bands connecting the tori have a rubber core with polyester silk enclosing them. Each torus
has eight evenly spaced plastic strips enclosing them, where the elastic bands are connected. With
this, there are a total of 32 elastic bands in the model.

The model is built in the scale 1:50, and Froude scaling is used when scaling all parameters. The model
properties are presented in Table 5.1, for both model and full scale. Here, the spacing 2p is taken from
the center-line of one torus to the next, and constant between all tori. The outer torus is indexed as
number 1, so that the inner torus becomes number 5.

56



CHAPTER 5. PREVIOUS MODEL TESTS 57

Figure 5.1: Multi-torus model by Winsvold
Multi-torus model with instrumentation and mooring-lines. Grey, round reflexive markers as well as

rectangular accelerometers are seen. Taken from Winsvold (2018).

Table 5.1: Main parameters for multi-torus model by Winsvold

Description Parameter Model scale Full scale

Cross-sectional diameter of single torus 2c 32 mm 1.6 m
Torus mass per unit length mt 0.257 kg/m 642.5 kg/m
Torus bending stiffness EI 0.8467 Nm2 2.65× 108 Nm2

Mooring-line spring stiffness km 25.9 N/m 64.8 kN/m
Elastic band spring stiffness ke 45 N/m 112.5 kN/m

Cross-sectional diameter of elastic bands de 4 mm 0.2 m
Diameter of outer torus D1 1.02 m 50 m
Spacing between tori 2p ≈ 0.1 m 5 m

5.1.2 Test Set-Up and Procedure

The model is tested in the Small Towing Tank at the Norwegian University of Science and Technology,
in Trondheim, Norway during February and March of 2018. The test set-up is illustrated in Figure 5.2,
and both force-rings, accelerometers and wave probes are marked. The model has four horizontal
mooring-lines symmetrically distributed on the outer torus at β = 45, 135, 225 and 315 deg. They are
subjected to a pre-tension of Tp = 5 N, which corresponds to 640.624 kN in full scale.

As seen , there are 8 evenly spread accelerometers on the outer torus, and these are for some runs moved
to other tori in order to measure their accelerations as well. Two motion-caption cameras measure the
3D motions of the multi-torus, and a total of 24 reflexive markers are used, 8 on torus 1 and 2, 4 on
the third and 2 on the fourth and inner torus. These are seen in Figure 5.1.
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Figure 5.2: Illustration of model test set-up by Winsvold
Test location is Lilletanken. The upper figure shows the top-view, while the lower shows the side-view. Taken

from Winsvold (2018).

The multi-torus model is tested in both regular and irregular waves. Forces acting on the mooring-lines,
wave-elevation, accelerations of the structure in response to the waves and the all-over movement of it
are measured and pre-processed. The regular waves tested have full scale wave periods ranging from
2− 14 s, and wave steepness values H/λ = 1/60, 1/40, 1/30 and 1/20 are tested. This corresponds to
full scale kR values in the range of approximately 0− 20, where the radius is of the outer torus. The
full test matrix is shown in Figure F.1.

5.2 Model Tests by V. Sigstad

5.2.1 The Model

Vassdokken Sigstad (2019) tested a multi-torus model both with and without a weighted membrane.
As the numerical model does not represent such a membrane, only the plain version of the experimental
model will be presented. The model is a modified version of that of Winsvold (2018), where the elastic
bands have been replaced by new, stiffer ones, and the mooring-lines having been replaced by stiffer
ones as well.

The multi-torus is shown in Figure 5.3, and the model properties listed in Table 5.2 both in model
and full scale. Do note that the truss and mooring-properties are the only ones different than what
Winsvold (2018) presented. Froude scaling is still used.
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(a) Multi-torus in basin (b) Illustration of multi-torus model

Figure 5.3: Figure a) shows the multi-torus installed in the basin, with motion capture globes attached.
Figure b) is an illustration of the multi-torus model with its different components. Both are taken
from Vassdokken Sigstad (2019).

Table 5.2: Main parameters for multi-torus model by V. Sigstad

Description Parameter Model scale Full scale

Cross-sectional diameter of single torus 2c 32 mm 1.6m
Torus mass per unit length mt 0.257 kg/m 642.5 kg/m
Torus bending stiffness EI 0.8467 Nm2 2.65× 108 Nm2

Mooring-line spring stiffness km 14.0 N/m 35.9 kN/m
Elastic band stiffness ke 57.9 N/m 148.4 kN/m

Cross-sectional diameter of elastic band de 3 mm 0.15 m
Diameter of outer torus D1 1.02 m 50 m
Spacing between tori 2p ≈ 0.1 m 5 m

5.2.2 Test Set-Up and Procedure

The model is tested in the same wave tank as that used by Winsvold (2018), namely the Small Towing
Tank at the Norwegian University if Science and Technology, in Trondheim, Norway. The tests are
conducted during February of 2019. The test set-up is illustrated in Figure 5.4, and is quite similar to
the previous one. The 3D motions of the model are measured by 24 Qualisys markers, distributed as
shown in Figure 5.3a.

Each mooring-line consists of a thin nylon rope, a spring and a chain. The spring models the flexibility
that a mooring rope in full scale would have. The mooring line is thread through a hoise positioned
5 cm over the water level at the tank wall, and adjusted so that the pre-tension in model scale is 2.6
N. This corresponds to a full-scale value of 333.125 kN, and is approximately half of that in the model
tests by Winsvold (2018). Since the force rings are attached close to the model and the deflection of
the ropes are small compared to the force applied, it is assumed that the eventual elasticity does not
affect the mooring-line forces. An illustration of the mooring-line set-up as well as a photography of it
are shown in Figure F.2.
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Figure 5.4: Illustration of model test set-up
Test location is Lilletanken. Both bird and side view are illustrated. No instrumentation except cameras for

plain recording will be used for the current experiments. Taken from Vassdokken Sigstad (2019).

The regular waves run during the model tests are in the kR range of about 0.7 to 6.3, with R being
the radius of the outer torus. Wave steepness values of both 1/60, 1/50, 1/40 and 1/30 are tested. The
full test matrix is added in Appendix F.1.2.



Chapter 6

Results and Discussion

6.1 Previous Experimental Results

In this section, relevant experimental results from the previous model tests presented in chapter 5 will
be discussed. First the ones by Winsvold (2018) and subsequently the ones by Vassdokken Sigstad
(2019). The focus will lie on the RAOs for the outer torus, as the motion is best captured for this
torus in both the experimental studies.

6.1.1 Experiments by Winsvold

Figure 6.1 shows the resulting RAOs for the three outer tori, for the first three vertical modes of each
of them. Do note that here the notation b is used for the vertical modes, and not a as used throughout
chapter 2. The top figure shows the resulting experimental RAOs in heave for the three outermost
tori of the multi-torus model, plotted agains the ZFT RAOs for each of them. R1 denotes the outer
torus, R2 the second-most outer and R3 the middle torus in the multi-torus system. The experimental
data are from measurements with the motion-capture cameras. The figure in the middle is a similar
plot, only for pitch motion, and the lower figure is for the first flexible vertical mode. Legends for all
three plots are added in the lower figure, as well as the kR-axis. Do note that the ZFT RAOs all end
at kR = 4, which was done to indicate that the theory is applicable only in the low-frequency limit.
These results are from Kristiansen and Winsvold (2019), who discuss the results from the model tests.

Studying Figure 6.1 more in detail, we interestingly observe that there are some patterns between
cancellation of certain RAOs and local peaks in others. For instance, there are local peaks in the
experimental heave RAOs at kR1 ' 3.85, marked by green circles in the plot, which corresponds to
the first cancellation wave number in ZFT pitch of the outer torus, marked by a green square in the
plot. Next, there are also local peaks in the experimental heave RAOs at kR1 ' 5.2, marked by yellow
circles in the plot, which corresponds to the first cancellation wave number in the ZFT first flexible
mode of torus 1. Since the ZFT plot was cut at kR1 = 4, the line is extended to illustrate the rest of
it. The mentioned correlations indicate non-negligible interactions between the modes of each torus,
and also interactions between tori. Both hydrodynamic and structural interactions are here possible
candidates.

The experimental data of the outer torus show similar trends to that of ZFT, but the cancellations
appear at different wave numbers. The reason for this may be structural interactions, as any hydro-
dynamic interaction may only provide modifications of the motions for the wave numbers where the
excitation force is non-zero, and cannot influence the cancellation points.

A plot of heave RAOs for torus 1 for the full kR range tested is added in Figure G.1.
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Figure 6.1: Resulting RAOs from Winsvold model tests
The top figure shows the resulting experimental RAOs in heave for the three outermost tori, plotted against
the ZFT RAOs for each of them. The experimental data are from measurements with the motion-capture

cameras. The figure in the middle is a similar plot for pitch motion, and the lower figure is for the first flexible
vertical mode. Legends for all three plots are added in the lower figure, as well as the kR1-axis. R1 denotes
the outer torus, R2 the second-most outer and R3 the middle torus in the multi-torus system. Green and

yellow circles mark local peaks, while the squares mark cancellation wave numbers for R1. In the bottom plot,
the ZFT RAO for R1 has been extended for illustrative purposes. Slightly modified from Kristiansen and

Winsvold (2019).
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6.1.2 Experiments by V. Sigstad

Figure 6.2 shows the resulting experimental RAOs in both heave, pitch and the first flexible vertical
mode for the outer torus in the multi-torus system. Plots from both the model with (1060m1) and
without (1060) the membrane deck are included, and are quite similar. However, only the latter is
of interest when comparing with numerical results. For heave and pitch the corresponding ZFT RAO
is also plotted. The experimental results are for a wave steepness H/λ = 1/60, but results for the
same modes using H/λ = 1/30 are also presented by Vassdokken Sigstad (2019) and are quite similar,
showing the same tendencies. A difference to mention is that peak in pitch at kR ' 2.3 is not there
for the less steep wave runs, it rather follows the ZFT curve.

In the top figure, showing the heave RAO, we observe a local peak at a similar location as in Figure 6.1,
kR ' 3.85. This is indicated by a green circle. Once again this corresponds to the first wave cancellation
number for the pitch RAO, indicated by a green square. There is still tendencies of a second local
peak in the heave RAO at kR ' 5.2, though not as apparent as in Figure 6.1. All in all the presented
RAOs are quite similar to those by Winsvold (2018), showing the same tendencies. This strengthens
the theory that hydrodynamic and/or structural interactions are affecting the torus motion in a non-
negligible manner. We also keep in mind that as Vassdokken Sigstad (2019) used double the amount
of global markers compared to Winsvold (2018), the accuracy of the higher mode responses, calculated
by modal analysis, should increase.

It should lastly be noted that the changes made to the muti-torus model by Vassdokken Sigstad (2019),
including a decrease in mooring-line spring stiffness and pre-tension as well as increase of truss spring
stiffness, has not seemed to affect the response of the outer torus significantly in neither heave, pitch
or the first flexible vertical mode.

Additional resulting RAOs for the outer torus from the model tests are added in Appendix G.2.
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Figure 6.2: Resulting RAOs from V. Sigstad model tests
The top figure shows the resulting experimental RAOs in heave for the outer torus, for the model with

membrane (1060m1) and without (1060), plotted against the ZFT RAO. The wave steepness is H/λ = 1/60.
The figure in the middle is a similar plot for pitch motion, and the lower figure is for the first flexible vertical
mode. The outer torus radius is used in the non-dimensional wave number kR. Green and yellow circles mark
local peaks, while the square marks cancellation wave number. Slightly modified from Vassdokken Sigstad

(2019).
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6.2 Numerical Solar Island Model Results

In this section, results from the numerical solar island implemented in MATLAB will be presented.
The results will be discussed in terms of how well they correspond with theoretical RAOs, and also in
relation to the experimental results by Winsvold (2018) and Vassdokken Sigstad (2019). The resulting
RAOs from the latter study have been digitized by use of the software GetData Graph Digitizer, in
order to compare more easily with numerical results.

6.2.1 Introduction to Multi-Torus Cases

Both a multi-torus consisting of 2 tori and another consisting of 5 are tested in MATLAB. The radius
of the outer torus, the spacing between tori and torus properties are identical for both cases, and are
listed in Table 6.1. The inner torus is indexed as number 1, and the indexes increase outwards. Do
note that the listed properties are identical to the full-scale values of the experimental multi-torus
models by both Winsvold (2018) and Vassdokken Sigstad (2019), except for the torus mass per unit
length. Our value corresponds to a halfway submerged torus, while the experimental models in fact
have lower drafts.

Table 6.1: Torus properties used in numerical models

Description Parameter Value

Cross-sectional diameter of single torus 2c [m] 1.6
Torus mass per unit length mt [kg/m] 1030.4
Torus bending stiffness EI [Nm2] 2.65× 108

Radius of outer torus Router [m] 50
Spacing between tori 2p [m] 5

Further, the elastic bands in the presented cases are modelled by one truss each only. This is chosen
because one had troubles when using several trusses to model elastic bands earlier on, and thus decided
to simplify the problem. One concern was that the behaviour of the trusses did not represent an uniform
elastic band, and potentially destroyed the results. A strong point of rather using one truss, however, is
that it will have floater-nodes in each end, so that the floaters are directly linked and potential structural
interactions should become apparent. Mooring-lines are not included in the numerical models, a choice
once again made to simplify the problem and focus on potential structural interactions between tori.

Table 6.2 lists the standard connecting-truss properties used for the numerical multi-torus models.
Note that the stiffness-value corresponds to the elastic band spring stiffness in Table 5.2, which is for
the model by Vassdokken Sigstad (2019). She did however not present the pre-tension of the elastic
bands, but referred to them as slightly pre-tensioned. A value of Tpct = 37100N is therefore set,
corresponding to an original length to pre-tensioned length ratio of l0/lp = 0.95. The truss-mass is not
listed, simply because the tested models are built up by floater-nodes only, so that node-masses are
not needed in the equation system.

Table 6.2: Standard truss-properties used in numerical models

Description Parameter Value

Pre-tension in connecting-trusses Tpct [N ] 37100
Stiffness of connection-trusses kct [N/m] 148.4 · 103

Table 6.3 lists additional parameter values used in the numerical runs, for both the 2-torus and 5-torus
model. A set of 50 non-dimensional wave numbers ranging from kRouter = 0.3 to 10 are run to obtain
RAOs for the different tori. However, most of the resulting plots will be cut at kR = 6 as this is
the range of interest, especially with regards to the experimental results. FFT is used on the stable
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region between stable − time and end − time of the mode-amplitude time-series in order to obtain
RAO-values. Vertical modes 0 − 4 are activated, as well as lateral modes 1 − 3. Lateral mode 1 is
surge, while 2 and 3 are radial, elastic modes.

Table 6.3: Additional parameter values used in numerical runs

Description Parameter Value

Time-step dt [s] 0.0025
Time at end of ramping end− ramp [s] 10 ·Tw
Start of stable region stable− time [s] 15 ·Tw
End of time-series end− time [s] 30 ·Tw
Damping-ratio ξ [%] 3

Included vertical modes v −modes 0,1,2,3,4
Included lateral modes l −modes 1,2,3

6.2.2 Numerical 2-Torus Model Results

Figure 6.3 shows the geometry of the numerical 2-torus model in its pre-tensioned, initial state, with
both node and truss numbering. Lines are drawn between the nodes in order to illustrate the floaters,
which are perfectly circular in their pre-tensioned state. The inner torus is indexed as number 1, so
that the outer becomes number 2.

(a) (b)

Figure 6.3: Geometry of 2-torus model
Illustration of pre-tensioned 2-torus numerical model in MATLAB. a) shows node numbering, while b) shows
truss-numbering. All nodes lie at z = 0. Lines are drawn between the nodes to illustrate the floaters, which

are perfectly circular in their pre-tensioned state. The inner torus is indexed as number one, while the outer is
number 2.

The resulting RAOs for the two tori in their different modes will now be presented. They are all plotted
against kR2. A constant wave steepness of HDL = 1/200 is used.

Figure 6.4 shows the resulting numerical RAOs in the first four vertical modes plotted against ZFT,
for each of the two tori. Here, num denotes numerical data, T1 torus 1 and T2 torus 2. For heave, the
numerical RAOs both follow ZFT up until kR ' 4.5, where torus 1 starts to deviate, and soon after
the outer torus. The second cancellation wave number for torus 2 is shifted slightly to the right for the
numerical RAO compared to ZFT. These small deviations from ZFT indicate structural interactions,
but local peaks as those found in the experimental results are not seen at all. In pitch we see some
deviation for torus 2 only, while the higher vertical modes seem to have a perfect match for both tori.
The same goes for vertical mode 4 which is presented in Appendix H.2.
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(a) heave (b) pitch

(c) first flexible (d) second flexible

Figure 6.4: Vertical mode RAOs for 2-torus model
Resulting numerical RAOs in the first four vertical modes plotted against single floater ZFT, for each of the
two tori in the 2-torus model. num denotes numerical results. Further, T1 denotes torus 1 and T2 torus 2,

where the latter is the outer torus of the system.

Figure 6.5 shows the resulting RAOs in surge for each of the tori, plotted against their corresponding
theoretical RAOs. Here we observe much larger deviations from the theoretical RAOs. For the inner
torus it seems to be shifted to the left, and for the outer to the right, so that they become almost
identical up to about kR 4. Again, this indicates structural interactions. They may be larger for
this mode due to the fact that the truss-forces generally have a larger contribution for this mode
compared to the vertical ones. Do note that the Rayleigh damping in surge is set to 0 as there are no
mooring-lines, and therefore - we assume, no natural frequency.

Figure 6.6 shows the resulting RAOs for the radial modes for both tori. Also here the RAO of the
inner torus is shifted to the left compared to its corresponding theoretical RAO, while the outer torus
is shifted to the right. This is seen for both modes, but is most apparent for mode 2.
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Figure 6.5: Surge RAO for 2-torus model
Resulting numerical RAOs in surge plotted against single floater theoretical ones, for each of the two tori in
the 2-torus model. num denotes numerical results, and theory theoretical ones. Further, T1 denotes torus 1

and T2 torus 2, where the latter is the outer torus of the system.

(a) (b)

Figure 6.6: Radial mode RAOs for 2-torus model
Resulting numerical RAOs in radial mode 2 and 3 plotted against single floater theoretical ones, for each of
the two tori in the 2-torus model. num denotes numerical results, and theory theoretical ones. Further, T1

denotes torus 1 and T2 torus 2, where the latter is the outer torus of the system.

A run with half the original pre-tension in the connective trusses, Tpct = 18550N , is run to check
the effect on the RAOs. Figure 6.7 shows the resulting RAOs in heave and pitch for this new case,
with the original ones still included. A small effect is seen for torus 1 in heave, as it increases slightly
towards the end. In pitch, no difference is seen. No significant difference from the original runs are
seen for the rest of the modes either, which are added in Appendix H.2
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(a) heave (b) pitch

Figure 6.7: Low pre-tension - RAOs for heave and pitch
Resulting numerical RAOs in heave and pitch plotted against single floater theoretical ones, for each of the
two tori in the 2-torus model. The legend in a) is for b) as well. num denotes numerical results, and theory

theoretical ones. Further, T1 denotes torus 1 and T2 torus 2, where the latter is the outer torus of the system.
lowTp is for a run with lowered pre-tension, Tpct = 18550N , which is half of the pre-tension in the initial run.

It is of interest to take a closer look on the behaviour of the trusses. Resulting time-series for kR = 1
and 4 for the original case with Tpct = 37100N are therefore studied, and some interesting observations
are made. As seen in Figure 6.8a, the level of oscillation seems to increase slightly upwards for truss
2 in the run with kR = 1. The same tendency can be seen for the rest of the trusses. Figure 6.8
shows the tension time-series of truss 2 for kR = 4, which is quite wiggly. As we know, the trusses
have floater-nodes in both ends, which means that this pattern must come from the combination of
the movements of the tori. We keep in mind that the presented tension plots show deviation from the
initial pre-tension, and so the total tension in the trusses is very much constant.

(a) kR = 1 (b) kR = 4

Figure 6.8: Tension time-series
Tension time-series for truss 2 for kR = 1 and 4. The difference in tension T from the initial pre-tension at

start, Tp, is plotted.

Both mode-amplitudes and generalized forces are checked for the two kR-values, and are all stable.
As an example, the generalized truss-forces on the outer torus in heave are shown in Figure 6.9a for
the case of kR = 4. Further, the vertical mode-amplitudes for the outer torus for the same kR-value
are shown in Figure 6.9b. Several of the RAO-peaks are in the area of kR = 4, so seeing that all
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mode-amplitudes are stable for this value indicates that the presented RAOs are in fact based on
stable runs.

(a) Vertical forces on torus 2 in heave (b) Vertical mode-amplitudes for torus 2

Figure 6.9: Vertical mode-amplitudes and heave-forces on torus 2
a) shows the vertical generalized forces in heave on torus 2. b) shows the vertical mode amplitudes on the

same torus. These plots are both for kR = 4.

6.2.3 Numerical 5-Tori Model Results

Figure 6.10 shows the geometry of the numerical 5-torus model in its pre-tensioned, initial state, with
both node and truss numbering. Lines are drawn between the nodes in order to illustrate the floaters,
which are perfectly circular in their pre-tensioned state. The inner torus is indexed as number 1, so
that the outer becomes number 5.

(a) (b)

Figure 6.10: Geometry of 5-torus model
Illustration of pre-tensioned 5-torus numerical model in MATLAB. a) shows node numbering, while b) shows
truss-numbering. All nodes lie at z = 0. Lines are drawn between the nodes to illustrate the floaters, which

are perfectly circular in their pre-tensioned state. The inner torus is indexed as number one, so that the outer
torus becomes number 5.

The resulting RAOs for the three outer tori in their different modes will now be presented. They are
all plotted against kR5, and a constant wave steepness of HDL = 1/1000 is used in the runs. The two
inner tori have been excluded to make the plots more easy to read, and also because the outer tori are
of most interest with regards to experimental results.
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Figure 6.4 shows the resulting numerical RAOs in the first four vertical modes plotted against ZFT,
for each of the three tori. Here, num denotes numerical data, T3 torus 3, T4 torus 4 and T5 torus
5. We observe from Figure 6.11a that the RAOs in heave deviate slightly from ZFT for the higher
kR-values. As for the 2-torus case, the second wave cancellation number of the outer torus is shifted
slightly to the right. Some deviation is seen for the pitch RAOs in Figure 6.11b as well, while the first
and second flexible modes seem to have a perfect match with ZFT for all tori. The same can be said
for the third flexible mode, which is added in Appendix H.3. The local peaks seen in experimental
results do once again not appear in our numerical results. However, the deviations from ZFT that we
do see indicate structural interaction.

(a) heave (b) pitch

(c) first flexible (d) second flexible

Figure 6.11: Vertical mode RAOs for 5-torus model
Resulting numerical RAOs in the first four vertical modes plotted against ZFT, for each of the three outer tori
in the 5-torus model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and T5 torus 5,

where the latter is the outer torus of the system. The legend in d) is for all four plots.

Figure 6.12 shows the resulting RAOs in surge for each of the tori, plotted against their corresponding
theoretical RAOs. As for the 2-torus case, the Rayleigh damping in surge is set to 0 as there are no
mooring-lines, and therefore - we assume, no natural frequency. Surprisingly, the numerical RAOs all
have a peak at kR5 ' 4.9, which seems like one, common natural frequency. Potential reasons for this
may be structural interaction amplifying the motion at this kR-value, some sort of numerical problem
or perhaps an effect due to the way the trusses are modelled. It is not easy to estimate potential
natural frequencies of the trusses themselves, as their mass is not included in our simplified set-up.
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(a) Surge (b) Surge, zoomed

Figure 6.12: Surge RAOs for 5-torus model
Resulting numerical RAOs in surge plotted against single floater theoretical ones, for each of the three outer
tori in the 5-torus model. Figure b) is just a zoomed in version of a). num denotes numerical results. Further,

T3 denotes torus 3, T4 torus 4 and T5 torus 5, where the latter is the outer torus of the system.

Figure 6.13 shows the resulting RAOs for the radial modes for both tori. As for the 2-torus case, the
RAO of the outer torus is shifted to the right, and the inner ones to the left. This is seen for both
modes, but is most apparent for mode 2.

(a) (b)

Figure 6.13: Radial mode RAOs for 5-torus model
Resulting numerical RAOs in radial modes plotted against single floater theoretical ones, for each of the three
outer tori in the 5-torus model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and

T5 torus 5, where the latter is the outer torus of the system.

The resulting RAOs for the three outermost tori in the 5-torus model have so far been presented.
Similar plots for the two most inner tori are added in Appendix H.3. Deviations from theoretical
RAOs are seen also for these tori, and the same peak in surge is observed. Interestingly, the peaks are
even larger for the inner tori.

It is now of interest to study the effect of lowering the pre-tension in the connecting-trusses. Therefore,
as was done for the 2-torus case, a new run with half the original pre-tension, Tpct = 18550 N, is
run. In addition, it is decided to also run a 5-torus case with mooring-lines. Four mooring-trusses are
added to the initial geometry, as illustrated in Figure 6.14. The mooring-truss length is lm = 100 m,
the pre-tension Tpm = 36 · 103 N and the stiffness km = 36 · 103 N/m. The latter corresponds to the
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mooring-line spring stiffness used by Vassdokken Sigstad (2019) in her experiments. Of course both
the mooring-line length as well as the pre-tension was much smaller in the experimental set-up. As
discussed in chapter 4, the mooring-line length is set to be quite large due to a debugging process where
one thought that numerical problems arise when the mooring-lines become too steep. In hindsight, it
is believed that the mooring-lines could in fact be shorter. As for the mooring-truss pre-tension, it is
lowered compared to the experimental value because the solution has had an unstable tendency for
high pre-tension in the trusses. This will be discussed more in detail later.

Figure 6.14: 5-Torus model geometry, with mooring-lines
Illustration of 5-torus model geometry in MATLAB, adjusted to include 4 mooring-line trusses. Only the

mooring-line trusses are indexed, the rest of the truss-numbers are as given in Figure 6.10.

Figure 6.15 shows the resulting RAOs in heave for the three outermost tori, for both the lowered
pre-tension version (lowTp) and the mooring version (moor), plotted against the original 5-torus case
RAOs as well as ZFT. As seen, adding the mooring-lines makes no difference in the resulting RAOs.
Lowering the pre-tension, however, has some effect at the higher kR5 values, where the solution seems
to deviate slightly less from ZFT. The same tendency is seen in pitch, while for the rest of the vertical
modes neither the lowered pre-tension version or mooring version have any effect on the original 5-torus
case results. These are all added in Appendix H.4.
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Figure 6.15: Heave RAOs: 5-torus case vs. altered versions
Resulting numerical RAOs in heave plotted against ZFT RAOs for the three outermost tori in the 5-torus
model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and T5 torus 5, where the
latter is the outer torus of the system. lowTp is for a version with half the original pre-tension, Tpct = 18550

N, and moor is for the moored-version of the 5-torus case.

Moving on to surge, we observe much larger effects of lowering the pre-tension. As seen in Figure 6.16,
the peaks around kR5 ' 4.9 are significantly damped. This plot is for torus 4 and 5, but the same
tendency is observed for the other tori.

Regarding the the moored version, one estimated the natural frequency in surge for the entire structure
as wn,surge =

√
2km/(M +A11), where M and A11 are the total mass and added mass in surge of the

entire structure, and C11 = 2km the stiffness term from the mooring-lines. This was used to set the
Rayleigh damping term for surge motion, given by 2(M +A11)ξwn,surge, where the damping ratio was
set equal to the value for the rest of the modes, ξ = 0.03. Lastly, the theoretical expression for the
surge RAO, given in Equation (2.77), had to be altered to rather describe the global surge motion.
That is, using the mass, added mass and radius of the entire structure. The resulting RAOs for the
moored-version of the 5-torus case are shown in Figure 6.17. As a global surge motion is assumed, the
theoretical RAO is identical for all tori. We do observe that all the numerical RAOs seem to rise near
the theoretical natural frequency at kR5 ' 0.25. This specific kR-value would need to be run in order
to see if there in fact is a peak at this frequency. We further observe that all tori have peaks in the
area of kR5 = 4− 5, though lowered compared to the peaks seen for the original 5-torus case. This is
probably due to the fact that there was no Rayleigh damping in the original case.
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Figure 6.16: Surge RAOs: 5-torus case vs. lowered pre-tension version
Resulting numerical RAOs in surge plotted against single floater theoretical RAOs for the two outermost tori
in the 5-torus model. num denotes numerical results. Further, T4 denotes torus 4 and T5 torus 5, where the
latter is the outer torus of the system. lowTp is for a version with half the original pre-tension, Tpct = 18550

N. .

Figure 6.17: Surge RAOs: moored version of 5-torus case
Resulting numerical RAOs in surge plotted against single floater theoretical RAOs for all tori in the moored
version of the 5-torus model. num denotes numerical results. Further, T1 to T5 denotes torus 1 to 5, where

the latter is the outer torus of the system.

The radial mode RAOs for the altered versions of the 5-torus case are added in Appendix H.4. No
effect is seen at all from lowering the pre-tension. The mooring-case, however, deviates significantly
from the original case for the two outer tori. Radial mode 3 is particularly strange for the outer torus.

Some resulting time-series are next studied for the 5-torus case, as well as the moored-version of it,
in order to observe the behaviour of the trusses and see if the runs are in fact stable. kR5 = 1 and
4 are tested, as was done for the 2-torus case. Figure 6.18a shows the resulting tension time-series



CHAPTER 6. RESULTS AND DISCUSSION 76

for truss 1 in the 5-torus case for kR5 = 4. A wiggly behaviour is observed, and this tendency is in
fact seen for all the trusses except the ones along the y-axis. For the trusses along the y-axis, the
level of oscillation increases steadily throughout the time-series, as shown for truss 9 in Figure 6.18c.
This is a truss on torus 1, and in fact the tendency decreases outwards, so that for truss 12, the outer
truss along the y-axis, the time-series is pretty straight. See Figure 6.10 for truss-numbering. Similar
tension time-series have been included for the moored version of the 5-torus case in Figure 6.18b and
Figure 6.18d. There is still the same increasing oscillation level for the trusses along the y-axis, but the
wiggly behaviour for the rest of the trusses is gone. This is likely due to the fact that the surge-motion
is damped for this case.

(a) 5-torus case (b) 5-torus case, moored

(c) 5-torus case (d) 5-torus case, moored

Figure 6.18: Tension time-series for kR5 = 4
Tension time-series for kR5 = 4. The difference in tension T from the initial pre-tension at start, Tp, is

plotted. a) shows the tension in truss 1 for the 5-torus case, while b) shows the same for the moored version of
this case. c) shows the tension in truss 9 for the 5-torus case, while d) shows the same for the moored version

of this case. These plots are all for kR5 = 4.

Figure 6.19a shows the resulting forces in surge for torus 1 in the 5-torus model, still for kR5 = 4.
The truss-forces are here dominant, and have the same wiggly pattern seen for the tension time-series.
Thus, the mode amplitude in surge also gets the same effect, as seen in Figure 6.19c. The same
tendencies are seen for corresponding plots for the rest of the tori in the system. For the moored case,
however, both the surge forces and mode amplitudes are stable for all tori. The plots for torus 1 are
added in Figure 6.19b and Figure 6.19d, as an example. These plots are stable due to the fact that the
increased oscillation level makes almost no change to the total tension signal. The wiggly behaviour
has a larger impact.
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(a) 5-torus case (b) 5-torus case, moored

(c) 5-torus case (d) 5-torus case, moored

Figure 6.19: Surge mode-amplitudes forces on torus 1 for kR5 = 4
a) shows the surge forces on torus 1 for the 5-torus case, while b) shows the same for the moored version of
this case. c) shows the mode amplitude in surge for the 5-torus case, while d) shows the same for the moored

version of this case. These plots are all for kR5 = 4.

The results for kR5 = 1 are somewhat more stable, but do have the same tendencies as discussed
above. Some additional time-series are added in Appendix H.5, and show that there is also a minor
problem regarding the generalized truss-forces for vertical forces on torus 1. The level of oscillation
decreases slightly downwards, both for the original and moored 5-torus case. However, these forces
are very small compared to the rest of the generalized vertical forces, so the vertical mode-amplitudes
are all stable. Regarding radial modes, both mode amplitudes and forces are all stable, for both the
original and moored version of the 5-torus case.

To summarize our time-series study, there is clearly some instability in the tension development. The
wiggly tension behaviour is removed by introducing surge damping, but the increased oscillation-levels
are of concern. Due to time limitations, this phenomenon can not be studied more in detail. It should
however be mentioned that in the process of landing on the 5-torus case presented in this section,
several attempted models have shown the same increased oscillation level in tension and in the end,
the solutions have exploded. The problem seems to increase with increased pre-tension. Potential
reasons may be a simple bug in the code, numerical instability, or something related to how the trusses
are modelled. Either way, for the 5-torus case presented in this section, the resulting RAOs are not
believed to have been destroyed by this bug in tension development. At least not the general behaviour.
The only exception may be surge, and time-series from kR-values more in the peak-region of the surge
RAOs should be studied to determine this.
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6.2.4 Comparing with Experimental Results

It this subsection, the numerical results from both the 2-torus and 5-torus model will be compared
with the experimental vertical mode RAOs by Vassdokken Sigstad (2019). The outer torus is studied.
We keep in mind that the 2-torus model is in fact identical to the 5-torus model, just with the three
inner tori having been removed. It is therefore of interest to compare with also the outer torus of the
2-torus model, as you get the same type of effect from its inner torus.

Figure 6.20 shows the comparison for vertical modes of the outer torus. The numerical results from
the 2-torus and 5-torus model are in fact identical. An instant observation is that our ZFT RAO in
heave is taller than the one presented by Vassdokken Sigstad (2019) in Figure 6.2, though they should
be identical. At least if the mass of the torus is set to make it halfway-submerged. We know that
the experimental model has a lower mass, so this may be one reason. Our ZFT pitch RAO is also
somewhat taller. We find out that this is due to Vassdokken Sigstad (2019) having included a bending
stiffness-term which is actually cancelled for pitch mode.

In heave, the numerical model RAOs are slightly shifted to the right of ZFT from kR5 ' 5. In pitch,
they are slightly lower than ZFT at the end. These are the only minor effects that remind of how the
experimental RAO deviates from ZFT.

(a) (b)

(c) (d)

Figure 6.20: Numerical vs experimental vertical mode RAOs for outer torus
Numerical vertical mode RAOs for the outer torus, from both the 2-torus and 5-torus model, are plotted

against ZFT and experimental data by Vassdokken Sigstad (2019). R2 in the 2-torus model is identical to R5

in the 5-torus model.

Based on the numerical results, the deviations from ZFT in the experimental vertical RAOs do not
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seem to come from structural interactions. However, we must keep in mind that the numerical model
does not represent the experimental model in an accurate manner. The pre-tension in the connective
trusses of the experimental model is unknown, and a tentative value is set for the numerical runs.
Knowing that the pre-tension then also seems to worsen the problem with tension development, this
makes the entire comparison difficult. Furthermore, representing the elastic bands by one truss each
is maybe not the best option. What we have modelled is in reality 5 m long mass-less elastic bands.

At a late stage in the work on this master thesis, it was also discovered that the elastic bands used in the
experimental model do not seem to actually follow Hooke’s law. New deflection-tests were performed,
both on elastics in the solar island model, as well as similar, new elastic bands. Neither can be said
to have followed Hooke’s law. The problem is especially that they have to be stretched significantly
before they tend to get a linear relation, while in the solar island model many of them were quite slack.
Also, none of them returned to their initial state after the deflection tests were performed, they were
permanently elongated and had lost their original flexibility.

6.2.5 Comments on Modelling of Elastic Bands

In the multi-torus cases presented so far, only one truss has been used to model each elastic band.
However, a numerous amount of cases using more trusses to model each elastic band have previously
been tested. Even though results from these cases have not been presented, as there was no time to go
back and study them further after having improved the results for the simplified models, some aspects
related to these type of cases should be discussed.

First of all, using several trusses to model each elastic band means that there will be connecting-node
masses along it that are free to vibrate. Therefore, damping of the these nodes by the use of Rayleigh
damping was applied, to avoid excitation of the natural frequency of the elastic band. In order to
estimate this frequency, the fundamental frequency of transverse vibration for a pre-tensioned string
fixed in both ends was used. This is added in Appendix A.1.

It was believed that a potential problem in previous runs was the fact that the natural frequency of
the elastic bands were excited. However, damping the connecting nodes did not seem to improve the
results. Eventually it was concluded that treating the elastic bands as uniform springs is probably not
accurate. After all, for a case using 5 connecting trusses to model each elastic band in the 5-torus
model, what you really get is 1 m long trusses between each connecting mass. Running such a case
would often take over 2 days, so increasing the number of connecting trusses to make the elastic bands
become more like uniform springs will make the runs extremely slow.

It was further observed for some runs that the trusses in the elastic bands did not seem to expand
uniformly. The trusses near the floaters would behave differently than the ones in the middle. It may
be that if coarsely dividing the elastic bands into trusses, they should rather be thought of as individual
springs in a spring-mass array, and be damped accordingly. These thoughts would be studied further
if one had time to go back to these type of cases.

6.3 Hydrodynamic Interactions

In this section, the results from the theoretical study on hydrodynamic interaction will be presented,
and compared with experimental results.

The 5-torus system is studied, with torus parameter valuers as given in Table 6.4. This corresponds
to the full-scale values presented for both experimental models. The mass is then smaller than that
displaced by a half submerged torus, 0.5ρπc2 ' 1030kg, but is expected not to be sensitive. Further,
ρ = 1025 kg/m is used. We ignore the effect of the elastic bands, and thus study the effect of
hydrodynamic interaction only. We keep in mind that we have assumed ZFT, which is potentially not
appropriate for several of the considered wave lengths.
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Table 6.4: Torus properties used in hydrodynamic interaction solution

Description Parameter Value

Cross-sectional diameter of single torus 2c [m] 1.6
Torus mass per unit length mt [kg/m] 642.5
Torus bending stiffness EI [Nm2] 2.65× 108

Radius of outer torus Router [m] 50
Spacing between tori 2p [m] 5

Figure 6.21 shows the resulting RAO in heave for the outer torus in the 5-torus system, from both
ZFT, the hydrodynamic interaction theory presented in chapter 3 and experimental results by both
Vassdokken Sigstad (2019) and Winsvold (2018). We observe that the resulting RAO from hydro-
dynamic interaction theory appears to have new natural periods, at kR5 ' 3 and 10. These do not
match the local experimental peaks in kR5 ' 3.8 and 5.2, but at least they show disruption from ZFT.
We also keep in mind that there are possible large experimental errors from the high frequency range
kR5 & 8.

Figure 6.21: RAO in heave for outer torus in 5-torus system
RAO in heave for the outer torus in the 5-torus system, from both ZFT, hydrodynamic interaction theory and
experiments by Vassdokken Sigstad (2019) as well as Winsvold (2018). The radius of the outer torus, R5 is

used in the non-dimensional wave number.

Figure 6.22 shows the resulting RAO in pitch for the outer torus in the 5-torus system, from both ZFT,
hydrodynamic interaction theory and experimental results by both Vassdokken Sigstad (2019). Several
of the experimental irregularities in the experimental RAO cannot be explained by the hydrodynamic
interaction theory.

To summarize, the developed hydrodynamic theory does not explain the specific irregularities seen in
the experimental results. However, a large impact from hydrodynamic interaction is observed compared
to ZFT. So, it is believed that hydrodynamic interactions must have influenced the experimental RAOs,
though this cannot be seen directly from this brief study.
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Figure 6.22: RAO in pitch for outer torus in 5-torus system
RAO in pitch for the outer torus in the 5-torus system, from both ZFT, hydrodynamic interaction theory and
experiments by Vassdokken Sigstad (2019). The radius of the outer torus, R5 is used in the non-dimensional

wave number.

6.4 Final Discussion

In this chapter, potential structural interactions have been studied through the numerical solar island
model, and potential hydrodynamic interactions through the newly developed theory by Kristiansen
(2020). One could also study these two candidates combined, by adding cross-added mass terms into
the numerical floater equations, as presented in chapter 3. This was not done simply due to time
limitations.

It must also be stressed that though the presented numerical cases in Section 6.2 are quite simple in
the sense that the elastic bands are modelled by only one truss each, more complex versions may easily
be studied. By the developed method, all kinds of combinations of number of tori, number of elastic
band connection points, trusses per elastic band and mooring-configurations are in theory possible. It
is mostly due to the time spent on debugging when implementing the model in MATLAB that more
trusses per elastic bands could not be presented, as was initially intended.

The presented numerical results are in fact a product of a long, spiralling process of both debugging and
testing different combinations of parameter values that make the runs stable. It is a complex method,
built on a large amount of equations, so that potential bugs when implementing it in MATLAB are
many. We do however believe that the potential of the developed method is large, and even more so
with the possibility of adding hydrodynamic interaction effects into it.



Chapter 7

Concluding Remarks and Further Work

A numerical solar island model in form of an elastic truss-model accounting for floater motion is
developed, based on truss theory by Marichal (2003), the ZFT floater-model by Faltinsen (2011),
modified beam equation by Li (2017) as well as methods for combining the truss and floater model
by Kristiansen (2012). Elements of all the mentioned theories are adjusted to best fit the multi-torus
structure of the solar island, as they are all originally based on fish-case structures. The resulting
solar island model is quite complex, and can in theory be applied to model all kinds of combinations of
number of tori, elastic band connections, number of trusses per elastic band and mooring-configurations
of a multi-torus structure. This is a significant development, as previous studies seem to have focused
on single floaters.

The numerical solar island is implemented in MATLAB, and verification studies are carried out for
a single moored torus where the mooring-lines are modelled by elastic trusses. Satisfactory effect
of Rayleigh damping and ramping is assured to damp out the excitation of natural frequencies of the
floater. Vertical modes, surge and radial modes are studied separately, and also some cases of combined
motion. Resulting RAOs for the vertical modes are in good accordance with ZFT. For the surge-study,
satisfactory effect of the trusses is assured by comparing the resulting motion with the case of rather
using a mooring-line stiffness term by Faltinsen (1993). The resulting RAO is is in accordance with
theory. For the radial modes, it is found that all modes except the ones divisible by four get reasonable
numerical RAOs. The reason for the unrealistic RAOs is that the generalized truss-forces in the
problem-modes get an impulse-like behaviour from the very start of the runs. These modes should
therefore be excluded, and including only modes 2 and 3 is seen as sufficient. For the combined motion
cases, where heave, surge and radial mode 2 are activated, reasonable resulting motions are seen for
all of the three different wave-frequencies that are tested. Though the single moored floater case could
be studied more in detail, the promising results were at the time seen as a good basis for expanding
to several tori.

The hydrodynamic interaction theory by Kristiansen (2020) is also implemented in MATLAB for a
2-torus case, and the cross-coupled added mass terms show good correspondence to previously obtained
results in WAMIT. Off-diagonal terms are found to be zero in a study of the four lowest vertical modes.

The numerical results from the 2-torus and 5-torus cases show some, but little effect on vertical modes,
more for radial modes, while the largest effect is seen for surge motion. For the 2-torus case, the surge
RAOs are shifted significantly to the right, while for the 5-torus case the shapes are drastically changed
with peaks at kR5 ' 4.9 for all tori. Lowering the pre-tension in the connecting trusses lowers these
peaks, as well does introducing Rayleigh damping for surge motion when adding mooring-lines to the
problem. The tendency of a common natural frequency in this kR5 area is not expected. It could be
a result of structural interaction, but it is rather believed to be due to a numerical problem of some
sort or perhaps an effect of how the trusses are modelled.

The instability in tension observed in some numerical runs is believed to come from a simple bug in the
code, numerical instability of some sort, or again how the trusses are modelled. Though this instability
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tendency may be linked to the strange observations for surge in the 5-torus case, it is not believed to
have destroyed the rest of the presented RAOs.

The irregularities in the experimental RAOs by Vassdokken Sigstad (2019) and Winsvold (2018) cannot
be directly explained by our numerical solar island model or the results from hydrodynamic interaction
theory. The fact that the elastic bands of the experimental model were found to actually not follow
Hooke’s law weakens the numerical models potential of explaining the experimental irregularities.
Nevertheless, deviations from single floater theory due to what should be structural interactions are
seen in the numerical results, and large impact is also seen for vertical modes in the hydrodynamic
interaction study. These are interesting results in themselves, and indicate that both structural and
hydrodynamic interaction may affect the behaviour of a multi-torus.

7.1 Further Work

The presented studies in this master thesis can be pursued further in many areas. Some of them will
be presented here.

7.1.1 Further Use of Numerical Solar Island Model

There is great potential in the developed numerical solar island model. Although the elastic bands
of the experimental model were found to not follow Hooke’s law, it could still be relevant in future
studies. Strong points are that it accounts for motion in both vertical and lateral modes, and the
possibility to include hydrodynamic interaction. Potentially, a spider-web like system of trusses could
be modelled across the tori to represent a membrane type of deck.

Should however this model be used further, it is recommended that more detailed verification studies
are performed, such as a time-step study also for the single-floater combined motion case as well as
multi-torus cases. The sensitivity of other parameter-values should also be studied in more detail, such
as ramping, pre-tension and stiffness. It would also be wise to have a closer look at the truss-force
expression used in the Euler beam equations, as it is in fact a coarse approximation when the spacing
between elastic bands on a floater is large.

Further, the modelling of an elastic band by several trusses must be checked. A proposition is to
focus on a chain of elastic trusses fixed in each end, and see whether the resulting motion follows the
fundamental frequency of an uniform string fixed in both ends.

7.1.2 Experimental Model and Tank Wall Interference Effects

Should new model tests be performed for the multi-torus structure, one could potentially replace the
elastic bands by new ones that more accurately follow Hooke’s law, and do not loose their flexibility as
easily. Preferably, the experimental pre-tension in the bands should be estimated. This would make
it easier to model the structure numerically. Though it is not believed to effect the behaviour of the
structure in any significant manner, the mass of the floaters could be increased so that they float
halfway submerged.

Li (2017) discusses tank-wall interference effects possibly contaminating experimental test results in
his study on an elastic fish cage floater. The torus diameter was 1.5 m and the tank width 6.45 in his
set-up, and it was discussed that there in fact would potentially be some minor tank wall interference.
Considering the torus diameter was quite similar, 1 m, but the tank width only 2.5 m in the model
tests by Vassdokken Sigstad (2019) and Winsvold (2018), such effects can possibly have influenced
their experimental results. So, this is also a candidate for the irregularities in the experimental RAOs.
This can be further studied in WAMIT version 7.3 that has recently been released.
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7.1.3 New Simplified Model for Elastic Bands

An alternative to the solar island truss model presented in this master thesis is of course preferable. It
has proven complicated to implement and requires very small time-steps to be stable.

At the very end of working on the master thesis, discussions between Professors Odd M. Faltinsen and
Trygve Kristiansen resulted in a proposition for a new, simplified model for the elastic bands. They
are still assumed to be strings following Hooke’s law, as an initial, first step in developing the method.
Vertical motions only are considered. Observing the structure from the side, the tension of the elastic
bands can then actually be found directly by geometrical relations. This is illustrated in Figure 7.1,
showing a truss between the outer torus 1 and inner torus 2. As seen, the vertical tension-component
in the truss is given by Tz = T0 tanα ≈ T0α for small angles α, T0 being the initial pre-tension. The
angle is in its turn given by sinα ≈ α = (w2(β, t) − w1(β, t))/l0, where w1 and w2 are the vertical
position of the end nodes of the string and l0 the initial length.

(a) 3D view (b) Seen from the side

Figure 7.1: Alternative model for elastic bands

With this, the generalized truss force to be included in the generalized vertical beam equation for a
torus k can rather be expressed as

f truss,genk,3 =

∫ 2π

0

∑
p

Np∑
i=1

T0
l0

(wp(β, t)− wk(β, t)) cos(nβ)dβ (7.1)

where the first sum is over neighbouring trusses p and the next over all the Np elastic bands between
torus p and the studied torus k. Np = 8 in the experiments, for example.

The unknowns in the floater system of equations will now lie in expressions of this type for each torus.
This has to be solved either in an implicit manner, or one could use the pragmatic solution of using
values from the previous time-step for the vertical node-motions wp and wk.

This new model for elastic bands is more efficient and easier to implement than the one studied in this
master thesis, and should be studied further as a candidate to the current model.
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Appendix A

Additional Theory

A.1 Fundamental Frequency of Vibration for a Fixed String

The fundamental frequency f of transverse vibration for a pre-tensioned string fixed in both ends is
given by

f =
1

2l

√
T

µ
(A.1)

where l is the pre-tensioned length of the string, T the tension and µ the density of the truss material
Rao (1995). This can be used to estimate the fundamental frequency of the elastics in the solar island
model. The more trusses per elastic, the more the lumped mass system begins to resemble a uniform
string, and thus the more fitting Equation (A.1) will be for a modeled elastic.
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Appendix B

Simple Truss Verification Study

A verification study was performed for the truss model in the preliminary project thesis during fall of
2019. A set of simple truss cases, both elastic and inelastic were tested. The study on the elastic cases
will be presented briefly here.

B.1 Set-Up

There are two verification cases for the elastic truss model, namely a spring-mass system and an elastic
pendulum. These are illustrated in Figure B.1, and the boundary conditions are listed in Table B.1.

(a) Spring -mass system (b) Elastic pendulum

Figure B.1: Elastic verification cases
Initial geometry is illustrated. Red denotes fixed node. Initial Z is node 2 position without point mass,

equilibrium Z is the position with point mass added and in equilibrium with spring tension, and pre-tensioned
Z is the pre-tensioned position from which the point mass is released.

Table B.1: Boundary conditions - elastic cases

Vertical pre-tensioned spring Elastic pendulum

Node 1 Fixed Fixed
Node n Free Free

Marino et al. (2019) presents an explicit numerical solution for an elastic pendulum using beam el-
ements. The resulting displacement and deformation show good correspondence with other relevant
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articles using both implicit and explicit numerical methods. Therefore, the parameter values for the
elastic pendulum case are set to be equal that of the one presented in Marino et al. (2019). These
are listed in Table B.2, E is Young’s modulus, D the diameter of the truss,ρ the density of the truss
and Tp the pre-tension of each truss. The mass of the truss is found from the cross-sectional area and
density of the truss. This assures a realistic relationship between mass and stiffness.

Table B.2: Parameter values - elastic pendulum

tend [s] dt [s] Ntrusses [-] θ0 [rad] mtruss [kg] ltruss [m] E [ N
m2 ] D [m] ρ [ kg

m3 ] Tp [N ]

1 10−5 30 90 2.9 · 10−3 1/30 5 · 106 0.04 1100 0

The parameter values used for the spring-mass system case are as listed in Table B.3, where l0truss is
the natural, initial length of the truss, Tp the pre-tension and dl the elongation of the truss that leads
to this pre-tension. Note that this case is equal to a mass-less spring with a point mass mtruss/2 kg at
the end.

Table B.3: Parameter Values - Spring-Mass System

tend [s] dt [s] Ntrusses [-] mtruss [kg] k [N/m] l0truss [m] Tp [N ] dl [m]

10 10−4, 10−5, 10−7 1 1 1000 1 9.81 4.9 · 10−3

The elongation is set to be equal to the distance between the initial and equilibrium positions. With
this, the point mass should oscillate around the equilibrium position, and be bounded by the initial
and pre-tension positions. So, the value is set to dl = mtrussg/2k, and thus the pre-tension is Tp =
mtrussg/2 + kdl. See Appendix B.3.1 for an illustration of a general spring-mass system.

B.2 Results

Figure B.2 shows the elastic pendulum at several time instances during the first second, while Figure B.3
shows the vertical displacement of the tip during the same period. It is observed that the length of
the trusses are no longer constant, as anticipated having included elasticity.

The corresponding figures for the elastic beam pendulum of Marino et al. (2019) are added in Ap-
pendix B.3.2. Comparing our results with these, it is seen that the correspondence is generally good.
However, since the truss model does not include bending stiffness, which the beam model does, the
truss model bends more at the tip and the angles are changing more brutally between the elements.
All in all, the implementation of the elastic pendulum case is thought to be successful.
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Figure B.2: Elastic pendulum during the first second

Figure B.3: Vertical tip displacement of elastic pendulum

Figure B.4 shows the time-series for the point-mass displacement for a time-step of 10−4 seconds. As
seen, the point mass oscillates around the equilibrium position, bounded by the initial and pre-tension
positions. In this manner it behaves as one intended when setting the elongation value in Table B.3.
However, the oscillation is rapidly damped out, which it should not be since there is no damping in
the system. This must then come from numerical damping.
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Figure B.4: Spring motion for dt = 10−4 s

Figure B.5 and Figure B.6 show the resulting time-series for time-steps of 10−5 and 10−7, respectively.
It is observed that the damping decreases for decreased time-step, and for the smallest time-step the
oscillation acts like the un-damped spring-mass system that it should. It has a harmonic oscillation
with period Tn =

√
2k/m, and takes both compression and tension. So, the truss model describes the

system in a satisfactory way as long as the time-step is small enough. A time-step of 10−7 seconds is
of course very low, and the time-step influence should be studied more in detail.

Figure B.5: Spring motion for dt = 10−5 s
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Figure B.6: Spring motion for dt = 10−7 s

B.3 Supplement for Simple Truss Verification Cases

B.3.1 Spring-Mass System Illustration

Figure B.7: General Spring-Mass System
Taken from Strang and Herman (2016)
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B.3.2 Elastic Beam Pendulum

Figure B.8: Elastic Beam Pendulum During the First Second

Figure B.9: Vertical Displacement at Tip for Elastic Beam Pendulum



Appendix C

Supplement for Single Floater Vertical
Motion Verification

C.1 Additional Ramping and Rayleigh Damping Plots

Here are additional plots from the study of including ramping and Rayleigh damping in Section 4.2.1.

(a) No ramping or Rayleigh damping (b) Ramping but no Rayleigh damping

(c) Rayleigh damping but no ramping (d) Rayleigh damping and ramping

Figure C.1: Effect on modal amplitudes from ramping and Rayleigh damping
Modal amplitude time-series for all activated vertical modes 0− 4 are presented. The effects of ramping of the

wave excitation force and Rayleigh damping of natural modes are shown from the different time-series.
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(a) No ramping or Rayleigh damping (b) Ramping but no Rayleigh damping

(c) Rayleigh damping but no ramping (d) Rayleigh damping and ramping

Figure C.2: Effect on Z-position from ramping and Rayleigh damping
Z-position time-series are presented, for all the for floater-nodes. The effects of ramping of the wave excitation

force and Rayleigh damping of natural modes are shown from the different time-series.

C.2 Modal Amplitude for Heave at Natural Frequency in Heave

Figure C.3 is supplementary to Section 4.2.2, and illustrates the stable region to be used when taking
the FFT of the mode amplitude time-series.
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Figure C.3: Stable region illustration
Mode amplitude time-series in heave for a wave-condition at kRn, corresponding to the floaters natural

frequency in heave. end-ramp marks the end of ramping of the wave excitation force, while stable-time marks
the time instant at which the stable region starts. The FFT of the signal is taken from the stable region, and

from this the RAO value of the run is found.
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C.3 Additional Vertical RAO Plots

(a) mode 7 (b) mode 8

(c) mode 9 (d) mode 10

(e) mode 11 (f) mode 12

Figure C.4: RAO’s for vertical modes 7-12
Numerical RAO for a single floater without trusses, plotted against the corresponding theoretical ZFT RAO,

for vertical modes 7− 12. Rayleigh damping of ξ = 1, 2 and 3% are used in the numerical runs.
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(a) mode 13 (b) mode 14

(c) mode 15 (d) mode 16

(e) mode 17 (f) mode 18

Figure C.5: RAO’s for vertical modes 13-18
Numerical RAO for a single floater without trusses, plotted against the corresponding theoretical ZFT RAO,

for vertical modes 13− 18. Rayleigh damping of ξ = 1, 2 and 3% are used in the numerical runs.
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(a) mode 19 (b) mode 20

Figure C.6: RAO’s for vertical modes 19-20
Numerical RAO for a single floater without trusses, plotted against the corresponding theoretical ZFT RAO,

for vertical modes 19− 20. Rayleigh damping of ξ = 1, 2 and 3% are used in the numerical runs.
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Supplement for Single Floater Lateral
Motion Verification

D.1 Effect of mooring-line stiffness on theoretical RAO in Surge

Figure D.1 shows theoretical RAOs for a single floater, moored floater with 4 mooring-lines, at β =
0, π/2, π and 3π/2 rad, respectively. Two different values of mooring-line stiffness, km, are tested. It is
seen that the RAO peak shifts to the left as the mooring-line stiffness decreases, which is in accordance
with the natural frequency expression for surge.

(a) (b)

Figure D.1: Effect of mooring-line stiffness on ZFT surge RAO
Theoretical RAOs for a single floater with 4 mooring-lines, at β = 0, π/2, π and 3π/2 rad, respectively. Two
different values of mooring-line stiffness, km, are tested. a) shows the full kR-range, while b) is zoomed in

around the are of natural frequencies.

D.2 Time-step Study of radial Mode 20

This is a supplement to the verification study of radial mode 2 in Section 4.4.1. Figure D.2 shows the
resulting RAOs for radial mode 20 using two different time-steps, dt = 0.005 and 0.0005 s, plotted
against the corresponding theoretical RAO.
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Figure D.2: Time-step study for radial mode 20
The kR range around the natural frequency of the mode is shown. Resulting RAOs from runs with dt = 0.005

and 0.0005 s are plotted against the corresponding theoretical RAO.
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D.3 Damped RAOs for Radial Modes

(a) Mode 3 (b) Mode 3 zoomed in around kRn

(c) Mode 4 (d) Mode 5

(e) Mode 6 (f) Mode 7

Figure D.3: Damped RAOs for radial modes 4-7
RAOs for a single floater without mooring-lines for Rayleigh damping values of 1 and 3%, plotted against the

corresponding theoretical RAO. Figure b) is the same plot as in a), just zoomed in around kRn.
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(a) Mode 8 (b) Mode 9

(c) Mode 10

Figure D.4: Damped RAOs for radial modes 8-13
RAOs for a single floater without mooring-lines for Rayleigh damping values of 1 and 3%, plotted against the

corresponding theoretical RAO.
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D.4 RAOs for Radial Modes With vs Without Mooring-lines

(a) Mode 9 (b) Mode 10

(c) Mode 11 (d) Mode 12

(e) Mode 13 (f) Mode 14

Figure D.5: Radial mode 9-14 RAOs - with vs without mooring-lines
Resulting numerical RAOs for a single floater, run both with and without mooring-lines. A Rayleigh damping

value of 1% is used. The corresponding theoretical RAO is also plotted.
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(a) Mode 15 (b) Mode 16

(c) Mode 17 (d) Mode 18

(e) Mode 19 (f) Mode 20

Figure D.6: Radial mode 15-20 RAOs - with vs without mooring-lines
Resulting numerical RAOs for a single floater, run both with and without mooring-lines. A Rayleigh damping

value of 1% is used. The corresponding theoretical RAO is also plotted.

D.5 Problem With Modes Divisible by Four

The following plots are a supplement to the presentation in Section 4.4.3.
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Figure D.7: Radial generalized truss-force problem
Generalized radial truss-force time-series are plotted for radial modes M = 2− 20. A pre-tension of

Tp = 78125 N is used.

Figure D.8: Radial generalized truss-force problem - zoomed in version
Generalized truss-force time-series are plotted for radial modes M = 2− 20. The plot is zoomed in on the

initial part of the time-series. During plotting, it is observed that modes divisible by four are plotted over each
other. A pre-tension of Tp = 78125 N is used.
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(a)

(b)

Figure D.9: Mode amplitude problem - lower pre-tension
Mode amplitude time-series are plotted for radial modes M = 2− 20. Figure a) shows the full time-series,

while b) is zoomed in version of the same plot. A pre-tension of Tp = 781.25 N is used.
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Figure D.10: Truss-force problem - lower pre-tension
Generalized truss-force time-series are plotted for radial modes M = 2− 20. A pre-tension of Tp = 781.25 N is

used.



Appendix E

Supplement for Single Floater Combined
Motion Verification

Figure E.1 and Figure E.2 are a supplement to the combined mode verification case 1 in Section 4.5.1.

(a) (b)

Figure E.1: Node motion for combined mode case 1
Figure a) shows the truss tension time-series for mooring-trusses 1 and 3. Figure b) shows the truss tension
time-series for mooring-trusses 2 and 4. T is the instantaneous tension, while Tp is the initial pre-tension of

the truss.
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Figure E.2: Mode amplitudes for combined case 1
Mode-amplitude time-series for combined mode case 1. r.mode 2 is radial mode 2, which is the first flexible

lateral mode.

Figure E.3 and Figure E.4 are a supplement to the combined mode verification case 2 in Section 4.5.2.

(a) (b)

Figure E.3: Node motion for combined mode case 2
Figure a) shows the truss tension time-series for mooring-trusses 1 and 3. Figure b) shows the truss tension
time-series for mooring-trusses 2 and 4. T is the instantaneous tension, while Tp is the initial pre-tension of

the truss.
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Figure E.4: Mode amplitudes for combined case 2
Mode-amplitude time-series for combined mode case 1. r.mode 2 is radial mode 2, which is the first flexible

lateral mode.

Figure E.5 and Figure E.6 are a supplement to the combined mode verification case 3 in Section 4.5.3.

(a) (b)

Figure E.5: Node motion for combined mode case 3
Figure a) shows the truss tension time-series for mooring-trusses 1 and 3. Figure b) shows the truss tension
time-series for mooring-trusses 2 and 4. T is the instantaneous tension, while Tp is the initial pre-tension of

the truss.
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Figure E.6: Mode amplitudes for combined case 3
Mode-amplitude time-series for combined mode case 3 r.mode 2 is radial mode 2, which is the first flexible

lateral mode.



Appendix F

Additional Information From Previous
Model Tests

F.1 Regular Wave Test Matrix in Winsvold Model Tests

Figure F.1: Regular Wave Test Matrix in Winsvold Model Tests
Full scale test matrix for regular waves run in Winsvold model tests. Taken from Winsvold (2018).
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F.1.1 Illustration of Experimental Mooring Set-Up by V. Sigstad

Figure F.2: Experimental Mooring-line set-up by V. Sigstad
To the left: Illustration of mooring-line set-up. To the right: photograph of the mooring-line set-up in the

wave tank. Both are taken from Vassdokken Sigstad (2019)

F.1.2 Regular Wave Test Matrix in V. Sigstad Model Tests

Figure F.3: Regular Wave Test Matrix in V. Sigstad Model Tests
Input to test matrix generation script for regular waves. k is the wave number, D the model diameter, Nk the
number of wave numbers to be run, H/λ wave steepness, ∆(H/λ) change in steepness for each step, h the
water level in the tank, NT the number of wave periods, Nramp the number of ramping wave periods at the

start and end of a run, and finally tzero the pause time between each series of waves. Taken from
Vassdokken Sigstad (2019)
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Additional Experimental Results

G.1 Full Experimental Heave RAO

Figure G.1: Full experimental heave RAO by Winsvold
Full experimental heave RAOs for the outer torus, estimated from both accelerometers and the optical sensor

system, plotted against the corresponding ZFT (pink) and low-frequency (black) RAOs. Taken from
Kristiansen and Winsvold (2019).
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G.2 Additional Experimental RAOs

Figure G.2: Experimental RAO in second flexible vertical mode
Resulting experimental RAO in the second flexible vertical mode (b3/ζa) for the outer torus, for the model

with membrane (1060m1) and without (1060). The wave steepness is H/λ = 1/60. Taken from
Vassdokken Sigstad (2019).

Figure G.3: Experimental RAO in third flexible vertical mode
Resulting experimental RAO in the third flexible vertical mode (b4/ζa) for the outer torus, for the model with
membrane (1060m1) and without (1060). The wave steepness is H/λ = 1/60. Taken from Vassdokken Sigstad

(2019).
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Figure G.4: Experimental RAO in surge
Resulting experimental RAO in surge (η1/ζa) for the outer torus, for the model with membrane (1060m1) and

without (1060). The wave steepness is H/λ = 1/60. Taken from Vassdokken Sigstad (2019).

Figure G.5: Experimental RAO in the first flexible lateral mode
Resulting experimental RAO in first flexible lateral mode (oval2/ζa) for the outer torus, for the model with
membrane (1060m1) and without (1060). The wave steepness is H/λ = 1/60. Taken from Vassdokken Sigstad

(2019).
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Figure G.6: Experimental RAO in the second flexible lateral mode
Resulting experimental RAO in second flexible lateral mode (oval3/ζa) for the outer torus, for the model with
membrane (1060m1) and without (1060). The wave steepness is H/λ = 1/60. Taken from Vassdokken Sigstad

(2019).



Appendix H

Additional Numerical Solar Island Results

H.1 Flowchart

Figure H.1 shows a simplified flowchart for the numerical solar island that is implemented in MATLAB.
The final code is complex, and in total about 1000 lines long.

Figure H.1: Flowchart of numerical solar island code implementation
The chart illustrates the numerical solar island code as it is set up for a single time-series.
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The updating of modes is done in the following manner:

u̇n+1 = u̇n + dtün

un+1 = un + dtu̇n+1

Here, u represents the mode-amplitude, and the method is the same for both vertical, radial and surge
mode amplitudes. Keep in mind that each mode amplitude of each torus must be updated. n is a
certain time instant, and n+ 1 the next, separated by dt.

H.2 2-Tori Model - low vs. initial pre-tension

(a) first flexible (b) second flexible

(c) third flexible

Figure H.2: Low vs. initial pre-tension - vertical mode RAOs
Resulting numerical RAOs for vertical modes plotted against ZFT, for each of the two tori in the 2-torus
model. num denotes numerical results. Further, T1 denotes torus 1 and T2 torus 2, where the latter is the

outer torus of the system. lowTp is from a run with Tpct = 18550, which is half of the pre-tension in the initial
run.
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Figure H.3: Low vs. initial pre-tension - surge mode RAOs
Resulting numerical RAOs for surge mode plotted against ZFT, for each of the two tori in the 2-torus model.
num denotes numerical results. Further, T1 denotes torus 1 and T2 torus 2, where the latter is the outer torus

of the system. lowTp is from a run with Tpct = 18550, which is half of the pre-tension in the initial run.

(a) Radial mode 2 (b) Radial mode 3

Figure H.4: Low vs. initial pre-tension - radial mode RAOs
Resulting numerical RAOs for radial modes plotted against single floater theory, for each of the two tori in the
2-torus model. num denotes numerical results. Further, T1 denotes torus 1 and T2 torus 2, where the latter is
the outer torus of the system. lowTp is from a run with Tpct = 18550, which is half of the pre-tension in the

initial run.
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H.3 5-Torus Model - Additional RAOs

Figure H.5: Vertical mode 4 RAOs for 5-torus model
Resulting numerical RAOs in vertical mode 4 plotted against ZFT, for each of the three outer tori in the

5-torus model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and T5 torus 5, where
the latter is the outer torus of the system.
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(a) (b)

(c) (d)

(e)

Figure H.6: Vertical mode RAOs for 5-torus model
Resulting numerical RAOs in the first four vertical modes plotted against single floater theory, for the two
most inner tori in the 5-torus model. num denotes numerical results. Further, T1 denotes torus 1 and T2

torus 2, where the former is the inner torus of the system. The legend in d) is for all four plots.
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Figure H.7: Surge
Resulting numerical RAOs in surge plotted against theoretical RAOs for the two most inner tori in the 5-torus
model. num denotes numerical results. Further, T1 denotes torus 1 and T2 torus 2, where the former is the

inner torus of the system.

0.5
(a) (b)

Figure H.8: Radial mode RAOs for 5-torus model
Resulting numerical RAOs in radial modes plotted against theoretical RAOs for the two most inner tori in the
5-torus model. num denotes numerical results. Further, T1 denotes torus 1 and T2 torus 2, where the former

is the inner torus of the system.
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H.4 5-Torus Model - Additional Altered Version RAOs

(a)

(b)

Figure H.9: Vertical mode RAOs: 5-tours case vs. altered versions
Resulting numerical RAOs in vertical modes 1− 2 plotted against ZFT RAOs for the three outermost tori in
the 5-torus model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and T5 torus 5,
where the latter is the outer torus of the system. lowTp is for a version with half the original pre-tension,

Tpct = 18550 N, and moor is for a moored-version of the 5-torus case.
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(a)

(b)

Figure H.10: Vertical mode RAOs, 5-tours case vs. altered versions
Resulting numerical RAOs in vertical modes 3− 4 plotted against theoretical RAOs for the three outermost
tori in the 5-torus model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and T5
torus 5, where the latter is the outer torus of the system. lowTp is for a version with half the original

pre-tension, Tpct = 18550 N, and moor is for a moored-version of the 5-torus case.
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(a)

(b)

Figure H.11: Radial mode RAOs, 5-tours case vs. altered versions
Resulting numerical RAOs in radial modes 2− 3 plotted against theoretical RAOs for the three outermost tori
in the 5-torus model. num denotes numerical results. Further, T3 denotes torus 3, T4 torus 4 and T5 torus 5,
where the latter is the outer torus of the system. lowTp is for a version with half the original pre-tension,

Tpct = 18550 N, and moor is for a moored-version of the 5-torus case.
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H.5 5-Torus Model: Additional Time-series

(a) 5-torus case (b) 5-torus case, moored

(c) 5-torus case (d) 5-torus case, moored

Figure H.12: Vertical mode-amplitudes and forces in mode 2 on torus 1
a) shows the vertical generalized forces in vertical mode 2 on torus 1, for the 5-torus case. b) shows the same
for the moored version of the 5-torus case. c) shows the vertical modal amplitudes for torus 1, for the 5-torus
case. d) shows the same, only for the moored version of the 5-torus case.vertical mode amplitudes on the same

torus. These plots are all for kR5 = 4.
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